Topological entanglement entropy with a twist.
Brown, Benjamin J; Bartlett, Stephen D; Doherty, Andrew C; Barrett, Sean D
2013-11-27
Defects in topologically ordered models have interesting properties that are reminiscent of the anyonic excitations of the models themselves. For example, dislocations in the toric code model are known as twists and possess properties that are analogous to Ising anyons. We strengthen this analogy by using the topological entanglement entropy as a diagnostic tool to identify properties of both defects and excitations in the toric code. Specifically, we show, through explicit calculation, that the toric code model including twists and dyon excitations has the same quantum dimensions, the same total quantum dimension, and the same fusion rules as an Ising anyon model.
General phase spaces: from discrete variables to rotor and continuum limits
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Pascazio, Saverio; Devoret, Michel H.
2017-12-01
We provide a basic introduction to discrete-variable, rotor, and continuous-variable quantum phase spaces, explaining how the latter two can be understood as limiting cases of the first. We extend the limit-taking procedures used to travel between phase spaces to a general class of Hamiltonians (including many local stabilizer codes) and provide six examples: the Harper equation, the Baxter parafermionic spin chain, the Rabi model, the Kitaev toric code, the Haah cubic code (which we generalize to qudits), and the Kitaev honeycomb model. We obtain continuous-variable generalizations of all models, some of which are novel. The Baxter model is mapped to a chain of coupled oscillators and the Rabi model to the optomechanical radiation pressure Hamiltonian. The procedures also yield rotor versions of all models, five of which are novel many-body extensions of the almost Mathieu equation. The toric and cubic codes are mapped to lattice models of rotors, with the toric code case related to U(1) lattice gauge theory.
Hyperbolic and semi-hyperbolic surface codes for quantum storage
NASA Astrophysics Data System (ADS)
Breuckmann, Nikolas P.; Vuillot, Christophe; Campbell, Earl; Krishna, Anirudh; Terhal, Barbara M.
2017-09-01
We show how a hyperbolic surface code could be used for overhead-efficient quantum storage. We give numerical evidence for a noise threshold of 1.3 % for the \\{4,5\\}-hyperbolic surface code in a phenomenological noise model (as compared with 2.9 % for the toric code). In this code family, parity checks are of weight 4 and 5, while each qubit participates in four different parity checks. We introduce a family of semi-hyperbolic codes that interpolate between the toric code and the \\{4,5\\}-hyperbolic surface code in terms of encoding rate and threshold. We show how these hyperbolic codes outperform the toric code in terms of qubit overhead for a target logical error probability. We show how Dehn twists and lattice code surgery can be used to read and write individual qubits to this quantum storage medium.
Topological quantum error correction in the Kitaev honeycomb model
NASA Astrophysics Data System (ADS)
Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.
2017-08-01
The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.
Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes
NASA Astrophysics Data System (ADS)
Harrington, James William
Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present a local classical processing scheme for correcting errors on toric codes, which demonstrates that quantum information can be maintained in two dimensions by purely local (quantum and classical) resources.
Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzgraber, Helmut G.; Theoretische Physik, ETH Zurich, CH-8093 Zurich; Bombin, H.
We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respectmore » to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.« less
TOPICA/TORIC integration for self-consistent antenna and plasma analysis
NASA Astrophysics Data System (ADS)
Maggiora, Riccardo; Lancellotti, Vito; Milanesio, Daniele; Kyrytsya, Volodymyr; Vecchi, Giuseppe; Bonoli, Paul T.; Wright, John C.
2006-10-01
TOPICA [1] is a numerical suite conceived for prediction and analysis of plasma-facing antennas. It can handle real-life 3D antenna geometries (with housing, Faraday screen, etc.) as well as a realistic plasma model, including measured density and temperature profiles. TORIC [2] solves the finite Larmor radius wave equations in the ICRF regime in arbitrary axisymmetric toroidal plasmas. Due to the approach followed in developing TOPICA (i.e. the formal splitting of the problem in the vacuum region around the antenna and the plasma region inside the toroidal chamber), the code lends itself to handle toroidal plasmas, provided TORIC is run independently to yield the plasma surface admittance tensorsY (m,m',n). The latter enter directly into the integral equations solved by TOPICA, thus allowing a far more accurate plasma description that accounts for curvature effects. TOPICA outputs comprise, among others, the EM fields in front of the plasma: these can in turn be input to TORIC, in order to self-consistently determine the EM field propagation in the plasma. In this work, we report on the theory underlying the TOPICA/TORIC integration and the ongoing evolution of the two codes. [1] V. Lancellotti et al., Nucl. Fusion, 46 (2006) S476 [2] M. Brambilla, Plasma Phys. Contr. Fusion (1999) 41 1
Self-dual random-plaquette gauge model and the quantum toric code
NASA Astrophysics Data System (ADS)
Takeda, Koujin; Nishimori, Hidetoshi
2004-05-01
We study the four-dimensional Z2 random-plaquette lattice gauge theory as a model of topological quantum memory, the toric code in particular. In this model, the procedure of quantum error correction works properly in the ordered (Higgs) phase, and phase boundary between the ordered (Higgs) and disordered (confinement) phases gives the accuracy threshold of error correction. Using self-duality of the model in conjunction with the replica method, we show that this model has exactly the same mathematical structure as that of the two-dimensional random-bond Ising model, which has been studied very extensively. This observation enables us to derive a conjecture on the exact location of the multicritical point (accuracy threshold) of the model, pc=0.889972…, and leads to several nontrivial results including bounds on the accuracy threshold in three dimensions.
Constructing topological models by symmetrization: A projected entangled pair states study
NASA Astrophysics Data System (ADS)
Fernández-González, Carlos; Mong, Roger S. K.; Landon-Cardinal, Olivier; Pérez-García, David; Schuch, Norbert
2016-10-01
Symmetrization of topologically ordered wave functions is a powerful method for constructing new topological models. Here we study wave functions obtained by symmetrizing quantum double models of a group G in the projected entangled pair states (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G ˜ which is always non-Abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wave functions in the same phase as the double model of G ˜. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G ˜.
Overview of the new capabilities of TORIC-v6 and comparison with TORIC-v5
NASA Astrophysics Data System (ADS)
Bilato, R.; Brambilla, M.; Bertelli, N.
2016-10-01
Since its release, version 5 (v5) of the full-wave TORIC code, characterized by an optimized parallelized solver for its routinely use in TRANSP package, has been ameliorated in many technical issues, e.g. the plasma-vacuum transition and the full-spectrum antenna modeling. For the WPCD-benchmark cases a good agreement between the new version, v6, and v5 is found. The major improvement, however, has been done in interfacing TORIC-v6 with the Fokker-Planck SSFPQL solver to account for the back-reaction of ICRF and NBI heating on the wave propagation and absorption. Special algorithms have been developed for SSFPQL for the numerical precision at high pitch-angle resolution and to evaluate the generalized dispersion function directly from the numerical solution. Care has been spent in automatizing the non-linear loop between TORIC-v6 and SSFPQL. In v6 the description of wave absorption at high-harmonics has been revised and applied to DEMO. For high-harmonic regimes there is an ongoing activity on the comparison with AORSA.
Toric-boson model: Toward a topological quantum memory at finite temperature
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Castelnovo, Claudio; Chamon, Claudio
2009-06-01
We discuss the existence of stable topological quantum memory at finite temperature. At stake here is the fundamental question of whether it is, in principle, possible to store quantum information for macroscopic times without the intervention from the external world, that is, without error correction. We study the toric code in two dimensions with an additional bosonic field that couples to the defects, in the presence of a generic environment at finite temperature: the toric-boson model. Although the coupling constants for the bare model are not finite in the thermodynamic limit, the model has a finite spectrum. We show that in the topological phase, there is a finite temperature below which open strings are confined and therefore the lifetime of the memory can be made arbitrarily (polynomially) long in system size. The interaction with the bosonic field yields a long-range attractive force between the end points of open strings but leaves closed strings and topological order intact.
Entanglement entropy from tensor network states for stabilizer codes
NASA Astrophysics Data System (ADS)
He, Huan; Zheng, Yunqin; Bernevig, B. Andrei; Regnault, Nicolas
2018-03-01
In this paper, we present the construction of tensor network states (TNS) for some of the degenerate ground states of three-dimensional (3D) stabilizer codes. We then use the TNS formalism to obtain the entanglement spectrum and entropy of these ground states for some special cuts. In particular, we work out examples of the 3D toric code, the X-cube model, and the Haah code. The latter two models belong to the category of "fracton" models proposed recently, while the first one belongs to the conventional topological phases. We mention the cases for which the entanglement entropy and spectrum can be calculated exactly: For these, the constructed TNS is a singular value decomposition (SVD) of the ground states with respect to particular entanglement cuts. Apart from the area law, the entanglement entropies also have constant and linear corrections for the fracton models, while the entanglement entropies for the toric code models only have constant corrections. For the cuts we consider, the entanglement spectra of these three models are completely flat. We also conjecture that the negative linear correction to the area law is a signature of extensive ground-state degeneracy. Moreover, the transfer matrices of these TNSs can be constructed. We show that the transfer matrices are projectors whose eigenvalues are either 1 or 0. The number of nonzero eigenvalues is tightly related to the ground-state degeneracy.
Superconducting quantum simulator for topological order and the toric code
NASA Astrophysics Data System (ADS)
Sameti, Mahdi; Potočnik, Anton; Browne, Dan E.; Wallraff, Andreas; Hartmann, Michael J.
2017-04-01
Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations, and prospects for protecting stored quantum information against errors. Here, we show that the Hamiltonian of the central model of this class of systems, the toric code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via superconducting quantum interference devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along noncontractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single-qubit operations allow to create and propagate elementary excitations of the toric code and to verify their fractional statistics. The architecture we propose allows to implement a large variety of many-body interactions and thus provides a versatile analog quantum simulator for topological order and lattice gauge theories.
Error threshold for color codes and random three-body Ising models.
Katzgraber, Helmut G; Bombin, H; Martin-Delgado, M A
2009-08-28
We study the error threshold of color codes, a class of topological quantum codes that allow a direct implementation of quantum Clifford gates suitable for entanglement distillation, teleportation, and fault-tolerant quantum computation. We map the error-correction process onto a statistical mechanical random three-body Ising model and study its phase diagram via Monte Carlo simulations. The obtained error threshold of p(c) = 0.109(2) is very close to that of Kitaev's toric code, showing that enhanced computational capabilities do not necessarily imply lower resistance to noise.
NASA Astrophysics Data System (ADS)
Iqbal, Mohsin; Duivenvoorden, Kasper; Schuch, Norbert
2018-05-01
We use projected entangled pair states (PEPS) to study topological quantum phase transitions. The local description of topological order in the PEPS formalism allows us to set up order parameters which measure condensation and deconfinement of anyons and serve as substitutes for conventional order parameters. We apply these order parameters, together with anyon-anyon correlation functions and some further probes, to characterize topological phases and phase transitions within a family of models based on a Z4 symmetry, which contains Z4 quantum double, toric code, double semion, and trivial phases. We find a diverse phase diagram which exhibits a variety of different phase transitions of both first and second order which we comprehensively characterize, including direct transitions between the toric code and the double semion phase.
Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks
NASA Astrophysics Data System (ADS)
Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.
2005-09-01
To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.
Locality-preserving logical operators in topological stabilizer codes
NASA Astrophysics Data System (ADS)
Webster, Paul; Bartlett, Stephen D.
2018-01-01
Locality-preserving logical operators in topological codes are naturally fault tolerant, since they preserve the correctability of local errors. Using a correspondence between such operators and gapped domain walls, we describe a procedure for finding all locality-preserving logical operators admitted by a large and important class of topological stabilizer codes. In particular, we focus on those equivalent to a stack of a finite number of surface codes of any spatial dimension, where our procedure fully specifies the group of locality-preserving logical operators. We also present examples of how our procedure applies to codes with different boundary conditions, including color codes and toric codes, as well as more general codes such as Abelian quantum double models and codes with fermionic excitations in more than two dimensions.
NASA Astrophysics Data System (ADS)
Bertelli, N.; Valeo, E. J.; Phillips, C. K.
2015-11-01
A non Maxwellian extension of the full wave TORIC v.5 code in the mid/high harmonic and minority heating regimes has been revisited. In both regimes the treatment of the non-Maxwellian ions is needed in order to improve the analysis of combined fast wave (FW) and neutral beam injection (NBI) heated discharges in the current fusion devices. Additionally, this extension is also needed in time-dependent analysis where the combined heating experiments are generally considered. Initial numerical cases with thermal ions and with a non-Maxwellian ions are presented for both regimes. The simulations are then compared with results from the AORSA code, which has already been extended to include non-Maxwellian ions. First attempts to apply this extension in a self-consistent way with the NUBEAM module, which is included in the TRANSP code, are also discussed. Work supported by US DOE Contracts # DE-FC02-01ER54648 and DE-AC02-09CH11466.
Fluctuation in visual acuity during soft toric contact lens wear.
Chamberlain, Paul; Morgan, Philip B; Moody, Kurt J; Maldonado-Codina, Carole
2011-04-01
To quantify changes in visual acuity (VA) with soft toric contact lenses as a result of lens movement and/or rotational instability caused by versional eye movements. A novel chart for vision assessment at near (40 cm) for soft toric contact lenses (VANT chart),consisting of a central, color-coded logMAR panel and eight peripheral letter targets set on a white background measuring 60 × 40 cm was constructed. In the developmental phase of the work, 10 subjects (20 eyes) wore 2 toric lenses in random order, and the impact of rapid and delayed eye versions in 8 directions of gaze on VANT acuity was investigated. In phase 2, 35 subjects (68 eyes) wore 4 toric lenses in random order, and a streamlined clinical protocol using the VANT chart was implemented. Standard assessments of toric lens fit and distance VA were also performed. Testing in the first phase showed no difference for change in VA for rapid vs. delayed version movements, (p = 0.17) but acuity reduction was greater for diagonal compared with horizontal/vertical versions (p = 0.06). As such, testing in phase 2 proceeded using rapid, diagonal versions only. In this second phase, there were differences for low-contrast distance VA measures between lens types (p = 0.02) and for both VANT baseline acuity (p = 0.03) and postversion acuity (p = 0.04), but no differences were found between lenses for magnitude of vision loss (p = 0.91), which was about one line. No relationship was established between the magnitude of vision loss and measured rotational stability (p = 0.75). This work has demonstrated that conventional approaches to measuring VA do not fully replicate the "real world" experience of soft toric lens wearers. The VANT chart has shown that VA is reduced immediately after versional eye movements and suggests that more dynamic methods of assessing visual performance should be considered for soft toric contact lens wearers, especially given the apparent inability of lens stability measurements to predict visual performance.
Laurendeau, C; Lafuma, A; Berdeaux, G
2009-09-01
To compare the lifetime costs of freeing astigmatic patients from spectacles after bilateral cataract surgery implanting toric intraocular lenses (IOLs: i.e., Acrysof Toric) versus monofocal IOLs, in France, Italy, Germany and Spain. A Markov model followed patient cohorts from cataract surgery until death. Prevalence rates of patients not needing spectacles and the types of spectacles prescribed for those requiring them were obtained from clinical trials and national surveys. The economic perspective was societal. Mortality rates were incorporated into the model. Discount rates were applied. A sensitivity analysis was performed on non-discounted costs. Fewer patients with toric IOLs needed spectacles for distance vision than patients with monofocal IOLs. With monofocal IOLs more than 66% of patients needed complex spectacles compared to less than 25% implanted with toric IOLs. In France and Italy, toric IOLs reduced overall costs relative to otherwise high spectacle costs after cataract surgery. Savings were 897.0 euros (France), 822.5 euros (Germany), 895.8 euros (Italy) and 391.6 euros (Spain), without discounting. On applying a 3% discount rate the costs became 691.7 euros, 646.4 euros, 693.9 euros and 308.2 euros, respectively. Bilateral toric IOL implants in astigmatic patients decreased spectacle dependence for distance vision and the need for complex spectacles. The economic consequences for patients depended on the national spectacle costs usually incurred after cataract surgery.
Simple anisotropic three-dimensional quantum spin liquid with fractonlike topological order
NASA Astrophysics Data System (ADS)
Petrova, O.; Regnault, N.
2017-12-01
We present a three-dimensional cubic lattice spin model, anisotropic in the z ̂ direction, that exhibits fractonlike order. This order can be thought of as the result of interplay between two-dimensional Z2 topological order and spontaneous symmetry breaking along the z ̂ direction. Fracton order is a novel type of topological order characterized by the presence of immobile pointlike excitations, named fractons, residing at the corners of an operator with two-dimensional support. As other recent fracton models, ours exhibits a subextensive ground-state degeneracy: On an Lx×Ly×Lz three-torus, it has a 22 Lz topological degeneracy and an additional symmetry-breaking nontopological degeneracy equal to 2LxLy-2. The fractons can be combined into composite excitations that move either in a straight line along the z ̂ direction or freely in the x y plane at a given height z . While our model draws inspiration from the toric code, we demonstrate that it cannot be adiabatically connected to a layered toric code construction. Additionally, we investigate the effects of imposing open boundary conditions on our system. We find zero energy modes on the surfaces perpendicular to either the x ̂ or y ̂ directions and their absence on the surfaces normal to z ̂. This result can be explained using the properties of the two kinds of composite two-fracton mobile excitations.
Topological order, entanglement, and quantum memory at finite temperature
NASA Astrophysics Data System (ADS)
Mazáč, Dalimil; Hamma, Alioscia
2012-09-01
We compute the topological entropy of the toric code models in arbitrary dimension at finite temperature. We find that the critical temperatures for the existence of full quantum (classical) topological entropy correspond to the confinement-deconfinement transitions in the corresponding Z2 gauge theories. This implies that the thermal stability of topological entropy corresponds to the stability of quantum (classical) memory. The implications for the understanding of ergodicity breaking in topological phases are discussed.
Entanglement negativity and sudden death in the toric code at finite temperature
NASA Astrophysics Data System (ADS)
Hart, O.; Castelnovo, C.
2018-04-01
We study the fate of quantum correlations at finite temperature in the two-dimensional toric code using the logarithmic entanglement negativity. We are able to obtain exact results that give us insight into how thermal excitations affect quantum entanglement. The toric code has two types of elementary excitations (defects) costing different energies. We show that an O (1 ) density of the lower energy defect is required to degrade the zero-temperature entanglement between two subsystems in contact with one another. However, one type of excitation alone is not sufficient to kill all quantum correlations, and an O (1 ) density of the higher energy defect is required to cause the so-called sudden death of the negativity. Interestingly, if the energy cost of one of the excitations is taken to infinity, quantum correlations survive up to arbitrarily high temperatures, a feature that is likely shared with other quantum spin liquids and frustrated systems in general, when projected down to their low-energy states. We demonstrate this behavior both for small subsystems, where we can prove that the negativity is a necessary and sufficient condition for separability, as well as for extended subsystems, where it is only a necessary condition. We further observe that the negativity per boundary degree of freedom at a given temperature increases (parametrically) with the size of the boundary, and that quantum correlations between subsystems with extended boundaries are more robust to thermal fluctuations.
Global embeddings for branes at toric singularities
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; Berglund, Per; Braun, Volker; García-Etxebarria, Iñaki
2012-10-01
We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) ( dP 0)3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.
Squashed Toric Sigma Models and Mock Modular Forms
NASA Astrophysics Data System (ADS)
Gupta, Rajesh Kumar; Murthy, Sameer
2018-05-01
We study a class of two-dimensional N}=(2,2)} sigma models called squashed toric sigma models, using their Gauged Linear Sigma Models (GLSM) description. These models are obtained by gauging the global {U(1)} symmetries of toric GLSMs and introducing a set of corresponding compensator superfields. The geometry of the resulting vacuum manifold is a deformation of the corresponding toric manifold in which the torus fibration maintains a constant size in the interior of the manifold, thus producing a neck-like region. We compute the elliptic genus of these models, using localization, in the case when the unsquashed vacuum manifolds obey the Calabi-Yau condition. The elliptic genera have a non-holomorphic dependence on the modular parameter {τ} coming from the continuum produced by the neck. In the simplest case corresponding to squashed {C / Z_{2 the elliptic genus is a mixed mock Jacobi form which coincides with the elliptic genus of the {N=(2,2)} {SL(2,R) / U(1)} cigar coset.
Optical performance of toric intraocular lenses in the presence of decentration.
Zhang, Bin; Ma, Jin-Xue; Liu, Dan-Yan; Du, Ying-Hua; Guo, Cong-Rong; Cui, Yue-Xian
2015-01-01
To evaluate the optical performance of toric intraocular lenses (IOLs) after decentration and with different pupil diameters, but with the IOL astigmatic axis aligned. Optical performances of toric T5 and SN60AT spherical IOLs after decentration were tested on a theoretical pseudophakic model eye based on the Hwey-Lan Liou schematic eye using the Zemax ray-tracing program. Changes in optical performance were analyzed in model eyes with 3-mm, 4-mm, and 5-mm pupil diameters and decentered from 0.25 mm to 0.75 mm with an interval of 5° at the meridian direction from 0° to 90°. The ratio of the modulation transfer function (MTF) between a decentered and a centered IOL (MTFDecentration/MTFCentration) was calculated to analyze the decrease in optical performance. Optical performance of the toric IOL remained unchanged when IOLs were decentered in any meridian direction. The MTFs of the two IOLs decreased, whereas optical performance remained equivalent after decentration. The MTFDecentration/MTFCentration ratios of the IOLs at a decentration from 0.25 mm to 0.75 mm were comparable in the toric and SN60AT IOLs. After decentration, MTF decreased further, with the MTF of the toric IOL being slightly lower than that of the SN60AT IOL. Imaging qualities of the two IOLs decreased when the pupil diameter and the degree of decentration increased, but the decrease was similar in the toric and spherical IOLs. Toric IOLs were comparable to spherical IOLs in terms of tolerance to decentration at the correct axial position.
Optical performance of toric intraocular lenses in the presence of decentration
Zhang, Bin; Ma, Jin-Xue; Liu, Dan-Yan; Du, Ying-Hua; Guo, Cong-Rong; Cui, Yue-Xian
2015-01-01
AIM To evaluate the optical performance of toric intraocular lenses (IOLs) after decentration and with different pupil diameters, but with the IOL astigmatic axis aligned. METHODS Optical performances of toric T5 and SN60AT spherical IOLs after decentration were tested on a theoretical pseudophakic model eye based on the Hwey-Lan Liou schematic eye using the Zemax ray-tracing program. Changes in optical performance were analyzed in model eyes with 3-mm, 4-mm, and 5-mm pupil diameters and decentered from 0.25 mm to 0.75 mm with an interval of 5° at the meridian direction from 0° to 90°. The ratio of the modulation transfer function (MTF) between a decentered and a centered IOL (MTFDecentration/MTFCentration) was calculated to analyze the decrease in optical performance. RESULTS Optical performance of the toric IOL remained unchanged when IOLs were decentered in any meridian direction. The MTFs of the two IOLs decreased, whereas optical performance remained equivalent after decentration. The MTFDecentration/MTFCentration ratios of the IOLs at a decentration from 0.25 mm to 0.75 mm were comparable in the toric and SN60AT IOLs. After decentration, MTF decreased further, with the MTF of the toric IOL being slightly lower than that of the SN60AT IOL. Imaging qualities of the two IOLs decreased when the pupil diameter and the degree of decentration increased, but the decrease was similar in the toric and spherical IOLs. CONCLUSIONS Toric IOLs were comparable to spherical IOLs in terms of tolerance to decentration at the correct axial position. PMID:26309871
Fault-tolerance in Two-dimensional Topological Systems
NASA Astrophysics Data System (ADS)
Anderson, Jonas T.
This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev's surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an integer program that analyzes this structure and determines the most likely set of errors consistent with the observed syndrome values. I implement this integer program to find the threshold for depolarizing noise on small versions of these triangular codes. Because the threshold for magic-state distillation is likely to be higher than this value and because logical
Local convertibility of the ground state of the perturbed toric code
NASA Astrophysics Data System (ADS)
Santra, Siddhartha; Hamma, Alioscia; Cincio, Lukasz; Subasi, Yigit; Zanardi, Paolo; Amico, Luigi
2014-12-01
We present analytical and numerical studies of the behavior of the α -Renyi entropies in the toric code in presence of several types of perturbations aimed at studying the simulability of these perturbations to the parent Hamiltonian using local operations and classical communications (LOCC)—a property called local convertibility. In particular, the derivatives, with respect to the perturbation parameter, present different signs for different values of α within the topological phase. From the information-theoretic point of view, this means that such ground states cannot be continuously deformed within the topological phase by means of catalyst assisted local operations and classical communications (LOCC). Such LOCC differential convertibility is on the other hand always possible in the trivial disordered phase. The non-LOCC convertibility is remarkable because it can be computed on a system whose size is independent of correlation length. This method can therefore constitute an experimentally feasible witness of topological order.
Entanglement renormalization and topological order.
Aguado, Miguel; Vidal, Guifré
2008-02-22
The multiscale entanglement renormalization ansatz (MERA) is argued to provide a natural description for topological states of matter. The case of Kitaev's toric code is analyzed in detail and shown to possess a remarkably simple MERA description leading to distillation of the topological degrees of freedom at the top of the tensor network. Kitaev states on an infinite lattice are also shown to be a fixed point of the renormalization group flow associated with entanglement renormalization. All of these results generalize to arbitrary quantum double models.
Neural Decoder for Topological Codes
NASA Astrophysics Data System (ADS)
Torlai, Giacomo; Melko, Roger G.
2017-07-01
We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.
Wang, Mengmeng; Corpuz, Christine Carole C; Huseynova, Tukezban; Tomita, Minoru
2016-02-01
To evaluate the influences of preoperative pupil parameters on the visual outcomes of a new-generation multifocal toric intraocular lens (IOL) model with a surface-embedded near segment. In this prospective study, patients with cataract had phacoemulsification and implantation of Lentis Mplus toric LU-313 30TY IOLs (Oculentis GmbH, Berlin, Germany). The visual and optical outcomes were measured and compared preoperatively and postoperatively. The correlations between preoperative pupil parameters (diameter and decentration) and 3-month postoperative visual outcomes were evaluated using the Spearman's rank-order correlation coefficient (Rs) for the nonparametric data. A total of 27 eyes (16 patients) were enrolled into the current study. Statistically significant improvements in visual and refractive performances were found after the implantation of Lentis Mplus toric LU-313 30TY IOLs (P < .05). Statistically significant correlations were present between preoperative pupil diameters and postoperative visual acuities (Rs > 0; P < .05). Patients with a larger pupil always have better postoperative visual acuities. Meanwhile, there was no statistically significant correlation between pupil decentration and visual acuities (P > .05). Lentis Mplus toric LU-313 30TY IOLs provided excellent visual and optical performances during the 3-month follow-up. The preoperative pupil size is an important parameter when this toric multifocal IOL model is contemplated for surgery. Copyright 2016, SLACK Incorporated.
Deformed quantum double realization of the toric code and beyond
NASA Astrophysics Data System (ADS)
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
Machine learning topological states
NASA Astrophysics Data System (ADS)
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-11-01
Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.
Quantum Kronecker sum-product low-density parity-check codes with finite rate
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Pryadko, Leonid P.
2013-07-01
We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.
Topological order following a quantum quench
NASA Astrophysics Data System (ADS)
Tsomokos, Dimitris I.; Hamma, Alioscia; Zhang, Wen; Haas, Stephan; Fazio, Rosario
2009-12-01
We determine the conditions under which topological order survives a rapid quantum quench. Specifically, we consider the case where a quantum spin system is prepared in the ground state of the toric code model and, after the quench, it evolves with a Hamiltonian that does not support topological order. We provide analytical results supported by numerical evidence for a variety of quench Hamiltonians. The robustness of topological order under nonequilibrium situations is tested by studying the topological entropy and a dynamical measure, which makes use of the similarity between partial density matrices obtained from different topological sectors.
Kim, Min-Ji; Yoo, Young-Sik; Joo, Choun-Ki; Yoon, Geunyoung
2015-10-01
To evaluate the effect of pupil size, degree of intraocular lens (IOL) decentration, and rotation of 4 aspheric toric IOLs on the image quality. Department of Ophthalmology, Seoul St. Mary's Hospital, Seoul, South Korea. Experimental study. Four aspheric toric intraocular lenses (IOLs)-the Precizon (transitional conic toric IOL), AT Torbi 709M (bitoric IOL), SN6AT4 (posterior toric surface IOL), and ZCT225 (anterior toric surface IOL)-were evaluated using the optical bench metrology system. Measurements included changes in spherical aberrations, relative spherical equivalent (SE), and image quality at different pupil diameters and image quality degradation due to decentration and rotation of the IOLs. Change in relative SE with pupil size in aberration-free toric IOLs (transitional conic toric and bitoric IOLs) was greater than in negatively aspheric toric IOLs (posterior toric surface and anterior toric surface IOLs). In contrast, the aberration-free IOLs showed higher contrast than the negatively aspheric IOLs. When IOLs were decentered by 1.0 mm, the contrast reduction rates at 17.6 cycles per degree for the transitional conic toric IOL, bitoric IOL, posterior toric surface IOL, and anterior toric surface IOL were 5.1%, 3.1%, 12.2%, and 15.8%, respectively. Rotation-induced deterioration of contrast to 0.5 required a much higher rotation for the transitional conic toric IOL than for the other 3 IOLs. The transitional conic toric IOL and bitoric IOL provided superior image quality despite pupil size changes and the presence of decentration. The transitional conic toric IOL demonstrated maximum rotation tolerance compared with the other IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Andre, R.; Carlsson, J.; Gorelenkova, M.; Jardin, S.; Kaye, S.; Poli, F.; Yuan, X.
2016-10-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT- SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP incorporates high fidelity heating and current drive source models, such as NUBEAM for neutral beam injection, the beam tracing code TORBEAM for EC, TORIC for ICRF, the ray tracing TORAY and GENRAY for EC. The implementation of selected components makes efficient use of MPI for speed up of code calculations. Recently the GENRAY-CQL3D solver for modeling of LH heating and current drive has been implemented and currently being extended to multiple antennas, to allow modeling of EAST discharges. Also, GENRAY+CQL3D is being extended to the use of EC/EBW and of HHFW for NSTX-U. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Work supported by the US Department of Energy under DE-AC02-CH0911466.
Classification of almost toric singularities of Lagrangian foliations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izosimov, Anton M
2011-07-31
The topological classification is given of almost toric singularities of integrable Hamiltonian systems with a large number of degrees of freedom, that is, of nondegenerate singularities without hyperbolic components. A descriptive geometric model is constructed, which makes it possible to perform effective calculations. Bibliography: 10 titles.
From Majorana fermions to topological order.
Terhal, Barbara M; Hassler, Fabian; DiVincenzo, David P
2012-06-29
We consider a system consisting of a 2D network of links between Majorana fermions on superconducting islands. We show that the fermionic Hamiltonian modeling this system is topologically ordered in a region of parameter space: we show that Kitaev's toric code emerges in fourth-order perturbation theory. By using a Jordan-Wigner transformation we can map the model onto a family of signed 2D Ising models in a transverse field where the signs, ferromagnetic or antiferromagnetic, are determined by additional gauge bits. Our mapping allows an understanding of the nonperturbative regime and the phase transition to a nontopological phase. We discuss the physics behind a possible implementation of this model and argue how it can be used for topological quantum computation by adiabatic changes in the Hamiltonian.
Self-duality and phase structure of the 4D random-plaquette Z2 gauge model
NASA Astrophysics Data System (ADS)
Arakawa, Gaku; Ichinose, Ikuo; Matsui, Tetsuo; Takeda, Koujin
2005-03-01
In the present paper, we shall study the 4-dimensional Z lattice gauge model with a random gauge coupling; the random-plaquette gauge model (RPGM). The random gauge coupling at each plaquette takes the value J with the probability 1-p and - J with p. This model exhibits a confinement-Higgs phase transition. We numerically obtain a phase boundary curve in the (p-T)-plane where T is the "temperature" measured in unit of J/k. This model plays an important role in estimating the accuracy threshold of a quantum memory of a toric code. In this paper, we are mainly interested in its "self-duality" aspect, and the relationship with the random-bond Ising model (RBIM) in 2-dimensions. The "self-duality" argument can be applied both for RPGM and RBIM, giving the same duality equations, hence predicting the same phase boundary. The phase boundary curve obtained by our numerical simulation almost coincides with this predicted phase boundary at the high-temperature region. The phase transition is of first order for relatively small values of p<0.08, but becomes of second order for larger p. The value of p at the intersection of the phase boundary curve and the Nishimori line is regarded as the accuracy threshold of errors in a toric quantum memory. It is estimated as p=0.110±0.002, which is very close to the value conjectured by Takeda and Nishimori through the "self-duality" argument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujii, N.; Porkolab, M.; Edlund, E. M.
2009-11-26
Mode converted ion cyclotron wave (ICW) has been observed with phase contrast imaging (PCI) in D-{sup 3}He plasmas in Alcator C-Mod. The measurements were carried out with the optical heterodyne technique using acousto-optic modulators which modulate the CO2 laser beam intensity near the ion cyclotron frequency. With recently improved calibration of the PCI system using a calibrated sound wave source, the measurements have been compared with the full-wave code TORIC, as interpreted by a synthetic diagnostic. Because of the line-integrated nature of the PCI signal, the predictions are sensitive to the exact wave field pattern. The simulations are found tomore » be in qualitative agreement with the measurements.« less
Thermalization of topological entropy after a quantum quench
NASA Astrophysics Data System (ADS)
Zeng, Yu; Hamma, Alioscia; Fan, Heng
2016-09-01
Topologically ordered quantum phases are robust in the sense that perturbations in the Hamiltonian of the system will not change the topological nature of the ground-state wave function. However, in order to exploit topological order for applications such as self-correcting quantum memories and information processing, these states need to be also robust both dynamically and at finite temperature in the presence of an environment. It is well known that systems like the toric code in two spatial dimensions are fragile in temperature. In this paper, we show a completely analytic treatment of the toric code away from equilibrium, after a quantum quench of the system Hamiltonian. We show that, despite being subject to unitary evolution (and at zero temperature), the long-time behavior of the topological entropy is thermal, therefore vanishing. If the quench preserves a local gauge structure, there is a residual long-lived topological entropy. This also is the thermal behavior in presence of such gauge constraints. The result is obtained by studying the time evolution of the topological 2-Rényi entropy in a fully analytical, exact way.
Torus Knots and the Topological Vertex
NASA Astrophysics Data System (ADS)
Jockers, Hans; Klemm, Albrecht; Soroush, Masoud
2014-08-01
We propose a class of toric Lagrangian A-branes on the resolved conifold that is suitable to describe torus knots on S 3. The key role is played by the transformation, which generates a general torus knot from the unknot. Applying the topological vertex to the proposed A-branes, we rederive the colored HOMFLY polynomials for torus knots, in agreement with the Rosso and Jones formula. We show that our A-model construction is mirror symmetric to the B-model analysis of Brini, Eynard and Mariño. Compared to the recent proposal by Aganagic and Vafa for knots on S 3, we demonstrate that the disk amplitude of the A-brane associated with any knot is sufficient to reconstruct the entire B-model spectral curve. Finally, the construction of toric Lagrangian A-branes is generalized to other local toric Calabi-Yau geometries, which paves the road to study knots in other three-manifolds such as lens spaces.
Packer, Mark; Williams, Jon I; Feinerman, Gregg; Hope, Richard S
2018-01-01
Glistening formation in the intraocular lens (IOL) optic has the potential to impact quality of vision. The enVista One-Piece Hydrophobic Acrylic Spherical IOL Model MX60 (MX60 IOL) is currently the only US Food and Drug Administration-approved IOL with a label of "no glistenings". The purpose of this prospective, multicenter, partially randomized, partially controlled, double-masked, pivotal study was to evaluate the safety and effectiveness of the enVista One-Piece Hydrophobic Acrylic MX60T Toric IOL (enVista MX60T Toric IOL). Subjects (n=191) were implanted with the enVista MX60T Toric IOL (cylinder powers 1.25, 2.00, or 2.75 D) or the parent MX60 IOL (control). Eyes within the lowest range of corneal astigmatism were randomized to receive either Toric 1.25 D IOL or control IOL in a 1:1 ratio. All subjects with corneal astigmatism requiring 2.00 or 2.75 D cylinder IOLs received toric IOLs. Rotational stability, cylinder reduction, and best-corrected distance visual acuity were primary effectiveness endpoints measured at Visit 4 (120-180 days postoperatively). Visit 4 mean absolute axis misalignment in the All Toric group was 4.68°±7.33°, and all subjects had ≤5° absolute rotation from Visit 3 to Visit 4. The 1.25 D group had significantly greater improvement in dioptric cylinder reduction ( P <0.001), percent cylinder reduction ( P <0.001), and mean uncorrected distance visual acuity ( P <0.001), compared to control at Visit 4. Most adverse events (AEs) were mild, with no serious AEs in the study eyes. The rates of cumulative AEs through Visit 4 were below International Organization for Standardization (ISO) standard 11979-7 AE rates. enVista MX60T Toric IOL is safe and effective for patients with preoperative corneal astigmatism undergoing IOL implantation.
Beyond Aztec Castles: Toric Cascades in the dP 3 Quiver
NASA Astrophysics Data System (ADS)
Lai, Tri; Musiker, Gregg
2017-12-01
Given one of an infinite class of supersymmetric quiver gauge theories, string theorists can associate a corresponding toric variety (which is a Calabi-Yau 3-fold) as well as an associated combinatorial model known as a brane tiling. In combinatorial language, a brane tiling is a bipartite graph on a torus and its perfect matchings are of interest to both combinatorialists and physicists alike. A cluster algebra may also be associated to such quivers and in this paper we study the generators of this algebra, known as cluster variables, for the quiver associated to the cone over the del Pezzo surface d P 3. In particular, mutation sequences involving mutations exclusively at vertices with two in-coming arrows and two out-going arrows are referred to as toric cascades in the string theory literature. Such toric cascades give rise to interesting discrete integrable systems on the level of cluster variable dynamics. We provide an explicit algebraic formula for all cluster variables that are reachable by toric cascades as well as a combinatorial interpretation involving perfect matchings of subgraphs of the d P 3 brane tiling for these formulas in most cases.
F-theory on all toric hypersurface fibrations and its Higgs branches
Klevers, Denis; Mayorga Pena, Damian Kaloni; Oehlmann, Paul-Konstantin; ...
2015-01-27
We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16 reflexive 2D polyhedra. We present a base-independent analysis of the codimension one, two and three singularities of these fibrations. We use these geometric results to determine the gauge groups, matter representations, 6D matter multiplicities and 4D Yukawa couplings of the corresponding effective theories. All these theories have a non-trivial gauge group and matter content. We explore the network of Higgsings relating these theories. Such Higgsings geometrically correspond to extremal transitions induced by blow-ups in the 2D toric varieties. We recover the 6D effective theories of all 16 toric hypersurface fibrations by repeatedly Higgsing the theories that exhibit Mordell-Weil torsion. We find that the three Calabi-Yau manifolds without section, whose fibers are given by the toric hypersurfaces inmore » $$\\mathbb P^{2}$$, $$\\mathbb P^{1}$$ × $$\\mathbb P^{1}$$ and the recently studied $$\\mathbb P^{2}$$ (1,1, 2) , yield F-theory realizations of SUGRA theories with discrete gauge groups $$\\mathbb Z$$ 3, $$\\mathbb Z$$ 2 and $$\\mathbb Z$$ 4.This opens up a whole new arena for model building with discrete global symmetries in F-theory. In these three manifolds, we also find codimension two I 2-fibers supporting matter charged only under these discrete gauge groups. Their 6D matter multiplicities are computed employing ideal techniques and the associated Jacobian fibrations. Here, we also show that the Jacobian of the biquadric fibration has one rational section, yielding one U(1)-gauge field in F-theory. Furthermore, the elliptically fibered Calabi-Yau manifold based on dP 1 has a U(1)-gauge field induced by a non-toric rational section. In this model, we find the first F-theory realization of matter with U(1)-charge q = 3.« less
Status and Plans for the TRANSP Interpretive and Predictive Simulation Code
NASA Astrophysics Data System (ADS)
Kaye, Stanley; Andre, Robert; Marina, Gorelenkova; Yuan, Xingqui; Hawryluk, Richard; Jardin, Steven; Poli, Francesca
2015-11-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT_SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP also incorporates such source models as NUBEAM for neutral beam injection, GENRAY, TORAY, TORBEAM, TORIC and CQL3D for ICRH, LHCD, ECH and HHFW. The implementation of selected components makes efficient use of MPI for speed up of code calculations. TRANSP has a wide international user-base, and it is run on the FusionGrid to allow for timely support and quick turnaround by the PPPL Computational Plasma Physics Group. It is being used as a basis for both analysis and development of control algorithms and discharge operational scenarios, including simulation of ITER plasmas. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Progress on implementing TRANSP as a component in the ITER IMAS will also be described. This research was supported by the U.S. Department of Energy under contracts DE-AC02-09CH11466.
Kessel, Line; Andresen, Jens; Tendal, Britta; Erngaard, Ditte; Flesner, Per; Hjortdal, Jesper
2016-02-01
We performed a systematic review and meta-analysis to evaluate the benefit and harms associated with implantation of toric intraocular lenses (IOLs) during cataract surgery. Outcomes were postoperative uncorrected distance visual acuity (UCDVA) and distance spectacle independence. Harms were evaluated as surgical complications and residual astigmatism. Postoperative astigmatism is an important cause of suboptimal UCDVA and need for distance spectacles. Toric IOLs may correct for preexisting corneal astigmatism at the time of surgery. We performed a systematic literature search in the Embase, PubMed, and CENTRAL databases within the Cochrane Library. We included randomized clinical trials (RCTs) if they compared toric with non-toric IOL implantation (± relaxing incision) in patients with regular corneal astigmatism and age-related cataracts. We assessed the risk of bias using the Cochrane Risk of Bias tool. We assessed the quality of evidence across studies using the GRADE profiler software (available at: www.gradeworkinggroup.org). We included 13 RCTs with 707 eyes randomized to toric IOLs and 706 eyes randomized to non-toric IOLs; 225 eyes had a relaxing incision. We found high-quality evidence that UCDVA was better in the toric IOL group (logarithm of the minimum angle of resolution [logMAR] mean difference, -0.07; 95% confidence interval [CI], -0.10 to -0.04) and provided greater spectacle independence (risk ratio [RR], 0.51; 95% CI, 0.36-0.71) and moderate quality evidence that toric IOL implantation was not associated with an increased risk of complications (RR, 1.73; 95% CI, 0.60-5.04). Residual astigmatism was lower in the toric IOL group than in the non-toric IOL plus relaxing incision group (mean difference, 0.37 diopter [D]; 95% CI, -0.55 to -0.19). We found that toric IOLs provided better UCDVA, greater spectacle independence, and lower amounts of residual astigmatism than non-toric IOLs even when relaxing incisions were used. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Self-correcting quantum memory with a boundary
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Wootton, James R.; Röthlisberger, Beat; Loss, Daniel
2012-11-01
We study the two-dimensional toric-code Hamiltonian with effective long-range interactions between its anyonic excitations induced by coupling the toric code to external fields. It has been shown that such interactions allow an arbitrary increase in the lifetime of the stored quantum information by making L, the linear size of the memory, larger [Chesi , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.022305 82, 022305 (2010)]. We show that for these systems the choice of boundary conditions (open boundaries as opposed to periodic boundary conditions) is not a mere technicality; the influence of anyons produced at the boundaries becomes in fact dominant for large enough L. This influence can be either beneficial or detrimental. In particular, we study an effective Hamiltonian proposed by Pedrocchi [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.115415 83, 115415 (2011)] that describes repulsion between anyons and anyon holes. For this system, we find a lifetime of the stored quantum information that grows exponentially in L2 for both periodic and open boundary conditions, although the exponent in the latter case is found to be less favorable. However, L is upper bounded through the breakdown of the perturbative treatment of the underlying Hamiltonian.
Fast Wave Transmission Measurements on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Reardon, J.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Wukitch, S. J.
1997-11-01
Data are presented from an array of single-turn loop probes newly installed on the inner wall of C-Mod, directly opposite one of the two fast-wave antennas. The 8-loop array extends 32^circ in the toroidal direction at the midplane and can distinguish electromagnetic from electrostatic modes. Data are acquired by 1GHz digitizer, spectrum analyzer, and RF detector circuit. Phase measurements during different heating scenarios show evidence of both standing and travelling waves. The measurement of toroidal mode number N_tor (conserved under the assumption of axisymmetry) is used to guide the toroidal full-wave code TORIC(Brambilla, M., IPP Report 5/66, February 1996). Amplitude measurements show modulation both by Type III ELMs and sawteeth; the observed sawtooth modulation may be interpreted as due to changes in central absorption. The amplitude of tildeB_tor measured at the inner wall is compared to the prediction of TORIC.
The toric SO(10) F-theory landscape
NASA Astrophysics Data System (ADS)
Buchmüller, W.; Dierigl, M.; Oehlmann, P.-K.; Rühle, F.
2017-12-01
Supergravity theories in more than four dimensions with grand unified gauge symmetries are an important intermediate step towards the ultraviolet completion of the Standard Model in string theory. Using toric geometry, we classify and analyze six-dimensional F-theory vacua with gauge group SO(10) taking into account Mordell-Weil U(1) and discrete gauge factors. We determine the full matter spectrum of these models, including charged and neutral SO(10) singlets. Based solely on the geometry, we compute all matter multiplicities and confirm the cancellation of gauge and gravitational anomalies independent of the base space. Particular emphasis is put on symmetry enhancements at the loci of matter fields and to the frequent appearance of superconformal points. They are linked to non-toric Kähler deformations which contribute to the counting of degrees of freedom. We compute the anomaly coefficients for these theories as well by using a base-independent blow-up procedure and superconformal matter transitions. Finally, we identify six-dimensional supergravity models which can yield the Standard Model with high-scale supersymmetry by further compactification to four dimensions in an Abelian flux background.
Berry, Jesse L; Kim, Jonathan W; Jennelle, Richard; Astrahan, Melvin
2015-09-01
To describe a new surgical technique for intraoperative placement of Eye Physics (EP) plaques for uveal melanoma using a toric marker. A toric marker is designed for cataract surgery to align the axis of astigmatism; its use was modified in this protocol to mark the axis of suture coordinates as calculated by Plaque Simulator (PS) software. The toric marker can be used to localize suture coordinates, in degrees, during intraoperative plaque placement. Linear marking using the toric marker decreases potential inaccuracies associated with the surgeon estimating 'clock-hours' by dot placement. Use of the toric marker aided surgical placement of EP plaques. The EP planning protocol is now designed to display the suture coordinates either by clock-hours or degrees, per surgeon preference. Future research is necessary to determine whether routine use of the toric marker improves operative efficiency. [Ophthalmic Surg Lasers Imaging Retina. 2015;46:866-870.]. Copyright 2015, SLACK Incorporated.
Harris, W F
1989-03-01
The exact equation for sagitta of spherical surfaces is generalized to toric surfaces which include spherical and cylindrical surfaces as special cases. Lens thickness, therefore, can be calculated accurately anywhere on a lens even in cases of extreme spherical and cylindrical powers and large diameters. The sagittae of tire- and barrel-form toric surfaces differ off the principal meridians, as is shown by a numerical example. The same holds for pulley- and capstan-form toric surfaces. A general expression is given for thickness at an arbitrary point on a toric lens. Approximate expressions are derived and re-expressed in terms of matrices. The matrix provides an elegant means of generalizing equations for spherical surfaces and lenses to toric surfaces and lenses.
Mingo-Botín, David; Muñoz-Negrete, Francisco José; Won Kim, Hae Ryung; Morcillo-Laiz, Rafael; Rebolleda, Gema; Oblanca, Noelia
2010-10-01
To evaluate and compare toric intraocular lens (IOL) implantation and spherical IOL implantation with peripheral corneal relaxing incisions to manage astigmatism during phacoemulsification. Ophthalmology Service, Hospital Ramón y Cajal, Madrid, Spain. Prospective randomized comparative case series. Eyes with cataract and corneal astigmatism (1.00 to 3.00 diopters [D]) had toric IOL implantation or peripheral corneal relaxing incisions. Outcome measures were visual outcomes, slitlamp assessment, digital toric IOL axis determination, spectacle need, and patient satisfaction. Three months postoperatively, the mean uncorrected distance visual acuity (UDVA) was 0.13 ± 0.10 (SD) in the toric IOL group and 0.19 ± 0.12 in the relaxing incisions group; the UDVA was better than 0.20 in 75% of eyes and 60% of eyes, respectively. Refractive cylinder decreased significantly in both groups, with a mean residual refractive astigmatism of 0.61 ± 0.41 D in the toric IOL group and 1.32 ± 0.60 D in the relaxing incisions group (P<.01). The mean toric IOL rotation was 3.65 ± 2.96 degrees, with no significant differences between slitlamp and digital photograph measurements. There was a trend toward better mesopic contrast sensitivity with glare in the toric IOL group. There were no differences in VF-14 or patient satisfaction results; 15% of patients in the toric IOL group and 45% in the relaxing-incision group required distance spectacles postoperatively. Although refractive astigmatism decreased in both groups, toric IOL implantation was more effective and predictable, resulting in greater spectacle independence. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Simple technique to measure toric intraocular lens alignment and stability using a smartphone.
Teichman, Joshua C; Baig, Kashif; Ahmed, Iqbal Ike K
2014-12-01
Toric intraocular lenses (IOLs) are commonly implanted to correct corneal astigmatism at the time of cataract surgery. Their use requires preoperative calculation of the axis of implantation and postoperative measurement to determine whether the IOL has been implanted with the proper orientation. Moreover, toric IOL alignment stability over time is important for the patient and for the longitudinal evaluation of toric IOLs. We present a simple, inexpensive, and precise method to measure the toric IOL axis using a camera-enabled cellular phone (iPhone 5S) and computer software (ImageJ). Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Architectures for Parafermionic Topological Matter in Two Dimensions
NASA Astrophysics Data System (ADS)
Burrello, Michele; van Heck, Bernard; Cobanera, Emilio
2013-03-01
Recent proposals exploit edge modes of fractional topological insulators (FTIs), induced superconducting pairing, and back-scattering to realize one-dimensional systems of parafermions. We extend these proposals to two dimensions and analyze the effect of the superconducting islands' charging energy on the parafermions they host. We focus on two two-dimensional architectures, the tile and stripe configurations, characterized by different distributions of FTIs and derive the associated parafermionic effective Hamiltonians. The tile model realizes the Z2 m toric code in low-order perturbation theory and hence possesses full topological quantum order. By exploiting dualities, we obtain the phase diagram and generalized order parameters for both the tile and stripe models of parafermions. This work was supported by the Dutch Science Foundation NWO/FOM and an ERC Advanced Investigator grant.
Towards self-correcting quantum memories
NASA Astrophysics Data System (ADS)
Michnicki, Kamil
This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real implementations of quantum memories. Numerical evidence also suggests that the cellular automaton could function as a decoder with a soft threshold.
Rotation stability of a toric intraocular lens with a second capsular tension ring.
Sagiv, Oded; Sachs, Dan
2015-05-01
An Acrysof toric intraocular lens (IOL) and a capsular tension ring (CTR) were implanted in the highly myopic eye of a 74-year-old white man during cataract surgery. On the first postoperative day, the IOL was found 90 degrees from the required position, with a consequent high amount of astigmatism. A second procedure was performed and because it was not possible to secure the toric IOL in the correct position, an additional in-the-bag CTR was inserted, with an immediate optimal outcome. The IOL remained stable up to the final follow-up examination. Co-implantation of a toric IOL and a single CTR has been reported. In our case, 2 CTRs were required to fixate the toric IOL in the correct position. This procedure is simple and safe and should be considered in cases of postoperatively misaligned toric IOLs. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Simple scheme for encoding and decoding a qubit in unknown state for various topological codes
Łodyga, Justyna; Mazurek, Paweł; Grudka, Andrzej; Horodecki, Michał
2015-01-01
We present a scheme for encoding and decoding an unknown state for CSS codes, based on syndrome measurements. We illustrate our method by means of Kitaev toric code, defected-lattice code, topological subsystem code and 3D Haah code. The protocol is local whenever in a given code the crossings between the logical operators consist of next neighbour pairs, which holds for the above codes. For subsystem code we also present scheme in a noisy case, where we allow for bit and phase-flip errors on qubits as well as state preparation and syndrome measurement errors. Similar scheme can be built for two other codes. We show that the fidelity of the protected qubit in the noisy scenario in a large code size limit is of , where p is a probability of error on a single qubit per time step. Regarding Haah code we provide noiseless scheme, leaving the noisy case as an open problem. PMID:25754905
Lam, Douglas K T; Chow, Vanissa W S; Ye, Cong; Ng, Paul Ka-Fai; Wang, Zheng; Jhanji, Vishal
2016-02-01
To compare the visual outcomes of aspheric toric intraocular lens (IOL) implantation and limbal relaxing incisions (LRI) for management of coexisting age-related cataracts and astigmatism. In this prospective study, sixty eyes of 60 patients with visually significant cataract and coexisting corneal astigmatism ≤3 dioptres (D) were randomised to undergo phacoemulsification with either aspheric toric IOL or aspheric monofocal IOL with LRI. The main outcome measures were postoperative 3-month uncorrected visual acuity (UCVA), contrast sensitivity, rotational stability of the toric IOL and spectacle independence. The postoperative UCVA, contrast sensitivity and refractive astigmatism were significantly better than the baseline measurements for both groups (p≤0.001). There was no significant difference detected for these parameters between LRI and toric IOL groups postoperatively (p≥0.119). At both postoperative month 1 and 3, the percentages of eyes in need of spectacles were lower in toric group than LRI group (p≤0.030). IOL misalignment was noted in three eyes in the toric IOL group (mean misalignment 7.67±4.04°). On vector analysis, magnitude of error (ME) was negative in the LRI group indicating undercorrection, whereas the ME was close to zero for toric group. Both toric IOL implantation and LRI were effective in correcting corneal astigmatism ≤3 D during phacoemulsification, while LRI tended to undercorrect astigmatism. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Zhang, Jin-Song; Zhao, Jiang-Yue; Sun, Qi; Ma, Li-Wei
2011-01-01
AIM To evaluate the distance vision of Chinese patients with cataracts and corneal astigmatism after implantation of bilateral AcrySof toric intraocular lens (IOL) versus bilateral AcrySof spherical IOL. METHODS This study randomized 60 patients into equal groups to receive toric IOL or spherical IOL. IOL powers targeting emmetropia were selected for 93% of toric IOL patients and for 90% of spherical IOL patients. Assessments included monocular and binocular distance vision, with and without best correction. Patients also completed surveys about their distance vision. RESULTS Preoperatively, the two study groups were similar in age, in distance visual acuity, and in the magnitude of corneal astigmatism. At 6 months postoperative, binocular uncorrected distance vision was 0.06±0.14 logMAR in the AcrySof toric IOL group, significantly better than the 0.14±0.11 logMAR in the spherical IOL group (P<0.05). For eyes with emmetropia as a target, the equivalent of 20/20 uncorrected vision was more likely (P<0.001) in the toric IOL group (36% of eyes) than in the spherical IOL group (4% of eyes). No patients in the emmetropia/toric IOL group used distance glasses, as compared to 52% of patients in the emmetropia/spherical IOL group. All patients were satisfied or highly satisfied. Quality of distance vision was rated higher by toric IOL patients than by spherical IOL patients (P<0.05). CONCLUSION Bilateral AcrySof toric IOL is superior to bilateral spherical IOL in providing uncorrected distance vision to cataract patients with corneal astigmatism. PMID:22553636
Equivariant branes and equivariant homological mirror symmetry
NASA Astrophysics Data System (ADS)
Ashwinkumar, Meer; Tan, Meng-Chwan
2018-03-01
We describe supersymmetric A-branes and B-branes in open N =(2 ,2 ) dynamically gauged nonlinear sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds, these equivariant branes have a mirror description as branes in gauged Landau-Ginzburg models with neutral matter. We then study correlation functions in the topological A-twisted version of the GNLSM and identify their values with open Hamiltonian Gromov-Witten invariants. Supersymmetry breaking can occur in the A-twisted GNLSM due to nonperturbative open symplectic vortices, and we canonically Becchi-Rouet-Stora-Tyutin quantize the mirror theory to analyze this phenomenon.
Haag duality for Kitaev’s quantum double model for abelian groups
NASA Astrophysics Data System (ADS)
Fiedler, Leander; Naaijkens, Pieter
2015-11-01
We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.
Hidden symmetries on toric Sasaki-Einstein spaces
NASA Astrophysics Data System (ADS)
Slesar, V.; Visinescu, M.; Vîlcu, G. E.
2015-05-01
We describe the construction of Killing-Yano tensors on toric Sasaki-Einstein manifolds. We use the fact that the metric cones of these spaces are Calabi-Yau manifolds. The description of the Calabi-Yau manifolds in terms of toric data, using the Delzant approach to toric geometries, allows us to find explicitly the complex coordinates and write down the Killing-Yano tensors. As a concrete example we present the complete set of special Killing forms on the five-dimensional homogeneous Sasaki-Einstein manifold T 1,1.
Price, Marianne O; Price, Francis W
2015-01-01
Myopic astigmatism is a prevalent condition that can be treated with spectacles, contact lenses, or laser refractive surgery. However, these treatment options have functional limitations at higher levels of refractive error. The toric implantable collamer lens is designed to treat a broad range of refractive error, generally up to -18 diopters with +1 to +6 diopters of astigmatism. Approval for a more limited treatment range of up to 15 diopters of myopia with +1 to +4 diopters of astigmatism is being sought in the US, where this device has not yet received marketing approval. Surgical correction of high-myopic astigmatism can be life-altering and allow people to participate in activities that were not previously feasible because of visual limitations. The toric implantable collamer lens is implanted behind the iris and in front of the natural crystalline lens. With earlier lens designs, it was necessary to create an iridectomy or iridotomy to prevent pupillary block. The newest toric implantable collamer lens model has a small central hole that is not visually noticeable. This eliminates the need to create a hole in the iris, thereby enhancing the safety of the procedure.
Ferreira, Tiago B; Ribeiro, Paulo; Ribeiro, Filomena J; O'Neill, João G
2017-12-01
To compare the prediction error in the calculation of toric intraocular lenses (IOLs) associated with methods that estimate the power of the posterior corneal surface (ie, Barrett toric calculator and Abulafia-Koch formula) with that of methods that consider real measures obtained using Scheimpflug imaging: a software that uses vectorial calculation (Panacea toric calculator: http://www.panaceaiolandtoriccalculator.com) and a ray tracing software (PhacoOptics, Aarhus Nord, Denmark). In 107 eyes of 107 patients undergoing cataract surgery with toric IOL implantation (Acrysof IQ Toric; Alcon Laboratories, Inc., Fort Worth, TX), predicted residual astigmatism by each calculation method was compared with manifest refractive astigmatism. Prediction error in residual astigmatism was calculated using vector analysis. All calculation methods resulted in overcorrection of with-the-rule astigmatism and undercorrection of against-the-rule astigmatism. Both estimation methods resulted in lower mean and centroid astigmatic prediction errors, and a larger number of eyes within 0.50 diopters (D) of absolute prediction error than methods considering real measures (P < .001). Centroid prediction error (CPE) was 0.07 D at 172° for the Barrett toric calculator and 0.13 D at 174° for the Abulafia-Koch formula (combined with Holladay calculator). For methods using real posterior corneal surface measurements, CPE was 0.25 D at 173° for the Panacea calculator and 0.29 D at 171° for the ray tracing software. The Barrett toric calculator and Abulafia-Koch formula yielded the lowest astigmatic prediction errors. Directly evaluating total corneal power for toric IOL calculation was not superior to estimating it. [J Refract Surg. 2017;33(12):794-800.]. Copyright 2017, SLACK Incorporated.
Zhang, Yu; Chen, Yue-Guo
2018-01-01
To compare clinical results between toric and spherical periphery design orthokeratology (ortho-k) in myopic children with moderate-to-high corneal astigmatism. This retrospective study enrolled 62 eyes of 62 subjects using toric ortho-k lenses. These subjects were assigned to the toric group. Based on the one-to-one match principle (same age, proximate spherical equivalence and corneal astigmatism), 62 eyes of 62 subjects were enrolled and included in the spherical group. At one-year follow-up visit, visual acuity, corneal astigmatism, treatment zone decentration, axial elongation and adverse reaction were compared between these two groups. At the one-year visit, corneal astigmatism was significantly lower in the toric group (1.22±0.76 D) than in the spherical group (2.05±0.85 D) ( P =0.012). The mean magnitude of the treatment zone decentration was 0.62±0.42 mm in the toric group and 1.07±0.40 mm in the spherical group ( P =0.004). Axial elongation was significantly slower in the toric group (0.04±0.13 mm) than in the spherical group (0.09±0.13 mm) ( P =0.001). The one-year axial elongation was significantly correlated with initial age ( r =-0.487, P <0.001) and periphery design of ortho-k lens ( r =0.315, P <0.001). The incidence of corneal staining was lower in the toric group (8.1%) than in the spherical group (19.4%) ( P <0.001). Toric periphery design ortho-k lenses may provide lower corneal astigmatism, better centration, slower axial elongation and lower incidence of corneal staining in myopic children with moderate-to-high corneal astigmatism.
Lee, Jeihoon; Lee, Hun; Kang, David Sung Yong; Choi, Jin Young; Kim, Eung Kweon
2016-01-01
Purpose To compare the effectiveness of toric foldable iris-fixated phakic intraocular lens (pIOL) implantation and non-toric foldable iris-fixated pIOL implantation with limbal relaxing incisions (LRIs) for correcting moderate-to-high astigmatism in myopic eyes. Materials and Methods The medical records of 146 patients (195 eyes) with myopic astigmatism who underwent toric foldable iris-fixated pIOL implantation (toric group; 94 eyes) or non-toric foldable iris-fixated pIOL implantation with concurrent LRIs (LRI group; 101 eyes) were retrospectively reviewed. For subgroup analysis, the two groups were subdivided according to preoperative astigmatic severity [moderate, 2.00 to <3.00 diopters (D); high, 3.00–4.00 D]. Visual and astigmatic outcomes were compared 6 months postoperatively. Results The uncorrected distance visual acuity was at least 20/25 in 100% and 98% of the toric and LRI group eyes, respectively. The toric group had lower mean residual cylindrical error (-0.67±0.39 D vs. -1.14±0.56 D; p<0.001) and greater mean cylindrical error change (2.17±0.56 D vs. 1.63±0.72 D; p<0.001) than the LRI group, regardless of the preoperative astigmatic severity. The mean correction index (1.10±0.16 vs. 0.72±0.24; p<0.001) and success index (0.24±0.14 vs. 0.42±0.21; p<0.001) also differed significantly between the groups. Conclusion Both surgical techniques considerably reduced astigmatism and had comparable visual outcomes. However, toric foldable iris-fixated pIOL implantation was more reliable for correcting moderate-to-high astigmatism in myopic eyes. PMID:27593877
Lee, Jeihoon; Lee, Hun; Kang, David Sung Yong; Choi, Jin Young; Kim, Eung Kweon; Kim, Tae Im
2016-11-01
To compare the effectiveness of toric foldable iris-fixated phakic intraocular lens (pIOL) implantation and non-toric foldable iris-fixated pIOL implantation with limbal relaxing incisions (LRIs) for correcting moderate-to-high astigmatism in myopic eyes. The medical records of 146 patients (195 eyes) with myopic astigmatism who underwent toric foldable iris-fixated pIOL implantation (toric group; 94 eyes) or non-toric foldable iris-fixated pIOL implantation with concurrent LRIs (LRI group; 101 eyes) were retrospectively reviewed. For subgroup analysis, the two groups were subdivided according to preoperative astigmatic severity [moderate, 2.00 to <3.00 diopters (D); high, 3.00-4.00 D]. Visual and astigmatic outcomes were compared 6 months postoperatively. The uncorrected distance visual acuity was at least 20/25 in 100% and 98% of the toric and LRI group eyes, respectively. The toric group had lower mean residual cylindrical error (-0.67±0.39 D vs. -1.14±0.56 D; p<0.001) and greater mean cylindrical error change (2.17±0.56 D vs. 1.63±0.72 D; p<0.001) than the LRI group, regardless of the preoperative astigmatic severity. The mean correction index (1.10±0.16 vs. 0.72±0.24; p<0.001) and success index (0.24±0.14 vs. 0.42±0.21; p<0.001) also differed significantly between the groups. Both surgical techniques considerably reduced astigmatism and had comparable visual outcomes. However, toric foldable iris-fixated pIOL implantation was more reliable for correcting moderate-to-high astigmatism in myopic eyes.
Rational F-theory GUTs without exotics
NASA Astrophysics Data System (ADS)
Krippendorf, Sven; Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin; Ruehle, Fabian
2014-07-01
We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.
Topological Rényi Entropy after a Quantum Quench
NASA Astrophysics Data System (ADS)
Halász, Gábor B.; Hamma, Alioscia
2013-04-01
We present an analytical study on the resilience of topological order after a quantum quench. The system is initially prepared in the ground state of the toric-code model, and then quenched by switching on an external magnetic field. During the subsequent time evolution, the variation in topological order is detected via the topological Rényi entropy of order 2. We consider two different quenches: the first one has an exact solution, while the second one requires perturbation theory. In both cases, we find that the long-term time average of the topological Rényi entropy in the thermodynamic limit is the same as its initial value. Based on our results, we argue that topological order is resilient against a wide range of quenches.
Topological Rényi entropy after a quantum quench.
Halász, Gábor B; Hamma, Alioscia
2013-04-26
We present an analytical study on the resilience of topological order after a quantum quench. The system is initially prepared in the ground state of the toric-code model, and then quenched by switching on an external magnetic field. During the subsequent time evolution, the variation in topological order is detected via the topological Rényi entropy of order 2. We consider two different quenches: the first one has an exact solution, while the second one requires perturbation theory. In both cases, we find that the long-term time average of the topological Rényi entropy in the thermodynamic limit is the same as its initial value. Based on our results, we argue that topological order is resilient against a wide range of quenches.
New regression formula for toric intraocular lens calculations.
Abulafia, Adi; Koch, Douglas D; Wang, Li; Hill, Warren E; Assia, Ehud I; Franchina, Maria; Barrett, Graham D
2016-05-01
To evaluate and compare the accuracy of 2 toric intraocular lens (IOL) calculators with or without a new regression formula. Ein-Tal Eye Center, Tel-Aviv, Israel, and the Lions Eye Institute, Nedlands, Western Australia, Australia. Retrospective case series. A new regression formula (Abulafia-Koch) was developed to calculate the estimated total corneal astigmatism based on standard keratometry measurements. The error in the predicted residual astigmatism was calculated by the Alcon and Holladay toric IOL calculators with and without adjustments by the Abulafia-Koch formula. These results were compared with those of the Barrett toric calculator. Data from 78 eyes were evaluated to validate the Abulafia-Koch formula. The centroid errors in predicted residual astigmatism were against-the-rule with the Alcon (0.55 diopter [D]) and Holladay (0.54 D) toric calculators and decreased to 0.05 D (P < .001 [x-axis], P = .776 [y-axis]) and 0.04 D (P < .001 [x-axis], P = .726 [y-axis]) with adjustments by the Abulafia-Koch formula. The Alcon and the Holladay toric calculators had a higher proportion of eyes within ±0.50 D of the predicted residual astigmatism with the Abulafia-Koch formula (76.9% and 78.2%, respectively) than without it (both 30.8%). There were no significant differences between the results of the Abulafia-Koch-modified Alcon and the Holladay toric calculators and those of the Barrett toric calculator. Adjustment of commercial toric IOL calculators by the Abulafia-Koch formula significantly improved the prediction of postoperative astigmatic outcome. Dr. Abulafia received a speaker's fee from Haag-Streit AG. Dr. Barrett has licensed the Barrett Toric Calculator to Haag-Streit AG. Dr. Koch is a consultant to Alcon Laboratories, Inc., Abbott Medical Optics, Inc., and Revision Optics, Inc. Dr. Hill is a paid consultant to Haag-Streit AG and Alcon Laboratories, Inc. None of the other authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jungpyo; Wright, John; Bertelli, Nicola
In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less
Lee, Jungpyo; Wright, John; Bertelli, Nicola; ...
2017-04-24
In this study, a reduced model of quasilinear velocity diffusion by a small Larmor radius approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (Wdot ) is used to derive the reduced model diffusion coefficients for the fundamental damping (n = 1) and the second harmonic damping (n = 2) to the lowest order of the finite Larmormore » radius expansion. The quasilinear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent reduced model of the dielectric tensor. We also present the simulations of the ITER minority heating scenario, in which the reduced model is verified within the allowable errors from the full model results.« less
Kolozsvári, Bence L; Losonczy, Gergely; Pásztor, Dorottya; Fodor, Mariann
2017-01-13
Toric intraocular lens (IOL) implantation can be an effective method for correcting corneal astigmatism in patients with vitreoretinal diseases and cataract. Our purpose is to report the outcome of toric IOL implantation in two cases - a patient with scleral-buckle-induced regular corneal astigmatism and a patient with keratoconus following pars plana vitrectomy. As far as we are aware, there are no reported cases of toric IOL implantation in a vitrectomized eye with keratoconus nor of toric IOL implantation in patients with scleral-buckle-induced regular corneal astigmatism. Two patients with myopia and high corneal astigmatism underwent cataract operation with toric IOL implantation after posterior segment surgery. Myopia and high astigmatism (>2.5 diopter) were caused by previous scleral buckling in one case and by keratoconus in the other case. Pre- and postoperative examinations during the follow-up of included uncorrected and spectacle corrected distance visual acuity (UCDVA/CDVA), automated kerato-refractometry (Topcon), Pentacam HR, IOL Master (Zeiss) axial length measurements and fundus optical coherence tomography (Zeiss). One year postoperatively, the UCDVA and CDVA were 20/25 and 20/20 in both cases, respectively. The absolute residual refractive astigmatism was 1.0 and 0.75 Diopters, respectively. The IOL rotation was within 3° in both eyes, therefore IOL repositioning was not necessary. Complications were not observed in our cases. These cases demonstrate that toric IOL implantation is a predictable and safe method for the correction of high corneal astigmatism in complicated cases with different origins. Irregular corneal astigmatism in keratoconus or scleral-buckle-induced regular astigmatisms can be equally well corrected with the use of toric IOL during cataract surgery. Previous scleral buckling or pars plana vitrectomy seem to have no impact on the success of the toric IOL implantation, even in keratoconus. IOL rotational stability and refractive predictability in patients with a previous vitreoretinal surgery can be as good as in uncomplicated cases.
Does correcting astigmatism with toric lenses improve driving performance?
Cox, Daniel J; Banton, Thomas; Record, Steven; Grabman, Jesse H; Hawkins, Ronald J
2015-04-01
Driving is a vision-based activity of daily living that impacts safety. Because visual disruption can compromise driving safety, contact lens wearers with astigmatism may pose a driving safety risk if they experience residual blur from spherical lenses that do not correct their astigmatism or if they experience blur from toric lenses that rotate excessively. Given that toric lens stabilization systems are continually improving, this preliminary study tested the hypothesis that astigmats wearing toric contact lenses, compared with spherical lenses, would exhibit better overall driving performance and driving-specific visual abilities. A within-subject, single-blind, crossover, randomized design was used to evaluate driving performance in 11 young adults with astigmatism (-0.75 to -1.75 diopters cylinder). Each participant drove a highly immersive, virtual reality driving simulator (210 degrees field of view) with (1) no correction, (2) spherical contact lens correction (ACUVUE MOIST), and (3) toric contact lens correction (ACUVUE MOIST for Astigmatism). Tactical driving skills such as steering, speed management, and braking, as well as operational driving abilities such as visual acuity, contrast sensitivity, and foot and arm reaction time, were quantified. There was a main effect for type of correction on driving performance (p = 0.05). Correction with toric lenses resulted in significantly safer tactical driving performance than no correction (p < 0.05), whereas correction with spherical lenses did not differ in driving safety from no correction (p = 0.118). Operational tests differentiated corrected from uncorrected performance for both spherical (p = 0.008) and toric (p = 0.011) lenses, but they were not sensitive enough to differentiate toric from spherical lens conditions. Given previous research showing that deficits in these tactical skills are predictive of future real-world collisions, these preliminary data suggest that correcting low to moderate astigmatism with toric lenses may be important to driving safety. Their merits relative to spherical lens correction require further investigation.
Complete integrability of geodesics in toric Sasaki-Einstein spaces
NASA Astrophysics Data System (ADS)
Visinescu, Mihai
2016-01-01
We describe a method for constructing Killing-Yano tensors on toric Sasaki- Einstein manifolds using their geometrical properties. We take advantage of the fact that the metric cones of these spaces are Calabi-Yau manifolds. The complete list of special Killing forms can be extracted making use of the description of the Calabi-Yau manifolds in terms of toric data. This general procedure for toric Sasaki-Einstein manifolds is exemplified in the case of the 5-dimensional spaces Yp,q and T1,1. Finally we discuss the integrability of geodesic motion in these spaces.
Computer numeric control generation of toric surfaces
NASA Astrophysics Data System (ADS)
Bradley, Norman D.; Ball, Gary A.; Keller, John R.
1994-05-01
Until recently, the manufacture of toric ophthalmic lenses relied largely upon expensive, manual techniques for generation and polishing. Recent gains in computer numeric control (CNC) technology and tooling enable lens designers to employ single- point diamond, fly-cutting methods in the production of torics. Fly-cutting methods continue to improve, significantly expanding lens design possibilities while lowering production costs. Advantages of CNC fly cutting include precise control of surface geometry, rapid production with high throughput, and high-quality lens surface finishes requiring minimal polishing. As accessibility and affordability increase within the ophthalmic market, torics promise to dramatically expand lens design choices available to consumers.
NASA Astrophysics Data System (ADS)
Yarloo, H.; Langari, A.; Vaezi, A.
2018-02-01
We enquire into the quasi many-body localization in topologically ordered states of matter, revolving around the case of Kitaev toric code on the ladder geometry, where different types of anyonic defects carry different masses induced by environmental errors. Our study verifies that the presence of anyons generates a complex energy landscape solely through braiding statistics, which suffices to suppress the diffusion of defects in such clean, multicomponent anyonic liquid. This nonergodic dynamics suggests a promising scenario for investigation of quasi many-body localization. Computing standard diagnostics evidences that a typical initial inhomogeneity of anyons gives birth to a glassy dynamics with an exponentially diverging time scale of the full relaxation. Our results unveil how self-generated disorder ameliorates the vulnerability of topological order away from equilibrium. This setting provides a new platform which paves the way toward impeding logical errors by self-localization of anyons in a generic, high energy state, originated exclusively in their exotic statistics.
Intraocular lens power selection and positioning with and without intraoperative aberrometry.
Hatch, Kathryn M; Woodcock, Emily C; Talamo, Jonathan H
2015-04-01
To determine the value of intraoperative aberrometry in cases of toric intraocular lens (IOL) implantation and positioning. In this non-randomized retrospective comparative trial, two groups of eyes underwent cataract extraction with toric IOL implantation: the aberrometry group (n = 37 eyes), where toric IOL power and alignment were determined before surgery with automated keratometry, standard optical biometry, and an online calculator and then refined using intraoperative aberrometry, and the toric calculator group (n = 27 eyes), where IOL selection was performed in a similar manner but without intraoperative aberrometry. The primary outcome measure was mean postoperative residual refractive astigmatism (RRA). Mean RRA measured at follow-up after surgery was 0.46 ± 0.42 and 0.68 ± 0.34 diopters (D) in the aberrometry and toric calculator groups, respectively (P = .0153). A 75% and 57% reduction in cylinder was noted between preoperative keratometric astigmatism and postoperative RRA in the aberrometry and toric calculator groups, respectively (P = .0027). RRA of 0.25 D or less, 0.50 D or less, 0.75 D or less, and 1.00 D or less was seen 38%, 78%, 86%, and 95% of the time, respectively, in the aberrometry group and 22%, 33%, 74%, and 89% of the time, respectively, in the toric calculator group. These data show that the chance of a patient being in a lower postoperative RRA range increased when intraoperative aberrometry was used (P = .0130). Patients undergoing cataract extraction with toric IOL placement aided by intraoperative aberrometry were 2.4 times more likely to have less than 0.50 D of RRA compared to standard methods. Copyright 2015, SLACK Incorporated.
Resultant vertical prism in toric soft contact lenses.
Sulley, Anna; Hawke, Ryan; Lorenz, Kathrine Osborn; Toubouti, Youssef; Olivares, Giovanna
2015-08-01
Rotational stability of toric soft contact lenses (TSCLs) is achieved using a range of designs. Designs utilising prism or peripheral ballast may result in residual prism in the optic zone. This study quantifies the vertical prism in the central 6mm present in TSCLs with various stabilisation methods. Vertical prism was computed using published refractive index and vertical thickness changes in the central optic zone on a full lens thickness map. Thickness maps were measured using scanning transmission microscopy. Designs tested were reusable, silicone hydrogel and hydrogel TSCLs: SofLens(®) Toric, PureVision(®)2 for Astigmatism, PureVision(®) Toric, Biofinity(®) Toric, Avaira(®) Toric, clariti(®) toric, AIR OPTIX(®) for ASTIGMATISM and ACUVUE OASYS(®) for ASTIGMATISM; with eight parameter combinations for each lens (-6.00DS to +3.00DS, -1.25DC, 90° and 180° axes). All TSCL designs evaluated had vertical prism in the optic zone except one which had virtually none (0.01Δ). Mean prism ranged from 0.52Δ to 1.15Δ, with three designs having prism that varied with sphere power. Vertical prism in ACUVUE OASYS(®) for ASTIGMATISM was significantly lower than all other TSCLs tested. TSCL designs utilising prism-ballast and peri-ballast for stabilisation have vertical prism in the central optic zone. In monocular astigmats fitted with a TSCL or those wearing a mix of toric designs, vertical prism imbalance could create or exacerbate disturbances in binocular vision function. Practitioners should be aware of this potential effect when selecting which TSCL designs to prescribe, particularly for monocular astigmats with pre-existing binocular vision anomalies, and when managing complaints of asthenopia in monocular astigmats. Copyright © 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Titiyal, Jeewan S; Khatik, Mukesh; Sharma, Namrata; Sehra, Sri Vatsa; Maharana, Parfulla K; Ghatak, Urmimala; Agarwal, Tushar; Khokhar, Sudarshan; Chawla, Bhavana
2014-05-01
To compare toric intraocular lens (IOL) implantation and astigmatic keratotomy (AK) in correction of astigmatism during phacoemulsification. Tertiary care hospital. Prospective randomized trial. Consecutive patients with visually significant cataract and moderate astigmatism (1.25 to 3.00 diopters [D]) were randomized into 2 groups. Temporal clear corneal 2.75 mm phacoemulsification with toric IOL implantation was performed in the toric IOL group and with 30-degree coupled AK at the 7.0 mm optic zone in the keratotomy group. The uncorrected (UDVA) and corrected (CDVA) distance visual acuities, refraction, keratometry, topography, central corneal thickness, and endothelial cell density were evaluated preoperatively and 1 day, 1 week, and 1 and 3 months postoperatively. The study enrolled 34 eyes (34 patients), 17 in each group. There was no difference in UDVA or CDVA between the 2 groups at any follow-up visit. The mean preoperative and postoperative refractive cylinder was 2.00 D ± 0.49 (SD) and 0.33 ± 0.17 D, respectively, in the toric IOL group and 1.95 ± 0.47 D and 0.57 ± 0.41 D, respectively, in the keratotomy group (P=.10). The mean residual astigmatism at 3 months was 0.44 ± 1.89 @ 160 in the toric IOL group and 0.77 ± 1.92 @ 174 in the keratotomy group (P=.61). All eyes in the toric IOL group and 14 eyes (84%) in the keratotomy group achieved a residual refractive cylinder of 1.00 D or less (P=.17). Toric IOL implantation was comparable to AK in eyes with moderate astigmatism having phacoemulsification. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Correction of low corneal astigmatism in cataract surgery.
Leon, Pia; Pastore, Marco Rocco; Zanei, Andrea; Umari, Ingrid; Messai, Meriem; Negro, Corrado; Tognetto, Daniele
2015-01-01
To evaluate and compare aspheric toric intraocular lens (IOL) implantation and aspheric monofocal IOL implantation with limbal relaxing incisions (LRI) to manage low corneal astigmatism (1.0-2.0 D) in cataract surgery. A prospective randomized comparative clinical study was performed. There were randomly recruited 102 eyes (102 patients) with cataracts associated with corneal astigmatism and divided into two groups. The first group received toric IOL implantation and the second one monofocal IOL implantation with peripheral corneal relaxing incisions. Outcomes considered were: visual acuity, postoperative residual astigmatism, endothelial cell count, the need for spectacles, and patient satisfaction. To determine the postoperative toric axis, all patients who underwent the toric IOL implantation were further evaluated using an OPD Scan III (Nidek Co, Japan). Follow-up lasted 6mo. The mean uncorrected distance visual acuity (UCVA) and the best corrected visual acuity (BCVA) demonstrated statistically significant improvement after surgery in both groups. At the end of the follow-up the UCVA was statistically better in the patients with toric IOL implants compared to those patients who underwent implantation of monofocal IOL plus LRI. The mean residual refractive astigmatism was of 0.4 D for the toric IOL group and 1.1 D for the LRI group (P<0.01). No difference was observed in the postoperative endothelial cell count between the two groups. The two surgical procedures demonstrated a significant decrease in refractive astigmatism. Toric IOL implantation was more effective and predictable compared to the limbal relaxing incision.
Correction of low corneal astigmatism in cataract surgery
Leon, Pia; Pastore, Marco Rocco; Zanei, Andrea; Umari, Ingrid; Messai, Meriem; Negro, Corrado; Tognetto, Daniele
2015-01-01
AIM To evaluate and compare aspheric toric intraocular lens (IOL) implantation and aspheric monofocal IOL implantation with limbal relaxing incisions (LRI) to manage low corneal astigmatism (1.0-2.0 D) in cataract surgery. METHODS A prospective randomized comparative clinical study was performed. There were randomly recruited 102 eyes (102 patients) with cataracts associated with corneal astigmatism and divided into two groups. The first group received toric IOL implantation and the second one monofocal IOL implantation with peripheral corneal relaxing incisions. Outcomes considered were: visual acuity, postoperative residual astigmatism, endothelial cell count, the need for spectacles, and patient satisfaction. To determine the postoperative toric axis, all patients who underwent the toric IOL implantation were further evaluated using an OPD Scan III (Nidek Co, Japan). Follow-up lasted 6mo. RESULTS The mean uncorrected distance visual acuity (UCVA) and the best corrected visual acuity (BCVA) demonstrated statistically significant improvement after surgery in both groups. At the end of the follow-up the UCVA was statistically better in the patients with toric IOL implants compared to those patients who underwent implantation of monofocal IOL plus LRI. The mean residual refractive astigmatism was of 0.4 D for the toric IOL group and 1.1 D for the LRI group (P<0.01). No difference was observed in the postoperative endothelial cell count between the two groups. CONCLUSION The two surgical procedures demonstrated a significant decrease in refractive astigmatism. Toric IOL implantation was more effective and predictable compared to the limbal relaxing incision. PMID:26309869
Yoo, Aeri; Yun, Samyoung; Kim, Jae Yong; Kim, Myoung Joon; Tchah, Hungwon
2015-09-01
To evaluate the clinical efficacy and safety of femtosecond laser-assisted arcuate keratotomy (FS-AK) versus toric intraocular lens (IOL) implantation for correcting astigmatism in patients with cataract. A retrospective chart review was performed. All patients had senile cataracts with corneal astigmatism (range: +1.00 to +3.00 diopters [D]) before cataract surgery. Twenty-five patients agreed to undergo toric IOL implantation (the toric IOL group). Twenty-three patients did not agree to undergo toric IOL implantation despite astigmatism; however, these patients were not satisfied with their remaining astigmatism following cataract surgery and requested astigmatism correction using FS-AK (the FS-AK group). Visual acuity and intraocular pressure were evaluated, and automated refraction, keratometry, and slit-lamp examinations were performed at 1 day, 1 week, 1 month, and 5 months after surgery. Refractive astigmatism decreased in both groups. The mean preoperative and postoperative refractive cylinders were 1.71 ± 1.15 and 0.78 ± 1.06 D, respectively, in the FS-AK group (P < .001) and 1.67 ± 0.13 and 0.83 ± 0.097 D, respectively, in the toric IOL group (P < .001). There were no statistically significant differences between groups at any time during the follow-up period. FS-AK is a fast, customizable, adjustable, precise, and safe procedure for reducing refractive errors in patients with residual astigmatism after cataract surgery. The results of this procedure are comparable to the toric IOL. Copyright 2015, SLACK Incorporated.
Corneal Biomechanical Changes Following Toric Soft Contact Lens Wear.
Radaie-Moghadam, Somayeh; Hashemi, Hassan; Jafarzadehpur, Ebrahim; Yekta, Abbas Ali; Khabazkhoob, Mehdi
2016-01-01
To determine the effect of using toric soft contact lenses on corneal biomechanical properties. We enrolled 33 healthy patients with mean age of 23.18 ± 4.06 and minimal cylinder power of 1 D (-1.98 ± 0.808 SD) and negative history of contact lens use; keratoconic patients were excluded from the study. Toric soft contact lenses (BIOFINITY, Comfilcon A, Coopervision, Southampton, UK) were fitted in all participants. The Ocular Response Analyzer (Reichert Ophthalmic Instruments, Depew, New York, USA) was used to measure corneal hysteresis (CH), corneal resistance factor (CRF), and the Pentacam HR (Oculus, Inc., Lynnwood, WA, USA) was used to measure central corneal thickness (CCT) and mean keratometry (K mean) before and one week, one month, and three months after using the toric soft contact lenses. CH and CRF were decreased significantly one month after using the contact lens; mean CH decreased from 9.99 ± 1.44 to 9.59 ± 1.54 mmHg, and mean CRF decreased from 9.96 ± 1.71 to 9.63 ± 1.73 mmHg (P = 0.013 and P = 0.017, respectively). Mean CCT and K mean did not show a significant change during the period of toric soft contact lens use. CH and CRF decreased significantly one month after fitting toric soft contact lenses while CCT and Kmean did not change significantly. Corneal biomechanical parameters may alter with toric soft contact lens use and such changes may have implications with long-term use such lenses.
Kirwan, Clare; Nolan, John M; Stack, Jim; Dooley, Ian; Moore, Johnny; Moore, Tara CB; Beatty, Stephen
2016-01-01
Aim To identify challenges inherent in introducing a toric intraocular lens (IOL) to a non-refractive cataract practice, and evaluate residual astigmatism achieved and its impact on patient satisfaction. Methods Following introduction of a toric IOL to a cataract practice with all procedures undertaken by a single, non-refractive, surgeon (SB), pre-operative, intra-operative and post-operative data was analysed. Attenuation of anticipated post-operative astigmatism was examined, and subjectively perceived visual functioning was assessed using validated questionnaires. Results Median difference vector (DV, the induced astigmatic change [by magnitude and axis] that would enable the initial surgery to achieve intended target) was 0.93D; median anticipated DV with a non-toric IOL was 2.38D. One eye exhibited 0.75D residual astigmatism, compared to 3.8D anticipated residual astigmatism with a non-toric IOL. 100% of respondents reported satisfaction of ≥ 6/10, with 37.84% of respondents entirely satisfied (10/10). 17 patients (38.63%) reported no symptoms of dysphotopsia (dysphoptosia score 0/10), only 3 respondents (6.8%) reported a clinically meaningful level of dysphotopsia (≥ 4/10). Mean post-operative NEI VF-11 score was 0.54 (+/-0.83; scale 0 – 4). Conclusion Use of a toric IOL to manage astigmatism during cataract surgery results in less post-operative astigmatism than a non-toric IOL, resulting in avoidance of unacceptable post-operative astigmatism. PMID:27830188
Kibble-Zurek scaling and string-net coarsening in topologically ordered systems.
Chandran, Anushya; Burnell, F J; Khemani, Vedika; Sondhi, S L
2013-10-09
We consider the non-equilibrium dynamics of topologically ordered systems driven across a continuous phase transition into proximate phases with no, or reduced, topological order. This dynamics exhibits scaling in the spirit of Kibble and Zurek but now without the presence of symmetry breaking and a local order parameter. The late stages of the process are seen to exhibit a slow, coarsening dynamics for the string-net that underlies the physics of the topological phase, a potentially interesting signature of topological order. We illustrate these phenomena in the context of particular phase transitions out of the Abelian Z2 topologically ordered phase of the toric code/Z2 gauge theory, and the non-Abelian SU(2)k ordered phases of the relevant Levin-Wen models.
Visser, Nienke; Beckers, Henny J M; Bauer, Noel J C; Gast, Sacha T J M; Zijlmans, Bart L M; Berenschot, Tos T J M; Webers, Carroll A; Nuijts, Rudy M M A
2014-12-01
Spectacle independence is becoming increasingly important in cataract surgery. Not correcting corneal astigmatism at the time of cataract surgery will fail to achieve spectacle independency in 20% to 30% of patients. To compare bilateral aspherical toric with bilateral aspherical control intraocular lens (IOL) implantation in patients with cataract and corneal astigmatism. A multicenter, hospital-based, randomized clinical trial was conducted. The participants included 86 individuals with bilateral cataract and bilateral corneal astigmatism of at least 1.25 diopters (D) who were randomized to receive either bilateral toric (n = 41) or bilateral control (n = 45) IOL implantation. Bilateral implantation of an aspherical toric IOL or an aspherical control IOL. Spectacle independency for distance vision, uncorrected distance visual acuity, refractive astigmatism, contrast sensitivity, wavefront aberrations, and refractive error-related quality-of-life questionnaire. Preoperatively, mean (SD) corneal astigmatism was 2.02 (0.95) D and 2.00 (0.84) D in the toric and control groups, respectively. Four patients (5%) were lost to follow-up. At 6 months postoperatively, 26 (70%) of the patients in the toric group achieved an uncorrected distance visual acuity of 20/25 or better compared with 14 (31%) in the control group (P < .001; odds ratio, 5.23; 95% CI, 2.03-13.48). Spectacle independency for distance vision was achieved in 31 patients (84%) in the toric group compared with 14 patients (31%) in the control group (P < .001; odds ratio, 11.44; 95% CI, 3.89- 33.63). Mean refractive astigmatism was -0.77 (0.52) D and -1.89 D (1.00) D, respectively. Vector analysis of toric IOLs showed a mean magnitude of error of +0.38 D, indicative of overcorrection. No significant differences were found in contrast sensitivity, higher-order aberrations, or refractive error-related quality of life. In patients with cataract and corneal astigmatism, bilateral toric IOL implantation results in a higher spectacle independency for distance vision compared with bilateral control IOL implantation. No significant differences were identified in contrast sensitivity, higher-order aberrations, or refractive error-related quality of life following both treatments. clinicaltrials.gov Identifier: NCT01075542.
Fermionic topological quantum states as tensor networks
NASA Astrophysics Data System (ADS)
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
[Predictability of residual astigmatism after implantation of posterior chamber toric lenses].
Mies, D; Klink, T; Eisenbarth, W; Meyer, L M
2018-01-01
The objective of the study was to examine the predictability of residual astigmatism after cataract surgery and implantation of the posterior chamber aspheric toric lens TECNIS® ZCT, Abott Medical Optic (Ettlingen, Deutschland). The retrospective study included a total of 88 patient eyes undergoing a cataract operation with a toric lens implantation between March 2014 and October 2015. The inclusion criteria were a regular astigmatism of at least 0.75 dpt. Posterior chamber toric lenses (model Tecnis ZCT) were exclusively implanted. Post-surgery check-ups were performed after 1 day, 1 month and 2 months. Main study outcome was best-corrected visual acuity (BCVA), spherical and astigmatic aberration and the difference between expected and actual residual astigmatism after cataract surgery. The median reduction of corneal astigmatism was from -2.50 dpt (±1.06 dpt) to -0.75 dpt (±0.51 dpt) (p ≤ 0.05). The median BCVA increased from 0.37 logMAR (±0.25 logMAR) before surgery to 0.09 logMAR (±0.10 logMAR) after surgery. The spherical equivalent was reduced from +3.50 dpt (±1.11 dpt) (presurgery) to -0.56 dpt (±0.51 dpt) (postsurgery) in hyperopic patients and from -2.44 dpt (±3.03 dpt) to -0.69 dpt (±0.81 dpt) in myopic patients. By using the power vector analysis no significant deviation from the expected target values was observed; however, the median discrepancy between the expected and actual residual astigmatism was -0.50 dpt despite a surgical orientation of the intraocular lens (IOL) within 5° of the desired axis. The IOL showed a median rotation of 3.00° (±4.46°). Implantation of the aspheric toric intraocular lens Tecnis ZCT is a predictable, effective and reproducible tool in cataract surgery to account for regular corneal astigmatis; however, despite an optimal surgical orientation of the toric IOL, a small and rarely a large discrepancy might occur between expected and actual residual astigmatism.
An Optimal Dissipative Encoder for the Toric Code
2014-01-16
Topological quantummemory J. Math. Phys. 43 4452–505 [6] Diehl S, Micheli A, Kantian A, Kraus B, Büchler H P and Zoller P 2008 Quantum states and phases in...Diehl S, Kantian A, Micheli A and Zoller P 2008 Preparation of entangled states by quantum Markov processes Phys. Rev. A 78 042307 [12] Marvian I 2013...Information Theory (Cambridge: Cambridge University Press) [20] Wolf M and Cirac J I 2008 Dividing quantum channels Commun. Math. Phys. 279 147 11
Lehmann, Robert; Modi, Satish; Fisher, Bret; Michna, Magda; Snyder, Michael
2017-01-01
The purpose of this study was to evaluate the clinical outcomes of apodized diffractive +3.0 D multifocal toric intraocular lens (IOL) implantations in subjects with preoperative corneal astigmatism. This was a prospective cohort study conducted at 21 US sites. The study population consisted of 574 subjects, aged ≥21 years, with preoperative astigmatism 0.75-2.82 D, and potential postoperative visual acuity (VA) ≥0.2 logMAR, undergoing bilateral cataract removal by phacoemulsification. The intervention was bilateral implantation of aspheric apodized diffractive +3.0 D multifocal toric or spherical multifocal nontoric IOLs. The main outcome measures were monocular uncorrected near and distance VA and safety at 12 months. A total of 373/386 and 182/188 subjects implanted with multifocal toric and nontoric IOLs, respectively, completed 12-month follow-up after the second implantation. Toric IOLs were nonin-ferior in monocular uncorrected distance (4 m) and near (40 cm) VA but had >1 line better binocular uncorrected intermediate VA (50, 60, and 70 cm) than nontoric IOLs. Toric IOLs reduced cylinder to within 0.50 D and 1.0 D of target in 278 (74.5%) and 351 (94.1%) subjects, respectively. Mean ± standard deviation (SD) differences between intended and achieved axis orientation in the first and second implanted eyes were 5.0°±6.1° and 4.7°±4.0°, respectively. Mean ± SD 12-month IOL rotations in the first and second implanted eyes were 2.7°±5.8° and 2.2°±2.7°, respectively. No subject receiving toric IOLs required secondary surgical intervention due to optical lens properties. Multifocal toric IOLs were noninferior to multifocal nontoric IOLs in uncorrected distance and near VAs in subjects with preexisting corneal astigmatism and effectively corrected astigmatism of 0.75-2.82 D.
PALP: A Package for Analysing Lattice Polytopes with applications to toric geometry
NASA Astrophysics Data System (ADS)
Kreuzer, Maximilian; Skarke, Harald
2004-02-01
We describe our package PALP of C programs for calculations with lattice polytopes and applications to toric geometry, which is freely available on the internet. It contains routines for vertex and facet enumeration, computation of incidences and symmetries, as well as completion of the set of lattice points in the convex hull of a given set of points. In addition, there are procedures specialized to reflexive polytopes such as the enumeration of reflexive subpolytopes, and applications to toric geometry and string theory, like the computation of Hodge data and fibration structures for toric Calabi-Yau varieties. The package is well tested and optimized in speed as it was used for time consuming tasks such as the classification of reflexive polyhedra in 4 dimensions and the creation and manipulation of very large lists of 5-dimensional polyhedra. While originally intended for low-dimensional applications, the algorithms work in any dimension and our key routine for vertex and facet enumeration compares well with existing packages. Program summaryProgram obtainable form: CPC Program Library, Queen's University of Belfast, N. Ireland Title of program: PALP Catalogue identifier: ADSQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSQ Computer for which the program is designed: Any computer featuring C Computers on which it has been tested: PCs, SGI Origin 2000, IBM RS/6000, COMPAQ GS140 Operating systems under which the program has been tested: Linux, IRIX, AIX, OSF1 Programming language used: C Memory required to execute with typical data: Negligible for most applications; highly variable for analysis of large polytopes; no minimum but strong effects on calculation time for some tasks Number of bits in a word: arbitrary Number of processors used: 1 Has the code been vectorised or parallelized?: No Number of bytes in distributed program, including test data, etc.: 138 098 Distribution format: tar gzip file Keywords: Lattice polytopes, facet enumeration, reflexive polytopes, toric geometry, Calabi-Yau manifolds, string theory, conformal field theory Nature of problem: Certain lattice polytopes called reflexive polytopes afford a combinatorial description of a very large class of Calabi-Yau manifolds in terms of toric geometry. These manifolds play an essential role for compactifications of string theory. While originally designed to handle and classify reflexive polytopes, with particular emphasis on problems relevant to string theory applications [M. Kreuzer and H. Skarke, Rev. Math. Phys. 14 (2002) 343], the package also handles standard questions (facet enumeration and similar problems) about arbitrary lattice polytopes very efficiently. Method of solution: Much of the code is straightforward programming, but certain key routines are optimized with respect to calculation time and the handling of large sets of data. A double description method (see, e.g., [D. Avis et al., Comput. Geometry 7 (1997) 265]) is used for the facet enumeration problem, lattice basis reduction for extended gcd and a binary database structure for tasks involving large numbers of polytopes, such as classification problems. Restrictions on the complexity of the program: The only hard limitation comes from the fact that fixed integer arithmetic (32 or 64 bit) is used, allowing for input data (polytope coordinates) of roughly up to 10 9. Other parameters (dimension, numbers of points and vertices, etc.) can be set before compilation. Typical running time: Most tasks (typically: analysis of a four dimensional reflexive polytope) can be perfomed interactively within milliseconds. The classification of all reflexive polytopes in four dimensions takes several processor years. The facet enumeration problem for higher (e.g., 12-20) dimensional polytopes varies strongly with the dimension and structure of the polytope; here PALP's performance is similar to that of existing packages [Avis et al., Comput. Geometry 7 (1997) 265]. Unusual features of the program: None
c-Extremization from toric geometry
NASA Astrophysics Data System (ADS)
Amariti, Antonio; Cassia, Luca; Penati, Silvia
2018-04-01
We derive a geometric formulation of the 2d central charge cr from infinite families of 4d N = 1 superconformal field theories topologically twisted on constant curvature Riemann surfaces. They correspond to toric quiver gauge theories and are associated to D3 branes probing five dimensional Sasaki-Einstein geometries in the AdS/CFT correspondence. We show that cr can be expressed in terms of the areas of the toric diagram describing the moduli space of the 4d theory, both for toric geometries with smooth and singular horizons. We also study the relation between a-maximization in 4d and c-extremization in 2d, giving further evidences of the mixing of the baryonic symmetries with the exact R-current in two dimensions.
Hayashi, Ken; Masumoto, Miki; Takimoto, Minehiro
2015-01-01
To compare visual outcomes between patients with a multifocal toric intraocular lens (IOL) and those with a monofocal toric IOL. Hayashi Eye Hospital, Fukuoka, Japan. Prospective case-control series. Eyes with preoperative corneal astigmatism between 0.75 diopter (D) and 2.82 D scheduled for implantation of a diffractive multifocal toric IOL (Restor SND1T) or monofocal toric IOL (Acrysof SN6AT) were recruited. Three months postoperatively, visual acuity at various distances, contrast visual acuity, and refractive outcomes were examined. Each group comprised 66 eyes (33 patients). Postoperatively, the mean refractive astigmatism decreased to 0.71 D in the multifocal group and 0.74 D in the monofocal group. The mean monocular and binocular uncorrected and corrected near visual acuity at 0.3 m and intermediate visual acuity at 0.5 m were significantly better in the multifocal group than in the monofocal group (P≤.0011). The uncorrected and corrected visual acuities at other distances were similar between groups except at 1.0 m. Binocular photopic and mesopic contrast visual acuities at high to moderate contrasts did not differ significantly between groups; however, acuities at low contrasts were worse in the multifocal group (P≤.0429). Diffractive multifocal toric IOL implantation decreased refractive astigmatism to an acceptable range in eyes with moderate corneal astigmatism and provided useful visual acuity (≥20/40) at any distance and significantly better near and intermediate visual acuity than a monofocal toric IOL. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Zhao, Yang; Li, Jiaxin; Yang, Ke; Li, Xiao; Zhu, Siquan
2018-01-01
This study aimed to compare the effects of toric intraocular lens (IOL) implantation with a capsular tension ring and toric IOL implantation only in patients with axial myopic astigmatism who had undergone cataract surgery. Of 34 patients with axial myopia, 16 patients who had received IOL and capsular tension ring (CTR) implantation were included in the combined group and 18 patients who received toric IOL implantation only were included in the simple group. Uncorrected visual acuity (UCVA) and best-corrected visual acuity (BCVA) were evaluated by measuring subjective refraction, residual astigmatism, and the toric IOL axis six months post-surgery. At six months postoperatively, the UCVA for the combined and simple groups was 4.6 ± 0.1 and 4.5 ± 0.2, respectively, a statistically significant difference (t = 3.531, P<0.05). The toric IOL in all of the cases was located in the capsular sac, but there were more cases with IOL rotation (12 eyes) in the simple group than in the combined group (4 eyes). The rotation angles were 20°~30° (one eye), 10°~20° (four eyes), and <10° (seven eyes) compared with 2°~5° (four eyes). The residual astigmatism was -0.50 ± 0.25 D in the combined group, not a significant difference from the predicted residual astigmatism (-0.35 ± 0.13 D). There was a significant difference in the simple group (-1.25 ± 0.33 D) when the predicted residual astigmatism was compared (-0.37 ± 0.11 D) (t = -9.511, P < 0.01). In patients with axial myopic astigmatism, CTR can effectively increase the rotational stability of a toric IOL, achieving improvement in corneal astigmatism and visual acuity.
Toric Intraocular Lens for Astigmatism Correction in Cataract Patients.
Razmjoo, Hassan; Ghoreishi, Mohammad; Milasi, Azadeh Mohammadi; Peyman, Alireza; Jafarzadeh, Zahra; Mohammadinia, Mohadeseh; Kobra, Nasrollahi
2017-01-01
To assess the clinical consequences of AcrySof toric intraocular lens (IOL) and Hoya toric IOL implantation to correct preexisting corneal astigmatism in patients undergoing cataract surgery. In this study, we examined 55 eyes of 45 patients with at least 1.00 D corneal astigmatism who were scheduled for cataract surgery. After phacoemulsification, toric IOL was inserted and axis was aligned. We observed the patients, uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), keratometry, manifest refraction, and IOL axis alignment 6 months after surgery. After 6 months, the UDVA was 0.17 ± 0.17 logMAR in the AcrySof group and 0.17 ± 0.18 logMar in the Hoya group. More than 78% of eyes in the AcrySof group and 80% of eyes in the Hoya toric IOL achieved a UDVA of 20/40 or better. In the AcrySof group, the mean preoperative corneal astigmatism was 2.73 ± 0.92 D. The mean postoperative refractive astigmatism was 0.84 ± 0.63 D. In the Hoya group, the preoperative corneal astigmatism was 2.58 ± 0.76 D and the postoperative refractive astigmatism was 0.87 ± 0.66 D ( P < 0.05). The mean AcrySof IOL axis rotation was 1.88° ± 3.05°. In the Hoya group, the mean axis rotation was 1.53° ± 3.66°. All changes in visual and refractive data before and after surgery were statistically significant ( P < 0.05). There was no significant difference between the two groups regarding refractive and visual outcome after surgery ( P > 0.05 for all). Implantation of AcrySof toric IOL and Hoya toric IOL was an effective way to correct preexisting corneal astigmatism in cataract surgery.
Grohlich, M; Miháltz, K; Lasta, M; Weingessel, B; Vécsei-Marlovits, V
2017-06-01
Background The aim of this retrospective study was to evaluate the rotational stability and the refractive outcome of two different toric IOLs. Methods This study included 41 eyes with corneal astigmatism greater than 1.5 diopters (D). All patients underwent surgery in the Department of Ophthalmology at Hietzing Hospital between 2010 and 2013. The study lenses were the Alcon AcrySof IQ Toric IOL and the Abbott Tecnis Toric Aspheric IOL. Measurements of corneal topography and aberrations were performed with the HOYA iTrace™. Determination of visual acuity was performed with ETDRS charts. Optical aberrations were represented by Zernike coefficients, and optical quality was assessed with the Strehl ratio. Results Mean rotation was 4.92° (standard deviation: ± 4.10°) in the Alcon group and 4.31° (± 4.59°) in the Abbott group. No significant difference was observed between the two toric intraocular lenses. Rotational stability was comparable to results from other studies. Astigmatism correction was visualised with a power-vector analysis, which demonstrated similar results in both lenses and a clear success of astigmatism correction. No statistically significant differences were found in residual refractive astigmatism, which was 0.85 ± 0.48 D in the Alcon group and 1.09 ± 0.66 in the Tecnis group. No significant difference between the two groups was found in the Strehl ratio. Conclusion Implantation of toric intraocular lenses (Alcon + Abbott) in patients with regular astigmatism is an effective and safe method, which should be offered to patients. Both the Tecnis and the AcrySof toric IOLs similarly reduced ocular astigmatism. Georg Thieme Verlag KG Stuttgart · New York.
Frieling-Reuss, Elisabeth H
2013-10-01
To analyze and compare the postoperative visual and refractive outcomes and patients' visual satisfaction after implantation of an aspheric or an aspheric toric multifocal diffractive intraocular lens (IOL) in eyes with equivalent biometric characteristics. Private clinic, Munich, Germany. Comparative case series. Patients having cataract surgery were assigned to 1 of 2 groups: aspheric, which had AT Lisa 809M IOL implantation, and aspheric toric, which had AT Lisa 909M IOL implantation (corneal toricity ≥0.75 diopter [D]). Visual and refractive postoperative outcomes were evaluated, as was the patient's ability to perform daily tasks related to vision and the incidence of photic phenomena. The aspheric group comprised 77 eyes (42 patients) and the aspheric toric group, 26 eyes (17 patients). A significant improvement in corrected distance and near visual acuity was observed postoperatively in both groups, as was a significant reduction in the astigmatic component J0 (P<.01). The aspheric toric group had significantly better uncorrected intermediate visual acuity (P=.01). In both groups, the postoperative astigmatic power vectors and spherical equivalent were within ±0.50 D in 100% of eyes and in more than 88% of eyes, respectively. No statistically significant differences were found in any subjective patient questionnaire item. There was no difference in the incidence of photic phenomena between the groups (P≥0.16). The addition of a toric surface to the aspheric diffractive multifocal platform resulted in a comparable visual performance and ability to perform visual tasks. The author has no financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Garzón, Nuria; Poyales, Francisco; de Zárate, Begoña Ortíz; Ruiz-García, Jose Luis; Quiroga, Juan Antonio
2015-02-01
To evaluate rotational stability and its influence on postoperative visual acuity of different monofocal and multifocal toric intraocular lenses (IOLs). A prospective interventional study was designed. Ninety-one patients with a mean age of 71.65 ± 11.82 years were implanted with toric IOLs after phacoemulsification. Three monofocal toric IOLs (the Lentis LT [Oculentis, Berlin, Germany], enVista [Bausch & Lomb, Rochester, NY], and AcrySof IQ [Alcon Laboratories, Inc., Fort Worth, TX]) and one multifocal toric IOL (AcrySof IQ ReSTOR; Alcon Laboratories, Inc.) were implanted. Preoperative and postoperative images were taken to calculate the misalignment due to the marking method. To evaluate rotation in the different follow-up visits, another photograph was taken 1 hour and 1, 7 and 30 days postoperatively. Refraction, uncorrected distance visual acuity (UDVA), and corrected distance visual acuity were measured 30 days postoperatively. Postoperative UDVA was 0.1 logMAR or better in 64.6% of eyes implanted with monofocal IOLs and 46.4% of eyes implanted with multifocal IOLs. The enVista toric IOL showed the best UDVA compared to the other monofocal IOLs, with 81% of eyes with 0.1 logMAR or better. The mean misalignment in the total group studied was 0.07° ± 0.60°; 69.6% of monofocal IOLs and 67.9% of multifocal IOLs showed less than 5° of rotation. A correlation was found between postoperative UDVA and rotation in the monofocal and multifocal IOLs implanted (r = 0.439 [P < .011] and = 0.787 [P = .001], respectively). At 1 month postoperatively, UDVA was slightly more affected by IOL rotation in multifocal than monofocal toric IOLs. The marking method was also effective. Copyright 2015, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Lin, Chien-Hung
2017-05-01
We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.
Astigmatism evaluation prior to cataract surgery.
Gupta, Pankaj C; Caty, Jane T
2018-01-01
To evaluate and summarize literature from the past 18 months reporting advancements and issues in astigmatism assessment prior to cataract surgery. New and updated toric calculators and regression formulas offer the opportunity for more accurate lens selection for our patients. Concurrently, improvements in topographic evaluation of corneal keratometry have allowed for a decrease in unplanned residual corneal astigmatism. Measuring posterior corneal astigmatism is especially valuable in eyes with keratoconus when planning to implant toric intraocular lens (IOL) and now allows access to this patient population. Improved accuracy of astigmatism evaluation now occurs with point reflections on the corneal surface along with the latest generation toric lens formulas which integrated posterior corneal astigmatism, predicted lens position, and intended spherical power of the IOL. These improvements can allow for incorporation of toric lenses in keratoconus patients.
Active Optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system.
Hugot, Emmanuel; Ferrari, Marc; El Hadi, Kacem; Vola, Pascal; Gimenez, Jean Luc; Lemaitre, Gérard R; Rabou, Patrick; Dohlen, Kjetil; Puget, Pascal; Beuzit, Jean Luc; Hubin, Norbert
2009-05-20
The manufacturing of toric mirrors for the Very Large Telescope-Spectro-Polarimetric High-Contrast Exoplanet Research instrument (SPHERE) is based on Active Optics and stress polishing. This figuring technique allows minimizing mid and high spatial frequency errors on an aspherical surface by using spherical polishing with full size tools. In order to reach the tight precision required, the manufacturing error budget is described to optimize each parameter. Analytical calculations based on elasticity theory and finite element analysis lead to the mechanical design of the Zerodur blank to be warped during the stress polishing phase. Results on the larger (366 mm diameter) toric mirror are evaluated by interferometry. We obtain, as expected, a toric surface within specification at low, middle, and high spatial frequencies ranges.
Savini, Giacomo; Næser, Kristian
2015-01-13
To investigate the influence of posterior corneal astigmatism, surgically-induced corneal astigmatism (SICA), intraocular lens (IOL) orientation, and effective lens position on the refractive outcome of toric IOLs. Five models were prospectively investigated. Keratometric astigmatism and an intended SICA of 0.2 diopters (D) were entered into model 1. Total corneal astigmatism, measured by a rotating Scheimpflug camera, was used instead of keratometric astigmatism in model 2. The mean postoperative SICA, the actual postoperative IOL orientation, and the influence of the effective lens position were added, respectively, into models 3, 4, and 5. Astigmatic data were vectorially described by meridional and torsional powers. A set of equations was developed to describe the error in refractive astigmatism (ERA) as the difference between the postoperative refractive astigmatism and the target refractive astigmatism. We enrolled 40 consecutive eyes. In model 1, ERA calculations revealed significant cylinder overcorrection in with-the-rule (WTR) eyes (meridional power = -0.59 ± 0.34 D, P < 0.0001) and undercorrection in against-the-rule (ATR) eyes (0.32 ± 0.42 D, P = 0.01). When total corneal astigmatism was used instead of keratometric astigmatism (model 2), the ERA meridional power decreased in WTR (-0.13 ± 0.42 D) and ATR (0.07 ± 0.59 D) eyes, both values being not statistically significant. Models 3 to 5 did not lead to significant improvement. Posterior corneal astigmatism exerts the highest influence on the ERA after toric IOL implantation. Basing calculations on total corneal astigmatism rather than keratometric astigmatism improves the prediction of the residual refractive astigmatism. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Probing the space of toric quiver theories
NASA Astrophysics Data System (ADS)
Hewlett, Joseph; He, Yang-Hui
2010-03-01
We demonstrate a practical and efficient method for generating toric Calabi-Yau quiver theories, applicable to both D3 and M2 brane world-volume physics. A new analytic method is presented at low order parametres and an algorithm for the general case is developed which has polynomial complexity in the number of edges in the quiver. Using this algorithm, carefully implemented, we classify the quiver diagram and assign possible superpotentials for various small values of the number of edges and nodes. We examine some preliminary statistics on this space of toric quiver theories.
3 d printing of 2 d N=(0,2) gauge theories
NASA Astrophysics Data System (ADS)
Franco, Sebastián; Hasan, Azeem
2018-05-01
We introduce 3 d printing, a new algorithm for generating 2 d N=(0,2) gauge theories on D1-branes probing singular toric Calabi-Yau 4-folds using 4 d N=1 gauge theories on D3-branes probing toric Calabi-Yau 3-folds as starting points. Equivalently, this method produces brane brick models starting from brane tilings. 3 d printing represents a significant improvement with respect to previously available tools, allowing a straightforward determination of gauge theories for geometries that until now could only be tackled using partial resolution. We investigate the interplay between triality, an IR equivalence between different 2 d N=(0,2) gauge theories, and the freedom in 3 d printing given an underlying Calabi-Yau 4-fold. Finally, we present the first discussion of the consistency and reduction of brane brick models.
Michaud, Langis; Bennett, Edward S; Woo, Stephanie L; Reeder, Renee; Morgan, Bruce W; Dinardo, Amy; Harthan, Jennifer S
2018-05-01
This study aims to address the clinical performance of a large diameter rigid gas permeable lens (LRGP) in a group of subjects with low-to-moderate (0.75-2.75 D) refractive astigmatism. An additional goal was to determine whether soft toric or LRGP contact lenses performed better objectively in the correction of astigmatism and to determine which modality is preferred by subjects. This was a multisite prospective cross-over clinical study. Ten asymptomatic contact lens wearers per site (four university clinics) were recruited and randomly assigned to group A or group B. Group A was assigned to start wearing Comfilcon A soft toric lens first, for two weeks, and then crossed over to LRGP lenses (Boston XO, 14.3 mm diameter miniscleral lens). Group B initially wore LRGP lenses and then crossed over to soft toric lenses. For each type of lens worn, low-contrast and high-contrast visual acuity (VA) were evaluated at distance. At the conclusion of the study, after two months, all subjects completed a questionnaire in which they were asked to indicate their preference for one type of lens (soft toric or LRGP) and to rate the quality of vision in day-to-day activities. Thirty-six of 38 (94.7%) subjects completed the study with 75% preferring the vision of the LRGP lens as compared to the soft toric lenses worn in the study. 52.7% expressed a preference to continue with this modality despite only 38.8% reporting that these LRGP lenses are easy or very easy to handle. Wear time, subjective comfort, and subjective vision ratings exhibited no significant difference between the two groups. In a population of asymptomatic contact lens wearers, LRGP lenses can be considered as a good alternative to soft toric lenses for the correction of refractive astigmatism.
Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator.
Li, Keren; Wan, Yidun; Hung, Ling-Yan; Lan, Tian; Long, Guilu; Lu, Dawei; Zeng, Bei; Laflamme, Raymond
2017-02-24
Topological orders can be used as media for topological quantum computing-a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular S and T matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the Z_{2} toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately, topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers.
Yokogawa, Hideaki; Sanchez, P James; Mayko, Zachary M; Straiko, Michael D; Terry, Mark A
2017-03-01
To report the clinical efficacy of astigmatism correction with toric intraocular lenses (IOLs) in patients undergoing the Descemet membrane endothelial keratoplasty (DMEK) triple procedure and to evaluate the accuracy of the correction. Fifteen eyes of 10 patients who received cataract extraction, toric IOL placement, and DMEK surgery for Fuchs corneal dystrophy and cataracts were evaluated. The cylinder power of toric IOLs was determined by an online toric calculator with keratoscopy measurements obtained using Scheimpflug corneal imaging. Prediction errors were assessed as a difference vector between the anticipated minus postoperative residual astigmatism. At 10.1 ± 4.9 months postoperatively, 8/13 (61.5%) of eyes achieved uncorrected distance visual acuity better than 20/40. Mean best spectacle-corrected distance visual acuity (logMAR) improved from 0.21 ± 0.15 preoperatively to 0.08 ± 0.12 postoperatively (P < 0.01). The magnitude of refractive astigmatism was also significantly decreased from 2.23 ± 1.10 D (range 0.75-4.25 D) preoperatively to 0.87 ± 0.75 D (range 0.00-3.00 D) postoperatively (P < 0.01). In 1 eye with rotational misalignment by 43 degrees, we found no improvement of astigmatism. The prediction error of astigmatism at the corneal plane was 0.77 ± 0.54 D (range 0.10-1.77 D). Four eyes with preoperative "with-the-rule" corneal astigmatism had postoperative "against-the-rule" refractive astigmatism. For patients with Fuchs corneal dystrophy and cataracts, use of toric IOLs might be a valuable option in triple DMEK surgery. Additionally, care should be taken to prevent excessive IOL rotation.
NASA Astrophysics Data System (ADS)
Roy, Abhishek; Chen, Xiao; Teo, Jeffrey
2013-03-01
We investigate homological orders in two, three and four dimensions by studying Zk toric code models on simplicial, cellular or in general differential complexes. The ground state degeneracy is obtained from Wilson loop and surface operators, and the homological intersection form. We compute these for a series of closed 3 and 4 dimensional manifolds and study the projective representations of mapping class groups (modular transformations). Braiding statistics between point and string excitations in (3+1)-dimensions or between dual string excitations in (4+1)-dimensions are topologically determined by the higher dimensional linking number, and can be understood by an effective topological field theory. An algorithm for calculating entanglemnent entropy of any bipartition of closed manifolds is presented, and its topological signature is completely characterized homologically. Extrinsic twist defects (or disclinations) are studied in 2,3 and 4 dimensions and are shown to carry exotic fusion and braiding properties. Simons Fellowship
Local Response of Topological Order to an External Perturbation
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Cincio, Lukasz; Santra, Siddhartha; Zanardi, Paolo; Amico, Luigi
2013-05-01
We study the behavior of the Rényi entropies for the toric code subject to a variety of different perturbations, by means of 2D density matrix renormalization group and analytical methods. We find that Rényi entropies of different index α display derivatives with opposite sign, as opposed to typical symmetry breaking states, and can be detected on a very small subsystem regardless of the correlation length. This phenomenon is due to the presence in the phase of a point with flat entanglement spectrum, zero correlation length, and area law for the entanglement entropy. We argue that this kind of splitting is common to all the phases with a certain group theoretic structure, including quantum double models, cluster states, and other quantum spin liquids. The fact that the size of the subsystem does not need to scale with the correlation length makes it possible for this effect to be accessed experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, K.
2007-03-15
We explore the phase structure induced by closed string tachyon condensation of toric nonsupersymmetric conifold-like singularities described by an integral charge matrix Q=(n{sub 1}n{sub 2}-n{sub 3}-n{sub 4}), n{sub i}>0, iQ{sub i}{ne}0, initiated by Narayan [J. High Energy Phys. 03 (2006) 036]. Using gauged linear sigma model renormalization group flows and toric geometry techniques, we see a cascadelike phase structure containing decays to lower order conifold-like singularities, including, in particular, the supersymmetric conifold and the Y{sup pq} spaces. This structure is consistent with the Type II GSO projection obtained previously for these singularities. Transitions between the various phases of these geometriesmore » include flips and flops.« less
Canovas, Carmen; Alarcon, Aixa; Rosén, Robert; Kasthurirangan, Sanjeev; Ma, Joseph J K; Koch, Douglas D; Piers, Patricia
2018-02-01
To assess the accuracy of toric intraocular lens (IOL) power calculations of a new algorithm that incorporates the effect of posterior corneal astigmatism (PCA). Abbott Medical Optics, Inc., Groningen, the Netherlands. Retrospective case report. In eyes implanted with toric IOLs, the exact vergence formula of the Tecnis toric calculator was used to predict refractive astigmatism from preoperative biometry, surgeon-estimated surgically induced astigmatism (SIA), and implanted IOL power, with and without including the new PCA algorithm. For each calculation method, the error in predicted refractive astigmatism was calculated as the vector difference between the prediction and the actual refraction. Calculations were also made using postoperative keratometry (K) values to eliminate the potential effect of incorrect SIA estimates. The study comprised 274 eyes. The PCA algorithm significantly reduced the centroid error in predicted refractive astigmatism (P < .001). With the PCA algorithm, the centroid error reduced from 0.50 @ 1 to 0.19 @ 3 when using preoperative K values and from 0.30 @ 0 to 0.02 @ 84 when using postoperative K values. Patients who had anterior corneal against-the-rule, with-the-rule, and oblique astigmatism had improvement with the PCA algorithm. In addition, the PCA algorithm reduced the median absolute error in all groups (P < .001). The use of the new PCA algorithm decreased the error in the prediction of residual refractive astigmatism in eyes implanted with toric IOLs. Therefore, the new PCA algorithm, in combination with an exact vergence IOL power calculation formula, led to an increased predictability of toric IOL power. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Surgical technique for management of isolated lenticular coloboma with high corneal astigmatism.
Singh, Simar Rajan; Yangzes, Sonam; Gupta, Rohit; Ram, Jagat
2018-04-01
We describe a surgical technique for the correction of isolated congenital lenticular coloboma associated with high corneal astigmatism. Transscleral fixation of the capsular bag with a single eyelet Cionni capsular tension ring was followed by in-the-bag implantation of a toric intraocular lens (IOL). This lead to complete correction of the lenticular defect and perfect alignment of the toric lens. In this case, the child attained an unaided distance visual acuity of 20/30 following amblyopia therapy and a well-aligned toric IOL at 12 months of follow-up. This technique can be used in cases with concomitant lenticular coloboma and significant corneal astigmatism.
Surgical technique for management of isolated lenticular coloboma with high corneal astigmatism
Singh, Simar Rajan; Yangzes, Sonam; Gupta, Rohit; Ram, Jagat
2018-01-01
We describe a surgical technique for the correction of isolated congenital lenticular coloboma associated with high corneal astigmatism. Transscleral fixation of the capsular bag with a single eyelet Cionni capsular tension ring was followed by in-the-bag implantation of a toric intraocular lens (IOL). This lead to complete correction of the lenticular defect and perfect alignment of the toric lens. In this case, the child attained an unaided distance visual acuity of 20/30 following amblyopia therapy and a well-aligned toric IOL at 12 months of follow-up. This technique can be used in cases with concomitant lenticular coloboma and significant corneal astigmatism. PMID:29582820
Hemkeppler, E; Böhm, M; Kohnen, T
2018-05-29
A 52-year-old highly myopic female patient was implanted with a multifocal, diffractive, toric intraocular lens because of the wish to be independent of eyeglasses. Despite high-quality, extensive preoperative examinations, a hyperopic refractive error remained postoperatively, which led to the patient's dissatisfaction. This error was treated with Laser-in-situ-Keratomileusis (LASIK). After corneal LASIK treatment and implantation of a diffractive toric multifocal intraocular lens the patient showed a good postoperative visual result without optical phenomena.
Entanglement renormalization and gauge symmetry
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; Vidal, G.
2011-03-01
A lattice gauge theory is described by a redundantly large vector space that is subject to local constraints and can be regarded as the low-energy limit of an extended lattice model with a local symmetry. We propose a numerical coarse-graining scheme to produce low-energy, effective descriptions of lattice models with a local symmetry such that the local symmetry is exactly preserved during coarse-graining. Our approach results in a variational ansatz for the ground state(s) and low-energy excitations of such models and, by extension, of lattice gauge theories. This ansatz incorporates the local symmetry in its structure and exploits it to obtain a significant reduction of computational costs. We test the approach in the context of a Z2 lattice gauge theory formulated as the low-energy theory of a specific regime of the toric code with a magnetic field, for lattices with up to 16×16 sites (162×2=512 spins) on a torus. We reproduce the well-known ground-state phase diagram of the model, consisting of a deconfined and spin-polarized phases separated by a continuous quantum phase transition, and obtain accurate estimates of energy gaps, ground-state fidelities, Wilson loops, and several other quantities.
Exact results for the star lattice chiral spin liquid
NASA Astrophysics Data System (ADS)
Kells, G.; Mehta, D.; Slingerland, J. K.; Vala, J.
2010-03-01
We examine the star lattice Kitaev model whose ground state is a chiral spin liquid. We fermionize the model such that the fermionic vacua are toric-code states on an effective Kagome lattice. This implies that the Abelian phase of the system is inherited from the fermionic vacua and that time-reversal symmetry is spontaneously broken at the level of the vacuum. In terms of these fermions we derive the Bloch-matrix Hamiltonians for the vortex-free sector and its time-reversed counterpart and illuminate the relationships between the sectors. The phase diagram for the model is shown to be a sphere in the space of coupling parameters around the triangles of the lattices. The Abelian phase lies inside the sphere and the critical boundary between topologically distinct Abelian and non-Abelian phases lies on the surface. Outside the sphere the system is generically gapped except in the planes where the coupling parameters between the vertices on triangles are zero. These cases correspond to bipartite lattice structures and the dispersion relations are similar to that of the original Kitaev honeycomb model. In a further analysis we demonstrate the threefold non-Abelian ground-state degeneracy on a torus by explicit calculation.
Systematic Phenomenology on the Landscape of Calabi-Yau Hypersurfaces in Toric Varieties
NASA Astrophysics Data System (ADS)
Altman, Ross
The largest known database of Calabi-Yau threefold string vacua was famously produced by Kreuzer and Skarke in the form of a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions [1]. These reflexive polyhedra describe the singu- lar limits of ambient Gorenstein toric Fano varieties in which Calabi-Yau threefolds are known to exist as the associated anticanonical hypersurfaces. In this thesis, we review how to unpack the topological and geometric information describing these Calabi-Yau threefolds using the toric construction, and provide, in a companion online database (see www.rossealtman.com), a detailed inventory of these quantities which are of interest to string phenomenologists. Many of the singular ambient varieties associated to the Kreuzer-Skarke list can be partially smoothed out into a multiplicity of distinct, terminal toric ambient spaces, each of which may embed a unique Calabi-Yau threefold. Some, however are not unique, and can be identified through topological and smoothness con- straints. A distribution of the unique Calabi-Yau threefolds which can be obtained from each 4D reflexive polyhedron, will be provided up to current computational limits. In addition, we will detail the computation of a variety of quantities associated to each of these vacua, such as the Chern classes, Hodge data, intersection numbers, and the Kahler and Mori cones. Then, moving on to actual string phenomenology on the Calabi-Yau compactification vacua, we outline the prescription for moduli stabilization with a supersymmetry breaking vacuum known as the LARGE Volume Scenario (LVS), paying particular attention to the so-called "Swiss cheese" models. It is an important open problem in string model building to identify the set of Swiss cheese solutions within the space of Calabi-Yau threefolds. In this thesis, we present an algorithm to isolate a special subset of Swiss cheese solutions that are characterized by "holes," or small 4-cycles in homology, descending from the toric divisors inherent to the original four dimensional reflexive polyhedra. Implementing these methods, we find 2,313 "toric" Swiss cheese manifolds, over half of which have h1,1 = 6. Of these, 70 have two or more large 4-cycles and a flat direction in the effective potential. In an explicit example, we find a stable minimum for the small Kahler moduli and a flat direction in the large moduli. Finally, we approach the subject of orientifolding the Calabi-Yau threefold vacuum of a type IIB theory in order to break N = 2 supergravity down to N = 1 in the low energy effective theory. To this end, we describe the process of choosing a non-trivial Z 2 involution, and locating its fixed points on the compactification manifold. It will be shown that consistency of this involution across the full Kahler cone is very restrictive and results in at most O3/O7 planes in nearly every case. We also discuss the splitting of the Kahler moduli space of the orientifold into even and odd parity components, and present concrete examples demonstrating this process.
Toric Intraocular Lens Outcomes in Patients With Glaucoma.
Brown, Reay H; Zhong, Le; Bozeman, Caroline W; Lynch, Mary G
2015-06-01
To report the outcomes of toric intraocular lens implantation in patients with glaucoma and corneal astigmatism. One hundred twenty-six eyes of 87 patients with glaucoma and corneal astigmatism that underwent cataract surgery with an AcrySof toric intraocular lens (Alcon Laboratories, Inc., Fort Worth, TX) implant were selected for this single-center, retrospective case series. Corrected distance visual acuity, intraocular pressure, and refractive astigmatism were measured in each eye preoperatively and postoperatively. Uncorrected distance visual acuity and toric alignment were measured postoperatively. The uncorrected distance visual acuity was 0.04 ± 0.08 logMAR (20/22 Snellen) for all eyes. Ninety-eight percent of all eyes achieved an uncorrected distance visual acuity of 20/40 or better, with 76% achieving 20/25 or better and 47% achieving 20/20. The corrected distance visual acuity for all eyes was 0.01 ± 0.03 logMAR (20/20.5 Snellen) postoperatively. The refractive cylinder improved from 1.47 ± 1.10 diopters preoperatively to 0.31 ± 0.37 diopters postoperatively. The residual refractive cylinder was 1.00 diopter or less in 97% of eyes, 0.75 diopters or less in 90% of eyes, and 0.50 diopters or less in 83% of eyes. Mean misalignment was 4.4° ± 5.1°. Intraocular pressure decreased by a mean of 2.3 ± 3.3 mm Hg following the surgery. Toric intraocular lenses can reliably reduce astigmatism and improve uncorrected vision in eyes with cataract and glaucoma. Copyright 2015, SLACK Incorporated.
Moulick, P S; Mohindra, V K; Gurunadh, V S; Patel, Parth; Gupta, Sandeep; Khan, M A
2018-04-01
Modern day cataract surgery aims at a spectacle free vision which becomes difficult in cases with pre-operative astigmatism more than 1.5 D. Implantation of toric intra-ocular lenses (IOL) after phacoemulsification in such eyes is one of the ways to counteract this problem. Thirty eyes with pre-operative astigmatism between 1.5 D and 4.5 D were implanted with toric IOLs following uneventful phaco-emulsification. The estimation of the axis of implantation of this toric IOL included calculating the surgically induced astigmatism (SIA) of the surgeon. Post-operatively, 20 (66.67%) patients had a visual acuity 6/9 or better and 17 (57%) had a visual acuity of 6/6 at 12 weeks. The mean postoperative uncorrected visual acuity (UCVA) was 0.12 ± 0.15 at 12 weeks. The difference between means of preoperative best corrected visual acuity (BCVA) LogMAR and postoperative UCVA at 12 wk LogMAR was found to be statistically significant at p = 0.001. Mean (SD) scores of pre-op astigmatism of study group was -2.20 (0.67) and residual astigmatism was -0.32 (0.44). The difference between means of pre-op astigmatism and residual astigmatism in the study group was significant at p = 0.001 with 95% CI -2.22 to -1.50. This significant difference was because of the toric IOL implantation.
Ammar, Hatem; Anbar, Mohamed; Abdellah, Marwa M
2017-01-01
Purpose To compare the efficacy and outcome of phakic toric implantable collamer lens (TICL) and refractive clear lens extraction with AcrySof Toric intraocular lens (TIOL) implantation for the treatment of myopic astigmatism. Patients and methods This study assessed eyes with myopic astigmatism >−1 D and ≤−4 D with a spherical equivalent >10 D or <10 D if the patients were unsuitable for corneal refractive surgery. These eyes were divided into group A, in which Visian Toric ICL™ Phakic TICL was implanted, and group B, which involved clear lens extraction with implantation of an AcrySof IQ toric SN60T3-9™ IOL. The outcome and complications were evaluated. Results This study enrolled 63 eyes of 38 patients with a follow-up period of at least 6 months. The mean postoperative spherical equivalent was −0.19±0.31 D in group A and −0.21±0.28 D in group B (P=0.69). The mean postoperative cylinder value was −0.46±0.53 D in group A and −0.32±0.41 D in group B (P=0.35). Postoperative cylinder was <1 D in 76.47% and 79.31% of eyes in groups A and B, respectively. The mean endothelial cell count was reduced by 4.32% in group A and by 5.32% in group B (P=0.003). The mean postoperative intraocular pressure increased insignificantly in group A (P=0.22) and reduced significantly in group B (P=0.004). The complication rate was 11.76% in group A and 6.90% in group B. Conclusion Both procedures showed predictable results and good visual results. However, the loss of accommodation and risk of retinal complications in the TIOL group suggest that the use of TICL for myopic astigmatism is a better choice in younger patients. PMID:28096654
Probing topological order with Rényi entropy
NASA Astrophysics Data System (ADS)
Halász, Gábor B.; Hamma, Alioscia
2012-12-01
We present an analytical study of the quantum phase transition between the topologically ordered toric-code-model ground state and the disordered spin-polarized state. The phase transition is induced by applying an external magnetic field, and the variation in topological order is detected via two nonlocal quantities: the Wilson loop and the topological Rényi entropy of order 2. By exploiting an equivalence with the transverse-field Ising model and considering two different variants of the problem, we investigate the field dependence of these quantities by means of an exact treatment in the exactly solvable variant and complementary perturbation theories around the limits of zero and infinite fields in both variants. We find strong evidence that the phase transition point between topological order and disorder is marked by a discontinuity in the topological Rényi entropy and that the two phases around the phase transition point are characterized by its different constant values. Our results therefore indicate that the topological Rényi entropy is a proper topological invariant: its allowed values are discrete and can be used to distinguish between different phases of matter.
AdS/CFT in string theory and M-theory
NASA Astrophysics Data System (ADS)
Gulotta, Daniel R.
The AdS/CFT correspondence is a powerful tool that can help shed light on the relationship between geometry and field theory. The first part of this thesis will focus on the construction of theories dual to Type IIB string theory on AdS5 × Y5, where Y5 is a toric Sasaki-Einstein manifold. This thesis will introduce a consistency condition called ``proper ordering'' and demonstrate that it is equivalent to several other previously known consistency conditions. It will then give an efficient algorithm that produces a consistent field theory for any toric Sasaki-Einstein Y5. The second part of this thesis will examine the large-N limit of the Kapustin-Willett-Yaakov matrix model. This model computes the S3 partition function for a CFT dual to M-theory on AdS4 × Y7. One of the main results will be a formula that relates the distribution of eigenvalues in the matrix model to the distribution of holomorphic operators on the cone over Y7. A variety of examples are given to support this formula.
Gobin, Laure; Tassignon, Marie-José; Mathysen, Danny
2011-06-01
To propose a method of calculating the power of the 1-sided posterior chamber toric bag-in-the-lens (BIL) intraocular lens (IOL) and propose a misalignment nomogram to calculate the postoperative rotational misalignment or predict the effect of preoperative existing irregular corneal astigmatism. Antwerp University Hospital, Department of Ophthalmology, Antwerp, Belgium. Cohort study. The new IOL calculation formula uses the steepest corneal meridian and flattest corneal meridian separately (regular spherical IOL formula) followed by a customized A-constant approach based on the changes in the IOL principal plane depending on the spherical and cylindrical powers (thickness) of the IOL. The calculation of the remaining astigmatism (power and axis) in cases of postoperative rotational misalignment resulted in a nomogram that can also be used to predict the degree of tolerance for irregular corneal astigmatism correction at the lenticular plane. The calculation is performed using a worksheet. Because 10 degrees of misalignment would result in 35% refractive inaccuracy, it is the maximum acceptable corneal astigmatic irregularity for correction at the lenticular plane. Calculation of spherocylindrical power is specific to each toric IOL. Because the surgeon must fully understand the optical properties of the toric IOL that is going to be implanted, a comprehensive outline of a new calculation method specific to the toric BIL IOL is proposed. Primary rotational misalignment of the toric BIL IOL can be fine tuned postoperatively. Drs. Gobin and Mathysen have no financial or proprietary interest in any material or method mentioned. Additional disclosures are found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2015-01-01
Visual performance following toric intraocular lens implantation for cataract with moderate and severe astigmatism. Cataract services, Shroff Eye Centre, New Delhi, India. Case series. This prospective study included 64 eyes of 40 patients with more than 1.50 dioptre (D) of pre-existing corneal astigmatism undergoing phacoemulsification with implantation of the AcrySof® toric IntraOcular Lens (IOL). The unaided visual acuity (UCVA), best corrected visual acuity (BCVA), residual refractive sphere and refractive cylinders were evaluated. Toric IOL axis and alignment error was measured by slit lamp method and Adobe Photoshop (version 7) method. Patient satisfaction was evaluated using a satisfaction questionnaire at 3 months. The mean residual refractive astigmatism was 0.57 D at the final follow-up of 3 months. Mean alignment error was 3.44 degrees (SD = 2.60) by slit lamp method and 3.88 degrees (SD = 2.86) by Photoshop method. Forty-six (71.9%) eyes showed misalignment of 5 degrees or less, and 60 (93.8%) eyes showed misalignment of 10 degrees or less. The mean log MAR UCVA at 1st post-op day was 0.172 (SD = 0.02), on 7th post-op day was 0.138 (SD = 0.11), and on 30th post-op day was 0.081 (SD = 0.11). The mean log MAR BCVA at three months was -0.04 (SD = 0.76). We believe that implantation of AcrySof® toric IOL is an effective, safe and predictable method to correct high amounts of corneal astigmatism during cataract surgery.
Ferrer-Blasco, Teresa; Domínguez-Vicent, Alberto; García-Lázaro, Santiago; Diez, María Amparo; Alfonso, José F; Esteve-Taboada, José J
2018-06-01
To assess the in vitro optical quality of monofocal aspheric toric intraocular lenses (IOLs) as a function of the cylindrical power. The in vitro optical quality of the AcrySof IQ Toric IOLs SN6AT2, SN6AT3, SN6AT4, SN6AT5 and SN6AT6 (Alcon Laboratories Inc., Forth Worth, TX, USA) was assessed with an instrument conceived for measuring Zernike's coefficients at 3.0- and 5.0-mm apertures. As a reference, the aspheric monofocal lens AcrySof IQ Aspheric SN60WF (Alcon Laboratories Inc., Forth Worth, TX, USA) was also measured. The area of visibility and cut-off frequency were used to describe the modulation transfer function (MTF) of each lens; meanwhile, the light in the bucket and the diameter of a circular area centred on the point-spread function (PSF) peak that captures 50% of the light energy were used to describe the PSF of each lens. Finally, an image simulation was computed from the Zernike values with reference purposes. Small differences were found on the metrics used for describing the MTF and PSF of the lenses at both tested apertures, but these were not statistically significant (p > 0.05). Furthermore, the image simulation showed that these differences would not have clinical relevance at all. The optical performance of the AcrySof IQ toric IOLs in terms of MTF and PSF is good and seems to be independent of the cylindrical power and similar to a non-toric aspheric lens.
[Analyzing and tracking preoperative and intraoperative astigmatism].
Perez, M
2012-03-01
Precise evaluation of preoperative astigmatism is the first step optimizing outcomes. This begins with office-based evaluation of astigmatism; corneal astigmatism is evaluated by keratometry, traditionally by Javal keratometry, but now including topography, whether Placido- or elevation-based, which allows for detailed analysis of even irregular astigmatism, including the corneal periphery, which is invaluable. Aberrometers, essentially "super-auto refractors", allow the incorporation of additional data into the qualitative analysis of astigmatism. The correlation between these multiple preoperative data helps to differentiate between corneal and total astigmatism, to infer the lenticular astigmatism, and to integrate all of these data into the clinical decision-making process. Immediately preoperatively, the 0 and 180° axes are marked; then, with the aid of a special marker, the axis of alignment for the toric IOL is also marked. Once the cataract is removed, the toric IOL is injected and pre-aligned; the viscoelastic is carefully removed, particularly from between the IOL and posterior capsule, with the toric IOL being definitively aligned at this point. These alignment techniques represent a major advance, soon to be indispensible for toric IOL surgery, which will certainly continue to grow in the future. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Bissen-Miyajima, Hiroko; Negishi, Kazuno; Hieda, Osamu; Kinoshita, Shigeru
2015-06-01
To evaluate the efficacy and safety of a new acrylic one-piece toric intraocular lens (IOL). This prospective multicenter clinical trial included 93 eyes of 61 patients that were implanted with a hydrophobic acrylic toric IOL from 2010 to 2012 and followed for 1 year. This IOL uses the platform of a microincision one-piece aspheric IOL, the NY-60 IOL (HOYA, Tokyo, Japan), with three increments in cylindrical power (NHT15, 1.5 diopters [D]; NHT23, 2.25 D; and NHT30, 3.0 D). The inclusion criterion was preoperative corneal astigmatism from 0.75 to 3.00 D. The primary endpoint was uncorrected distance visual acuity (UDVA) of 0.0 logMAR (20/20 Snellen) or better 6 months postoperatively. In addition to UDVA, corrected distance visual acuity (CDVA), residual astigmatism, stability of the IOL alignment, need of realignment, and the rate of Nd:YAG laser capsulotomy were evaluated up to 1 year postoperatively. Errors in astigmatic correction were assessed using Alpin's vector analysis. The primary endpoint was achieved in 54.8% of eyes. One year postoperatively, the logMAR UDVAs were 0.02 ± 0.13, 0.05 ± 0.17, and 0.09 ± 0.14 with models NHT15, NHT23, and NHT30, which corresponds to 0.96 (19/20 Snellen), 0.89 (18/20 Snellen), and 0.82 (16/20 Snellen), respectively. One year postoperatively, the residual astigmatism was 0.66 ± 0.58 D. In each evaluation, the mean absolute change in the position of the axis mark was between 1.93° and 2.32°. Three eyes required repositioning of the IOL axis and 2 eyes received Nd:YAG laser capsulotomy. The correction error showed an undercorrection with against-the-rule astigmatism and overcorrection with with-the-rule astigmatism. The new one-piece toric IOL provided desirable clinical outcomes and stability in eyes with corneal astigmatism. Copyright 2015, SLACK Incorporated.
Enhanced gauge symmetry in type II and F-theory compactifications: Dynkin diagrams from polyhedra
NASA Astrophysics Data System (ADS)
Perevalov, Eugene; Skarke, Harald
1997-02-01
We explain the observation by Candelas and Font that the Dynkin diagrams of non-abelian gauge groups occurring in type IIA and F-theory can be read off from the polyhedron Δ ∗ that provides the toric description of the Calabi-Yau manifold used for compactification. We show how the intersection pattern of toric divisors corresponding to the degeneration of elliptic fibers follows the ADE classification of singularities and the Kodaira classification of degenerations. We treat in detail the cases of elliptic K3 surfaces and K3 fibered threefolds where the fiber is again elliptic. We also explain how even the occurrence of monodromy and non-simply laced groups in the latter case is visible in the toric picture. These methods also work in the fourfold case.
Toric Calabi-Yau threefolds as quantum integrable systems. R-matrix and RTT relations
NASA Astrophysics Data System (ADS)
Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor
2016-10-01
R-matrix is explicitly constructed for simplest representations of the Ding-Iohara-Miki algebra. Calculation is straightforward and significantly simpler than the one through the universal R-matrix used for a similar calculation in the Yangian case by A. Smirnov but less general. We investigate the interplay between the R-matrix structure and the structure of DIM algebra intertwiners, i.e. of refined topological vertices and show that the R-matrix is diagonalized by the action of the spectral duality belonging to the SL(2, ℤ) group of DIM algebra automorphisms. We also construct the T-operators satisfying the RTT relations with the R-matrix from refined amplitudes on resolved conifold. We thus show that topological string theories on the toric Calabi-Yau threefolds can be naturally interpreted as lattice integrable models. Integrals of motion for these systems are related to q-deformation of the reflection matrices of the Liouville/Toda theories.
Implantation of a customized toric intraocular lens for correction of post-keratoplasty astigmatism
Srinivasan, S; Ting, D S J; Lyall, D A M
2013-01-01
Purpose To report visual and refractive outcomes, and endothelial cell loss following primary and secondary ‘piggyback' toric intraocular lens (IOL) implantation in patients with high post-penetrating keratoplasty (PK) astigmatism. Methods Prospective case series. Nine eyes of nine patients with post-PK astigmatism were consecutively recruited for implantation of a customized toric IOL. Six underwent simultaneous phacoemulsification (PE) and three pseudophakic eyes had a secondary ‘piggyback' toric IOL implanted in the ciliary sulcus. Mean follow-up time was 17.2±7.7 months. Pre- and post-operative uncorrected (UDVA) and best-corrected (BDVA) distance visual acuities and refractive errors were collected for comparison. Cartesian astigmatic vectors were calculated to identify a change in the magnitude of astigmatism pre- compared to postoperatively. Pre- and post-operative endothelial cell counts were also collected for analysis. Results UDVA (logMAR) improved from 1.13±0.51 preoperatively to 0.48±0.24 postoperatively (P-value=0.003). There was no significant change in BDVA (P-value=0.905) from 0.31±0.27 to 0.26±0.19. Corneal astigmatism preoperatively was 6.57±4.40 diopters (D). Post-operative refractive cylinder was 0.83±1.09 D compared to 3.89±4.01 D preoperatively (P=0.039). Analysis of astigmatic Cartesian x and y coordinates found a significant reduction postoperatively compared to preoperatively (P=0.005 and P=0.002), respectively. Mean endothelial cell loss was 9.9%. Conclusion: Implantation of a customized primary or secondary ‘piggyback' toric IOL serves as an effective modality in treating patients with high post-PK astigmatism. PMID:23348728
Eom, Youngsub; Ryu, Dongok; Kim, Dae Wook; Yang, Seul Ki; Song, Jong Suk; Kim, Sug-Whan; Kim, Hyo Myung
2016-10-01
To evaluate the toric intraocular lens (IOL) calculation considering posterior corneal astigmatism, incision-induced posterior corneal astigmatism, and effective lens position (ELP). Two thousand samples of corneal parameters with keratometric astigmatism ≥ 1.0 D were obtained using bootstrap methods. The probability distributions for incision-induced keratometric and posterior corneal astigmatisms, as well as ELP were estimated from the literature review. The predicted residual astigmatism error using method D with an IOL add power calculator (IAPC) was compared with those derived using methods A, B, and C through Monte-Carlo simulation. Method A considered the keratometric astigmatism and incision-induced keratometric astigmatism, method B considered posterior corneal astigmatism in addition to the A method, method C considered incision-induced posterior corneal astigmatism in addition to the B method, and method D considered ELP in addition to the C method. To verify the IAPC used in this study, the predicted toric IOL cylinder power and its axis using the IAPC were compared with ray-tracing simulation results. The median magnitude of the predicted residual astigmatism error using method D (0.25 diopters [D]) was smaller than that derived using methods A (0.42 D), B (0.38 D), and C (0.28 D) respectively. Linear regression analysis indicated that the predicted toric IOL cylinder power and its axis had excellent goodness-of-fit between the IAPC and ray-tracing simulation. The IAPC is a simple but accurate method for predicting the toric IOL cylinder power and its axis considering posterior corneal astigmatism, incision-induced posterior corneal astigmatism, and ELP.
Lyu, Byul; Hwang, Kyu Yeon; Kim, Sun Young; Kim, Su Young; Na, Kyung Sun
2016-12-01
The purpose of this multi-institute, single-group clinical trial was to evaluate the effectiveness and safety of toric orthokeratology lenses for the treatment of patients with combined myopia and astigmatism. A total of 44 patients were included in this clinical trial. The patients ranged in age from 7 to 49 years, with myopia of -0.75 to -6.0 diopters (D) and astigmatism of 1.25 to 4.0 D. After excluding 21 subjects, 23 subjects (39 eyes) were analyzed after toric orthokeratology lens use. The subjects underwent ophthalmologic examination after 1 day and 1, 2, 3, and 4 weeks of wearing overnight toric orthokeratology lenses. A total of 19 subjects (31 eyes) completed the trial after five subjects (eight eyes) dropped out. In the patients who completed the study by wearing lenses for 4 weeks, the myopic refractive error decreased significantly by 2.60 ± 2.21 D ( p < 0.001), from -3.65 ± 1.62 to -1.05 ± 1.64 D. The astigmatic refractive error were also significantly decreased by 0.63 ± 0.98 D ( p = 0.001), from 2.07 ± 0.83 to 1.44 ± 0.99 D. The mean uncorrected and corrected visual acuities before wearing the lenses were 2.14 ± 0.80 logarithm of the logMAR (logMAR) and 0.05 ± 0.13 logMAR, respectively, which changed to 0.12 ± 0.30 logarithm of the logMAR ( p < 0.001) and 0.01 ± 0.04 logMAR ( p = 0.156) after 4 weeks. No serious adverse reactions were reported during the clinical trial. Our results suggest that toric orthokeratology is an effective and safe treatment for correcting visual acuity in patients with combined myopia and astigmatism.
Farooqui, Javed Hussain; Sharma, Mansi; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2017-01-01
The aim of this study is to compare two different methods of analysis of preoperative reference marking for toric intraocular lens (IOL) after marking with an electronic marker. Cataract and IOL Implantation Service, Shroff Eye Centre, New Delhi, India. Fifty-two eyes of thirty patients planned for toric IOL implantation were included in the study. All patients had preoperative marking performed with an electronic preoperative two-step toric IOL reference marker (ASICO AE-2929). Reference marks were placed at 3-and 9-o'clock positions. Marks were analyzed with two systems. First, slit-lamp photographs taken and analyzed using Adobe Photoshop (version 7.0). Second, Tracey iTrace Visual Function Analyzer (version 5.1.1) was used for capturing corneal topograph examination and position of marks noted. Amount of alignment error was calculated. Mean absolute rotation error was 2.38 ± 1.78° by Photoshop and 2.87 ± 2.03° by iTrace which was not statistically significant ( P = 0.215). Nearly 72.7% of eyes by Photoshop and 61.4% by iTrace had rotation error ≤3° ( P = 0.359); and 90.9% of eyes by Photoshop and 81.8% by iTrace had rotation error ≤5° ( P = 0.344). No significant difference in absolute amount of rotation between eyes when analyzed by either method. Difference in reference mark positions when analyzed by two systems suggests the presence of varying cyclotorsion at different points of time. Both analysis methods showed an approximately 3° of alignment error, which could contribute to 10% loss of astigmatic correction of toric IOL. This can be further compounded by intra-operative marking errors and final placement of IOL in the bag.
Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2015-01-01
Purpose Visual performance following toric intraocular lens implantation for cataract with moderate and severe astigmatism. Setting Cataract services, Shroff Eye Centre, New Delhi, India. Design Case series. Method This prospective study included 64 eyes of 40 patients with more than 1.50 dioptre (D) of pre-existing corneal astigmatism undergoing phacoemulsification with implantation of the AcrySof® toric IntraOcular Lens (IOL). The unaided visual acuity (UCVA), best corrected visual acuity (BCVA), residual refractive sphere and refractive cylinders were evaluated. Toric IOL axis and alignment error was measured by slit lamp method and Adobe Photoshop (version 7) method. Patient satisfaction was evaluated using a satisfaction questionnaire at 3 months. Results The mean residual refractive astigmatism was 0.57 D at the final follow-up of 3 months. Mean alignment error was 3.44 degrees (SD = 2.60) by slit lamp method and 3.88 degrees (SD = 2.86) by Photoshop method. Forty-six (71.9%) eyes showed misalignment of 5 degrees or less, and 60 (93.8%) eyes showed misalignment of 10 degrees or less. The mean log MAR UCVA at 1st post-op day was 0.172 (SD = 0.02), on 7th post-op day was 0.138 (SD = 0.11), and on 30th post-op day was 0.081 (SD = 0.11). The mean log MAR BCVA at three months was −0.04 (SD = 0.76). Conclusion We believe that implantation of AcrySof® toric IOL is an effective, safe and predictable method to correct high amounts of corneal astigmatism during cataract surgery. PMID:26586976
Ladi, Jeevan S; Shah, Nitant A
2016-01-01
We report the first case of toric multifocal intraocular lens (IOL) implantation in both the eyes of a young patient of Alport syndrome with anterior and posterior lenticonus with a successful outcome. An 18-year-old female patient presented with progressively blurred vision in both eyes since 4–5 years not improving with glasses. Refraction showed high myopia with astigmatism; however, the vision did not improve beyond 6/60 with glasses correction. Clinical examination on slit lamp showed anterior and posterior lenticonus bilaterally with a classical oil droplet appearance. We performed clear lens extraction by phacoemulsification with toric multifocal IOL implantation in both eyes. Postoperatively, the patient achieved an excellent refractive outcome with the unaided vision of 6/9, N6 in both eyes. PMID:27958211
Discrete symmetries in Heterotic/F-theory duality and mirror symmetry
Cvetič, Mirjam; Grassi, Antonella; Poretschkin, Maximilian
2017-06-30
We study aspects of Heterotic/F-theory duality for compacti cations with Abelian discrete gauge symmetries. We consider F-theory compacti cations on genus-one bered Calabi-Yau manifolds with n-sections, associated with the Tate-Shafarevich group Z n. Such models are obtained by studying rst a speci c toric set-up whose associated Heterotic vector bundle has structure group Z n. By employing a conjectured Heterotic/Ftheory mirror symmetry we construct dual geometries of these original toric models, where in the stable degeneration limit we obtain a discrete gauge symmetry of order two and three, for compacti cations to six dimensions. We provide explicit constructions of mirrorpairsmore » for symmetric examples with Z 2 and Z 3, in six dimensions. The Heterotic models with symmetric discrete symmetries are related in eld theory to a Higgsing of Heterotic models with two symmetric abelian U(1) gauge factors, where due to the Stuckelberg mechanism only a diagonal U(1) factor remains massless, and thus after Higgsing only a diagonal discrete symmetry of order n is present in the Heterotic models and detected via Heterotic/F-theory duality. These constructions also provide further evidence for the conjectured mirror symmetry in Heterotic/F-theory at the level of brations with torsional sections and those with multi-sections.« less
Discrete symmetries in Heterotic/F-theory duality and mirror symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cvetič, Mirjam; Grassi, Antonella; Poretschkin, Maximilian
We study aspects of Heterotic/F-theory duality for compacti cations with Abelian discrete gauge symmetries. We consider F-theory compacti cations on genus-one bered Calabi-Yau manifolds with n-sections, associated with the Tate-Shafarevich group Z n. Such models are obtained by studying rst a speci c toric set-up whose associated Heterotic vector bundle has structure group Z n. By employing a conjectured Heterotic/Ftheory mirror symmetry we construct dual geometries of these original toric models, where in the stable degeneration limit we obtain a discrete gauge symmetry of order two and three, for compacti cations to six dimensions. We provide explicit constructions of mirrorpairsmore » for symmetric examples with Z 2 and Z 3, in six dimensions. The Heterotic models with symmetric discrete symmetries are related in eld theory to a Higgsing of Heterotic models with two symmetric abelian U(1) gauge factors, where due to the Stuckelberg mechanism only a diagonal U(1) factor remains massless, and thus after Higgsing only a diagonal discrete symmetry of order n is present in the Heterotic models and detected via Heterotic/F-theory duality. These constructions also provide further evidence for the conjectured mirror symmetry in Heterotic/F-theory at the level of brations with torsional sections and those with multi-sections.« less
Majorana spin liquids, topology, and superconductivity in ladders
NASA Astrophysics Data System (ADS)
Le Hur, Karyn; Soret, Ariane; Yang, Fan
2017-11-01
We theoretically address spin chain analogs of the Kitaev quantum spin model on the honeycomb lattice. The emergent quantum spin-liquid phases or Anderson resonating valence-bond (RVB) states can be understood, as an effective model, in terms of p -wave superconductivity and Majorana fermions. We derive a generalized phase diagram for the two-leg ladder system with tunable interaction strengths between chains allowing us to vary the shape of the lattice (from square to honeycomb ribbon or brickwall ladder). We evaluate the winding number associated with possible emergent (topological) gapless modes at the edges. In the Az phase, as a result of the emergent Z2 gauge fields and π -flux ground state, one may build spin-1/2 (loop) qubit operators by analogy to the toric code. In addition, we show how the intermediate gapless B phase evolves in the generalized ladder model. For the brick-wall ladder, the B phase is reduced to one line, which is analyzed through perturbation theory in a rung tensor product states representation and bosonization. Finally, we show that doping with a few holes can result in the formation of hole pairs and leads to a mapping with the Su-Schrieffer-Heeger model in polyacetylene; a superconducting-insulating quantum phase transition for these hole pairs is accessible, as well as related topological properties.
Refractive astigmatism and the toricity of ocular components in human infants.
Mutti, Donald O; Mitchell, G Lynn; Jones, Lisa A; Friedman, Nina E; Frane, Sara L; Lin, Wendy K; Moeschberger, Melvin L; Zadnik, Karla
2004-10-01
Many studies have characterized astigmatism in infancy, but few have been longitudinal or contained ocular component data. This study characterized the frequency, orientation, and longitudinal change with age of infant astigmatism. Additional factors investigated were the influence of early astigmatism on emmetropization and its relation to corneal and lenticular toricity. Three hundred two infants were enrolled in the study. Of these, 298 provided data for at least one visit at 3 +/- 1 months, 9 +/- 1 months, 18 +/- 2 months, and 36 +/- 3 months. Testing included cycloplegic retinoscopy (cyclopentolate 1%), video-based keratophakometry, and ultrasonography over the closed eyelid. Astigmatism > or =1.00 DC was common at 3 months of age (41.6%) but decreased in prevalence to 4.1% by 36 months (p < 0.0001). The most common orientation was with-the-rule at 3 months (37.0% compared with 2.7% for against-the-rule) but against-the-rule at 36 months (3.2% compared with 0.9% for with-the-rule). Most of the change in the average value of the horizontal/vertical component of astigmatism (J0) occurred between 3 and 9 months (-0.26 +/- 0.36 D; p < 0.0001) with no significant change between 9 and 36 months (-0.05 +/- 0.36 D; p=0.09). Spherical equivalent refractive error was not correlated with J0 at 3 and 9 months (R=0.002, p=0.48 and R=0.001, p=0.56, respectively). The two were only weakly correlated at 18 and 36 months (R=0.06 for each age, p <0.0001, p=0.0002, respectively). Changes in spherical equivalent between 3 and 9 months were unrelated to either the initial value of J0 (partial R for J0=0.0001; p=0.85) or the change in J0 (partial R for change in J0=0.0031; p=0.31). Across all the ages, corneal toricity was with-the-rule, and lenticular toricity was against-the-rule (produced by the toricity of the posterior lens surface). The cornea and anterior lens surface became more spherical with age, contributing to the shift away from with-the-rule refractive astigmatism. Toricity of all the refractive surfaces became less variable with age. Consistent with many reports, astigmatism was common in early infancy but decreased in prevalence with age, particularly when with-the-rule in orientation. The reduction in percentage of infants with astigmatism appeared to be caused by decreases in the toricity of the cornea and the anterior lens combined with decreases in the variability of corneal and lenticular surfaces. Astigmatism in infancy appeared to be unrelated to emmetropization of spherical equivalent refractive error.
Toric Networks, Geometric R-Matrices and Generalized Discrete Toda Lattices
NASA Astrophysics Data System (ADS)
Inoue, Rei; Lam, Thomas; Pylyavskyy, Pavlo
2016-11-01
We use the combinatorics of toric networks and the double affine geometric R-matrix to define a three-parameter family of generalizations of the discrete Toda lattice. We construct the integrals of motion and a spectral map for this system. The family of commuting time evolutions arising from the action of the R-matrix is explicitly linearized on the Jacobian of the spectral curve. The solution to the initial value problem is constructed using Riemann theta functions.
Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2016-01-01
To compare the accuracy of two different methods of preoperative marking for toric intraocular lens (IOL) implantation, bubble marker versus pendulum marker, as a means of establishing the reference point for the final alignment of the toric IOL to achieve an outcome as close as possible to emmetropia. Toric IOLs were implanted in 180 eyes of 110 patients. One group (55 patients) had preoperative marking of both eyes done with bubble marker (ASICO AE-2791TBL) and the other group (55 patients) with pendulum marker (Rumex(®)3-193). Reference marks were placed at 3-, 6-, and 9-o'clock positions on the limbus. Slit-lamp photographs were analyzed using Adobe Photoshop (version 7.0). Amount of alignment error (in degrees) induced in each group was measured. Mean absolute rotation error in the preoperative marking in the horizontal axis was 2.42±1.71 in the bubble marker group and 2.83±2.31in the pendulum marker group (P=0.501). Sixty percent of the pendulum group and 70% of the bubble group had rotation error ≤3 (P=0.589), and 90% eyes of the pendulum group and 96.7% of the bubble group had rotation error ≤5 (P=0.612). Both preoperative marking techniques result in approximately 3 of alignment error. Both marking techniques are simple, predictable, reproducible and easy to perform.
From core to coax: extending core RF modelling to include SOL, Antenna, and PFC
NASA Astrophysics Data System (ADS)
Shiraiwa, Syun'ichi
2017-10-01
A new technique for the calculation of RF waves in toroidal geometry enables the simultaneous incorporation of antenna geometry, plasma facing components (PFCs), the scrape off-layer (SOL), and core propagation. Traditionally, core RF wave propagation and antenna coupling has been calculated separately both using rather simplified SOL plasmas. The new approach, instead, allows capturing wave propagation in the SOL and its interactions with non-conforming PFCs permitting self-consistent calculation of core absorption and edge power loss, as well as investigating far and near field impurity generation from RF sheaths and a breakdown issue from antenna electric fields. Our approach combines the field solutions obtained from a core spectral code with a hot plasma dielectric and an edge FEM code using a cold plasma approximation via surface admittance-like matrix. Our approach was verified using the TORIC core ICRF spectral code and the commercial COMSOL FEM package, and was extended to 3D torus using open-source scalable MFEM library. The simulation result revealed that as the core wave damping gets weaker, the wave absorption in edge could become non-negligible. Three dimensional capabilities with non axisymmetric edge are being applied to study the antenna characteristic difference between the field aligned and toroidally aligned antennas on Alcator C-Mod, as well as the surface wave excitation on NSTX-U. Work supported by the U.S. DoE, OFES, using User Facility Alcator C-Mod, DE-FC02-99ER54512 and Contract No. DE-FC02-01ER54648.
Lyu, Byul; Hwang, Kyu Yeon; Kim, Sun Young; Kim, Su Young
2016-01-01
Purpose The purpose of this multi-institute, single-group clinical trial was to evaluate the effectiveness and safety of toric orthokeratology lenses for the treatment of patients with combined myopia and astigmatism. Methods A total of 44 patients were included in this clinical trial. The patients ranged in age from 7 to 49 years, with myopia of -0.75 to -6.0 diopters (D) and astigmatism of 1.25 to 4.0 D. After excluding 21 subjects, 23 subjects (39 eyes) were analyzed after toric orthokeratology lens use. The subjects underwent ophthalmologic examination after 1 day and 1, 2, 3, and 4 weeks of wearing overnight toric orthokeratology lenses. Results A total of 19 subjects (31 eyes) completed the trial after five subjects (eight eyes) dropped out. In the patients who completed the study by wearing lenses for 4 weeks, the myopic refractive error decreased significantly by 2.60 ± 2.21 D (p < 0.001), from -3.65 ± 1.62 to -1.05 ± 1.64 D. The astigmatic refractive error were also significantly decreased by 0.63 ± 0.98 D (p = 0.001), from 2.07 ± 0.83 to 1.44 ± 0.99 D. The mean uncorrected and corrected visual acuities before wearing the lenses were 2.14 ± 0.80 logarithm of the logMAR (logMAR) and 0.05 ± 0.13 logMAR, respectively, which changed to 0.12 ± 0.30 logarithm of the logMAR (p < 0.001) and 0.01 ± 0.04 logMAR (p = 0.156) after 4 weeks. No serious adverse reactions were reported during the clinical trial. Conclusions Our results suggest that toric orthokeratology is an effective and safe treatment for correcting visual acuity in patients with combined myopia and astigmatism. PMID:27980362
Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery.
Webers, Valentijn S C; Bauer, Noel J C; Visser, Nienke; Berendschot, Tos T J M; van den Biggelaar, Frank J H M; Nuijts, Rudy M M A
2017-06-01
To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. University Eye Clinic Maastricht, Maastricht, the Netherlands. Prospective randomized clinical trial. Eyes with regular corneal astigmatism of at least 1.25 diopters (D) that required cataract surgery and toric IOL implantation (Acrysof SN6AT3-T9) were randomly assigned to the image-guided group or the manual-marking group. The primary outcome was the alignment of the toric IOL based on preoperative images and images taken immediately after surgery. Secondary outcome measures were residual astigmatism, uncorrected distance visual acuity (UDVA), and complications. The study enrolled 36 eyes (24 patients). The mean toric IOL misalignment was significantly less in the image-guided group than in the manual group 1 hour (1.3 degrees ± 1.6 [SD] versus 2.8 ± 1.8 degrees; P = .02) and 3 months (1.7 ± 1.5 degrees versus 3.1 ± 2.1 degrees; P < .05) postoperatively. The mean residual refractive cylinder was -0.36 ± 0.32 D and -0.47 ± 0.28 D in the image-guided group and manual group, respectively (P > .05). The mean UDVA was 0.03 ± 0.10 logarithm of minimum angle of resolution (logMAR) and 0.04 ± 0.09 logMAR, respectively (both P > .05). No intraoperative complications occurred during any surgery. The IOL misalignment was significantly less with digital marking than with manual marking; this did not result in a better UDVA or lower residual refractive astigmatism. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Farooqui, Javed Hussain; Sharma, Mansi; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2017-01-01
PURPOSE: The aim of this study is to compare two different methods of analysis of preoperative reference marking for toric intraocular lens (IOL) after marking with an electronic marker. SETTING/VENUE: Cataract and IOL Implantation Service, Shroff Eye Centre, New Delhi, India. PATIENTS AND METHODS: Fifty-two eyes of thirty patients planned for toric IOL implantation were included in the study. All patients had preoperative marking performed with an electronic preoperative two-step toric IOL reference marker (ASICO AE-2929). Reference marks were placed at 3-and 9-o'clock positions. Marks were analyzed with two systems. First, slit-lamp photographs taken and analyzed using Adobe Photoshop (version 7.0). Second, Tracey iTrace Visual Function Analyzer (version 5.1.1) was used for capturing corneal topograph examination and position of marks noted. Amount of alignment error was calculated. RESULTS: Mean absolute rotation error was 2.38 ± 1.78° by Photoshop and 2.87 ± 2.03° by iTrace which was not statistically significant (P = 0.215). Nearly 72.7% of eyes by Photoshop and 61.4% by iTrace had rotation error ≤3° (P = 0.359); and 90.9% of eyes by Photoshop and 81.8% by iTrace had rotation error ≤5° (P = 0.344). No significant difference in absolute amount of rotation between eyes when analyzed by either method. CONCLUSIONS: Difference in reference mark positions when analyzed by two systems suggests the presence of varying cyclotorsion at different points of time. Both analysis methods showed an approximately 3° of alignment error, which could contribute to 10% loss of astigmatic correction of toric IOL. This can be further compounded by intra-operative marking errors and final placement of IOL in the bag. PMID:28757694
Woodcock, Michael G; Lehmann, Robert; Cionni, Robert J; Breen, Michael; Scott, Maria C
2016-06-01
To compare astigmatic outcomes in patients with bilateral cataracts having toric intraocular lens (IOL) implantation with intraoperative aberrometry measurements in 1 eye and standard power calculation and a toric IOL calculator with inked axis marking in the contralateral eye. Twelve sites in the United States. Prospective cohort study. The eye with the more visually significant cataract was randomized to intraoperative aberrometry measurements (Ocular Response Analyzer with Verifeye) or standard preoperative biometry and use of a toric calculator with the contralateral eye automatically assigned to the other group. The primary effectiveness outcome was the proportion of eyes with a postoperative refractive astigmatism of 0.50 diopter (D) or less at 1 month. Of the 130 patients (260 eyes) enrolled, 124 (248 eyes) were randomized; 121 (242 eyes) completed the trial. The percentage of eyes with astigmatism of 0.50 D or less at 1 month was higher in the intraoperative aberrometry group than in the standard group (89.2% versus 76.6%) (P = .006). The mean postoperative refractive astigmatism was lower in the intraoperative aberrometry group (0.29 D ± 0.28 [SD] versus 0.36 ± 0.35 D) (P = .041). Secondary effectiveness endpoints, including manifest refraction spherical equivalent prediction error, uncorrected distance visual acuity, and corrected distance visual acuity, were similar. Compared with standard methods, the use of the intraoperative aberrometry system increased the proportion of eyes with postoperative refractive astigmatism of 0.50 D or less and reduced the mean postoperative refractive astigmatism at 1 month. Other efficacy outcomes were similar. Drs. Woodcock, Lehmann, and Cionni are consultants to Alcon Laboratories, Inc. Dr. Breen is an employee of Alcon Laboratories, Inc. Dr. Scott has no financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Infinite family of three-dimensional Floquet topological paramagnets
NASA Astrophysics Data System (ADS)
Potter, Andrew C.; Vishwanath, Ashvin; Fidkowski, Lukasz
2018-06-01
We uncover an infinite family of time-reversal symmetric 3 d interacting topological insulators of bosons or spins, in time-periodically driven systems, which we term Floquet topological paramagnets (FTPMs). These FTPM phases exhibit intrinsically dynamical properties that could not occur in thermal equilibrium and are governed by an infinite set of Z2-valued topological invariants, one for each prime number. The topological invariants are physically characterized by surface magnetic domain walls that act as unidirectional quantum channels, transferring quantized packets of information during each driving period. We construct exactly solvable models realizing each of these phases, and discuss the anomalous dynamics of their topologically protected surface states. Unlike previous encountered examples of Floquet SPT phases, these 3 d FTPMs are not captured by group cohomology methods and cannot be obtained from equilibrium classifications simply by treating the discrete time translation as an ordinary symmetry. The simplest such FTPM phase can feature anomalous Z2 (toric code) surface topological order, in which the gauge electric and magnetic excitations are exchanged in each Floquet period, which cannot occur in a pure 2 d system without breaking time reversal symmetry.
Birationality and Landau-Ginzburg Models
NASA Astrophysics Data System (ADS)
Clarke, Patrick
2017-08-01
We introduce a new technique for approaching birationality questions that arise in the mirror symmetry of complete intersections in toric varieties. As an application we answer affirmatively and conclusively the question of Batyrev-Nill (Integer points in polyhedra—geometry, number theory, representation theory, algebra, optimization, statistics, volume 452 of Contemporary mathematics. American Mathematical Society, Providence, pp 35-66,
Hidden symmetries in Sasaki-Einstein geometries
NASA Astrophysics Data System (ADS)
Slesar, V.; Visinescu, M.; Vîlcu, G. E.
2017-07-01
We describe a method for constructing Killing-Yano tensors on Sasaki spaces using their geometrical properties, without the need of solving intricate generalized Killing equations. We obtain the Killing-Yano tensors on toric Sasaki-Einstein spaces using the fact that the metric cones of these spaces are Calabi-Yau manifolds which in turn are described in terms of toric data. We extend the search of Killing-Yano tensors on mixed 3-Sasakian manifolds. We illustrate the method by explicit construction of Killing forms on some spaces of current interest.
Giers, Bert C; Khoramnia, Ramin; Weber, Lea F; Tandogan, Tamer; Auffarth, Gerd U
2016-03-01
We present the case of a 56-year-old woman with moderate myopia and bilateral cataract who had cataract extraction and intraocular lens (IOL) implantation. Due to the patient's desire for spectacle independence, a trifocal IOL with toric correction for astigmatism was implanted. During the follow-up, it became obvious that the implanted IOL had rotated and tilted due to insufficient fixation in the large capsular bag of the myopic eye. An IOL explantation was therefore performed, and the original IOL was exchanged for a bifocal toric IOL with a larger overall diameter. Stable fixation of the IOL in the capsular bag was achieved, and after surgery in the second eye, the patient recovered good bilateral vision. This case illustrates the need for careful selection of IOL diameter and sizing even in patients with moderate myopia due to the potentially larger ocular dimensions in these patients. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Hassenstein, A; Niemeck, F; Giannakakis, K; Klemm, M
2017-06-01
Perforating keratoplasty shows good morphological results with a clear cornea; however, a limiting factor is often the resulting astigmatism, which cannot be corrected with either glasses or contact lenses (CL) in up to 20% of the patients. We retrospectively investigated 15 patients after pseudophakic perforating keratoplasty, who received implantation of toric add-on intraocular lenses (IOL) to correct astigmatism. The mean preoperative astigmatism of 6.5 diopter (dpt) could be reduced to a mean postoperative value of 1.0 dpt. The mean visual acuity could be improved from a preoperative value of sc <0.05 (cc 0.6) to a postoperative value of sc 0.4 (cc 0.63). There were no complications except for one case of a lens extension tear. Based on our good experiences we now provide toric add-on IOL to all patients with pseudophakic perforating keratoplasty when this cannot be corrected or only insufficiently corrected by conservative methods.
Farooqui, Javed Hussain; Koul, Archana; Dutta, Ranjan; Shroff, Noshir Minoo
2016-01-01
AIM To compare the accuracy of two different methods of preoperative marking for toric intraocular lens (IOL) implantation, bubble marker versus pendulum marker, as a means of establishing the reference point for the final alignment of the toric IOL to achieve an outcome as close as possible to emmetropia. METHODS Toric IOLs were implanted in 180 eyes of 110 patients. One group (55 patients) had preoperative marking of both eyes done with bubble marker (ASICO AE-2791TBL) and the other group (55 patients) with pendulum marker (Rumex®3-193). Reference marks were placed at 3-, 6-, and 9-o'clock positions on the limbus. Slit-lamp photographs were analyzed using Adobe Photoshop (version 7.0). Amount of alignment error (in degrees) induced in each group was measured. RESULTS Mean absolute rotation error in the preoperative marking in the horizontal axis was 2.42±1.71 in the bubble marker group and 2.83±2.31in the pendulum marker group (P=0.501). Sixty percent of the pendulum group and 70% of the bubble group had rotation error ≤3 (P=0.589), and 90% eyes of the pendulum group and 96.7% of the bubble group had rotation error ≤5 (P=0.612). CONCLUSION Both preoperative marking techniques result in approximately 3 of alignment error. Both marking techniques are simple, predictable, reproducible and easy to perform. PMID:27275425
Venkataraman, Arvind
2013-11-01
To assess the visual outcome and rotational stability of single-piece open loop toric Intra Ocular Lens (IOL) in a clinical setting. In a prospective study, 122 eyes of 77 patients were followed up for a period of 12 months after cataract surgery with toric open loop IOL implantation. The pre-operative markings for the position of incision and IOL placement were done under slit lamp by anterior stromal puncture. The visual acuity, refraction, and IOL position were assessed at day 1, 1 week, 1 month, 3 months, 6 months, and 12 months after surgery. The mean age of the cohort was 56 yrs (S.D. 13.88; range 16 to 87 years). The mean pre-operative cylinder of corneal astigmatism was 1.37 D. (SD 0.79, range 1.0 to 5.87 D). Mean post-operative refractive cylinder was 0.36 D (SD 0.57, range 0 to 1.50 D) at 12 months. Ninety-seven percent of the eyes were within 1 D of residual astigmatism. Ninety-four percent of patients had uncorrected visual acuity of 20/30 or better. Four eyes required IOL repositioning due to rotation. At 12 months, 96.7% of the IOLs were within 10 degrees of the target axis. There was no rotation seen after 6 months. Toric IOLs are very effective and consistent in correcting astigmatism during the cataract surgery. IOL rotation happens mostly within a month of surgery, and if significant, requires early repositioning.
BPS States, Crystals, and Matrices
Sułkowski, Piotr
2011-01-01
We review free fermion, melting crystal, and matrix model representations of wall-crossing phenomena on local, toric Calabi-Yau manifolds. We consider both unrefined and refined BPS counting of closed BPS states involving D2- and D0-branes bound to a D6-brane, as well as open BPS states involving open D2-branes ending on an additional D4-brane. Appropriate limit of these constructions provides, among the others, matrix model representation of refined and unrefined topological string amplitudes.
Global D-brane models with stabilised moduli and light axions
NASA Astrophysics Data System (ADS)
Cicoli, Michele
2014-03-01
We review recent attempts to try to combine global issues of string compactifications, like moduli stabilisation, with local issues, like semi-realistic D-brane constructions. We list the main problems encountered, and outline a possible solution which allows globally consistent embeddings of chiral models. We also argue that this stabilisation mechanism leads to an axiverse. We finally illustrate our general claims in a concrete example where the Calabi-Yau manifold is explicitly described by toric geometry.
Calabi-Yau Volumes and Reflexive Polytopes
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Seong, Rak-Kyeong; Yau, Shing-Tung
2018-04-01
We study various geometrical quantities for Calabi-Yau varieties realized as cones over Gorenstein Fano varieties, obtained as toric varieties from reflexive polytopes in various dimensions. Focus is made on reflexive polytopes up to dimension 4 and the minimized volumes of the Sasaki-Einstein base of the corresponding Calabi-Yau cone are calculated. By doing so, we conjecture new bounds for the Sasaki-Einstein volume with respect to various topological quantities of the corresponding toric varieties. We give interpretations about these volume bounds in the context of associated field theories via the AdS/CFT correspondence.
Users Manual for the Dynamic Student Flow Model.
1981-07-31
populations within each pipeline are reasonably homogeneous and the pipeline curriculum provides a structured path along which the student must progress...curriculum is structured, student populations are non-homogeneous. They are drawn from diverse sources such as the Naval Aca- demy, NROTC and the Aviation...Officer Candidate program in numbers subjectively determined to provide the best population for subsequent flight training. His- torically, different
Linz, K; Auffarth, G U; Kretz, F T A
2014-08-01
Residual refractive errors, especially high-grade astigmatism after penetrating keratoplasty, often lead to a significant loss of vision. If high anismetropia could not be corrected with glasses or contact lenses, different kinds of surgical procedures are available for visual rehabilitation (intraocular lens exchange, astigmatic keratotomy, Excimer laser treatment, intrastromal corneal ring segment implantation and additive intraocular lens implantation). Toric add-on IOLs are especially designed for sulcus implantation and correcting high astigmatism in pseudophakic eyes. All toric IOLs are individually manufactured according to subjective refraction and biometry. Depending on the underlying manufacturer high-grade astigmatism can be corrected with a cylindrical power up to + 30.0 D. A 74-year-old patient presented with endothelial decompensation and an uncorrected distance visual acuity (UDVA) of 1.0 logMAR for penetrating keratoplasty on the right eye due to a Fuchs endothelial dystrophy. Postoperatively, the uncorrected distance visual acuity improved to 0.8 logMAR, with pinhole correction to 0.5 logMAR. After removing the sutures a high and irregular corneal astigmatism of 21.0 D was found. The corrected distance visual acuity (CDVA) with a refraction of + 5.5 D sph, - 21.0 D cyl 90° was 0.24 logMAR. Therefore an individually manufactured toric additive intraocular lens of + 25.0 D cylindrical and - 18.0 D spherical power for sulcus implantation was chosen and implanted uneventfully. Eight months after surgery refractive astigmatism was reduced significantly to - 0.75 D with an UDVA of 0.08 logMAR and a CDVA of 0.02 logMAR. During the 8-months follow-up period the additive IOL remained centered and no IOL rotation could be observed. Toric add-on IOLs are a safe and successful method for reducing high astigmatism and anisometropia after penetrating keratoplasty. One of the main advantages is the reversibility of the procedure by an explantation of the IOL. Georg Thieme Verlag KG Stuttgart · New York.
Clinical efficacy of toric orthokeratology in myopic adolescent with moderate to high astigmatism.
Luo, Ming; Ma, Shengsheng; Liang, Na
2014-12-01
To observe the efficacy of toric design orthokera- tology (ortho-k) for correcting myopia and astigmatism in myopic adolescents with moderate to high astigmatism. This was a self-controlled clinical study. Twenty-four subjects (42 eyes) aged 9 to 16 years with myopia of 2.50-6.00 D complicated with rule astigmatism of 1.50-3.50 D were fitted with Lucid Night Toric Ortho-k Lenses (LUCID,KO- REA). The changes in uncorrected visual acuity (UCVA), spherical degree, refraction, axial length (AL), and corneal status were assessed at baseline, 1 night, 1 week, 1 month, 3 months, 6 months, and 1 year after the commencement of ortho-k lens wear. The success rate of the first lens fit was 92.8%. The UCVA after ortho-k wearing was improved significantly compared to the baseline during each visit (all P < 0.01), and became stable 1 month after ortho-k. The manifest myopia was significantly reduced from (-3.41 ± 1.27) D to (-0.41 ± 0.37) D by toric ortho-k and the degree of astigmatism from (-1.81 ± 0.53)D to (-0.41 ± 0.39) D after 1 month of lens wear (P < 0.01). The mean AL was (24.47 ± 0.91) mm at baseline, which did not significantly differ from (24.49 ± 0.87) mm and (24.48 ± 0.94) mm after 6 months and 1 year, respectively, of lens wear (both P > 0.05). Grade 1 corneal staining was observed at 1 week (23.8%), 1 month (21.4%), and 1 year (16.7%) following lens wear, and was improved by lens cleaning, discontinuing lens wear, and moistening the cornea with eye drops. No severe adverse events were reported. The toric ortho-k lens was effective and safe for correction of low to moderate myopia in children with moderate to high astigmatism. The lens also effectively controlled axial length elongation during 1 year of observation. However, the long-term efficacy remains to be elucidated.
Guarnieri, Adriano; Moreno-Montañés, Javier; Sabater, Alfonso L; Gosende-Chico, Inmaculada; Bonet-Farriol, Elvira
2013-11-01
To analyze the changes in incision sizes after implantation of a toric intraocular lens (IOL) using 2 methods. Department of Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain. Prospective case series. Coaxial phacoemulsification and IOL implantation through a 2.2 mm clear corneal incision using a cartridge injector were performed. Wound-assisted or cartridge-insertion techniques were used to implant the IOLs. The results were analyzed according to IOL spherical and cylindrical powers. Corneal hysteresis (CH) and the corneal resistance factor (CRF) were measured and evaluated based on the changes in incision size. Incision size increased in 30 (41.7%) of 72 eyes in the wound-assisted group and 71 (98.6%) of 72 eyes in the cartridge-insertion group. The mean incision size after IOL implantation was 2.27 mm ± 0.06 (SD) and 2.37 ± 0.05 mm, respectively (P<.01). The final incision size and IOL spherical power in the wound-assisted technique group (P=.02) and the cartridge-insertion technique group (P=.03) were correlated significantly; IOL toricity was not (P=.19 and P=.28, respectively). The CH and CRF values were not correlated with the final incision size. The final incision size and the changes in incision size after IOL implantation were greater with the cartridge-insertion technique than with the wound-assisted technique. The increase was related to IOL spherical power in both groups but not to IOL toricity. Corneal biomechanical properties were not correlated with the final incision size. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Müftüoğlu, İlkay Klç; Akova, Yonca Aydn; Egrilmez, Sait; Yilmaz, Suzan Guven
2016-03-01
To evaluate the results of toric intraocular lens (IOL) implantation in patients with cataract and postpenetrating keratoplasty astigmatism. Seven eyes of 7 patients with cataract and more than 3.5 diopters (D) astigmatism following penetrating keratoplasty were included in this retrospective case series study. All of the eyes underwent phacoemulsification and Acrysof toric IOL (t5-t9) implantation at least 6 months later than the complete suture removal. Corrected visual acuity (CVA), manifest astigmatism, the keratometry measurements, and complications were assessed. The mean preoperative CVA significantly increased (0.7±0.3 [range: 0.3-1.3] logMAR to 0.1±0.04 [range: 0.05-0.15] logMAR; P<0.05) at mean 8.71±4.11 months after the surgery. The mean preoperative corneal astigmatism and the average manifest refractive astigmatism at the last visit were 5.4±0.9 D (range: 4.25-7 D) and 1.6±0.6 D (range: 0.5-2.5 D), respectively. The mean attempted cylinder correction at spectacle plane was 4.3±0.9 D (range: 2.4-4.7 D) whereas the mean cylinder correction was 4.6±0.5 D (range: 3.9-5.9 D), showing a slightly tendency for overcorrection. All eyes (100%) were within 1 D of predicted residual astigmatism. No complication occurred during the follow-up. Toric IOL implantation seems to be an effective, predictable, and safe procedure in patients with cataract formation and high astigmatism after penetrating keratoplasty.
Harvey, E M; Miller, J M; Dobson, V
1995-01-01
AIMS--To evaluate the overall accuracy and reproducibility of the Alcon portable autokeratometer (PAK) measurements in infants and young children. METHODS--The accuracy of the Alcon PAK in measuring toric reference surfaces (1, 3, 5, and 7 D) under various suboptimal measurement conditions was assessed, and the reproducibility of PAK measurements of corneal astigmatism in newborn infants (n = 5), children (n = 19, age 3-5 years), and adults (n = 14) was evaluated. RESULTS--Measurements of toric reference surfaces indicated (a) no significant effect of distance (17-30 mm) on accuracy of measurements, (b) no systematic relation between amount of toricity and accuracy of measurements, (c) no systematic relation between angle of measurement and accuracy, (d) no difference in accuracy of measurements when the PAK is hand held in comparison with when it is mounted, (e) no difference in accuracy of measurements when axis of toricity is oriented obliquely than when it is oriented horizontally, with respect to the PAK, and (f) a small positive bias (+0.16 D) in measurement of spherical equivalent. The PAK did not prove useful for screening newborns. However, measurements were successfully obtained from 18/19 children and 14/14 adults. There was no significant difference in median measurement deviation (deviation of a subject's five measurements from his/her mean) between children (0.21 D) and adults (0.13 D). CONCLUSIONS--The PAK produces accurate measurements of surface curvature under a variety of suboptimal conditions. Variability of PAK measurements in preschool children is small enough to suggest that it would be useful for screening for corneal astigmatism in young children. PMID:8534668
Venkataraman, Arvind; Kalpana
2013-01-01
Purpose: To assess the visual outcome and rotational stability of single-piece open loop toric Intra Ocular Lens (IOL) in a clinical setting. Materials and Methods: In a prospective study, 122 eyes of 77 patients were followed up for a period of 12 months after cataract surgery with toric open loop IOL implantation. The pre-operative markings for the position of incision and IOL placement were done under slit lamp by anterior stromal puncture. The visual acuity, refraction, and IOL position were assessed at day 1, 1 week, 1 month, 3 months, 6 months, and 12 months after surgery. Results: The mean age of the cohort was 56 yrs (S.D. 13.88; range 16 to 87 years). The mean pre-operative cylinder of corneal astigmatism was 1.37 D. (SD 0.79, range 1.0 to 5.87 D). Mean post-operative refractive cylinder was 0.36 D (SD 0.57, range 0 to 1.50 D) at 12 months. Ninety-seven percent of the eyes were within 1 D of residual astigmatism. Ninety-four percent of patients had uncorrected visual acuity of 20/30 or better. Four eyes required IOL repositioning due to rotation. At 12 months, 96.7% of the IOLs were within 10 degrees of the target axis. There was no rotation seen after 6 months. Conclusion: Toric IOLs are very effective and consistent in correcting astigmatism during the cataract surgery. IOL rotation happens mostly within a month of surgery, and if significant, requires early repositioning. PMID:24343593
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
Software-based evaluation of toric IOL orientation in a multicenter clinical study.
Kasthurirangan, Sanjeev; Feuchter, Lucas; Smith, Pamela; Nixon, Donald
2014-12-01
To evaluate the rotational stability of a new one-piece hydrophobic acrylic toric intraocular lens (IOL) using a custom-developed software for analysis of slit-lamp photographs. In a prospective, multicenter study, 174 eyes were implanted with the TECNIS Toric IOL (Abbott Medical Optics, Inc., Santa Ana, CA). A custom-developed software was used to analyze high-resolution slit-lamp photographs of 156 eyes taken at day 1 (baseline) and 1, 3, and 6 months postoperatively. The software uses iris and sclera landmarks to align the baseline image and later images for comparison. Validation of software was performed through repeated analyses of protractor images rotated from 0.1° to 10.0° and randomly selected photographs of 20 eyes. Software validation showed precision (repeatability plus reproducibility variation) of 0.02° using protractor images and 2.22° using slit-lamp photographs. Good quality slit-lamp images and clear landmarks were necessary for precise measurements. At 6 months, 94.2% of eyes had 5° or less change in IOL orientation versus baseline; only 2 eyes (1.4%) had axis shift greater than 30°. Most eyes were within 5° or less of rotation between 1 and 3 months (92.9%) and 3 and 6 months (94.1%). Mean absolute axis change (± standard deviation) from 1 day to 6 months was 2.70° ± 5.51°. The new custom software was precise and quick in analyzing slit-lamp photographs to determine postoperative toric IOL rotation. Copyright 2014, SLACK Incorporated.
Asymptotics of action variables near semi-toric singularities
NASA Astrophysics Data System (ADS)
Wacheux, Christophe
2015-12-01
The presence of focus-focus singularities in semi-toric integrables Hamiltonian systems is one of the reasons why there cannot exist global Action-Angle coordinates on such systems. At focus-focus critical points, the Liouville-Arnold-Mineur theorem does not apply. In particular, the affine structure of the image of the moment map around has non-trivial monodromy. In this article, we establish that the singular behavior and the multi-valuedness of the Action integrals is given by a complex logarithm. This extends a previous result by San Vũ Ngọc to any dimension. We also calculate the monodromy matrix for these systems.
Embedding and partial resolution of complex cones over Fano threefolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Siddharth, E-mail: sdwivedi@iitk.ac.in
2016-12-15
This work deals with the study of embeddings of toric Calabi–Yau fourfolds which are complex cones over the smooth Fano threefolds. In particular, we focus on finding various embeddings of Fano threefolds inside other Fano threefolds and study the partial resolution of the latter in hope to find new toric dualities. We find many diagrams possible for many of these Fano threefolds, but unfortunately, none of them are consistent quiver theories. We also obtain a quiver Chern–Simons theory which matches a theory known to the literature, thus providing an alternate method of obtaining it.
Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas
NASA Astrophysics Data System (ADS)
Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team
2016-10-01
Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.
Kibble-Zurek Scaling and String-Net Coarsening in Topologically Ordered Systems
NASA Astrophysics Data System (ADS)
Khemani, Vedika; Chandran, Anushya; Burnell, F. J.; Sondhi, S. L.
2013-03-01
We consider the non-equilibrium dynamics of topologically ordered systems, such as spin liquids, driven across a continuous phase transition into proximate phases with no, or reduced, topological order. This dynamics exhibits scaling in the spirit of Kibble and Zurek but now without the presence of symmetry breaking and a local order parameter. The non-equilibrium dynamics near the critical point is universal in a particular scaling limit. The late stages of the process are seen to exhibit slow, quantum coarsening dynamics for the extended string-nets characterizing the topological phase, a potentially interesting signature of topological order. Certain gapped degrees of freedom that could potentially destroy coarsening are, at worst, dangerously irrelevant in the scaling limit. We also note a time dependent amplification of the energy splitting between topologically degenerate states on closed manifolds. We illustrate these phenomena in the context of particular phase transitions out of the abelian Z2 topologically ordered phase of the toric code, and the non-abelian SU(2)k ordered phases of the relevant Levin-Wen models. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915 and DMR 10-06608.
Titiyal, Jeewan S; Kaur, Manpreet; Jose, Cijin P; Falera, Ruchita; Kinkar, Ashutosh; Bageshwar, Lalit Ms
2018-01-01
To compare toric intraocular lens (IOL) alignment assisted by image-guided surgery or manual marking methods and its impact on visual quality. This prospective comparative study enrolled 80 eyes with cataract and astigmatism ≥1.5 D to undergo phacoemulsification with toric IOL alignment by manual marking method using bubble marker (group I, n=40) or Callisto eye and Z align (group II, n=40). Postoperatively, accuracy of alignment and visual quality was assessed with a ray tracing aberrometer. Primary outcome measure was deviation from the target axis of implantation. Secondary outcome measures were visual quality and acuity. Follow-up was performed on postoperative days (PODs) 1 and 30. Deviation from the target axis of implantation was significantly less in group II on PODs 1 and 30 (group I: 5.5°±3.3°, group II: 3.6°±2.6°; p =0.005). Postoperative refractive cylinder was -0.89±0.35 D in group I and -0.64±0.36 D in group II ( p =0.003). Visual acuity was comparable between both the groups. Visual quality measured in terms of Strehl ratio ( p <0.05) and modulation transfer function (MTF) ( p <0.05) was significantly better in the image-guided surgery group. Significant negative correlation was observed between deviation from target axis and visual quality parameters (Strehl ratio and MTF) ( p <0.05). Image-guided surgery allows precise alignment of toric IOL without need for reference marking. It is associated with superior visual quality which correlates with the precision of IOL alignment.
Optimized keratometry and total corneal astigmatism for toric intraocular lens calculation.
Savini, Giacomo; Næser, Kristian; Schiano-Lomoriello, Domenico; Ducoli, Pietro
2017-09-01
To compare keratometric astigmatism (KA) and different modalities of measuring total corneal astigmatism (TCA) for toric intraocular lens (IOL) calculation and optimize corneal measurements to eliminate the residual refractive astigmatism. G.B. Bietti Foundation IRCCS, Rome, Italy. Prospective case series. Patients who had a toric IOL were enrolled. Preoperatively, a Scheimpflug camera (Pentacam HR) was used to measure TCA through ray tracing. Different combinations of measurements at a 3.0 mm diameter, centered on the pupil or the corneal vertex and performed along a ring or within it, were compared. Keratometric astigmatism was measured using the same Scheimpflug camera and a corneal topographer (Keratron). Astigmatism was analyzed with Næser's polar value method. The optimized preoperative corneal astigmatism was back-calculated from the postoperative refractive astigmatism. The study comprised 62 patients (64 eyes). With both devices, KA produced an overcorrection of with-the-rule (WTR) astigmatism by 0.6 diopter (D) and an undercorrection of against-the-rule (ATR) astigmatism by 0.3 D. The lowest meridional error in refractive astigmatism was achieved by the TCA pupil/zone measurement in WTR eyes (0.27 D overcorrection) and the TCA apex/zone measurement in ATR eyes (0.07 D undercorrection). In the whole sample, no measurement allowed more than 43.75% of eyes to yield an absolute error in astigmatism magnitude lower than 0.5 D. Optimized astigmatism values increased the percentage of eyes with this error up to 57.81%, with no difference compared with the Barrett calculator and the Abulafia-Koch calculator. Compared with KA, TCA improved calculations for toric IOLs; however, optimization of corneal astigmatism measurements led to more accurate results. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Berdahl, John P; Hardten, David R; Kramer, Brent A; Potvin, Richard
2017-03-01
To analyze correlations between residual refractive cylinder (and its correction through lens reorientation) with the sphere and cylinder power of the toric intraocular lens (IOL) implanted. An online toric back-calculator (www.astigmatismfix.com) allows users to input toric IOL planning data, along with postoperative IOL orientation and refractive results; these data are used to determine the optimal orientation of the IOL to reduce refractive astigmatism. This was a retrospective data analysis; aggregate historical data were extracted from this calculator to investigate the relationship between residual refractive astigmatism and IOL cylinder and sphere power. A total of 12,812 records, 4,619 of which included IOL sphere power, were available for analysis. There was no significant effect of sphere power on residual refractive astigmatism (P = .25), but lower IOL cylinder powers were associated with significantly lower residual refractive astigmatism (P < .05). The difference between the intended and ideal orientation was higher in the lower IOL cylinder power groups (P < .01). Overcorrection of astigmatism was significantly more likely with higher IOL cylinder power (P < .01), but not with sphere power (P = .33). Reorientation to correct residual refractive cylinder to less than 0.50 diopters (D) was more successful with IOL cylinder powers of 1.50 D or less (P < .01); IOL sphere power had no apparent effect. There were significant effects of IOL cylinder power on residual refractive astigmatism, the difference between intended and ideal orientation, the likelihood of overcorrection, and the likelihood of astigmatism reduction with lens reorientation. IOL sphere power appeared to have no such effects. [J Refract Surg. 2017;33(3):157-162.]. Copyright 2017, SLACK Incorporated.
Titiyal, Jeewan S; Kaur, Manpreet; Jose, Cijin P; Falera, Ruchita; Kinkar, Ashutosh; Bageshwar, Lalit MS
2018-01-01
Purpose To compare toric intraocular lens (IOL) alignment assisted by image-guided surgery or manual marking methods and its impact on visual quality. Patients and methods This prospective comparative study enrolled 80 eyes with cataract and astigmatism ≥1.5 D to undergo phacoemulsification with toric IOL alignment by manual marking method using bubble marker (group I, n=40) or Callisto eye and Z align (group II, n=40). Postoperatively, accuracy of alignment and visual quality was assessed with a ray tracing aberrometer. Primary outcome measure was deviation from the target axis of implantation. Secondary outcome measures were visual quality and acuity. Follow-up was performed on postoperative days (PODs) 1 and 30. Results Deviation from the target axis of implantation was significantly less in group II on PODs 1 and 30 (group I: 5.5°±3.3°, group II: 3.6°±2.6°; p=0.005). Postoperative refractive cylinder was −0.89±0.35 D in group I and −0.64±0.36 D in group II (p=0.003). Visual acuity was comparable between both the groups. Visual quality measured in terms of Strehl ratio (p<0.05) and modulation transfer function (MTF) (p<0.05) was significantly better in the image-guided surgery group. Significant negative correlation was observed between deviation from target axis and visual quality parameters (Strehl ratio and MTF) (p<0.05). Conclusion Image-guided surgery allows precise alignment of toric IOL without need for reference marking. It is associated with superior visual quality which correlates with the precision of IOL alignment. PMID:29731603
Toric phakic implantable collamer lens for correction of astigmatism: 1-year outcomes
Mertens, Erik L
2011-01-01
Purpose: The purpose of this study was to assess predictability, efficacy, safety and stability in patients who received a toric implantable collamer lens to correct moderate to high myopic astigmatism. Methods: Forty-three eyes of 23 patients underwent implantation of a toric implantable collamer lens (STAAR Surgical Inc) for astigmatism correction. Mean spherical refraction was −4. 98 ± 3.49 diopters (D) (range: 0 to −13 D), and mean cylinder was −2.62 ± 0.97 D (range: −1.00 to −5.00 D). Main outcomes measures evaluated during a 12-month follow-up included uncorrected visual acuity (UCVA), refraction, best-corrected visual acuity (BCVA), vault, and adverse events. Results: At 12 months the mean Snellen decimal UCVA was 0.87 ± 0.27 and mean BCVA was 0.94 ± 0.21, with an efficacy index of 1.05. More than 60% of the eyes gained ≥1 line of BCVA (17 eyes, safety index of 1.14). The treatment was highly predictable for spherical equivalent (r2 = 0.99) and astigmatic components: J0 (r2 = 0.99) and J45 (r2 = 0.90). The mean spherical equivalent dropped from −7.29 ± 3.4 D to −0.17 ± 0.40 D at 12 months. Of the attempted spherical equivalent, 76.7% of the eyes were within ±0.50 D and 97.7% eyes were within ±1.00 D, respectively. For J0 and J45, 97.7% and 83.7% were within ±0.50 D, respectively. Conclusion: The results of the present study support the safety, efficacy, and predictability of toric implantable collamer lens implantation to treat moderate to high myopic astigmatism. PMID:21468348
Efficacy of Toric Contact Lenses in Fitting and Patient-Reported Outcomes in Contact Lens Wearers.
Cox, Stephanie M; Berntsen, David A; Bickle, Katherine M; Mathew, Jessica H; Powell, Daniel R; Little, B Kim; Lorenz, Kathrine Osborn; Nichols, Jason J
2018-06-05
To assess whether patient-reported measures are improved with soft toric contact lenses (TCLs) compared with soft spherical contact lenses (SCLs) and whether clinical time needed to fit TCL is greater than SCL. Habitual contact lens wearers with vertexed spherical refraction +4.00 to +0.25 D or -0.50 to -9.00 D and cylinder -0.75 to -1.75 DC were randomly assigned to be binocularly fitted into a TCL or SCL, and masked to treatment assignment. Time to successful fit was recorded. After 5 days, the National Eye Institute Refractive Error Quality of Life Instrument (NEI-RQL-42) and modified Convergence Insufficiency Symptom Survey (CISS) were completed. After washout, subjects were fit into the alternative lens design (TCL or SCL). Outcomes were evaluated using linear mixed models for the time to fit and CISS score, generalized linear model for the successful fit, and Wilcoxon tests for the NEI-RQL-42. Sixty subjects (71.7% women, mean age [±SD] = 27.5±5.0 years) completed the study. The mean time to fit the TCL was 10.2±4.3 and 9.0±6.5 min for the SCL (least square [LS] mean difference (TCL-SCL)=1.2, P=0.22). Toric contact lens scored better than SCL in global NEI-RQL-42 score (P=0.006) and the clarity of vision (P=0.006) and satisfaction with correction subscales (P=0.006). CISS showed a 15% reduction in symptoms (LS mean difference [TCL-SCL]=-2.20, P=0.02). TCLs are a good option when trying to improve the vision of patients with low-to-moderate astigmatism given the subjective improvements in outcomes.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
The Individual Virtual Eye: a Computer Model for Advanced Intraocular Lens Calculation
Einighammer, Jens; Oltrup, Theo; Bende, Thomas; Jean, Benedikt
2010-01-01
Purpose To describe the individual virtual eye, a computer model of a human eye with respect to its optical properties. It is based on measurements of an individual person and one of its major application is calculating intraocular lenses (IOLs) for cataract surgery. Methods The model is constructed from an eye's geometry, including axial length and topographic measurements of the anterior corneal surface. All optical components of a pseudophakic eye are modeled with computer scientific methods. A spline-based interpolation method efficiently includes data from corneal topographic measurements. The geometrical optical properties, such as the wavefront aberration, are simulated with real ray-tracing using Snell's law. Optical components can be calculated using computer scientific optimization procedures. The geometry of customized aspheric IOLs was calculated for 32 eyes and the resulting wavefront aberration was investigated. Results The more complex the calculated IOL is, the lower the residual wavefront error is. Spherical IOLs are only able to correct for the defocus, while toric IOLs also eliminate astigmatism. Spherical aberration is additionally reduced by aspheric and toric aspheric IOLs. The efficient implementation of time-critical numerical ray-tracing and optimization procedures allows for short calculation times, which may lead to a practicable method integrated in some device. Conclusions The individual virtual eye allows for simulations and calculations regarding geometrical optics for individual persons. This leads to clinical applications like IOL calculation, with the potential to overcome the limitations of those current calculation methods that are based on paraxial optics, exemplary shown by calculating customized aspheric IOLs.
Entanglement and area law with a fractal boundary in a topologically ordered phase
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Lidar, Daniel A.; Severini, Simone
2010-01-01
Quantum systems with short-range interactions are known to respect an area law for the entanglement entropy: The von Neumann entropy S associated to a bipartition scales with the boundary p between the two parts. Here we study the case in which the boundary is a fractal. We consider the topologically ordered phase of the toric code with a magnetic field. When the field vanishes it is possible to analytically compute the entanglement entropy for both regular and fractal bipartitions (A,B) of the system and this yields an upper bound for the entire topological phase. When the A-B boundary is regular we have S/p=1 for large p. When the boundary is a fractal of the Hausdorff dimension D, we show that the entanglement between the two parts scales as S/p=γ⩽1/D, and γ depends on the fractal considered.
Towards a systematic construction of realistic D-brane models on a del Pezzo singularity
NASA Astrophysics Data System (ADS)
Dolan, Matthew J.; Krippendorf, Sven; Quevedo, Fernando
2011-10-01
A systematic approach is followed in order to identify realistic D-brane models at toric del Pezzo singularities. Requiring quark and lepton spectrum and Yukawas from D3 branes and massless hypercharge, we are led to Pati-Salam extensions of the Standard Model. Hierarchies of masses, flavour mixings and control of couplings select higher order del Pezzo singularities, minimising the Higgs sector prefers toric del Pezzos with dP 3 providing the most successful compromise. Then a supersymmetric local string model is presented with the following properties at low energies: (i) the MSSM spectrum plus a local B - L gauge field or additional Higgs fields depending on the breaking pattern, (ii) a realistic hierarchy of quark and lepton masses and (iii) realistic flavour mixing between quark and lepton families with computable CKM and PMNS matrices, and CP violation consistent with observations. In this construction, kinetic terms are diagonal and under calculational control suppressing standard FCNC contributions. Proton decay operators of dimension 4, 5, 6 are suppressed, and gauge couplings can unify depending on the breaking scales from string scales at energies in the range 1012-1016 GeV, consistent with TeV soft-masses from moduli mediated supersymmetry breaking. The GUT scale model corresponds to D3 branes at dP 3 with two copies of the Pati-Salam gauge symmetry SU(4) × SU(2) R × SU(2) L . D-brane instantons generate a non-vanishing μ-term. Right handed sneutrinos can break the B - L symmetry and induce a see-saw mechanism of neutrino masses and R-parity violating operators with observable low-energy implications.
Non-toric extended depth of focus contact lenses for astigmatism and presbyopia correction
NASA Astrophysics Data System (ADS)
Ben Yaish, Shai; Zlotnik, Alex; Yehezkel, Oren; Lahav-Yacouel, Karen; Belkin, Michael; Zalevsky, Zeev
2010-02-01
Purpose: Testing whether the extended depth of focus technology embedded on non-toric contact lenses is a suitable treatment for both astigmatism and presbyopia. Methods: The extended depth of focus pattern consisting of microndepth concentric grooves was engraved on a surface of a mono-focal soft contact lens. These grooves create an interference pattern extending the focus from a point to a length of about 1mm providing a 3.00D extension in the depth of focus. The extension in the depth of focus provides high quality focused imaging capabilities from near through intermediate and up to far ranges. Due to the angular symmetry of the engraved pattern the extension in the depth of focus can also resolve regular as well as irregular astigmatism aberrations. Results: The contact lens was tested on a group of 8 astigmatic and 13 subjects with presbyopia. Average correction of 0.70D for astigmatism and 1.50D for presbyopia was demonstrated. Conclusions: The extended depth of focus technology in a non-toric contact lens corrects simultaneously astigmatism and presbyopia. The proposed solution is based upon interference rather than diffraction effects and thus it is characterized by high energetic efficiency to the retina plane as well as reduced chromatic aberrations.
Cultural Resource Predictive Model Literature and Records Search for Conesus Lake N.Y.
1980-02-01
The Cameron site is a 13 historic burial site at Lima , 9.6 km northeast of Conesus Lake (Wray 1966). The southerrmost, and the earliest, of the his...toric Seneca sites (Adams and Tram) are located on a long hillbetween the towns of Lima and Livonia. The latter town is1,600 i northeast of Conesus...Project in Livingston County. One section of this survey extends northwest of the Conesus Lake project area along the Lima Road and Pole Bridge Road
Brito, Pedro; Salgado-Borges, José; Neves, Helena; Gonzalez-Meijome, José; Monteiro, Manuel
2015-03-01
To study the perception of light distortion after refractive lens exchange (RLE) with diffractive multifocal intraocular lenses (IOLs). Clínica Oftalmológica das Antas, Porto, Portugal. Retrospective comparative study. Refractive lens exchange was performed with implantation of an AT Lisa 839M (trifocal) or 909MP (bifocal toric) IOL, the latter if corneal astigmatism was more than 0.75 diopter (D). The postoperative visual and refractive outcomes were evaluated. A prototype light-distortion analyzer was used to quantify the postoperative light-distortion indices. A control group of eyes in which a Tecnis ZCB00 1-piece monofocal IOL was implanted had the same examinations. A trifocal or bifocal toric IOL was implanted in 66 eyes. The control IOL was implanted in 18 eyes. All 3 groups obtained a significant improvement in uncorrected distance visual acuity (UDVA) (P < .001) and corrected distance visual acuity (CDVA) (P = .001). The mean uncorrected near visual acuity (UNVA) was 0.123 logMAR with the trifocal IOL and 0.130 logMAR with the bifocal toric IOL. The residual refractive cylinder was less than 1.00 D in 86.7% of cases with the toric IOL. The mean light-distortion index was significantly higher in the multifocal IOL groups than in the monofocal group (P < .001), although no correlation was found between the light-distortion index and CDVA. The multifocal IOLs provided excellent UDVA and functional UNVA despite increased light-distortion indices. The light-distortion analyzer reliably quantified a subjective component of vision distinct from visual acuity; it may become a useful adjunct in the evaluation of visual quality obtained with multifocal IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Kretz, Florian T A; Bastelica, Antoine; Carreras, Humberto; Ferreira, Tiago; Müller, Matthias; Gerl, Matthias; Gerl, Ralf; Saeed, Manzar; Schmickler, Stefanie; Auffarth, Gerd U
2015-03-01
To evaluate the clinical outcome in eyes with significant corneal astigmatism after cataract surgery with implantation of a new diffractive multifocal toric intraocular lens (IOL). Prospective, non-randomised multicentre clinical study including 57 eyes of 38 consecutive patients with an age between 37 and 84 years that underwent cataract surgery with implantation of the toric multifocal IOL Tecnis ZMT (Abbott Medical Optics, Santa Ana, California, USA). Changes in uncorrected and corrected logMAR distance, intermediate and near visual acuity ((uncorrected distance visual acuity (UDVA), uncorrected intermediate visual acuity (UIVA) uncorrected near visual acuity (UNVA), corrected distance visual acuity (CDVA), corrected near visual acuity) and manifest refraction were evaluated during a 2-4 month follow-up. Additionally, patients were asked about photic phenomena and spectacle dependence. The surgeons subjectively assessed various aspects of the surgery. A significant improvement in CDVA was observed postoperatively (p<0.01), with a significant reduction in manifest cylinder (p<0.01). Mean postoperative binocular UDVA and UNVA were 0.04±0.10 and 0.06±0.12, respectively. Monocular UDVA and UNVA was 0.20 or better in 85.4% and 87.0% of eyes, respectively. Mean binocular logMAR UIVA was 0.21±0.20. Only 10.5% of patients required postoperative correction for near or intermediate distance. The incidence of moderate to severe photic phenomena was limited. Surgeons defined the IOL implantation in most cases as easy or very easy, with a satisfaction rate with the procedure of 84%. The implantation of the multifocal toric IOL is a safe procedure that provides a very good visual rehabilitation in eyes with corneal astigmatism. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Fitting the post-keratoplasty cornea with hydrogel lenses.
Katsoulos, Costas; Nick, Vasileiou; Lefteris, Karageorgiadis; Theodore, Mousafeiropoulos
2009-02-01
We report two cases who have undergone penetrating keratoplasty (three eyes total), and who were fitted with hydrogel lenses. In the first case, a 28-year-old male presented with an interest in contact lens fitting. He had undergone corneal transplantation in both eyes, about 5 years ago. After topographies and trial fitting were performed, it was decided to be fitted with reverse geometry hydrogel lenses, due to the globular geometry of the cornea, the resultant instability of RGPs, and personal preference. In the second case, a 26-year-old female who had also penetrating keratoplasty was fitted with a hydrogel toric lens of high cylinder in the right eye. The final hydrogel lenses for the first subject incorporated a custom tricurve design, in which the second curve was steeper than the base curve and the third curve flatter than the second but still steeper than the first. Visual acuity was 6/7.5 RE and a mediocre 6/15 LE (OU 6/7.5). The second subject achieved 6/4.5 acuity RE with the high cylinder hydrogel toric lens. In corneas exhibiting extreme protrusion, such as keratoglobus and some cases after penetrating keratoplasty, curvatures are so extreme and the cornea so globular leading to specific fitting options: sclerals, small diameter RGPs and reverse geometry hydrogel lenses, in order to improve lens and optical stability. In selected cases such as the above, large diameter inverse geometry RGP may be fitted only if the eyelid shape and tension permits so. The first case demonstrates that the option of hydrogel lenses is viable when the patient has no interest in RGPs and in certain cases can improve vision to satisfactory levels. In other cases, graft toricity might be so high that the practitioner will need to employ hydrogel torics with large amounts of cylinder in order to correct vision. In such cases, the patient should be closely monitored in order to avoid complications from hypoxia.
Entanglement spectrum and boundary theories with projected entangled-pair states
NASA Astrophysics Data System (ADS)
Cirac, J. Ignacio; Poilblanc, Didier; Schuch, Norbert; Verstraete, Frank
2011-06-01
In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated with their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using projected entangled-pair states. This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various specific models: a deformed AKLT model [I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.59.799 59, 799 (1987)], an Ising-type model [F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.96.220601 96, 220601 (2006)], and Kitaev’s toric code [A. Kitaev, Ann. Phys.APNYA60003-491610.1016/S0003-4916(02)00018-0 303, 2 (2003)], both in finite ladders and in infinite square lattices. In the second case, some of those models display quantum phase transitions. We find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield nonlocal Hamiltonians. Because our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.
Tan, Marcus C L; Nah, Gerard K M
2012-02-01
Phakic intraocular lens (PIOL) implantation is a surgical option for correction of refractive errors. PIOLs can be use to correct myopia, hyperopia, and astigmatism. It is a surgical option available to patients in addition to methods such as laser cornea refractive surgery, e.g., laser assisted in-situ keratomileusis (LASIK) and photo-refractive keratectomy (PRK). Visian implantable collamer lens (ICL) are posterior chamber lenses which are surgically positioned in a phakic eye in the sulcus between the iris diaphragm and the natural crystalline lens. This case report describes the stability of Visian toric ICL in a candidate with bilateral implants under high +Gz force exposure in a human centrifuge trainer. The subject was sequentially exposed to three incremental +Gz profiles of +5 Gz, +7 Gz, and +9 Gz. Pre- and post-+Gz exposure, ophthalmic examination revealed no ICL displacement, implant touch or induced cataract, or change in refractive error. The rotational stability of the toric implants was also demonstrated by identical subjective refractions in both eyes taken pre- and post-+Gz, exposure. A search of the literature did not reveal any published articles on intraocular stability of ICL in the +Gz environment. This case report suggests that ICL may be considered an alternative to laser refractive surgery for patients subjected to a high +G, environment such as military aviators.
Heterotic model building: 16 special manifolds
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Lee, Seung-Joo; Lukas, Andre; Sun, Chuang
2014-06-01
We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10) GUTs, which lead to consistent supersymmetric string vacua and have three chiral families. A total of about 29000 models is found, most of them corresponding to SO(10) GUTs. These models constitute a starting point for detailed heterotic model building on Calabi-Yau manifolds in the Kreuzer-Skarke list. The data for these models can be downloaded from http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html.
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.; Stillman, Michael
2015-10-01
We present an intriguing and precise interplay between algebraic geometry and the phenomenology of generations of particles. Using the electroweak sector of the MSSM as a testing ground, we compute the moduli space of vacua as an algebraic variety for multiple generations of Standard Model matter and Higgs doublets. The space is shown to have Calabi-Yau, Grassmannian, and toric signatures, which sensitively depend on the number of generations of leptons, as well as inclusion of Majorana mass terms for right-handed neutrinos. We speculate as to why three generations is special.
Pan, Qintuo; Yang, Zhengwei; Chen, Xiaomeng; Wei, Wenlong; Ke, Zhisheng; Chen, Ding; Huang, Fang; Cai, Junyong; Zhao, Zhenquan
2018-04-01
To describe the clinical outcomes of traumatic aphakic eyes with corneal astigmatism after using a novel technique for toric intraocular lens suture fixation. In total, 12 eyes of 12 patients who underwent a new scleral suture fixation technique of one-piece toric intraocular lens (SN6AT series, Alcon Inc., TX, USA) were included in our retrospective study. Preoperative patient status, postoperative visual acuity and refractive outcomes, postoperative intraocular lens rotation, tilt, decentration, and complications were analyzed. The mean follow-up was 11.6 ± 1.0 months. The mean preoperative best-corrected visual acuity was 0.55 ± 0.32 in the logarithm of minimum angle of resolution equivalent; the postoperative best-corrected visual acuity was 0.45 ± 0.34. The mean preoperative total corneal astigmatism was 2.51 ± 1.67 D. The mean postoperative residual astigmatism was 0.77 ± 0.54 D. The mean intraocular lens rotation was 3.33° ± 1.37° (range, 1°-6°). The mean intraocular lens tilt in horizontal direction was 3.64° ± 1.02° (range, 2.6°-6.3°) and in vertical direction it was 3.19° ± 1.07 ° (range, 1.6°-5.2°). The mean intraocular lens decentration in horizontal direction was 0.14 ± 0.03 mm (range, 0.089-0.192 mm) and in vertical direction it was 0.15 ± 0.02 mm (range, 0.113-0.181 mm). One patient had mild vitreous hemorrhage and two other patients had high postoperative residual sphere and astigmatism, respectively. But no other serious complications were observed. Scleral suture fixation of foldable toric intraocular lens to correct corneal astigmatism can be a safe and effective alternative technique to manage traumatic aphakic eyes that lack adequate capsular support.
Kamiya, Kazutaka; Shimizu, Kimiya; Miyake, Toshiyuki
2016-07-01
To assess the changes in astigmatism and higher-order aberrations (HOAs) after toric intraocular lens (IOL) implantation for mild non-progressive keratoconus with cataract. We prospectively examined 19 eyes of 19 consecutive keratoconic patients (mean age ± standard deviation, 63.1 ± 9.1 years) who underwent phacoemulsification with toric IOL implantation. We determined uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), refractive astigmatism, corneal astigmatism, corneal HOAs and astigmatic axis rotation both preoperatively and 3 months postoperatively. Logarithm of the minimal angle of resolution (logMAR) UDVA was significantly improved from 1.14 ± 0.50 preoperatively to 0.46 ± 0.33 postoperatively (Wilcoxon signed-rank test, p < 0.001). LogMAR CDVA was also significantly improved from 0.27 ± 0.45 preoperatively to -0.01 ± 0.09 postoperatively (p < 0.001). In 5 of 6 eyes in which the target refraction was emmetropia, postoperative UDVA was better than 20/32. The achieved spherical equivalent correction was within ±0.5 diopters (D) of the targeted correction in 13 (68 %) eyes and 1.0 in 18 (95 %) eyes. The refractive astigmatism was significantly decreased from -1.92 ± 1.73 D preoperatively to -0.70 ± 0.60 D postoperatively (p = 0.006). The corneal astigmatism changed from 2.89 ± 1.30 D preoperatively to 2.98 ± 1.09 D postoperatively (p = 0.492), which was not statistically significant. The corneal HOAs for a 4-mm pupil was changed from 0.47 ± 0.23 µm preoperatively to 0.52 ± 0.26 µm postoperatively (p = 0.211), which was not statistically significant. According to our experience, toric IOL implantation for mild keratoconic patients having rigid gas-permeable lens intolerance appears to be effective for reducing refractive astigmatism without a significant induction of corneal HOAs.
Topological phases in two-dimensional arrays of parafermionic zero modes
NASA Astrophysics Data System (ADS)
Burrello, M.; van Heck, B.; Cobanera, E.
2013-05-01
It has recently been realized that zero modes with projective non-Abelian statistics, generalizing the notion of Majorana bound states, may exist at the interface between a superconductor and a ferromagnet along the edge of a fractional topological insulator (FTI). Here, we study two-dimensional architectures of these non-Abelian zero modes, whose interactions are generated by the charging and Josephson energies of the superconductors. We derive low-energy Hamiltonians for two different arrays of FTIs on the plane, revealing an interesting interplay between the real-space geometry of the system and its topological properties. On the one hand, in a geometry where the length of the FTI edges is independent on the system size, the array has a topologically ordered phase, giving rise to a qudit toric code Hamiltonian in perturbation theory. On the other hand, in a geometry where the length of the edges scales with system size, we find an exact duality to an Abelian lattice gauge theory and no topological order.
Holographic Symmetries and Generalized Order Parameters for Topological Matter
NASA Astrophysics Data System (ADS)
Cobanera, Emilio; Ortiz, Gerardo; Nussinov, Zohar
2013-03-01
We introduce a universally applicable method, based on the bond-algebraic theory of dualities, to search for generalized order parameters in a wide variety of non-Landau systems, including topologically ordered matter. To this end we introduce the key notion of holographic symmetry. It reflects situations in which global symmetries become exact boundary symmetries under a duality mapping. Holographic symmetries are naturally related to edge modes and localization. The utility of our approach is illustrated by presenting a systematic derivation of generalized order parameters for pure and matter-coupled Abelian gauge theories and (extended) toric codes. Also we introduce a many-body extension of the Kitaev wire, the gauged Kitaev wire, and exploit holographic symmetries and dualities to describe its phase diagram, generalized order parameter, and edge states. [arXiv:1211.0564] This work was supported by the Dutch Science Foundation NWO/FOM and an ERC Advanced Investigator grant, and, in part, under grants No. NSF PHY11-25915 and CMMT 1106293.
NASA Astrophysics Data System (ADS)
Lee, Jungpyo; Smithe, David; Wright, John; Bonoli, Paul
2018-02-01
In this paper, the analytical form of the quasilinear diffusion coefficients is modified from the Kennel-Engelmann diffusion coefficients to guarantee the positive definiteness of its bounce average in a toroidal geometry. By evaluating the parallel inhomogeneity of plasmas and magnetic fields in the trajectory integral, we can ensure the positive definiteness and help illuminate some non-resonant toroidal effects in the quasilinear diffusion. When the correlation length of the plasma-wave interaction is comparable to the magnetic field variation length, the variation becomes important and the parabolic variation at the outer-midplane, the inner-midplane, and trapping tips can be evaluated by Airy functions. The new form allows the coefficients to include both resonant and non-resonant contributions, and the correlations between the consecutive resonances and in many poloidal periods. The positive-definite form is implemented in a wave code TORIC and we present an example for ITER using this form.
Laser-assisted marking for toric intraocular lens alignment.
Dick, H Burkhard; Schultz, Tim
2016-01-01
We describe a technique of 3-dimensional spectral-domain optical coherence tomography-controlled laser-assisted corneal marking for toric intraocular lens implantation. To facilitate accurate alignment, the technique creates 2 perpendicular intrastromal incisions (width 0.75 mm) using an image-guided femtosecond laser. This was performed in a case series comprising 10 eyes of 10 patients. No posterior corneal perforation or epithelial alterations occurred. The incisions were plainly visible under the operating microscope, and no optical phenomena were reported 6 weeks after surgery. Laser-assisted marking can be performed safely and has the potential to enable precise axis marking. Dr. Dick is a paid consultant to Abbott Medical Optics, Inc. Dr. Schultz has no financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Technology and needs for tomorrow's treatment of cataract
NASA Astrophysics Data System (ADS)
Tassignon, Marie-José
2007-02-01
Cataract surgery is considered to be the most successful surgery worldwide. However, new developments are ongoing either to improve the surgical stress or to improve the surgical outcome. While restoration of the transparency and optical parameters of the eye were initially the first goals, the need to improve the quality of sight (QOS) and to restore accommodation became evident during the last decades. By introducing the bag-in-the-lens (BIL) intraocular lens (IOL) and technique of implantation (US Patent 6,027,531) in 2000, PCO was no longer a matter of concern. Clinical studies conducted between 2000 and 2004 proved the efficacy of this new IOL with respect to PCO control, but showed additional advantages like surgeon-controlled centration and rotational stability. Surgeon-controlled IOL centration based on the alignment of the first and third Purkinje reflexes is one method to promote IOL centration but future tracking devices will probably enhance the precision by which IOL centration along the line of sight can be achieved. Optimal alignment is a major issue if toric correction and compensation of the spherical aberrations is intended to be incorporated into the IOL optic. IOL optics with toric correction to compensate for regular astigmatism are in development now, but toric correction for irregular astigmatism remains extremely challenging for the manufacturers. Improving the quality of the image by compensating for the spherical aberrations is the next step on our research programme. The BIL offers some opportunities to optimize postoperative accommodation by introducing the capsular accommodation ring.
Debois, A; Nochez, Y; Bezo, C; Bellicaud, D; Pisella, P-J
2012-10-01
To study efficacy and predictability of toric IOL implantation for correction of preoperative corneal astigmatism by analysing spherocylindrical refractive precision and objective quality of vision. Prospective study of 13 eyes undergoing micro-incisional cataract surgery through a 1.8mm corneal incision with toric IOL implantation (Lentis L313T(®), Oculentis) to treat over one D of preoperative corneal astigmatism. Preoperative evaluation included keratometry, subjective refraction, and total and corneal aberrometry (KR-1(®), Topcon). Six months postoperatively, measurements included slit lamp photography, documenting IOL rotation, tilt or decentration, uncorrected visual acuity, best-corrected visual acuity and objective quality of vision measurement (OQAS(®) Visiometrics, Spain). Postoperatively, mean uncorrected distance visual acuity was 8.33/10 ± 1.91 (0.09 ± 0.11 LogMar). Mean postoperative refractive sphere was 0.13 ± 0.73 diopters. Mean refractive astigmatism was -0.66 ± 0.56 diopters with corneal astigmatism of 2.17 ± 0.68 diopters. Mean IOL rotation was 4.4° ± 3.6° (range 0° to 10°). Mean rotation of this IOL at 6 months was less than 5°, demonstrating stability of the optic within the capsular bag. Objective quality of vision measurements were consistent with subjective uncorrected visual acuity. Implantation of the L313T(®) IOL is safe and effective for correction of corneal astigmatism in 1.8mm micro-incisional cataract surgery. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Unifying neural-network quantum states and correlator product states via tensor networks
NASA Astrophysics Data System (ADS)
Clark, Stephen R.
2018-04-01
Correlator product states (CPS) are a powerful and very broad class of states for quantum lattice systems whose (unnormalised) amplitudes in a fixed basis can be sampled exactly and efficiently. They work by gluing together states of overlapping clusters of sites on the lattice, called correlators. Recently Carleo and Troyer (2017 Science 355 602) introduced a new type sampleable ansatz called neural-network quantum states (NQS) that are inspired by the restricted Boltzmann model used in machine learning. By employing the formalism of tensor networks we show that NQS are a special form of CPS with novel properties. Diagramatically a number of simple observations become transparent. Namely, that NQS are CPS built from extensively sized GHZ-form correlators making them uniquely unbiased geometrically. The appearance of GHZ correlators also relates NQS to canonical polyadic decompositions of tensors. Another immediate implication of the NQS equivalence to CPS is that we are able to formulate exact NQS representations for a wide range of paradigmatic states, including superpositions of weighed-graph states, the Laughlin state, toric code states, and the resonating valence bond state. These examples reveal the potential of using higher dimensional hidden units and a second hidden layer in NQS. The major outlook of this study is the elevation of NQS to correlator operators allowing them to enhance conventional well-established variational Monte Carlo approaches for strongly correlated fermions.
4d $$ \\mathcal{N}=1 $$ from 6d $$ \\mathcal{N}=\\left(1,0\\right) $$ on a torus with fluxes
Bah, Ibrahima; Hanany, Amihay; Maruyoshi, Kazunobu; ...
2017-06-05
Compactifying N = (1, 0) theories on a torus, with additional fluxes for global symmetries, we obtain N = 1 supersymmetric theories in four dimensions. It is shown that for many choices of flux these models are toric quiver gauge theories with singlet fields. Particularly we compare the anomalies deduced from the description of the six dimensional theory and the anomalies of the quiver gauge theories. Also, we give predictions for anomalies of four-dimensional theories corresponding to general compactifi cations of M5-branes probing C 2/Z k singularities.
Heterotic line bundle models on elliptically fibered Calabi-Yau three-folds
NASA Astrophysics Data System (ADS)
Braun, Andreas P.; Brodie, Callum R.; Lukas, Andre
2018-04-01
We analyze heterotic line bundle models on elliptically fibered Calabi-Yau three-folds over weak Fano bases. In order to facilitate Wilson line breaking to the standard model group, we focus on elliptically fibered three-folds with a second section and a freely-acting involution. Specifically, we consider toric weak Fano surfaces as base manifolds and identify six such manifolds with the required properties. The requisite mathematical tools for the construction of line bundle models on these spaces, including the calculation of line bundle cohomology, are developed. A computer scan leads to more than 400 line bundle models with the right number of families and an SU(5) GUT group which could descend to standard-like models after taking the ℤ2 quotient. A common and surprising feature of these models is the presence of a large number of vector-like states.
Dynamic simulation of the effect of soft toric contact lenses movement on retinal image quality.
Niu, Yafei; Sarver, Edwin J; Stevenson, Scott B; Marsack, Jason D; Parker, Katrina E; Applegate, Raymond A
2008-04-01
To report the development of a tool designed to dynamically simulate the effect of soft toric contact lens movement on retinal image quality, initial findings on three eyes, and the next steps to be taken to improve the utility of the tool. Three eyes of two subjects wearing soft toric contact lenses were cyclopleged with 1% cyclopentolate and 2.5% phenylephrine. Four hundred wavefront aberration measurements over a 5-mm pupil were recorded during soft contact lens wear at 30 Hz using a complete ophthalmic analysis system aberrometer. Each wavefront error measurement was input into Visual Optics Laboratory (version 7.15, Sarver and Associates, Inc.) to generate a retinal simulation of a high contrast log MAR visual acuity chart. The individual simulations were combined into a single dynamic movie using a custom MatLab PsychToolbox program. Visual acuity was measured for each eye reading the movie with best cycloplegic spectacle correction through a 3-mm artificial pupil to minimize the influence of the eyes' uncorrected aberrations. Comparison of the simulated acuity was made to values recorded while the subject read unaberrated charts with contact lenses through a 5-mm artificial pupil. For one study eye, average acuity was the same as the natural contact lens viewing condition. For the other two study eyes visual acuity of the best simulation was more than one line worse than natural viewing conditions. Dynamic simulation of retinal image quality, although not yet perfect, is a promising technique for visually illustrating the optical effects on image quality because of the movements of alignment-sensitive corrections.
Bhandari, Sahil; Nath, Manas
2016-08-01
Toric intraocular lenses (IOLs) are an effective way of compensating preexisting corneal astigmatism during cataract surgery. To achieve success, it is imperative to align the toric IOLs in desired position and preoperative reference marking is one among the three important steps for accurate alignment. To make the marking procedure simpler and effective, we have modified the conventional three-step slit lamp-based technique. Patient is seated in front of the slit lamp and asked to keep the chin over chin rest. A 26-gauge bent needle with tip stained by sterile blue ink marker is used to make anterior stromal puncture (ASP) at the edges of horizontal 180° axis near the limbus. A total of 58 eyes were retrospectively evaluated. Mean (+/-SD) IOL deviation on day 1 and day 30 was 5.7 ± 6.5° and 4.7 ± 5.6°, respectively. Median IOL misalignment on day 1 and day 30 was 3°. Redialing of IOL was required in 2 (3.4%) eyes only, all of which were performed within 1 week of surgery. In total, 2 (3.7%) eyes had a residual astigmatism of - 0.5 Dcyl and - 1.0 Dcyl, respectively. ASP is an effective technique for reference marking, technically simpler and can be practiced by most of the surgeons. It avoids the necessity of high-end sophisticated machinery and gives a better platform for the reference corneal marking along with the benefit of reproducibility and simplicity.
Global embedding of fibre inflation models
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Muia, Francesco; Shukla, Pramod
2016-11-01
We present concrete embeddings of fibre inflation models in globally consistent type IIB Calabi-Yau orientifolds with closed string moduli stabilisation. After performing a systematic search through the existing list of toric Calabi-Yau manifolds, we find several examples that reproduce the minimal setup to embed fibre inflation models. This involves Calabi-Yau manifolds with h 1,1 = 3 which are K3 fibrations over a ℙ1 base with an additional shrinkable rigid divisor. We then provide different consistent choices of the underlying brane set-up which generate a non-perturbative superpotential suitable for moduli stabilisation and string loop corrections with the correct form to drive inflation. For each Calabi-Yau orientifold setting, we also compute the effect of higher derivative contributions and study their influence on the inflationary dynamics.
Extending fullwave core ICRF simulation to SOL and antenna regions using FEM solver
NASA Astrophysics Data System (ADS)
Shiraiwa, S.; Wright, J. C.
2016-10-01
A full wave simulation approach to solve a driven RF waves problem including hot core, SOL plasmas and possibly antenna is presented. This approach allows for exploiting advantages of two different way of representing wave field, namely treating spatially dispersive hot conductivity in a spectral solver and handling complicated geometry in SOL/antenna region using an unstructured mesh. Here, we compute a mode set in each region with the RF electric field excitation on the connecting boundary between core and edge regions. A mode corresponding to antenna excitation is also computed. By requiring the continuity of tangential RF electric and magnetic fields, the solution is obtained as unique superposition of these modes. In this work, TORIC core spectral solver is modified to allow for mode excitation, and the edge region of diverted Alcator C-Mod plasma is modeled using COMSOL FEM package. The reconstructed RF field is similar in the core region to TORIC stand-alone simulation. However, it contains higher poloidal modes near the edge and captures a wave bounced and propagating in the poloidal direction near the vacuum-plasma boundary. These features could play an important role when the single power pass absorption is modest. This new capability will enable antenna coupling calculations with a realistic load plasma, including collisional damping in realistic SOL plasma and other loss mechanisms such as RF sheath rectification. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.
Predictions of H-mode performance in ITER
NASA Astrophysics Data System (ADS)
Budny, Robert
2008-11-01
Time-dependent integrated predictions of performance metrics such as the fusion power PDT, QDT≡ PDT/Pext, and alpha profiles are presented. The PTRANSP [1] code is used, along with GLF23 to predict plasma profiles, NUBEAM for NNBI and alpha heating, TORIC for ICRH, and TORAY for ECRH. Effects of sawteeth mixing, beam steering, beam shine-through, radiation loss, ash accumulation, and toroidal rotation are included. A total heating of Pext=73MW is assumed to achieve H-mode during the density and current ramp-up phase. Various mixes of NNBI, ICRH, and ECRH heating schemes are compared. After steady state conditions are achieved, Pext is stepped down to lower values to explore high QDT. Physics and computation uncertainties lead to ranges in predictions for PDT and QDT. Physics uncertainties include the L->H and H->L threshold powers, pedestal height, impurity and ash transport, and recycling. There are considerably more uncertainties predicting the peak value for QDT than for PDT. [0pt] [1] R.V. Budny, R. Andre, G. Bateman, F. Halpern, C.E. Kessel, A. Kritz, and D. McCune, Nuclear Fusion 48 (2008) 075005.
Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism
NASA Astrophysics Data System (ADS)
Aurell, Erik
2018-06-01
The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z. The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.
Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism
NASA Astrophysics Data System (ADS)
Aurell, Erik
2018-04-01
The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z . The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.
Experimentally probing topological order and its breakdown through modular matrices
NASA Astrophysics Data System (ADS)
Luo, Zhihuang; Li, Jun; Li, Zhaokai; Hung, Ling-Yan; Wan, Yidun; Peng, Xinhua; Du, Jiangfeng
2018-02-01
The modern concept of phases of matter has undergone tremendous developments since the first observation of topologically ordered states in fractional quantum Hall systems in the 1980s. In this paper, we explore the following question: in principle, how much detail of the physics of topological orders can be observed using state of the art technologies? We find that using surprisingly little data, namely the toric code Hamiltonian in the presence of generic disorders and detuning from its exactly solvable point, the modular matrices--characterizing anyonic statistics that are some of the most fundamental fingerprints of topological orders--can be reconstructed with very good accuracy solely by experimental means. This is an experimental realization of these fundamental signatures of a topological order, a test of their robustness against perturbations, and a proof of principle--that current technologies have attained the precision to identify phases of matter and, as such, probe an extended region of phase space around the soluble point before its breakdown. Given the special role of anyonic statistics in quantum computation, our work promises myriad applications both in probing and realistically harnessing these exotic phases of matter.
Muftuoglu, Ilkay Kilic; Aydin Akova, Yonca; Aksoy, Sibel; Unsal, Erkan
2016-01-01
To compare the efficacy and short-term stability of toric intraocular lenses (tIOL) and peripheral cornea relaxing incisions (PCRI) during phacoemulsification. Patients with preexisting corneal astigmatism had cataract surgery either with tIOL (AcrySof Toric) (39 eyes of 35 patients) or standard intraocular lens (AcrySof) + PCRIs (38 eyes of 33 patients). Patients were retrospectively evaluated for manifest refraction, corneal topography, and uncorrected and corrected visual acuities preoperatively and at postoperative 1 and 6 months. The Alpins vectorial method was used to analyze the target induced astigmatism (TIA) and surgically induced astigmatism (SIA), magnitude of error (the difference between the magnitude of SIA and TIA) (ME), and correction index. Mean preoperative corneal astigmatism was 2.21 ± 1.32 D in the tIOL group and 2.24 ± 0.96 D in the PCRI group; the difference was not significant. The decrease in astigmatism was significant in both groups at last follow-up (64% tIOL group, 32% PCRI group, p<0.01, Wilcoxon signed rank test). The mean remaining refractive astigmatism was significantly higher in the PCRI group than in the tIOL group at 1-month (1.42 ± 1.22, 0.89 ± 0.68, respectively) and 6-month follow-ups (1.75 ± 1.37 D, 0.92 ± 0.72, respectively) (p<0.01). The mean ME was significantly lower (-0.35 versus -0.88) with a higher correction index (0.96 versus 0.56) in the tIOL group at 6 months postoperatively. Both tIOL implantation and using PCRI were effective methods to reduce preoperative astigmatism at the time of the cataract surgery. However, tIOLs provided better remaining astigmatism with a more stable refraction than PCRI.
[Optical quality after 2.2mm microincisional cataract surgery with bimanual I/A in 154 eyes].
Dot, C; El Chehab, H; Agard, E; Russo, A; Ract-Madoux, G; Dussart, C
2013-12-01
A prospective study to analyze the effects of 2.2mm microincisional coaxial phacoemulsification with bimanual irrigation/aspiration on the optical quality of the cornea and whole eye. We compare two groups. Group A: 102 consecutive eyes undergoing this three-incision procedure and implanted with an Alcon® SN60WF IQ aspheric intraocular lens. Astigmatism, corneal and total asphericity, as well as H/B ratio were measured by OPD scann II, Nidek®, Japan, preoperatively (Day 0), 15 days postoperatively (Day 15) and 1 month postoperatively (M1). Group B: 52 eyes with corneal astigmatism greater than 1.25D, undergoing the same procedure but implanted with a Toric IOL (Alcon® Toric IQ SN6AT), followed in the same manner but with additional follow-up at 1 year. Corneal surgically induced astigmatism (SIA) was essentially neutral: 0.065D ± 0.86 at Day 30 in group A, and 0.06D ± 0.34 at 1 month and -0.008D ± 0.4 at 12 months in group B. Corneal topographic astigmatism underwent a mean axis shift of 29.95° ± 27.6 in group A compared to 5.3° ± 3.7 in Group B, and remained stable at 1 year. Corneal asphericity did not change significantly between Day 0 and 30 in either group. H/B ratio increased significantly in both groups, with a gain of 22 % to 24 % after surgery. This three-incision procedure does not degrade the optical quality of the cornea. Postoperative shift in the axis of astigmatism is only an issue in cases of low or asymmetric astigmatism and must be kept in mind for low-power toric IOL implantation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Effects of a blue light-filtering intraocular lens on driving safety in glare conditions.
Gray, Rob; Hill, Warren; Neuman, Brooke; Houtman, Diane; Potvin, Richard
2012-05-01
To evaluate whether the previously established benefit of blue light-filtering intraocular lenses (IOLs) when driving in glare conditions is maintained in patients previously implanted with a blue light-filtering toric IOL. Department of Applied Psychology, Arizona State University, Mesa, Arizona, USA. Comparative case series. The study comprised patients with a blue light-filtering toric IOL (test IOL) or an ultraviolet (UV)-only filtering nontoric IOL (control IOL). All patients had good visual acuity and a valid driver's license. While wearing best spherocylindrical correction, patients performed left-turn maneuvers in front of oncoming traffic in a driving simulator. The safety margin was defined as the time to collision less the time taken to turn at an intersection with oncoming traffic. Measures were repeated with a glare source simulating low-angle sun conditions (daytime driving). Of the 33 evaluable patients, 18 had a test IOL and 15 had a control IOL. In the presence of glare, patients with test IOLs had significantly greater safety margins (mean 2.676 seconds ± 0.438 [SD]) than patients with control IOLs (mean 2.179 ± 0.343 seconds) and significantly lower glare susceptibility (P<.05). In no-glare and glare conditions, patients with test IOLs had significantly lower glare susceptibility than patients with control IOLs. The blue light-filtering toric IOL produced a significantly greater reduction in glare disability than the UV-only filtering nontoric IOL and increased the ability of drivers to safely execute left turns in low-sun conditions. Dr. Houtman is an employee of Alcon Laboratories, Inc. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Surface coverage with single vs. multiple gaze surface topography to fit scleral lenses.
DeNaeyer, Gregory; Sanders, Donald R; Farajian, Timothy S
2017-06-01
To determine surface coverage of measurements using the sMap3D ® corneo-scleral topographer in patients presenting for scleral lens fitting. Twenty-five eyes of 23 scleral lens patients were examined. Up-gaze, straight-gaze, and down-gaze positions of each eye were "stitched" into a single map. The percentage surface coverage between 10mm and 20mm diameter circles from corneal center was compared between the straight-gaze and stitched images. Scleral toricity magnitude was calculated at 100% coverage and at the same diameter after 50% of the data was removed. At a 10mm diameter from corneal center, the straight-gaze and stitched images both had 100% coverage. At the 14, 15, 16, 18 and 20mm diameters, the straight-gaze image only covered 68%, 53%, 39%, 18%, and 6% of the ocular surface diameters while the stitched image covered 98%, 96%, 93%, 75%, and 32% respectively. In the case showing the most scleral coverage at 16mm (straight-gaze), there was only 75% coverage (straight-gaze) compared to 100% (stitched image); the case with the least coverage had 7% (straight gaze) and 92% (stitched image). The 95% limits of agreement between the 50% and 100% coverage scleral toricity was between -1.4D (50% coverage value larger) and 1.2D (100% coverage larger), a 2.6D spread. The absolute difference between 50% to 100% coverage scleral toricity was ≥0.50D in 28% and ≥1.0D in 16% of cases. It appears that a single straight-gaze image would introduce significant measurement inaccuracy in fitting scleral lenses using the sMap3D while a 3-gaze stitched image would not. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Zhang, Lijun; Sy, Mary Ellen; Mai, Harry; Yu, Fei; Hamilton, D Rex
2015-01-01
To compare the prediction error after toric intraocular lens (IOL) (Acrysof IQ) implantation using corneal astigmatism measurements obtained with an IOLMaster automated keratometer and a Galilei dual rotating camera Scheimpflug-Placido tomographer. Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA. Retrospective case series. The predicted residual astigmatism after toric IOL implantation was calculated using preoperative astigmatism values from an automated keratometer and the total corneal power (TCP) determined by ray tracing through the measured anterior and posterior corneal surfaces using dual Scheimpflug-Placido tomography. The prediction error was calculated as the difference between the predicted astigmatism and the manifest astigmatism at least 1 month postoperatively. The calculations included vector analysis. The study evaluated 35 eyes (35 patients). The preoperative corneal posterior astigmatism mean magnitude was 0.33 diopter (D) ± 0.16 (SD) (vector mean 0.23 × 176). Twenty-six eyes (74.3%) had with-the-rule (WTR) posterior astigmatism. The postoperative manifest refractive astigmatism mean magnitude was 0.38 ± 0.18 D (vector mean 0.26 × 171). There was no statistically significant difference in the mean magnitude prediction error between the automated keratometer and TCP techniques. However, the automated keratometer method tended to overcorrect WTR astigmatism and undercorrect against-the-rule (ATR) astigmatism. The TCP technique lacked these biases. The automated keratometer and TCP methods for estimating the magnitude of corneal astigmatism gave similar results. However, the automated keratometer method tended to overcorrect WTR astigmatism and undercorrect ATR astigmatism. Dr. Hamilton has received honoraria for educational lectures from Ziemer Ophthalmic Systems. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Nuzzi, Raffaele; Monteu, Francesca; Tridico, Federico
2017-01-01
Radial keratotomy is a refractive surgical technique, widely used in the 80s and early 90s to correct myopia and astigmatism, but now overcome by more recent laser techniques. Important consequences, often in patients with more than 45 years of age, are progressive hyperopic shift and/or an increase in corneal astigmatism, whose main cause seems to be an increase in the curvature radius of the central portion of the cornea. This seems to be due to radial keratotomy incisions - with the consequent need for cross-linking - intraocular pressure, and corneal biomechanical parameters. The authors propose phacoemulsification with a customized multifocal toric intraocular lens implantation to correct the induced shift and hyperopic astigmatism. A decent postoperative visual acuity was observed with good patient satisfaction. A specific protocol must be applied to optimize the correct diagnosis, presurgical evaluation and postsurgical outcomes that are to be maintained over time, without regressions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelli, N.; Valeo, E. J.; Green, D. L.
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelli, N.; Valeo, E.J.; Green, D.L.
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescriptionmore » of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.« less
NASA Astrophysics Data System (ADS)
Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.
2017-05-01
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.
Bertelli, N.; Valeo, E. J.; Green, D. L.; ...
2017-04-03
At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less
NASA Technical Reports Server (NTRS)
Bernacki, Bruce E.; Mansuripur, M.
1992-01-01
A commonly used tracking method on pre-grooved magneto-optical (MO) media is the push-pull technique, and the astigmatic method is a popular focus-error detection approach. These two methods are analyzed using DIFFRACT, a general-purpose scalar diffraction modeling program, to observe the effects on the error signals due to focusing lens misalignment, Seidel aberrations, and optical crosstalk (feedthrough) between the focusing and tracking servos. Using the results of the astigmatic/push-pull system as a basis for comparison, a novel focus/track-error detection technique that utilizes a ring toric lens is evaluated as well as the obscuration method (focus error detection only).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumenhagen, Ralph; /Munich, Max Planck Inst.; Grimm, Thomas W.
2010-08-26
We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also providemore » a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.« less
Post implantation adjustable intraocular lenses.
Schwartz, D M; Jethmalani, J M; Sandstedt, C A; Kornfield, J A; Grubbs, R H
2001-06-01
To eliminate persistent refractive errors after cataract and phakic IOL surgery, photosensitive silicone IOLs have been developed. These IOL formulations enable precise laser adjustment of IOL power to correct spherical and toric errors post-operatively, after wound and IOL stabilization. Initial experience with these laser adjustable IOLs indicate excellent biocompatability and adjustability of more than five diopters.
United States housing, third quarter 2013
Delton Alderman
2017-01-01
The U.S. housing construction marketâs third quarter was subdued, as all sectors moderated or declined. Once again, consensus expectations were for aggregate housing market gains, and these expectations were not realized. Overall starts, housing under construction, and completion data indicated quarterly improvement. Viewed from a recent his¬torical context, all...
Symplectic potentials and resolved Ricci-flat ACG metrics
NASA Astrophysics Data System (ADS)
Balasubramanian, Aswin K.; Govindarajan, Suresh; Gowdigere, Chethan N.
2007-12-01
We pursue the symplectic description of toric Kähler manifolds. There exists a general local classification of metrics on toric Kähler manifolds equipped with Hamiltonian 2-forms due to Apostolov, Calderbank and Gauduchon (ACG). We derive the symplectic potential for these metrics. Using a method due to Abreu, we relate the symplectic potential to the canonical potential written by Guillemin. This enables us to recover the moment polytope associated with metrics and we thus obtain global information about the metric. We illustrate these general considerations by focusing on six-dimensional Ricci-flat metrics and obtain Ricci-flat metrics associated with real cones over Lpqr and Ypq manifolds. The metrics associated with cones over Ypq manifolds turn out to be partially resolved with two blow-up parameters taking special (non-zero) values. For a fixed Ypq manifold, we find explicit metrics for several inequivalent blow-ups parametrized by a natural number k in the range 0 < k < p. We also show that all known examples of resolved metrics such as the resolved conifold and the resolution of {\\bb C}^3/{\\bb Z}_3 also fit the ACG classification.
Predictions of high QDT in ITER H-mode plasmas
NASA Astrophysics Data System (ADS)
Budny, Robert
2009-05-01
Time-dependent integrated predictions of performance metrics such as the fusion power PDT, QDT≡ PDT/Pext, and alpha profiles are presented. The PTRANSP code (see R.V. Budny, R. Andre, G. Bateman, F. Halpern, C.E. Kessel, A. Kritz, and D. McCune, Nuclear Fusion 48 075005, and F. Halpern, A. Kritz, G. Bateman, R.V. Budny, and D. McCune, Phys. Plasmas 15 062505) is used, along with GLF23 to predict plasma profiles, NUBEAM for NNBI and alpha heating, TORIC for ICRH, and TORAY for ECRH. Effects of sawteeth mixing, beam steering, beam shine-through, radiation loss, ash accumulation, and toroidal rotation are included. A total heating of Pext=73MW is assumed to achieve H-mode during the density and current ramp-up phase. Various mixes of NNBI, ICRH, and ECRH heating schemes are compared. After steady state conditions are achieved, Pext is stepped down to lower values to explore high QDT. Physics and computation uncertainties lead to ranges in predictions for PDT and QDT. Physics uncertainties include the L->H and H->L threshold powers, pedestal height, impurity and ash transport, and recycling. There are considerably more uncertainties predicting the peak value for QDT than for PDT.
Treacy, M P; Treacy, M G; Dimitrov, B D; Seager, F E; Stamp, M A; Murphy, C C
2013-01-01
Purpose Globally, 153 million people are visually impaired from uncorrected refractive error. The aim of this research was to verify a method whereby autorefractors could be used by non-specialist health-workers to prescribe spectacles, which used a small stock of preformed lenses that fit frames with standardised apertures. These spectacles were named S-Glasses (Smart Glasses). Patients and methods This prospective, single-cohort exploratory study enrolled 53 patients with 94 eligible eyes having uncorrected vision of 6/18 or worse. Eyes with best-corrected vision worse than 6/12 were excluded. An autorefractor was used to obtain refractions, which were adjusted so that eyes with astigmatism less than 2.00 dioptres (D) received spherical equivalent lenses, and eyes with more astigmatism received toric lenses with a 2.50 D cylindrical element set at one of four meridians. The primary outcome was to compare S-Glasses vision with the WHO definition of visual impairment (6/18). Where astigmatism was 2.00 D or greater, comparison with spherical equivalent was made. Mixed-model analysis with repeated effect was used to account for possible correlation between the vision of fellow eyes of the same individual. Results S-Glasses corrected 100% of eyes with astigmatism less than 3.00 D and 69% of eyes with astigmatism of 3.00 D or greater. Spherical equivalent lenses corrected 25% of eyes with astigmatism of 2.00−2.99 D and 11% with astigmatism of at least 3.00 D. Discussion S-Glasses could be beneficial to resource-poor populations without trained refractionists. This novel approach, using approximate toric lenses, results in superior vision for astigmatic patients compared with the practice of providing spherical equivalent alone. PMID:23306732
Yang-Mills theory and the ABC conjecture
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Hu, Zhi; Probst, Malte; Read, James
2018-05-01
We establish a precise correspondence between the ABC Conjecture and 𝒩 = 4 super-Yang-Mills theory. This is achieved by combining three ingredients: (i) Elkies’ method of mapping ABC-triples to elliptic curves in his demonstration that ABC implies Mordell/Faltings; (ii) an explicit pair of elliptic curve and associated Belyi map given by Khadjavi-Scharaschkin; and (iii) the fact that the bipartite brane-tiling/dimer model for a gauge theory with toric moduli space is a particular dessin d’enfant in the sense of Grothendieck. We explore this correspondence for the highest quality ABC-triples as well as large samples of random triples. The conjecture itself is mapped to a statement about the fundamental domain of the toroidal compactification of the string realization of 𝒩 = 4 SYM.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
.......... Medtronic Vascular.... Valiant thoracic stent graft April 1, 2011. system. H100002 FDA-2011-M-0241... Scientific Corp ION paclitaxel-eluting coronary April 22, 2011. stent system (monorail and over- the-wire..., 2011. toric IOL. P040012 (S34) FDA-2011-M-0343. Abbott Vascular, Inc.. RX Acculink carotid stent system...
Matrix models and stochastic growth in Donaldson-Thomas theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szabo, Richard J.; Tierz, Miguel; Departamento de Analisis Matematico, Facultad de Ciencias Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid
We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used tomore » show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.« less
Faithful Tropicalization of Hypertoric Varieties
NASA Astrophysics Data System (ADS)
Kutler, Max B.
The hypertoric variety MA defined by an arrangement A of affine hyperplanes admits a natural tropicalization, induced by its embedding in a Lawrence toric variety. In this thesis, we explicitly describe the polyhedral structure of this tropicalization and calculate the fibers of the tropicalization map. Using a recent result of Gubler, Rabinoff, and Werner, we prove that there is a continuous section of the tropicalization map.
Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew
2014-12-01
Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.
NASA Astrophysics Data System (ADS)
Ye, Peng; Hughes, Taylor L.; Maciejko, Joseph; Fradkin, Eduardo
2016-09-01
Topological phases of matter are usually realized in deconfined phases of gauge theories. In this context, confined phases with strongly fluctuating gauge fields seem to be irrelevant to the physics of topological phases. For example, the low-energy theory of the two-dimensional (2D) toric code model (i.e., the deconfined phase of Z2 gauge theory) is a U(1 )×U(1 ) Chern-Simons theory in which gauge charges (i.e., e and m particles) are deconfined and the gauge fields are gapped, while the confined phase is topologically trivial. In this paper, we point out a route to constructing exotic three-dimensional (3D) gapped fermionic phases in a confining phase of a gauge theory. Starting from a parton construction with strongly fluctuating compact U(1 )×U(1 ) gauge fields, we construct gapped phases of interacting fermions by condensing two linearly independent bosonic composite particles consisting of partons and U(1 )×U(1 ) magnetic monopoles. This can be regarded as a 3D generalization of the 2D Bais-Slingerland condensation mechanism. Charge fractionalization results from a Debye-Hückel-type screening cloud formed by the condensed composite particles. Within our general framework, we explore two aspects of symmetry-enriched 3D Abelian topological phases. First, we construct a new fermionic state of matter with time-reversal symmetry and Θ ≠π , the fractional topological insulator. Second, we generalize the notion of anyonic symmetry of 2D Abelian topological phases to the charge-loop excitation symmetry (Charles ) of 3D Abelian topological phases. We show that line twist defects, which realize Charles transformations, exhibit non-Abelian fusion properties.
X-cube model on generic lattices: Fracton phases and geometric order
NASA Astrophysics Data System (ADS)
Slagle, Kevin; Kim, Yong Baek
2018-04-01
Fracton order is a new kind of quantum order characterized by topological excitations that exhibit remarkable mobility restrictions and a robust ground-state degeneracy (GSD) which can increase exponentially with system size. In this paper, we present a generic lattice construction (in three dimensions) for a generalized X-cube model of fracton order, where the mobility restrictions of the subdimensional particles inherit the geometry of the lattice. This helps explain a previous result that lattice curvature can produce a robust GSD, even on a manifold with trivial topology. We provide explicit examples to show that the (zero-temperature) phase of matter is sensitive to the lattice geometry. In one example, the lattice geometry confines the dimension-1 particles to small loops, which allows the fractons to be fully mobile charges, and the resulting phase is equivalent to (3+1)-dimensional toric code. However, the phase is sensitive to more than just lattice curvature; different lattices without curvature (e.g., cubic or stacked kagome lattices) also result in different phases of matter, which are separated by phase transitions. Unintuitively, however, according to a previous definition of phase [X. Chen et al., Phys. Rev. B 82, 155138 (2010), 10.1103/PhysRevB.82.155138], even just a rotated or rescaled cubic results in different phases of matter, which motivates us to propose a coarser definition of phase for gapped ground states and fracton order. This equivalence relation between ground states is given by the composition of a local unitary transformation and a quasi-isometry (which can rotate and rescale the lattice); equivalently, ground states are in the same phase if they can be adiabatically connected by varying both the Hamiltonian and the positions of the degrees of freedom (via a quasi-isometry). In light of the importance of geometry, we further propose that fracton orders should be regarded as a geometric order.
Double coverings with h 2 , 0 = 0 over compact Kähler manifolds
NASA Astrophysics Data System (ADS)
Lee, Nam-Hoon
2018-04-01
We give a formula for Hodge numbers of double coverings with h 2 , 0 = 0 over compact Kähler manifolds. As an application, we consider Calabi-Yau double coverings and calculate their Hodge numbers. In this way, we find several pairs (h 1 , 1 ,h 1 , 2) of Hodge numbers of Calabi-Yau threefolds that do not come from toric setting.
Calabi-Yau threefolds with small h1,1's from Fano threefolds
NASA Astrophysics Data System (ADS)
Lee, Nam-Hoon
2017-09-01
We construct Calabi-Yau threefolds with relatively small Hodge numbers h 1 , 1's by smoothing normal crossing varieties, which are obtained from Fano threefolds. We consider over 300 configurations and compute Hodge numbers of Calabi-Yau threefolds. Many of those Hodge pairs (h 1 , 1 ,h 1 , 2) do not overlap with those of Calabi-Yau threefolds constructed in the toric setting.
Zheng, Lin-Yan; Zhu, Shuang-Qian; Su, Yan-Feng; Zou, Hu-Yong; Wang, Qin-Mei; Yu, A-Yong
2017-01-01
To compare the outcomes of a toric phakic intraocular lens (PIOL) and a spherical PIOL combined with astigmatic keratotomy (AK) for the correction of high myopic astigmatism. This study enrolled patients with high myopic astigmatism, including 30 eyes (22 patients) that received a toric PIOL implantation (TICL group), and 32 eyes (24 patients) that received combined AK and a spherical PIOL implantation (AK+ ICL group). The outcomes were compared between the two groups before surgery, and at the following time points after surgery: 1 week, 1, 3, 6 months, and 1, 2 years. Preoperatively, the mean manifest spherical equivalent (SE) was -14.14 ± 2.12 D in the TICL group and -14.83 ± 2.79 D in the AK + ICL group ( P = 0.28), and the mean manifest refractive cylinder, -2.87 ± 1.09 D and -2.58 ± 0.85 D, respectively ( P = 0.28). Two years postoperatively, the mean safety index was 1.53 ± 0.55 in the TICL group and 1.60 ± 0.70 in the AK + ICL group ( P = 1.00), and the mean efficacy index, 1.18 ± 0.45 and 1.38 ± 0.52, respectively ( P = 0.86). The mean manifest refractive cylinder correction was 1.94 ± 1.07 D in the TICL group and 1.39 ± 0.71 D in the AK + ICL group ( P = 0.02). The mean changes in SE and refractive cylinder from 1 week to 2 years were less than 0.50 D in both groups. Both TICL implantation and AK + ICL implantation are a good alternative for correction of astigmatism in addition to high myopia. TICL implantation has better predictability in correction of high myopic astigmatism. NCT03202485.
NASA Astrophysics Data System (ADS)
Taylor, Gary; Bertelli, Nicola; Gerhardt, Stefan P.; Hosea, Joel C.; Mueller, Dennis; Perkins, Rory J.; Poli, Francesca M.; Wilson, James R.; Raman, Roger
2017-10-01
30 MHz fast-wave heating may be an effective tool for non-inductively ramping low-current plasmas to a level suitable for initiating up to 12 MW of neutral beam injection on the National Spherical Tokamak Experiment Upgrade (NSTX-U). Previously on NSTX 30 MHz fast wave heating was shown to efficiently and rapidly heat electrons; at the NSTX maximum axial toroidal magnetic field (BT(0)) of 0.55 T, 1.4 MW of 30 MHz heating increased the central electron temperature from 0.2 to 2 keV in 30 ms and generated an H-mode plasma with a non-inductive fraction (fNI) ˜ 0.7 at a plasma current (Ip) of 300 kA. NSTX-U will operate at BT(0) up to 1 T, with up to 4 MW of 30 MHz power (Prf). Predictive TRANSP free boundary transport simulations, using the TORIC full wave spectral code to calculate the fast-wave heating and current drive, have been run for NSTX-U Ip = 300 kA H-mode plasmas. Favorable scaling of fNI with 30 MHz heating power is predicted, with fNI ≥ 1 for Prf ≥ 2 MW.
Correction of high amounts of astigmatism through orthokeratology. A case report
Baertschi, Michael; Wyss, Michael
2011-01-01
The purpose of this case report is to introduce a method for a successful treatment of high astigmatism with a new orthokeratology design, called FOKX (Falco Kontaktlinsen, Switzerland). This novel toric orthokeratology contact lens design, the fitting approach and the performance of FOKX lenses will be illustrated in the form of a case report. Correcting astigmatism with orthokeratology offers a new perspective for all patients suffering astigmatism.
2014-10-01
nonlinear and non-stationary signals. It aims at decomposing a signal, via an iterative sifting procedure, into several intrinsic mode functions ...stationary signals. It aims at decomposing a signal, via an iterative sifting procedure into several intrinsic mode functions (IMFs), and each of the... function , optimization. 1 Introduction It is well known that nonlinear and non-stationary signal analysis is important and difficult. His- torically
A Chiang-type lagrangian in CP^2
NASA Astrophysics Data System (ADS)
Cannas da Silva, Ana
2018-03-01
We analyse a monotone lagrangian in CP^2 that is hamiltonian isotopic to the standard lagrangian RP^2, yet exhibits a distinguishing behaviour under reduction by one of the toric circle actions, namely it intersects transversally the reduction level set and it projects one-to-one onto a great circle in CP^1. This lagrangian thus provides an example of embedded composition fitting work of Wehrheim-Woodward and Weinstein.
Khoramnia, Ramin; Auffarth, Gerd U; Rabsilber, Tanja M; Holzer, Mike P
2012-11-01
We report a 66-year-old patient who presented with increasing hyperopia, astigmatism, and presbyopia in both eyes 8 years after bilateral laser in situ keratomileusis (LASIK) and LASIK enhancement in the left eye aiming for spectacle independence. Bilateral multifocal toric Lentis Mplus intraocular lenses (IOLs) with an embedded near segment and individually customized cylinder correction were implanted uneventfully following phacoemulsification. The Haigis-L formula after previous hyperopia correction was chosen for IOL power calculation and provided reliable results. Emmetropia was targeted and achieved. Three months postoperatively, the uncorrected distance visual acuity had increased from 0.40 logMAR to 0.10 logMAR in the right eye and from 0.20 logMAR to 0.00 logMAR in the left eye. The patient gained 6 lines of uncorrected near visual acuity: 0.20 logMAR in the right eye and 0.10 logMAR in the left eye. This case shows that customized premium IOL implantation can provide accurate results even in challenging cases. The International Vision Correction Research Centre, Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany, has received research grants, lecture fees, and travel reimbursement from Oculentis GmbH. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction
NASA Astrophysics Data System (ADS)
Fehér, L.; Klimčík, C.
2012-07-01
The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars-Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n-1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.
Buckling analysis of Big Dee Vacuum Vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lightner, S.; Gallix, R.
1983-12-01
A simplified three-dimensional shell buckling analysis of the GA Technologies Inc., Big Dee Vacuum Vessel (V/V) was performed using the finite element program TRICO. A coarse-mesh linear elastic model, which accommodated the support boundary conditions, was used to determine the buckling mode shape under a uniform external pressure. Using this buckling mode shape, refined models were used to calculate the linear buckling load (P/sub crit/) more accurately. Several different designs of the Big Dee V/V were considered in this analysis. The supports for the V/V were equally-spaced radial pins at the outer diameter of the mid-plane. For all the casesmore » considered, the buckling mode was axisymmetric in the toroidal direction. Therefore, it was possible to use only a small angular sector of a toric shell for the refined analysis. P/sub crit/ for the Big Dee is about 60 atm for a uniform external pressure. Also investigated in this analysis were the effects of geometrical imperfections and non-uniform pressure distributions.« less
Minimal models of compact symplectic semitoric manifolds
NASA Astrophysics Data System (ADS)
Kane, D. M.; Palmer, J.; Pelayo, Á.
2018-02-01
A symplectic semitoric manifold is a symplectic 4-manifold endowed with a Hamiltonian (S1 × R) -action satisfying certain conditions. The goal of this paper is to construct a new symplectic invariant of symplectic semitoric manifolds, the helix, and give applications. The helix is a symplectic analogue of the fan of a nonsingular complete toric variety in algebraic geometry, that takes into account the effects of the monodromy near focus-focus singularities. We give two applications of the helix: first, we use it to give a classification of the minimal models of symplectic semitoric manifolds, where "minimal" is in the sense of not admitting any blowdowns. The second application is an extension to the compact case of a well known result of Vũ Ngọc about the constraints posed on a symplectic semitoric manifold by the existence of focus-focus singularities. The helix permits to translate a symplectic geometric problem into an algebraic problem, and the paper describes a method to solve this type of algebraic problem.
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Cincio, Lukasz; Moradi, Heidar; Gaiotto, Davide; Vidal, Guifre
2015-03-01
In a system with chiral topological order, there is a remarkable correspondence between the edge and entanglement spectra: the low-energy spectrum of the system in the presence of a physical edge coincides with the lowest part of the entanglement spectrum (ES) across a virtual cut of the system into two parts, up to rescaling and shifting. This correspondence is believed to be due to the existence of protected gapless edge modes. In this paper, we explore whether the edge-entanglement spectrum correspondence extends to nonchiral topological phases, where there are no protected gapless edge modes. Specifically, we consider the Wen-plaquette model, which is equivalent to the Kitaev toric code model and has Z2 topological order (quantum double of Z2) . The unperturbed Wen-plaquette model displays an exact correspondence: both the edge and entanglement spectra within each topological sector a (a =1 ,⋯,4 ) are flat and equally degenerate. Here, we show, through a detailed microscopic calculation, that in the presence of generic local perturbations: (i) the effective degrees of freedom for both the physical edge and the entanglement cut consist of a (spin-1 /2 ) spin chain, with effective Hamiltonians Hedgea and Henta, respectively, both of which have a Z2 symmetry enforced by the bulk topological order; (ii) there is in general no match between the low-energy spectra of Hedgea and Henta, that is, there is no edge-ES correspondence. However, if supplement the Z2 topological order with a global symmetry (translational invariance along the edge/entanglement cut), i.e., by considering the Wen-plaquette model as a symmetry-enriched topological phase (SET), then there is a finite domain in Hamiltonian space in which both Hedgea and Henta realize the critical Ising model, whose low-energy effective theory is the c =1 /2 Ising CFT. This is achieved because the presence of the global symmetry implies that the effective degrees of freedom of both the edge and entanglement cut are governed by Kramers-Wannier self-dual Hamiltonians, in addition to them being Z2 symmetric, which is imposed by the topological order. Thus, by considering the Wen-plaquette model as a SET, the topological order in the bulk together with the translation invariance of the perturbations along the edge/cut imply an edge-ES correspondence at least in some finite domain in Hamiltonian space.
Patterns in Calabi-Yau Distributions
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Jejjala, Vishnu; Pontiggia, Luca
2017-09-01
We explore the distribution of topological numbers in Calabi-Yau manifolds, using the Kreuzer-Skarke dataset of hypersurfaces in toric varieties as a testing ground. While the Hodge numbers are well-known to exhibit mirror symmetry, patterns in frequencies of combination thereof exhibit striking new patterns. We find pseudo-Voigt and Planckian distributions with high confidence and exact fit for many substructures. The patterns indicate typicality within the landscape of Calabi-Yau manifolds of various dimension.
An Environmental Assessment of the Fee Acquisition of Dare County Range, North Carolina
1974-10-15
the understory are red bay ( Persea spp.), loblolly bay (Gordonia lasianthus), sweet bay (Magnolia virginica), red maple (Acer rubra), wax...South American rodents, are also reported to be in the area. [14] 3.2.2.2 Birds Table 3.2.2-A shows a list compiled by the Department of...34 and to "assure for all Americans ...aesthetically and culturally pleasing surroundings," and to "preserve important his- toric, cultural, and natural
Area Handbook Series: Egypt: A Country Study
1991-01-01
iI~torical Settinlg Sphinx and pyramids at Giza (Al jizah) THE ROOTS OF EGYPTIAN civilization go back more than 6,000 years to the beginning of...built by Snoferu, the first king of the Fourth Dynasty. His son and successor, Kheops, built the Great Pyramid at Giza (AlJizah); this, with its two... Pyramid and Sphinx at Giza , Fourth Dynasty, ca. 2540 B. C. Courtesy Boris Boguslavsky 19 Egypt: A Country Study In June 640, reinforcements for the Arab
The United States Air Force in Korea: A Chronology, 1950-1953
2000-01-01
War , the U.S. Air Force (USAF) Historian commissioned the Research Division, Air Force His- torical Research Agency (AFHRA), Maxwell Air Force Base...and aces. Finally, it attempts to summarize those USAF events in Korea that best illustrate the air war and the application of air power in the...sources, usually to confirm the most signifi- cant events of the air war in Korea. AFHRA historians or archivists who researched and wrote the monthly and
A Critical Review of High Entropy Alloys and Related Concepts (Postprint)
2016-10-21
448e511 451The purpose of this paper is to critically assess the major ideas and proposed characteristics of high entropy and multi-principal element...re-introduced once again to put the modern HEA and MPEA concepts into his- torical perspective [17]. A second paper of historical note applied the...MPEA concept to metallic glasses [19]. This paper used equi- molar substitution of chemically similar elements in a known metallic glass alloy. This is
A Critical But Missing Piece: Educating Our Professional Military on the History of Islam
2011-04-01
anything, observe its beginning and its development.1 —Aristotle Introduction To someone familiar with the history of Ancient Greece, the story will...strategists fail to consider—or understand—his- torical matters of context in their planning. A brief assessment of what the proposed block of instruction...even if it does call for an important note of caution. We Know What We Don’t Know Justifiably, Americans are often criticized for their short
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, D.; Eisert, J.; Schuch, N.
We introduce schemes for quantum computing based on local measurements on entangled resource states. This work elaborates on the framework established in Gross and Eisert [Phys. Rev. Lett. 98, 220503 (2007); quant-ph/0609149]. Our method makes use of tools from many-body physics--matrix product states, finitely correlated states, or projected entangled pairs states--to show how measurements on entangled states can be viewed as processing quantum information. This work hence constitutes an instance where a quantum information problem--how to realize quantum computation--was approached using tools from many-body theory and not vice versa. We give a more detailed description of the setting and presentmore » a large number of examples. We find computational schemes, which differ from the original one-way computer, for example, in the way the randomness of measurement outcomes is handled. Also, schemes are presented where the logical qubits are no longer strictly localized on the resource state. Notably, we find a great flexibility in the properties of the universal resource states: They may, for example, exhibit nonvanishing long-range correlation functions or be locally arbitrarily close to a pure state. We discuss variants of Kitaev's toric code states as universal resources, and contrast this with situations where they can be efficiently classically simulated. This framework opens up a way of thinking of tailoring resource states to specific physical systems, such as cold atoms in optical lattices or linear optical systems.« less
Pilot Study for OCT Guided Design and Fit of a Prosthetic Device for Treatment of Corneal Disease.
Le, Hong-Gam T; Tang, Maolong; Ridges, Ryan; Huang, David; Jacobs, Deborah S
2012-01-01
Purpose. To assess optical coherence tomography (OCT) for guiding design and fit of a prosthetic device for corneal disease. Methods. A prototype time domain OCT scanner was used to image the anterior segment of patients fitted with large diameter (18.5-20 mm) prosthetic devices for corneal disease. OCT images were processed and analyzed to characterize corneal diameter, corneal sagittal height, scleral sagittal height, scleral toricity, and alignment of device. Within-subject variance of OCT-measured parameters was evaluated. OCT-measured parameters were compared with device parameters for each eye fitted. OCT image correspondence with ocular alignment and clinical fit was assessed. Results. Six eyes in 5 patients were studied. OCT measurement of corneal diameter (coefficient of variation, CV = 0.76%), cornea sagittal height (CV = 2.06%), and scleral sagittal height (CV = 3.39%) is highly repeatable within each subject. OCT image-derived measurements reveal strong correlation between corneal sagittal height and device corneal height (r = 0.975) and modest correlation between scleral and on-eye device toricity (r = 0.581). Qualitative assessment of a fitted device on OCT montages reveals correspondence with slit lamp images and clinical assessment of fit. Conclusions. OCT imaging of the anterior segment is suitable for custom design and fit of large diameter (18.5-20 mm) prosthetic devices used in the treatment of corneal disease.
2011-07-01
Military District (TMD) north of Afghanistan. The 40th Army would serve as the operational headquarters for ground forces.42 “The 40th Army...the most active part of the antigovernment movement, had his- torically always fought with the national minorities in the north , and the appearance...countryside while helicopter gunships shot up herds of sheep, goats , and camels. Soviet artillery pummeled the countryside. The countryside was blanketed
1981-08-01
valleys are typical of the Basin and Range Province, characterized by parallel, north-south trending mountain ranges, separated by hydrologically closed... basins . Pine and Wah Wah valleys each have hardpan-playas in their lowest areas. State Highway 21 runs roughly northwest-southeast through both val...have been important for prehis- toric and historic use of the area. Pine Valley: Pine and Wah Wah valleys are closed alluvial basins . The central part
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Guo, Jirui; Sharpe, Eric; Wu, Ruoxu
2017-08-01
In this paper, we extend our previous work to construct (0 , 2) Toda-like mirrors to A/2-twisted theories on more general spaces, as part of a program of understanding (0,2) mirror symmetry. Specifically, we propose (0 , 2) mirrors to GLSMs on toric del Pezzo surfaces and Hirzebruch surfaces with deformations of the tangent bundle. We check the results by comparing correlation functions, global symmetries, as well as geometric blowdowns with the corresponding (0 , 2) Toda-like mirrors. We also briefly discuss Grassmannian manifolds.
RF Wave Simulation Using the MFEM Open Source FEM Package
NASA Astrophysics Data System (ADS)
Stillerman, J.; Shiraiwa, S.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Kolev, T.
2016-10-01
A new plasma wave simulation environment based on the finite element method is presented. MFEM, a scalable open-source FEM library, is used as the basis for this capability. MFEM allows for assembling an FEM matrix of arbitrarily high order in a parallel computing environment. A 3D frequency domain RF physics layer was implemented using a python wrapper for MFEM and a cold collisional plasma model was ported. This physics layer allows for defining the plasma RF wave simulation model without user knowledge of the FEM weak-form formulation. A graphical user interface is built on πScope, a python-based scientific workbench, such that a user can build a model definition file interactively. Benchmark cases have been ported to this new environment, with results being consistent with those obtained using COMSOL multiphysics, GENRAY, and TORIC/TORLH spectral solvers. This work is a first step in bringing to bear the sophisticated computational tool suite that MFEM provides (e.g., adaptive mesh refinement, solver suite, element types) to the linear plasma-wave interaction problem, and within more complicated integrated workflows, such as coupling with core spectral solver, or incorporating additional physics such as an RF sheath potential model or kinetic effects. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.
RF wave simulation for cold edge plasmas using the MFEM library
NASA Astrophysics Data System (ADS)
Shiraiwa, S.; Wright, J. C.; Bonoli, P. T.; Kolev, T.; Stowell, M.
2017-10-01
A newly developed generic electro-magnetic (EM) simulation tool for modeling RF wave propagation in SOL plasmas is presented. The primary motivation of this development is to extend the domain partitioning approach for incorporating arbitrarily shaped SOL plasmas and antenna to the TORIC core ICRF solver, which was previously demonstrated in the 2D geometry [S. Shiraiwa, et. al., "HISTORIC: extending core ICRF wave simulation to include realistic SOL plasmas", Nucl. Fusion in press], to larger and more complicated simulations by including a 3D realistic antenna and integrating RF rectified sheath potential model. Such an extension requires a scalable high fidelity 3D edge plasma wave simulation. We used the MFEM [
Wire constructions of Abelian topological phases in three or more dimensions
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Neupert, Titus; Chamon, Claudio; Mudry, Christopher
2016-05-01
Coupled-wire constructions have proven to be useful tools to characterize Abelian and non-Abelian topological states of matter in two spatial dimensions. In many cases, their success has been complemented by the vast arsenal of other theoretical tools available to study such systems. In three dimensions, however, much less is known about topological phases. Since the theoretical arsenal in this case is smaller, it stands to reason that wire constructions, which are based on one-dimensional physics, could play a useful role in developing a greater microscopic understanding of three-dimensional topological phases. In this paper, we provide a comprehensive strategy, based on the geometric arrangement of commuting projectors in the toric code, to generate and characterize coupled-wire realizations of strongly interacting three-dimensional topological phases. We show how this method can be used to construct pointlike and linelike excitations, and to determine the topological degeneracy. We also point out how, with minor modifications, the machinery already developed in two dimensions can be naturally applied to study the surface states of these systems, a fact that has implications for the study of surface topological order. Finally, we show that the strategy developed for the construction of three-dimensional topological phases generalizes readily to arbitrary dimensions, vastly expanding the existing landscape of coupled-wire theories. Throughout the paper, we discuss Zm topological order in three and four dimensions as a concrete example of this approach, but the approach itself is not limited to this type of topological order.
Integrability of geodesics and action-angle variables in Sasaki-Einstein space T^{1,1}
NASA Astrophysics Data System (ADS)
Visinescu, Mihai
2016-09-01
We briefly describe the construction of Stäkel-Killing and Killing-Yano tensors on toric Sasaki-Einstein manifolds without working out intricate generalized Killing equations. The integrals of geodesic motions are expressed in terms of Killing vectors and Killing-Yano tensors of the homogeneous Sasaki-Einstein space T^{1,1}. We discuss the integrability of geodesics and construct explicitly the action-angle variables. Two pairs of frequencies of the geodesic motions are resonant giving way to chaotic behavior when the system is perturbed.
Temporal multiplexing with adaptive optics for simultaneous vision
Papadatou, Eleni; Del Águila-Carrasco, Antonio J.; Marín-Franch, Iván; López-Gil, Norberto
2016-01-01
We present and test a methodology for generating simultaneous vision with a deformable mirror that changed shape at 50 Hz between two vergences: 0 D (far vision) and −2.5 D (near vision). Different bifocal designs, including toric and combinations of spherical aberration, were simulated and assessed objectively. We found that typical corneal aberrations of a 60-year-old subject changes the shape of objective through-focus curves of a perfect bifocal lens. This methodology can be used to investigate subjective visual performance for different multifocal contact or intraocular lens designs. PMID:27867718
A geometrical upper bound on the inflaton range
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Ciupke, David; Mayrhofer, Christoph; Shukla, Pramod
2018-05-01
We argue that in type IIB LVS string models, after including the leading order moduli stabilisation effects, the moduli space for the remaining flat directions is compact due the Calabi-Yau Kähler cone conditions. In cosmological applications, this gives an inflaton field range which is bounded from above, in analogy with recent results from the weak gravity and swampland conjectures. We support our claim by explicitly showing that it holds for all LVS vacua with h 1,1 = 3 obtained from 4-dimensional reflexive polytopes. In particular, we first search for all Calabi-Yau threefolds from the Kreuzer-Skarke list with h 1,1 = 2, 3 and 4 which allow for LVS vacua, finding several new LVS geometries which were so far unknown. We then focus on the h 1,1 = 3 cases and show that the Kähler cones of all toric hypersurface threefolds force the effective 1-dimensional LVS moduli space to be compact. We find that the moduli space size can generically be trans-Planckian only for K3 fibred examples.
BPS/CFT Correspondence III: Gauge Origami Partition Function and qq-Characters
NASA Astrophysics Data System (ADS)
Nekrasov, Nikita
2018-03-01
We study generalized gauge theories engineered by taking the low energy limit of the Dp branes wrapping {X × {T}^{p-3}}, with X a possibly singular surface in a Calabi-Yau fourfold Z. For toric Z and X the partition function can be computed by localization, making it a statistical mechanical model, called the gauge origami. The random variables are the ensembles of Young diagrams. The building block of the gauge origami is associated with a tetrahedron, whose edges are colored by vector spaces. We show the properly normalized partition function is an entire function of the Coulomb moduli, for generic values of the {Ω} -background parameters. The orbifold version of the theory defines the qq-character operators, with and without the surface defects. The analytic properties are the consequence of a relative compactness of the moduli spaces M({ěc n}, k) of crossed and spiked instantons, demonstrated in "BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem".
Tuned and non-Higgsable U(1)s in F-theory
Wang, Yi-Nan
2017-03-01
We study the tuning of U(1) gauge fields in F-theory models on a base of general dimension. We construct a formula that computes the change in Weierstrass moduli when such a U(1) is tuned, based on the Morrison-Park form of a Weierstrass model with an additional rational section. Using this formula, we propose the form of “minimal tuning” on any base, which corresponds to the case where the decrease in the number of Weierstrass moduli is minimal. Applying this result, we discover some universal features of bases with non-Higgsable U(1)s. Mathematically, a generic elliptic fibration over such a base hasmore » additional rational sections. Physically, this condition implies the existence of U(1) gauge group in the low-energy supergravity theory after compactification that cannot be Higgsed away. In particular, we show that the elliptic Calabi-Yau manifold over such a base has a small number of complex structure moduli. We also suggest that non-Higgsable U(1)s can never appear on any toric bases. Finally, we construct the first example of a threefold base with non-Higgsable U(1)s.« less
Symmetry Enriched Topological Phases and Their Edge Theories
NASA Astrophysics Data System (ADS)
Heinrich, Christopher
In this thesis we investigate topological phases of matter that have a global, unbroken symmetry group--also known as symmetry enriched topological (SET) phases. We address three questions about these phases: (1) how can we build exactly solvable models that realize them? (2) how can we determine if their edge theories can be gapped without breaking the symmetry? and (3) how do we understand the phenomenon of decoupled charge and neutral modes which occurs in certain fractional quantum Hall states? More specifically, we address the first question by constructing exactly solvable models for a wide class of symmetry enriched topological (SET) phases, which we call symmetry-enriched string nets. The construction applies to 2D bosonic SET phases with finite unitary onsite symmetry group G, and we conjecture that our models realize every phase in this class that can be described by a commuting projector Hamiltonian. As an example, we present a model for a phase with the same anyon excitations as the toric code and with a Z2 symmetry which exchanges the e and m type anyons. We further illustrate our construction with a number of additional examples. For the second question, we focus on the edge theories of 2D SET phases with Z2 symmetry. The central problem we seek to solve is to determine which edge theories can be gapped without breaking the symmetry. Previous attempts to answer this question in special cases relied on constructing perturbations of a particular type to gap the edge. This method proves the edge can be gapped when the appropriate perturbations can be found, but is inconclusive if they cannot be found. We build on this previous work by deriving a necessary and sufficient algebraic condition for when the edge can be gapped. Our results apply to Z2 symmetry protected topological phases as well as Abelian Z2 SET phases. Finally, in the fourth chapter, we describe solvable models that capture how impurity scattering in certain fractional quantum Hall edges can give rise to a neutral mode--i.e. an edge mode that does not carry electric charge. These models consist of two counter-propagating chiral Luttinger liquids together with a collection of discrete impurity scatterers. Our main result is an exact solution of these models in the limit of infinitely strong impurity scattering. From this solution, we explicitly derive the existence of a neutral mode and we determine all of its microscopic properties including its velocity. We also study the stability of the neutral mode and show that it survives at finite but sufficiently strong scattering. Our results are applicable to a family of Abelian fractional quantum Hall states of which the nu = 2/3 state is the most prominent example.
Symbolic algebra approach to the calculation of intraocular lens power following cataract surgery
NASA Astrophysics Data System (ADS)
Hjelmstad, David P.; Sayegh, Samir I.
2013-03-01
We present a symbolic approach based on matrix methods that allows for the analysis and computation of intraocular lens power following cataract surgery. We extend the basic matrix approach corresponding to paraxial optics to include astigmatism and other aberrations. The symbolic approach allows for a refined analysis of the potential sources of errors ("refractive surprises"). We demonstrate the computation of lens powers including toric lenses that correct for both defocus (myopia, hyperopia) and astigmatism. A specific implementation in Mathematica allows an elegant and powerful method for the design and analysis of these intraocular lenses.
NASA Astrophysics Data System (ADS)
Vlachynska, Alzbeta; Oplatkova, Zuzana Kominkova; Sramka, Martin
2017-07-01
The aim of the work is to determine the coordinate system of an eye and insert a polar-axis system into images captured by a slip lamp. The image of the eye with the polar axis helps a surgeon accurately implant toric intraocular lens in the required position/rotation during the cataract surgery. In this paper, two common algorithms for pupil detection are compared: the circle Hough transform and Daugman's algorithm. The procedures were tested and analysed on the anonymous data set of 128 eyes captured at Gemini eye clinic in 2015.
Colored knot polynomials for arbitrary pretzel knots and links
Galakhov, D.; Melnikov, D.; Mironov, A.; ...
2015-04-01
A very simple expression is conjectured for arbitrary colored Jones and HOMFLY polynomials of a rich (g+1)-parametric family of pretzel knots and links. The answer for the Jones and HOMFLY is fully and explicitly expressed through the Racah matrix of Uq(SU N), and looks related to a modular transformation of toric conformal block. Knot polynomials are among the hottest topics in modern theory. They are supposed to summarize nicely representation theory of quantum algebras and modular properties of conformal blocks. The result reported in the present letter, provides a spectacular illustration and support to this general expectation.
Pérez-Vives, Cari; Domínguez-Vicent, Alberto; Madrid-Costa, David; Ferrer-Blasco, Teresa; Montés-Micó, Robert
2013-03-01
To compare the optical and visual quality of a simulated Toric Implantable Collamer Lens (TICL) and a bioptics technique to treat high myopic astigmatism. An adaptive optics visual simulator was used to simulate the vision after TICL implantation and a bioptics procedure from the wavefront aberration pattern for moderate and high-myopic astigmatism. Visual acuity (VA) at different contrasts and contrast sensitivity (CS) at 10, 20 and 25 cycles degree(-1) were measured for 3 and 5-mm pupils. Modulation Transfer Function (MTF) and Point Spread Function (PSF) were calculated for a 5-mm pupil. At a 3-mm pupil we only found statistically significant differences in VA between the two simulated surgeries at low-contrast for moderate- and high-myopic astigmatism (p < 0.05). Statistically significant differences were found in CS at 3-mm pupil between both procedures at the highest spatial frequency for moderate-myopic astigmatism and at all frequencies for high-myopic astigmatism (p < 0.05). At a 5-mm pupil we found statistically significant differences in VA and CS between both simulated surgeries at all contrasts and frequencies evaluated for both groups (p < 0.05). In all cases VA and CS were better with the TICL than with the bioptics technique. MTFs for the bioptics technique were worse than those computed for the TICL. The TICL showed less spread out of the PSF than the bioptics procedure. Simulated TICL and bioptics procedures provided good optical and visual quality, although TICL implantation provided slightly better outcomes than the bioptics procedure, especially when the pupil diameter was increased. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Lazaridis, Apostolos; Reinstein, Dan Z; Archer, Timothy J; Schulze, Stephan; Sekundo, Walter
2016-11-01
To design a technique for intrastromal transplantation of stromal lenticules with specific refractive power for correction of post-LASIK induced hyperopia and astigmatism. A 28-year-old patient was referred for consultation after complicated LASIK for moderate myopia and astigmatism. The refractive error of the right eye was severely overcorrected due to data entry error. Post-LASIK refraction showed high astigmatism (right eye: +6.50 -9.00 @ 84°) and corrected distance visual acuity (CDVA) of 20/32. The corneal thickness was 282 µm. A refractive lenticule transplantation was performed due to contact lens intolerance, poor visual acuity, and severe anisometropia. A toric and myopic lenticule, obtained from a donor using the femtosecond lenticule extraction technique, was implanted under the flap to reduce the refractive error, bring the refraction of the eye to the level correctable by phakic intraocular lens, and restore corneal volume. Six weeks postoperatively, the donor lenticule was spread smoothly in the interface with a minor temporal decentration in relation to pupil center. The refraction showed a reduction of astigmatism but a stronger myopization compared to preoperative calculations (right eye: -6.50 -4.00 @ 70°). At 3 months, the CDVA returned to the preoperative value of 20/32. One year postoperatively, corneal tomography showed no signs of ectasia and biomicroscopy revealed no signs of rejection. After implanting a toric myopic implantable collamer lens, the patient regained uncorrected distance visual acuity of 20/40 and full stereopsis. The refractive lenticule transplantation technique offers a solution for rare cases of post-LASIK hyperopia and high astigmatism while restoring the volume of thin corneas. Moreover, it is a reversible procedure with low probability of rejection. [J Refract Surg. 2016;32(11):780-786.]. Copyright 2016, SLACK Incorporated.
Linz, Katharina; Attia, Mary S A; Khoramnia, Ramin; Tandogan, Tamer; Kretz, Florian T; Auffarth, Gerd Uwe
2016-08-01
To evaluate functional results and reading performance using the Salzburg Reading Desk after implantation of a sector-shaped near-embedded, rotational asymmetrical multifocal intraocular lens (IOL) and a multifocal toric IOL with a +3.00 diopter (D) near addition. In a prospective study, the LentisMplus and Mplus toric IOLs (Oculentis GmbH, Berlin, Germany) were implanted in 34 eyes of 18 patients at the University Eye Hospital of Heidelberg. Uncorrected and corrected distance visual acuity (UDVA, CDVA) and uncorrected and corrected near visual acuity (UNVA, CNVA) were evaluated using standardized visual acuity charts (ETDRS). The Salzburg Reading Desk was used to analyze unilateral and bilateral uncorrected and corrected reading acuity, reading distance, reading speed, and the smallest log-scaled print size that could be read effectively at a set (40 cm/80 cm) and subjective chosen near and intermediate distance. Postoperatively, the median UDVA was 0.08 logMAR (20/25 Snellen) and the median CDVA was 0.01 logMAR (20/20 Snellen). The median UNVA was 0.12 logMAR (20/25 Snellen) and the median CNVA was 0.03 logMAR (20/20 Snellen). The median uncorrected reading acuity measured with the Salzburg Reading Desk for near distance at 40 cm was 0.18 logMAR (20/32 Snellen). The subjectively preferred near distance was 39 cm and revealed similar visual acuity results. The best reading acuity for intermediate distance with a median of 0.22 logMAR (20/32 Snellen) was achieved at a median distance of 62 cm. Reading performance of the multifocal IOL corresponded for near standardized and individual distance, whereas reading function was better at the patient's preferred intermediate distance. [J Refract Surg. 2016;32(8):526-532.]. Copyright 2016, SLACK Incorporated.
Schallhorn, Steven; Tanzer, David; Sanders, Donald R; Sanders, Monica; Brown, Mitch; Kaupp, Sandor E
2010-05-01
To compare changes in simulated night driving performance after Visian Toric Implantable Collamer Lens (TICL; STAAR Surgical) implantation and photorefractive keratectomy (PRK) for the correction of moderate to high myopic astigmatism. This prospective, randomized study consisted of 43 eyes implanted with the TICL (20 bilateral cases) and 45 eyes receiving conventional PRK (VISX Star S3 excimer laser) with mitomycin C (22 bilateral cases) for moderate to high myopia (-6.00 to -20.00 diopters[D] sphere) measured at the spectacle plane and 1.00 to 4.00 D of astigmatism. As a substudy, 27 eyes of 14 TICL patients and 41 eyes of 21 PRK patients underwent a simulated night driving test. The detection and identification distances of road signs and hazards with the Night Driving Simulator (Vision Sciences Research Corp) were measured with and without a glare source before and 6 months after each procedure. No significant difference was noted in the pre- to postoperative Night Driving Simulator in detection distances with and without the glare source between the TICL and PRK groups. The differences in identification distances without glare were significantly better for business and traffic road signs and pedestrian hazards in the TICL group relative to the PRK group whereas with glare, only the pedestrian hazards were significantly better. A clinically relevant change of Night Driving Simulator performance (>0.5 seconds change in ability to identify tasks postoperatively) was significantly better in the TICL group (with and without glare) for all identification tasks. The TICL performed better than conventional PRK in the pre- to postoperative Night Driving Simulator testing with and without a glare source present. Copyright 2010, SLACK Incorporated.
Complete integrability of geodesic motion in Sasaki-Einstein toric Yp,q spaces
NASA Astrophysics Data System (ADS)
Babalic, Elena Mirela; Visinescu, Mihai
2015-09-01
We construct explicitly the constants of motion for geodesics in the five-dimensional Sasaki-Einstein spaces Yp,q. To carry out this task, we use the knowledge of the complete set of Killing vectors and Killing-Yano tensors on these spaces. In spite of the fact that we generate a multitude of constants of motion, only five of them are functionally independent implying the complete integrability of geodesic flow on Yp,q spaces. In the particular case of the homogeneous Sasaki-Einstein manifold T1,1 the integrals of motion have simpler forms and the relations between them are described in detail.
Sallet, Guy
2017-01-01
We report the case of an emmetropic 32-year-old female with decreased uncorrected visual acuity and diplopia due to intermittent episodes of spasm of the near reflex. Neurologic, general, and ophthalmic examination could not find an organic cause. Attempts at spontaneous recovery, psychogenic therapy, and cycloplegic therapy were unsuccessful and the symptoms persisted for almost 5 years, leading to psychogenic distress. Final treatment with refractive lens exchange and implantation of a toric trifocal intraocular lens resolved the spasm of the near reflex, resulting in an uncorrected distance and near visual acuity of 20/20. PMID:29422856
Accuracy and validity of IK4 handheld video keratometer measurements in children
Harvey, Erin M.; Miller, Joseph M.; Schwiegerling, Jim; Clifford-Donaldson, Candice E.; Green, Tina K.; Messer, Dawn H.; Dobson, Velma
2011-01-01
The Infant Keratometer (IK4) is a custom handheld instrument that was designed specifically to allow measurement of corneal astigmatism in infants as young as 6 months of age. In this study, accuracy of IK4 measurements using standard toric surfaces was within 0.25 D. Validity measurements obtained in 860 children aged 3–7 years demonstrated slightly higher astigmatism measurements in the IK4 than in the Retinomax K+. Measurement success was 98% using the IK4. The IK4 may prove to be clinically useful for screening children as young as 3 years of age at high risk for corneal astigmatism. PMID:21907130
28 CFR 36.608 - Guidance concerning model codes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Guidance concerning model codes. 36.608... Codes § 36.608 Guidance concerning model codes. Upon application by an authorized representative of a... relevant model code and issue guidance concerning whether and in what respects the model code is consistent...
Aspects géométriques et intégrables des modèles de matrices aléatoires
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2010-12-01
This thesis deals with the geometric and integrable aspects associated with random matrix models. Its purpose is to provide various applications of random matrix theory, from algebraic geometry to partial differential equations of integrable systems. The variety of these applications shows why matrix models are important from a mathematical point of view. First, the thesis will focus on the study of the merging of two intervals of the eigenvalues density near a singular point. Specifically, we will show why this special limit gives universal equations from the Painlevé II hierarchy of integrable systems theory. Then, following the approach of (bi) orthogonal polynomials introduced by Mehta to compute partition functions, we will find Riemann-Hilbert and isomonodromic problems connected to matrix models, making the link with the theory of Jimbo, Miwa and Ueno. In particular, we will describe how the hermitian two-matrix models provide a degenerate case of Jimbo-Miwa-Ueno's theory that we will generalize in this context. Furthermore, the loop equations method, with its central notions of spectral curve and topological expansion, will lead to the symplectic invariants of algebraic geometry recently proposed by Eynard and Orantin. This last point will be generalized to the case of non-hermitian matrix models (arbitrary beta) paving the way to "quantum algebraic geometry" and to the generalization of symplectic invariants to "quantum curves". Finally, this set up will be applied to combinatorics in the context of topological string theory, with the explicit computation of an hermitian random matrix model enumerating the Gromov-Witten invariants of a toric Calabi-Yau threefold.
Minority heating scenarios in ^4He(H) and ^3He(H) SST-1 plasmas
NASA Astrophysics Data System (ADS)
Chattopadhyay, Asim Kumar
2018-01-01
A numerical analysis of ion cyclotron resonance heating scenarios in two species of low ion temperature plasma has been done to elucidate the physics and possibility to achieve H-mode in tokamak plasma. The analysis is done in the steady-state superconducting tokamak, SST-1, using phase-I plasma parameters which is basically L-mode plasma parameters having low ion temperature and magnetic field with the help of the ion cyclotron heating code TORIC combined with `steady state Fokker-Planck quasilinear' (SSFPQL) solver. As a minority species hydrogen has been used in ^3He and ^4He plasmas to make two species ^3He(H) and ^4He(H) plasmas to study the ion cyclotron wave absorption scenarios. The minority heating is predominant in ^3He(H) and ^4He(H) plasmas as minority resonance layers are not shielded by ion-ion resonance and cut-off layers in both cases, and it is better in ^4He(H) plasma due to the smooth penetration of wave through plasma-vacuum surface. In minority concentration up to 15%, it has been observed that minority ion heating is the principal heating mechanism compared to electron heating and heating due to mode conversion phenomena. Numerical analysis with the help of SSFPQL solver shows that the tail of the distribution function of the minority ion is more energetic than that of the majority ion and therefore, more anisotropic. Due to good coupling of the wave and predominance of the minority heating regime, producing energetic ions in the tail region of the distribution function, the ^4He(H) and ^3He(H) plasmas could be studied in-depth to achieve H-mode in two species of low-temperature plasma.
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Minimum Property Standards § 200.926c Model code provisions for use in partially accepted code... partially accepted, then the properties eligible for HUD benefits in that jurisdiction shall be constructed..., those portions of one of the model codes with which the property must comply. Schedule for Model Code...
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Minimum Property Standards § 200.926c Model code provisions for use in partially accepted code... partially accepted, then the properties eligible for HUD benefits in that jurisdiction shall be constructed..., those portions of one of the model codes with which the property must comply. Schedule for Model Code...
Goh, Yi Wei; Misra, Stuti; Patel, Dipika V; McGhee, Charles N J
2013-03-01
The majority of those with keratoconus can maximise visual acuity with spectacle or contact lens correction as they age; however, as subjects enter their sixties, cataracts may supervene and contact lens tolerance diminishes with consequent reduction in visual acuity. Following cataract extraction, the complex refractive error associated with keratoconus may not be readily corrected by an intraocular lens alone. This report highlights the planned implantation of a primary posterior chamber toric intraocular lens with a secondary piggyback, sulcus-based, intraocular lens in advanced but stable keratoconus with extreme myopic astigmatism and cataract. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.
Elliptic CY3folds and non-perturbative modular transformation
NASA Astrophysics Data System (ADS)
Iqbal, Amer; Shabbir, Khurram
2016-03-01
We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections.
5D Super Yang-Mills on Y p, q Sasaki-Einstein Manifolds
NASA Astrophysics Data System (ADS)
Qiu, Jian; Zabzine, Maxim
2015-01-01
On any simply connected Sasaki-Einstein five dimensional manifold one can construct a super Yang-Mills theory which preserves at least two supersymmetries. We study the special case of toric Sasaki-Einstein manifolds known as Y p, q manifolds. We use the localisation technique to compute the full perturbative part of the partition function. The full equivariant result is expressed in terms of a certain special function which appears to be a curious generalisation of the triple sine function. As an application of our general result we study the large N behaviour for the case of single hypermultiplet in adjoint representation and we derive the N 3-behaviour in this case.
Comments on A, B, C chains of heterotic and Type II vacua
NASA Astrophysics Data System (ADS)
Candelas, Philip; Perevalov, Eugene; Rajesh, Govindan
1997-02-01
We construct, as hypersurfaces in toric varieties, Calabi-Yau manifolds corresponding to F-theory vacua dual to E8 × E8 heterotic strings compactified to six dimensions on K3 surfaces with non-semisimple gauge backgrounds. These vacua were studied in the recent work of Aldazabal, Font, Ibáñez and Uranga as well as by Klemm, Mayr and Vafa. We extend their results by constructing many more examples, corresponding to enhanced gauge symmetries, by noting that they can be obtained from previously known Calabi-Yau manifolds corresponding to K3 compactification of heterotic strings with simple gauge backgrounds by means of extremal transitions of the conifold type.
Engineering hurdles in contact and intraocular lens lathe design: the view ahead
NASA Astrophysics Data System (ADS)
Bradley, Norman D.; Keller, John R.; Ball, Gary A.
1994-05-01
Current trends in and intraocular lens design suggest ever- increasing demand for aspheric lens geometries - multisurface and/or toric surfaces - in a variety of new materials. As computer numeric controls (CNC) lathes and mills continue to evolve with he ophthalmic market, engineering hurdles present themselves to designers: Can hardware based upon single-point diamond turning accommodate the demands of software-driven designs? What are the limits of CNC resolution and repeatability in high-throughput production? What are the controlling factors in lathed, polish-free surface production? Emerging technologies in the lathed biomedical optics field are discussed along with their limitations, including refined diamond tooling, vibrational control, automation, and advanced motion control systems.
Surface operators from M -strings
NASA Astrophysics Data System (ADS)
Mori, Hironori; Sugimoto, Yuji
2017-01-01
It has been found that surface operators have a significant role in Alday-Gaiotto-Tachikawa (AGT) relation. This duality is an outstanding consequence of M -theory, but it is actually encoded into the brane web for which the topological string can work. From this viewpoint, the surface defect in AGT relation is geometrically engineered as a toric brane realization. Also, there is a class of the brane configuration in M -theory called M -strings which can be translated into the language of the topological string. In this work, we propose a new M -string configuration which can realize AGT relation in the presence of the surface defect by utilizing the geometric transition in the refined topological string.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashani-Poor, A.
2004-11-03
We demonstrate that for a broad class of local Calabi-Yau geometries built around a string of IP{sup 1}s--those whose toric diagrams are given by triangulations of a strip--we can derive simple rules, based on the topological vertex, for obtaining expressions for the topological string partition function in which the sums over Young tableaux have been performed. By allowing non-trivial tableaux on the external legs of the corresponding web diagrams, these strips can be used as building blocks for more general geometries. As applications of our result, we study the behavior of topological string amplitudes under flops, as well as checkmore » Nekrasov's conjecture in its most general form.« less
Some remarks on the topology of hyperbolic actions of Rn on n-manifolds
NASA Astrophysics Data System (ADS)
Bouloc, Damien
2017-11-01
This paper contains some results on the topology of a nondegenerate action of Rn on a compact connected n-manifold M when the action is totally hyperbolic (i.e. its toric degree is zero). We study the R-action generated by a fixed vector of Rn, that provides some results on the number of hyperbolic domains and the number of fixed points of the action. We study with more details the case of the 2-sphere, in particular we investigate some combinatorial properties of the associated 4-valent graph embedded in S2. We also construct hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vdovin V.L.
In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magneticmore » flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly coupled with each other due to magnetic field inhomogeneity of stellarators in toroidal direction. This is drastically different from axial symmetric plasma of the tokamaks. The inclusion in the problem major radius variation of magnetic field can strongly modify earlier results obtained for the straight helical, especially for high beta plasma, due to location modification of the two ion hybrid resonance layers. For the NCSX, LHD, W7-AS and W7-X like magnetic field topology inclusion in our theory of a major radius inhomogeneity of the magnetic field is a key element for correct description of RF power deposition profiles at all. The theory is developed in a manner that includes tokamaks and magnetic mirrors as the particular cases through general metric tensor (provided by an equilibrium solver) treatment of the wave equations. We describe that newly developed stellarator ICRF 3D full wave code PSTELION, based on theory described in this report. Applications to tokamaks, ITER, stellarators and benchmarking with 2D TORIC and 3D AORSA codes are given in included subreports« less
Impacts of Model Building Energy Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athalye, Rahul A.; Sivaraman, Deepak; Elliott, Douglas B.
The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO 2 emissions atmore » the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.« less
ERIC Educational Resources Information Center
New Mexico Univ., Albuquerque. American Indian Law Center.
The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…
A MATLAB based 3D modeling and inversion code for MT data
NASA Astrophysics Data System (ADS)
Singh, Arun; Dehiya, Rahul; Gupta, Pravin K.; Israil, M.
2017-07-01
The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator code and modeling/inversion code. The grid generator code performs model discretization and acts as an interface by generating various I/O files. The inversion code performs core computations in modular form - forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the code provides a framework useful for implementation of new applications and inversion algorithms. The use of MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several published models. To demonstrate its versatility and capabilities the results of inversion for two complex models are presented.
A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua
NASA Astrophysics Data System (ADS)
Taylor, Washington; Wang, Yi-Nan
2016-01-01
We use Monte Carlo methods to explore the set of toric threefold bases that support elliptic Calabi-Yau fourfolds for F-theory compactifications to four dimensions, and study the distribution of geometrically non-Higgsable gauge groups, matter, and quiver structure. We estimate the number of distinct threefold bases in the connected set studied to be ˜ 1048. The distribution of bases peaks around h 1,1 ˜ 82. All bases encountered after "thermalization" have some geometric non-Higgsable structure. We find that the number of non-Higgsable gauge group factors grows roughly linearly in h 1,1 of the threefold base. Typical bases have ˜ 6 isolated gauge factors as well as several larger connected clusters of gauge factors with jointly charged matter. Approximately 76% of the bases sampled contain connected two-factor gauge group products of the form SU(3) × SU(2), which may act as the non-Abelian part of the standard model gauge group. SU(3) × SU(2) is the third most common connected two-factor product group, following SU(2) × SU(2) and G 2 × SU(2), which arise more frequently.
A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua
Taylor, Washington; Wang, Yi-Nan
2016-01-22
Here, we use Monte Carlo methods to explore the set of toric threefold bases that support elliptic Calabi-Yau fourfolds for F-theory compactifications to four dimensions, and study the distribution of geometrically non-Higgsable gauge groups, matter, and quiver structure. We estimate the number of distinct threefold bases in the connected set studied to be ~ 10 48. Moreover, the distribution of bases peaks around h 1,1 ~ 82. All bases encountered after "thermalization" have some geometric non-Higgsable structure. We also find that the number of non-Higgsable gauge group factors grows roughly linearly in h 1,1 of the threefold base. Typical basesmore » have ~ 6 isolated gauge factors as well as several larger connected clusters of gauge factors with jointly charged matter. Approximately 76% of the bases sampled contain connected two-factor gauge group products of the form SU(3) x SU(2), which may act as the non-Abelian part of the standard model gauge group. SU(3) x SU(2) is the third most common connected two-factor product group, following SU(2) x SU(2) and G2 x SU(2), which arise more frequently.« less
The F-theory geometry with most flux vacua
Taylor, Washington; Wang, Yi -Nan
2015-12-28
Applying the Ashok-Denef-Douglas estimation method to elliptic Calabi-Yau fourfolds suggests that a single elliptic fourfold M max gives rise to O(10 272,000) F-theory flux vacua, and that the sum total of the numbers of flux vacua from all other F-theory geometries is suppressed by a relative factor of O(10 –3000). The fourfold M max arises from a generic elliptic fibration over a specific toric threefold base B max, and gives a geometrically non-Higgsable gauge group of E 8 9 × F 4 8 × (G 2 × SU(2)) 16, of which we expect some factors to be broken by G-fluxmore » to smaller groups. It is not possible to tune an SU(5) GUT group on any further divisors in M max, or even an SU(2) or SU(3), so the standard model gauge group appears to arise in this context only from a broken E 8 factor. Furthermore, the results of this paper can either be interpreted as providing a framework for predicting how the standard model arises most naturally in F-theory and the types of dark matter to be found in a typical F-theory compactification, or as a challenge to string theorists to explain why other choices of vacua are not exponentially unlikely compared to F-theory compactifications on M max.« less
The F-theory geometry with most flux vacua
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Washington; Wang, Yi -Nan
Applying the Ashok-Denef-Douglas estimation method to elliptic Calabi-Yau fourfolds suggests that a single elliptic fourfold M max gives rise to O(10 272,000) F-theory flux vacua, and that the sum total of the numbers of flux vacua from all other F-theory geometries is suppressed by a relative factor of O(10 –3000). The fourfold M max arises from a generic elliptic fibration over a specific toric threefold base B max, and gives a geometrically non-Higgsable gauge group of E 8 9 × F 4 8 × (G 2 × SU(2)) 16, of which we expect some factors to be broken by G-fluxmore » to smaller groups. It is not possible to tune an SU(5) GUT group on any further divisors in M max, or even an SU(2) or SU(3), so the standard model gauge group appears to arise in this context only from a broken E 8 factor. Furthermore, the results of this paper can either be interpreted as providing a framework for predicting how the standard model arises most naturally in F-theory and the types of dark matter to be found in a typical F-theory compactification, or as a challenge to string theorists to explain why other choices of vacua are not exponentially unlikely compared to F-theory compactifications on M max.« less
Quicklook overview of model changes in Melcor 2.2: Rev 6342 to Rev 9496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, Larry L.
2017-05-01
MELCOR 2.2 is a significant official release of the MELCOR code with many new models and model improvements. This report provides the code user with a quick review and characterization of new models added, changes to existing models, the effect of code changes during this code development cycle (rev 6342 to rev 9496), a preview of validation results with this code version. More detailed information is found in the code Subversion logs as well as the User Guide and Reference Manuals.
Mean Line Pump Flow Model in Rocket Engine System Simulation
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Lavelle, Thomas M.
2000-01-01
A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.
Rocketdyne/Westinghouse nuclear thermal rocket engine modeling
NASA Technical Reports Server (NTRS)
Glass, James F.
1993-01-01
The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.
[Some special indications for wearing contact lenses (author's transl)].
Müller, K
1978-12-01
The typical distinguishing features of special cases which require contact lenses for satisfactory vision are described. Hence in the first case with anisometria associated with irregular astigmatism of one eye, to which a toric soft contact lens was adapted. In the second case a visual acuity of only 0,6 monocular was attained with the best spectacle lens, however with contact lense the visual acuity was 1.25. Here a verdict from a social court is mentioned, which obliged the sickness insurance to take over the costs for such a case. In the third case the adaptation of contact lenses was undertaken after radical bilateral keratoplasty because of parenchymatous keratitis, and an improvement in visual acuity of at least 400% resulted.
New large volume Calabi-Yau threefolds
NASA Astrophysics Data System (ADS)
Altman, Ross; He, Yang-Hui; Jejjala, Vishnu; Nelson, Brent D.
2018-02-01
In previous work, we have commenced the task of unpacking the 473 800 776 reflexive polyhedra by Kreuzer and Skarke into a database of Calabi-Yau threefolds [R. Altman et al. J. High Energy Phys. 02 (2015) 158., 10.1007/JHEP02(2015)158] (see www.rossealtman.com). In this paper, following a pedagogical introduction, we present a new algorithm to isolate Swiss cheese solutions characterized by "holes," or small 4-cycles, descending from the toric divisors inherent to the original four dimensional reflexive polyhedra. Implementing these methods, we find 2268 explicit Swiss cheese manifolds, over half of which have h1 ,1=6 . Many of our solutions have multiple large cycles. Such Swiss cheese geometries facilitate moduli stabilization in string compactifications and provide flat directions for cosmological inflation.
Cohomology of line bundles: Applications
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Jurke, Benjamin; Rahn, Thorsten; Roschy, Helmut
2012-01-01
Massless modes of both heterotic and Type II string compactifications on compact manifolds are determined by vector bundle valued cohomology classes. Various applications of our recent algorithm for the computation of line bundle valued cohomology classes over toric varieties are presented. For the heterotic string, the prime examples are so-called monad constructions on Calabi-Yau manifolds. In the context of Type II orientifolds, one often needs to compute cohomology for line bundles on finite group action coset spaces, necessitating us to generalize our algorithm to this case. Moreover, we exemplify that the different terms in Batyrev's formula and its generalizations can be given a one-to-one cohomological interpretation. Furthermore, we derive a combinatorial closed form expression for two Hodge numbers of a codimension two Calabi-Yau fourfold.
Dual little strings and their partition functions
NASA Astrophysics Data System (ADS)
Bastian, Brice; Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong
2018-05-01
We study the topological string partition function of a class of toric, double elliptically fibered Calabi-Yau threefolds XN ,M at a generic point in the Kähler moduli space. These manifolds engineer little string theories in five dimensions or lower and are dual to stacks of M5-branes probing a transverse orbifold singularity. Using the refined topological vertex formalism, we explicitly calculate a generic building block which allows us to compute the topological string partition function of XN ,M as a series expansion in different Kähler parameters. Using this result, we give further explicit proof for a duality found previously in the literature, which relates XN ,M˜XN',M' for N M =N'M' and gcd (N ,M )=gcd (N',M') .
Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform.
Hausel, Tamás
2006-04-18
A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas of Poincaré polynomials of toric hyperkähler varieties (recovering results of Bielawski-Dancer and Hausel-Sturmfels), Poincaré polynomials of Hilbert schemes of points and twisted Atiyah-Drinfeld-Hitchin-Manin (ADHM) spaces of instantons on C2 (recovering results of Nakajima-Yoshioka), and Poincaré polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced.
CFD Code Development for Combustor Flows
NASA Technical Reports Server (NTRS)
Norris, Andrew
2003-01-01
During the lifetime of this grant, work has been performed in the areas of model development, code development, code validation and code application. For model development, this has included the PDF combustion module, chemical kinetics based on thermodynamics, neural network storage of chemical kinetics, ILDM chemical kinetics and assumed PDF work. Many of these models were then implemented in the code, and in addition many improvements were made to the code, including the addition of new chemistry integrators, property evaluation schemes, new chemistry models and turbulence-chemistry interaction methodology. Validation of all new models and code improvements were also performed, while application of the code to the ZCET program and also the NPSS GEW combustor program were also performed. Several important items remain under development, including the NOx post processing, assumed PDF model development and chemical kinetic development. It is expected that this work will continue under the new grant.
Toward a Probabilistic Automata Model of Some Aspects of Code-Switching.
ERIC Educational Resources Information Center
Dearholt, D. W.; Valdes-Fallis, G.
1978-01-01
The purpose of the model is to select either Spanish or English as the language to be used; its goals at this stage of development include modeling code-switching for lexical need, apparently random code-switching, dependency of code-switching upon sociolinguistic context, and code-switching within syntactic constraints. (EJS)
24 CFR 200.926b - Model codes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Model codes. 200.926b Section 200... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Minimum Property Standards § 200.926b Model codes. (a) Incorporation by reference. The following model code publications are incorporated by reference in accordance...
Development and application of the GIM code for the Cyber 203 computer
NASA Technical Reports Server (NTRS)
Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.
1982-01-01
The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.
Comparison of Einstein-Boltzmann solvers for testing general relativity
NASA Astrophysics Data System (ADS)
Bellini, E.; Barreira, A.; Frusciante, N.; Hu, B.; Peirone, S.; Raveri, M.; Zumalacárregui, M.; Avilez-Lopez, A.; Ballardini, M.; Battye, R. A.; Bolliet, B.; Calabrese, E.; Dirian, Y.; Ferreira, P. G.; Finelli, F.; Huang, Z.; Ivanov, M. M.; Lesgourgues, J.; Li, B.; Lima, N. A.; Pace, F.; Paoletti, D.; Sawicki, I.; Silvestri, A.; Skordis, C.; Umiltà, C.; Vernizzi, F.
2018-01-01
We compare Einstein-Boltzmann solvers that include modifications to general relativity and find that, for a wide range of models and parameters, they agree to a high level of precision. We look at three general purpose codes that primarily model general scalar-tensor theories, three codes that model Jordan-Brans-Dicke (JBD) gravity, a code that models f (R ) gravity, a code that models covariant Galileons, a code that models Hořava-Lifschitz gravity, and two codes that model nonlocal models of gravity. Comparing predictions of the angular power spectrum of the cosmic microwave background and the power spectrum of dark matter for a suite of different models, we find agreement at the subpercent level. This means that this suite of Einstein-Boltzmann solvers is now sufficiently accurate for precision constraints on cosmological and gravitational parameters.
Content Coding of Psychotherapy Transcripts Using Labeled Topic Models.
Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic
2017-03-01
Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, nonstandardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the labeled latent Dirichlet allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of 0.79, and 0.70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scalable method for accurate automated coding of psychotherapy sessions that perform better than comparable discriminative methods at session-level coding and can also predict fine-grained codes.
Content Coding of Psychotherapy Transcripts Using Labeled Topic Models
Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic
2016-01-01
Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, non-standardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly-available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the Labeled Latent Dirichlet Allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic (ROC) curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of .79, and .70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scaleable method for accurate automated coding of psychotherapy sessions that performs better than comparable discriminative methods at session-level coding and can also predict fine-grained codes. PMID:26625437
Combustion chamber analysis code
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Lai, Y. G.; Krishnan, A.; Avva, R. K.; Giridharan, M. G.
1993-01-01
A three-dimensional, time dependent, Favre averaged, finite volume Navier-Stokes code has been developed to model compressible and incompressible flows (with and without chemical reactions) in liquid rocket engines. The code has a non-staggered formulation with generalized body-fitted-coordinates (BFC) capability. Higher order differencing methodologies such as MUSCL and Osher-Chakravarthy schemes are available. Turbulent flows can be modeled using any of the five turbulent models present in the code. A two-phase, two-liquid, Lagrangian spray model has been incorporated into the code. Chemical equilibrium and finite rate reaction models are available to model chemically reacting flows. The discrete ordinate method is used to model effects of thermal radiation. The code has been validated extensively against benchmark experimental data and has been applied to model flows in several propulsion system components of the SSME and the STME.
7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 12 2013-01-01 2013-01-01 false Voluntary National Model Building Codes E Exhibit E... National Model Building Codes The following documents address the health and safety aspects of buildings and related structures and are voluntary national model building codes as defined in § 1924.4(h)(2) of...
7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 12 2014-01-01 2013-01-01 true Voluntary National Model Building Codes E Exhibit E to... Model Building Codes The following documents address the health and safety aspects of buildings and related structures and are voluntary national model building codes as defined in § 1924.4(h)(2) of this...
7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Voluntary National Model Building Codes E Exhibit E... National Model Building Codes The following documents address the health and safety aspects of buildings and related structures and are voluntary national model building codes as defined in § 1924.4(h)(2) of...
2011-01-01
Background Electronic patient records are generally coded using extensive sets of codes but the significance of the utilisation of individual codes may be unclear. Item response theory (IRT) models are used to characterise the psychometric properties of items included in tests and questionnaires. This study asked whether the properties of medical codes in electronic patient records may be characterised through the application of item response theory models. Methods Data were provided by a cohort of 47,845 participants from 414 family practices in the UK General Practice Research Database (GPRD) with a first stroke between 1997 and 2006. Each eligible stroke code, out of a set of 202 OXMIS and Read codes, was coded as either recorded or not recorded for each participant. A two parameter IRT model was fitted using marginal maximum likelihood estimation. Estimated parameters from the model were considered to characterise each code with respect to the latent trait of stroke diagnosis. The location parameter is referred to as a calibration parameter, while the slope parameter is referred to as a discrimination parameter. Results There were 79,874 stroke code occurrences available for analysis. Utilisation of codes varied between family practices with intraclass correlation coefficients of up to 0.25 for the most frequently used codes. IRT analyses were restricted to 110 Read codes. Calibration and discrimination parameters were estimated for 77 (70%) codes that were endorsed for 1,942 stroke patients. Parameters were not estimated for the remaining more frequently used codes. Discrimination parameter values ranged from 0.67 to 2.78, while calibration parameters values ranged from 4.47 to 11.58. The two parameter model gave a better fit to the data than either the one- or three-parameter models. However, high chi-square values for about a fifth of the stroke codes were suggestive of poor item fit. Conclusion The application of item response theory models to coded electronic patient records might potentially contribute to identifying medical codes that offer poor discrimination or low calibration. This might indicate the need for improved coding sets or a requirement for improved clinical coding practice. However, in this study estimates were only obtained for a small proportion of participants and there was some evidence of poor model fit. There was also evidence of variation in the utilisation of codes between family practices raising the possibility that, in practice, properties of codes may vary for different coders. PMID:22176509
Code-to-Code Comparison, and Material Response Modeling of Stardust and MSL using PATO and FIAT
NASA Technical Reports Server (NTRS)
Omidy, Ali D.; Panerai, Francesco; Martin, Alexandre; Lachaud, Jean R.; Cozmuta, Ioana; Mansour, Nagi N.
2015-01-01
This report provides a code-to-code comparison between PATO, a recently developed high fidelity material response code, and FIAT, NASA's legacy code for ablation response modeling. The goal is to demonstrates that FIAT and PATO generate the same results when using the same models. Test cases of increasing complexity are used, from both arc-jet testing and flight experiment. When using the exact same physical models, material properties and boundary conditions, the two codes give results that are within 2% of errors. The minor discrepancy is attributed to the inclusion of the gas phase heat capacity (cp) in the energy equation in PATO, and not in FIAT.
Tailored Codes for Small Quantum Memories
NASA Astrophysics Data System (ADS)
Robertson, Alan; Granade, Christopher; Bartlett, Stephen D.; Flammia, Steven T.
2017-12-01
We demonstrate that small quantum memories, realized via quantum error correction in multiqubit devices, can benefit substantially by choosing a quantum code that is tailored to the relevant error model of the system. For a biased noise model, with independent bit and phase flips occurring at different rates, we show that a single code greatly outperforms the well-studied Steane code across the full range of parameters of the noise model, including for unbiased noise. In fact, this tailored code performs almost optimally when compared with 10 000 randomly selected stabilizer codes of comparable experimental complexity. Tailored codes can even outperform the Steane code with realistic experimental noise, and without any increase in the experimental complexity, as we demonstrate by comparison in the observed error model in a recent seven-qubit trapped ion experiment.
28 CFR 36.607 - Guidance concerning model codes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Guidance concerning model codes. 36.607... BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a...
28 CFR 36.607 - Guidance concerning model codes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Guidance concerning model codes. 36.607... BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a...
28 CFR 36.607 - Guidance concerning model codes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Guidance concerning model codes. 36.607... BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a...
28 CFR 36.607 - Guidance concerning model codes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Guidance concerning model codes. 36.607... BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building Codes § 36.607 Guidance concerning model codes. Upon application by an authorized representative of a...
Automated Diagnosis Coding with Combined Text Representations.
Berndorfer, Stefan; Henriksson, Aron
2017-01-01
Automated diagnosis coding can be provided efficiently by learning predictive models from historical data; however, discriminating between thousands of codes while allowing a variable number of codes to be assigned is extremely difficult. Here, we explore various text representations and classification models for assigning ICD-9 codes to discharge summaries in MIMIC-III. It is shown that the relative effectiveness of the investigated representations depends on the frequency of the diagnosis code under consideration and that the best performance is obtained by combining models built using different representations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K
2006-04-05
Cross-comparison of the results of two computer codes for the same problem provides a mutual validation of their computational methods. This cross-validation exercise was performed for LLNL's ALE3D code and AKTS's Thermal Safety code, using the thermal ignition of HMX in two standard LLNL cookoff experiments: the One-Dimensional Time to Explosion (ODTX) test and the Scaled Thermal Explosion (STEX) test. The chemical kinetics model used in both codes was the extended Prout-Tompkins model, a relatively new addition to ALE3D. This model was applied using ALE3D's new pseudospecies feature. In addition, an advanced isoconversional kinetic approach was used in the AKTSmore » code. The mathematical constants in the Prout-Tompkins code were calibrated using DSC data from hermetically sealed vessels and the LLNL optimization code Kinetics05. The isoconversional kinetic parameters were optimized using the AKTS Thermokinetics code. We found that the Prout-Tompkins model calculations agree fairly well between the two codes, and the isoconversional kinetic model gives very similar results as the Prout-Tompkins model. We also found that an autocatalytic approach in the beta-delta phase transition model does affect the times to explosion for some conditions, especially STEX-like simulations at ramp rates above 100 C/hr, and further exploration of that effect is warranted.« less
24 CFR 200.925c - Model codes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Minimum Property Standards § 200.925c Model codes. (a... Plumbing Code, 1993 Edition, and the BOCA National Mechanical Code, 1993 Edition, excluding Chapter I, Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood...
24 CFR 200.925c - Model codes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Minimum Property Standards § 200.925c Model codes. (a... Plumbing Code, 1993 Edition, and the BOCA National Mechanical Code, 1993 Edition, excluding Chapter I, Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood...
12 CFR 1807.503 - Project completion.
Code of Federal Regulations, 2012 CFR
2012-01-01
... applicable: One of three model codes (Uniform Building Code (ICBO), National Building Code (BOCA), Standard (Southern) Building Code (SBCCI)); or the Council of American Building Officials (CABO) one or two family... must meet the current edition of the Model Energy Code published by the Council of American Building...
12 CFR 1807.503 - Project completion.
Code of Federal Regulations, 2013 CFR
2013-01-01
... applicable: One of three model codes (Uniform Building Code (ICBO), National Building Code (BOCA), Standard (Southern) Building Code (SBCCI)); or the Council of American Building Officials (CABO) one or two family... must meet the current edition of the Model Energy Code published by the Council of American Building...
12 CFR 1807.503 - Project completion.
Code of Federal Regulations, 2014 CFR
2014-01-01
... applicable: One of three model codes (Uniform Building Code (ICBO), National Building Code (BOCA), Standard (Southern) Building Code (SBCCI)); or the Council of American Building Officials (CABO) one or two family... must meet the current edition of the Model Energy Code published by the Council of American Building...
12 CFR 1807.503 - Project completion.
Code of Federal Regulations, 2011 CFR
2011-01-01
... applicable: One of three model codes (Uniform Building Code (ICBO), National Building Code (BOCA), Standard (Southern) Building Code (SBCCI)); or the Council of American Building Officials (CABO) one or two family... must meet the current edition of the Model Energy Code published by the Council of American Building...
ERIC Educational Resources Information Center
American Inst. of Architects, Washington, DC.
A MODEL BUILDING CODE FOR FALLOUT SHELTERS WAS DRAWN UP FOR INCLUSION IN FOUR NATIONAL MODEL BUILDING CODES. DISCUSSION IS GIVEN OF FALLOUT SHELTERS WITH RESPECT TO--(1) NUCLEAR RADIATION, (2) NATIONAL POLICIES, AND (3) COMMUNITY PLANNING. FALLOUT SHELTER REQUIREMENTS FOR SHIELDING, SPACE, VENTILATION, CONSTRUCTION, AND SERVICES SUCH AS ELECTRICAL…
24 CFR 200.925c - Model codes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... below. (1) Model Building Codes—(i) The BOCA National Building Code, 1993 Edition, The BOCA National..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... number 2 (Chapter 7) of the Building Code, but including the Appendices of the Code. Available from...
24 CFR 200.925c - Model codes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... below. (1) Model Building Codes—(i) The BOCA National Building Code, 1993 Edition, The BOCA National..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... number 2 (Chapter 7) of the Building Code, but including the Appendices of the Code. Available from...
24 CFR 200.925c - Model codes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... below. (1) Model Building Codes—(i) The BOCA National Building Code, 1993 Edition, The BOCA National..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... number 2 (Chapter 7) of the Building Code, but including the Appendices of the Code. Available from...
ANN modeling of DNA sequences: new strategies using DNA shape code.
Parbhane, R V; Tambe, S S; Kulkarni, B D
2000-09-01
Two new encoding strategies, namely, wedge and twist codes, which are based on the DNA helical parameters, are introduced to represent DNA sequences in artificial neural network (ANN)-based modeling of biological systems. The performance of the new coding strategies has been evaluated by conducting three case studies involving mapping (modeling) and classification applications of ANNs. The proposed coding schemes have been compared rigorously and shown to outperform the existing coding strategies especially in situations wherein limited data are available for building the ANN models.
Simple steep-axis marking technique using a corneal analyzer.
Ng, Alex L K; Chan, Tommy C Y; Jhanji, Vishal; Cheng, George P M
2017-02-01
We describe a simple steep-axis marking technique that uses a corneal analyzer (OPD III scan) during arcuate keratotomy in femtosecond laser-assisted cataract surgery. The technique requires a single reference mark at the limbus, which does not have to be on the horizontal axis. Using the corneal analyzer, the angle between the steep axis and the reference line between the reference mark and the center of the cornea can be determined. The angle from the reference mark is used intraoperatively to locate the steep axis. This eliminates the potential error from different head positions during keratometry measurement and during traditional marking under the slitlamp. The marking technique can also be applied to toric intraocular lens implantation during cataract surgery. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
TBA-like integral equations from quantized mirror curves
NASA Astrophysics Data System (ADS)
Okuyama, Kazumi; Zakany, Szabolcs
2016-03-01
Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.
Smectic Layer Origami via Preprogrammed Photoalignment.
Ma, Ling-Ling; Tang, Ming-Jie; Hu, Wei; Cui, Ze-Qun; Ge, Shi-Jun; Chen, Peng; Chen, Lu-Jian; Qian, Hao; Chi, Li-Feng; Lu, Yan-Qing
2017-04-01
Hierarchical architecture is of vital importance in soft materials. Focal conic domains (FCDs) of smectic liquid crystals, characterized by an ordered lamellar structure, attract intensive attention. Simultaneously tailoring the geometry and clustering characteristics of FCDs remains a challenge. Here, the 3D smectic layer origami via a 2D preprogrammed photoalignment film is accomplished. Full control of hierarchical superstructures is demonstrated, including the domain size, shape, and orientation, and the lattice symmetry of fragmented toric FCDs. The unique symmetry breaking of resultant superstructures combined with the optical anisotropy of the liquid crystals induces an intriguing polarization-dependent diffraction. This work broadens the scientific understanding of self-assembled soft materials and may inspire new opportunities for advanced functional materials and devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems
NASA Astrophysics Data System (ADS)
Katzourakis, Nikos
2017-07-01
We introduce a new theory of generalised solutions which applies to fully nonlinear PDE systems of any order and allows for merely measurable maps as solutions. This approach bypasses the standard problems arising by the application of Distributions to PDEs and is not based on either integration by parts or on the maximum principle. Instead, our starting point builds on the probabilistic representation of derivatives via limits of difference quotients in the Young measures over a toric compactification of the space of jets. After developing some basic theory, as a first application we consider the Dirichlet problem and we prove existence-uniqueness-partial regularity of solutions to fully nonlinear degenerate elliptic 2nd order systems and also existence of solutions to the ∞-Laplace system of vectorial Calculus of Variations in L∞.
A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry
2014-05-29
its modulation waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models...waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models. Within the context...check ( LDPC ) codes with tunable code rates, and both static and dynamic telemetry channel models are included. In an effort to maximize the
Turbulence modeling for hypersonic flight
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.
1992-01-01
The objective of the present work is to develop, verify, and incorporate two equation turbulence models which account for the effect of compressibility at high speeds into a three dimensional Reynolds averaged Navier-Stokes code and to provide documented model descriptions and numerical procedures so that they can be implemented into the National Aerospace Plane (NASP) codes. A summary of accomplishments is listed: (1) Four codes have been tested and evaluated against a flat plate boundary layer flow and an external supersonic flow; (2) a code named RANS was chosen because of its speed, accuracy, and versatility; (3) the code was extended from thin boundary layer to full Navier-Stokes; (4) the K-omega two equation turbulence model has been implemented into the base code; (5) a 24 degree laminar compression corner flow has been simulated and compared to other numerical simulations; and (6) work is in progress in writing the numerical method of the base code including the turbulence model.
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, E.J.; McNeilly, G.S.
The existing National Center for Atmospheric Research (NCAR) code in the Hamburg Oceanic Carbon Cycle Circulation Model and the Hamburg Large-Scale Geostrophic Ocean General Circulation Model was modernized and reduced in size while still producing an equivalent end result. A reduction in the size of the existing code from more than 50,000 lines to approximately 7,500 lines in the new code has made the new code much easier to maintain. The existing code in Hamburg model uses legacy NCAR (including even emulated CALCOMP subrountines) graphics to display graphical output. The new code uses only current (version 3.1) NCAR subrountines.
Model comparisons of the reactive burn model SURF in three ASC codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, Von Howard; Stalsberg, Krista Lynn; Reichelt, Benjamin Lee
A study of the SURF reactive burn model was performed in FLAG, PAGOSA and XRAGE. In this study, three different shock-to-detonation transition experiments were modeled in each code. All three codes produced similar model results for all the experiments modeled and at all resolutions. Buildup-to-detonation time, particle velocities and resolution dependence of the models was notably similar between the codes. Given the current PBX 9502 equations of state and SURF calibrations, each code is equally capable of predicting the correct detonation time and distance when impacted by a 1D impactor at pressures ranging from 10-16 GPa, as long as themore » resolution of the mesh is not too coarse.« less
Summary of papers on current and anticipated uses of thermal-hydraulic codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, R.
1997-07-01
The author reviews a range of recent papers which discuss possible uses and future development needs for thermal/hydraulic codes in the nuclear industry. From this review, eight common recommendations are extracted. They are: improve the user interface so that more people can use the code, so that models are easier and less expensive to prepare and maintain, and so that the results are scrutable; design the code so that it can easily be coupled to other codes, such as core physics, containment, fission product behaviour during severe accidents; improve the numerical methods to make the code more robust and especiallymore » faster running, particularly for low pressure transients; ensure that future code development includes assessment of code uncertainties as integral part of code verification and validation; provide extensive user guidelines or structure the code so that the `user effect` is minimized; include the capability to model multiple fluids (gas and liquid phase); design the code in a modular fashion so that new models can be added easily; provide the ability to include detailed or simplified component models; build on work previously done with other codes (RETRAN, RELAP, TRAC, CATHARE) and other code validation efforts (CSAU, CSNI SET and IET matrices).« less
Documentation of the GLAS fourth order general circulation model. Volume 2: Scalar code
NASA Technical Reports Server (NTRS)
Kalnay, E.; Balgovind, R.; Chao, W.; Edelmann, D.; Pfaendtner, J.; Takacs, L.; Takano, K.
1983-01-01
Volume 2, of a 3 volume technical memoranda contains a detailed documentation of the GLAS fourth order general circulation model. Volume 2 contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A variable name dictionary for the scalar code, and code listings are outlined.
CMCpy: Genetic Code-Message Coevolution Models in Python
Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.
2013-01-01
Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367
Performance and Architecture Lab Modeling Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-06-19
Analytical application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult. Furthermore, models are frequently expressed in forms that are hard to distribute and validate. The Performance and Architecture Lab Modeling tool, or Palm, is a modeling tool designed to make application modeling easier. Palm provides a source code modeling annotation language. Not only does the modeling language divide the modeling task into sub problems, it formally links an application's source code with its model. This link is important because a model's purpose is to capture application behavior. Furthermore, this linkmore » makes it possible to define rules for generating models according to source code organization. Palm generates hierarchical models according to well-defined rules. Given an application, a set of annotations, and a representative execution environment, Palm will generate the same model. A generated model is a an executable program whose constituent parts directly correspond to the modeled application. Palm generates models by combining top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. A model's hierarchy is defined by static and dynamic source code structure. Because Palm coordinates models and source code, Palm's models are 'first-class' and reproducible. Palm automates common modeling tasks. For instance, Palm incorporates measurements to focus attention, represent constant behavior, and validate models. Palm's workflow is as follows. The workflow's input is source code annotated with Palm modeling annotations. The most important annotation models an instance of a block of code. Given annotated source code, the Palm Compiler produces executables and the Palm Monitor collects a representative performance profile. The Palm Generator synthesizes a model based on the static and dynamic mapping of annotations to program behavior. The model -- an executable program -- is a hierarchical composition of annotation functions, synthesized functions, statistics for runtime values, and performance measurements.« less
On the validation of a code and a turbulence model appropriate to circulation control airfoils
NASA Technical Reports Server (NTRS)
Viegas, J. R.; Rubesin, M. W.; Maccormack, R. W.
1988-01-01
A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed.
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... jurisdictions. If a lender or other interested party is notified that a State or local building code has been... in accordance with the applicable State or local building code, plus those additional requirements... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Model code provisions for use in...
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... jurisdictions. If a lender or other interested party is notified that a State or local building code has been... in accordance with the applicable State or local building code, plus those additional requirements... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Model code provisions for use in...
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... jurisdictions. If a lender or other interested party is notified that a State or local building code has been... in accordance with the applicable State or local building code, plus those additional requirements... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Model code provisions for use in...
Rankin, Carl Robert; Theodorou, Evangelos; Law, Ivy Ka Man; Rowe, Lorraine; Kokkotou, Efi; Pekow, Joel; Wang, Jiafang; Martin, Martin G; Pothoulakis, Charalabos; Padua, David Miguel
2018-06-28
Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend towards improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and non-coding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 non-coding RNAs that were differentially expressed in either mouse model. Surprisingly, only three non-coding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and non-coding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD.
Finding Resolution for the Responsible Transparency of Economic Models in Health and Medicine.
Padula, William V; McQueen, Robert Brett; Pronovost, Peter J
2017-11-01
The Second Panel on Cost-Effectiveness in Health and Medicine recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses has a number of questions unanswered with respect to the implementation of transparent, open source code interface for economic models. The possibility of making economic model source code could be positive and progressive for the field; however, several unintended consequences of this system should be first considered before complete implementation of this model. First, there is the concern regarding intellectual property rights that modelers have to their analyses. Second, the open source code could make analyses more accessible to inexperienced modelers, leading to inaccurate or misinterpreted results. We propose several resolutions to these concerns. The field should establish a licensing system of open source code such that the model originators maintain control of the code use and grant permissions to other investigators who wish to use it. The field should also be more forthcoming towards the teaching of cost-effectiveness analysis in medical and health services education so that providers and other professionals are familiar with economic modeling and able to conduct analyses with open source code. These types of unintended consequences need to be fully considered before the field's preparedness to move forward into an era of model transparency with open source code.
WDEC: A Code for Modeling White Dwarf Structure and Pulsations
NASA Astrophysics Data System (ADS)
Bischoff-Kim, Agnès; Montgomery, Michael H.
2018-05-01
The White Dwarf Evolution Code (WDEC), written in Fortran, makes models of white dwarf stars. It is fast, versatile, and includes the latest physics. The code evolves hot (∼100,000 K) input models down to a chosen effective temperature by relaxing the models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models. WDEC has a long history going back to the late 1960s. Over the years, it has been updated and re-packaged for modern computer architectures and has specifically been used in computationally intensive asteroseismic fitting. Generations of white dwarf astronomers and dozens of publications have made use of the WDEC, although the last true instrument paper is the original one, published in 1975. This paper discusses the history of the code, necessary to understand why it works the way it does, details the physics and features in the code today, and points the reader to where to find the code and a user guide.
An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian
For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less
A computer code for calculations in the algebraic collective model of the atomic nucleus
NASA Astrophysics Data System (ADS)
Welsh, T. A.; Rowe, D. J.
2016-03-01
A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.
NASA Astrophysics Data System (ADS)
Thober, S.; Cuntz, M.; Mai, J.; Samaniego, L. E.; Clark, M. P.; Branch, O.; Wulfmeyer, V.; Attinger, S.
2016-12-01
Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The agility of the models to react to different meteorological conditions is artificially constrained by having hard-coded parameters in their equations. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options in addition to the 71 standard parameters. We performed a Sobol' global sensitivity analysis to variations of the standard and hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff, their component fluxes, as well as photosynthesis and sensible heat were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Latent heat and total runoff show very similar sensitivities towards standard and hard-coded parameters. They are sensitive to both soil and plant parameters, which means that model calibrations of hydrologic or land surface models should take both soil and plant parameters into account. Sensible and latent heat exhibit almost the same sensitivities so that calibration or sensitivity analysis can be performed with either of the two. Photosynthesis has almost the same sensitivities as transpiration, which are different from the sensitivities of latent heat. Including photosynthesis and latent heat in model calibration might therefore be beneficial. Surface runoff is sensitive to almost all hard-coded snow parameters. These sensitivities get, however, diminished in total runoff. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
A review of predictive coding algorithms.
Spratling, M W
2017-03-01
Predictive coding is a leading theory of how the brain performs probabilistic inference. However, there are a number of distinct algorithms which are described by the term "predictive coding". This article provides a concise review of these different predictive coding algorithms, highlighting their similarities and differences. Five algorithms are covered: linear predictive coding which has a long and influential history in the signal processing literature; the first neuroscience-related application of predictive coding to explaining the function of the retina; and three versions of predictive coding that have been proposed to model cortical function. While all these algorithms aim to fit a generative model to sensory data, they differ in the type of generative model they employ, in the process used to optimise the fit between the model and sensory data, and in the way that they are related to neurobiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Jardine, Bartholomew; Raymond, Gary M; Bassingthwaighte, James B
2015-01-01
The Modular Program Constructor (MPC) is an open-source Java based modeling utility, built upon JSim's Mathematical Modeling Language (MML) ( http://www.physiome.org/jsim/) that uses directives embedded in model code to construct larger, more complicated models quickly and with less error than manually combining models. A major obstacle in writing complex models for physiological processes is the large amount of time it takes to model the myriad processes taking place simultaneously in cells, tissues, and organs. MPC replaces this task with code-generating algorithms that take model code from several different existing models and produce model code for a new JSim model. This is particularly useful during multi-scale model development where many variants are to be configured and tested against data. MPC encodes and preserves information about how a model is built from its simpler model modules, allowing the researcher to quickly substitute or update modules for hypothesis testing. MPC is implemented in Java and requires JSim to use its output. MPC source code and documentation are available at http://www.physiome.org/software/MPC/.
WEC3: Wave Energy Converter Code Comparison Project: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien
This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to modelmore » hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.« less
A Tutorial for Building CMMI Process Performance Models
2010-04-26
70 90 120 1 0~-----0~----~ 2 Arch itecture/ Design All New Code M ajor Reuse of Code 55 70 90 8 10 15 2 0~-----0~----~ 3 Code All New Code M ajor...Robert Stoddard and Dave Zubrow © 2010 Carnegie Mellon University t "’ ·=··=· "’ •• ,. ...... ,. .... ~ .00 1 Arch [’ <si!JI ~h~;,...o ’ .. CodeChoice...Carnegie Mellon University : • Fit Model It; b][g~ El Model Select Columns 41111Delivered0efect; 411111nspection0 efect ..ollllnspectionCover
BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements.
Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang
2017-10-27
This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm.
BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements
Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang
2017-01-01
This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm. PMID:29076998
VLF Trimpi modelling on the path NWC-Dunedin using both finite element and 3D Born modelling
NASA Astrophysics Data System (ADS)
Nunn, D.; Hayakawa, K. B. M.
1998-10-01
This paper investigates the numerical modelling of VLF Trimpis, produced by a D region inhomogeneity on the great circle path. Two different codes are used to model Trimpis on the path NWC-Dunedin. The first is a 2D Finite Element Method Code (FEM), whose solutions are rigorous and valid in the strong scattering or non-Born limit. The second code is a 3D model that invokes the Born approximation. The predicted Trimpis from these codes compare very closely, thus confirming the validity of both models. The modal scattering matrices for both codes are analysed in some detail and are found to have a comparable structure. They indicate strong scattering between the dominant TM modes. Analysis of the scattering matrix from the FEM code shows that departure from linear Born behaviour occurs when the inhomogeneity has a horizontal scale size of about 100 km and a maximum electron density enhancement at 75 km altitude of about 6 electrons.
The adaption and use of research codes for performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebetrau, A.M.
1987-05-01
Models of real-world phenomena are developed for many reasons. The models are usually, if not always, implemented in the form of a computer code. The characteristics of a code are determined largely by its intended use. Realizations or implementations of detailed mathematical models of complex physical and/or chemical processes are often referred to as research or scientific (RS) codes. Research codes typically require large amounts of computing time. One example of an RS code is a finite-element code for solving complex systems of differential equations that describe mass transfer through some geologic medium. Considerable computing time is required because computationsmore » are done at many points in time and/or space. Codes used to evaluate the overall performance of real-world physical systems are called performance assessment (PA) codes. Performance assessment codes are used to conduct simulated experiments involving systems that cannot be directly observed. Thus, PA codes usually involve repeated simulations of system performance in situations that preclude the use of conventional experimental and statistical methods. 3 figs.« less
Review and verification of CARE 3 mathematical model and code
NASA Technical Reports Server (NTRS)
Rose, D. M.; Altschul, R. E.; Manke, J. W.; Nelson, D. L.
1983-01-01
The CARE-III mathematical model and code verification performed by Boeing Computer Services were documented. The mathematical model was verified for permanent and intermittent faults. The transient fault model was not addressed. The code verification was performed on CARE-III, Version 3. A CARE III Version 4, which corrects deficiencies identified in Version 3, is being developed.
Jones, S.; Hirschi, R.; Pignatari, M.; ...
2015-01-15
We present a comparison of 15M ⊙ , 20M ⊙ and 25M ⊙ stellar models from three different codes|GENEC, KEPLER and MESA|and their nucleosynthetic yields. The models are calculated from the main sequence up to the pre-supernova (pre-SN) stage and do not include rotation. The GENEC and KEPLER models hold physics assumptions that are characteristic of the two codes. The MESA code is generally more flexible; overshooting of the convective core during the hydrogen and helium burning phases in MESA is chosen such that the CO core masses are consistent with those in the GENEC models. Full nucleosynthesis calculations aremore » performed for all models using the NuGrid post-processing tool MPPNP and the key energy-generating nuclear reaction rates are the same for all codes. We are thus able to highlight the key diferences between the models that are caused by the contrasting physics assumptions and numerical implementations of the three codes. A reasonable agreement is found between the surface abundances predicted by the models computed using the different codes, with GENEC exhibiting the strongest enrichment of H-burning products and KEPLER exhibiting the weakest. There are large variations in both the structure and composition of the models—the 15M ⊙ and 20M ⊙ in particular—at the pre-SN stage from code to code caused primarily by convective shell merging during the advanced stages. For example the C-shell abundances of O, Ne and Mg predicted by the three codes span one order of magnitude in the 15M ⊙ models. For the alpha elements between Si and Fe the differences are even larger. The s-process abundances in the C shell are modified by the merging of convective shells; the modification is strongest in the 15M ⊙ model in which the C-shell material is exposed to O-burning temperatures and the γ -process is activated. The variation in the s-process abundances across the codes is smallest in the 25M ⊙ models, where it is comparable to the impact of nuclear reaction rate uncertainties. In general the differences in the results from the three codes are due to their contrasting physics assumptions (e.g. prescriptions for mass loss and convection). The broadly similar evolution of the 25M ⊙ models gives us reassurance that different stellar evolution codes do produce similar results. For the 15M ⊙ and 20M ⊙ models, however, the different input physics and the interplay between the various convective zones lead to important differences in both the pre-supernova structure and nucleosynthesis predicted by the three codes. For the KEPLER models the core masses are different and therefore an exact match could not be expected.« less
Test code for the assessment and improvement of Reynolds stress models
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Viegas, J. R.; Vandromme, D.; Minh, H. HA
1987-01-01
An existing two-dimensional, compressible flow, Navier-Stokes computer code, containing a full Reynolds stress turbulence model, was adapted for use as a test bed for assessing and improving turbulence models based on turbulence simulation experiments. To date, the results of using the code in comparison with simulated channel flow and over an oscillating flat plate have shown that the turbulence model used in the code needs improvement for these flows. It is also shown that direct simulation of turbulent flows over a range of Reynolds numbers are needed to guide subsequent improvement of turbulence models.
Is the Capsular Bag Perimeter Round or Elliptical?
Amigó, Alfredo; Bonaque-González, Sergio
2016-01-01
Purpose: To report findings that could suggest an elliptical shape of the capsular bag. Methods: Five eyes of three patients with axial length greater than 24 mm underwent phacoemulsification cataract surgery with plate-haptic multifocal toric intraocular lens (IOL) implantation oriented in the vertical meridian. Results: In all cases, correct orientation of the IOLs was verified 30 minutes after surgery. After 24 hours, all eyes demonstrated unwanted rotation of the IOLs ranging from 15 to 45 degrees. The IOLs remained stable in the new position in all cases until adhesion of the capsular bag took place. Conclusion: These observations could suggest that the perimeter of the capsular bag has an elliptical shape. Therefore, the IOL tends to become fixated in a meridian of the capsular bag that best fits the diagonal diameter of the IOL. PMID:27413495
Degeneration of Bethe subalgebras in the Yangian of gl_n
NASA Astrophysics Data System (ADS)
Ilin, Aleksei; Rybnikov, Leonid
2018-04-01
We study degenerations of Bethe subalgebras B( C) in the Yangian Y(gl_n), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne-Mumford moduli space of stable rational curves \\overline{M_{0,n+2}}. All subalgebras corresponding to the points of \\overline{M_{0,n+2}} are free and maximal commutative. We describe explicitly the "simplest" degenerations and show that every degeneration is the composition of the simplest ones. The Deligne-Mumford space \\overline{M_{0,n+2}} generalizes to other root systems as some De Concini-Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini-Procesi resolution.
Machine learning in the string landscape
NASA Astrophysics Data System (ADS)
Carifio, Jonathan; Halverson, James; Krioukov, Dmitri; Nelson, Brent D.
2017-09-01
We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of 4/3× 2.96× {10}^{755} F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.
Creating Synthetic Coronal Observational Data From MHD Models: The Forward Technique
NASA Technical Reports Server (NTRS)
Rachmeler, Laurel A.; Gibson, Sarah E.; Dove, James; Kucera, Therese Ann
2010-01-01
We present a generalized forward code for creating simulated corona) observables off the limb from numerical and analytical MHD models. This generalized forward model is capable of creating emission maps in various wavelengths for instruments such as SXT, EIT, EIS, and coronagraphs, as well as spectropolari metric images and line profiles. The inputs to our code can be analytic models (of which four come with the code) or 2.5D and 3D numerical datacubes. We present some examples of the observable data created with our code as well as its functional capabilities. This code is currently available for beta-testing (contact authors), with the ultimate goal of release as a SolarSoft package
2016-11-01
ER D C/ G SL T R- 16 -3 1 Modeling the Blast Load Simulator Airblast Environment Using First Principles Codes Report 1, Blast Load...Simulator Airblast Environment using First Principles Codes Report 1, Blast Load Simulator Environment Gregory C. Bessette, James L. O’Daniel...evaluate several first principles codes (FPCs) for modeling airblast environments typical of those encountered in the BLS. The FPCs considered were
7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Voluntary National Model Building Codes E Exhibit E... HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY... National Model Building Codes The following documents address the health and safety aspects of buildings...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.
2011-03-01
This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repositorymore » designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.« less
Evolution of plastic anisotropy for high-strain-rate computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.; Maudlin, P.J.
1994-12-01
A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less
REASSESSING MECHANISM AS A PREDICTOR OF PEDIATRIC INJURY MORTALITY
Beck, Haley; Mittal, Sushil; Madigan, David; Burd, Randall S.
2015-01-01
Background The use of mechanism of injury as a predictor of injury outcome presents practical challenges because this variable may be missing or inaccurate in many databases. The purpose of this study was to determine the importance of mechanism of injury as a predictor of mortality among injured children. Methods The records of children (<15 years old) sustaining a blunt injury were obtained from the National Trauma Data Bank. Models predicting injury mortality were developed using mechanism of injury and injury coding using either Abbreviated Injury Scale post-dot values (low-dimensional injury coding) or injury ICD-9 codes and their two-way interactions (high-dimensional injury coding). Model performance with and without inclusion of mechanism of injury was compared for both coding schemes, and the relative importance of mechanism of injury as a variable in each model type was evaluated. Results Among 62,569 records, a mortality rate of 0.9% was observed. Inclusion of mechanism of injury improved model performance when using low-dimensional injury coding but was associated with no improvement when using high-dimensional injury coding. Mechanism of injury contributed to 28% of model variance when using low-dimensional injury coding and <1% when high-dimensional injury coding was used. Conclusions Although mechanism of injury may be an important predictor of injury mortality among children sustaining blunt trauma, its importance as a predictor of mortality depends on approach used for injury coding. Mechanism of injury is not an essential predictor of outcome after injury when coding schemes are used that better characterize injuries sustained after blunt pediatric trauma. PMID:26197948
Integrated modelling framework for short pulse high energy density physics experiments
NASA Astrophysics Data System (ADS)
Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.
2016-03-01
Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.
NASA Astrophysics Data System (ADS)
Drobny, Jon; Curreli, Davide; Ruzic, David; Lasa, Ane; Green, David; Canik, John; Younkin, Tim; Blondel, Sophie; Wirth, Brian
2017-10-01
Surface roughness greatly impacts material erosion, and thus plays an important role in Plasma-Surface Interactions. Developing strategies for efficiently introducing rough surfaces into ion-solid interaction codes will be an important step towards whole-device modeling of plasma devices and future fusion reactors such as ITER. Fractal TRIDYN (F-TRIDYN) is an upgraded version of the Monte Carlo, BCA program TRIDYN developed for this purpose that includes an explicit fractal model of surface roughness and extended input and output options for file-based code coupling. Code coupling with both plasma and material codes has been achieved and allows for multi-scale, whole-device modeling of plasma experiments. These code coupling results will be presented. F-TRIDYN has been further upgraded with an alternative, statistical model of surface roughness. The statistical model is significantly faster than and compares favorably to the fractal model. Additionally, the statistical model compares well to alternative computational surface roughness models and experiments. Theoretical links between the fractal and statistical models are made, and further connections to experimental measurements of surface roughness are explored. This work was supported by the PSI-SciDAC Project funded by the U.S. Department of Energy through contract DOE-DE-SC0008658.
Phonological coding during reading.
Leinenger, Mallorie
2014-11-01
The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early [prelexical] or that phonological codes come online late [postlexical]) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eye-tracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model, Van Orden, 1987; dual-route model, e.g., M. Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; parallel distributed processing model, Seidenberg & McClelland, 1989) are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Phonological coding during reading
Leinenger, Mallorie
2014-01-01
The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early (pre-lexical) or that phonological codes come online late (post-lexical)) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eyetracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model (Van Order, 1987), dual-route model (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), parallel distributed processing model (Seidenberg & McClelland, 1989)) are discussed. PMID:25150679
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blyth, Taylor S.; Avramova, Maria
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR)more » cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.« less
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
NASA Astrophysics Data System (ADS)
Blyth, Taylor S.
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.
The Use of a Code-generating System for the Derivation of the Equations for Wind Turbine Dynamics
NASA Astrophysics Data System (ADS)
Ganander, Hans
2003-10-01
For many reasons the size of wind turbines on the rapidly growing wind energy market is increasing. Relations between aeroelastic properties of these new large turbines change. Modifications of turbine designs and control concepts are also influenced by growing size. All these trends require development of computer codes for design and certification. Moreover, there is a strong desire for design optimization procedures, which require fast codes. General codes, e.g. finite element codes, normally allow such modifications and improvements of existing wind turbine models. This is done relatively easy. However, the calculation times of such codes are unfavourably long, certainly for optimization use. The use of an automatic code generating system is an alternative for relevance of the two key issues, the code and the design optimization. This technique can be used for rapid generation of codes of particular wind turbine simulation models. These ideas have been followed in the development of new versions of the wind turbine simulation code VIDYN. The equations of the simulation model were derived according to the Lagrange equation and using Mathematica®, which was directed to output the results in Fortran code format. In this way the simulation code is automatically adapted to an actual turbine model, in terms of subroutines containing the equations of motion, definitions of parameters and degrees of freedom. Since the start in 1997, these methods, constituting a systematic way of working, have been used to develop specific efficient calculation codes. The experience with this technique has been very encouraging, inspiring the continued development of new versions of the simulation code as the need has arisen, and the interest for design optimization is growing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilienthal, P.
1997-12-01
This paper describes three different computer codes which have been written to model village power applications. The reasons which have driven the development of these codes include: the existance of limited field data; diverse applications can be modeled; models allow cost and performance comparisons; simulations generate insights into cost structures. The models which are discussed are: Hybrid2, a public code which provides detailed engineering simulations to analyze the performance of a particular configuration; HOMER - the hybrid optimization model for electric renewables - which provides economic screening for sensitivity analyses; and VIPOR the village power model - which is amore » network optimization model for comparing mini-grids to individual systems. Examples of the output of these codes are presented for specific applications.« less
Neutron displacement cross-sections for tantalum and tungsten at energies up to 1 GeV
NASA Astrophysics Data System (ADS)
Broeders, C. H. M.; Konobeyev, A. Yu.; Villagrasa, C.
2005-06-01
The neutron displacement cross-section has been evaluated for tantalum and tungsten at energies from 10 -5 eV up to 1 GeV. The nuclear optical model, the intranuclear cascade model combined with the pre-equilibrium and evaporation models were used for the calculations. The number of defects produced by recoil atoms nuclei in materials was calculated by the Norgett, Robinson, Torrens model and by the approach combining calculations using the binary collision approximation model and the results of the molecular dynamics simulation. The numerical calculations were done using the NJOY code, the ECIS96 code, the MCNPX code and the IOTA code.
Liquid rocket combustor computer code development
NASA Technical Reports Server (NTRS)
Liang, P. Y.
1985-01-01
The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.
Cavitation Modeling in Euler and Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.
Burner liner thermal/structural load modeling: TRANCITS program user's manual
NASA Technical Reports Server (NTRS)
Maffeo, R.
1985-01-01
Transfer Analysis Code to Interface Thermal/Structural Problems (TRANCITS) is discussed. The TRANCITS code satisfies all the objectives for transferring thermal data between heat transfer and structural models of combustor liners and it can be used as a generic thermal translator between heat transfer and stress models of any component, regardless of the geometry. The TRANCITS can accurately and efficiently convert the temperature distributions predicted by the heat transfer programs to those required by the stress codes. It can be used for both linear and nonlinear structural codes and can produce nodal temperatures, elemental centroid temperatures, or elemental Gauss point temperatures. The thermal output of both the MARC and SINDA heat transfer codes can be interfaced directly with TRANCITS, and it will automatically produce stress model codes formatted for NASTRAN and MARC. Any thermal program and structural program can be interfaced by using the neutral input and output forms supported by TRANCITS.
NASA Astrophysics Data System (ADS)
Wang, W.; Liu, J.
2016-12-01
Forward modelling is the general way to obtain responses of geoelectrical structures. Field investigators might find it useful for planning surveys and choosing optimal electrode configurations with respect to their targets. During the past few decades much effort has been put into the development of numerical forward codes, such as integral equation method, finite difference method and finite element method. Nowadays, most researchers prefer the finite element method (FEM) for its flexible meshing scheme, which can handle models with complex geometry. Resistivity Modelling with commercial sofewares such as ANSYS and COMSOL is convenient, but like working with a black box. Modifying the existed codes or developing new codes is somehow a long period. We present a new way to obtain resistivity forward modelling codes quickly, which is based on the commercial sofeware FEPG (Finite element Program Generator). Just with several demanding scripts, FEPG could generate FORTRAN program framework which can easily be altered to adjust our targets. By supposing the electric potential is quadratic in each element of a two-layer model, we obtain quite accurate results with errors less than 1%, while more than 5% errors could appear by linear FE codes. The anisotropic half-space model is supposed to concern vertical distributed fractures. The measured apparent resistivities along the fractures are bigger than results from its orthogonal direction, which are opposite of the true resistivities. Interpretation could be misunderstood if this anisotropic paradox is ignored. The technique we used can obtain scientific codes in a short time. The generated powerful FORTRAN codes could reach accurate results by higher-order assumption and can handle anisotropy to make better interpretations. The method we used could be expand easily to other domain where FE codes are needed.
Efficient Modeling of Laser-Plasma Accelerators with INF&RNO
NASA Astrophysics Data System (ADS)
Benedetti, C.; Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Leemans, W. P.
2010-11-01
The numerical modeling code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde, pronounced "inferno") is presented. INF&RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations while still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.
Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan
2016-04-01
Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities towards standard and hard-coded parameters in Noah-MP because of their tight coupling via the water balance. It should therefore be comparable to calibrate Noah-MP either against latent heat observations or against river runoff data. Latent heat and total runoff are sensitive to both, plant and soil parameters. Calibrating only a parameter sub-set of only soil parameters, for example, thus limits the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
1984-08-01
COLLFCTIVF PAPTTCLE ACCELERATOR VIA NUMERICAL MODFLINC WITH THF MAGIC CODE Robert 1. Darker Auqust 19F4 Final Report for Period I April. qI84 - 30...NUMERICAL MODELING WITH THE MAGIC CODE Robert 3. Barker August 1984 Final Report for Period 1 April 1984 - 30 September 1984 Prepared for: Scientific...Collective Final Report Particle Accelerator VIA Numerical Modeling with April 1 - September-30, 1984 MAGIC Code. 6. PERFORMING ORG. REPORT NUMBER MRC/WDC-R
Parser for Sabin-to-Mahoney Transition Model of Quasispecies Replication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ecale Zhou, Carol
2016-01-03
This code is a data parse for preparing output from the Qspp agent-based stochastic simulation model for plotting in Excel. This code is specific to a set of simulations that were run for the purpose of preparing data for a publication. It is necessary to make this code open-source in order to publish the model code (Qspp), which has already been released. There is a necessity of assuring that results from using Qspp for a publication
Direct G-code manipulation for 3D material weaving
NASA Astrophysics Data System (ADS)
Koda, S.; Tanaka, H.
2017-04-01
The process of conventional 3D printing begins by first build a 3D model, then convert to the model to G-code via a slicer software, feed the G-code to the printer, and finally start the printing. The most simple and popular 3D printing technique is Fused Deposition Modeling. However, in this method, the printing path that the printer head can take is restricted by the G-code. Therefore the printed 3D models with complex pattern have structural errors like holes or gaps between the printed material lines. In addition, the structural density and the material's position of the printed model are difficult to control. We realized the G-code editing, Fabrix, for making a more precise and functional printed model with both single and multiple material. The models with different stiffness are fabricated by the controlling the printing density of the filament materials with our method. In addition, the multi-material 3D printing has a possibility to expand the physical properties by the material combination and its G-code editing. These results show the new printing method to provide more creative and functional 3D printing techniques.
A phase code for memory could arise from circuit mechanisms in entorhinal cortex
Hasselmo, Michael E.; Brandon, Mark P.; Yoshida, Motoharu; Giocomo, Lisa M.; Heys, James G.; Fransen, Erik; Newman, Ehren L.; Zilli, Eric A.
2009-01-01
Neurophysiological data reveals intrinsic cellular properties that suggest how entorhinal cortical neurons could code memory by the phase of their firing. Potential cellular mechanisms for this phase coding in models of entorhinal function are reviewed. This mechanism for phase coding provides a substrate for modeling the responses of entorhinal grid cells, as well as the replay of neural spiking activity during waking and sleep. Efforts to implement these abstract models in more detailed biophysical compartmental simulations raise specific issues that could be addressed in larger scale population models incorporating mechanisms of inhibition. PMID:19656654
Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.
Palkowski, Marek; Bielecki, Wlodzimierz
2018-01-15
RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in parallel tiled code implementing Nussinov's RNA folding. Experimental results, received on modern Intel multi-core processors, demonstrate that this code outperforms known closely related implementations when the length of RNA strands is bigger than 2500.
SolTrace Background | Concentrating Solar Power | NREL
codes was written to model a very specific optical geometry, and each one built upon the others in an evolutionary way. Examples of such codes include: OPTDSH, a code written to model circular aperture parabolic
VAVUQ, Python and Matlab freeware for Verification and Validation, Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Courtney, J. E.; Zamani, K.; Bombardelli, F. A.; Fleenor, W. E.
2015-12-01
A package of scripts is presented for automated Verification and Validation (V&V) and Uncertainty Quantification (UQ) for engineering codes that approximate Partial Differential Equations (PDFs). The code post-processes model results to produce V&V and UQ information. This information can be used to assess model performance. Automated information on code performance can allow for a systematic methodology to assess the quality of model approximations. The software implements common and accepted code verification schemes. The software uses the Method of Manufactured Solutions (MMS), the Method of Exact Solution (MES), Cross-Code Verification, and Richardson Extrapolation (RE) for solution (calculation) verification. It also includes common statistical measures that can be used for model skill assessment. Complete RE can be conducted for complex geometries by implementing high-order non-oscillating numerical interpolation schemes within the software. Model approximation uncertainty is quantified by calculating lower and upper bounds of numerical error from the RE results. The software is also able to calculate the Grid Convergence Index (GCI), and to handle adaptive meshes and models that implement mixed order schemes. Four examples are provided to demonstrate the use of the software for code and solution verification, model validation and uncertainty quantification. The software is used for code verification of a mixed-order compact difference heat transport solver; the solution verification of a 2D shallow-water-wave solver for tidal flow modeling in estuaries; the model validation of a two-phase flow computation in a hydraulic jump compared to experimental data; and numerical uncertainty quantification for 3D CFD modeling of the flow patterns in a Gust erosion chamber.
Learning-Based Just-Noticeable-Quantization- Distortion Modeling for Perceptual Video Coding.
Ki, Sehwan; Bae, Sung-Ho; Kim, Munchurl; Ko, Hyunsuk
2018-07-01
Conventional predictive video coding-based approaches are reaching the limit of their potential coding efficiency improvements, because of severely increasing computation complexity. As an alternative approach, perceptual video coding (PVC) has attempted to achieve high coding efficiency by eliminating perceptual redundancy, using just-noticeable-distortion (JND) directed PVC. The previous JNDs were modeled by adding white Gaussian noise or specific signal patterns into the original images, which were not appropriate in finding JND thresholds due to distortion with energy reduction. In this paper, we present a novel discrete cosine transform-based energy-reduced JND model, called ERJND, that is more suitable for JND-based PVC schemes. Then, the proposed ERJND model is extended to two learning-based just-noticeable-quantization-distortion (JNQD) models as preprocessing that can be applied for perceptual video coding. The two JNQD models can automatically adjust JND levels based on given quantization step sizes. One of the two JNQD models, called LR-JNQD, is based on linear regression and determines the model parameter for JNQD based on extracted handcraft features. The other JNQD model is based on a convolution neural network (CNN), called CNN-JNQD. To our best knowledge, our paper is the first approach to automatically adjust JND levels according to quantization step sizes for preprocessing the input to video encoders. In experiments, both the LR-JNQD and CNN-JNQD models were applied to high efficiency video coding (HEVC) and yielded maximum (average) bitrate reductions of 38.51% (10.38%) and 67.88% (24.91%), respectively, with little subjective video quality degradation, compared with the input without preprocessing applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, Greg; /LBL, Berkeley; Safranek, James
The LOCO algorithm has been used by many accelerators around the world. Although the uses for LOCO vary, the most common use has been to find calibration errors and correct the optics functions. The light source community in particular has made extensive use of the LOCO algorithms to tightly control the beta function and coupling. Maintaining high quality beam parameters requires constant attention so a relatively large effort was put into software development for the LOCO application. The LOCO code was originally written in FORTRAN. This code worked fine but it was somewhat awkward to use. For instance, the FORTRANmore » code itself did not calculate the model response matrix. It required a separate modeling code such as MAD to calculate the model matrix then one manually loads the data into the LOCO code. As the number of people interested in LOCO grew, it required making it easier to use. The decision to port LOCO to Matlab was relatively easy. It's best to use a matrix programming language with good graphics capability; Matlab was also being used for high level machine control; and the accelerator modeling code AT, [5], was already developed for Matlab. Since LOCO requires collecting and processing a relative large amount of data, it is very helpful to have the LOCO code compatible with the high level machine control, [3]. A number of new features were added while porting the code from FORTRAN and new methods continue to evolve, [7][9]. Although Matlab LOCO was written with AT as the underlying tracking code, a mechanism to connect to other modeling codes has been provided.« less
Overview of the ArbiTER edge plasma eigenvalue code
NASA Astrophysics Data System (ADS)
Baver, Derek; Myra, James; Umansky, Maxim
2011-10-01
The Arbitrary Topology Equation Reader, or ArbiTER, is a flexible eigenvalue solver that is currently under development for plasma physics applications. The ArbiTER code builds on the equation parser framework of the existing 2DX code, extending it to include a topology parser. This will give the code the capability to model problems with complicated geometries (such as multiple X-points and scrape-off layers) or model equations with arbitrary numbers of dimensions (e.g. for kinetic analysis). In the equation parser framework, model equations are not included in the program's source code. Instead, an input file contains instructions for building a matrix from profile functions and elementary differential operators. The program then executes these instructions in a sequential manner. These instructions may also be translated into analytic form, thus giving the code transparency as well as flexibility. We will present an overview of how the ArbiTER code is to work, as well as preliminary results from early versions of this code. Work supported by the U.S. DOE.
NASA Technical Reports Server (NTRS)
Mashnik, S. G.; Gudima, K. K.; Sierk, A. J.; Moskalenko, I. V.
2002-01-01
Space radiation shield applications and studies of cosmic ray propagation in the Galaxy require reliable cross sections to calculate spectra of secondary particles and yields of the isotopes produced in nuclear reactions induced both by particles and nuclei at energies from threshold to hundreds of GeV per nucleon. Since the data often exist in a very limited energy range or sometimes not at all, the only way to obtain an estimate of the production cross sections is to use theoretical models and codes. Recently, we have developed improved versions of the Cascade-Exciton Model (CEM) of nuclear reactions: the codes CEM97 and CEM2k for description of particle-nucleus reactions at energies up to about 5 GeV. In addition, we have developed a LANL version of the Quark-Gluon String Model (LAQGSM) to describe reactions induced both by particles and nuclei at energies up to hundreds of GeVhucleon. We have tested and benchmarked the CEM and LAQGSM codes against a large variety of experimental data and have compared their results with predictions by other currently available models and codes. Our benchmarks show that CEM and LAQGSM codes have predictive powers no worse than other currently used codes and describe many reactions better than other codes; therefore both our codes can be used as reliable event-generators for space radiation shield and cosmic ray propagation applications. The CEM2k code is being incorporated into the transport code MCNPX (and several other transport codes), and we plan to incorporate LAQGSM into MCNPX in the near future. Here, we present the current status of the CEM2k and LAQGSM codes, and show results and applications to studies of cosmic ray propagation in the Galaxy.
NASA Technical Reports Server (NTRS)
Hicks, Raymond M.; Cliff, Susan E.
1991-01-01
Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.
A Short Review of Ablative-Material Response Models and Simulation Tools
NASA Technical Reports Server (NTRS)
Lachaud, Jean; Magin, Thierry E.; Cozmuta, Ioana; Mansour, Nagi N.
2011-01-01
A review of the governing equations and boundary conditions used to model the response of ablative materials submitted to a high-enthalpy flow is proposed. The heritage of model-development efforts undertaken in the 1960s is extremely clear: the bases of the models used in the community are mathematically equivalent. Most of the material-response codes implement a single model in which the equation parameters may be modified to model different materials or conditions. The level of fidelity of the models implemented in design tools only slightly varies. Research and development codes are generally more advanced but often not as robust. The capabilities of each of these codes are summarized in a color-coded table along with research and development efforts currently in progress.
Theory-based model for the pedestal, edge stability and ELMs in tokamaks
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.
2006-04-01
An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.
From Verified Models to Verifiable Code
NASA Technical Reports Server (NTRS)
Lensink, Leonard; Munoz, Cesar A.; Goodloe, Alwyn E.
2009-01-01
Declarative specifications of digital systems often contain parts that can be automatically translated into executable code. Automated code generation may reduce or eliminate the kinds of errors typically introduced through manual code writing. For this approach to be effective, the generated code should be reasonably efficient and, more importantly, verifiable. This paper presents a prototype code generator for the Prototype Verification System (PVS) that translates a subset of PVS functional specifications into an intermediate language and subsequently to multiple target programming languages. Several case studies are presented to illustrate the tool's functionality. The generated code can be analyzed by software verification tools such as verification condition generators, static analyzers, and software model-checkers to increase the confidence that the generated code is correct.
GeoFramework: A Modeling Framework for Solid Earth Geophysics
NASA Astrophysics Data System (ADS)
Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.
2003-12-01
As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic earthquake rupture; SNAC, a developing 3-D coded based on the FLAC method for visco-elastoplastic deformation; SNARK, a 3-D FE-PIC method for viscoplastic deformation; and gPLATES an open source paleogeographic/plate tectonics modeling package. We will demonstrate how codes can be linked with themselves, such as a regional and global model of mantle convection and a visco-elastoplastic representation of the crust within viscous mantle flow. Finally, we will describe how http://GeoFramework.org has become a distribution site for a suite of modeling software in geophysics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesselinov, Velimir; O'Malley, Daniel; Lin, Youzuo
2016-07-01
Mads.jl (Model analysis and decision support in Julia) is a code that streamlines the process of using data and models for analysis and decision support. It is based on another open-source code developed at LANL and written in C/C++ (MADS; http://mads.lanl.gov; LA-CC-11- 035). Mads.jl can work with external models of arbitrary complexity as well as built-in models of flow and transport in porous media. It enables a number of data- and model-based analyses including model calibration, sensitivity analysis, uncertainty quantification, and decision analysis. The code also can use a series of alternative adaptive computational techniques for Bayesian sampling, Monte Carlo,more » and Bayesian Information-Gap Decision Theory. The code is implemented in the Julia programming language, and has high-performance (parallel) and memory management capabilities. The code uses a series of third party modules developed by others. The code development will also include contributions to the existing third party modules written in Julia; this contributions will be important for the efficient implementation of the algorithm used by Mads.jl. The code also uses a series of LANL developed modules that are developed by Dan O'Malley; these modules will be also a part of the Mads.jl release. Mads.jl will be released under GPL V3 license. The code will be distributed as a Git repo at gitlab.com and github.com. Mads.jl manual and documentation will be posted at madsjulia.lanl.gov.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Hae-Yong; Ha, Kwi-Seok; Chang, Won-Pyo
The local blockage in a subassembly of a liquid metal-cooled reactor (LMR) is of importance to the plant safety because of the compact design and the high power density of the core. To analyze the thermal-hydraulic parameters in a subassembly of a liquid metal-cooled reactor with a flow blockage, the Korea Atomic Energy Research Institute has developed the MATRA-LMR-FB code. This code uses the distributed resistance model to describe the sweeping flow formed by the wire wrap around the fuel rods and to model the recirculation flow after a blockage. The hybrid difference scheme is also adopted for the descriptionmore » of the convective terms in the recirculating wake region of low velocity. Some state-of-the-art turbulent mixing models were implemented in the code, and the models suggested by Rehme and by Zhukov are analyzed and found to be appropriate for the description of the flow blockage in an LMR subassembly. The MATRA-LMR-FB code predicts accurately the experimental data of the Oak Ridge National Laboratory 19-pin bundle with a blockage for both the high-flow and low-flow conditions. The influences of the distributed resistance model, the hybrid difference method, and the turbulent mixing models are evaluated step by step with the experimental data. The appropriateness of the models also has been evaluated through a comparison with the results from the COMMIX code calculation. The flow blockage for the KALIMER design has been analyzed with the MATRA-LMR-FB code and is compared with the SABRE code to guarantee the design safety for the flow blockage.« less
Potential flow theory and operation guide for the panel code PMARC
NASA Technical Reports Server (NTRS)
Ashby, Dale L.; Dudley, Michael R.; Iguchi, Steve K.; Browne, Lindsey; Katz, Joseph
1991-01-01
The theoretical basis for PMARC, a low-order potential-flow panel code for modeling complex three-dimensional geometries, is outlined. Several of the advanced features currently included in the code, such as internal flow modeling, a simple jet model, and a time-stepping wake model, are discussed in some detail. The code is written using adjustable size arrays so that it can be easily redimensioned for the size problem being solved and the computer hardware being used. An overview of the program input is presented, with a detailed description of the input available in the appendices. Finally, PMARC results for a generic wing/body configuration are compared with experimental data to demonstrate the accuracy of the code. The input file for this test case is given in the appendices.
Nuclear shell model code CRUNCHER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resler, D.A.; Grimes, S.M.
1988-05-01
A new nuclear shell model code CRUNCHER, patterned after the code VLADIMIR, has been developed. While CRUNCHER and VLADIMIR employ the techniques of an uncoupled basis and the Lanczos process, improvements in the new code allow it to handle much larger problems than the previous code and to perform them more efficiently. Tests involving a moderately sized calculation indicate that CRUNCHER running on a SUN 3/260 workstation requires approximately one-half the central processing unit (CPU) time required by VLADIMIR running on a CRAY-1 supercomputer.
Users manual and modeling improvements for axial turbine design and performance computer code TD2-2
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1992-01-01
Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.
Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.
2008-01-01
Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.
Efficient Modeling of Laser-Plasma Accelerators with INF and RNO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedetti, C.; Schroeder, C. B.; Esarey, E.
2010-11-04
The numerical modeling code INF and RNO (INtegrated Fluid and paRticle simulatioN cOde, pronounced 'inferno') is presented. INF and RNO is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a PIC or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged poderomotive force. These and other features allow for a speedup of 2-4 orders of magnitude compared to standard full PIC simulations whilemore » still retaining physical fidelity. The code has been benchmarked against analytical solutions and 3D PIC simulations and here a set of validation tests together with a discussion of the performances are presented.« less
NASA Technical Reports Server (NTRS)
Rosen, Bruce S.
1991-01-01
An upwind three-dimensional volume Navier-Stokes code is modified to facilitate modeling of complex geometries and flow fields represented by proposed National Aerospace Plane concepts. Code enhancements include an equilibrium air model, a generalized equilibrium gas model and several schemes to simplify treatment of complex geometric configurations. The code is also restructured for inclusion of an arbitrary number of independent and dependent variables. This latter capability is intended for eventual use to incorporate nonequilibrium/chemistry gas models, more sophisticated turbulence and transition models, or other physical phenomena which will require inclusion of additional variables and/or governing equations. Comparisons of computed results with experimental data and results obtained using other methods are presented for code validation purposes. Good correlation is obtained for all of the test cases considered, indicating the success of the current effort.
Modeling anomalous radial transport in kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.
2009-11-01
Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.
1994-02-01
The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters,more » and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.« less
Coding conventions and principles for a National Land-Change Modeling Framework
Donato, David I.
2017-07-14
This report establishes specific rules for writing computer source code for use with the National Land-Change Modeling Framework (NLCMF). These specific rules consist of conventions and principles for writing code primarily in the C and C++ programming languages. Collectively, these coding conventions and coding principles create an NLCMF programming style. In addition to detailed naming conventions, this report provides general coding conventions and principles intended to facilitate the development of high-performance software implemented with code that is extensible, flexible, and interoperable. Conventions for developing modular code are explained in general terms and also enabled and demonstrated through the appended templates for C++ base source-code and header files. The NLCMF limited-extern approach to module structure, code inclusion, and cross-module access to data is both explained in the text and then illustrated through the module templates. Advice on the use of global variables is provided.
Wilkinson, Nicholas M.; Metta, Giorgio
2014-01-01
Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations in the persistent neural activity of neural integrators in the oculomotor brainstem, which integrate sequences of transient saccadic velocity signals into a short term memory of eye position. Despite intensive research and much progress, the precise mechanisms by which oculomotor posture is maintained remain elusive. Drift exhibits a stochastic statistical profile which has been modeled using random walk formalisms. Tremor is widely dismissed as noise. Here we focus on the dynamical profile of fixational tremor, and argue that tremor may be a signal which usefully reflects the workings of oculomotor postural control. We identify signatures reminiscent of a certain flavor of transient neurodynamics; toric traveling waves which rotate around a central phase singularity. Spiral waves play an organizational role in dynamical systems at many scales throughout nature, though their potential functional role in brain activity remains a matter of educated speculation. Spiral waves have a repertoire of functionally interesting dynamical properties, including persistence, which suggest that they could in theory contribute to persistent neural activity in the oculomotor postural control system. Whilst speculative, the singularity hypothesis of oculomotor postural control implies testable predictions, and could provide the beginnings of an integrated dynamical framework for eye movements across scales. PMID:24616670
Statistical effects in large N supersymmetric gauge theories
NASA Astrophysics Data System (ADS)
Czech, Bartlomiej Stanislaw
This thesis discusses statistical simplifications arising in supersymmetric gauge theories in the limit of large rank. Applications involve the physics of black holes and the problem of predicting the low energy effective theory from a landscape of string vacua. The first part of this work uses the AdS/CFT correspondence to explain properties of black holes. We establish that in the large charge sector of toric quiver gauge theories there exists a typical state whose structure is closely mimicked by almost all other states. Then, working in the settings of the half-BPS sector of N = 4 super-Yang-Mills theory, we show that in the dual gravity theory semiclassical observations cannot distinguish a pair of geometries corresponding to two generic heavy states. Finally, we argue on general grounds that these conclusions are exponentially enhanced in quantum cosmological settings. The results establish that one may consistently account for the entropy of a black hole with heavy states in the dual field theory and suggest that the usual properties of black holes arise as artifacts of imposing a semiclassical description on a quantum system. In the second half we develop new tools to determine the infrared behavior of quiver gauge theories in a certain class. We apply the dynamical results to a toy model of the landscape of effective field theories defined at some high energy scale, and derive firm statistical predictions for the low energy effective theory.
Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Cofield, Richard E.; Kasl, Eldon P.
2011-01-01
The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission in [180,680] GHz. SMLS, planned for the NRC Decadal Survey's Global Atmospheric Composition Mission, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. This provides better horizontal and temporal resolution and coverage than were possible with elevation-only scanning in the two previous MLS satellite instruments. SMLS is diffraction-limited in the vertical plane but highly astigmatic in the horizontal (beam aspect ratio approx. 1:20). Nadir symmetry ensures that beam shape is nearly invariant over plus or minus 65 deg azimuth. A low-noise receiver FOV is swept over the reflector system by a small azimuth-scanning mirror. We describe the fabrication and thermal-stability test of a composite demonstration primary reflector, having full 4m height and 1/3 the width planned for flight. Using finite-element models of reflectors and structure, we evaluate thermal deformations and optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during soak tests in a chamber. The test temperature range exceeds predicted orbital ranges by large factors, implying in-orbit thermal stability of 0.21 micron rms (root mean square)/C, which meets SMLS requirements.
Demonstrating the Physics Basis for the ITER 15 MA Inductive Discharge on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Kessel, C. E.; Wolfe, S. M.; Hutchinson, I. H.; Hughes, J. W.; Lin, Y.; Ma, Y.; Mikkelsen, D. R.; Poli, F.; Reinke, M. L.; Wukitch, S. J.
2012-10-01
Rampup discharges in C-Mod, matching ITE's current diffusion times show ICRF heating can save V-s but results in only weak effects on the current profile, despite strong modifications of the central electron temperature. Simulation of these discharges with TSC, and TORIC for ICRF, using multiple transport models, do not reproduce the temperature profile evolution, or the experimental internal self-inductance li, by sufficiently large amounts to be unacceptable for projections to ITER operation. For the flattop phase experiments EDA H-modes approach the ITER parameter targets of q95=3, H98=1, n/nGr=0.85, betaN=1.7, and k=1.8, and sustain them similar to a normalized ITER flattop time. The discharges show a degradation of energy confinement at higher densities, but increasing H98 with increasing net power to the plasma. For these discharges intrinsic impurities (B, Mo) provided radiated power fractions of 25-37%. Experiments show the plasma can remain in H-mode in rampdown with ICRF injection, the density will decrease with Ip while in the H-mode, and the back transition occurs when the net power reaches about half the L-H transition power. C-Mod indicates that faster rampdowns are preferable. Work supported by US Dept of Energy under DE-AC02-CH0911466 and DE-FC02-99ER54512.
NASA Astrophysics Data System (ADS)
Pierazzo, E.; Artemieva, N.; Asphaug, E.; Baldwin, E. C.; Cazamias, J.; Coker, R.; Collins, G. S.; Crawford, D. A.; Davison, T.; Elbeshausen, D.; Holsapple, K. A.; Housen, K. R.; Korycansky, D. G.; Wünnemann, K.
2008-12-01
Over the last few decades, rapid improvement of computer capabilities has allowed impact cratering to be modeled with increasing complexity and realism, and has paved the way for a new era of numerical modeling of the impact process, including full, three-dimensional (3D) simulations. When properly benchmarked and validated against observation, computer models offer a powerful tool for understanding the mechanics of impact crater formation. This work presents results from the first phase of a project to benchmark and validate shock codes. A variety of 2D and 3D codes were used in this study, from commercial products like AUTODYN, to codes developed within the scientific community like SOVA, SPH, ZEUS-MP, iSALE, and codes developed at U.S. National Laboratories like CTH, SAGE/RAGE, and ALE3D. Benchmark calculations of shock wave propagation in aluminum-on-aluminum impacts were performed to examine the agreement between codes for simple idealized problems. The benchmark simulations show that variability in code results is to be expected due to differences in the underlying solution algorithm of each code, artificial stability parameters, spatial and temporal resolution, and material models. Overall, the inter-code variability in peak shock pressure as a function of distance is around 10 to 20%. In general, if the impactor is resolved by at least 20 cells across its radius, the underestimation of peak shock pressure due to spatial resolution is less than 10%. In addition to the benchmark tests, three validation tests were performed to examine the ability of the codes to reproduce the time evolution of crater radius and depth observed in vertical laboratory impacts in water and two well-characterized aluminum alloys. Results from these calculations are in good agreement with experiments. There appears to be a general tendency of shock physics codes to underestimate the radius of the forming crater. Overall, the discrepancy between the model and experiment results is between 10 and 20%, similar to the inter-code variability.
Performance analysis of optical wireless communication system based on two-fold turbo code
NASA Astrophysics Data System (ADS)
Chen, Jun; Huang, Dexiu; Yuan, Xiuhua
2005-11-01
Optical wireless communication (OWC) is beginning to emerge in the telecommunications market as a strategy to meet last-mile demand owing to its unique combination of features. Turbo codes have an impressive near Shannon-limit error correcting performance. Twofold turbo codes have been recently introduced as the least complex member of the multifold turbo code family. In this paper, at first, we present the mathematical model of signal and optical wireless channel with fading and bit error rate model with scintillation, then we provide a new turbo code method to use in OWC system, we can obtain a better BER curse of OWC system with twofold turbo code than with common turbo code.
Computer Description of Black Hawk Helicopter
1979-06-01
Model Combinatorial Geometry Models Black Hawk Helicopter Helicopter GIFT Computer Code Geometric Description of Targets 20. ABSTRACT...description was made using the technique of combinatorial geometry (COM-GEOM) and will be used as input to the GIFT computer code which generates Tliic...rnHp The data used bv the COVART comtmter code was eenerated bv the Geometric Information for Targets ( GIFT )Z computer code. This report documents
Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code
NASA Astrophysics Data System (ADS)
Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.
2015-12-01
WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).
Analysis of SMA Hybrid Composite Structures using Commercial Codes
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Patel, Hemant D.
2004-01-01
A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.
Scherzinger, William M.
2016-05-01
The numerical integration of constitutive models in computational solid mechanics codes allows for the solution of boundary value problems involving complex material behavior. Metal plasticity models, in particular, have been instrumental in the development of these codes. Here, most plasticity models implemented in computational codes use an isotropic von Mises yield surface. The von Mises, of J 2, yield surface has a simple predictor-corrector algorithm - the radial return algorithm - to integrate the model.
Centrifugal and Axial Pump Design and Off-Design Performance Prediction
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1995-01-01
A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.
A unified model of the standard genetic code.
José, Marco V; Zamudio, Gabriel S; Morgado, Eberto R
2017-03-01
The Rodin-Ohno (RO) and the Delarue models divide the table of the genetic code into two classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the tRNA acceptor stem, respectively. These models are asymmetric but they are biologically meaningful. On the other hand, the standard genetic code (SGC) can be derived from the primeval RNY code (R stands for purines, Y for pyrimidines and N any of them). In this work, the RO-model is derived by means of group actions, namely, symmetries represented by automorphisms, assuming that the SGC originated from a primeval RNY code. It turns out that the RO-model is symmetric in a six-dimensional (6D) hypercube. Conversely, using the same automorphisms, we show that the RO-model can lead to the SGC. In addition, the asymmetric Delarue model becomes symmetric by means of quotient group operations. We formulate isometric functions that convert the class aaRS I into the class aaRS II and vice versa. We show that the four polar requirement categories display a symmetrical arrangement in our 6D hypercube. Altogether these results cannot be attained, neither in two nor in three dimensions. We discuss the present unified 6D algebraic model, which is compatible with both the SGC (based upon the primeval RNY code) and the RO-model.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Heidegger, Nathan J.; Delaney, Robert A.
1999-01-01
The overall objective of this study was to evaluate the effects of turbulence models in a 3-D numerical analysis on the wake prediction capability. The current version of the computer code resulting from this study is referred to as ADPAC v7 (Advanced Ducted Propfan Analysis Codes -Version 7). This report is intended to serve as a computer program user's manual for the ADPAC code used and modified under Task 15 of NASA Contract NAS3-27394. The ADPAC program is based on a flexible multiple-block and discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Turbulence models now available in the ADPAC code are: a simple mixing-length model, the algebraic Baldwin-Lomax model with user defined coefficients, the one-equation Spalart-Allmaras model, and a two-equation k-R model. The consolidated ADPAC code is capable of executing in either a serial or parallel computing mode from a single source code.
Thrust Chamber Modeling Using Navier-Stokes Equations: Code Documentation and Listings. Volume 2
NASA Technical Reports Server (NTRS)
Daley, P. L.; Owens, S. F.
1988-01-01
A copy of the PHOENICS input files and FORTRAN code developed for the modeling of thrust chambers is given. These copies are contained in the Appendices. The listings are contained in Appendices A through E. Appendix A describes the input statements relevant to thrust chamber modeling as well as the FORTRAN code developed for the Satellite program. Appendix B describes the FORTRAN code developed for the Ground program. Appendices C through E contain copies of the Q1 (input) file, the Satellite program, and the Ground program respectively.
Transmutation Fuel Performance Code Thermal Model Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory K. Miller; Pavel G. Medvedev
2007-09-01
FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.
[Value the correction of corneal astigmatism in cataract surgery].
Wang, J; Cao, Y X
2018-05-11
The aim of modern micro-incision phacoemulsification combined with foldable intraocular lens implantation and femtosecond laser-assisted cataract surgery is evolving from a simple pursuit of recuperation to a refractive procedure, which involves the correction of ametropia according to preoperative and postoperative refractive conditions, especially corneal astigmatism, in order to achieve the goal of optimized postoperative uncorrected full range of vision. Nowadays, due attention to the effect of preoperative corneal astigmatism, surgery-induced astigmatism and residual astigmatism after operation is lacked, which affect postoperative visual acuity significantly. There are many effective ways to reduce corneal astigmatism after cataract surgery including selecting appropriate size and location of clear corneal incision, employing astigmatism keratotomy and the implantation of Toric intraocular lenses, which need to be appropriately applied and popularized. At the same time, surgical indications, predictability and safety should also be taken into account. (Chin J Ophthalmol, 2018, 54: 321-323) .
Glaucoma surgery and induced astigmatism: a systematic review.
Chan, Helen H L; Kong, Yu Xiang G
2017-01-01
The refractive outcomes of glaucoma surgeries, particularly their effect on astigmatism, are incompletely understood. Trabeculectomy is associated with a considerable amount of with-the-rule astigmatic change in the immediate postoperative period. This is followed by a gradual against-the-rule shift. These changes are altered with the use of mitomycin C (MMC). Non-penetrating surgery such as deep sclerectomy is also associated with a similar or smaller degree of induced astigmatism. Minimally invasive glaucoma surgery appears to be astigmatically neutral. There is no clear evidence regarding refractive outcomes of glaucoma drainage device surgery. Induced astigmatism may account for a reduction in unaided visual acuity in the early postoperative period following a successful trabeculectomy. These changes appear to stabilise at 3 months, and it would be prudent to defer the prescription of new glasses until this time. If sequential cataract surgery is to be performed, toric intraocular lenses can be a useful option for astigmatic correction.
Ocular residual astigmatism (ORA) in pre-cataract eyes prior to and after refractive lens exchange.
Katz, Toam; Steinberg, Johannes; Druchkiv, Vasyl; Linke, Stephan J; Frings, Andreas
2017-08-01
The purpose of this study was to analyze ocular residual astigmatism (ORA) before and after implantation of two different optical types of non-toric multifocal intraocular lenses (MIOL) in pre-cataract patients. This retrospective cohort study analyzed 72 eyes from 72 consecutive patients after MIOL surgery . To investigate magnitude and axis of astigmatic changes, the concepts of true corneal astigmatism and Alpins vector method were applied. There were no statistically significant between-group differences prior to surgery. The mean refractive surgically induced astigmatism (RSIA) (P = 0.063) and the topographic SIA (TSIA) (P = 0.828) did not differ significantly between the lenses, and the summated vector mean for ORA was reduced in terms of magnitude by approximately 0.30 Diopter. ORA in pseudophakic eyes mainly results from the posterior corneal surface and less from IOL tilting, postoperative posterior capsule shrinkage, or secondary cataract.
Preoperative corneal astigmatism among adult patients with cataract in Northern Nigeria
Isyaku, Mohammed; Ali, Syed A; Hassan, Sadiq
2014-01-01
The prevalence and nature of corneal astigmatism among patients with cataract has not been well-documented in the resident African population. This retrospective study was undertaken to investigate preexisting corneal astigmatism in adult patients with cataract. We analyzed keratometric readings acquired by manual Javal-Schiotz keratometry before surgery between January 1, 2011 and December 31, 2011. There were 3,169 patients (3286 eyes) aged between 16 and 110 years involved with a Male to female ratio of 1.4:1. Mean keratometry in diopters was K1 = 43.99 and K2 = 43.80. Mean corneal astigmatism was 1.16 diopter and a majority (45.92%) of eyes had astigmatism between 1.00 and 1.99 diopters. Two-thirds of the eyes (66.9%) in this study had preoperative corneal astigmatism equal to or above 1.00 diopter. Findings will help local cataract surgeons to estimate the potential demand for toric intraocular lenses. PMID:25494254
Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres
Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald
2016-01-01
Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700
Luck, Jonathan
2010-07-01
I report a case of pellucid marginal degeneration (PMD) with cataract that was successfully treated with implantation of an ultra-high-power customized bitoric AT.Comfort 646TLC intraocular lens (IOL). The preoperative uncorrected distance visual acuity (UDVA) was 6/120 and the corrected distance visual acuity (CDVA), 6/24 with 10.9 diopters (D) of keratometric astigmatism on Scheimpflug imaging. After implantation of an IOL with -0.5 +16.0 x 170, the UDVA was 6/9 with a manifest refraction of +0.25 +1.25 x 150 and the CDVA, 6/6(-1). No surgical complications or postoperative problems occurred, and the patient was very satisfied with the outcome. A longer follow-up is required to confirm this favorable clinical result. The author has no financial or proprietary interest in any material or method mentioned. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
The geometry of on-shell diagrams
NASA Astrophysics Data System (ADS)
Franco, Sebastián; Galloni, Daniele; Mariotti, Alberto
2014-08-01
The fundamental role of on-shell diagrams in quantum field theory has been recently recognized. On-shell diagrams, or equivalently bipartite graphs, provide a natural bridge connecting gauge theory to powerful mathematical structures such as the Grassmannian. We perform a detailed investigation of the combinatorial and geometric objects associated to these graphs. We mainly focus on their relation to polytopes and toric geometry, the Grassmannian and its stratification. Our work extends the current understanding of these connections along several important fronts, most notably eliminating restrictions imposed by planarity, positivity, reducibility and edge removability. We illustrate our ideas with several explicit examples and introduce concrete methods that considerably simplify computations. We consider it highly likely that the structures unveiled in this article will arise in the on-shell study of scattering amplitudes beyond the planar limit. Our results can be conversely regarded as an expansion in the understanding of the Grassmannian in terms of bipartite graphs.
Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.
Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald
2016-06-24
Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.
A reconstruction theorem for Connes-Landi deformations of commutative spectral triples
NASA Astrophysics Data System (ADS)
Ćaćić, Branimir
2015-12-01
We formulate and prove an extension of Connes's reconstruction theorem for commutative spectral triples to so-called Connes-Landi or isospectral deformations of commutative spectral triples along the action of a compact Abelian Lie group G, also known as toric noncommutative manifolds. In particular, we propose an abstract definition for such spectral triples, where noncommutativity is entirely governed by a deformation parameter sitting in the second group cohomology of the Pontryagin dual of G, and then show that such spectral triples are well-behaved under further Connes-Landi deformation, thereby allowing for both quantisation from and dequantisation to G-equivariant abstract commutative spectral triples. We then use a refinement of the Connes-Dubois-Violette splitting homomorphism to conclude that suitable Connes-Landi deformations of commutative spectral triples by a rational deformation parameter are almost-commutative in the general, topologically non-trivial sense.
Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres
NASA Astrophysics Data System (ADS)
Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald
2016-06-01
Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.
U(1) mediation of flux supersymmetry breaking
NASA Astrophysics Data System (ADS)
Grimm, Thomas W.; Klemm, Albrecht
2008-10-01
We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with Script N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kähler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.
Noncommutative products of Euclidean spaces
NASA Astrophysics Data System (ADS)
Dubois-Violette, Michel; Landi, Giovanni
2018-05-01
We present natural families of coordinate algebras on noncommutative products of Euclidean spaces R^{N_1} × _R R^{N_2} . These coordinate algebras are quadratic ones associated with an R -matrix which is involutive and satisfies the Yang-Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces R4 × _R R4 . Among these, particularly well behaved ones have deformation parameter u \\in S^2 . Quotients include seven spheres S7_u as well as noncommutative quaternionic tori TH_u = S^3 × _u S^3 . There is invariance for an action of {{SU}}(2) × {{SU}}(2) on the torus TH_u in parallel with the action of U(1) × U(1) on a `complex' noncommutative torus T^2_θ which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.
Transport and equilibrium in field-reversed mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, J.K.
Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integralsmore » in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dearing, J F; Nelson, W R; Rose, S D
Computational thermal-hydraulic models of a 19-pin, electrically heated, wire-wrap liquid-metal fast breeder reactor test bundle were developed using two well-known subchannel analysis codes, COBRA III-C and SABRE-1 (wire-wrap version). These two codes use similar subchannel control volumes for the finite difference conservation equations but vary markedly in solution strategy and modeling capability. In particular, the empirical wire-wrap-forced diversion crossflow models are different. Surprisingly, however, crossflow velocity predictions of the two codes are very similar. Both codes show generally good agreement with experimental temperature data from a test in which a large radial temperature gradient was imposed. Differences between data andmore » code results are probably caused by experimental pin bowing, which is presently the limiting factor in validating coded empirical models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki
1990-06-01
A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less
Analysis of typical WWER-1000 severe accident scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, Yu.S.; Shchekoldin, V.V.; Borisov, L.N.
2004-07-01
At present in EDO 'Gidropress' there is a certain experience of performing the analyses of severe accidents of reactor plant with WWER with application of domestic and foreign codes. Important data were also obtained by the results of calculation modeling of integrated experiments with fuel assembly melting comprising a real fuel. Systematization and consideration of these data in development and assimilation of codes are extremely important in connection with large uncertainty still existing in understanding and adequate description of phenomenology of severe accidents. The presented report gives a comparison of analysis results of severe accidents of reactor plant with WWER-1000more » for two typical scenarios made by using American MELCOR code and the Russian RATEG/SVECHA/HEFEST code. The results of calculation modeling are compared using above codes with the data of experiment FPT1 with fuel assembly melting comprising a real fuel, which has been carried out at the facility Phebus (France). The obtained results are considered in the report from the viewpoint of: - adequacy of results of calculation modeling of separate phenomena during severe accidents of RP with WWER by using the above codes; - influence of uncertainties (degree of details of calculation models, choice of parameters of models etc.); - choice of those or other setup variables (options) in the used codes; - necessity of detailed modeling of processes and phenomena as applied to design justification of safety of RP with WWER. (authors)« less
Evaluation of the DRAGON code for VHTR design analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division
2006-01-12
This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by themore » IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.« less
Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code
NASA Technical Reports Server (NTRS)
Nealy, John E.; Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.; Dachev, Ts. P.; Tomov, B. T.; Walker, Steven A.; DeAngelis, Giovanni; Blattnig, Steve R.; Atwell, William
2006-01-01
The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment.
Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach
NASA Astrophysics Data System (ADS)
Feldbauer, Christian; Kubin, Gernot; Kleijn, W. Bastiaan
2005-12-01
Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel) coding.
Xu, Yun; Muhamadali, Howbeer; Sayqal, Ali; Dixon, Neil; Goodacre, Royston
2016-10-28
Partial least squares (PLS) is one of the most commonly used supervised modelling approaches for analysing multivariate metabolomics data. PLS is typically employed as either a regression model (PLS-R) or a classification model (PLS-DA). However, in metabolomics studies it is common to investigate multiple, potentially interacting, factors simultaneously following a specific experimental design. Such data often cannot be considered as a "pure" regression or a classification problem. Nevertheless, these data have often still been treated as a regression or classification problem and this could lead to ambiguous results. In this study, we investigated the feasibility of designing a hybrid target matrix Y that better reflects the experimental design than simple regression or binary class membership coding commonly used in PLS modelling. The new design of Y coding was based on the same principle used by structural modelling in machine learning techniques. Two real metabolomics datasets were used as examples to illustrate how the new Y coding can improve the interpretability of the PLS model compared to classic regression/classification coding.
Gyrofluid Modeling of Turbulent, Kinetic Physics
NASA Astrophysics Data System (ADS)
Despain, Kate Marie
2011-12-01
Gyrofluid models to describe plasma turbulence combine the advantages of fluid models, such as lower dimensionality and well-developed intuition, with those of gyrokinetics models, such as finite Larmor radius (FLR) effects. This allows gyrofluid models to be more tractable computationally while still capturing much of the physics related to the FLR of the particles. We present a gyrofluid model derived to capture the behavior of slow solar wind turbulence and describe the computer code developed to implement the model. In addition, we describe the modifications we made to a gyrofluid model and code that simulate plasma turbulence in tokamak geometries. Specifically, we describe a nonlinear phase mixing phenomenon, part of the E x B term, that was previously missing from the model. An inherently FLR effect, it plays an important role in predicting turbulent heat flux and diffusivity levels for the plasma. We demonstrate this importance by comparing results from the updated code to studies done previously by gyrofluid and gyrokinetic codes. We further explain what would be necessary to couple the updated gyrofluid code, gryffin, to a turbulent transport code, thus allowing gryffin to play a role in predicting profiles for fusion devices such as ITER and to explore novel fusion configurations. Such a coupling would require the use of Graphical Processing Units (GPUs) to make the modeling process fast enough to be viable. Consequently, we also describe our experience with GPU computing and demonstrate that we are poised to complete a gryffin port to this innovative architecture.
2009-01-01
proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and...radiation transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the...same dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6
2009-07-05
proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and Heavy...transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the input...dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6 (PARMA
Terrestrial solar spectral modeling. [SOLTRAN, BRITE, and FLASH codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, R.E.
The utility of accurate computer codes for calculating the solar spectral irradiance under various atmospheric conditions was recognized. New absorption and extraterrestrial spectral data are introduced. Progress is made in radiative transfer modeling outside of the solar community, especially for space and military applications. Three rigorous radiative transfer codes SOLTRAN, BRITE, and FLASH are employed. The SOLTRAN and BRITE codes are described and results from their use are presented.
Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.
2012-01-01
An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.
Subotin, Michael; Davis, Anthony R
2016-09-01
Natural language processing methods for medical auto-coding, or automatic generation of medical billing codes from electronic health records, generally assign each code independently of the others. They may thus assign codes for closely related procedures or diagnoses to the same document, even when they do not tend to occur together in practice, simply because the right choice can be difficult to infer from the clinical narrative. We propose a method that injects awareness of the propensities for code co-occurrence into this process. First, a model is trained to estimate the conditional probability that one code is assigned by a human coder, given than another code is known to have been assigned to the same document. Then, at runtime, an iterative algorithm is used to apply this model to the output of an existing statistical auto-coder to modify the confidence scores of the codes. We tested this method in combination with a primary auto-coder for International Statistical Classification of Diseases-10 procedure codes, achieving a 12% relative improvement in F-score over the primary auto-coder baseline. The proposed method can be used, with appropriate features, in combination with any auto-coder that generates codes with different levels of confidence. The promising results obtained for International Statistical Classification of Diseases-10 procedure codes suggest that the proposed method may have wider applications in auto-coding. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes
Code of Federal Regulations, 2011 CFR
2011-01-01
... National Model Building Codes The following documents address the health and safety aspects of buildings... International, Inc., 4051 West Flossmoor Road, Country Club Hills, Illinois 60477. 2 Southern Building Code Congress International, Inc., 900 Montclair Road, Birmingham, Alabama 35213-1206. 3 International...
Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Michael J.; Niemeyer, Jackie M.
Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less
Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Michael J.; Niemeyer, Jackie M.
Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less
Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Michael J.; Niemeyer, Jackie M.
Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less
Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Michael J.; Niemeyer, Jackie M.
Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less
VizieR Online Data Catalog: Comparison of evolutionary tracks (Martins+, 2013)
NASA Astrophysics Data System (ADS)
Martins, F.; Palacios, A.
2013-11-01
Tables of evolutionary models for massive stars. The files m*_stol.dat correspond to models computed with the code STAREVOL. The files m*_mesa.dat correspond to models computed with the code MESA. For each code, models with initial masses equal to 7, 9, 15, 20, 25, 40 and 60M⊙ are provided. No rotation is included. The overshooting parameter f is equal to 0.01. The metallicity is solar. (14 data files).
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Branch, Oliver; Attinger, Sabine; Thober, Stephan
2016-09-01
Land surface models incorporate a large number of process descriptions, containing a multitude of parameters. These parameters are typically read from tabulated input files. Some of these parameters might be fixed numbers in the computer code though, which hinder model agility during calibration. Here we identified 139 hard-coded parameters in the model code of the Noah land surface model with multiple process options (Noah-MP). We performed a Sobol' global sensitivity analysis of Noah-MP for a specific set of process options, which includes 42 out of the 71 standard parameters and 75 out of the 139 hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated at 12 catchments within the United States with very different hydrometeorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its applicable standard parameters (i.e., Sobol' indexes above 1%). The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for direct evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities because of their tight coupling via the water balance. A calibration of Noah-MP against either of these fluxes should therefore give comparable results. Moreover, these fluxes are sensitive to both plant and soil parameters. Calibrating, for example, only soil parameters hence limit the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
Large Eddy Simulation of Flow in Turbine Cascades Using LESTool and UNCLE Codes
NASA Technical Reports Server (NTRS)
Huang, P. G.
2004-01-01
During the period December 23,1997 and December August 31,2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Spalart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
Large Eddy Simulation of Flow in Turbine Cascades Using LEST and UNCLE Codes
NASA Technical Reports Server (NTRS)
Ashpis, David (Technical Monitor); Huang, P. G.
2004-01-01
During the period December 23, 1997 and December August 31, 2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Sparlart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.
Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, K.K.; Williams, D.C.; Griffith, R.O.
1997-12-01
The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of themore » input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.« less
Kwag, Jeehyun; Jang, Hyun Jae; Kim, Mincheol; Lee, Sujeong
2014-01-01
Rate and phase codes are believed to be important in neural information processing. Hippocampal place cells provide a good example where both coding schemes coexist during spatial information processing. Spike rate increases in the place field, whereas spike phase precesses relative to the ongoing theta oscillation. However, what intrinsic mechanism allows for a single neuron to generate spike output patterns that contain both neural codes is unknown. Using dynamic clamp, we simulate an in vivo-like subthreshold dynamics of place cells to in vitro CA1 pyramidal neurons to establish an in vitro model of spike phase precession. Using this in vitro model, we show that membrane potential oscillation (MPO) dynamics is important in the emergence of spike phase codes: blocking the slowly activating, non-inactivating K+ current (IM), which is known to control subthreshold MPO, disrupts MPO and abolishes spike phase precession. We verify the importance of adaptive IM in the generation of phase codes using both an adaptive integrate-and-fire and a Hodgkin–Huxley (HH) neuron model. Especially, using the HH model, we further show that it is the perisomatically located IM with slow activation kinetics that is crucial for the generation of phase codes. These results suggest an important functional role of IM in single neuron computation, where IM serves as an intrinsic mechanism allowing for dual rate and phase coding in single neurons. PMID:25100320
Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R.; Farmer, Mitchell; Francis, Matthew W.
System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Meltmore » Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.« less
ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package
NASA Astrophysics Data System (ADS)
Hill, E. G.; Pérez-Callejo, G.; Rose, S. J.
2018-03-01
All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the code which build on the existing corpus of models are shown throughout.
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Osborne, Richard N.
2005-01-01
The RoseDoclet computer program extends the capability of Java doclet software to automatically synthesize Unified Modeling Language (UML) content from Java language source code. [Doclets are Java-language programs that use the doclet application programming interface (API) to specify the content and format of the output of Javadoc. Javadoc is a program, originally designed to generate API documentation from Java source code, now also useful as an extensible engine for processing Java source code.] RoseDoclet takes advantage of Javadoc comments and tags already in the source code to produce a UML model of that code. RoseDoclet applies the doclet API to create a doclet passed to Javadoc. The Javadoc engine applies the doclet to the source code, emitting the output format specified by the doclet. RoseDoclet emits a Rose model file and populates it with fully documented packages, classes, methods, variables, and class diagrams identified in the source code. The way in which UML models are generated can be controlled by use of new Javadoc comment tags that RoseDoclet provides. The advantage of using RoseDoclet is that Javadoc documentation becomes leveraged for two purposes: documenting the as-built API and keeping the design documentation up to date.
An address geocoding method for improving rural spatial information infrastructure
NASA Astrophysics Data System (ADS)
Pan, Yuchun; Chen, Baisong; Lu, Zhou; Li, Shuhua; Zhang, Jingbo; Zhou, YanBing
2010-11-01
The transition of rural and agricultural management from divisional to integrated mode has highlighted the importance of data integration and sharing. Current data are mostly collected by specific department to satisfy their own needs and lake of considering on wider potential uses. This led to great difference in data format, semantic, and precision even in same area, which is a significant barrier for constructing an integrated rural spatial information system to support integrated management and decision-making. Considering the rural cadastral management system and postal zones, the paper designs a rural address geocoding method based on rural cadastral parcel. It puts forward a geocoding standard which consists of absolute position code, relative position code and extended code. It designs a rural geocoding database model, and addresses collection and update model. Then, based on the rural address geocoding model, it proposed a data model for rural agricultural resources management. The results show that the address coding based on postal code is stable and easy to memorize, two-dimensional coding based on the direction and distance is easy to be located and memorized, while extended code can enhance the extensibility and flexibility of address geocoding.
24 CFR 92.251 - Property standards.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., as applicable, one of three model codes: Uniform Building Code (ICBO), National Building Code (BOCA), Standard (Southern) Building Code (SBCCI); or the Council of American Building Officials (CABO) one or two...) Housing that is constructed or rehabilitated with HOME funds must meet all applicable local codes...
7 CFR 4274.337 - Other regulatory requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... with the seismic provisions of one of the following model building codes or the latest edition of that...) Uniform Building Code; (ii) 1993 Building Officials and Code Administrators International, Inc. (BOCA) National Building Code; or (iii) 1992 Amendments to the Southern Building Code Congress International...
24 CFR 92.251 - Property standards.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., as applicable, one of three model codes: Uniform Building Code (ICBO), National Building Code (BOCA), Standard (Southern) Building Code (SBCCI); or the Council of American Building Officials (CABO) one or two...) Housing that is constructed or rehabilitated with HOME funds must meet all applicable local codes...
7 CFR 4274.337 - Other regulatory requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... with the seismic provisions of one of the following model building codes or the latest edition of that...) Uniform Building Code; (ii) 1993 Building Officials and Code Administrators International, Inc. (BOCA) National Building Code; or (iii) 1992 Amendments to the Southern Building Code Congress International...
41 CFR 128-1.8005 - Seismic safety standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the model building codes that the Interagency Committee on Seismic Safety in Construction (ICSSC...) Uniform Building Code (UBC); (2) The 1992 Supplement to the Building Officials and Code Administrators International (BOCA) National Building Code (NBC); and (3) The 1992 Amendments to the Southern Building Code...
7 CFR 4274.337 - Other regulatory requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... with the seismic provisions of one of the following model building codes or the latest edition of that...) Uniform Building Code; (ii) 1993 Building Officials and Code Administrators International, Inc. (BOCA) National Building Code; or (iii) 1992 Amendments to the Southern Building Code Congress International...
41 CFR 128-1.8005 - Seismic safety standards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the model building codes that the Interagency Committee on Seismic Safety in Construction (ICSSC...) Uniform Building Code (UBC); (2) The 1992 Supplement to the Building Officials and Code Administrators International (BOCA) National Building Code (NBC); and (3) The 1992 Amendments to the Southern Building Code...
41 CFR 128-1.8005 - Seismic safety standards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the model building codes that the Interagency Committee on Seismic Safety in Construction (ICSSC...) Uniform Building Code (UBC); (2) The 1992 Supplement to the Building Officials and Code Administrators International (BOCA) National Building Code (NBC); and (3) The 1992 Amendments to the Southern Building Code...
41 CFR 128-1.8005 - Seismic safety standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the model building codes that the Interagency Committee on Seismic Safety in Construction (ICSSC...) Uniform Building Code (UBC); (2) The 1992 Supplement to the Building Officials and Code Administrators International (BOCA) National Building Code (NBC); and (3) The 1992 Amendments to the Southern Building Code...
24 CFR 92.251 - Property standards.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., as applicable, one of three model codes: Uniform Building Code (ICBO), National Building Code (BOCA), Standard (Southern) Building Code (SBCCI); or the Council of American Building Officials (CABO) one or two...) Housing that is constructed or rehabilitated with HOME funds must meet all applicable local codes...
24 CFR 92.251 - Property standards.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., as applicable, one of three model codes: Uniform Building Code (ICBO), National Building Code (BOCA), Standard (Southern) Building Code (SBCCI); or the Council of American Building Officials (CABO) one or two...) Housing that is constructed or rehabilitated with HOME funds must meet all applicable local codes...
Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth; Garg Vijay; Ameri, Ali
2005-01-01
The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, C.; Faillace, E.; Chen, S.Y.
RESRAD was one of the multimedia models selected by the US Nuclear Regulatory Commission (NRC) to include in its workshop on radiation dose modeling and demonstration of compliance with the radiological criteria for license termination. This paper is a summary of the presentation made at the workshop and focuses on the 10 questions the NRC distributed to all participants prior to the workshop. The code selection criteria, which were solicited by the NRC, for demonstrating compliance with the license termination rule are also included. Among the RESRAD family of codes, RESRAD and RESRAD-BUILD are designed for evaluating radiological contamination inmore » soils and in buildings. Many documents have been published to support the use of these codes. This paper focuses on these two codes. The pathways considered, the databases and parameters used, quality control and quality assurance, benchmarking, verification and validation of these codes, and capabilities as well as limitations of these codes are discussed in detail.« less
Benchmarking the SPHINX and CTH shock physics codes for three problems in ballistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, L.T.; Hertel, E.; Schwalbe, L.
1998-02-01
The CTH Eulerian hydrocode, and the SPHINX smooth particle hydrodynamics (SPH) code were used to model a shock tube, two long rod penetrations into semi-infinite steel targets, and a long rod penetration into a spaced plate array. The results were then compared to experimental data. Both SPHINX and CTH modeled the one-dimensional shock tube problem well. Both codes did a reasonable job in modeling the outcome of the axisymmetric rod impact problem. Neither code correctly reproduced the depth of penetration in both experiments. In the 3-D problem, both codes reasonably replicated the penetration of the rod through the first plate.more » After this, however, the predictions of both codes began to diverge from the results seen in the experiment. In terms of computer resources, the run times are problem dependent, and are discussed in the text.« less
Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation
NASA Technical Reports Server (NTRS)
Edwards, Thomas A.; Flores, Jolen
1989-01-01
Computational fluid dynamics (CFD) research for hypersonic flows presents new problems in code validation because of the added complexity of the physical models. This paper surveys code validation procedures applicable to hypersonic flow models that include real gas effects. The current status of hypersonic CFD flow analysis is assessed with the Compressible Navier-Stokes (CNS) code as a case study. The methods of code validation discussed to beyond comparison with experimental data to include comparisons with other codes and formulations, component analyses, and estimation of numerical errors. Current results indicate that predicting hypersonic flows of perfect gases and equilibrium air are well in hand. Pressure, shock location, and integrated quantities are relatively easy to predict accurately, while surface quantities such as heat transfer are more sensitive to the solution procedure. Modeling transition to turbulence needs refinement, though preliminary results are promising.
Data Assimilation - Advances and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Brian J.
2014-07-30
This presentation provides an overview of data assimilation (model calibration) for complex computer experiments. Calibration refers to the process of probabilistically constraining uncertain physics/engineering model inputs to be consistent with observed experimental data. An initial probability distribution for these parameters is updated using the experimental information. Utilization of surrogate models and empirical adjustment for model form error in code calibration form the basis for the statistical methodology considered. The role of probabilistic code calibration in supporting code validation is discussed. Incorporation of model form uncertainty in rigorous uncertainty quantification (UQ) analyses is also addressed. Design criteria used within a batchmore » sequential design algorithm are introduced for efficiently achieving predictive maturity and improved code calibration. Predictive maturity refers to obtaining stable predictive inference with calibrated computer codes. These approaches allow for augmentation of initial experiment designs for collecting new physical data. A standard framework for data assimilation is presented and techniques for updating the posterior distribution of the state variables based on particle filtering and the ensemble Kalman filter are introduced.« less
Adaptive partially hidden Markov models with application to bilevel image coding.
Forchhammer, S; Rasmussen, T S
1999-01-01
Partially hidden Markov models (PHMMs) have previously been introduced. The transition and emission/output probabilities from hidden states, as known from the HMMs, are conditioned on the past. This way, the HMM may be applied to images introducing the dependencies of the second dimension by conditioning. In this paper, the PHMM is extended to multiple sequences with a multiple token version and adaptive versions of PHMM coding are presented. The different versions of the PHMM are applied to lossless bilevel image coding. To reduce and optimize the model cost and size, the contexts are organized in trees and effective quantization of the parameters is introduced. The new coding methods achieve results that are better than the JBIG standard on selected test images, although at the cost of increased complexity. By the minimum description length principle, the methods presented for optimizing the code length may apply as guidance for training (P)HMMs for, e.g., segmentation or recognition purposes. Thereby, the PHMM models provide a new approach to image modeling.