Spherical torus fusion reactor
Martin Peng, Y.K.M.
1985-10-03
The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.
High-frequency electric field measurement using a toroidal antenna
Lee, Ki Ha
2002-01-01
A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-04-04
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-01-01
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Compact magnetic energy storage module
Prueitt, M.L.
1994-12-20
A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.
Compact magnetic energy storage module
Prueitt, Melvin L.
1994-01-01
A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.
Ion flow measurements during the rotating kink behavior of the central column in the HIST device
NASA Astrophysics Data System (ADS)
Yamada, S.; Yoshikawa, T.; Hashimoto, S.; Nishioka, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2007-11-01
Plasma flow is essentially driven in self-organization and magnetic reconnection process of compact spherical torus (ST) and spheromak in the helicity-driven systems. For example, when reversing the external toroidal field of ST, the direction not only of the plasma current but also of the toroidal ion flow is self-reversed during the formation of the flipped ST relaxed states. Mach probe measurement shows that the velocity of the ion flow reversed after the flip increases to about 20 km/s. We have been newly developing an ion Doppler spectrometer (IDS) system using a compact 16 or 64 channel photomultiplier tube (PMT) in order to measure the spatial profile of ion temperature and rotation velocity in the HIST device. The IDS system consists of a light collection system including optical fibers, 1 m-spectrometer and the PMT detector. The optical fibers covered with glass tubes are inserted into the plasma. The glass tubes can be rotated in the poloidal and the toroidal directions. The new IDS system will be applied to observations of ion temperature and plasma rotation in the flipped ST formation and in the MHD control of kinking behaviors of the central column by using the rotating magnetic field (RMF). Preliminary IDS results will be compared to those from Mach probe measurements in space.
Manifestations of dynamo driven large-scale magnetic field in accretion disks of compact objects
NASA Technical Reports Server (NTRS)
Chagelishvili, G. D.; Chanishvili, R. G.; Lominadze, J. G.; Sokhadze, Z. A.
1991-01-01
A turbulent dynamo nonlinear theory of turbulence was developed that shows that in the compact objects of accretion disks, the generated large-scale magnetic field (when the generation takes place) has a practically toroidal configuration. Its energy density can be much higher than turbulent pulsations energy density, and it becomes comparable with the thermal energy density of the medium. On this basis, the manifestations to which the large-scale magnetic field can lead at the accretion onto black holes and gravimagnetic rotators, respectively, are presented.
Improvement of Current Drive Efficiency in Projected FNSF Discharges
NASA Astrophysics Data System (ADS)
Prater, R.; Chan, V.; Garofalo, A.
2012-10-01
The Fusion Nuclear Science Facility - Advanced Tokamak (FNSF-AT) is envisioned as a facility that uses the tokamak approach to address the development of the AT path to fusion and fusion's energy objectives. It uses copper coils for a compact device with high βN and moderate power gain. The major radius is 2.7 m and central toroidal field is 5.44 T. Achieving the required confinement and stability at βN˜3.7 requires a current profile with negative central shear and qmin>1. Off-axis Electron Cyclotron Current Drive (ECCD), in addition to high bootstrap current fraction, can help support this current profile. Using the applied EC frequency and launch location as free parameters, a systematic study has been carried out to optimize the ECCD in the range ρ= 0.5-0.7. Using a top launch, making use of a large toroidal component to the launch direction, adjusting the vertical launch angle so that the rays propagate nearly parallel to the resonance, and adjusting the frequency for optimum total current give a high dimensionless efficiency of 0.44 for a broad ECCD profile peaked at ρ=0.7, and the driven current is 17 kA/MW for n20= 2.1 and Te= 10.3 keV locally.
Looped star polymers show conformational transition from spherical to flat toroidal shapes.
Reiss, Pascal; Fritsche, Miriam; Heermann, Dieter W
2011-11-01
Inspired by the topological organization of the circular Escherichia coli chromosome, which is compacted by separate domains, we study a polymer architecture consisting of a central ring to which either looped or linear side chains are grafted. A shape change from a spherical to a toroidal organization takes place as soon as the inner ring becomes large enough for the attached arms to fit within its circumference. Building up a torus, the system flattens, depending on the effective bending rigidity of the chain induced by entropic repulsion of the attached loops and, to a lesser extent, linear arms. Our results suggest that the natural formation of a toroidal structure with a decreased amount of writhe induced by a specific underlying topology could be one driving force, among others, that nature exploits to ensure proper packaging of the genetic material within a rod-shaped, bacterial envelope.
Toroidal Localized Spoof Plasmons on Compact Metadisks.
Qin, Pengfei; Yang, Yihao; Musa, Muhyiddeen Yahya; Zheng, Bin; Wang, Zuojia; Hao, Ran; Yin, Wenyan; Chen, Hongsheng; Li, Erping
2018-03-01
Localized spoof surface plasmons (LSSPs) have recently emerged as a new research frontier due to their unique properties and increasing applications. Despite the importance, most of the current researches only focus on electric/magnetic LSSPs. Very recent research has revealed that toroidal LSSPs, LSSPs modes with multipole toroidal moments, can be achieved at a point defect in a 2D groove metal array. However, this metamaterial shows the limitations of large volume and poor compatibility to photonic integrated circuits. To overcome the above challenges, here it is proposed and experimentally demonstrated compact planar metadisks based on split ring resonators to support the toroidal LSSPs at microwave frequencies. Additionally, it is experimentally demonstrated that the toroidal LSSPs resonance is very sensitive to the structure changes and the background medium. These might facilitate its utilization in the design and application of plasmonic deformation sensors and the refractive index sensors.
Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor
NASA Astrophysics Data System (ADS)
Bathke, C. G.; Krakowski, R. A.; Miller, R. L.
Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line trackings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented.
Capillary toroid cavity detector for high pressure NMR
Gerald, II, Rex E.; Chen, Michael J.; Klingler, Robert J.; Rathke, Jerome W.; ter Horst, Marc
2007-09-11
A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.
Nuclear resonance tomography with a toroid cavity detector
Woelk, K.; Rathke, J.W.; Klingler, R.J.
1996-11-12
A toroid cavity detection system is described for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is input to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties. 4 figs.
Nuclear resonance tomography with a toroid cavity detector
Woelk, Klaus; Rathke, Jerome W.; Klingler, Robert J.
1996-01-01
A toroid cavity detection system for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is inputted to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties.
Minimum magnetic curvature for resilient divertors using Compact Toroidal Hybrid geometry
NASA Astrophysics Data System (ADS)
Bader, A.; Hegna, C. C.; Cianciosa, M.; Hartwell, G. J.
2018-05-01
The properties of resilient divertors are explored using equilibria derived from Compact Toroidal Hybrid (CTH) geometries. Resilience is defined here as the robustness of the strike point patterns as the plasma geometry and/or plasma profiles are changed. The addition of plasma current in the CTH configurations significantly alters the shape of the last closed flux surface and the rotational transform profile, however, it does not alter the strike point pattern on the target plates, and hence has resilient divertor features. The limits of when a configuration transforms to a resilient configuration is then explored. New CTH-like configurations are generated that vary from a perfectly circular cross section to configurations with increasing amounts of toroidal shaping. It is found that even small amounts of toroidal shaping lead to strike point localization that is similar to the standard CTH configuration. These results show that only a small degree of three-dimensional shaping is necessary to produce a resilient divertor, implying that any highly shaped optimized stellarator will possess the resilient divertor property.
Central Compact Objects in Kes 79 and RCW 103 as `Hidden' Magnetars with Crustal Activity
NASA Astrophysics Data System (ADS)
Popov, S. B.; Kaurov, A. A.; Kaminker, A. D.
2015-05-01
We propose that observations of `hidden' magnetars in central compact objects can be used to probe crustal activity of neutron stars with large internal magnetic fields. Estimates based on calculations by Perna & Pons, Pons & Rea and Kaminker et al. suggest that central compact objects, which are proposed to be `hidden' magnetars, must demonstrate flux variations on the time scale of months-years. However, the most prominent candidate for the `hidden' magnetars - CXO J1852.6+0040 in Kes 79 - shows constant (within error bars) flux. This can be interpreted by lower variable crustal activity than in typical magnetars. Alternatively, CXO J1852.6+0040 can be in a high state of variable activity during the whole period of observations. Then we consider the source 1E161348 - 5055 in RCW103 as another candidate. Employing a simple 2D-modelling we argue that properties of the source can be explained by the crustal activity of the magnetar type. Thus, this object may be supplemented for the three known candidates for the `hidden' magnetars among central compact objects discussed in literature.
Zhang, Yuanyuan; Bell, Eric F.
2017-01-13
Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanyuan; Bell, Eric F.
Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less
Minimum magnetic curvature for resilient divertors using Compact Toroidal Hybrid geometry
Bader, Aaron; Hegna, C. C.; Cianciosa, Mark R.; ...
2018-03-16
The properties of resilient divertors are explored using equilibria derived from Compact Toroidal Hybrid (CTH) geometries. Resilience is defined here as the robustness of the strike point patterns as the plasma geometry and/or plasma profiles are changed. The addition of plasma current in the CTH configurations significantly alters the shape of the last closed flux surface and the rotational transform profile, however, it does not alter the strike point pattern on the target plates, and hence has resilient divertor features. The limits of when a configuration transforms to a resilient configuration is then explored. New CTH-like configurations are generated thatmore » vary from a perfectly circular cross section to configurations with increasing amounts of toroidal shaping. It is found that even small amounts of toroidal shaping lead to strike point localization that is similar to the standard CTH configuration. Lastly, these results show that only a small degree of three-dimensional shaping is necessary to produce a resilient divertor, implying that any highly shaped optimized stellarator will possess the resilient divertor property.« less
Toroidal magnetic detector for high resolution measurement of muon momenta
Bonanos, P.
1992-01-07
A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.
Toroidal magnetic detector for high resolution measurement of muon momenta
Bonanos, Peter
1992-01-01
A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.
Method and apparatus for the formation of a spheromak plasma
Yamada, Masaaki; Furth, Harold P.; Stix, Thomas H.; Todd, Alan M. M.
1982-01-01
A method and apparatus for forming a detached, compact toroidally shaped spheromak plasma by an inductive mechanism. A generally spheroidal vacuum vessel (1) houses a toroidally shaped flux ring or core (2) which contains poloidal and toroidal field generating coils. A plasma discharge occurs with the pulsing of the toroidal field coil, and the plasma is caused to expand away from the core (2) and toward the center of the vacuum vessel (1). When the plasma is in an expanded state, a portion of it is pinched off in order to form a separate, detached spheromak plasma configuration. The detached plasma is supported by a magnetic field generated by externally arranged equilibrium field coils (5).
NASA Astrophysics Data System (ADS)
Gotthelf, E. V.; Halpern, J. P.; Alford, J.
2013-03-01
Using XMM-Newton and Chandra, we measure period derivatives for the second and third known pulsars in the class of central compact objects (CCOs) in supernova remnants, proving that these young neutron stars have exceptionally weak dipole magnetic field components. For the 112 ms PSR J0821-4300 in Puppis A, \\dot{P} = (9.28 +/- 0.36) \\times 10^{-18}. Its proper motion, μ = 61 ± 9 mas yr-1, was also measured using Chandra. This contributes a kinematic term to the period derivative via the Shklovskii effect, which is subtracted from \\dot{P} to derive dipole Bs = 2.9 × 1010 G, a value similar to that of the first measured CCO, PSR J1852+0040 in Kes 79, which has Bs = 3.1 × 1010 G. Antipodal surface hot spots with different temperatures and areas are deduced from the X-ray spectrum and pulse profiles. Paradoxically, such nonuniform surface temperature appears to require strong crustal magnetic fields, probably toroidal or quadrupolar components much stronger than the external dipole. A spectral feature, consisting of either an emission line at ≈0.75 keV or an absorption line at ≈0.46 keV, is modulated in strength with the rotation. It may be due to a cyclotron process in a magnetic field on the surface that is slightly stronger than the dipole deduced from the spin-down. We also timed anew the 424 ms PSR J1210-5226, resolving previous ambiguities about its spin-down rate. Its \\dot{P} is (2.22 ± 0.02) × 10-17, corresponding to Bs = 9.8 × 1010 G. This is also compatible with a cyclotron resonance interpretation of its prominent absorption line at 0.7 keV and its harmonics. These results deepen the mystery of the origin and evolution of CCOs: Why are their numerous descendants not evident?
NASA Astrophysics Data System (ADS)
Dreicer, H.
1987-09-01
Potential commercial fusion power systems must be acceptable from a safety and environmental standpoint. They must also promise to be competitive with other sources of energy (i.e., fossil, fission, etc.) when considered from the standpoint of the cost of electricity (COE) and the unit direct cost (UDC) in dollars/kWe. These costs are affected by a host of factors including recirculating power, plant availability, construction time, capital cost, etc., and are influenced by technological complexity. In an attempt to meet these requirements, the emphasis of fusion research in the United States has been moving toward smaller, lower-cost systems. There is increased interest in higher beta tokamaks and stellarators, and in compact alternate concepts such as the Reversed Field Pinch (RFP) and the Compact Toroids (CTs) which are, in part, the subject of this paper.
Density Measurement of Compact Toroid with Mach-Zehnder Interferometer
NASA Astrophysics Data System (ADS)
Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary
2016-10-01
Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.
NASA Astrophysics Data System (ADS)
Ma, X.; Cianciosa, M.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Ennis, D. A.; Herfindal, J. L.
2015-11-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by the driven plasma current. Studies were performed on the Compact Toroidal Hybrid device using the V3FIT reconstruction code incorporating a set of 50 magnetic diagnostics external to the plasma, combined with information from soft X-ray (SXR) arrays. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the outer boundary of these highly non-axisymmetric plasmas. The inversion radius for sawtoothing plasmas is used to identify the location of the q = 1 surface, and thus infer the current profile near the magnetic axis. With external magnetic diagnostics alone, we find the reconstruction to be insufficiently constrained. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Charged perfect fluid tori in strong central gravitational and dipolar magnetic fields
NASA Astrophysics Data System (ADS)
Kovář, Jiří; Slaný, Petr; Cremaschini, Claudio; Stuchlík, Zdeněk; Karas, Vladimír; Trova, Audrey
2016-06-01
We study electrically charged perfect fluid toroidal structures encircling a spherically symmetric gravitating object with Schwarzschild spacetime geometry and endowed with a dipole magnetic field. The work represents a direct continuation of our previous general-relativistic studies of electrically charged fluid in the approximation of zero conductivity, which formed tori around a Reissner-Nordström black hole or a Schwarzschild black hole equipped with a test electric charge and immersed in an asymptotically uniform magnetic field. After a general introduction of the zero-conductivity charged fluid model, we discuss a variety of possible topologies of the toroidal fluid configurations. Along with the charged equatorial tori forming interesting coupled configurations, we demonstrate the existence of the off-equatorial tori, for which the dipole type of magnetic field seems to be necessary. We focus on orbiting structures with constant specific angular momentum and on those in permanent rigid rotation. We stress that the general analytical treatment developed in our previous works is enriched here by the integrated form of the pressure equations. To put our work into an astrophysical context, we identify the central object with an idealization of a nonrotating magnetic neutron star. Constraining ranges of its parameters and also parameters of the circling fluid, we discuss a possible relevance of the studied toroidal structures, presenting along with their topology also pressure, density, temperature and charge profiles.
One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel
2017-10-01
One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.
Characterization of compact-toroid injection during formation, translation, and field penetration
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.
2016-11-01
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.
Characterization of compact-toroid injection during formation, translation, and field penetration.
Matsumoto, T; Roche, T; Allfrey, I; Sekiguchi, J; Asai, T; Gota, H; Cordero, M; Garate, E; Kinley, J; Valentine, T; Waggoner, W; Binderbauer, M; Tajima, T
2016-11-01
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.
SlimCS—compact low aspect ratio DEMO reactor with reduced-size central solenoid
NASA Astrophysics Data System (ADS)
Tobita, K.; Nishio, S.; Sato, M.; Sakurai, S.; Hayashi, T.; Shibama, Y. K.; Isono, T.; Enoeda, M.; Nakamura, H.; Sato, S.; Ezato, K.; Hayashi, T.; Hirose, T.; Ide, S.; Inoue, T.; Kamada, Y.; Kawamura, Y.; Kawashima, H.; Koizumi, N.; Kurita, G.; Nakamura, Y.; Mouri, K.; Nishitani, T.; Ohmori, J.; Oyama, N.; Sakamoto, K.; Suzuki, S.; Suzuki, T.; Tanigawa, H.; Tsuchiya, K.; Tsuru, D.
2007-08-01
The concept for a compact DEMO reactor named 'SlimCS' is presented. Distinctive features of the concept are low aspect ratio (A = 2.6) and use of a reduced-size centre solenoid (CS) which has the function of plasma shaping rather than poloidal flux supply. The reduced-size CS enables us to introduce a thin toroidal field coil system which contributes to reducing the weight and perhaps lessening the construction cost. Low-A has merits of vertical stability for high elongation (κ) and high normalized beta (βN), which leads to a high power density with reasonable physics requirements. This is because high κ facilitates high nGW (because of an increase in Ip), which allows efficient use of the capacity of high βN. From an engineering aspect, low-A may ensure ease in designing blanket modules robust to electromagnetic forces acting on disruptions. Thus, a superconducting low-A tokamak reactor such as SlimCS can be a promising DEMO concept with physics and engineering advantages.
Growing Magnetic Fields in Central Compact Objects
NASA Astrophysics Data System (ADS)
Bernal, C. G.; Page, D.
2011-10-01
We study the effects of growth models of magnetic fields in Central Compact Objects (CCOs). Such a field evolution is not a new idea (Blandford, Applegate, & Hernquist 1983) but the evolutionary implications not have been followed up completely (Michel 1994). We discussed the new class of neutron stars which belong to five main types that have mainly been recognized in the last ten years. The possibility that a rapid weakly magnetized pulsar might have formed in SN1987A is commented.
Gerhardt, S P; Fredrickson, E; Guttadora, L; Kaita, R; Kugel, H; Menard, J; Takahashi, H
2011-10-01
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.
Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; ...
2011-10-06
This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less
Characterization of compact-toroid injection during formation, translation, and field penetration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T.
2016-11-15
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation,more » ejection/translation from the MCPG, and penetration into transverse magnetic fields.« less
Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model.
Hud, N V
1995-01-01
Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent will all available data. Recently we proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here we propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8534805
Interaction dynamics of high Reynolds number magnetized plasma flow on the CTIX plasma accelerator
NASA Astrophysics Data System (ADS)
Howard, Stephen James
The Compact Toroid Injection eXperiment, (CTIX), is a coaxial railgun that forms and accelerates magnetized plasma rings called compact toroids (CT's). CTIX consists of a pair of cylindrical coaxial electrodes with the region between them kept at high vacuum (2 m long, 15 cm outer diameter). Hydrogen is typically the dominant constituent of the CT plasma, however helium can also be used. The railgun effect that accelerates the CT can be accounted for by the Lorentz j x B force density created by the power input from a capacitor bank of roughly a Giga-Watt peak. The final velocity of the CT can be as high as 300 km/s, with an acceleration of about 3 billion times Earth's gravity. The compact toroid is able to withstand these forces because of a large internal magnetic field of about 1 Tesla. Understanding the nature of high speed flow of a magnetized plasma has been the primary challenge of this work. In this dissertation we will explore a sequence of fundamental questions regarding the plasma physics of CTIX. First we will go over some new results about the structure and dynamics of the compact toroid's magnetic field, and its electrical resistivity. Then we will present the results from a sequence of key experiments involving reconnection/compression and thermalization of the plasma during interaction of the CT with target magnetic fields of various geometries. Next, we look at the Doppler shift of a spectral line of the He II ion as a measurement of plasma velocity, and to gain insight into the ionization physics of helium in our plasma. These preliminary experiments provide the background for our primary experimental tool for investigating turbulence, a technique called Gas Puff Imaging (GPI) in which a cloud of helium can be used to enhance plasma brightness, allowing plasma density fluctuations to be imaged. We will conclude with an analysis of the images that show coherent density waves, as well as the transition to turbulence during the interaction with a wire target perturbation.
Reduction of toroidal rotation by fast wave power in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grassie, J.S. de; Baker, D.R.; Burrell, K.H.
1997-04-01
The application of fast wave power in DIII-D has proven effective for both electron heating and current drive. Since the last RIF Conference FW power has been applied to advanced confinement regimes in DIII-D; negative central shear (NCS), VH- and H-modes, high {beta}{sub p}, and high-{ell}i. Typically these regimes show enhanced confinement of toroidal momentum exhibited by increased toroidal rotation velocity. Indeed, layers of large shear in toroidal velocity are associated with transport barriers. A rather common occurrence in these experiments is that the toroidal rotation velocity is decreased when the FW power is turned on, to lowest order independentmore » of whether the antennas are phased for co or counter current drive. At present all the data is for co-injected beams. The central toroidal rotation can be reduced to 1/2 of the non-FW level. Here the authors describe the effect in NCS discharges with co-beam injection.« less
The High Field Ultra Low Aspect Ratio Tokamak (HF-ULART)
NASA Astrophysics Data System (ADS)
Ribeiro, Celso
2017-10-01
Recently, a medium-size HF-ULART has been proposed. The major objective is to explore the high beta and pressure under the high toroidal field, using present day technology. This might be one of pathway scenarios for a potential ultra-compact pulsed neutron source (UCP-NS) based on the spherical tokamak (ST) concept, which may lead to more steady-state NS or even to a fusion reactor, via realistic design scaling. The HF-ULART pulsed mode operation is created by quasi-simultaneous adiabatic compression (AC) in both minor and major radius of a very high beta plasma, possibly with further help of passive-wall stabilization, as envisaged in the RULART concept. This may help the revival of the studies of the AC technique in tokamaks, alongside the less compact and more complex ST-40 device, currently under construction. In addition, by similarities, studies in HF-ULART as a UCP-NS may also help to test the feasibility of the compact NS via the spheromak concept, which also uses the AC technique. Simulations of AC in HF-ULART plasmas will be presented.
Probing the string winding sector
NASA Astrophysics Data System (ADS)
Aldazabal, Gerardo; Mayo, Martín; Nuñez, Carmen
2017-03-01
We probe a slice of the massive winding sector of bosonic string theory from toroidal compactifications of Double Field Theory (DFT). This string subsector corresponds to states containing one left and one right moving oscillators. We perform a generalized Kaluza Klein compactification of DFT on generic 2 n-dimensional toroidal constant backgrounds and show that, up to third order in fluctuations, the theory coincides with the corresponding effective theory of the bosonic string compactified on n-dimensional toroidal constant backgrounds, obtained from three-point amplitudes. The comparison between both theories is facilitated by noticing that generalized diffeomorphisms in DFT allow to fix generalized harmonic gauge conditions that help in identifying the physical degrees of freedom. These conditions manifest as conformal anomaly cancellation requirements on the string theory side. The explicit expression for the gauge invariant effective action containing the physical massless sector (gravity+antisymmetric+gauge+ scalar fields) coupled to towers of generalized Kaluza Klein massive states (corresponding to compact momentum and winding modes) is found. The action acquires a very compact form when written in terms of fields carrying O( n, n) indices, and is explicitly T-duality invariant. The global algebra associated to the generalized Kaluza Klein compactification is discussed.
Toroid cavity/coil NMR multi-detector
Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.
2007-09-18
An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.
Recent results of studies of acceleration of compact toroids
NASA Astrophysics Data System (ADS)
Hammer, J. H.; Hartmen, C. W.; Eddleman, J.
1984-03-01
The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10(11) gravities.
Numerical computation of gravitational field for general axisymmetric objects
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2016-10-01
We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.
Inflatable nested toroid structure
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)
2011-01-01
An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.
Flexible helical-axis stellarator
Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.
1988-01-01
An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.
Characteristics of Low-q(a) Disruptions in the Compact Toroidal Hybrid
NASA Astrophysics Data System (ADS)
Pandya, M. D.; Archmiller, M. C.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.
2014-10-01
Tokamak disruptions are dramatic events that lead to a sudden loss of plasma confinement. Disruptions that occur at low edge safety-factor, q (a) , limit the operation of tokamaks to q (a) >= 2 . The Compact Toroidal Hybrid (CTH) is a torsatron-tokamak hybrid with a helical field coil and vertical field coils to establish a stellartor equilibrium, while an ohmic coil induces plasma current. A feature of the CTH device is the ability to adjust the vacuum rotational transform, tvac (t =1/q ), by varying the ratio of current in the helical and toroidal field coils. The value of edge tvac can be varied from about 0.02 to 0.3 (qvac (a) ~ 50 to 3.3). Plasma discharges in CTH are routinely observed to operate with q (a) < 2 , and in some cases as low as q (a) ~ 1 . 1 . In CTH, low-q(a) disruptions are observed with a dominant m/n=3/2 precursor. The disruptivity of plasma discharges is over 80% when tvac (a) < 0 . 04 (qvac (a) < 25) and as tvac (a) is increased further, the disruptivity of the plasma discharges decreases. The disruptions are completely suppressed for tvac (a) > 0 . 07 (qvac (a) ~ 14) . This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Fatigue life analysis for traction drives with application to a toroidal type geometry
NASA Technical Reports Server (NTRS)
Coy, J. J.; Loewenthal, S. H.; Zaretsky, E. V.
1976-01-01
A contact fatigue life analysis for traction drives was developed which was based on a modified Lundberg-Palmgren theory. The analysis was used to predict life for a cone-roller toroidal traction drive. A 90-percent probability of survival was assumed for the calculated life. Parametric results were presented for life and Hertz contact stress as a function of load, drive ratio, and size. A design study was also performed. The results were compared to previously published work for the dual cavity toroidal drive as applied to a typical compact passenger vehicle drive train. For a representative duty cycle condition wherein the engine delivers 29 horsepower at 2000 rpm with the vehicle moving at 48.3 km/hr (30 mph) the drive life was calculated to be 19,200 km (11 900 miles).
Toroidal cell and battery. [storage battery for high amp-hour load applications
NASA Technical Reports Server (NTRS)
Nagle, W. J. (Inventor)
1981-01-01
A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.
Studies on Plasmoid Merging using Compact Toroid Injectors
NASA Astrophysics Data System (ADS)
Allfrey, Ian; Matsumoto, Tadafumi; Roche, Thomas; Gota, Hiroshi; Edo, Takahiro; Asai, Tomohiko; Sheftman, Daniel; Osin Team; Dima Team
2017-10-01
C-2 and C-2U experiments have used magnetized coaxial plasma guns (MCPG) to inject compact toroids (CTs) for refueling the long-lived advanced beam-driven field-reversed configuration (FRC) plasma. This refueling method will also be used for the C-2W experiment. To minimize momentum transfer from the CT to the FRC two CTs are injected radially, diametrically opposed and coincident in time. To improve understanding of the CT characteristics TAE has a dedicated test bed for the development of CT injectors (CTI), where plasmoid merging experiments are performed. The test bed has two CTIs on axis with both axial and transverse magnetic fields. The 1 kG magnetic fields, intended to approximate the magnetic field strength and injection angle on C-2W, allow studies of cross-field transport and merging. Both CTIs are capable of injecting multiple CTs at up to 1 kHz. The resulting merged CT lives >100 μs with a radius of 25 cm. More detailed results of CT parameters will be presented.
Control of Compact-Toroid Characteristics by External Copper Shell
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team
2015-11-01
A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.
High-Energy Space Propulsion Based on Magnetized Target Fusion
NASA Technical Reports Server (NTRS)
Thio, Y. C. F.; Landrum, D. B.; Freeze, B.; Kirkpatrick, R. C.; Gerrish, H.; Schmidt, G. R.
1999-01-01
Magnetized target fusion is an approach in which a magnetized target plasma is compressed inertially by an imploding material wall. A high energy plasma liner may be used to produce the required implosion. The plasma liner is formed by the merging of a number of high momentum plasma jets converging towards the center of a sphere where two compact toroids have been introduced. Preliminary 3-D hydrodynamics modeling results using the SPHINX code of Los Alamos National Laboratory have been very encouraging and confirm earlier theoretical expectations. The concept appears ready for experimental exploration and plans for doing so are being pursued. In this talk, we explore conceptually how this innovative fusion approach could be packaged for space propulsion for interplanetary travel. We discuss the generally generic components of a baseline propulsion concept including the fusion engine, high velocity plasma accelerators, generators of compact toroids using conical theta pinches, magnetic nozzle, neutron absorption blanket, tritium reprocessing system, shock absorber, magnetohydrodynamic generator, capacitor pulsed power system, thermal management system, and micrometeorite shields.
NASA Astrophysics Data System (ADS)
Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen
2015-05-01
We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.
NASA Astrophysics Data System (ADS)
Pandya, M. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.
2015-11-01
Low edge safety factor operation at a value less than two (q (a) = 1 /ttot (a) < 2) is routine on the Compact Toroidal Hybrid device. Presently, the operational space of this current carrying stellarator extends down to q (a) = 1 . 2 without significant n = 1 kink mode activity after the initial plasma current rise of the discharge. The disruption dynamics of these low q (a) plasmas depend upon the fraction of rotational transform produced by external stellarator coils to that generated by the plasma current. We observe that when about 10% of the total rotational transform is supplied by the stellarator coils, low q (a) disruptions are passively suppressed and avoided even though q (a) < 2 . When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, mode numbers of m / n = 3 / 2 and 4 / 3 observed by external magnetic sensors, and m / n = 1 / 1 activity observed by core soft x-ray emissivity measurements. Even though q (a) passes through and becomes much less than two, external n = 1 kink mode activity does not appear to play a significant role in the observed disruption phenomenology. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Chapter 9: The FTU Machine - Design Construction and Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzuto, A.; Annino, C.; Baldarelli, M.
2004-05-15
The main design features and guidelines for the construction of the 8-T cryogenically cooled Frascati Tokamak Upgrade (FTU) are presented. The main features include the very compact toroidal magnets based on the concept of the 'Bitter' type of coil with wedge-shaped turns, utilized for the first time for the Alcator A and C magnets, and the original configuration of the vacuum vessel (VV) structure, which is fully welded in order to achieve the required high strength and electric resistivity. The present toroidal limiter has been installed following several years of operation, and this installation has required the development of specificmore » remote-handling tools. The toroidal limiter consists of 12 independent sectors made of stainless steel carriers and molybdenum alloy (TZM) tiles. The main fabrication processes developed for the toroidal and poloidal coils as well as for the VV are described. It is to be noted that the assembly procedure has required very accurate machining of all the structures requiring several trials and steps. The machine has shown no problem in operating routinely at its maximum design values (8 T, 1.6 MA)« less
Resonance transparency with low-loss in toroidal planar metamaterial
NASA Astrophysics Data System (ADS)
Xiang, Tianyu; Lei, Tao; Hu, Sen; Chen, Jiao; Huang, Xiaojun; Yang, Helin
2018-03-01
A compact planar construction composed of asymmetric split ring resonators was designed with a low-loss, high Q-factor resonance transparency at microwave frequency. The singularity property of the proposed metamaterial owing to the enhanced toroidal dipole T is demonstrated via numerical and experimental methods. The transmission peak can reach up to 0.91 and the loss is perfectly repressed, which can be testified by radiated power, H-field distributions, and the imaginary parts of effective permittivity and permeability. The designed planar metamaterial may have numerous potential applications at microwave, terahertz, and optical frequency, e.g., for ultrasensitive sensing, slow-light devices, lasing spacers, even invisible information transfer.
Physical properties of compact toroids generated by a coaxial source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henins, I.; Hoida, H.W.; Jarboe, T.R.
1980-01-01
In the CTX experiments we have been studying CTs generated with a magnetized coaxial plasma gun. CTs have been generated in prolate and oblate cylindrically symmetric metallic flux conservers. The plasma and magnetic field properties are studied through the use of magnetic probes, Thomson scattering, interferometry, and spectroscopy.
Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi
2007-11-01
Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.
An Overabundance of Black Hole X-Ray Binaries in the Galactic Center from Tidal Captures
NASA Astrophysics Data System (ADS)
Generozov, A.; Stone, N. C.; Metzger, B. D.; Ostriker, J. P.
2018-05-01
A large population of X-ray binaries (XRBs) was recently discovered within the central parsec of the Galaxy by Hailey et al. (2018). While the presence of compact objects on this scale due to radial mass segregation is, in itself, unsurprising, the fraction of binaries would naively be expected to be small because of how easily primordial binaries are dissociated in the dynamically hot environment of the nuclear star cluster (NSC). We propose that the formation of XRBs in the central parsec is dominated by the tidal capture of stars by black holes (BHs) and neutron stars (NSs). We model the time-dependent radial density profiles of stars and compact objects in the NSC with a Fokker-Planck approach, using the present-day stellar population and rate of in situ massive star (and thus compact object) formation as observational constraints. Of the ˜1 - 4 × 104 BHs that accumulate in the central parsec over the age of the Galaxy, we predict that ˜60 - 200 currently exist as BH-XRBs formed from tidal capture, consistent with the population seen by Hailey et al. (2018). A somewhat lower number of tidal capture NS-XRBs is also predicted. We also use our observationally calibrated models for the NSC to predict rates of other exotic dynamical processes, such as the tidal disruption of stars by the central supermassive black hole (˜10-4 per year at z=0).
NASA Astrophysics Data System (ADS)
Murakami, S.; Itoh, K.; Zheng, L. J.; Van Dam, J. W.; Bonoli, P.; Rice, J. E.; Fiore, C. L.; Gao, C.; Fukuyama, A.
2016-01-01
The averaged toroidal flow of energetic minority ions during ICRF (ion cyclotron range of frequencies) heating is investigated in the Alcator C-Mod plasma by applying the GNET code, which can solve the drift kinetic equation with complicated orbits of accelerated energetic particles. It is found that a co-directional toroidal flow of the minority ions is generated in the region outside of the resonance location, and that the toroidal velocity reaches more than 40% of the central ion thermal velocity (Vtor ˜ 300 km/s with PICRF ˜ 2 MW). When we shift the resonance location to the outside of |r /a |˜0.5 , the toroidal flow immediately inside of the resonance location is reduced to 0 or changes to the opposite direction, and the toroidal velocity shear is enhanced at r/a ˜ 0.5. A radial diffusion equation for toroidal flow is solved by assuming a torque profile for the minority ion mean flow, and good agreements with experimental radial toroidal flow profiles are obtained. This suggests that the ICRF driven minority ion flow is related to the experimentally observed toroidal rotation during ICRF heating in the Alcator C-Mod plasma.
Influence of toroidal magnetic field in multiaccreting tori
NASA Astrophysics Data System (ADS)
Pugliese, D.; Montani, G.
2018-06-01
We analysed the effects of a toroidal magnetic field in the formation of several magnetized accretion tori, dubbed as ringed accretion discs (RADs), orbiting around one central Kerr supermassive black hole (SMBH) in active galactic nuclei (AGNs), where both corotating and counterotating discs are considered. Constraints on tori formation and emergence of RADs instabilities, accretion on to the central attractor and tori collision emergence, are investigated. The results of this analysis show that the role of the central BH spin-mass ratio, the magnetic field and the relative fluid rotation and tori rotation with respect the central BH, are crucial elements in determining the accretion tori features, providing ultimately evidence of a strict correlation between SMBH spin, fluid rotation, and magnetic fields in RADs formation and evolution. More specifically, we proved that magnetic field and discs rotation are in fact strongly constrained, as tori formation and evolution in RADs depend on the toroidal magnetic fields parameters. Eventually, this analysis identifies specific classes of tori, for restrict ranges of magnetic field parameter, that can be observed around some specific SMBHs identified by their dimensionless spin.
Modeling the Compression of Merged Compact Toroids by Multiple Plasma Jets
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ron; Rodgers, Stephen L. (Technical Monitor)
2000-01-01
A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner. The gaseous liner is used to implode a magnetized target to produce the fusion reaction in a standoff manner. In this paper, the merging of the plasma jets to form the gaseous liner is investigated numerically. The Los Alamos SPHINX code, based on the smoothed particle hydrodynamics method is used to model the interaction of the jets. 2-D and 3-D simulations have been performed to study the characteristics of the resulting flow when these jets collide. The results show that the jets merge to form a plasma liner that converge radially which may be used to compress the central plasma to fusion conditions. Details of the computational model and the SPH numerical methods will be presented together with the numerical results.
Initial Parameters of Neutron Stars
NASA Astrophysics Data System (ADS)
Popov, S. B.; Turolla, R.
2012-12-01
A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.
NASA Astrophysics Data System (ADS)
Christenson, Michael; Szott, Matthew; Kalathiparambil, Kishor; Sovinec, Carl; Ruzic, David
2016-10-01
The ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) device at the University of Illinois is a theta-pinched, plasma-material interaction test stand used to simulate extreme events in the edge and divertor regions of a tokamak plasma. Previous measurements of the electron and ion temperatures have shown that the isotropic heat load on target ranges between 0.1 and 0.2 MJ m-2 over a pulse lasting 0.2 ms. While this compares well to the heat loads from Type 1 ELMs in larger toroidal devices, it is still much less than the energy deposition from Type 1 ELMs expected in ITER, which are in excess of 1 MJ m-2. To this end, a compact toroid (CT) injector has been proposed as a modification to the existing TELS device. By using an externally applied bias field to force reconnection at the muzzle of the coaxial plasma accelerator source that drives ionization, NIMROD MHD simulations have shown a peak magnetic flux of 3.5 mWb is reached 0.025 ms into the pulse - more than sufficient to form a CT. Early calorimetry and magnetic field measurements indicate that a new plasma structure has been formed in the magnetized coaxial plasma source. This work presents the current results of CT generation with respect to the bias field strength as well as the coaxial source geometry. DOE OFES DE-SC0008587, DE-SC0008658, DE-FG02-99ER54515.
Leung, Ka-Ngo; Lou, Tak Pui
2005-03-22
A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.
Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T
2016-05-01
A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.
A Pre-ionization System to Limit Neutral Gas in a Compact Toroid Injector
NASA Astrophysics Data System (ADS)
Allfrey, Ian; Roche, Thomas; Matsumoto, Tadafumi; Garate, Eusebio; Gota, Hiroshi; Asai, Tomohiko; the TAE Team
2016-10-01
Fusion plasmas require long lifetimes and high temperatures, both of which are limited by particle loss, among other factors. Therefore, refueling a long-lived advanced beam-driven field-reversed configuration (FRC) plasma in C-2U is necessary, and injecting a supersonic compact toroid (CT) is an effective means of introducing particles into the FRC core. However, neutral gas that trails the CT into the target chamber cools the FRC. Pre-ionization (PI) system assists the break down between electrodes of the CT injector (CTI), so the amount of introduced gas can be lowered by up to a factor of two, effectively increasing the ionization fraction; thus, reducing the amount of neutral gas in the system. Additionally, the PI decreases the delay in CTI breakdown so a highly reproducible operation is achievable. The PI system consists of a fast, high voltage, pulse discharge circuit coupled to a Teflon insulated semi-rigid coaxial cable inserted into the CTI. System details and experimental data will be presented, in addition to issues such as the introduction of impurities and pre-ionizer lifetime.
NASA Astrophysics Data System (ADS)
Kotrlová, Andrea; Török, Gabriel; Šrámková, Eva; Stuchlík, Zdeněk
2014-12-01
We have previously applied several models of high-frequency quasi-periodic oscillations (HF QPOs) to estimate the spin of the central Kerr black hole in the three Galactic microquasars, GRS 1915+105, GRO J1655-40, and XTE J1550-564. Here we explore the alternative possibility that the central compact body is a super-spinning object (or a naked singularity) with the external space-time described by Kerr geometry with a dimensionless spin parameter a ≡ cJ/GM2> 1. We calculate the relevant spin intervals for a subset of HF QPO models considered in the previous study. Our analysis indicates that for all but one of the considered models there exists at least one interval of a> 1 that is compatible with constraints given by the ranges of the central compact object mass independently estimated for the three sources. For most of the models, the inferred values of a are several times higher than the extreme Kerr black hole value a = 1. These values may be too high since the spin of superspinars is often assumed to rapidly decrease due to accretion when a ≫ 1. In this context, we conclude that only the epicyclic and the Keplerian resonance model provides estimates that are compatible with the expectation of just a small deviation from a = 1.
The Hidden Magnetic Field of the Young Neutron Star in Kesteven 79
NASA Astrophysics Data System (ADS)
Shabaltas, Natalia; Lai, Dong
2012-04-01
Recent observations of the central compact object in the Kesteven 79 supernova remnant show that this neutron star (NS) has a weak dipole magnetic field (a few × 1010 G) but an anomalously large (~64%) pulse fraction in its surface X-ray emission. We explore the idea that a substantial sub-surface magnetic field exists in the NS crust, which produces diffuse hot spots on the stellar surface due to anisotropic heat conduction, and gives rise to the observed X-ray pulsation. We develop a general-purpose method, termed "Temperature Template with Full Transport" (TTFT), that computes the synthetic pulse profile of surface X-ray emission from NSs with arbitrary magnetic field and surface temperature distributions, taking into account magnetic atmosphere opacities, beam pattern, vacuum polarization, and gravitational light bending. We show that a crustal toroidal magnetic field of order a few × 1014 G or higher, varying smoothly across the crust, can produce sufficiently distinct surface hot spots to generate the observed pulse fraction in the Kes 79 NS. This result suggests that substantial sub-surface magnetic fields, much stronger than the "visible" dipole fields, may be buried in the crusts of some young NSs, and such hidden magnetic fields can play an important role in their observational manifestations. The general TTFT tool we have developed can also be used for studying radiation from other magnetic NSs.
A central compact object in Kes 79: the hypercritical regime and neutrino expectation
NASA Astrophysics Data System (ADS)
Bernal, C. G.; Fraija, N.
2016-11-01
We present magnetohydrodynamical simulations of a strong accretion on to magnetized proto-neutron stars for the Kesteven 79 (Kes 79) scenario. The supernova remnant Kes 79, observed with the Chandra ACIS-I instrument during approximately 8.3 h, is located in the constellation Aquila at a distance of 7.1 kpc in the galactic plane. It is a galactic and a very young object with an estimate age of 6 kyr. The Chandra image has revealed, for the first time, a point-like source at the centre of the remnant. The Kes 79 compact remnant belongs to a special class of objects, the so-called central compact objects (CCOs), which exhibits no evidence for a surrounding pulsar wind nebula. In this work, we show that the submergence of the magnetic field during the hypercritical phase can explain such behaviour for Kes 79 and others CCOs. The simulations of such regime were carried out with the adaptive-mesh-refinement code FLASH in two spatial dimensions, including radiative loss by neutrinos and an adequate equation of state for such regime. From the simulations, we estimate that the number of thermal neutrinos expected on the Hyper-Kamiokande Experiment is 733 ± 364. In addition, we compute the flavour ratio on Earth for a progenitor model.
Identification of the central compact object in the young supernova remnant 1E 0102.2-7219
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.
2018-04-01
Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.
Identification of the central compact object in the young supernova remnant 1E 0102.2-7219
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.
2018-06-01
Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.
Origin of 10{sup 15}–10{sup 16} G magnetic fields in the central engine of gamma ray bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Rafael S. de; Opher, Reuven, E-mail: rafael@astro.iag.usp.br, E-mail: opher@astro.iag.usp.br
2010-02-01
Various authors have suggested that the gamma-ray burst (GRB) central engine is a rapidly rotating, strongly magnetized, ( ∼ 10{sup 15}–10{sup 16} G) compact object. The strong magnetic field can accelerate and collimate the relativistic flow and the rotation of the compact object can be the energy source of the GRB. The major problem in this scenario is the difficulty of finding an astrophysical mechanism for obtaining such intense fields. Whereas, in principle, a neutron star could maintain such strong fields, it is difficult to justify a scenario for their creation. If the compact object is a black hole, themore » problem is more difficult since, according to general relativity it has ''no hair'' (i.e., no magnetic field). Schuster, Blackett, Pauli, and others have suggested that a rotating neutral body can create a magnetic field by non-minimal gravitational-electromagnetic coupling (NMGEC). The Schuster-Blackett form of NMGEC was obtained from the Mikhail and Wanas's tetrad theory of gravitation (MW). We call the general theory NMGEC-MW. We investigate here the possible origin of the intense magnetic fields ∼ 10{sup 15}–10{sup 16} G in GRBs by NMGEC-MW. Whereas these fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC-MW. It not only explains the origin of the ∼ 10{sup 15}–10{sup 16} G fields when the compact object is a neutron star, but also when it is a black hole.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, X.; Cianciosa, M. R.; Ennis, D. A.
In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less
NASA Astrophysics Data System (ADS)
Ma, X.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Herfindal, J. L.; Howell, E. C.; Knowlton, S. F.; Maurer, D. A.; Traverso, P. J.
2018-01-01
Collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of q = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. This improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.
Ma, X.; Cianciosa, M. R.; Ennis, D. A.; ...
2018-01-31
In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less
NASA Astrophysics Data System (ADS)
Chung, Shin Kee; Wen, Linqing; Blair, David; Cannon, Kipp; Datta, Amitava
2010-07-01
We report a novel application of a graphics processing unit (GPU) for the purpose of accelerating the search pipelines for gravitational waves from coalescing binaries of compact objects. A speed-up of 16-fold in total has been achieved with an NVIDIA GeForce 8800 Ultra GPU card compared with one core of a 2.5 GHz Intel Q9300 central processing unit (CPU). We show that substantial improvements are possible and discuss the reduction in CPU count required for the detection of inspiral sources afforded by the use of GPUs.
The Plasmoid Thruster Experiment (PTX)
NASA Technical Reports Server (NTRS)
Eskridge, R.; Martin, Adam; Lee, Michael; Smith, James; Koelfgen, Syri
2003-01-01
This viewgraph presentation describes the overall Plasma Thruster Experiment (PTX), it's purpose and design, compact toroid propulsion, advantages and requirements of a plasmoid thruster, the projected efficiency, theta-pinch formation, a simulation of the PTX Coil/Bank Circuit using SPICE, the test firing of the PTX Capacitor Bank, PTX diagnostics, the excluded flux array, thruster simulations using MOQUI, and future work on the PTX.
Compact toroid injection into C-2U
NASA Astrophysics Data System (ADS)
Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team
2015-11-01
Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.
Development of Compact Toroid Injector for C-2 FRCs
NASA Astrophysics Data System (ADS)
Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team
2014-10-01
Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.
Experimental Studies of Compact Toroidal Plasma on BCTX
NASA Astrophysics Data System (ADS)
Morse, Edward C.; Coomer, Eric D.; Hartman, Charles W.
1998-11-01
The Berkeley Compact Toroid Experiment (BCTX) is a spheromak-type magnetically confined fusion confinement experiment. The plasma is formed using a Marshall gun and injected into a 70 cm diameter copper flux conserver. The BCTX device has an RF heating sy stem which can deliver twenty megawatts of RF power for 100 μs pulse length. The RF system operates at 450 MHz, and energy is coupled into the plasma by lower hybrid waves. The purpose of the experiment is to assess the energy-confining capability of the spheromak plasma configuration by using the RF power as a heat pulse and determining the decay rate of the plasma temperature following the heat pulse. Electron temperatures up to 150 eV have been measured in BCTX using Thomson scattering. Core dens ities have been measured with the Raman-calibrated Thomson system in the 2 arrow 5 × 10^14 per cc range. Other diagnostics include magnetic probes, a laser interferometer electron density measurement, three UV spectrometers for impurity l ine radiation, and an ion Doppler temperature measurement. Some data will be presented which shows the effects of an axial pinch being present in the device, giving the device a nonzero q at the wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T.
A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode.more » A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10{sup 21} m{sup −3}, ∼40 eV, and 0.5–1.0 × 10{sup 19}, respectively.« less
Vacuum Magnetic Field Mapping of the Compact Toroidal Hybrid (CTH)
NASA Astrophysics Data System (ADS)
Peterson, J. T.; Hanson, J.; Hartwell, G. J.; Knowlton, S. F.; Montgomery, C.; Munoz, J.
2007-11-01
Vacuum magnetic field mapping experiments are performed on the CTH torsatron with a movable electron gun and phosphor-coated screen or movable wand at two different toroidal locations. These experiments compare the experimentally measured magnetic configuration produced by the as-built coil set, to the magnetic configuration simulated with the IFT Biot-Savart code using the measured coil set parameters. Efforts to minimize differences between the experimentally measured location of the magnetic axis and its predicted value utilizing a Singular Value Decomposition (SVD) process result in small modifications of the helical coil winding law used to model the vacuum magnetic field geometry of CTH. Because these studies are performed at relatively low fields B = 0.01 - 0.05 T, a uniform ambient magnetic field is included in the minimization procedure.
Post-fall-back evolution of multipolar magnetic fields and radio pulsar activation
NASA Astrophysics Data System (ADS)
Igoshev, A. P.; Elfritz, J. G.; Popov, S. B.
2016-11-01
It has long been unclear if the small-scale magnetic structures on the neutron star (NS) surface could survive the fall-back episode. The study of the Hall cascade by Cumming, Arras & Zweibel hinted that energy in small-scales structures should dissipate on short time-scales. Our new 2D magneto-thermal simulations suggest the opposite. For the first ˜10 kyr after the fall-back episode with accreted mass 10-3 M⊙, the observed NS magnetic field appears dipolar, which is insensitive to the initial magnetic topology. In framework of the Ruderman & Sutherland, vacuum gap model during this interval, non-thermal radiation is strongly suppressed. After this time, the initial (I.e. multipolar) structure begins to re-emerge through the NS crust. We distinguish three evolutionary epochs for the re-emergence process: the growth of internal toroidal field, the advection of buried poloidal field, and slow Ohmic diffusion. The efficiency of the first two stages can be enhanced when small-scale magnetic structure is present. The efficient re-emergence of high-order harmonics might significantly affect the curvature of the magnetospheric field lines in the emission zone. So, only after few 104 yr would be the NS starts shining as a pulsar again, which is in correspondence with radio silence of central compact objects. In addition, these results can explain the absence of good candidates for thermally emitting NSs with freshly re-emerged field among radio pulsars (), as NSs have time to cool down, and supernova remnants can already dissipate.
Experimental Design of a Magnetic Flux Compression Experiment
NASA Astrophysics Data System (ADS)
Fuelling, Stephan; Awe, Thomas J.; Bauer, Bruno S.; Goodrich, Tasha; Lindemuth, Irvin R.; Makhin, Volodymyr; Siemon, Richard E.; Atchison, Walter L.; Reinovsky, Robert E.; Salazar, Mike A.; Scudder, David W.; Turchi, Peter J.; Degnan, James H.; Ruden, Edward L.
2007-06-01
Generation of ultrahigh magnetic fields is an interesting topic of high-energy-density physics, and an essential aspect of Magnetized Target Fusion (MTF). To examine plasma formation from conductors impinged upon by ultrahigh magnetic fields, in a geometry similar to that of the MAGO experiments, an experiment is under design to compress magnetic flux in a toroidal cavity, using the Shiva Star or Atlas generator. An initial toroidal bias magnetic field is provided by a current on a central conductor. The central current is generated by diverting a fraction of the liner current using an innovative inductive current divider, thus avoiding the need for an auxiliary power supply. A 50-mm-radius cylindrical aluminum liner implodes along glide planes with velocity of about 5 km/s. Inward liner motion causes electrical closure of the toroidal chamber, after which flux in the chamber is conserved and compressed, yielding magnetic fields of 2-3 MG. Plasma is generated on the liner and central rod surfaces by Ohmic heating. Diagnostics include B-dot probes, Faraday rotation, radiography, filtered photodiodes, and VUV spectroscopy. Optical access to the chamber is provided through small holes in the walls.
Ohkawa, Tihiro; Baker, Charles C.
1981-01-01
In a plasma device having a toroidal plasma containment vessel, a toroidal field-generating coil system includes fixed linking coils each formed of first and second sections with the first section passing through a central opening through the containment vessel and the second section completing the linking coil to link the containment vessel. A plurality of removable unlinked coils are each formed of first and second C-shaped sections joined to each other at their open ends with their bights spaced apart. The second C-shaped section of each movable coil is removably mounted adjacent the second section of a linking coil, with the containment vessel disposed between the open ends of the first and second C-shaped sections. Electric current is passed through the linking and removable coils in opposite sense in the respective adjacent second sections to produce a net toroidal field.
Tunable, Room Temperature THZ Emitters Based on Nonlinear Photonics
NASA Astrophysics Data System (ADS)
Sinha, Raju
The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability. We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1x105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and experimentally demonstrated an efficient polarization dependent plasmonic toroid switch operating at THz frequency. In summary, we have successfully designed, analytically and numerically investigated novel THz emitters with the advantages of wide range tunability, compactness, room temperature operation, fast modulation and the possibility for monolithic integration, which are the most sought after properties in the new generation THz sources.
Ion flow measurements during the MHD relaxation processes in the HIST spherical torus device
NASA Astrophysics Data System (ADS)
Nishioka, T.; Hashimoto, S.; Ando, K.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2008-11-01
Plasma flow is one of the key roles in self-organization and magnetic reconnection processes of helicity-driven spherical torus (ST) and spheromak. The HIST spherical torus can form the standard ST and the flipped ST plasmas by utilizing the variation of the external toroidal field coil current. The flipped ST plasma can be generated by changing the polarity of the toroidal magnetic field during the standard ST discharge [1]. We have developed an ion Doppler spectrometer (IDS) system using a compact 16 channel photomultiplier tube (PMT) in order to measure the spatial profile of ion temperature and rotation velocity in the HIST device. The IDS system consists of a light collection system including optical fibers, 1 m-spectrometer and the PMT detector. As the results, it was observed that ion velocity was about 10 km/s in the same direction as the toroidal current and ExB direction in the standard ST discharge. The observed ion velocity agrees with Mach probe measurements. During the transition from the standard ST to the flipped ST state, the ion temperature was fluctuated and increased. The result implies an ion heating during magnetic reconnections. In addition, the toroidal direction of the ion flow was reversed. The detail physics of the observed phenomenon will be shown. [1] M. Nagata et al., Phys Rev. Lett. 90, pp. 225001-225004 (2003).
NASA Astrophysics Data System (ADS)
Saharian, A. A.
2016-09-01
We investigate the vacuum expectation value of the current density for a charged scalar field on a slice of anti-de Sitter (AdS) space with toroidally compact dimensions. Along the compact dimensions periodicity conditions are imposed on the field operator with general phases and the presence of a constant gauge field is assumed. The latter gives rise to Aharonov-Bohm-like effects on the vacuum currents. The current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It vanishes on the AdS boundary and, near the horizon, to the leading order, it is conformally related to the corresponding quantity in Minkowski bulk for a massless field. For large values of the length of the compact dimension compared with the AdS curvature radius, the vacuum current decays as power-law for both massless and massive fields. This behavior is essentially different from the corresponding one in Minkowski background, where the currents for a massive field are suppressed exponentially.
Low Gas Fractions Connect Compact Star-forming Galaxies to Their z ~ 2 Quiescent Descendants
NASA Astrophysics Data System (ADS)
Spilker, Justin S.; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.
2016-11-01
Early quiescent galaxies at z˜ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line toward three such compact, star-forming galaxies (SFGs) at z˜ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions ≳ 5 times lower and gas depletion timescales ≳ 10 times shorter than normal, extended massive SFGs at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100 Myr. These objects are among the most gas-poor objects observed at z\\gt 2, and are outliers from standard gas scaling relations, a result that remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, SFGs are in a rapid state of transition to quiescence in tandem with the buildup of the z˜ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.
Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2
NASA Astrophysics Data System (ADS)
Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.
2016-08-01
We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.
A recipe for echoes from exotic compact objects
NASA Astrophysics Data System (ADS)
Mark, Zachary; Zimmerman, Aaron; Du, Song Ming; Chen, Yanbei
2017-10-01
Gravitational wave astronomy provides an unprecedented opportunity to test the nature of black holes and search for exotic, compact alternatives. Recent studies have shown that exotic compact objects (ECOs) can ring down in a manner similar to black holes, but can also produce a sequence of distinct pulses resembling the initial ringdown. These "echoes" would provide definite evidence for the existence of ECOs. In this work we study the generation of these echoes in a generic, parametrized model for the ECO, using Green's functions. We show how to reprocess radiation in the near-horizon region of a Schwarzschild black hole into the asymptotic radiation from the corresponding source in an ECO spacetime. Our methods allow us to understand the connection between distinct echoes and ringing at the resonant frequencies of the compact object. We find that the quasinormal mode ringing in the black hole spacetime plays a central role in determining the shape of the first few echoes. We use this observation to develop a simple template for echo waveforms. This template preforms well over a variety of ECO parameters, and with improvements may prove useful in the analysis of gravitational waves.
Behavior of Compact Toroid Injected into C-2U Confinement Vessel
NASA Astrophysics Data System (ADS)
Matsumoto, Tadafumi; Roche, T.; Allrey, I.; Sekiguchi, J.; Asai, T.; Conroy, M.; Gota, H.; Granstedt, E.; Hooper, C.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.; the TAE Team
2016-10-01
The compact toroid (CT) injector system has been developed for particle refueling on the C-2U device. A CT is formed by a magnetized coaxial plasma gun (MCPG) and the typical ejected CT/plasmoid parameters are as follows: average velocity 100 km/s, average electron density 1.9 ×1015 cm-3, electron temperature 30-40 eV, mass 12 μg . To refuel particles into FC plasma the CT must penetrate the transverse magnetic field that surrounds the FRC. The kinetic energy density of the CT should be higher than magnetic energy density of the axial magnetic field, i.e., ρv2 / 2 >=B2 / 2μ0 , where ρ, v, and B are mass density, velocity, and surrounded magnetic field, respectively. Also, the penetrated CT's trajectory is deflected by the transverse magnetic field (Bz 1 kG). Thus, we have to estimate CT's energy and track the CT trajectory inside the magnetic field, for which we adopted a fast-framing camera on C-2U: framing rate is up to 1.25 MHz for 120 frames. By employing the camera we clearly captured the CT/plasmoid trajectory. Comparisons between the fast-framing camera and some other diagnostics as well as CT injection results on C-2U will be presented.
Overview of recent results and future plans on the Compact Toroidal Hybrid experiment
NASA Astrophysics Data System (ADS)
Maurer, D. A.; Archmiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.
2015-11-01
Goals of the Compact Toroidal Hybrid (CTH) experiment are to: (1) investigate the dependence of plasma disruptive behavior on the level of applied 3D magnetic shaping, (2) test and advance 3D computational modeling tools in strongly shaped plasmas, and (3) study the implementation of a new island divertor. Progress towards these goals and other developments are summarized. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased, but a threshold for disruption avoidance is not observed. Low q operation is routine, with low q disruptions avoided when the vacuum transform is raised to the value of 0.07 or above. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges that would otherwise be vertically unstable. Current efforts at improved equilibrium reconstruction and diagnostic development will beoverviewed. NIMROD is used to model the current ramp phase of CTH and 3D shaped sawtooth behavior. An island divertor design has begun with connection length studies and initial EMC3-Eirene results to model energy deposition on divertor plates located in an edge 1/3 island. This work is supported by U.S. Department of Energy Grant No. DE- FG02-00ER54610.
Study of AC Magnetic Properties and Core Losses of Fe/Fe3O4-epoxy Resin Soft Magnetic Composite
NASA Astrophysics Data System (ADS)
Laxminarayana, T. A.; Manna, Subhendu Kumar; Fernandes, B. G.; Venkataramani, N.
Soft Magnetic Composites (SMC) were prepared by coating of nanocrystalline Fe3O4 particles, synthesized by co-precipitation method, on atomized iron powder of particle size less than 53 μm in size using epoxy resin as a binder between iron and Fe3O4. Fe3O4 was chosen, for its high electric resistivity and suitable magnetic properties, to keep the coating layer magnetic and seek improvement to the magnetic properties of SMC. SEM images and XRD patterns were recorded in order to investigate the coatings on the surface of iron powder. A toroid was prepared by cold compaction of coated iron powder at 1050 MPa and subsequently cured at 150˚C for 1 hr in argon atmosphere. For comparison of properties, a toroid of uncoated iron powder was also compacted at 1050 MPa and annealed at 600˚C for 2 hr in argon atmosphere. The coated iron powder composite has a resistivity of greater than 200 μΩm, measured by four probe method. A comparison of Magnetic Hysteresis loops and core losses using B-H Loop tracer in the frequency range 0 to 1500 Hz on the coated and uncoated iron powder is reported.
Overview, Progress, and Plans for the Compact Toroidal Hybrid Experiment
NASA Astrophysics Data System (ADS)
Hartwell, G. J.; Allen, N. R.; Ennis, D. A.; Hanson, J. D.; Howell, E. C.; Johnson, C. A.; Knowlton, S. F.; Kring, J. D.; Ma, X.; Maurer, D. A.; Ross, K. G.; Schmitt, J. C.; Traverso, P. J.; Williamson, E. N.
2017-10-01
The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | <= 0.7 T) which generates highly configurable confining magnetic fields solely with external coils but typically uses up to 80 kA of plasma current for heating and disruption studies. The main goals of the CTH experiment are to study disruptive behavior as a function of applied 3D magnetic shaping, and to test and advance the V3FIT reconstruction code and NIMROD modeling of CTH. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased with no observed threshold for avoidance. Low-q operations (1.1 < q(a) < 2.0) are routine, with disruptions ceasing if the vacuum transform is raised above 0.07. Sawteeth are observed in CTH and have a similar phenomenology to tokamak sawteeth despite employing a 3D confining field. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges. Internal SXR diagnostics, in conjunction with external magnetics, extend the range of reconstruction accuracy into the plasma core. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.
Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Experiment
NASA Astrophysics Data System (ADS)
Howell, E. C.; Hanson, J. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.
2017-10-01
Resistive MHD simulations of low-q disruptions in the Compact Toroidal Hybrid Device (CTH) are performed using the NIMROD code. CTH is a current-carrying stellarator used to study the effects of 3D shaping on MHD stability. Experimentally, it is observed that the application of 3D vacuum fields allows CTH to operate with edge safety factor less than 2.0. However, these low-q discharges often disrupt after peak current if the applied 3D fields are too weak. Nonlinear simulations are initialized using model VMEC equilibria representative of low-q discharges with weak vacuum transform. Initially a series of symmetry preserving island chains are excited at the q=6/5, 7/5, 8/5, and 9/5 rational surfaces. These island chains act as transport barriers preventing stochastic magnetic fields in the edge from penetrating into the core. As the simulation progresses, predominately m/n=3/2 and 4/3 instabilities are destabilized. As these instabilities grow to large amplitude they destroy the symmetry preserving islands leading to large regions of stochastic fields. A current spike and loss of core thermal confinement occurs when the innermost island chain (6/5) is destroyed. Work Supported by US-DOE Grant #DE-FG02-03ER54692.
Star counts and visual extinctions in dark nebulae
NASA Technical Reports Server (NTRS)
Dickman, R. L.
1978-01-01
Application of star count techniques to the determination of visual extinctions in compact, fairly high-extinction dark nebulae is discussed. Particular attention is devoted to the determination of visual extinctions for a cloud having a possibly anomalous ratio of total to selective extinction. The techniques discussed are illustrated in application at two colors to four well-known compact dust clouds or Bok globules: Barnard 92, B 133, B 134, and B 335. Minimum masses and lower limits to the central extinction of these objects are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.
2015-12-15
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used tomore » infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
NASA Astrophysics Data System (ADS)
Ma, X.; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.
2015-12-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.
Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...
2015-12-22
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
Dynamics of magnetic flux tubes in an advective flow around a black hole
NASA Astrophysics Data System (ADS)
Deb, Arnab; Giri, Kinsuk; Chakrabarti, Sandip K.
2017-12-01
Entangled magnetic fields entering into an accretion flow would very soon be stretched into a dominant toroidal component due to strong differentially rotating motion inside the accretion disc. This is particularly true for weakly viscous, low angular momentum transonic or advective discs. We study the trajectories of toroidal flux tubes inside a geometrically thick flow that undergoes a centrifugal force supported shock. We also study effects of these flux tubes on the dynamics of the inflow and the outflow. We use a finite difference method (total variation diminishing) for this purpose and specifically focused on whether these flux tubes significantly affect the properties of the outflows such as its collimation and the rate. It is seen that depending upon the cross-sectional radius of the flux tubes that control the drag force, these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surfaces) along the vertical direction. A comparison of results obtained with and without flux tubes show these flux tubes could play a pivotal role in collimation and acceleration of jets and outflows.
A Resonator for Low-Threshold Frequency Conversion
NASA Technical Reports Server (NTRS)
Iltchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute
2004-01-01
A proposed toroidal or disklike dielectric optical resonator (dielectric optical cavity) would be made of an optically nonlinear material and would be optimized for use in parametric frequency conversion by imposition of a spatially periodic permanent electric polarization. The poling (see figure) would suppress dispersions caused by both the material and the geometry of the optical cavity, thereby effecting quasi-matching of the phases of high-resonance-quality (high-Q) whispering-gallery electromagnetic modes. The quasi-phase-matching of the modes would serve to maximize the interactions among them. Such a resonator might be a prototype of a family of compact, efficient nonlinear devices for operation over a broad range of optical wavelengths. A little background information is prerequisite to a meaningful description of this proposal: (1) Described in several prior NASA Tech Briefs articles, the whispering-gallery modes in a component of spheroidal, disklike, or toroidal shape are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. (2) For the sake of completeness, it must be stated that even though optical resonators of the type considered here are solid dielectric objects and light is confined within them by total internal reflection at dielectric interfaces without need for mirrors, such components are sometimes traditionally called cavities because their effects upon the light propagating within them are similar to those of true cavities bounded by mirrors. (3) For a given set of electromagnetic modes interacting with each other in an optically nonlinear material (e.g., modes associated with the frequencies involved in a frequency-conversion scheme), the threshold power for oscillation depends on the mode volumes and the mode-overlap integral. (4) Whispering-gallery modes are attractive in nonlinear optics because they maximize the effects of nonlinearities by occupying small volumes and affording high Q values
New Ultra-Compact Dwarf Galaxies in Clusters
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-02-01
How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and Bell discovered a sample of compact objects grouped around the central galaxies of the clusters that are consistent with ultra-compact galaxies. The inferred sizes (many around 600 light-years in radius) and masses (roughly one billion solar masses) of these objects suggest that this sample may contain some of the densest UCDs discovered to date.The properties of this new set of UCD candidates arent enough to distinguish between formation scenarios yet, but the authors argue that if we find more such galaxies, we will be able to use the statistics of their spatial and color distributions to determine how they were formed.Zhang and Bell estimate that the 17 CLASH clusters studied in this work each contain an average of 2.7 of these objects in the central million light-years of the cluster. The authors work here suggests that searching wide-field survey data for similar discoveries is a plausible way to increase our sample of UCDs. This will allow us to statistically characterize these dense, compact galaxies and better understand their origins.CitationYuanyuan Zhang and Eric F. Bell 2017 ApJL 835 L2. doi:10.3847/2041-8213/835/1/L2
Toroidal varied-line space (TVLS) gratings
NASA Astrophysics Data System (ADS)
Thomas, Roger J.
2003-02-01
It is a particular challenge to develop a stigmatic spectrograph for EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-space rulings (TULS). A number of solar EUV spectrographs have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. These ideas are now combined into a spectrograph concept that considers varied-line space grooves ruled onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrographs based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.
Toroidal Varied-Line Space (TVLS) Gratings
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Oegerle, William (Technical Monitor)
2002-01-01
It is a particular challenge to develop a stigmatic spectrograph for XUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV (Extreme Ultraviolet) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrometers based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.
Central Compact Objects: some of them could be spinning up?
NASA Astrophysics Data System (ADS)
Benli, O.; Ertan, Ü.
2018-05-01
Among confirmed central compact objects (CCOs), only three sources have measured period and period derivatives. We have investigated possible evolutionary paths of these three CCOs in the fallback disc model. The model can account for the individual X-ray luminosities and rotational properties of the sources consistently with their estimated supernova ages. For these sources, reasonable model curves can be obtained with dipole field strengths ˜ a few × 109 G on the surface of the star. The model curves indicate that these CCOs were in the spin-up state in the early phase of evolution. The spin-down starts, while accretion is going on, at a time t ˜ 103 - 104 yr depending on the current accretion rate, period and the magnetic dipole moment of the star. This implies that some of the CCOs with relatively long periods, weak dipole fields and high X-ray luminosities could be strong candidates to show spin-up behavior if they indeed evolve with fallback discs.
Elliptical varied line-space (EVLS) gratings
NASA Astrophysics Data System (ADS)
Thomas, Roger J.
2004-10-01
Imaging spectroscopy at wavelengths below 2000 Å offers an especially powerful method for studying many extended high-temperature astronomical objects, like the Sun and its outer layers. But the technology to make such measurements is also especially challenging, because of the poor reflectance of all standard materials at these wavelengths, and because the observation must be made from above the absorbing effects of the Earth's atmosphere. To solve these problems, single-reflection stigmatic spectrographs for XUV wavelengths have bee flown on several space missions based on designs with toroidal uniform line-space (TULS) or spherical varied line-space (SVLS) gratings that operate at near normal-incidence. More recently, three solar EUV/UV instruments have been selected that use toroidal varied line-space (TVLS) gratings; these are SUMI and RAISE, both sounding rocket payloads, and NEXUS, a SMEX satellite-mission. The next logical extension to such designs is the use of elliptical surfaces for varied line-space (EVLS) rulings. In fact, EVLS designs are found to provide superior imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. In some cases, such designs may be optimized even further by using a hyperbolic surface for the feeding telescope. The optical characteristics of two solar EUV spectrometers based on these concepts are described: EUS and EUI, both being developed as possible instruments for ESA's Solar Orbiter mission by consortia led by RAL and by MSSL, respectively.
NASA Technical Reports Server (NTRS)
Weigelt, G.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.; Kamperman, T. M.
1991-01-01
R136 is the luminous central object of the giant H II region 30 Doradus in the LMC. The first high-resolution observations of R136 with the Faint Object Camera on board the Hubble Space Telescope are reported. The physical nature of the brightest component R136a has been a matter of some controversy over the last few years. The UV images obtained show that R136a is a very compact star cluster consisting of more than eight stars within 0.7 arcsec diameter. From these high-resolution images a mass upper limit can be derived for the most luminous stars observed in R136.
Low Gas Fractions Connect Compact Star-Forming Galaxies to their z~2 Quiescent Descendants
NASA Astrophysics Data System (ADS)
Spilker, Justin; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.
2017-01-01
Early quiescent galaxies at z ~ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. I will present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z ~ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions 5 times lower and gas depletion times 10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z > 2 and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition to quiescence in tandem with the build-up of the z ~ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass. I will conclude by discussing my ongoing efforts to characterize the gas and star forming properties of this unusual population of galaxies.
Formation of Compact Ellipticals in the merging star cluster scenario
NASA Astrophysics Data System (ADS)
Urrutia Zapata, Fernanda Cecilia; Theory and star formation group
2018-01-01
In the last years, extended old stellar clusters have been observed. They are like globular clusters (GCs) but with larger sizes(a limit of Re=10 pc is currently seen as reasonable). These extended objects (EOs) cover a huge range of mass. Objects at the low mass end with masses comparable to normal globular clusters are called extended clusters or faint fuzzies Larsen & Brodie (2000) and objects at the high-mass end are called ultra compact dwarf galaxies (UCDs). Ultra compact dwarf galaxies are compact object with luminositys above the brigtest known GCs. UCDs are more compact than typical dwarf galaxies but with comparable luminosities. Usually, a lower mass limit of 2 × 10^6 Solar masses is applied.Fellhauer & Kroupa (2002a,b) demostrated that object like ECs, FFs and UCDs can be the remnants of the merger of star clusters complexes, this scenario is called the Merging Star Cluster Scenario. Amore concise study was performed by Bruens et al. (2009, 2011).Our work tries to explain the formation of compact elliptical(cE). These objects are a comparatively rare class of spheroidal galaxies, possessing very small Re and high central surface brightnesses (Faber 1973). cEs have the same parameters as extended objects but they are slightly larger than 100 pc and the luminosities are in the range of -11 to -12 Mag.The standard formation sceanrio of these systems proposes a galaxy origin. CEs are the result of tidal stripping and truncation of nucleated larger systems. Or they could be a natural extension of the class of elliptical galaxies to lower luminosities and smaller sizes.We want to propose a completely new formation scenario for cEs. In our project we try to model cEs in a similar way that UCDs using the merging star cluster scenario extended to much higher masses and sizes. We think that in the early Universe we might have produced sufficiently strong star bursts to form cluster complexes which merge into cEs. So far it is observationally unknown if cEs are dark matter dominated objects. If our scenario is true, then they would be dark matter free very extended and massive "star clusters".
Mapping to Irregular Torus Topologies and Other Techniques for Petascale Biomolecular Simulation
Phillips, James C.; Sun, Yanhua; Jain, Nikhil; Bohm, Eric J.; Kalé, Laxmikant V.
2014-01-01
Currently deployed petascale supercomputers typically use toroidal network topologies in three or more dimensions. While these networks perform well for topology-agnostic codes on a few thousand nodes, leadership machines with 20,000 nodes require topology awareness to avoid network contention for communication-intensive codes. Topology adaptation is complicated by irregular node allocation shapes and holes due to dedicated input/output nodes or hardware failure. In the context of the popular molecular dynamics program NAMD, we present methods for mapping a periodic 3-D grid of fixed-size spatial decomposition domains to 3-D Cray Gemini and 5-D IBM Blue Gene/Q toroidal networks to enable hundred-million atom full machine simulations, and to similarly partition node allocations into compact domains for smaller simulations using multiple-copy algorithms. Additional enabling techniques are discussed and performance is reported for NCSA Blue Waters, ORNL Titan, ANL Mira, TACC Stampede, and NERSC Edison. PMID:25594075
Accreting Compact Object at the Center of the Supernova Remnant RCW 103.
NASA Astrophysics Data System (ADS)
Sanwal, D.; Garmire, G. P.; Garmire, A.; Pavlov, G. G.; Mignani, R.
2002-05-01
We observed the radio-quiet central compact object of the supernova remnant RCW 103 with the Chandra ACIS during 13.8 hours on 2002 March 3, when the source was in high state, with a time-averaged flux of 8*E-12 erg cm-2 s-1 in the 0.5--8.0 keV band. The complex light curve of the source shows a period of about 6.4 hours and two partial eclipses or dips per period, separated by 180o in phase. The variability of the source proves that it is powered by accretion, likely from a low-mass companion in a binary system. Deep near-IR observations of the source with VLT suggest a potential counterpart of the compact object about 2'' from the nominal Chandra position. The magnitudes of the potential counterpart are J ≈ 22.3, H ≈ 19.6, and Ks ≈ 18.5, with an uncertainty of about 0.5 mag. We will discuss possible interpretations of the observational results. This work was partially supported by NASA grants NAS8-01128 and NAG5-10865.
Gravitational Waves and Multi-Messenger Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2010-01-01
Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.
Matter in the form of toroidal electromagnetic vortices
NASA Astrophysics Data System (ADS)
Hagen, Wilhelm F.
2015-09-01
The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact symmetric cuboid that provides a unique building block to assemble the isotopic chart. Exotic neutron- 4 appears viable which may explain dark matter. The recognition that all heavy particles, including the protons, are related to electrons via muons and pions explains the identity of all charges to within 10-36. Greater deviations would overpower gravitation. Gravitation can be traced to EM vacuum fluctuations generated by standing EM waves between interacting particles. On that basis, gravity can be correlated via microscopic quantities to the age of the universe of 13.5 billion years. All forces and particles and potentially dark matter and dark energy are different manifestations of EM energy.
Magnetar-like emission in different neutron star classes
NASA Astrophysics Data System (ADS)
Rea, N.
2017-10-01
I will present new results on magnetar-like transient events in neutron stars having low dipolar fields or generally catalogued as normal radio pulsars or central compact objects. I will then present simulations of magnetic field evolution that might explain the apparently puzzling behaviour of these objects. Strong surface magnetic field might be an almost ubiquitous properties of pulsars, regardless their external dipolar magnetic field measured via their spin down properties.
NASA Astrophysics Data System (ADS)
Hartwell, G. J.; Knowlton, S. F.; Ennis, D. A.; Maurer, D. A.; Bigelow, T.
2016-10-01
The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | <= 0.7 T). It can generate its highly configurable confining magnetic fields solely with external coils, but typically operates with up to 80 kA of ohmically-generated plasma current for heating. New studies of edge plasma transport in stellarator geometries will benefit from CTH operating as a pure torsatron with a high temperature edge plasma. Accordingly, a 28 GHz, 200 kW gyrotron operating at 2nd harmonic for ECRH is being installed to supplement the existing 15 kW klystron system operating at the fundamental frequency; the latter will be used to initially generate the plasma. Ray-tracing calculations that guide the selection of launching position, antenna focal length, and beam-steering characteristics of the ECRH have been performed with the TRAVIS code [ 1 ] . The calculated absorption is up to 95.7% for vertically propagating rays, however, the absorption is more sensitive to magnetic field variations than for a side launch where the field gradient is tokamak-like. The design of the waveguide path and components for the top-launch scenario will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.
Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment
NASA Astrophysics Data System (ADS)
Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.
2016-10-01
A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.
Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment
NASA Astrophysics Data System (ADS)
Traverso, P. J.; Ennis, D. A.; Hartwell, G. J.; Kring, J. D.; Maurer, D. A.
2017-10-01
A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two-color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YAG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and routed via a fiber bundle through a Holospec f/1.8 spectrograph. The red-shifted scattered light from 533-563 nm will be collected by an array of Hamamatsu H11706-40 PMTs. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Stray light and calibration data for a single wavelength channel will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.
Spherical tokamaks with plasma centre-post
NASA Astrophysics Data System (ADS)
Ribeiro, Celso
2013-10-01
The metal centre-post (MCP) in tokamaks is a structure which carries the total toroidal field current and also houses the Ohmic heating solenoid in conventional or low aspect ratio (Spherical)(ST) tokamaks. The MCP and solenoid are critical components for producing the toroidal field and for the limited Ohmic flux in STs. Constraints for a ST reactor related to these limitations lead to a minimum plasma aspect ratio of 1.4 which reduces the benefit of operation at higher betas in a more compact ST reactor. Replacing the MCP is of great interest for reactor-based ST studies since the device is simplified, compactness increased, and maintenance reduced. An experiment to show the feasibility of using a plasma centre-post (PCP) is being currently under construction and involves a high level of complexity. A preliminary study of a very simple PCP, which is ECR(Electron Cyclotron Resonance)-assisted and which includes an innovative fuelling system based on pellet injection, has recently been reported. This is highly suitable for an ultra-low aspect ratio tokamak (ULART) device. Advances on this PCP ECR-assisted concept within a ULART and the associated fuelling system are presented here, and will include the field topology for the PCP ECR-assisted scheme, pellet ablation modeling, and a possible global equilibrium simulation. VIE-ITCR, IAEA-CRP contr.17592, National Instruments-Costa Rica.
Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traverso, P. J., E-mail: pjt0002@auburn.edu; Maurer, D. A.; Ennis, D. A.
2014-11-15
A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum systemmore » through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#∼ 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19} m{sup −3} dependent upon operational scenario.« less
Kosaka, Tomoyo; Inoue, Yoshihisa; Mori, Tadashi
2016-03-03
Hexaarylbenzenes (HABs) have greatly attracted much attention due to their unique propeller-shaped structure and potential application in materials science, such as liquid crystals, molecular capsules/rotors, redox materials, nonlinear optical materials, as well as molecular wires. Less attention has however been paid to their propeller chirality. By introducing small point-chiral group(s) at the periphery of HABs, propeller chirality was effectively induced, provoking strong Cotton effects in the circular dichroism (CD) spectrum. Temperature and solvent polarity manipulate the dynamics of propeller inversion in solution. As such, whizzing toroids become more substantial in polar solvents and at an elevated temperature, where radial aromatic rings (propeller blades) prefer orthogonal alignment against the central benzene ring (C6 core), maximizing toroidal interactions.
Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta
Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; ...
2017-07-01
Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (β t), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate β t up to ~100% with a minimum |B| well spanning up to ~50% of the plasma volume.
Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta.
Schlossberg, D J; Bodner, G M; Bongard, M W; Burke, M G; Fonck, R J; Perry, J M; Reusch, J A
2017-07-21
Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (β_{t}), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate β_{t} up to ∼100% with a minimum |B| well spanning up to ∼50% of the plasma volume.
Observation of odd toroidal Alfvén eigenmodes.
Kramer, G J; Sharapov, S E; Nazikian, R; Gorelenkov, N N; Budny, R V
2004-01-09
Experimental evidence is presented for the existence of the theoretically predicted odd toroidicity induced Alfvén eigenmode (TAE) from the simultaneous appearance of odd and even TAEs in a normal shear discharge of the joint European torus. The modes are observed in low central magnetic shear plasmas created by injecting lower hybrid current drive. A fast ion population was created by applying ion cyclotron heating at the high-field side to excite the TAEs. The odd TAEs were identified from their frequency, mode number, and timing relative to the even TAEs.
NASA Astrophysics Data System (ADS)
Kotrlová, A.; Šrámková, E.; Török, G.; Stuchlík, Z.; Goluchová, K.
2017-11-01
In our previous work (Paper I) we applied several models of high-frequency quasi-periodic oscillations (HF QPOs) to estimate the spin of the central compact object in three Galactic microquasars assuming the possibility that the central compact body is a super-spinning object (or a naked singularity) with external spacetime described by Kerr geometry with a dimensionless spin parameter a ≡ cJ/GM2 > 1. Here we extend our consideration, and in a consistent way investigate implications of a set of ten resonance models so far discussed only in the context of a < 1. The same physical arguments as in Paper I are applied to these models, I.e. only a small deviation of the spin estimate from a = 1, a ≳ 1, is assumed for a favoured model. For five of these models that involve Keplerian and radial epicyclic oscillations we find the existence of a unique specific QPO excitation radius. Consequently, there is a simple behaviour of dimensionless frequency M × νU(a) represented by a single continuous function having solely one maximum close to a ≳ 1. Only one of these models is compatible with the expectation of a ≳ 1. The other five models that involve the radial and vertical epicyclic oscillations imply the existence of multiple resonant radii. This signifies a more complicated behaviour of M × νU(a) that cannot be represented by single functions. Each of these five models is compatible with the expectation of a ≳ 1.
A 3D analysis of the metal distribution in the compact group of galaxies HCG 31
NASA Astrophysics Data System (ADS)
Torres-Flores, Sergio; Mendes de Oliveira, Claudia; Alfaro-Cuello, Mayte; Rodrigo Carrasco, Eleazar; de Mello, Duilia; Amram, Philippe
2015-02-01
We present new Gemini/GMOS integral field unit observations of the central region of the merging compact group of galaxies HCG 31. Using this data set, we derive the oxygen abundances for the merging galaxies HCG 31A and HCG 31C. We found a smooth metallicity gradient between the nuclei of these galaxies, suggesting a mixing of metals between these objects. These results are confirmed by high-resolution Fabry-Perot data, from which we infer that gas is flowing between HCG 31A and HCG 31C.
The dynamics and fueling of active nuclei
NASA Technical Reports Server (NTRS)
Norman, C.; Silk, J.
1983-01-01
It is generally believed that quasars and active galactic nuclei produce their prodigious luminosities in connection with the release of gravitational energy associated with accretion and infall of matter onto a compact central object. In the present analysis, it is assumed that the central object is a massive black hole. The fact that a black hole provides the deepest possible central potential well does imply that it is the most natural candidate for the central engine. It is also assumed that the quasar is associated with the nucleus of a conventional galaxy. A number of difficulties arise in connection with finding a suitable stellar fueling model. A simple scheme is discussed for resolving these difficulties. Attention is given to fueling in a nonaxisymmetric potential, the effects of a massive accretion disk, and the variability in the disk luminosity caused by star-disk collisions assuming that the energy deposited in the disk is radiated.
Toroidal sensor arrays for real-time photoacoustic imaging
NASA Astrophysics Data System (ADS)
Bychkov, Anton S.; Cherepetskaya, Elena B.; Karabutov, Alexander A.; Makarov, Vladimir A.
2017-07-01
This article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays. It is shown that the use of arrays with toroidal geometry significantly improves the diagnostic capabilities of PA and LU imaging to investigate biological objects, rocks, and composite materials.
Toroidal configurations of perfect fluid in the Reissner-Nordström-(anti-)de Sitter spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucáková, Hana; Slaný, Petr; Stuchlík, Zdenĕk, E-mail: hana.kucakova@centrum.cz, E-mail: petr.slany@fpf.slu.cz, E-mail: zdenek.stuchlik@fpf.slu.cz
Influence of cosmological constant on toroidal fluid configurations around charged spherically symmetric black holes and naked singularities is demostrated by study of perfect-fluid tori with uniform distribution of specific angular momentum orbiting in the Reissner-Nordström-(anti-)de Sitter spacetimes. Toroidal configurations are allowed only in the spacetimes admitting existence of stable circular geodesics. Configurations with marginally closed equipotential (equipressure) surfaces crossing itself in a cusp allow accretion (through the inner cusp) and/or excretion (through the outer cusp) of matter from the toroidal configuration. Detailed classification of the Reissner-Nordström-(anti-)de Sitter spacetimes according to properties of the marginally stable tori is given. It ismore » demonstrated that in the Reissner-Nordström-de Sitter naked-singularity spacetimes an interesting phenomenon of doubled tori can exist enabling exchange of matter between two tori in both inward and outward directions. In naked-singularity spacetimes the accretion onto the central singularity is impossible due to existence of a potential barrier.« less
Magnetism of toroidal field in two-fluid equilibrium of CHI driven spherical torus
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2016-10-01
Double-pulsing CHI (D-CHI) experiment has been conducted in the HIST device to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas. The feature of CHI driven ST such as diamagnetic toroidal field in the central open flux column (OFC) region and strong poloidal flow shear around the separatrix in the high field side suggests the two-fluid effect. The relationship between the magnetism of the toroidal field and the poloidal flow velocity is investigated by modelling the D-CHI (mainly driving the poloidal electron flow along the open flux) in the two-fluid equilibrium calculations. The poloidal component of Ampere's law leads that the toroidal field is related to the difference between the stream functions of ion ψi and electron ψe for the poloidal flow, indicating that the toroidal field with ψe >ψi results in a diamagnetic profile, while that with ψe <ψi results in a paramagnetic one. The gradient of the stream function determines the polarity and the strength of the poloidal flow velocity. It is found that the two-fluid equilibrium of CHI driven ST satisfies ψe > 0 and ψi < 0 in the OFC region, and ψe < 0 and ψi < 0 in the closed flux region. The toroidal field is a diamagnetic profile in the OFC region due to ψe >ψi and |uez | > |uiz | , where uez and uiz denote the poloidal electron and ion flow velocities, respectively. It becomes from a diamagnetic to a paramagnetic profile in the closed flux region, because ψe (uez) approaches ψi (uiz) around the magnetic axis. The poloidal ion flow shear is enhanced in the OFC region due to the ion inertial effect through the toroidal ion flow velocity.
Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai
2018-01-01
A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru; Kovalev, Yu. Yu.; Novikov, I. D.
2015-05-15
The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret themore » results of optical, infrared, and radio interferometric observations.« less
Compact orthogonal NMR field sensor
Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL
2009-02-03
A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.
The evaluation of a deformable diffraction grating for a stigmatic EUV spectroheliometer
NASA Technical Reports Server (NTRS)
Timothy, J. G.
1987-01-01
A high-efficiency, extreme ultraviolet (EUV) imaging spectrometer is constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically-deformable sub-master grating replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a two-dimensional, pulse-counting detector system verify the image quality of the toroidal grating at wavelengths near 600 A. The results of these tests and the basic designs of two instruments which could employ the imaging spectrometer for astrophysical investigations in space are described; i.e., a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona; and an EUV spectroscopic telescope for studies of non-solar objects.
Magnetic flux trapping during field reversal in the formation of a field-reversed configuration
NASA Astrophysics Data System (ADS)
Steinhauer, Loren C.
1985-11-01
The flow of plasma and magnetic flux toward a wall is examined in a slab geometry where the magnetic field is parallel to the wall. Magnetohydrodynamic (MHD) flow with a quasisteady approximation is assumed that reduces the problem to three coupled ordinary differential equations. The calculated behavior shows that a thin current sheath is established at the wall in which a variety of phenomena appear, including significant resistive heating and rapid deceleration of the plasma flow. The sheath physics determines the speed at which flux and plasma flow toward the wall. The model has been applied to the field-reversal phase of a field-reversed theta pinch, during which the reduced magnetic field near the wall drives an outward flow of plasma and magnetic flux. The analysis leads to approximate expressions for the instantaneous flow speed, the loss of magnetic flux during the field reversal phase, the integrated heat flow to the wall, and the highest possible magnetic flux retained after reversal. Predictions from this model are compared with previous time-dependent MHD calculations and with experimental results from the TRX-1 [Proceedings of the 4th Symposium on the Physics and Technology of Compact Toroids, 27-29 October 1981 (Lawrence Livermore National Laboratory, Livermore, CA, 1982), p. 61] and TRX-2 [Proceedings of the 6th U.S. Symposium on Compact Toroid Research, 20-23 February, 1984 (Princeton Plasma Physics Laboratory, Princeton, NJ, 1984), p. 154] experiments.
Non-inductively driven tokamak plasmas at near-unity βt in the Pegasus toroidal experiment
NASA Astrophysics Data System (ADS)
Reusch, J. A.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Rhodes, A. T.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Weberski, J. D.
2018-05-01
A major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓi, high elongation κ, and high toroidal and normalized beta ( βt and βN) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓi. The low aspect ratio ( R0/a ˜1.2 ) of Pegasus allows access to high κ and high normalized plasma currents ( IN=Ip/a BT>14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high βt plasmas. Equilibrium analyses indicate that βt up to ˜100% is achieved. These high βt discharges disrupt at the ideal no-wall β limit at βN˜7.
Fast Wave Transmission Measurements on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Reardon, J.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Wukitch, S. J.
1997-11-01
Data are presented from an array of single-turn loop probes newly installed on the inner wall of C-Mod, directly opposite one of the two fast-wave antennas. The 8-loop array extends 32^circ in the toroidal direction at the midplane and can distinguish electromagnetic from electrostatic modes. Data are acquired by 1GHz digitizer, spectrum analyzer, and RF detector circuit. Phase measurements during different heating scenarios show evidence of both standing and travelling waves. The measurement of toroidal mode number N_tor (conserved under the assumption of axisymmetry) is used to guide the toroidal full-wave code TORIC(Brambilla, M., IPP Report 5/66, February 1996). Amplitude measurements show modulation both by Type III ELMs and sawteeth; the observed sawtooth modulation may be interpreted as due to changes in central absorption. The amplitude of tildeB_tor measured at the inner wall is compared to the prediction of TORIC.
Solenoid-free plasma startup in NSTX using transient CHI
NASA Astrophysics Data System (ADS)
Raman, R.; Jarboe, T. R.; Mueller, D.; Nelson, B. A.; Bell, M. G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Maingi, R.; Maqueda, R.; Menard, J.; Nagata, M.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.; Taylor, G.
2009-06-01
Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.
Bonanos, Peter
1983-01-01
A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.
Observation of Alpha-Driven TAEs in TFTR
NASA Astrophysics Data System (ADS)
Nazikian, R.; Chang, Z.; Fu, G. Y.; Majeski, R.; Batha, S.; Bell, M.; Budny, R.; Cheng, C. Z.; Darrow, D. S.; Duong, H.; Efthimion, P. C.; Fredrickson, E.; Levinton, F.; Mazzucato, E.; Medley, S.; Taylor, S.; Zweben, G.
1996-11-01
Transient mode activity in the TAE range of frequencies (150-170 kHz) with toroidal mode numbers n=2,3 is observed in reduced magnetic shear DT discharges on TFTR with a fusion power threshold of ~1.5 MW. Mode activity appears 50-100 msec after NBI in discharges with the following machine parameter: B=5.3 T, I=1.6MA, R=260cm, P_NBI=25-28 MW, q(0)>2.0 from MSE and toroidal beta β_T<1%. The elevated q(0) and reduced central shear |s|<0.2 is achieved using a full size plasma startup with delayed NBI. Theoretical calculations using NOVA-K indicate that the combined effect of low shear, low beta and elevated q(0) leads to a very low instability threshold for the alpha-driven TAE with β_α (0) ~ 10-4. This appears to be consistent with experimental observations of mode activity in DT plasmas with β_α ~ 10-4 (determined from TRANSP analysis). Thus far the modes have only been observed on Mirnov coils with fluctuation levels tildeB ~ 1mG. Efforts to determine mode location by perturbing the edge density and inducing strong toroidal velocity shear will be reported, as will efforts to affect mode stability by systematically varying the central safety factor.
The Study of Spherical Cores with a Toroidal Magnetic Field Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholipour, Mahmoud
Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modifiedmore » form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.« less
Plasma Studies in the SPECTOR Experiment as Target Development for MTF
NASA Astrophysics Data System (ADS)
Ivanov, Russ; Young, William; the Fusion Team, General
2016-10-01
General Fusion (GF) is developing a Magnetized Target Fusion (MTF) concept in which magnetized plasmas are adiabatically compressed to fusion conditions by the collapse of a liquid metal vortex. To study and optimize the plasma compression process, GF has a field test program in which subscale plasma targets are rapidly compressed with a moving flux conserver. GF has done many field tests to date on plasmas with sufficient thermal confinement but with a compression geometry that is not nearly self-similar. GF has a new design for our subscale plasma injectors called SPECTOR (for SPhErical Compact TORoid) capable of generating and compressing plasmas with a more spherical form factor. SPECTOR forms spherical tokamak plasmas by coaxial helicity injection into a flux conserver (a = 9 cm, R = 19 cm) with a pre-existing toroidal field created by 0.5 MA current in an axial shaft. The toroidal plasma current of 100 - 300 kA resistively decays over a time period of 1.5 msec. SPECTOR1 has an extensive set of plasma diagnostics including Thomson scattering and polarimetry. MHD stability and lifetime of the plasma was explored in different magnetic configurations with a variable safety factor q(Ψ) . Relatively hot (Te >= 350 eV) and dense ( 1020 m-3) plasmas have achieved energy confinement times τE >= 100 μsec and are now ready for field compression tests. russ.ivanov@generalfusion.com.
NASA Astrophysics Data System (ADS)
Pereira, Jonas P.; Coelho, Jaziel G.; de Lima, Rafael C. R.
2018-05-01
Magnetars are neutron stars presenting bursts and outbursts of X- and soft-gamma rays that can be understood with the presence of very large magnetic fields. In this setting, nonlinear electrodynamics should be taken into account for a more accurate description of such compact systems. We study that in the context of ideal magnetohydrodynamics and make a realization of our analysis to the case of the well known Born-Infeld (BI) electromagnetism in order to come up with some of its astrophysical consequences. We focus here on toroidal magnetic fields as motivated by already known magnetars with low dipolar magnetic fields and their expected relevance in highly magnetized stars. We show that BI electrodynamics leads to larger toroidal magnetic fields when compared to Maxwell's electrodynamics. Hence, one should expect higher production of gravitational waves (GWs) and even more energetic giant flares from nonlinear stars. Given current constraints on BI's scale field, giant flare energetics and magnetic fields in magnetars, we also find that the maximum magnitude of magnetar ellipticities should be 10^{-6}-10^{-5}. Besides, BI electrodynamics may lead to a maximum increase of order 10-20% of the GW energy radiated from a magnetar when compared to Maxwell's, while much larger percentages may arise for other physically motivated scenarios. Thus, nonlinear theories of the electromagnetism might also be probed in the near future with the improvement of GW detectors.
Continuous-annealing method for producing a flexible, curved, soft magnetic amorphous alloy ribbon
NASA Astrophysics Data System (ADS)
Francoeur, Bruno; Couture, Pierre
2012-04-01
A method has been developed for continuous annealing of an amorphous alloy ribbon moving forward at several meters per second, giving a curved shape to the ribbon that remains flexible afterward and can be easily wound into a toroidal core with excellent soft magnetic properties. A heat pulse was applied by a compact system on a Metglas 2605HB1 ribbon moving forward at 5 m/s to initiate a thermal treatment at 460 °C, near crystallization onset. The treatment duration was less than 0.1 s, and the heating and cooling rates were above 10 000 °C/s, which helped preserve most of the alloy as-cast ductility state. Such high temperature rates were achieved by forcing a static contact between the moving ribbon and a temperature-controlled roller. A tensile stress and a series of bending configurations were applied on the moving ribbon during the treatment to induce the development of magnetic anisotropy and to obtain the desired natural curvature radius. The core losses at 60 Hz of a toroidal test core wound with the resulting ribbon are lower than the specific values reported by the alloy manufacturer. This method can be implemented at the casting plant for supplying a low-cost, ready-to-use ribbon, easy to handle and cut, for mass production of toroidal cores for distribution transformer kernels (core and coil only), pulse power cores, etc.
Boer, D Roeland; Ruíz-Masó, José A; López-Blanco, José R; Blanco, Alexander G; Vives-Llàcer, Mireia; Chacón, Pablo; Usón, Isabel; Gomis-Rüth, F Xavier; Espinosa, Manuel; Llorca, Oscar; del Solar, Gloria; Coll, Miquel
2009-01-01
RepB initiates plasmid rolling-circle replication by binding to a triple 11-bp direct repeat (bind locus) and cleaving the DNA at a specific distant site located in a hairpin loop within the nic locus of the origin. The structure of native full-length RepB reveals a hexameric ring molecule, where each protomer has two domains. The origin-binding and catalytic domains show a three-layer α–β–α sandwich fold. The active site is positioned at one of the faces of the β-sheet and coordinates a Mn2+ ion at short distance from the essential nucleophilic Y99. The oligomerization domains (ODs), each consisting of four α-helices, together define a compact ring with a central channel, a feature found in ring helicases. The toroidal arrangement of RepB suggests that, similar to ring helicases, it encircles one of the DNA strands during replication to confer processivity to the replisome complex. The catalytic domains appear to be highly mobile with respect to ODs. This mobility may account for the adaptation of the protein to two distinct DNA recognition sites. PMID:19440202
A Starfish Preplanetary Nebula: IRAS 19024+0044
NASA Astrophysics Data System (ADS)
Sahai, Raghvendra; Sánchez Contreras, Carmen; Morris, Mark
2005-02-01
Using the Hubble Space Telescope, we have imaged the OH/IR star IRAS 19024+0044 (I19024) at 0.6, 0.8, 1.1, and 1.6 μm, as part of our surveys of candidate preplanetary nebulae. The images show a multipolar nebula of size ~3.7"×2.3", with at least six elongated lobes emanating from the center of the nebula. Two of the lobes show limb-brightened tips having point-symmetric structure with respect to the expected location of the central star. The central region shows two dark bands southwest and northeast of a central shallow maximum that may be either two inclined dusty toroidal structures or the dense parts of a single wide, inhomogeneous, toroid. A very faint, surface brightness-limited, diffuse halo surrounds the lobes. Long-slit/echelle optical spectroscopy obtained at the Mount Palomar and Keck observatories shows a spatially compact source of Hα emission; the Hα line shows a strong, narrow, central core with very broad (+/-1000 km s-1), weak wings, and a narrower blueshifted absorption feature signifying the presence of a ~100 km s-1 outflow. The spectrum is characterized by a strong, relatively featureless, continuum and lacks the strong forbidden emission lines characteristic of planetary nebulae, confirming that IRAS 19024 is a preplanetary nebula; the spectral type for the central star, although uncertain, is most likely early G. Interferometric observations of the CO J=1-0 line emission with the Owens Valley Radio Interferometer show a marginally resolved molecular envelope (size 5.5"×4.4") with an expansion velocity of 13 km s-1, resulting from the asymptotic giant granch (AGB) progenitor's dense, slow wind. We derive a kinematic distance of 3.5 kpc to I19024, based on its radial velocity. The bolometric flux is 7.3×10-9 ergs s-1 cm-2, and the luminosity 2850 Lsolar. The relatively low luminosity of I19024, in comparison with stellar evolutionary models, indicates that the initial mass of its central star was ~1-1.5 Msolar. The lobes, which appear to be hollow structures with dense walls, have a total mass greater than or equal to about 0.02 Msolar. The dusty tori in the center have masses of a few times 10-3 Msolar. The faint halo has a power-law radial surface brightness profile with an exponent of about -3 and most likely represents the remnant spherical circumstellar envelope formed as a result of constant mass loss during the AGB phase over the past several thousand years. From the CO data we infer a molecular mass >~0.025 Msolar and an expansion age <~2870 yr, giving a mass-loss rate >~10-5 Msolar yr-1. The far-infrared fluxes of I19024 indicate the presence of a large mass of cool dust in the nebula; from a simple model we infer the presence of ``cool'' (109 K) and ``warm'' (280 K) components of dust mass 5.7×10-4 and 1.5×10-7 Msolar. We discuss our results for I19024 in the light of past and current ideas for the dramatic transformation of the morphology and kinematics of mass-ejecta as AGB stars evolve into planetary nebulae. The phrase ``preplanetary nebula,'' which refers to an object in the evolutionary phase immediately preceding the planetary nebula phase, is used in this paper in place of the more commonly used ``proto-planetary nebula,'' because the term ``proto-planetary'' is widely used to refer to disks around pre-main-sequence stars. Since the term protoplanet is used by the planet and planet formation communities to refer to planets undergoing formation, the use of the term ``protoplanetary nebula'' to refer to a completely different kind of object is an unfortunate choice, which compounds our inconvenience of having the historically inherited misnomer ``planetary nebula.'' We believe, therefore, that it is important to replace the term ``proto-planetary nebula'' (in this work and future studies) with ``preplanetary nebula,'' which is both unique (in the planetary community, the term ``preplanet'' is not used, and never will be) and correct in its meaning.
Sealing intersecting vane machines
Martin, Jedd N.; Chomyszak, Stephen M.
2005-06-07
The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.
Sealing intersecting vane machines
Martin, Jedd N [Providence, RI; Chomyszak, Stephen M [Attleboro, MA
2007-06-05
The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through intersecting surfaces without the need for external gearing by modifying the width of one or both tracks at the point of intermeshing. The inventions described herein relate to these improvements.
Speeding Clouds May Reveal Invisible Black Holes
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
Several small, speeding clouds have been discovered at the center of our galaxy. A new study suggests that these unusual objects may reveal the lurking presence of inactive black holes.Peculiar Cloudsa) Velocity-integrated intensity map showing the location of the two high-velocity compact clouds, HCN0.0090.044 and HCN0.0850.094, in the context of larger molecular clouds. b) and c) Latitude-velocity and longitude-velocity maps for HCN0.0090.044 and HCN0.0850.094, respectively. d) and e) spectra for the two compacts clouds, respectively. Click for a closer look. [Takekawa et al. 2017]Sgr A*, the supermassive black hole marking the center of our galaxy, is surrounded by a region roughly 650 light-years across known as the Central Molecular Zone. This area at the heart of our galaxy is filled with large amounts of warm, dense molecular gas that has a complex distribution and turbulent kinematics.Several peculiar gas clouds have been discovered within the Central Molecular Zone within the past two decades. These clouds, dubbed high-velocity compact clouds, are characterized by their compact sizes and extremely broad velocity widths.What created this mysterious population of energetic clouds? The recent discovery of two new high-velocity compact clouds, reported on in a paper led by Shunya Takekawa (Keio University, Japan), may help us to answer this question.Two More to the CountUsing the James Clerk Maxwell Telescope in Hawaii, Takekawa and collaborators detected the small clouds near the circumnuclear disk at the centermost part of our galaxy. These two clouds have velocity spreads of -80 to -20 km/s and -80 to 0 km/s and compact sizes of just over 1 light-year. The clouds similar appearances and physical properties suggest that they may both have been formed by the same process.Takekawa and collaborators explore and discard several possible origins for these clouds, such as outflows from massive protostars (no massive, luminous stars have been detected affiliated with these clouds), interaction with supernova remnants (no supernova remnants have been detected toward the clouds), and cloudcloud collisions (such collisions leave other signs, like cavities in the parent cloud, which are not detected here).Masses and velocities of black holes that could create the two high-velocity compact clouds fall above the red and blue lines here. [Takekawa et al. 2017]Revealed on the PlungeAs an alternative explanation, Takekawa and collaborators propose that these two small,speeding cloudswere each created when a massive compact object plunged into a nearby molecular cloud. Since we dont seeany luminous stellar counterparts to the high-velocity compact clouds, this suggests that the responsibleobjects were invisible black holes. As each black hole tore through a molecular cloud, it dragged some of the clouds gas along behind it to form the high-velocity compact cloud.Does this explanation make sense statistically? The authors point out that the number of black holes predicted to silently lurk in the central 30 light-years of the Milky Way is around 10,000. This makes it entirely plausible that we could have caught sight of two of them as they revealed their presence while plunging through molecular clouds.If the authors interpretation is correct, then high-velocity compact clouds provide an excellent opportunity: we can search for these speeding bodiesto potentially discover inactive black holes that would otherwise go undetected.CitationShunya Takekawa et al 2017 ApJL 843 L11. doi:10.3847/2041-8213/aa79ee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, C.
This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations.
NASA Astrophysics Data System (ADS)
Yamaguchi, M. S.; Yano, T.; Gouda, N.
2018-03-01
We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.
Accretion Disk Outflows from Compact Object Mergers
NASA Astrophysics Data System (ADS)
Metzger, Brian
Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed nuclear reaction network along characteristic Lagrangian trajectories. Results of these calculations will be used to (1) reassess NS-NS/NS-BH mergers as an astrophysical source of heavy r-process nuclei; and (2) calculate the light curves of the optical transients (`kilonovae') powered by the radioactive decay. Separate work will assess the effects that neutrino irradiation from a long-lived neutron star remnant has on the electron fraction of the disk outflows. The strong contrast between the opacities of proton- and neutron-rich matter imply that the presence and lifetime of such a remnant could be imprinted on the kilonova emission. Our investigation sheds light on the central engines of GRBs and other high-energy transients and hence is relevant to NASA's Swift, MAXI, and Fermi missions. Our results will also impact the interpretation of future observations of supernovae and their galactic environments with the Hubble Space Telescope (HST). Our results will also impact follow-up observations of kilonovae, maximizing the impact of HST to constrain the key open questions such as the progenitors of gamma-ray bursts and the origin of r-process nuclei.
The kinematic dynamo problem, part I: analytical treatment with the Bullard-Gellman formalism
NASA Astrophysics Data System (ADS)
Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.
2018-03-01
This paper is dedicated to the description of kinematic dynamo action in a sphere and its analytical treatment with the uc(Bullard)-uc(Gellman) formalism. One goal of dynamo theory is to answer the question: Can magnetic fields of stellar objects be generated or sustained due to (fluid) motion in the interior? uc(Bullard) and uc(Gellman) were among the first to study this question, leading the way for many subsequent studies, cf. Bullard (Philos Trans R Soc A 247(928):213-278, 1954). In their publication the differential equations resulting from a toroidal-poloidal decomposition of the velocity and magnetic field are stated without an in-depth discussion of the employed methods and computation steps. This study derives the necessary formalism in a compact and concise manner by using an operator-based approach. The focus lies on the mathematical steps and necessary properties of the considered formalism. Prior to that a derivation of the induction equation is presented based on rational continuum electrodynamics. As an example of the formalism the decay of two magnetic fields is analyzed.
Kinematic Age Estimates for Four Compact Symmetric Objects from the Pearson-Readhead Survey
NASA Astrophysics Data System (ADS)
Taylor, G. B.; Marr, J. M.; Pearson, T. J.; Readhead, A. C. S.
2000-09-01
Based on multiepoch observations at 15 and 43 GHz with the Very Long Baseline Array (VLBA), we detect significant angular expansions between the two hot spots of four compact symmetric objects (CSOs). From these relative motions we derive kinematic ages of between 300 and 1200 yr for the radio emission. These ages lend support to the idea that CSOs are produced in a recent phase of activity. These observations also allow us to study the evolution of the hot spots dynamically in individual sources. In all four sources the hot spots are separating along the source axis, but in 1031+567 the tip of the hot spot appears to be moving almost orthogonally to the source axis. Jet components, seen in three of the four sources observed, are found to be moving relativistically outward from the central engines toward the more slowly moving hot spots.
The magnetic nature of disk accretion onto black holes.
Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy
2006-06-22
Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.
Asraf, Sagie; Sintov, Yoav; Zalevsky, Zeev
2017-08-07
We propose a novel configuration for an improved and compact all fiber Faraday rotator based on phase matching between the Faraday rotation and bend-induced birefringence. The device utilizes a coiled fiber within two electro-magnetic toroids, such that the fiber length required for getting the beat length is quite long and several rounds of fiber are needed. Analysis of the capabilities of the proposed device and its sensitivity to different parameters is presented. Faraday rotation of 13° was experimentally measured in six meters of single mode silica fiber, with a magnetic field of about 0.06T at a wavelength of 1064nm. We show that phase matching between the two phenomena significantly improves the polarization rotation by a factor of 4-10. In addition, we demonstrate the ability to achieve higher rotation by using Fabry Perot resonator in low terbium doped glass.
Kantsyrev, V L; Chuvatin, A S; Rudakov, L I; Velikovich, A L; Shrestha, I K; Esaulov, A A; Safronova, A S; Shlyaptseva, V V; Osborne, G C; Astanovitsky, A L; Weller, M E; Stafford, A; Schultz, K A; Cooper, M C; Cuneo, M E; Jones, B; Vesey, R A
2014-12-01
A compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources is experimentally demonstrated in a configuration with a central target and tailored shine shields at a 1.7-MA Zebra generator. Driving in parallel two magnetically decoupled compact double-planar-wire Z pinches has demonstrated the generation of synchronized x-ray bursts that correlated well in time with x-ray emission from a central reemission target. Good agreement between simulated and measured hohlraum radiation temperature of the central target is shown. The advantages of compact hohlraum design applications for multi-MA facilities are discussed.
Compact toroid injection fueling in a large field-reversed configuration
NASA Astrophysics Data System (ADS)
Asai, T.; Matsumoto, T.; Roche, T.; Allfrey, I.; Gota, H.; Sekiguchi, J.; Edo, T.; Garate, E.; Takahashi, Ts.; Binderbauer, M.; Tajima, T.
2017-07-01
A repetitively driven compact toroid (CT) injector has been developed for the large field-reversed configuration (FRC) facility of the C-2/C-2U, primarily for particle refueling. A CT is formed and injected by a magnetized coaxial plasma gun (MCPG) exclusively developed for the C-2/C-2U FRC. To refuel the particles of long-lived FRCs, multiple CT injections are required. Thus, a multi-stage discharge circuit was developed for a multi-pulsed CT injection. The drive frequency of this system can be adjusted up to 1 kHz and the number of CT shots per injector is two; the system can be further upgraded for a larger number of injection pulses. The developed MCPG can achieve a supersonic ejection velocity in the range of ~100 km s-1. The key plasma parameters of electron density, electron temperature and the number of particles are ~5 × 1021 m-3, ~30 eV and 0.5-1.0 × 1019, respectively. In this project, single- and double-pulsed counter CT injection fueling were conducted on the C-2/C-2U facility by two CT injectors. The CT injectors were mounted 1 m apart in the vicinity of the mid-plane. To avoid disruptive perturbation on the FRC, the CT injectors were operated at the lower limit of the particle inventory. The experiments demonstrated successful refueling with a significant density build-up of 20-30% of the FRC particle inventory per single CT injection without any deleterious effects on the C-2/C-2U FRC.
Flow and dynamo measurements during the coaxial helicity injection on HIST
NASA Astrophysics Data System (ADS)
Ando, K.; Higashi, T.; Nakatsuka, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2009-11-01
The current drive by Coaxial Helicity Injection (CHI-CD) was performed on HIST in a wide range of configurations from high-q ST to low-q ST and spheromak generated by the utilization of the toroidal field. It is a key issue to investigate the dynamo mechanism required to maintain each configuration. To identify the detail mechanisms, it is needed to manifest a role of plasma flows in the CHI-CD. For this purpose, we have measured the ion flow and the dynamo electric field using an ion Doppler spectrometer (IDS) system, a Mach probe and a dynamo probe. The new dynamo probe consists of 3-axis Mach probes and magnetic pick-up coils. The flow measurements have shown that the intermittent generation of the flow is correlated to the fluctuation seen on the electron density and current signals during the driven phase. At this time, the toroidal direction of the ion flow in the central open flux column is opposite to that of the toroidal current there, i.e. the same direction as electrons. After the plasma enters to the resistive decay phase, the toroidal flow tends to reverse to the same direction as the toroidal current. The results are consistent with the model of the repetitive plasmoid ejection and coalescence proposed for CHI-CD. The plasma jet emanating from the gun source and magnetic field generations through reconnection during the driven phase is well reflected in the 3D MHD simulation.
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2009-11-01
Recently, the intermittent plasma flow has been observed to be correlated with the fluctuations of the toroidal current It and n=1 mode in the HIST spherical torus device. During the partially driven phase mixed with a resistive decay, the toroidal ion flow velocity (˜ 40 km/s) in the opposite direction of It is driven in the central open flux region, and the oscillations in n=1 mode occur there, while during the resistive decay phase, this flow velocity reverses and results in the same as that of It, and the oscillations in n=1 mode disappear there. The purpose of the present study is to investigate the plasma flow reversal process and the relevant MHD relaxation by using the 3-D nonlinear MHD simulations. The numerical results exhibit that during the driven phase, the toroidal flow velocity (˜ 37 km/s) is in the opposite direction to It, but in the same direction as the ExB rotation induced by an applied voltage. This flow is driven by the magnetic reconnection occurring at the X-point during the repetitive process of the non-axisymmetric magnetized plasmoid ejection from the helicity injector. The oscillations of poloidal flux ψp are out of phase with those of toroidal flux ψt and magnetic energy for the dominant n=1 mode, indicating the flux conversion from ψt to ψp. The effect of the vacuum toroidal field strength on the plasma dynamics is discussed.
ALMA Observations of Starless Core Substructure in Ophiuchus
NASA Astrophysics Data System (ADS)
Kirk, H.; Dunham, M. M.; Di Francesco, J.; Johnstone, D.; Offner, S. S. R.; Sadavoy, S. I.; Tobin, J. J.; Arce, H. G.; Bourke, T. L.; Mairs, S.; Myers, P. C.; Pineda, J. E.; Schnee, S.; Shirley, Y. L.
2017-04-01
Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of 60 starless and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are > 15\\prime\\prime from the nearest Spitzer young stellar object. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.
INTO THE LAIR: GRAVITATIONAL-WAVE SIGNATURES OF DARK MATTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macedo, Caio F. B.; Cardoso, Vitor; Crispino, Luis C. B.
The nature and properties of dark matter (DM) are both outstanding issues in physics. Besides clustering in halos, the universal character of gravity implies that self-gravitating compact DM configurations-predicted by various models-might be spread throughout the universe. Their astrophysical signature can be used to probe fundamental particle physics, or to test alternative descriptions of compact objects in active galactic nuclei. Here, we discuss the most promising dissection tool of such configurations: the inspiral of a compact stellar-size object and consequent gravitational-wave (GW) emission. The inward motion of this ''test probe'' encodes unique information about the nature of the supermassive configuration.more » When the probe travels through some compact region we show, within a Newtonian approximation, that the quasi-adiabatic inspiral is mainly driven by DM accretion and by dynamical friction, rather than by radiation reaction. When accretion dominates, the frequency and amplitude of the GW signal produced during the latest stages of the inspiral are nearly constant. In the exterior region we study a model in which the inspiral is driven by GW and scalar-wave emission, described at a fully relativistic level. Resonances in the energy flux appear whenever the orbital frequency matches the effective mass of the DM particle, corresponding to the excitation of the central object's quasinormal frequencies. Unexpectedly, these resonances can lead to large dephasing with respect to standard inspiral templates, to such an extent as to prevent detection with matched filtering techniques. We discuss some observational consequences of these effects for GW detection.« less
Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment
Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.; ...
2018-03-14
Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less
Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.
Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less
Periastron shifts of stellar orbits near the Galactic Center
NASA Astrophysics Data System (ADS)
Rubilar, G. F.; Eckart, A.
2001-07-01
The presence of a 2.9+/-0.4 million solar mass object in the central stellar cluster of the Milky Way has recently been demonstrated via measurements of the stellar proper motions and radial velocities. This mass is located at the position of the compact radio source Sagittarius A* (Sgr A*) at a distance of Ro=8.0 kpc and is most likely present in the form of a massive black hole (BH). Some of the stars have a projected distance to Sgr A* of <=0.005 pc and have proper motion velocities of up to 1400 km s-1. Recent measurements indicate that their orbits show significant curvatures indicating that the stars indeed orbit the central compact object. Detailed measurements of the stellar orbits close to Sgr A* will allow us to precisely determine the distribution of this mass. With an increased point source sensitivity due to the combination of large telescope apertures, adaptive optics, and - in the very near future - NIR interferometry it is likely that stars with orbital time scales of the order of one year will be detected. Theses sources, however, will most likely not be on simple Keplerian orbits. The effects of measurable prograde relativistic and retrograde Newtonian periastron shifts will result in rosetta shaped orbits. A substantial Newtonian periastron rotation can already be expected if only a few percent of the central mass are extended. We discuss the conditions under which an extended mass can (over-) compensate the relativistic periastron shift. We also demonstrate that measuring a single periastron shift is not sufficient to determine the distribution of an extended mass component. A periastron shift will allow us to determine the inclination of the stellar orbits and to derive inclination corrected shift values. These have to be acquired for three stars on orbits with different energy or angular momentum in order to unambiguously solve for the compactness, extent and shape of any extended mass contribution.
General-relativistic rotation: Self-gravitating fluid tori in motion around black holes
NASA Astrophysics Data System (ADS)
Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał
2018-05-01
We obtain from the first principles a general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. This is an extension of a former rotation law that was designed mainly for toroids around spinless black holes. We integrate numerically axial stationary Einstein equations with self-gravitating disks around spinless or spinning black holes; that includes the first ever integration of the Keplerian selfgravitating tori. This construction can be used for the description of tight black hole-torus systems produced during coalescences of two neutron stars or modelling of compact active galactic nuclei.
Observations of Macroscopic Shocks in the Laboratory
NASA Astrophysics Data System (ADS)
Endrizzi, Douglass; Laufman-Wollitzer, Lauren; Clark, Mike; Olson, Joseph; Myers, Rachel; Forest, Cary; Gota, Hiroshi; WiPAL Team; Tri Alpha Energy Team
2016-10-01
A magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy has been installed on the Wisconsin Plasma Astrophysics Lab (WiPAL) vacuum vessel. The MCPG fires a dense (1018m-3) and warm (10-30 eV) compact toroid (CT) at speeds of order 100 km/s. The CT is characterized using B magnetic diagnostics, multi-tip temperature probes, Ion saturation density probes, and a fast Phantom camera. The CT is injected into vacuum field, neutral gas, and plasmas of various beta. Results and evidence for propagating shocks will be presented. This work supported the NSF GRFP under Grant No. DGE-1256259.
Can mixed star-plus-wormhole systems mimic black holes?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard
We consider mixed strongly gravitating configurations consisting of a wormhole threaded by two types of ordinary matter. For such systems, the possibility of obtaining static spherically symmetric solutions describing compact massive central objects enclosed by high-redshift surfaces (black-hole-like configurations) is studied. Using the standard thin accretion disk model, we exhibit potentially observable differences allowing to distinguish the mixed systems from ordinary black holes with the same masses.
NASA Astrophysics Data System (ADS)
Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin
2018-05-01
An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.
NASA Astrophysics Data System (ADS)
Moriyama, S.; Kajiwara, K.; Takahashi, K.; Kasugai, A.; Seki, M.; Ikeda, Y.; Fujii, T.
2005-11-01
A compact antenna system was designed and fabricated to enable millimeter-wave beam scanning in the toroidal and poloidal directions of the JT-60U tokamak for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) experiments. The antenna consists of a fast movable flat mirror mounted on the tokamak vacuum vessel and a rotary focusing mirror attached at the end of the waveguide that is supported from outside the vacuum vessel. This separate support concept enables a compact structure inside a shallow port (0.68×0.54×0.2m) that is shared with a subport for an independent diagnostic system. During a plasma shot, the flat mirror is driven by a servomotor with a 3-m-long drive shaft to reduce the influence of the high magnetic field on the motor. The focusing mirror is rotated by a simple mechanism utilizing a push rod and an air cylinder. The antenna has been operated reliably for 3 years after a small improvement to the rotary drive mechanism. It has made significant contributions to ECH and ECCD experiments, especially the current profile control in JT-60U.
Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT.
Liu, L J; Yu, K X; Zhang, M; Zhuang, G; Li, X; Yuan, T; Rao, B; Zhao, Q
2016-01-01
In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distribution of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.
HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.
Bailey, H. Sterling; Chomyszak, Stephen M.
2007-01-16
The invention provides a toroidal intersecting vane machine incorporating intersecting rotors to form primary and secondary chambers whose porting configurations minimize friction and maximize efficiency. Specifically, it is an object of the invention to provide a toroidal intersecting vane machine that greatly reduces the frictional losses through meshing surfaces without the need for external gearing by modifying the function of one or the other of the rotors from that of "fluid moving" to that of "valving" thereby reducing the pressure loads and associated inefficiencies at the interface of the meshing surfaces. The inventions described herein relate to these improvements.
Compact hybrid optoelectrical unit for image processing and recognition
NASA Astrophysics Data System (ADS)
Cheng, Gang; Jin, Guofan; Wu, Minxian; Liu, Haisong; He, Qingsheng; Yuan, ShiFu
1998-07-01
In this paper a compact opto-electric unit (CHOEU) for digital image processing and recognition is proposed. The central part of CHOEU is an incoherent optical correlator, which is realized with a SHARP QA-1200 8.4 inch active matrix TFT liquid crystal display panel which is used as two real-time spatial light modulators for both the input image and reference template. CHOEU can do two main processing works. One is digital filtering; the other is object matching. Using CHOEU an edge-detection operator is realized to extract the edges from the input images. Then the reprocessed images are sent into the object recognition unit for identifying the important targets. A novel template- matching method is proposed for gray-tome image recognition. A positive and negative cycle-encoding method is introduced to realize the absolute difference measurement pixel- matching on a correlator structure simply. The system has god fault-tolerance ability for rotation distortion, Gaussian noise disturbance or information losing. The experiments are given at the end of this paper.
NASA Astrophysics Data System (ADS)
Stoate, Chris
2017-04-01
We use a 3,000 ha BACI experiment on clay soils in central England as a focus for exploring synergies between Water Framework Directive targets for water quality (sediment, nutrients and pesticides) and crop production objectives of farm businesses. Based on base of catchment annual sediment loads, we estimate annual soil loss from farmland to be in the order of 0.3 - 0.6 tonnes per hectare. This has impacts on aquatic ecology, reservoir storage capacity and downstream flood risk through sedimentation of drainage channels. Soil loss is relatively low in a European context but reflects poorly functioning soils with high runoff risk, and poor crop performance due to compaction, low organic matter, waterlogging, and competition from the grass weed, blackgrass (Alopecuris alopoides). We use a range of mechanisms to increase farmers' awareness, understanding and motivation for improving soil management to meet multiple public and private benefits of soil function and present results for soil organic matter testing, earthworm surveying, and horizontal and vertical soil compaction mapping.
MHD simulation of relaxation transition to a flipped relaxed state in spherical torus
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2008-11-01
Recently, it has been demonstrated in the HIST device that in spite of the violation of the Kruskal-Shafranov stability condition, a normal spherical torus (ST) plasma has relaxed to a flipped ST state through a transient reversed-field pinch-like state when the vacuum toroidal field is decreased and its direction is reversed [1]. It has been also observed during this relaxation transition process that not only the toroidal field but also the poloidal field reverses polarity spontaneously and that the ion flow velocity is strongly fluctuated and abruptly increased up to > 50 km/s. The purpose of the present study is to investigate the plasma flows and the relevant MHD relaxation phenomena to elucidate this transition mechanism by using three-dimensional MHD simulations [2]. It is found from the numerical results that the magnetic reconnection between the open and closed field lines occurs due to the non-linear growth of the n=1 kink instability of the central open flux, generating the toroidal flow ˜ 60 km/s in the direction of the toroidal current. The n=1 kink instability and the plasma flows driven by the magnetic reconnection are consider to be responsible for the self-reversal of the magnetic fields. [1] M. Nagata el al., Phys. Rev. Lett. 90, 225001 (2003). [2] Y. Kagei el al., Plasma. Phys. Control. Fusion 45, L17 (2003).
Preliminary Experiment of Non-Inductive Plasma Current Startup in SUNIST Spherical Tokamak
NASA Astrophysics Data System (ADS)
He, Yexi; Zhang, Liang; Xie, Lifeng; Tang, Yi; Yang, Xuanzong; Feng, Chunhua; Fu, Hongjun
2006-01-01
The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.
Poloidal velocity of impurity ions in neoclassical theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S. K.; Chan, V. S.; Solomon, W. M.
A formula for the poloidal velocity of impurity ions in a two-species plasma is derived from neoclassical theory in the banana regime, with corrections from the boundary layer separating the trapped and transiting ions. The formula is applicable to plasmas with toroidal rotations that can approach the thermal speeds of the ions. Using the formula to determine the poloidal velocity of C{sup +6} ions in a recently reported experiment [W. M. Solomon et al., Phys. Plasmas 13, 056116 (2006)] leads to agreement in the direction of the central region when it is otherwise from theories without strong toroidal rotations. Comparisonsmore » among these theories are made, demonstrating the degree of uncertainty of theoretical predictions.« less
Eisenstein Series and String Thresholds
NASA Astrophysics Data System (ADS)
Obers, N. A.; Pioline, B.
We investigate the relevance of Eisenstein series for representing certain G()-invariant string theory amplitudes which receive corrections from BPS states only. G() may stand for any of the mapping class, T-duality and U-duality groups Sl(d,(), SO(d,d,() or Ed+1(d+1)(() respectively. Using G()-invariant mass formulae, we construct invariant modular functions on the symmetric space K\\G() of non-compact type, with K the maximal compact subgroup of G(), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincaré upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one- and g-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R4 and R4H4g-4 couplings in toroidal compactifications of M-theory to any dimension D>= 4 and D>= 6 respectively.
Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system
NASA Astrophysics Data System (ADS)
McIntyre, Michael; Kessinger, Robert; Young, Maegan; Latham, Joseph; Unnikannan, Krishnanunni
2012-02-01
The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.
Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system
NASA Astrophysics Data System (ADS)
Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph
2012-03-01
The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence
NASA Astrophysics Data System (ADS)
Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence.
Krishnendu, N V; Arun, K G; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L. J.; Yu, K. X.; Zhang, M., E-mail: zhangming@hust.edu.cn
2016-01-15
In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distributionmore » of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.« less
Soft x-ray pinhole imaging diagnostics for compact toroid plasmas
NASA Astrophysics Data System (ADS)
Crawford, E. A.; Taggart, D. P.; Bailey, A. D., III
1990-10-01
Soft x-ray pinhole imaging has recently become established as a valuable diagnostic for visualization of field reversed configuration (FRC) plasmas in the TRX-2, FRX-C/LSM devices. Gated MCP image converter devices with CsI cathodes and Be filters with a peak response around 11 nm wavelength are used for exposure durations ranging from a few tenths up to several microseconds. Results of experiments with single and Chevron channel plates are discussed along with estimates of linear exposure limitations with both film and CCD cameras as recording media. Plans for multiframe devices on the FRX-C/LSM and the LSX devices are also discussed.
PAH Formation in O-rich Evolved Stars
NASA Astrophysics Data System (ADS)
Guzman-Ramirez, L.; Lagadec, E.; Jones, D.; Zijlstra, A. A.; Gesicki, K.
2015-08-01
Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich planetary nebulae. This combination of oxygen-rich and carbon-rich material, known as dual-dust or mixed chemistry, is not expected to be seen around these objects. We recently proposed that PAHs could be formed from the photodissociation of CO in dense tori. Using VISIR/VLT, we spatially resolved the emission of the PAH bands and ionised emission from the [S IV] line, confirming the presence of dense central tori in all the observed O-rich objects. Furthermore, we show that for most of the objects, PAHs are located at the outer edge of these dense/compact tori, while the ionised material is mostly present in the inner parts, consistent with our hypothesis for the formation of PAHs in these systems. The presence of a dense torus has been strongly associated with the action of a central binary star and, as such, the rich chemistry seen in these regions may also be related to the formation of exoplanets in post-common-envelope binary systems.
Solar Imaging UV/EUV Spectrometers Using TVLS Gratings
NASA Astrophysics Data System (ADS)
Thomas, R. J.
2003-05-01
It is a particular challenge to develop a stigmatic spectrograph for UV/EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.
Coherence Imaging Measurements of Impurity Flow in the CTH and W7-X Experiments
NASA Astrophysics Data System (ADS)
Ennis, D. A.; Allen, N. R.; Hartwell, G. J.; Johnson, C. A.; Maurer, D. A.; Allen, S. L.; Samuell, C. M.; Gradic, D.; Konig, R.; Perseo, V.; W7-X Team
2017-10-01
Measurements of impurity ion emissivity and velocity in the Compact Toroidal Hybrid (CTH) experiment are achieved with a new optical coherence imaging diagnostic. The Coherence Imaging Spectroscopy (CIS) technique uses an imaging interferometer of fixed delay to provide 2D spectral images, making it ideal for investigating the non-axisymmetric geometry of CTH plasmas. Preliminary analysis of C III interferograms indicate a net toroidal flow on the order of 10 km/s during the time of peak current. Bench tests using Zn and Cd light sources reveal that the temperature of the interferometer optics must be controlled to within 0.01°C to limit phase drift resulting in artificially measured flow. A new collaboration between Auburn University and the Max-Planck-Institute for Plasma Physics is underway to develop two new coherence imaging instruments for ion impurity flow measurements in orthogonal directions to investigate the 3D physics of the W7-X island divertor during OP1.2. A continuous wave laser tunable over most of the visible region will be incorporated to provide immediate and accurate calibrations of both CIS systems during plasma operations. Work supported by USDoE Grant DE-FG02-00ER54610.
On the nature of the symbiotic star BF Cygni
NASA Technical Reports Server (NTRS)
Mikolajewska, J.; Mikolajewski, M.; Kenyon, S. J.
1989-01-01
Optical and ultraviolet spectroscopy of the symbiotic binary BF Cyg obtained during 1979-1988 is discussed. This system consists of a low-mass M5 giant filling about 50 percent of its tidal volume and a hot, luminous compact object similar to the central star of a planetary nebula. The binary is embedded in an asymmetric nebula which includes a small, high-density region and an extended region of lower density. The larger nebula is formed by a slow wind ejected by the cool component and ionized by the hot star, while the more compact nebula is material expelled by the hot component in the form of a bipolar wind. The analysis indicates that disk accretion is essential to maintain the nuclear burning shell of the hot star.
The Proper Motion of the Central Compact Object RX J0822-4300 in the Supernova Remnant Puppis A
NASA Technical Reports Server (NTRS)
Becker, Werner; Prinz, Tobias; Winkler, P. Frank; Petre, Robert
2012-01-01
Using the High Resolution Camera (HRC) aboard the Chandra X-ray Observatory, we have re-examined the proper motion of the central compact object RX J0822-4300 in the supernova remnant Puppis A. New data from 2010 August, combined with three archival data sets from as early as 1999 December, provide a baseline of 3886 days (more than 10 1/2 years) to perform the measurement. Correlating the four positions of RX J0822-4300 measured in each data set implies a projected proper motion of mu = 71 +/- 12 mas/yr. For a distance of 2 kpc this proper motion is equivalent to a recoil velocity of 672 +/- 115 km/s. The position angle is found to be 244 +/- 11 degrees. Both the magnitude and direction of the proper motion are in agreement with RX J0822-4300 originating near the optical expansion center of the supernova remnant. For a displacement of 371 +/- 31 arcsec between its birth place and today's position we deduce an age of (5.2 +/- 1.0) 10(exp 3) yrs for RX J0822-4300. The age inferred from the neutron star proper motion and filament motions can be considered as two independent measurements of the same quantity. They average to 4450 +/- 750 yrs for the age of the supernova remnant Puppis A.
A Complete Set of Timing Solutions for all Three Anti-Magnetars
NASA Astrophysics Data System (ADS)
Gotthelf, Eric V.; Halpern, J. P.
2013-04-01
We have finally obtained phase-connected coherent timing solutions for all three known pulsars in the class of Central Compact Objects (CCOs) in supernova remnants. These measurements now fully confirm that these young neutron stars have exceptionally weak dipole magnetic field components. Our latest timing campaign of the 424 ms 1E 1207.4-5209 resolves the previous ambiguities about its spin-down rate and results in a Pdot = (2.22 +\\- 0.02)E-17, corresponding to dipole field of Bs = 9.8E10G. This is compatible with a cyclotron resonance interpretation of its prominent absorption line at 0.7 keV and harmonics. We also present results for the 112 ms PSR J0821-4300 in Puppis A. Its proper motion, mu = 61 +/- 9 mas/yr, measured using Chandra, contributes a kinematic term to the period derivative via the Shklovskii effect, which is subtracted from Pdot to derive Bs = 2.9E10 G, a value similar to that of first measured CCO PSR J1852+0040 in Kes 79, which has Bs = 3.1E10 G. Applying the antipodal model to the X-ray spectrum and pulse profiles of PSR J0821-4300, we deduce the surface hot and warm spot temperatures and areas. Paradoxically, such nonuniform surface temperature appears to require strong crustal magnetic fields, probably toroidal or quadrupolar components much stronger than the external dipole. A spectral feature, consisting of either an emission line at approx. 0.75 keV or absorption at approx. 0.46 keV, is modulated in strength with the rotation. It may be due to a cyclotron process in a magnetic field on the surface that is slightly stronger than the dipole deduced from the spin-down. These results deepen the mystery of the origin and evolution of CCOs: why are their numerous descendants not evident?
Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.
1998-01-01
Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost.
Sneed, Michelle
2001-01-01
This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.
NASA Astrophysics Data System (ADS)
Izquierdo, Andrés F.; Galván-Madrid, Roberto; Maud, Luke T.; Hoare, Melvin G.; Johnston, Katharine G.; Keto, Eric R.; Zhang, Qizhou; de Wit, Willem-Jan
2018-05-01
We present a composite model and radiative transfer simulations of the massive star forming core W33A MM1. The model was tailored to reproduce the complex features observed with ALMA at ≈0.2 arcsec resolution in CH3CN and dust emission. The MM1 core is fragmented into six compact sources coexisting within ˜1000 au. In our models, three of these compact sources are better represented as disc-envelope systems around a central (proto)star, two as envelopes with a central object, and one as a pure envelope. The model of the most prominent object (Main) contains the most massive (proto)star (M⋆ ≈ 7 M⊙) and disc+envelope (Mgas ≈ 0.4 M⊙), and is the most luminous (LMain ˜ 104 L⊙). The model discs are small (a few hundred au) for all sources. The composite model shows that the elongated spiral-like feature converging to the MM1 core can be convincingly interpreted as a filamentary accretion flow that feeds the rising stellar system. The kinematics of this filament is reproduced by a parabolic trajectory with focus at the center of mass of the region. Radial collapse and fragmentation within this filament, as well as smaller filamentary flows between pairs of sources are proposed to exist. Our modelling supports an interpretation where what was once considered as a single massive star with a ˜103 au disc and envelope, is instead a forming stellar association which appears to be virialized and to form several low-mass stars per high-mass object.
Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shangyun; Chen, Songbai; Jing, Jiliang, E-mail: shangyun_wang@163.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn
Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case ofmore » the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.« less
Distribution of compact object mergers around galaxies
NASA Astrophysics Data System (ADS)
Bulik, T.; Belczyński, K.; Zbijewski, W.
1999-09-01
Compact object mergers are one of the favoured models of gamma ray bursts (GRB). Using a binary population synthesis code we calculate properties of the population of compact object binaries; e.g. lifetimes and velocities. We then propagate them in galactic potentials and find their distribution in relation to the host.
Parameter exploration for a Compact Advanced Tokamak DEMO
NASA Astrophysics Data System (ADS)
Weisberg, D. B.; Buttery, R. J.; Ferron, J. R.; Garofalo, A. M.; Snyder, P. B.; Turnbull, A. D.; Holcomb, C. T.; McClenaghan, J.; Canik, J.; Park, J.-M.
2017-10-01
A new parameter study has explored a range of design points to assess the physics feasibility for a compact 200MWe advanced tokamak DEMO that combines high beta (βN < 4) and high toroidal field (BT = 6 - 7 T). A unique aspect of this study is the use of a FASTRAN modeling suite that combines integrated transport, pedestal, stability, and heating & current drive calculations to predict steady-state solutions with neutral beam and helicon powered current drive. This study has identified a range of design solutions in a compact (R0 = 4 m), high-field (BT = 6 - 7 T), strongly-shaped (κ = 2 , δ = 0.6) device. Unlike previous proposals, C-AT DEMO takes advantage of high-beta operation as well as emerging advances in magnet technology to demonstrate net electric production in a moderately sized machine. We present results showing that the large bootstrap fraction and low recirculating power enabled by high normalized beta can achieve tolerable heat and neutron load with good H-mode access. The prediction of operating points with simultaneously achieved high-confinement (H98 < 1.3), high-density (fGW < 1.3), and high-beta warrants additional assessment of this approach towards a cost-attractive DEMO device. Work supported by the US DOE under DE-FC02-04ER54698.
The magnetic toroidal sector: a broad-band electron-positron pair spectrometer
NASA Astrophysics Data System (ADS)
Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Litvinov, Yuri; Spillmann, Uwe
2016-05-01
At the future relativistic storage-ring HESR at FAIR the study of electron-positron pairs from non-nuclear, atomic processes will be one of the goals of the experimental program with kinematically complete experiments focusing on momentum spectroscopy of coincident emission of electrons and positrons from free-free pairs and corresponding recoil ions. The underlying production mechanisms belong to central topics of QED in strong fields. We present first results on the electron-optical properties of a magnetic toroidal sector configuration enabling coincident detection of free-free electron-positron pairs; this spectrometer is suitable for implementation into a storage ring with a supersonic jet target and covering a wide range of lepton emission into the forward hemisphere. The simulation calculations are performed using the OPERA code.
Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole
NASA Astrophysics Data System (ADS)
Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk
2016-07-01
Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.
Sh2-138: physical environment around a small cluster of massive stars
NASA Astrophysics Data System (ADS)
Baug, T.; Ojha, D. K.; Dewangan, L. K.; Ninan, J. P.; Bhatt, B. C.; Ghosh, S. K.; Mallick, K. K.
2015-12-01
We present a multiwavelength study of the Sh2-138, a Galactic compact H II region. The data comprise of optical and near-infrared (NIR) photometric and spectroscopic observations from the 2-m Himalayan Chandra Telescope, radio observations from the Giant Metrewave Radio Telescope (GMRT), and archival data covering radio through NIR wavelengths. A total of 10 Class I and 54 Class II young stellar objects (YSOs) are identified in a 4.6 arcmin×4.6 arcmin area of the Sh2-138 region. Five compact ionized clumps, with four lacking of any optical or NIR counterparts, are identified using the 1280 MHz radio map, and correspond to sources with spectral type earlier than B0.5. Free-free emission spectral energy distribution fitting of the central compact H II region yields an electron density of ˜2250 ± 400 cm-3. With the aid of a wide range of spectra, from 0.5-15 μm, the central brightest source - previously hypothesized to be the main ionizing source - is characterized as a Herbig Be type star. At large scale (15 arcmin ×15 arcmin), the Herschel images (70-500 μm) and the nearest neighbour analysis of YSOs suggest the formation of an isolated cluster at the junction of filaments. Furthermore, using a greybody fit to the dust spectrum, the cluster is found to be associated with the highest column density (˜3 × 1022 cm-2) and high temperature (˜35 K) regime, as well as with the radio continuum emission. The mass of the central clump seen in the column density map is estimated to be ˜3770 M⊙.
Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan
2010-06-07
Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarus, E; Peng, Yueng Kay Martin
Oak Ridge National Laboratory (ORNL) proposes to build the Spherical Torus Experiment (STX), a very low aspect ratio toroidal confinement device. This proposal concentrates on tokamak operation of the experiment; however, it can in principle be operated as a pinch or reversed-field pinch as well. As a tokamak, the spherical torus confines a plasma that is characterized by high toroidal beta, low poloidal beta, large natural elongation, high plasma current for a given edge q, and strong paramagnetism. These features combine to offer the possibility of a compact, low-field fusion device. The figure below shows that when compared to amore » conventional tokamak the spherical torus represents a major change in geometry. The primary goals of the experiment will be to demonstrate a capability for high beta (20%) in the first stability regime, to extend our knowledge of tokamak confinement scaling, and to test oscillating-field current drive. The experiment will operate in the high-beta, collisionless regime, which is achieved in STX at low temperatures because of the geometry. At a minimum, operation of STX will help to resolve fundamental questions regarding the scaling of beta and confinement in tokamaks. Complete success in this program would have a significant impact on toroidal fusion research in that it would demonstrate solutions to the problems of beta and steady-state operation in the tokamak. The proposed device has a major radius of 0.45 m, a toroidai field of 0.5 T, a plasma current of 900 kA, and heating by neutral beam injection. We estimate 30 months for design, construction, and assembly. The budget estimate, including contingency and escalation, is $6.8 million.« less
Tokamak with mechanical compression of toroidal magnetic field
Ohkawa, Tihiro
1981-01-01
A tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A collapsible toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. A toroidal magnetic field is developed within the toroidal space about the major axis thereof. A toroidal plasma is developed within the toroidal space about the major axis thereof. Pressure is applied to the liquid metal to collapse the liner and reduce the volume of the toroidal space, thereby increasing the toroidal magnetic flux density therein.
Magnetic field, reconnection, and particle acceleration in extragalactic jets
NASA Technical Reports Server (NTRS)
Romanova, M. M.; Lovelace, R. V. E.
1992-01-01
Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.
Resistive magnetohydrodynamics with toroidal rotation in toroidal plasmas
NASA Astrophysics Data System (ADS)
Cao, Jintao; Cai, Huishan
2018-01-01
Toroidal rotation has always existed in tokamak plasmas, and its Mach number can reach unity during neutral beam injection. Toroidal rotation can affect plasma equilibrium and magnetohydrodynamic instabilities significantly. Based on linearized equations including the toroidal rotation effect, the toroidal model derived by Glasser et al. [Phys. Fluids 18, 875 (1975)] is extended to include this effect, and a set of resistive equations including the toroidal rotation effect in the axi-symmetry toroidal geometry is derived. Based on these derived equations, the effect of toroidal rotation on tearing modes is considered, and the growth rate of tearing modes is obtained analytically. It is shown that the effect of toroidal rotation on tearing modes depends on both the direction of toroidal rotation flow and the sign of toroidal rotation flow shear. When they have the same sign, they play a role in stabilizing tearing modes, while when they have opposite signs, they have a destabilizing effect on tearing modes.
The great galactic centre mystery
NASA Technical Reports Server (NTRS)
Riegler, G. R.
1982-01-01
Gamma-ray observations of the center of the Galaxy show a varying positron-electron annihilation radiation emission, while at radio wavelengths a non-thermal compact source surrounded by ionized gas moving at high velocities can be seen. Line emission maps for atomic and ionized hydrogen and molecular gas suggest gas expulsion and a massive collapsed object. IR observations show that ionized gas in the central few parsecs of the Galactic center is concentrated in at least 14 small clouds. Charge-coupled device images show a pair of faint, very red sources within a few arc seconds of IRS 16 and the compact non-thermal radio source. The positron-electron annihilation line emission implies an annihilation rate of 10 to the 43rd per sec, compared with an observed luminosity at IR wavelengths of 10 to the 40 erg per sec. Some models are briefly discussed.
On-Chip Optical Nonreciprocity Using an Active Microcavity
Jiang, Xiaoshun; Yang, Chao; Wu, Hongya; Hua, Shiyue; Chang, Long; Ding, Yang; Hua, Qian; Xiao, Min
2016-01-01
Optically nonreciprocal devices provide critical functionalities such as light isolation and circulation in integrated photonic circuits for optical communications and information processing, but have been difficult to achieve. By exploring gain-saturation nonlinearity, we demonstrate on-chip optical nonreciprocity with excellent isolation performance within telecommunication wavelengths using only one toroid microcavity. Compatible with current complementary metal-oxide-semiconductor process, our compact and simple scheme works for a very wide range of input power levels from ~10 microwatts down to ~10 nanowatts, and exhibits remarkable properties of one-way light transport with sufficiently low insertion loss. These superior features make our device become a promising critical building block indispensable for future integrated nanophotonic networks. PMID:27958356
Toroid Joining Gun For Fittings And Couplings
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Buckley, John D.; Copeland, Carl E.; Coultrip, Robert H.; Johnston, David F.; Phillips, William M.
1992-01-01
Hand-held gun used to join metal heat-to-shrink couplings. Uses magnetic induction (eddy currents) to produce heat in metal coupling, and thermocouple to measure temperature and signals end of process. Gun, called "toroid joining gun" concentrates high levels of heat in localized areas. Reconfigured for use on metal heat-to-shrink fitting and coupling applications. Provides rapid heating, operates on low power, lightweight and portable. Safe for use around aircraft fuel and has no detrimental effects on surrounding surfaces or objects. Reliable in any environment and under all weather conditions. Gun logical device for taking full advantage of capabilities of new metal heat-to-shrink couplings and fittings.
Gallyamov, Marat O; Mourran, Ahmed; Tartsch, Bernd; Vinokur, Rostislav A; Nikitin, Lev N; Khokhlov, Alexei R; Schaumburg, Kjeld; Möller, Martin
2006-06-14
Toroidal self-assembled structures of perfluorododecylnonadecane and perfluorotetradecyloctadecane have been deposited on mica and highly oriented pyrolytic graphite surfaces by exposure of the substrates to solutions of the (pefluoroalkyl)alkanes in supercritical carbon dioxide. Scanning force microscopy (SFM) images have displayed a high degree of regularity of these self-assembled nanoobjects regarding size, shape, and packing in a monolayer. Analysis of SFM images allowed us to estimate that each toroidal domain has an outer diameter of about 50 nm and consists of several thousands of molecules. We propose a simple model explaining the clustering of the molecules to objects with a finite size. The model based on the close-packing principles predicts formation of toroids, whose size is determined by the molecular geometry. Here, we consider the amphiphilic nature of the (perfluoroalkyl)alkane molecules in combination with incommensurable packing parameters of the alkyl- and the perfluoralkyl-segments to be a key factor for such a self-assembly.
Tokamak with liquid metal toroidal field coil
Ohkawa, Tihiro; Schaffer, Michael J.
1981-01-01
Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.
Non-nebular Origin of Dark Mantles Around Chondrules and Inclusions in CM Chondrites
NASA Technical Reports Server (NTRS)
Trigo-Rodriquez, Josep M.; Rubin, Alan E.; Wasson, John T.
2006-01-01
Our examination of nine CM chondrites that span the aqueous alteration sequence leads us to conclude that compact dark fine mantles surrounding chondrules and inclusions in CM chondrites are not discrete fine-grained rims acquired in the solar nebula as modeled by Metzler et al. [Accretionary dust mantles in CM chondrites: evidence for solar nebula processes. Geochim. Cosmochim. Acta 56, 1992, 2873-28971. Nebular processes that lead to agglomeration produce materials with porosities far higher than those in the dark mantles. We infer that the mantles were produced from porous nebular materials on the CM parent asteroid by impact-compaction (a process that produces the lowest porosity adjacent to chondrules and inclusions). Compaction was followed by aqueous alteration that formed tochilinite, serpentine, Ni-bearing sulfide, and other secondary products in voids in the interchondrule regions. Metzler et al. reported a correlation between mantle thickness and the radius of the enclosed object. In Yamato 791 198 we find no correlation when all sizes of central objects and dark lumps are included but a significant correlation (r(sup 2) = 0.44) if we limit consideration to central objects with radii >35 microns; a moderate correlation is also found in QUE 97990. We suggest that impact-induced shear of a plum-pudding-like precursor produced the observed "mantles"; these were shielded from comminution during impact events by the adjacent stronger chondrules and inclusions. Some mantles in CM chondrites with low degrees of alteration show distinct layers that may largely reflect differences in porosity. Typically, a gray, uniform inner layer is surrounded by an outer layer consisting of darker silicates with BSE-bright speckles. The CM-chondrite objects characterized as "primary accretionary rocks" by Metzler et al. did not form in the nebula, but rather on the parent body. The absence of solar-flare particle tracks and solar-wind-implanted rare gases in these clasts reflect their lithified nature and low surface/volume ratios during the period when they resided in the regolith and were subject to irradiation by solar particles. The clasts are analogous to the light-colored metamorphosed clasts in ordinary-chondrite regolith breccias (which also lack solar-flare particle tracks and solar-wind gas).
Equilibrium location for spherical DNA and toroidal cyclodextrin
NASA Astrophysics Data System (ADS)
Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.
2018-05-01
Cyclodextrin comprises a ring structure composed of glucose molecules with an ability to form complexes of certain substances within its central cavity. The compound can be utilised for various applications including food, textiles, cosmetics, pharmaceutics, and gene delivery. In gene transfer, the possibility of forming complexes depends upon the interaction energy between cyclodextrin and DNA molecules which here are modelled as a torus and a sphere, respectively. Our proposed model is derived using the continuum approximation together with the Lennard-Jones potential, and the total interaction energy is obtained by integrating over both the spherical and toroidal surfaces. The results suggest that the DNA prefers to be symmetrically situated about 1.2 Å above the centre of the cyclodextrin to minimise its energy. Furthermore, an optimal configuration can be determined for any given size of torus and sphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Z.; Nazikian, R.; Fu, G.Y.
1997-02-01
Alpha-driven toroidal Alfven eigenmodes (TAEs) are observed as predicted by theory in the post neutral beam phase in high central q (safety factor) deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR). The mode location, poloidal structure and the importance of q profile for TAE instability are discussed. So far no alpha particle loss due to these modes was detected due to the small mode amplitude. However, alpha loss induced by kinetic ballooning modes (KBMs) was observed in high confinement D-T discharges. Particle orbit simulation demonstrates that the wave-particle resonant interaction can explain the observed correlation between the increasemore » in alpha loss and appearance of multiple high-n (n {ge} 6, n is the toroidal mode number) modes.« less
MAGNETAR-LIKE ACTIVITY FROM THE CENTRAL COMPACT OBJECT IN THE SNR RCW103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rea, N.; Borghese, A.; Esposito, P.
2016-09-01
The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the supernova remnant RCW 103, named 1E 161348–5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star (NS) or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) on board Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348–5055, also coincident with a large long-term X-ray outburst. Here, we report on Chandra , Nuclear Spectroscopic Telescope Array , and Swift (BAT and XRT) observations of this peculiar sourcemore » during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to 2016 July). We find the emission properties of 1E 161348–5055 consistent with it being a magnetar. However, in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized NS, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the “anti-magnetar” scenario for other CCOs.« less
NASA Astrophysics Data System (ADS)
Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration
2013-10-01
A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.
Whole Device Modeling of Compact Tori: Stability and Transport Modeling of C-2W
NASA Astrophysics Data System (ADS)
Dettrick, Sean; Fulton, Daniel; Lau, Calvin; Lin, Zhihong; Ceccherini, Francesco; Galeotti, Laura; Gupta, Sangeeta; Onofri, Marco; Tajima, Toshiki; TAE Team
2017-10-01
Recent experimental evidence from the C-2U FRC experiment shows that the confinement of energy improves with inverse collisionality, similar to other high beta toroidal devices, NSTX and MAST. This motivated the construction of a new FRC experiment, C-2W, to study the energy confinement scaling at higher electron temperature. Tri Alpha Energy is working towards catalysing a community-wide collaboration to develop a Whole Device Model (WDM) of Compact Tori. One application of the WDM is the study of stability and transport properties of C-2W using two particle-in-cell codes, ANC and FPIC. These codes can be used to find new stable operating points, and to make predictions of the turbulent transport at those points. They will be used in collaboration with the C-2W experimental program to validate the codes against C-2W, mitigate experimental risk inherent in the exploration of new parameter regimes, accelerate the optimization of experimental operating scenarios, and to find operating points for future FRC reactor designs.
Magnetic Properties of Amorphous Fe-Si-B Powder Cores Mixed with Pure Iron Powder
NASA Astrophysics Data System (ADS)
Kim, Hyeon-Jun; Nam, Seul Ki; Kim, Kyu-Sung; Yoon, Sung Chun; Sohn, Keun-Yong; Kim, Mi-Rae; Sul Song, Yong; Park, Won-Wook
2012-10-01
Amorphous Fe-Si-B alloy was prepared by melt-spinning, and then the ribbons were pulverized and ball-milled to make the amorphous powder of ˜25 µm in size. Subsequently those were mixed with pure iron powders with an average particle size of 3 µm, and 1.5 wt % water glass diluted by distilled water at the ratio of 1:2. The powder mixtures were cold compacted at 650 MPa in toroid die, and heat treated at 430-440 °C under a nitrogen atmosphere for 1 h and 30 min, respectively. The soft magnetic properties of powder core were investigated using a B-H analyzer and a flux meter at the frequency range of ˜100 kHz. The microstructure was observed using scanning electron microscope (SEM), and the density of the core was measured using the principle of Archimedes. Based on the experimental results, the amorphous powder mixed with pure iron powder showed the improved powder compactability, which resulted in the increased permeability and the reduced core loss.
The pseudo-symmetric optimization of the National Compact Stellarator Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaev, M.Y.; Mikhailov, M.I.; Monticello, D.A.
1999-08-01
A new experiment, the National Compact Stellarator Experiment (NCSX) [Monticello {ital et al.} {open_quotes}Physics Consideration for the Design of NCSX,{close_quotes} {ital Proceedings of 25th EPS Conference on Controlled Fusion and Plasma Physics, Prague, 1998} (European Physical Society, Petit-Lancy), paper 1.187], hopes to overcome the deleterious ripple transport usually associated with stellarators by creating a quasi-axisymmetric configuration. A quasi-axisymmetric configuration is one in which the Fourier spectrum of the magnetic field strength in so-called Boozer coordinates is dominated by the toroidal angle averaged (n=0) components. In this article the concept of pseudosymmetry is used to improve ripple transport in a four-periodmore » variant of NCSX. By definition, pseudosymmetric magnetic configurations have no locally trapped particles. To obtain a pseudosymmetric configuration, different target functions are considered. It is found that a target function equal to the area of ripple of the magnetic field magnitude along the field line is very effective in reducing the neoclassical transport coefficient. {copyright} {ital 1999 American Institute of Physics.}« less
A supermassive black hole in an ultra-compact dwarf galaxy.
Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L
2014-09-18
Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.
Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field
Schaffer, Michael J.
1986-01-01
A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2014-10-01
Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the
Results of subscale MTF compression experiments
NASA Astrophysics Data System (ADS)
Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General
2016-10-01
In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.
The Physics of Local Helicity Injection Non-Solenoidal Tokamak Startup
NASA Astrophysics Data System (ADS)
Redd, A. J.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Jardin, S.
2013-10-01
Non-solenoidal startup via Local Helicity Injection (LHI) uses compact current injectors to produce toroidal plasma current Ip up to 170 kA in the PEGASUS Toroidal Experiment, driven by 4-8 kA injector current on timescales of 5-20 milliseconds. Increasing the Ip buildup duration enables experimental demonstration of plasma position control on timescales relevant for high-current startup. LHI-driven discharges exhibit bursty MHD activity, apparently line-tied kinking of LHI-driven field lines, with the bursts correlating with rapid equilibrium changes, sharp Ip rises, and sharp drops in the injector impedance. Preliminary NIMROD results suggest that helical LHI-driven current channels remain coherent, with Ip increases due to reconnection between adjacent helical turns forming axisymmetric plasmoids, and corresponding sharp drops in the bias circuit impedance. The DC injector impedance is consistent with a space charge limit at low bias current and a magnetic limit at high bias current. Internal measurements show the current density profile starts strongly hollow and rapidly fills in during Ip buildup. Simulations of LHI discharges using the Tokamak Simulation Code (TSC) will provide insight into the detailed current drive mechanism and guide experiments on PEFASUS and NSTX-U. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.
Solar Imaging UV/EUV Spectrometers Using TVLS Gratings
NASA Technical Reports Server (NTRS)
Thomas, Roger J.
2003-01-01
It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.
Calculation of Eddy Currents In the CTH Vacuum Vessel and Coil Frame
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Zolfaghari, A. Brooks, A. Michaels, J. Hanson, and G. Hartwell
2012-09-25
Knowledge of eddy currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the eddy currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B ≤ 0.7 T), the primary driver of the eddy currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are usedmore » to calculate eddy current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the eddy currents in the structures. SPARK code was used to calculate the eddy currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the eddy currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. __________________________________________________« less
Novel design methods for magnetic flux loops in the National Compact Stellarator Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomphrey, N.; Lazarus, E.; Zarnstorff, M.
2007-05-15
Magnetic pickup loops on the vacuum vessel (VV) can provide an abundance of equilibrium information for stellarators. A substantial effort has gone into designing flux loops for the National Compact Stellarator Experiment (NCSX) [Zarnstorff et al., Plasma Phys. Controlled Fusion 43, A237 (2001)], a three-field period quasi-axisymmetric stellarator under construction at the Princeton Plasma Physics Laboratory. The design philosophy, to measure all of the magnetic field distributions normal to the VV that can be measured, has necessitated the development of singular value decomposition algorithms for identifying efficient loop locations. Fields are expected to be predominantly stellarator symmetric (SS)--the symmetry ofmore » the machine design--with toroidal mode numbers per torus (n) equal to a multiple of 3 and possessing reflection symmetry in a period. However, plasma instabilities and coil imperfections will generate non-SS fields that must also be diagnosed. The measured symmetric fields will yield important information on the plasma current and pressure profile as well as on the plasma shape. All fields that obey the design symmetries could be measured by placing flux loops in a single half-period of the VV, but accurate resolution of nonsymmetric modes, quantified by the condition number of a matrix, requires repositioning loops to equivalent locations on the full torus. A subarray of loops located along the inside wall of the vertically elongated cross section was designed to detect n=3, m=5 or 6 resonant field perturbations that can cause important islands. Additional subarrays included are continuous in the toroidal and poloidal directions. Loops are also placed at symmetry points of the VV to obtain maximal sensitivity to asymmetric perturbations. Combining results from various calculations which have made extensive use of a database of 2500 free-boundary VMEC equilibria, has led to the choice of 225 flux loops for NCSX, of which 151 have distinct shapes.« less
Development of Toroidal Core Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Leon, Francisco
The original objective of this project was to design, build and test a few prototypes of single-phase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is amore » common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014. The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 kVA transformer passed the impulse test in KEMA high-voltage laboratories. Additional products include: nine papers published in the IEEE Transactions on Power Delivery, one patent has been filed, three PhD students were supported from beginning to graduation, five postdoctoral fellows, and three MSc students were partially supported. The electrical characteristics of our dry-type toroidal transformers are similar to those of the oil-immersed pole mounted transformers currently in use by many utilities, but toroids have higher efficiency. The no-load losses of the 50 kVA prototype are only 45 W. A standard transformer has no-load losses between 90 and 240 W. Thus, even the finest transformer built today with standard technology has double the amount of no-load losses than the prototype toroidal transformer. When the manufacturing process is prepared for mass production, the cost of a dry-type toroidal transformer would be similar to the price of an oil-filed standard design. However, because of the greatly reduced losses, the total ownership cost of a toroidal transformer could be about half of a traditional design. We got a grant from Power Bridge NY in the amount of $149,985 from June 2014 to May 2015 to continue developing the transformer with commercialization objectives. We are considering the possibility to incorporate a company to manufacture the transformers and have contacted investors. The current status of the real life testing is as follows: after several months of silence, Con Edison has re-started conversations and has shown willingness to test the transformer. Other companies, PSE&G and National Grid have recently also shown interest and we will present our product to them soon.« less
NASA Astrophysics Data System (ADS)
Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.
2017-10-01
We use integral field spectroscopic (IFS) observations from the Gemini Multi-Object Spectrograph North (GMOS-N) to study the central H II region in a nearby blue compact dwarf (BCD) galaxy NGC 4449. The IFS data enable us to explore the variation of physical and chemical conditions of the star-forming region and the surrounding gas on spatial scales as small as 5.5 pc. Our kinematical analysis shows possible signatures of shock ionization and shell structures in the surroundings of the star-forming region. The metallicity maps of the region, created using direct Te and indirect strong line methods (R23, O3N2 and N2), do not show any chemical variation. From the integrated spectrum of the central H II region, we find a metallicity of 12 + log(O/H) = 7.88 ± 0.14 ({˜ }0.15^{+0.06}_{-0.04} Z⊙) using the direct method. Comparing the central H II region metallicity derived here with those of H II regions throughout this galaxy from previous studies, we find evidence of increasing metallicity with distance from the central nucleus. Such chemical inhomogeneities can be due to several mechanisms, including gas loss via supernova blowout, galactic winds or metal-poor gas accretion. However, we find that the localized area of decreased metallicity aligns spatially with the peak of star-forming activity in the galaxy, suggesting that gas accretion may be at play here. Spatially resolved IFS data for the entire galaxy are required to confirm the metallicity inhomogeneity found in this study and determine its possible cause.
Jingxin Wang; Chris LeDoux; Michael Vanderberg; Li Yaoxiang
2006-01-01
A preliminary study that quantified the impacts of soil compaction on residual tree growth associated with ground-based skidding traffic intensity and turn payload size was investigated in the central Appalachian hardwood forest. The field study was carried out on a 20-acre tract of the West Virginia University Research Forest. Skid trails were laid out in 170' -...
Increased compactibility of acetames after roll compaction.
Kuntz, Theresia; Schubert, Martin A; Kleinebudde, Peter
2011-01-01
A common technique for manufacturing granules in a continuous way is the combination of roll compaction and subsequent milling. Roll compaction can considerably impact tableting performance of a material. The purpose of this study was to investigate the influence of roll compaction/dry granulation on the compaction behavior of acetames, a class of active pharmaceutical substances, which are mainly used for the treatment of central nervous diseases. Some representatives of acetames were roll compacted and then compressed into tablets. Compactibility of granules was compared with the compaction behavior of the directly compressed drug powders. In contrast to many other materials, the roll compaction step induced an increase in compactibility for all investigated acetames. Specific surface areas of the untreated and the roll compacted drugs were determined by nitrogen adsorption. The raise in compactibility observed was accompanied by an increase in specific surface area during roll compaction. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D.A.; Hirshman, S.P.; Whitson, J.C.
A new class of low aspect ratio toroidal hybrid stellarators is found using more general plasma confinement optimization criterion than quasi-symmetrization. The plasma current profile and shape of the outer magnetic flux surface are used as control variables to achieve near constancy of the longitudinal invariant J* on internal flux surfaces (quasi-omnigeneity), in addition to a number of other desirable physics target properties. We find that a range of compact (small aspect ratio A), high {beta} (ratio of thermal energy to magnetic field energy), low plasma current devices exist which have significantly improved confinement both for thermal as well asmore » energetic (collisionless) particle components. With reasonable increases in magnetic field and geometric size, such devices can also be scaled to confine 3.5 MeV alpha particle orbits.« less
PT-1 Plasmoid Thruster Capable of Multi-Mode Operation
NASA Technical Reports Server (NTRS)
Miller, Robert; Rose, Frank; Eskridge, Richard; Martin, Adam; Alam, Mohammed
2008-01-01
This slide presentation reviews the concept of a Plasmoid Thruster that is capable of operating in several different modes. A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic fields. A plasmoid thruster would operate by repetitively producing plasmoids that are accelerated to high velocity. The process is inductive, and the magnetic structure of the plasmoid suppresses thermal and mass losses, and improves detachment of the exhaust. The Drive and Bias circuits, the gas distribution, the pre-ionization stage, and the operation sequence are detailed. The advantages of the Plasmoid thruster and the research and technology required for development of this form of propulsion is reviewed.
Prototype high resolution multienergy soft x-ray array for NSTX.
Tritz, K; Stutman, D; Delgado-Aparicio, L; Finkenthal, M; Kaita, R; Roquemore, L
2010-10-01
A novel diagnostic design seeks to enhance the capability of multienergy soft x-ray (SXR) detection by using an image intensifier to amplify the signals from a larger set of filtered x-ray profiles. The increased number of profiles and simplified detection system provides a compact diagnostic device for measuring T(e) in addition to contributions from density and impurities. A single-energy prototype system has been implemented on NSTX, comprised of a filtered x-ray pinhole camera, which converts the x-rays to visible light using a CsI:Tl phosphor. SXR profiles have been measured in high performance plasmas at frame rates of up to 10 kHz, and comparisons to the toroidally displaced tangential multi-energy SXR have been made.
Rational-q Triggered Transport Changes With Varying Toroidal Rotation in DIII-D
NASA Astrophysics Data System (ADS)
Austin, M. E.; Burrell, K. H.; Waltz, R. E.; van Zeeland, M. A.; McKee, G. R.; Shafer, M. W.; Rhodes, T. L.
2007-11-01
Comparison of rational-q triggered ITBs in discharges with varying toroidal torque injection was carried out. Experiments were conducted in negative central shear discharges with different mixes of co/counter neutral beam injection (NBI) that altered the equilibrium ExB shear in conditions where transient improvements in transport occur near integer qmin values. The transport changes were seen in high and low rotation cases; however, the latter discharges did not transition to improved core confinement. Observations support the model that sufficient background ExB shear is required for barrier formation and zonal flow effects at integer qmin act as trigger in this case. The lack of TAE modes in the balanced injection cases indicates they are not linked to the transient confinement improvement. Fluctuation data obtained in co and balanced NBI show similar reductions in turbulence near integer qmin as well as poloidal velocity excursions that may be further evidence of zonal flow.
A Survey of Compact Star Clusters in the South-West Field of the M 31 Disk
NASA Astrophysics Data System (ADS)
Kodaira, Keiichi; Vansevičius, Vladas; Bridzius, Audrius; Komiyama, Yutaka; Miyazaki, Satoshi; Stonkute, Rima; Šablevičiutė, Ieva; Narbutis, Donatas
2004-12-01
A survey for compact clusters with a dimension of 10pc order was conducted in an area of about 500 square arc-minutes of the south-west part of the M31 disk, making use of the high-resolution capability of Suprime-Cam. Photometry in the B, V, and R broad-bands, and in the R* medium-band centered around Hα with varying apertures was carried out for about 1200 targets, which are related to about 300 compact objects detected in the survey. The results for 101 prominent compact objects are presented as photometric catalogues and morphological atlases, separately for samples with and without strong Hα emission. Many of the compact objects, which were previously suspected to be globular cluster candidates, are judged to be open clusters based upon their internal structures of sub-arc-second order. The majority of the 49 listed compact non-emission objects, which are restricted to be brighter than MV ˜ -5, have colors of 0 < B - V < 1.0, indicating their nature of massive evolved clusters. In contrast, only about 10% of the 52 listed compact emission objects are brighter than MiV ˜ -5, probably reflecting the short period of the emission phase and the substantial effects of the circum-stellar extinction. The detection of a few candidates of background galaxies is also reported.
Lindenmeyer, Carl W.
1981-01-01
A lower support receives a toroid at a winding station with the axis of the toroid aligned with a slot in the support. An upper guide member applies an axial force to hold the toroid against the lower support. A pair of movable jaws carried by an indexing mechanism engage the outer surface of the toroid to apply a radial holding force. While the toroid is thus held, a wire is placed axially through the toroid, assisted by a funnel-shaped surface in the upper guide member, and is drawn tight about the toroid by a pair of cooperating draw rollers. When operated in the "full cycle" mode, the operator then actuates a switch which energizes a power drive to release the axial clamp and to drive the indexing mechanism and the jaws to rotate the toroid about its axis. At the same time, the wire is ejected from the draw rollers beneath the toroid so that the operator may grasp it to form another loop. When the toroid is fully indexed, the jaws release it, and the upper guide member is returned to clamp the toroid axially while the indexing mechanism is returned to its starting position. The apparatus may also be operated in a "momentary contact" mode in which the mechanism is driven only for the time a switch is actuated.
Tokamak with liquid metal for inducing toroidal electrical field
Ohkawa, Tihiro
1981-01-01
A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.
Electromagnetic toroidal excitations in matter and free space.
Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I
2016-03-01
The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.
Lower bound on the compactness of isotropic ultracompact objects
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-04-01
Horizonless spacetimes describing spatially regular ultracompact objects which, like black-hole spacetimes, possess closed null circular geodesics (light rings) have recently attracted much attention from physicists and mathematicians. In the present paper we raise the following physically intriguing question: how compact is an ultracompact object? Using analytical techniques, we prove that ultracompact isotropic matter configurations with light rings are characterized by the dimensionless lower bound maxr{2 m (r )/r }>7 /12 on their global compactness parameter.
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Hopper, Seth; Macedo, Caio F. B.; Palenzuela, Carlos; Pani, Paolo
2016-10-01
Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the postmerger ringdown waveform of exotic ultracompact objects is initially identical to that of a black hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i) we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes"of the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black hole. This suggests that—in some configurations—the coalescence of compact boson stars might be almost indistinguishable from that of black holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.
Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity.
Zhu, W; Sabbagh, S A; Bell, R E; Bialek, J M; Bell, M G; LeBlanc, B P; Kaye, S M; Levinton, F M; Menard, J E; Shaing, K C; Sontag, A C; Yuh, H
2006-06-09
Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikatendu, Kumar Singh; Zhang, Xuejun; Kinch, Lisa
The protein encoded by the SA1388 gene from Staphylococcus aureus was chosen for structure determination to elucidate its domain organization and confirm our earlier remote homology based prediction that it housed a nitrogen regulatory PII protein-like domain. SA1388 was predicted to contain a central PII-like domain and two flanking regions, which together belong to the NIF3-like protein family. Proteins like SA1388 remain a poorly studied group and their structural characterization could guide future investigations aimed at understanding their function. The structure of SA1388 has been solved to 2.0{angstrom} resolution by single wavelength anomalous dispersion phasing method using selenium anomalous signals.more » It reveals a canonical NIF3-like fold containing two domains with a PII-like domain inserted in the middle of the polypeptide. The N and C terminal halves of the NIF3-like domains are involved in dimerization, while the PII domain forms trimeric contacts with symmetry related monomers. Overall, the NIF3-like domains of SA1388 are organized as a hexameric toroid similar to its homologs, E. coli ybgI and the hypothetical protein SP1609 from Streptococcus pneumoniae. The openings on either side of the toroid are partially covered by trimeric 'lids' formed by the PII domains. The junction of the two NIF3 domains has two zinc ions bound at what appears to be a histidine rich active site. A well-defined electron density corresponding to an endogenously bound ligand of unknown identity is observed in close proximity to the metal site. SA1388 is the third member of the NIF3-like family of proteins to be structurally characterized, the other two also being hypothetical proteins of unknown function. The structure of SA1388 confirms our earlier prediction that the inserted domain that separates the two NIF3 domains adopts a PII-like fold and reveals an overall capped toroidal arrangement for the protein hexamer. The six PII-like domains form two trimeric 'lids' that cap the central cavity of the toroid on either side and provide only small openings to allow regulated entry of small molecules into the occluded chamber. The presence of the electron density of the bound ligand may provide important clues on the likely function of NIF3-like proteins.« less
High-resolution imaging of compact high-velocity clouds
NASA Astrophysics Data System (ADS)
Braun, R.; Burton, W. B.
2000-02-01
Six examples of the compact, isolated H i high-velocity clouds (CHVCs) identified by Braun & Burton (\\cite{brau99}), but only marginally resolved in single-dish data, have been imaged with the Westerbork Synthesis Radio Telescope. The 65 confirmed objects in this class define a dynamically cold system, with a global minimum for the velocity dispersion of only 70 km s-1, found in the Local Group Standard of Rest. The population is in-falling at 100 km s-1 toward the Local Group barycenter. These objects have a characteristic morphology, in which one or more compact cores is embedded in a diffuse halo. The compact cores typically account for 40% of the H i line flux while covering some 15% of the source area. The narrow line width of all core components allows unambiguous identification of these with the cool condensed phase of \\hi , the CNM, with kinetic temperature near 100 K, while the halos appear to represent a shielding column of warm diffuse \\hi , the WNM, with temperature near 8000 K. We detect a core with one of the narrowest H i emission lines ever observed, with intrinsic FWHM of no more than 2 km s-1 and 75 K brightness. From a comparison of column and volume densities for this feature we derive a distance in the range 0.5 to 1 Mpc. We determine a metallicity for this same object of 0.04 to 0.07 solar. Comparably high distances are implied by demanding the stability of objects with multiple cores, which show relative velocities as large as 70 km s-1 on 30 arcmin scales. Many of the compact cores show systematic velocity gradients along the major axis of their elliptical extent which are well-fit by circular rotation in a flattened disk system. Two out of three of the derived rotation curves are well-fit by Navarro, Frenk & White (1997) cold dark matter profiles. These kinematic signatures imply a high dark-to-visible mass ratio of 10-50, for D = 0.7 Mpc, which scales as 1/D. The implied dark matter halos dominate the mass volume density within the central 2 kpc (10 arcmin) of each source, providing a sufficent hydrostatic pressure to allow CNM condensation. The CHVC properties are similar in many respects to those of the Local Group dwarf irregular galaxies, excepting the presence of a high surface brightness stellar population.
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2016-12-01
In recent years, object based image analysis (OBIA) has spread out and become a widely accepted technique for the analysis of remotely sensed data. OBIA deals with grouping pixels into homogenous objects based on spectral, spatial and textural features of contiguous pixels in an image. The first stage of OBIA, named as image segmentation, is the most prominent part of object recognition. In this study, multiresolution segmentation, which is a region-based approach, was employed to construct image objects. In the application of multi-resolution, three parameters, namely shape, compactness and scale must be set by the analyst. Segmentation quality remarkably influences the fidelity of the thematic maps and accordingly the classification accuracy. Therefore, it is of great importance to search and set optimal values for the segmentation parameters. In the literature, main focus has been on the definition of scale parameter, assuming that the effect of shape and compactness parameters is limited in terms of achieved classification accuracy. The aim of this study is to deeply analyze the influence of shape/compactness parameters by varying their values while using the optimal scale parameter determined by the use of Estimation of Scale Parameter (ESP-2) approach. A pansharpened Qickbird-2 image covering Trabzon, Turkey was employed to investigate the objectives of the study. For this purpose, six different combinations of shape/compactness were utilized to make deductions on the behavior of shape and compactness parameters and optimal setting for all parameters as a whole. Objects were assigned to classes using nearest neighbor classifier in all segmentation observations and equal number of pixels was randomly selected to calculate accuracy metrics. The highest overall accuracy (92.3%) was achieved by setting the shape/compactness criteria to 0.3/0.3. The results of this study indicate that shape/compactness parameters can have significant effect on classification accuracy with 4% change in overall accuracy. Also, statistical significance of differences in accuracy was tested using the McNemar's test and found that the difference between poor and optimal setting of shape/compactness parameters was statistically significant, suggesting a search for optimal parameterization instead of default setting.
NASA Astrophysics Data System (ADS)
Xiaoyu, Lai; Renxin, Xu
2017-06-01
The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).
Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang
2012-01-01
Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can generate a corresponding optimal solution, with a different quantity structure and spatial pattern to satisfy the preference of the different decision makers; (7) the model proposed in this paper is capable of handling the land-use zoning problem, and the crossover and mutation operator can improve the performance of the model, but, nevertheless, leads to increased time consumption. PMID:23066398
Topology-preserving quantum deformation with non-numerical parameter
NASA Astrophysics Data System (ADS)
Aukhadiev, Marat; Grigoryan, Suren; Lipacheva, Ekaterina
2013-11-01
We introduce a class of compact quantum semigroups, that we call semigroup deformations of compact Abelian qroups. These objects arise from reduced semigroup -algebras, the generalization of the Toeplitz algebra. We study quantum subgroups, quantum projective spaces and quantum quotient groups for such objects, and show that the group is contained as a compact quantum subgroup in the deformation of itself. The connection with the weak Hopf algebra notion is described. We give a grading on the -algebra of the compact quantum semigroups constructed.
Toroidal current asymmetry in tokamak disruptions
NASA Astrophysics Data System (ADS)
Strauss, H. R.
2014-10-01
It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.
A Multi-Frequency Study of the Milky Way-Like Spiral Galaxy NGC 6744
NASA Astrophysics Data System (ADS)
Yew, Miranda; Filipović, Miroslav D.; Roper, Quentin; Collier, Jordan D.; Crawford, Evan J.; Jarrett, Thomas H.; Tothill, Nicholas F. H.; O'Brien, Andrew N.; Pavlović, Marko Z.; Pannuti, Thomas G.; Galvin, Timothy J.; Kapińska, Anna D.; Cluver, Michelle E.; Banfield, Julie K.; Schlegel, Eric M.; Maxted, Nigel; Grieve, Kevin R.
2018-03-01
We present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Way's central black hole. We classify 5 objects as supernova remnant (SNR) candidates, 2 objects as likely SNRs, 17 as H ii regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8-4.7 M⊙ yr - 1 signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.
Local Helicity Injection Systems for Non-solenoidal Startup in the PEGASUS Toroidal Experiment
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.
2013-10-01
Local helicity injection is being developed in the PEGASUS Toroidal Experiment for non-solenoidal startup in spherical tokamaks. The effective loop voltage due to helicity injection scales with the area of the injectors, requiring the development of electron current injectors with areas much larger than the 2 cm2 plasma arc injectors used to date. Solid and gas-effused metallic electrodes were found to be unusable due to reduced injector area utilization from localized cathode spots and narrow operational regimes. An integrated array of 8 compact plasma arc sources is thus being developed for high current startup. It employs two monolithic power systems, for the plasma arc sources and the bias current extraction system. The array effectively eliminates impurity fueling from plasma-material interaction by incorporating a local scraper-limiter and conical-frustum bias electrodes to mitigate the effects of cathode spots. An energy balance model of helicity injection indicates that the resulting 20 cm2 of total injection area should provide sufficient current drive to reach 0.3 MA. At that level, helicity injection drive exceeds that from poloidal induction, which is the relevant operational regime for large-scale spherical tokamaks. Future placement of the injector array near an expanded boundary divertor region will test simultaneous optimization of helicity drive and the Taylor relaxation current limit. Work supported by US DOE Grant DE-FG02-96ER54375.
NASA Astrophysics Data System (ADS)
Pandya, M. D.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Maurer, D. A.; Roberds, N. A.; Traverso, P. J.
2015-11-01
Low edge safety factor operation at a value less than two ( q (a )=1 /ι̷tot(a )<2 ) is routine on the Compact Toroidal Hybrid device with the addition of sufficient external rotational transform. Presently, the operational space of this current carrying stellarator extends down to q (a )=1.2 without significant n = 1 kink mode activity after the initial plasma current rise phase of the discharge. The disruption dynamics of these low edge safety factor plasmas depend upon the fraction of helical field rotational transform from external stellarator coils to that generated by the plasma current. We observe that with approximately 10% of the total rotational transform supplied by the stellarator coils, low edge q disruptions are passively suppressed and avoided even though q(a) < 2. When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, helical mode numbers of m /n =3 /2 and 4/3 observed on external magnetic sensors and m /n =1 /1 activity observed on core soft x-ray emissivity measurements. Even though the edge safety factor passes through and becomes much less than q(a) < 2, external n = 1 kink mode activity does not appear to play a significant role in the disruption phenomenology observed.
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Inhomogeneous anisotropic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleban, Matthew; Senatore, Leonardo
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Inhomogeneous anisotropic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleban, Matthew; Senatore, Leonardo; Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuationsmore » and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
The progenitors of extended emission gamma-ray bursts
NASA Astrophysics Data System (ADS)
Gompertz, B. P.
2015-06-01
Gamma-ray bursts (GRBs) are the most luminous transient events in the Universe, and as such are associated with some of the most extreme processes in nature. They come in two types: long and short, nominally separated either side of a two second divide in gamma-ray emission duration. The short class (those with durations of less than two seconds) are believed to be due to the merger of two compact objects, most likely neutron stars. Within this population, a small subsection exhibit an apparent extra high-energy emission feature, which rises to prominence several seconds after the initial emission event. These are the extended emission (EE) bursts. This thesis investigates the progenitors of the EE sample, including what drives them, and where they fit in the broader context of short GRBs. The science chapters outline a rigorous test of the magnetar model, in which the compact object merger results in a massive, rapidly-rotating neutron star with an extremely strong magnetic field. The motivation for this central engine is the late-time plateaux seen in some short and EE GRBs, which can be interpreted as energy injection from a long-lived central engine, in this case from the magnetar as it loses angular momentum along open field lines. Chapter 2 addresses the energy budget of such a system, including whether the EE component is consistent with the rotational energy reservoir of a millisecond neutron star, and the implications the model has for the physical properties of the underlying magnetar. Chapter 3 proposes a potential mechanism by which EE may arise, and how both classes may be born within the framework of a single central engine. Chapter 4 addresses the broadband signature of both short and EE GRBs, and provides some observational tests that can be used to either support or contradict the model.
POX 186: A Dwarf Galaxy Under Construction?
NASA Astrophysics Data System (ADS)
Corbin, M. R.; Vacca, W. D.
2000-12-01
We have obtained deep images of the ultracompact ( ~ 3'') blue compact dwarf galaxy POX 186 in the F336W, F555W, and F814W filters of the Planetary Camera of the Hubble Space Telescope. We have additionally obtained a low-resolution near ultraviolet spectrum of the object with STIS and combine this with a ground-based spectrum covering the visible continuum and emission lines. Our images confirm this object to be highly compact, with a maximum projected size of only ~ 240 pc, making it one of the smallest galaxies known. We also confirm that the outer regions of the galaxy consist of an evolved stellar population, ruling out earlier speculations that POX 186 is a protogalaxy. However, the PC images reveal the galaxy to have a highly irregular morphology, with a pronounced tidal arm on its western side. This morphology is strongly suggestive of a recent collision between two smaller components which has in turn triggered the central starburst. The F336W image also shows that the material in this tidal stream is actively star forming. Given the very small ( ~ 100 pc) sizes of the colliding components, POX 186 may be a dwarf galaxy in the early stages of formation, which would be consistent with current ``downsizing'' models of galaxy formation in which the least massive objects are the last to form. This work is supported by NASA and the Space Telescope Science Institute.
NASA Astrophysics Data System (ADS)
Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis
2014-10-01
The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.
ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.
2016-08-01
Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, themore » absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.« less
Compact Torus Injection Experiments on the H.I.T. teststand and the JFT-2M tokamak
NASA Astrophysics Data System (ADS)
Fukumoto, Naoyuki; Fujiwara, Makoto; Kuramoto, Keiji; Ageishi, Masaya; Nagata, Masayoshi; Uyama, Tadao; Ogawa, Hiroaki; Kasai, Satoshi; Hasegawa, Kouichi; Shibata, Takatoshi
1997-11-01
A spheromak-type compact torus (CT) acceleration and injection experiment has been carried out using the Himeji Institute of Technology Compact Torus Injector (HIT-CTI). We investigate the possibility of refueling, density control, current drive, and edge electric field control of tokamak plasmas by means of CT injection. The HIT-CTI produces a CT with a speed of 200 km/s and a density of 1× 10^21m-3. We have constructed new electrodes and power supplies, and will install the HIT-CTI on the JFT-2M tokamak at JAERI in Autumn 1997. The outer electrode serves as a common ground for both the formation bank (144μF, 20kV) and the acceleration bank (92.4μF, 40kV). If the external toroidal field of the tokamak is applied across the CT acceleration region, the CT kinetic energy might decrease during penetration into the field lines joining the inner and outer electrode. This could result in the CT not being able to reach the core of the tokamak plasma. Determining the optimum position of the inner electrode is one of the near term goals of this research. We will present magnetic probe, He-Ne interferometer and fast framing camera data from experiments at H.I.T., where a CT was accelerated into a transverse field. We will also present initial results from the operation of the HIT-CTI on the JFT-2M tokamak.
Merging black holes in non-spherical nuclear star clusters
NASA Astrophysics Data System (ADS)
Petrovich, Cristobal
2018-04-01
The Milky Way and a significant fraction of galaxies are observed to host a central Massive Black Hole (MBH) embedded in a non-spherical nuclear star cluster. I will discuss the orbital evolution of stellar binaries in these environments and argue that their merger rates are expected to be greatly enhanced when the effect from cluster potential is taken into account in the binary-MBH triple system. I will apply our results to compact-object binary mergers mediated by gravitational wave radiation and show that this merger channel can contribute significantly to the LIGO/Virgo detections.
Modeling quasar central engine as a relativistic radiating star
NASA Astrophysics Data System (ADS)
Singh, Ksh. Newton; Pant, Neeraj
2015-01-01
Long ago Hoyle & Fowler attempted to model the central engine of quasars as hot super-massive stars supported by radiation pressure. Whereas the model of Hoyle & Fowler was Newtonian, here we make a toy model of quasar central engines as ultra relativistic ultrahot plasma or as a ball of radiation. Accordingly, we consider general relativistic gravitational collapse including emission of radiation. More specifically, we discuss a new class of radiating fluid ball exact solution in conformally-flat metric which is quasi-static and contracting at negligible rate. The problem is solved by assuming that the metric potential is separable in to radial and time dependent parts. It is found the gravitational mass of the radiating ball M→0 as comoving time t→∞ in conformity of the idea of an "Eternally Collapsing Object" (ECO) which has been claimed to be the true nature of the so-called "Black Holes". In particular, we consider here a quasi-static radiation ball having M≈9.507×107 M ⊙, a radius of ≈2×1014 km, and a luminosity L ∞≈9.1×1046 erg/s. Prima-facie, such an ECO solution is compatible with the central compact object of a quasar having comoving lifetime of ≈107 yr and a distantly observed lifetime ( u) which could be higher by many orders of magnitude.
Vacuum currents in braneworlds on AdS bulk with compact dimensions
NASA Astrophysics Data System (ADS)
Bellucci, S.; Saharian, A. A.; Vardanyan, V.
2015-11-01
The two-point function and the vacuum expectation value (VEV) of the current density are investigated for a massive charged scalar field with arbitrary curvature coupling in the geometry of a brane on the background of AdS spacetime with partial toroidal compactification. The presence of a gauge field flux, enclosed by compact dimensions, is assumed. On the brane the field obeys Robin boundary condition and along compact dimensions periodicity conditions with general phases are imposed. There is a range in the space of the values for the coefficient in the boundary condition where the Poincaré vacuum is unstable. This range depends on the location of the brane and is different for the regions between the brane and AdS boundary and between the brane and the horizon. In models with compact dimensions the stability condition is less restrictive than that for the AdS bulk with trivial topology. The vacuum charge density and the components of the current along non-compact dimensions vanish. The VEV of the current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It is decomposed into the boundary-free and brane-induced contributions. The asymptotic behavior of the latter is investigated near the brane, near the AdS boundary and near the horizon. It is shown that, in contrast to the VEVs of the field squared an denergy-momentum tensor, the current density is finite on the brane and vanishes for the special case of Dirichlet boundary condition. Both the boundary-free and brane-induced contributions vanish on the AdS boundary. The brane-induced contribution vanishes on the horizon and for points near the horizon the current is dominated by the boundary-free part. In the near-horizon limit, the latter is connected to the corresponding quantity for a massless field in the Minkowski bulk by a simple conformal relation. Depending on the value of the Robin coefficient, the presence of the brane can either increase or decrease the vacuum currents. Applications are given for a higher-dimensional version of the Randall-Sundrum 1-brane model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, A.L.; Slough, J.T.
1983-09-01
Four major areas have been investigated in the triggered reconnection experiment (TRX) program. These areas are flux trapping; formation (reconnection and axial dynamics); stability; and lifetime. This report describes the progress in each of these areas. Flux trapping for relatively slow field reversal rates due to the formation of a wall sheath has been accomplished and techniques have been developed for both triggered and programmed reconnection and the formation process has been optimized for maximum flux retention. Rotational n=2 instability has been controlled through the use of octopole barrier fields and long particle lifetimes have been achieved through optimization ofmore » the formation process. 46 refs., 63 figs., 4 tabs. (FI)« less
Suppression of the n=2 rotational instability in field-reversed configurations
NASA Astrophysics Data System (ADS)
Hoffman, Alan L.; Slough, J.; Harding, Dennis G.
1983-06-01
Compact toroid plasmas formed in field-reversed theta pinches are generally destroyed after 30-50 μsec by a rotating n=2 instability. In the reported experiment, instability is controlled, and the plasma destruction is avoided in the TRX-1 theta pinch through the application of octopole magnetic fields. The decay times for loss of poloidal flux and particles are unaffected by the octopole fields. These decay times are about 100 μsec based on inferences from interferometry and excluded flux measurements. The weak, rotating elliptical disturbance (controlled n=2 mode) also made possible a novel determination of the density profile near the separatrix using single-chord interferometry. The local density gradient scale length in this region is found to be about one ion gyrodiameter.
Virgo Intergalactic Globulars from the Sloan Survey
NASA Astrophysics Data System (ADS)
Gregg, Michael; West, Michael
2017-07-01
We have identified a new sample of Virgo intergalactic globular clusters (IGCs) and ultra compact dwarfs (UCDs) which have been serendipitously observed to date in Sloan Survey spectroscopy. There are 23 new objects with secure redshifts, all relatively red point sources with reliable velocities placing them at Virgo distances. They are spread widely across Virgo, significantly extending the spatial distribution of Virgo IGCs and UCDs to regions outside the well-studied M87 core region. The new sample are generally fainter, bluer, and probably more metal poor on average than the more centrally located, previously known objects. This systematic change carries information about the formation and continued evolution by accretion of the Virgo cluster, indicating a transition to less massive and less luminous objects being tidally disrupted in the outskirts now and in the recent past, compared to conditions in the inner cluster at early epochs.
NASA Technical Reports Server (NTRS)
Mcdonough, T. R.
1974-01-01
The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles.
New Evidence for a Black Hole in the Compact Binary Cygnus X-3
NASA Technical Reports Server (NTRS)
Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai
2010-01-01
The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.
A simple physical model for X-ray burst sources
NASA Technical Reports Server (NTRS)
Joss, P. C.; Rappaport, S.
1977-01-01
In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.
Downscattering due to Wind Outflows in Compact X-ray Sources: Theory and Interpretation
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Shrader, Chris
2004-01-01
A number of recent lines of evidence point towards the presence of hot, outflowing plasma from the central regions of compact Galactic and extragalactic X-ray sources. Additionally, it has long been noted that many of these sources exhibit an "excess" continuum component, above approx. 10 keV, usually attributed to Compton Reflection from a static medium. Motivated by these facts, as well as by recent observational constraints on the Compton reflection models - specifically apparently discrepant variability timescales for line and continuum components in some cases - we consider possible of effects of out-flowing plasma on the high-energy continuum spectra of accretion powered compact objects. We present a general formulation for photon downscattering diffusion which includes recoil and Comptonization effects due to divergence of the flow. We then develop an analytical theory for the spectral formation in such systems that allows us to derive formulae for the emergent spectrum. Finally we perform the analytical model fitting on several Galactic X-ray binaries. Objects which have been modeled with high-covering-fraction Compton reflectors, such as GS1353-64 are included in our analysis. In addition, Cyg X-3, is which is widely believed to be characterized by dense circumstellar winds with temperature of order 10(exp 6) K, provides an interesting test case. Data from INTEGRAL and RXTE covering the approx. 3 - 300 keV range are used in our analysis. We further consider the possibility that the widely noted distortion of the power-law continuum above 10 keV may in some cases be explained by these spectral softening effects.
The Peculiar, Asymmetric Core-Collapse Supernova Remnant G350.1-0.3
NASA Astrophysics Data System (ADS)
Reynolds, Stephen
2017-09-01
We propose a 200 ks observation of one of the most peculiar supernova remnants known: G350.1-0.3. This mysterious object resembles no other known SNR in radio or X-rays, It contains a compact central object (CCO) which may or may not be related. Previous spectral analyses are contradictory, but there appears to be strong iron emission and an extreme overabundance of nickel. Age estimates suggest it could be as young as 600 years old. Our proposed observation should be able to measure expansion since 2009, confirming or refuting the age estimate, and will allow spectroscopy on small scales to confirm enhanced abundances and search for shocked ambient material and nonthermal emission. If the CCO originated at the remnant center, its motion will also be detected.
A constant radius of curvature model for the organization of DNA in toroidal condensates.
Hud, N V; Downing, K H; Balhorn, R
1995-01-01
Toroidal DNA condensates have received considerable attention for their possible relationship to the packaging of DNA in viruses and in general as a model of ordered DNA condensation. A spool-like model has primarily been supported for DNA organization within toroids. However, our observations suggest that the actual organization may be considerably different. We present an alternate model in which DNA for a given toroid is organized within a series of equally sized contiguous loops that precess about the toroid axis. A related model for the toroid formation process is also presented. This kinetic model predicts a distribution of toroid sizes for DNA condensed from solution that is in good agreement with experimental data. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:7724602
NASA Astrophysics Data System (ADS)
Zanotti, Olindo; Rezzolla, Luciano; Font, José A.
2003-05-01
We present general relativistic hydrodynamics simulations of constant specific angular momentum tori orbiting a Schwarzschild black hole. These tori are expected to form as a result of stellar gravitational collapse, binary neutron star merger or disruption, can reach very high rest-mass densities and behave effectively as neutron stars but with a toroidal topology (i.e. `toroidal neutron stars'). Here our attention is focused on the dynamical response of these objects to axisymmetric perturbations. We show that upon the introduction of perturbations, these systems either become unstable to the runaway instability or exhibit a regular oscillatory behaviour, resulting in a quasi-periodic variation of the accretion rate as well as of the mass quadrupole. The latter, in particular, is responsible for the emission of intense gravitational radiation for which the signal-to-noise ratio at the detector is comparable to or larger than the typical one expected in stellar-core collapse, making these new sources of gravitational waves potentially detectable. We discuss a systematic investigation of the parameter space in both the linear and non-linear regimes, providing estimates of how the gravitational radiation emitted depends on the mass of the torus and on the strength of the perturbation.
Cleaning procedure for improved photothermal background of toroidal optical microresonators
NASA Astrophysics Data System (ADS)
Horak, Erik H.; Knapper, Kassandra A.; Heylman, Kevin D.; Goldsmith, Randall H.
2016-09-01
High Q-factors and small mode volumes have made toroidal optical microresonators exquisite sensors to small shifts in the effective refractive index of the WGM modes. Eliminating contaminants and improving quality factors is key for many different sensing techniques, and is particularly important for photothermal imaging as contaminants add photothermal background obscuring objects of interest. Several different cleaning procedures including wet- and dry-chemical procedures are tested for their effect on Q-factors and photothermal background. RCA cleaning was shown to be successful in contrast to previously described acid cleaning procedures, most likely due to the different surface reactivity of the acid reagents used. UV-ozone cleaning was shown to be vastly superior to O2 plasma cleaning procedures, significantly reducing the photothermal background of the resonator.
Toroidal Tank Development for Upper-stages
NASA Technical Reports Server (NTRS)
DeLay, Tom; Roberts, Keith
2003-01-01
The advantages, development, and fabrication of toroidal propellant tanks are profiled in this viewgraph presentation. Several images are included of independent research and development (IR&D) of toroidal propellant tanks at Marshall Space Flight Center (MSFC). Other images in the presentation give a brief overview of Thiokol conformal tank technology development. The presentation describes Thiokol's approach to continuous composite toroidal tank fabrication in detail. Images are shown of continuous and segmented toroidal tanks fabricated by Thiokol.
EMC3-EIRENE modelling of toroidally-localized divertor gas injection experiments on Alcator C-Mod
Lore, Jeremy D.; Reinke, M. L.; LaBombard, Brian; ...
2014-09-30
Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ~50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modelling, with the simulation yielding a toroidal asymmetry in the heat flow to the outermore » strike point. Finally, toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.« less
Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak
NASA Astrophysics Data System (ADS)
Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.
2018-02-01
The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.
New constraints on the TeV SNR shells RX J1713.7-3946 and HESS J1731-347
NASA Astrophysics Data System (ADS)
Puehlhofer, G.; Eger, P.; Doroshenko, V.; Cui, Y.; H. E. S. S. Collaboration
2016-06-01
Resolved TeV-emitting supernova remnants remain a small and precious class of sources to study cosmic ray acceleration in SNRs. We present new multi-wavelength results of the two prominent objects RX J1713.7-3946 and HESS J1731-347. For RX J1713.7-3946, extensive new H.E.S.S. data have permitted to study the nature of the TeV-emitting CR particles through improved broadband spectral studies, as well as through detailed investigations of morphological differences between TeV gamma-rays and X-rays. Concerning HESS J1731-347, the TeV morphology of the object and its surroundings has been studied using cosmic ray acceleration simulations of the object. The SNR also hosts a luminous X-ray emitting central compact object (CCO). Investigations of the CCO in X-rays and in the infrared have permitted to set interesting constraints on the SNR and its progenitor.
Universal relations with fermionic dark matter
NASA Astrophysics Data System (ADS)
Krut, A.; Argüelles, C. R.; Rueda, J. A.; Ruffini, R.
2018-01-01
We have recently introduced a new model for the distribution of dark matter (DM) in galaxies, the Ruffini-Argüelles-Rueda (RAR) model, based on a self-gravitating system of massive fermions at finite temperatures. The RAR model, for fermion masses above keV, successfully describes the DM halos in galaxies, and predicts the existence of a denser quantum core towards the center of each configuration. We demonstrate here, for the first time, that the introduction of a cutoff in the fermion phase-space distribution, necessary to account for galaxies finite size and mass, defines a new solution with a compact quantum core which represents an alternative to the central black hole (BH) scenario for SgrA*. For a fermion mass in the range 48keV ≤ mc2 ≤ 345keV, the DM halo distribution fulfills the most recent data of the Milky Way rotation curves while harbors a dense quantum core of 4×106M⊙ within the S2 star pericenter. In particular, for a fermion mass of mc2 ˜ 50keV the model is able to explain the DM halos from typical dwarf spheroidal to normal elliptical galaxies, while harboring dark and massive compact objects from ˜ 103M⊙ tp to 108M⊙ at their respective centers. The model is shown to be in good agreement with different observationally inferred universal relations, such as the ones connecting DM halos with supermassive dark central objects. Finally, the model provides a natural mechanism for the formation of supermassive BHs as heavy as few ˜ 108M⊙. We argue that larger BH masses (few ˜ 109-10M⊙) may be achieved by assuming subsequent accretion processes onto the above heavy seeds, depending on accretion efficiency and environment.
Relativistic dynamics and extreme mass ratio inspirals
NASA Astrophysics Data System (ADS)
Amaro-Seoane, Pau
2018-05-01
It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes—how some of them grow by orders of magnitude in mass—lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.
Relativistic dynamics and extreme mass ratio inspirals.
Amaro-Seoane, Pau
2018-01-01
It is now well-established that a dark, compact object, very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes-how some of them grow by orders of magnitude in mass-lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational-wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melodelima, D.; N'Djin, W. A.; Parmentier, H.
2009-04-14
A new geometry of HIFU transducer is described to enlarge the coagulated volume. The geometry of the transducer was not spherical. The surface of the transducer was built based on a toroid geometry. The transducer was generated by the revolution of a circle about an axis lying in its plane. Eight emitters operating at a frequency of 3 MHz were diced out of a single toroid piezocomposite element. Each of the eight emitters was divided into 32 transducers. The focal zone is conical and located at 70 mm from the transducer. A 7.5 MHz ultrasound imaging probe is placed inmore » the centre of the device for guiding the treatment. Our long-term objective is to develop a device that can be used during surgery. In vivo trials have been performed on 13 pigs to demonstrate this new principle and to evaluate the vascular tolerance of the treatment. This new geometry combined with consecutive activation of the eight emitters around the toroid allows achieving a mean thermal ablation of 7.0{+-}2.5 cm3 in 40 seconds. All lesions were visible with high contrast on sonograms. The correlation between the size of lesions observed on sonograms and during gross examination was 92%. This allows the user to easily enlarge the coagulated volume by juxtaposing single lesions. The pigs tolerate the treatment well over the experimental period even when coagulation was produced through portal and/or hepatic veins.« less
A simple compact UHV and high magnetic field compatible inertial nanopositioner
NASA Astrophysics Data System (ADS)
Pang, Zongqiang; Li, Xiang; Xu, Lei; Rong, Zhou; Liu, Ruilan
2015-01-01
We present a novel simple piezoelectric nanopositioner which just has one piezoelectric scanner tube (PST) and one driving signal, using two short quartz rods and one BeCu spring which form a triangle to press the central shaft and can promise the nanopositioner's rigidity. Applying two pulse inverted voltage signals on the PST's outer and inner electrodes, respectively, according to the principle of piezoelectricity, the PST will elongate or contract suddenly while the central shaft will keep stationary for its inertance, so the central shaft will be sliding a distance relative to quartz rods and spring, and then withdraw the pulse voltages slowly, the central shaft will move upward or downward one step. The heavier of the central shaft, the better moving stability, so the nanopositioner has high output force. Due to its compactness and mechanical stability, it can be easily implanted into some extreme conditions, such as ultrahigh vacuum, ultralow temperature, and high magnetic field.
Mobile visual object identification: from SIFT-BoF-RANSAC to Sketchprint
NASA Astrophysics Data System (ADS)
Voloshynovskiy, Sviatoslav; Diephuis, Maurits; Holotyak, Taras
2015-03-01
Mobile object identification based on its visual features find many applications in the interaction with physical objects and security. Discriminative and robust content representation plays a central role in object and content identification. Complex post-processing methods are used to compress descriptors and their geometrical information, aggregate them into more compact and discriminative representations and finally re-rank the results based on the similarity geometries of descriptors. Unfortunately, most of the existing descriptors are not very robust and discriminative once applied to the various contend such as real images, text or noise-like microstructures next to requiring at least 500-1'000 descriptors per image for reliable identification. At the same time, the geometric re-ranking procedures are still too complex to be applied to the numerous candidates obtained from the feature similarity based search only. This restricts that list of candidates to be less than 1'000 which obviously causes a higher probability of miss. In addition, the security and privacy of content representation has become a hot research topic in multimedia and security communities. In this paper, we introduce a new framework for non- local content representation based on SketchPrint descriptors. It extends the properties of local descriptors to a more informative and discriminative, yet geometrically invariant content representation. In particular it allows images to be compactly represented by 100 SketchPrint descriptors without being fully dependent on re-ranking methods. We consider several use cases, applying SketchPrint descriptors to natural images, text documents, packages and micro-structures and compare them with the traditional local descriptors.
GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes
NASA Astrophysics Data System (ADS)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
2013-11-01
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.
NASA's Gravitational - Wave Mission Concept Study
NASA Technical Reports Server (NTRS)
Stebbins, Robin; Jennrich, Oliver; McNamara, Paul
2012-01-01
With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.
Single-beam, dark toroidal optical traps for cold atoms
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew
2007-02-01
We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.
Rotation and neoclassical ripple transport in ITER
Paul, Elizabeth Joy; Landreman, Matt; Poli, Francesca M.; ...
2017-07-13
Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Furthermore, neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planckmore » Iterative Neoclassical Conservative Solver (SFINCS).« less
Rotation and neoclassical ripple transport in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Elizabeth Joy; Landreman, Matt; Poli, Francesca M.
Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Furthermore, neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planckmore » Iterative Neoclassical Conservative Solver (SFINCS).« less
Diverse Formation Mechanisms for Compact Galaxies
NASA Astrophysics Data System (ADS)
Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin
2018-01-01
Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.
Improvements to CHI Plasma Start-up and Ramp-up in NSTX
NASA Astrophysics Data System (ADS)
Jarboe, T. R.; Raman, R.; Nelson, B. A.; Mueller, D.; Bell, M. G.; Roquemore, L.; Kugel, H. W.; Soukhanovskii, V.
2009-11-01
Experiments in NSTX have now demonstrated the savings of central solenoid inductive flux after coupling of toroidal plasmas produced by the technique of Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central solenoid with zero pre-charge was used to apply an inductive loop voltage to the decaying CHI started discharges. The coupled discharges ramped up to 800kA without the benefit of auxiliary heating. Inductive flux savings was realized as a result of an effort to reduce the influx of low-Z impurities during the plasma start-up phase. This was achieved through the use of 400ms long CHI discharges produced using a DC rectifier power supply to ablate low-Z surface impurities from the lower divertor electrodes, followed by the use of Lithium evaporative coatings and an effort to reduce spurious arcs in the upper divertor region by controlling the extent of CHI plasma growth in the vessel. Previous work on NSTX has shown that CHI started discharges after coupling to neutral beam heated discharges can transition to an H-mode. These important new results from NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and Tokamaks. This work supported by U.S. DOE Contracts # DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08.
Steady state toroidal magnetic field at earth's core-mantle boundary
NASA Technical Reports Server (NTRS)
Levy, Eugene H.; Pearce, Steven J.
1991-01-01
Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.
NASA Astrophysics Data System (ADS)
Tokuyama, Sekito; Oka, Tomoharu; Takekawa, Shunya; Yamada, Masaya; Iwata, Yuhei; Tsujimoto, Shiho
2017-01-01
High-velocity compact clouds (HVCCs) is one of the populations of peculiar clouds detected in the Central Molecular Zone (CMZ) of our Galaxy. They have compact appearances (< 5 pc) and large velocity widths (> 50 km s-1). Several explanations for the origin of HVCC were proposed; e.g., a series of supernovae (SN) explosions (Oka et al. 1999) or a gravitational kick by a point-like gravitational source (Oka et al. 2016). To investigate the statistical property of HVCCs, a complete list of them is acutely necessary. However, the previous list is not complete since the identification procedure included automated processes and manual selection (Nagai 2008). Here we developed an automated procedure to identify HVCCs in a spectral line data.
Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
2005-10-01
The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes that carry net toroidal flux.« less
REVIEWS OF TOPICAL PROBLEMS: Small-scale structure of dark matter and microlensing
NASA Astrophysics Data System (ADS)
Gurevich, Aleksandr V.; Zybin, Kirill P.; Sirota, V. A.
1997-09-01
It has been revealed using microlensing that a considerable part, possibly more than half, of the dark matter in the halo of our Galaxy consists of objects with a mass spectrum ranging from 0.05 to 0.8 of the solar mass. What is the nature of these objects? There exist two hypotheses. According to one, these are Jupiter type planets or small stars (brown and white dwarfs) consisting of normal baryonic matter. According to the other, these are non-compact objects, i.e., small-scale formations in non-baryonic dark matter. Here, a theory is proposed describing the possibility of the existence of non-compact objects in the halo of our Galaxy, their structure and formation from non-baryonic matter. The theory of microlensing on compact and non-compact objects is considered in detail. The results of microlensing observations are described and compared with theory. Possible astrophysical manifestations of the presence of small-scale structure are pointed out. The field is being extensively studied and is of fundamental interest for cosmology and astrophysics.
Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals
NASA Astrophysics Data System (ADS)
Hayami, Satoru; Kusunose, Hiroaki
2018-03-01
We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.
NASA Astrophysics Data System (ADS)
Rowan, William L.; Bespamyatnov, Igor O.; Fiore, C. L.; Dominguez, A.; Hubbard, A. E.; Ince-Cushman, A.; Greenwald, M. J.; Lin, L.; Marmar, E. S.; Reinke, M.; Rice, J. E.; Zhurovich, K.
2007-11-01
Internal transport barrier (ITB) plasmas can arise spontaneously in Ohmic Alcator C-Mod plasmas. The operational prescription for the ITB include formation of an EDA H-mode in a toroidal magnetic field that is ramping down and a subsequent increase in the toroidal magnetic field. Like ITBs generated with off-axis ICRF heating, these have peaked pressure profiles which can be suppressed by on-axis ICRF heating. Recent work on onset conditions for the ICRF generated ITB (K. Zhurovich, et al., To be published in Nuclear Fusion) demonstrates that the broadening of the ion temperature profile due to off-axis ICRF reduces the ion temperature gradient and suppreses the ITG instability driven particle flux as the primary mechanism for ITB formation. The object of this study is to examine the characteristics of Ohmic ITBs to find whether this model for onset is supported.
Some new results for the one-loop mass correction to the compactified λϕ4 theory
NASA Astrophysics Data System (ADS)
Fucci, Guglielmo; Kirsten, Klaus
2018-03-01
In this work, we consider the one-loop effective action of a self-interacting λϕ4 field propagating in a D dimensional Euclidean space endowed with d ≤ D compact dimensions. The main purpose of this paper is to compute the corrections to the mass of the field due to the presence of the compactified dimensions. Although the results of the one-loop correction to the mass of a λϕ4 field are very well known for compactified toroidal spaces, where the field obeys periodic boundary conditions, similar results do not appear to be readily available for cases in which the scalar field is subject to Dirichlet and Neumann boundary conditions. We apply the results of the one-loop mass correction to the study of the critical temperature in Ginzburg-Landau models.
Stellar physics. Observing the onset of outflow collimation in a massive protostar.
Carrasco-González, C; Torrelles, J M; Cantó, J; Curiel, S; Surcis, G; Vlemmings, W H T; van Langevelde, H J; Goddi, C; Anglada, G; Kim, S-W; Kim, J-S; Gómez, J F
2015-04-03
The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification. Copyright © 2015, American Association for the Advancement of Science.
Reflux physics and an operational scenario for the spheromak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, E. B.
2010-07-20
The spheromak [1] is a toroidal magnetic confinement geometry for plasma with most of the magnetic field generated by internal currents. It has been demonstrated to have excellent energy confinement properties: A peak electron temperature of 0.4 keV was achieved in the Compact Torus Experiment (CTX) experiment [2] and of 0.5 keV in the Sustained Spheromak Physics Experiment (SSPX) [3]. In both cases the plasmas were decaying slowly following formation and (in SSPX) sustainment by coaxial helicity injection (CHI) [4]. In SSPX, power balance analysis during this operational phase yielded electron thermal conductivities in the core plasma in the rangemore » of 1-10 m 2/s [5, 6], comparable to the tokamak L-mode. These results motivate the consideration of possible operating scenarios for future fusion experiments or even reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.Raman
The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection inmore » NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs.« less
Demonstration of Inductive Flux Saving by Transient CHI on NSTX
NASA Astrophysics Data System (ADS)
Raman, Roger
2010-11-01
Experiments in NSTX have now demonstrated the saving of central solenoid flux equivalent to 200kA of toroidal plasma current after coupling plasmas produced by Transient Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current [R. Raman, et al., PRL 104, 095003 (2010)]. This is a record for non-inductive plasma startup, and an important step for developing the spherical torus concept. With an injector current of only 4kA and total power supply energy of only 21 kJ, CHI initiated a toroidal current of 250 kA that when coupled to 0.11 Vs of induction ramped up to 525 kA without using any auxiliary heating, whereas an otherwise identical inductive-only discharge ramped to only 325 kA. This flux saving was realized by reducing the influx of low-Z impurities during the start-up phase through the use of electrode conditioning discharges, followed by lithium evaporative coating of the plasma-facing surfaces and reducing parasitic arcs in the upper divertor region through use of additional shaping-field coils. As a result of these improvements, and for the first time in NSTX, the electron temperature during the CHI phase continually increased with input energy, indicating that the additional injected energy was contributing to heating the plasma instead of being lost through impurity line radiation. Simulations with the Tokamak Simulation Code (TSC) show that the observed scaling of CHI start-up current with toroidal field in NSTX is consistent with theory, suggesting that use of CHI on larger machines is quite attractive. These exciting results from NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks. This work supported by U.S. DOE Contracts DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08.
The folding pathways and thermodynamics of semiflexible polymers
NASA Astrophysics Data System (ADS)
Wu, Jing; Cheng, Chenqian; Liu, Gaoyuan; Zhang, Ping; Chen, Tao
2018-05-01
Inspired by the protein folding and DNA packing, we have systematically studied the thermodynamic and kinetic behaviors of single semiflexible homopolymers by Langevin dynamics simulations. In line with experiments, a rich variety of folding products, such as rod-like bundles, hairpins, toroids, and a mixture of them, are observed in the complete diagram of states. Moreover, knotted structures with a significant population are found in a certain range of bending stiffness in thermal equilibrium. As the solvent quality becomes poorer, the population of the intermediate occurring in the folding process increases, which leads to a severe chevron rollover for the folding arm. However, the population of the intermediates in the unfolding process is very low, insufficient to induce unfolding arm rollover. The total types of folding pathways from the coil state to the toroidal state for a semiflexible polymer chain remain unchanged by varying the solvent quality or temperature, whereas the kinetic partitioning into different folding events can be tuned significantly. In the process of knotting, three types of mechanisms, namely, plugging, slipknotting, and sliding, are discovered. Along the folding evolution, a semiflexible homopolymer chain can knot at any stage of folding upon leaving the extended coil state, and the probability to find a knot increases with chain compactness. In addition, we find rich types of knotted topologies during the folding of a semiflexible homopolymer chain. This study should be helpful in gaining insight into the general principles of biopolymer folding.
Study on the fabrication of low-pass metal powder filters for use at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Lee, Sung Hoon; Lee, Soon-Gul
2016-08-01
We fabricated compact low-pass stainless-steel powder filters for use in low-noise measurements at cryogenic temperatures and investigated their attenuation characteristics for different wire lengths, filter shapes, and preparation methods at frequencies up to 20 GHz. We used nominally 30- μm-sized SUS 304L powder and mixed it with Stycast 2850FT (Emerson and Cumming) with catalyst 23LV. A 0.1-mm insulated copper wire was wound on preformed powder-mixture spools in the shape of a right-circular cylinder, a flattened elliptic cylinder and a toroid, and the coils were encapsulated in metal tubes or boxes filled with the powder mixture. All the fabricated powder filters showed a large attenuation at high frequencies with a cut-off frequency near 1 GHz. However, the toroidal filter showed prominent ripples corresponding to resonance modes in the 0.5-m-long coil wire. A filter with a 2:1 powder/epoxy mixture mass ratio and a wire length of 1.53 m showed an attenuation of -93 dB at 4 GHz, and the attenuation was linearly proportional to the wire's length. As the powder-to-epoxy ratio was increased, the high-frequency attenuation increased. An equally-spaced single-layer coil structure was found to be more efficient in attenuation than a double-layer coil. The geometry of the metal filter's case affected the noise ripples, with the least noise being found for a circular tube.
An Active Black Hole in a Compact Dwarf
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-05-01
A new type of galaxy has just been added to the galaxy zoo: a small, compact, and old elliptical galaxy that shows signs of a monster black hole actively accreting material in its center. What can this unusual discovery tell us about how compact elliptical galaxies form?A New Galactic BeastCompact elliptical galaxies are an extremely rare early-type dwarf galaxy. Consistent with their name, compact ellipticals are small, very compact collections of ancient stars; these galaxies exhibit a high surface brightness and arent actively forming stars.Optical view of the ancient compact elliptical galaxy SDSS J085431.18+173730.5 (center of image) in an SDSS color composite image. [Adapted from Paudel et al. 2016]Most compact ellipticals are found in dense environments, particularly around massive galaxies. This has led astronomers to believe that compact ellipticals might form via the tidal stripping of a once-large galaxy in interactions with another, massive galaxy. In this model, once the original galaxys outer layers are stripped away, the compact inner bulge component would be left behind as a compact elliptical galaxy. Recent discoveries of a few isolated compact ellipticals, however, have strained this model.Now a new galaxy has been found to confuse our classification schemes: the first-ever compact elliptical to also display signs of an active galactic nucleus. Led by Sanjaya Paudel (Korea Astronomy and Space Science Institute), a team of scientists discovered SDSS J085431.18+173730.5 serendipitously in Sloan Digital Sky Survey data. The team used SDSS images and spectroscopy in combination with data from the Canada-France-Hawaii Telescope to learn more about this unique galaxy.Puzzling CharacteristicsSDSS J085431.18+173730.5 presents an interesting conundrum. Ancient compact ellipticals are supposed to be devoid of gas, with no fuel left to trigger nuclear activity. Yet SDSS J085431.18+173730.5 clearly shows the emission lines that indicate active accretion onto a supermassive black hole of ~2 million solar masses, according to the authors estimates. Paudel and collaboratorsshow that this mass is consistent with the low-mass extension of the known scaling relation between central black-hole mass and brightness of the host galaxy.Central black hole mass vs. bulge K-band magnitude. SDSS J085431.18+173730.5 (red dot) falls right on the low-mass extension of the observed scaling relation. It has similar properties to M32, another compact elliptical galaxy. [Adapted from Paudel et al. 2016]To add to the mystery, SDSS J085431.18+173730.5 has no nearby neighbors: like the few other isolated compact ellipticals recently discovered, there are no massive galaxies in the immediate vicinity that could have led to its tidal stripping. So how was this puzzling ancient galaxy formed?The authors of this study support a previously proposed flyby scenario: isolated compact ellipticals may simply be tidally stripped systems that ran away from their hosts. Paudel and collaborators suggest that SDSS J085431.18+173730.5 might have long ago interacted with NGC 2672 a galaxy group located a whopping 6.5 million light-years away before being flung out to its current location.Further studies of this unique galaxys emission profile, as well as efforts to learn about its underlying stellar population and central kinematics, will hopefully help us to better understand not only the origins of this galaxy, but how all compact ellipticals form and evolve.CitationSanjaya Paudel et al 2016 ApJ 820 L19. doi:10.3847/2041-8205/820/1/L19
NASA Astrophysics Data System (ADS)
Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.
2017-11-01
Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.
NASA Astrophysics Data System (ADS)
Neumann, Florian; Vásquez-Serrano, Alberto; Tolson, Gustavo; Negrete-Aranda, Raquel; Contreras, Juan
2016-10-01
We carried out analog laboratory modeling at a scale 1:4,000,000 and computer rendering of the flow patterns in a simulated western Middle American subduction zone. The scaled model consists of a transparent tank filled with corn syrup and housing two conveyor belts made of polyethylene strips. One of the strips dips 60° and moves at a velocity of 30 mm/min simulating the Rivera plate. The other one dips 45°, moves at 90 mm/min simulating the subduction of the Cocos plate. Our scaled subduction zone also includes a gap between the simulated slabs analogous to a tear recently observed in shear wave tomography studies. An acrylic plate 3 mm thick floats on the syrup in grazing contact with the polyethylene strips and simulates the overriding North America plate. Our experiments reveal a deep toroidal flow of asthenospheric mantle through the Cocos-Rivera separation. The flow is driven by a pressure gradient associated with the down-dip differential-motion of the slabs. Similarly, low pressure generated by the fast-moving Cocos plate creates a shallow counter-toroidal flow in the uppermost 100 km of the mantle wedge. The flow draws mantle beneath the western Trans-Mexican Volcanic Belt to the Jalisco block, then plunges into the deep mantle by the descending poloidal cell of the Cocos slab. Moreover, our model suggests a hydraulic jump causes an ~250 km asthenosphere upwelling around the area where intra-arc extensional systems converge in western Mexico. The upwelling eventually merges with the shallow counter-toroidal flow describing a motion in 3D space similar to an Archimedes' screw. Our results indicate the differential motion between subducting slabs drives mixing in the mantle wedge of the Rivera plate and allows the slab to steepen and retreat. Model results are in good agreement with seismic anisotropy studies and the geochemistry of lavas erupted in the Jalisco block. The model can explain the eruption of OIB lavas in the vicinity of the City of Guadalajara in western Mexico, and the south shoulder in the central part of the Tepic-Zacoalco fault system.
United States Research and Development effort on ITER magnet tasks
Martovetsky, Nicolai N.; Reierson, Wayne T.
2011-01-22
This study presents the status of research and development (R&D) magnet tasks that are being performed in support of the U.S. ITER Project Office (USIPO) commitment to provide a central solenoid assembly and toroidal field conductor for the ITER machine to be constructed in Cadarache, France. The following development tasks are presented: winding development, inlets and outlets development, internal and bus joints development and testing, insulation development and qualification, vacuum-pressure impregnation, bus supports, and intermodule structure and materials characterization.
Commissioning and Plans for the NSTX-U Facility
NASA Astrophysics Data System (ADS)
Ono, Masayuki; NSTX-U Team
2016-10-01
The National Spherical Torus Experiment - Upgrade (NSTX-U) has started its first year of plasma operations after the successful completion of the CD-4 milestones. The unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. The major mission of NSTX-U is also to develop the physics and technology basis for an ST-based Fusion Nuclear Science Facility (FNSF). The new center stack will provide toroidal field of 1 Tesla at a major radius of 0.93 m which should enable a plasma current of up to 2 mega-Amp for 5 sec. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed. NSTX-U is designed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers of 14 MW, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the trend in transport towards the low collisionality FNSF regime. If the favorable trends observed on NSTX holds at low collisionality, high fusion neutron fluences could be achievable in very compact ST devices.
Plasma Component of Self-gravitating Disks and Relevant Magnetic Configurations
NASA Astrophysics Data System (ADS)
Bertin, G.; Coppi, B.
2006-04-01
Astrophysical disks in which the disk self-gravity is more important than the gravity force associated with the central object can have significant plasma components where appreciable toroidal current densities are produced. When the vertical confinement of the plasma rotating structures that can form is kept by the Lorentz force rather than by the vertical component of the gravity force, the disk self-gravity remains important only in the radial equilibrium condition, modifying the rotation curve from the commonly considered Keplerian rotation. The equilibrium equations that are solved involve the vertical and the horizontal components of the total momentum conservation equations, coupled with the lowest order form of the gravitational Poisson's equation. The resulting poloidal field configuration can be visualized as a sequence [1] of Field Reverse Configurations, in the radial direction, consisting of pairs of oppositely directed current channels. The plasma density thus acquires a significant radial modulation that may grow to the point where plasma rings can form [2]. [1] B. Coppi, Phys. Plasmas, 12, 057302 (2005) [2] B. Coppi and F. Rousseau, to be published in Astrophys. J. (April 2006)
The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegna, C. C.
2016-05-15
The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.
Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xueyu; Xie, Baoyi; Chen, You
2016-03-15
With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.
Relativistic compact stars with charged anisotropic matter
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Banerjee, Ayan; Channuie, Phongpichit
2018-05-01
In this article, we perform a detailed theoretical analysis of new exact solutions with anisotropic fluid distribution of matter for compact objects subject to hydrostatic equilibrium. We present a family solution to the Einstein-Maxwell equations describing a spherically symmetric, static distribution of a fluid with pressure anisotropy. We implement an embedding class one condition to obtain a relation between the metric functions. We generalize the properties of a spherical star with hydrostatic equilibrium using the generalised Tolman-Oppenheimer-Volkoff (TOV) equation. We match the interior solution to an exterior Reissner-Nordström one, and study the energy conditions, speed of sound, and mass-radius relation of the star. We also show that the obtained solutions are compatible with observational data for the compact object Her X-1. Regarding our results, the physical behaviour of the present model may serve for the modeling of ultra compact objects.
Gravitationally Focused Dark Matter around Compact Stars
NASA Astrophysics Data System (ADS)
Bromley, Benjamin C.
2011-12-01
If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.
On the number of light rings in curved spacetimes of ultra-compact objects
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-01-01
In a very interesting paper, Cunha, Berti, and Herdeiro have recently claimed that ultra-compact objects, self-gravitating horizonless solutions of the Einstein field equations which have a light ring, must possess at least two (and, in general, an even number of) light rings, of which the inner one is stable. In the present compact paper we explicitly prove that, while this intriguing theorem is generally true, there is an important exception in the presence of degenerate light rings which, in the spherically symmetric static case, are characterized by the simple dimensionless relation 8 πrγ2 (ρ +pT) = 1 [here rγ is the radius of the light ring and { ρ ,pT } are respectively the energy density and tangential pressure of the matter fields]. Ultra-compact objects which belong to this unique family can have an odd number of light rings. As a concrete example, we show that spherically symmetric constant density stars with dimensionless compactness M / R = 1 / 3 possess only one light ring which, interestingly, is shown to be unstable.
Modular low-aspect-ratio high-beta torsatron
Sheffield, G.V.
1982-04-01
A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.
Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Leuer, James A.
1990-05-01
A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.
On the dynamic toroidal multipoles from localized electric current distributions.
Fernandez-Corbaton, Ivan; Nanz, Stefan; Rockstuhl, Carsten
2017-08-08
We analyze the dynamic toroidal multipoles and prove that they do not have an independent physical meaning with respect to their interaction with electromagnetic waves. We analytically show how the split into electric and toroidal parts causes the appearance of non-radiative components in each of the two parts. These non-radiative components, which cancel each other when both parts are summed, preclude the separate determination of each part by means of measurements of the radiation from the source or of its coupling to external electromagnetic waves. In other words, there is no toroidal radiation or independent toroidal electromagnetic coupling. The formal meaning of the toroidal multipoles is clear in our derivations. They are the higher order terms of an expansion of the multipolar coefficients of electric parity with respect to the electromagnetic size of the source.
Woolley, Robert D.
2002-01-01
A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.
Convection in three dimensions with surface plates - Generation of toroidal flow
NASA Technical Reports Server (NTRS)
Gable, Carl W.; O'Connell, Richard J.; Travis, Bryan J.
1991-01-01
This work presents numerical calculations of mantle convection that incorporate some of the basic observational constraints imposed by plate tectonics. The model is three-dimensional and includes surface plates; it allows plate velocity to change dynamically according to the forces which result from convection. It is shown that plates are an effective means of introducing a toroidal component into the flow field. After initial transients the plate motion is nearly parallel to transform faults and in the direction that tends to minimize the toroidal flow field. The toroidal field decays with depth from its value at the surface; the poloidal field is relatively constant throughout the layer but falls off slightly at the top and bottom boundaries. Layered viscosity increasing with depth causes the toroidal field to decay more rapidly, effectively confining it to the upper, low-viscosity layer. The effect of viscosity layering on the poloidal field is relatively small, which is attributed to its generation by temperature variations distributed throughout the system. The generation of toroidal flow by surface plates would seem to account for the observed nearly equal energy of toroidal and poloidal fields of plate motions on the earth. A low-viscosity region in the upper mantle will cause the toroidal flow to decay significantly before reaching the lower mantle. The resulting concentration of toroidal flow in the upper mantle may result in more thorough mixing there and account for some of the geochemical and isotopic differences proposed to exist between the upper and lower mantles.
NASA Astrophysics Data System (ADS)
Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman
2018-05-01
Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.
Rachel A. Tarpey; Martin F. Jurgensen; Brian J. Palik; Randy K. Kolka
2008-01-01
Periodic silvicultural thinnings (23.0, 27.6, 32.1 m2 ha-1 residual basal area) in a red pine stand growing on a sandy soil in north-central Minnesota over a 57-yr period increased soil compaction as the intensity of the thinning treatment increased. Of the three different methods used to measure soil compaction (bulk...
Soil compaction and initial height growth of planted ponderosa pine.
P. H. Cochran; Terry. Brock
1985-01-01
Early height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings planted in clearcuts in central Oregon was negatively correlated with increasing soil bulk density. Change in bulk density accounted for less than half the total variation in height growth. Although many other factors affect the development of seedlings, compaction...
Fermionic currents in AdS spacetime with compact dimensions
NASA Astrophysics Data System (ADS)
Bellucci, S.; Saharian, A. A.; Vardanyan, V.
2017-09-01
We derive a closed expression for the vacuum expectation value (VEV) of the fermionic current density in a (D +1 )-dimensional locally AdS spacetime with an arbitrary number of toroidally compactified Poincaré spatial dimensions and in the presence of a constant gauge field. The latter can be formally interpreted in terms of a magnetic flux treading the compact dimensions. In the compact subspace, the field operator obeys quasiperiodicity conditions with arbitrary phases. The VEV of the charge density is zero and the current density has nonzero components along the compact dimensions only. They are periodic functions of the magnetic flux with the period equal to the flux quantum and tend to zero on the AdS boundary. Near the horizon, the effect of the background gravitational field is small and the leading term in the corresponding asymptotic expansion coincides with the VEV for a massless field in the locally Minkowski bulk. Unlike the Minkowskian case, in the system consisting of an equal number of fermionic and scalar degrees of freedom, with same masses, charges and phases in the periodicity conditions, the total current density does not vanish. In these systems, the leading divergences in the scalar and fermionic contributions on the horizon are canceled and, as a consequence of that, the charge flux, integrated over the coordinate perpendicular to the AdS boundary, becomes finite. We show that in odd spacetime dimensions the fermionic fields realizing two inequivalent representations of the Clifford algebra and having equal phases in the periodicity conditions give the same contribution to the VEV of the current density. Combining the contributions from these fields, the current density in odd-dimensional C -,P - and T -symmetric models are obtained. As an application, we consider the ground state current density in curved carbon nanotubes described in terms of a (2 +1 )-dimensional effective Dirac model.
Accretion torques in X-ray pulsars
NASA Technical Reports Server (NTRS)
Rappaport, S.; Joss, P. C.
1977-01-01
An analysis of the accretion process in an X-ray pulsar, whereby angular momentum is transferred to the star and its rotation period is changed, is presented, and an expression for the fractional rate of change of the pulse period in terms of X-ray luminosity and other star parameters is derived. It is shown that observed characteristic spin-up time scales for seven X-ray pulsars strongly support the view that in every source (1) the pulse period reflects the rotation period of a compact object, (2) the accretion is mediated by a disk surrounding the compact object and rotating in the same sense, and (3) the compact object is a neutron star rather than a white dwarf.
REVIEWS OF TOPICAL PROBLEMS: Axisymmetric stationary flows in compact astrophysical objects
NASA Astrophysics Data System (ADS)
Beskin, Vasilii S.
1997-07-01
A review is presented of the analytical results available for a large class of axisymmetric stationary flows in the vicinity of compact astrophysical objects. The determination of the two-dimensional structure of the poloidal magnetic field (hydrodynamic flow field) faces severe difficulties, due to the complexity of the trans-field equation for stationary axisymmetric flows. However, an approach exists which enables direct problems to be solved even within the balance law framework. This possibility arises when an exact solution to the equation is available and flows close to it are investigated. As a result, with the use of simple model problems, the basic features of supersonic flows past real compact objects are determined.
Tunable plasmonic toroidal terahertz metamodulator
NASA Astrophysics Data System (ADS)
Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih
2018-04-01
Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.
NASA Astrophysics Data System (ADS)
Alfaro-Cuello, M.; Torres-Flores, S.; Carrasco, E. R.; Mendes de Oliveira, C.; de Mello, D. F.; Amram, P.
2015-10-01
We present a study of the kinematics and the physical properties of the central region of the Hickson Compact Group 31 (HCG 31), focusing on the HCG 31A+C system, using integral field spectroscopy data taken with the Gemini South Telescope. The main players in the merging event (galaxies A and C) are two dwarf galaxies, which have had one close encounter, given the observed tidal tails, and may now be in their second approach, and are possibly about to merge. We present new velocity fields and Hα emission, stellar continuum, velocity dispersion, electron density, Hα equivalent-width and age maps. Considering the high spatial resolution of the integral field unit data, we were able to measure various components and estimate their physical parameters, spatially resolving the different structures in this region. Our main findings are the following: (1) We report for the first time the presence of a super stellar cluster next to the burst associated with the HCG 31C central blob, related to the high values of velocity dispersion observed in this region as well as to the highest value of stellar continuum emission. This may suggest that this system is cleaning its environment through strong stellar winds that may then trigger a strong star formation event in its neighbourhood. (2) Among other physical parameters, we estimate L(Hα) ˜ 14 × 1041 erg s-1 and the star formation rate, SFR ˜11 M⊙ yr-1 for the central merging region of HCG 31A+C. These values indicate a high star formation density, suggesting that the system is part of a merging object, supporting previous scenarios proposed for this system.
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Hu, Xu-Yao
2016-06-01
We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.
The development and test of a deformable diffraction grating for a stigmatic EUV spectroheliometer
NASA Technical Reports Server (NTRS)
Timothy, J. Gethyn; Walker, A. B. C., Jr.; Morgan, J. S.; Huber, M. C. E.; Tondello, G.
1992-01-01
The objectives were to address currently unanswered fundamental questions concerning the fine scale structure of the chromosphere, transition region, and corona. The unique characteristics of the spectroheliometer was used in combination with plasma diagnostic techniques to study the temperature, density, and velocity structures of specific features in the solar outer atmosphere. A unified understanding was sought of the interplay between the time dependent geometry of the magnetic field structure and the associated flows of mass and energy, the key to which lies in the smallest spatial scales that are unobservable with current EUV instruments. Toroidal diffraction gratings were fabricated and tested by a new technique using an elastically deformable substrate. The toroidal diffraction gratings was procured and tested to be used for the evaluation of the Multi-Anode Microchannel Array (MAMA) detector systems for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) and UV Coronagraph Spectrometer (UVCS) instruments on the SOHO mission.
NASA Astrophysics Data System (ADS)
Ruffert, M.; Janka, H.-T.; Takahashi, K.; Schaefer, G.
1997-03-01
Three-dimensional hydrodynamical, Newtonian calculations of the coalescence of equal-mass binary neutron stars are performed with the "Piecewise Parabolic Method". The properties of neutron star matter are described by the equation of state of Lattimer & Swesty (1991, Nucl. Phys. A535, 331) which allows us to include the emission of neutrinos and to evaluate our models for the νν-annihilation in the vicinity of the merging stars. When the stars have merged into one rapidly spinning massive body, a hot toroidal cloud of gas with a mass of about 0.1-0.2Msun_ forms around the wobbling and pulsating central ~3Msun_ object. At that time the total neutrino luminosity climbs to a maximum value of 1-1.5x10^53^erg/s of which 90-95% originate from the toroidal gas cloud surrounding the very dense core. The mean energies of ν_e_, ν_e_, and heavy-lepton neutrinos ν_x_ are around 12MeV, 20MeV, and 27MeV, respectively. The characteristics of the neutrino emission are very similar to the emission from type-II supernovae, except for the ν_e_ luminosity from the merged neutron stars which is a factor 3-6 higher than the luminosities of the other neutrino species. When the neutrino luminosities are highest, νν-annihilation deposits about 0.2-0.3% of the emitted neutrino energy in the immediate neighborhood of the merger, and the maximum integral energy deposition rate is 3-4x10^50^erg/s. Since the 3Msun_ core of the merged object will most likely collapse into a black hole within milliseconds, the energy that can be pumped into a pair-photon fireball is insufficient by a factor of about 1000 to explain γ-ray bursts at cosmological distances with an energy of the order of 10^51^/(4π) erg/steradian. Analytical estimates show that the additional energy provided by the annihilation of νν pairs emitted from a possible accretion torus of ~0.1Msun_ around the central black hole is still more than a factor of 10 too small, unless focussing of the fireball into a jet-like expansion plays an important role. A few 10^-4^Msun_ of very neutron-rich, low-entropy matter may be dynamically ejected shortly after the neutron stars have merged, and another 10^-4^ up to a few 10^-2^Msun_ of strongly neutronized, high-entropy material could be carried away from the accretion torus in a neutrino-driven wind. The contamination with this baryonic material is a severe threat to a relativistic fireball. Aspects of a possible r-processing in these ejecta are discussed.
NASA Astrophysics Data System (ADS)
Reusch, Joshua
2017-10-01
A major goal of the spherical tokamak research program is accessing a state of low internal inductance li, high elongation κ, high toroidal and normalized beta (βt and βN) , and low collisionality without solenoidal current drive. A new local helicity injection (LHI) system in the lower divertor region of the ultra-low aspect ratio Pegasus ST provides non-solenoidally driven plasmas that exhibit most of these characteristics. LHI utilizes compact, edge-localized current sources (Ainj 4 cm2, Iinj 8 kA, Vinj 1.5 kV) for plasma startup and sustainment, and can sustain more than 200 kA of plasma current. Plasma growth via LHI is enhanced by a transition from a regime of high kink-like MHD activity to one of reduced MHD activity at higher frequencies and presumably shorter wavelengths. The strong edge current drive provided by LHI results in a hollow current density profile with low li. The low aspect ratio (R0 / a 1.2) of Pegasus allows ready access to high κ and MHD stable operation at very high normalized plasma currents (IN =Ip /aBT> 15). Thomson scattering measurements indicate Te 100 eV and ne 1 ×19 m-3. The impurity Ti evolution is correlated in time with high frequency magnetic fluctuations, implying substantial reconnection ion heating is driven by the applied helicity injection. Doppler spectroscopy indicates Ti >=Te and that the anomalous ion heating scales consistently with two fluid reconnection theory. Taken together, these features provide access to very high βt plasmas. Equilibrium analyses indicate βt up to 100% and βN 6.5 is achieved. At increasingly low BT, the discharge disrupts at the no-wall ideal stability limit. In these high βt discharges, a minimum |B| well forms over 50% of the plasma volume. This unique magnetic configuration may be of interest for testing predictions of stabilizing drift wave turbulence and/or improving energetic particle confinement. This work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.
Kasmarek, Mark C.; Ramage, Jason K.
2017-08-16
Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. This report contains regional-scale maps depicting approximate 2017 water-level altitudes (represented by measurements made during December 2016 through March 2017) and long-term water-level changes for the Chicot, Evangeline, and Jasper aquifers; a map depicting locations of borehole-extensometer (hereinafter referred to as “extensometer”) sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2016.In 2017, water-level-altitude contours for the Chicot aquifer ranged from 200 feet (ft) below the North American Vertical Datum of 1988 (hereinafter referred to as “datum”) in two localized areas in southwestern and northwestern Harris County to 200 ft above datum in west-central Montgomery County. The largest water-level-altitude decline (120 ft) depicted by the 1977–2017 water-level-change contours for the Chicot aquifer was in northwestern Harris County. A broad area where water-level altitudes declined in the Chicot aquifer extends from northwestern, north-central, and southwestern Harris County across parts of north-central, eastern, and south-central Fort Bend County into southeastern Waller County. Adjacent to the areas where water levels declined was a broad area where water levels rose in central, eastern, and southeastern Harris County, most of Galveston County, eastern and northernmost Brazoria County, and northeastern Fort Bend County. The largest rise (200 ft) in water-level altitudes in the Chicot aquifer from 1977 to 2017 was in southeastern Harris County.The water-level-altitude contours for the Evangeline aquifer in 2017 indicated two areas where the water-level altitudes were 250 ft below datum—one area extending from south-central Montgomery County into north-central Harris County and another area in western Harris County. Water-level altitudes in the Evangeline aquifer ranged from 50 to 200 ft below datum throughout most of Harris County in 2017. In Montgomery County, water-level altitudes in the Evangeline aquifer in 2017 ranged from the aforementioned area where they were 250 ft below datum to an area where they were 200 ft above datum in the northwestern part of the county. The 1977–2017 water-level-change contours for the Evangeline aquifer depict a broad area where water-level altitudes declined in north-central Harris and south-central Montgomery Counties, extending through north-central, northwestern, and southwestern Harris County into western Liberty, southeastern and northeastern Waller, and northeastern and east-central Fort Bend Counties. The largest water-level-altitude decline (280 ft) was in north-central Harris and south-central Montgomery Counties. Water-level altitudes rose in a broad area from central, east-central, and southern Harris County extending into the northernmost part of Brazoria County, the northernmost part of Galveston County, and the southwestern area of Liberty County. The largest rise in water-level altitudes in the Evangeline aquifer from 1977 to 2017 (240 ft) was in southeastern Harris County.Water-level-altitude contours for the Jasper aquifer in 2017 ranged from 200 ft below datum in three isolated areas of south-central Montgomery County (the westernmost of these areas extended slightly into north-central Harris County) to 250 ft above datum in extreme northwestern Montgomery County, northeastern Grimes County, and southwestern Walker County. The 2000–17 water-level-change contours for the Jasper aquifer depict water-level declines in a broad area throughout most of Montgomery County and in parts of Waller, Grimes, and Harris Counties, with the largest decline (220 ft) in an isolated area in south-central Montgomery County.Compaction of subsurface sediments (mostly in the fine-grained silt and clay layers) in the Chicot and Evangeline aquifers was recorded continuously by using 13 extensometers at 11 sites that were either activated or installed between 1973 and 1980. During the period of record beginning in 1973 (or later depending on activation or installation date) and ending in late November or December 2016, measured cumulative compaction at the 13 extensometers ranged from 0.096 ft at the Texas City-Moses Lake extensometer to 3.700 ft at the Addicks extensometer. From January through late November or December 2016, the Addicks, Lake Houston, Southwest, and Northeast extensometers recorded net decreases in land-surface elevation, but the Baytown C–1 (shallow), Baytown C–2 (deep), Clear Lake (shallow), Clear Lake (deep), East End, Johnson Space Center, Pasadena, Seabrook, and Texas City-Moses Lake extensometers recorded net increases in land-surface elevation.The rate of compaction varies from site to site because of differences in rates of groundwater withdrawal in the areas adjacent to each extensometer site; differences among sites in the ratios of sand, silt, and clay and their corresponding compressibilities; and previously established preconsolidation heads. It is not appropriate, therefore, to extrapolate or infer a rate of compaction for an adjacent area on the basis of the rate of compaction recorded by proximal extensometers.
Electrostatic shielding of transformers
De Leon, Francisco
2017-11-28
Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.
Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Leuer, J.A.
1990-05-01
A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.
Peeters, A G; Angioni, C; Strintzi, D
2007-06-29
In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeters, A. G.; Angioni, C.; Strintzi, D.
In this Letter, the influence of the ''Coriolis drift'' on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torquemore » on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiment000.« less
Modular low aspect ratio-high beta torsatron
Sheffield, George V.; Furth, Harold P.
1984-02-07
A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.
Dynamics of multiple double layers in high pressure glow discharge in a simple torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.
2014-06-15
Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less
The Experiment of Modulated Toroidal Current on HT-7 and HT-6M Tokamak
NASA Astrophysics Data System (ADS)
Mao, Jian-shan; P, Phillips; Luo, Jia-rong; Xu, Yu-hong; Zhao, Jun-yu; Zhang, Xian-mei; Wan, Bao-nian; Zhang, Shou-yin; Jie, Yin-xian; Wu, Zhen-wei; Hu, Li-qun; Liu, Sheng-xia; Shi, Yue-jiang; Li, Jian-gang; HT-6M; HT-7 Group
2003-02-01
The Experiments of Modulated Toroidal Current were done on the HT-6M tokamak and HT-7 superconducting tokamak. The toroidal current was modulated by programming the Ohmic heating field. Modulation of the plasma current has been used successfully to suppress MHD activity in discharges near the density limit where large MHD m = 2 tearing modes were suppressed by sufficiently large plasma current oscillations. The improved Ohmic confinement phase was observed during modulating toroidal current (MTC) on the Hefei Tokamak-6M (HT-6M) and Hefei superconducting Tokamak-7 (HT-7). A toroidal frequency-modulated current, induced by a modulated loop voltage, was added on the plasma equilibrium current. The ratio of A.C. amplitude of plasma current to the main plasma current ΔIp/Ip is about 12%-30%. The different formats of the frequency-modulated toroidal current were compared.
Toroidal gyrofluid equations for simulations of tokamak turbulence
NASA Astrophysics Data System (ADS)
Beer, M. A.; Hammett, G. W.
1996-11-01
A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances, and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett [Phys. Fluids B 5, 812 (1993)] to toroidal geometry by including essential toroidal effects. The closures for phase mixing from toroidal ∇B and curvature drifts take the basic form presented in Waltz et al. [Phys. Fluids B 4, 3138 (1992)], but here a more rigorous procedure is used, including an extension to higher moments, which provides significantly improved accuracy. In addition, trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations accurately models most of the physics considered important for ion dynamics in core tokamak turbulence, and is simple enough to be used in high resolution direct numerical simulations.
Classifying and Finding Nearby Compact Stellar Systems
NASA Astrophysics Data System (ADS)
Colebaugh, Alexander; Cunningham, Devin; Dixon, Christopher; Romanowsky, Aaron; Striegel, Stephanie
2018-01-01
Compact stellar systems (CSSs) such as compact ellipticals (cEs) and ultracompact dwarfs (UCDs) are relatively rare and poorly understood types of galaxies. To build a more complete picture of these objects, we create search queries using the Sloan Digital Sky Survey, to inventory CSSs in the nearby universe and to explore their properties. We develop an objective set of criteria for classifying cEs, and use these to construct a large, novel catalog of cEs both during and after formation. We also investigate the numbers of cEs and UCDs around nearby giant galaxies.
Numerical simulation of the multiple core localized low shear toroidal Alfvenic eigenmodes
NASA Astrophysics Data System (ADS)
Wang, Wenjia; Zhou, Deng; Hu, Youjun; Ming, Yue
2018-03-01
In modern tokamak experiments, scenarios with weak central magnetic shear has been proposed. It is necessary to study the Alfvenic mode activities in such scenarios. Theoretical researches have predicted the multiplicity of core-localized toroidally induced Alfvenic eigenmodes for ɛ/s > 1, where ɛ is the inverse aspect ratio and s is magnetic shear. We numerically investigate the existence of multiplicity of core-localized TAEs and mode characteristics using NOVA code in the present work. We firstly verify the existence of the multiplicity for zero beta plasma and the even mode at the forbidden zone. For finite beta plasma, the mode parities become more distinguishable, and the frequencies of odd modes are close to the upper tip of the continuum, while the frequencies of even modes are close to the lower tip of the continuum. Their frequencies are well separated by the forbidden zone. With the increasing value of ɛ/s, more modes with multiple radial nodes will appear, which is in agreement with theoretical prediction. The discrepancy between theoretical prediction and our numerical simulation is also discussed in the main text.
LETTER: Biased limiter experiments on the Advanced Toroidal Facility (ATF) torsatron
NASA Astrophysics Data System (ADS)
Uckan, T.; Isler, R. C.; Jernigan, T. C.; Lyon, J. F.; Mioduszewski, P. K.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Aceto, S. C.; Zielinski, J. J.
1994-02-01
The Advanced Toroidal Facility (ATF) torsatron incorporates two rail limiters that can be positioned by external controls. The influence on the plasma parameters of biasing these limiters both positively and negatively with respect to the walls has been investigated. Experiments have been carried out in the electron cyclotron heated plasmas at 200 kW with a typical density of 5 × 1012 cm-3 and a central electron temperature of ~900 eV. Negative biasing produces only small changes in the plasma parameters, but positive biasing increases the particle confinement by about a factor of 5, although the plasma stored energy does fall at the higher voltages. In addition, positive biasing produces the following effects compared with floating limiter discharges: the core density profiles become peaked rather than hollow, the electric field at the edge becomes more negative (pointing radially inward), the magnitudes of the edge fluctuations and the fluctuation induced transport are reduced, the fluctuation wavelengths become longer and their propagation direction reverses from the electron to the ion diamagnetic direction. Neither polarity of biasing appears to affect the impurity content or transport
High-resolution radio and X-ray observations of the supernova remnant W28
NASA Technical Reports Server (NTRS)
Andrews, M. D.; Basart, J. P.; Lamb, R. C.; Becker, R. H.
1983-01-01
The present study has the objective to report the first high resolution radio and X-ray observations of the central part of the galactic supernova remnant, W28, taking into account the possible association of the remnant with the unidentified gamma-ray source, 2CG 006-00. This gamma-ray source is approximately two-thirds as bright as the Crab pulsar above 100 MeV, and has a somewhat flatter spectrum. Both the radio and X-ray observations reveal previously unknown aspects of W28 which support the possibility of W28 being a gamma-ray source. The radio data show a flat-spectrum, nonthermal component reminiscent of the Crab Nebula and Vela, both of which are confirmed gamma-ray sources. The X-ray observations reveal a compact source within W28, again suggestive of both the Crab and Vela. If the similarities among W28, the Crab Nebula, and the Vela remnant are valid, the gamma-ray source 2CG 00-00 should be studied for periodicity, the conclusive signature of a compact source of emission.
Predicting gravitational lensing by stellar remnants
NASA Astrophysics Data System (ADS)
Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.
2018-03-01
Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.
NASA Astrophysics Data System (ADS)
Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang
2015-06-01
PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.
GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparingmore » theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.« less
Dielectric metamaterials with toroidal dipolar response
Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.; ...
2015-03-27
Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. In addition, we show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials’ macroscopic response. Due to the unique field configuration of the toroidal mode, the proposed metamaterialsmore » could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.« less
Design and experimental evaluation of compact radial-inflow turbines
NASA Technical Reports Server (NTRS)
Fredmonski, A. J.; Huber, F. W.; Roelke, R. J.; Simonyi, S.
1991-01-01
The application of a multistage 3D Euler solver to the aerodynamic design of two compact radial-inflow turbines is presented, along with experimental results evaluating and validating the designs. The objectives of the program were to design, fabricate, and rig test compact radial-inflow turbines with equal or better efficiency relative to conventional designs, while having 40 percent less rotor length than current traditionally-sized radial turbines. The approach to achieving these objectives was to apply a calibrated 3D multistage Euler code to accurately predict and control the high rotor flow passage velocities and high aerodynamic loadings resulting from the reduction in rotor length. A comparison of the advanced compact designs to current state-of-the-art configurations is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Y. B., E-mail: southub@postech.ac.kr; Yun, G. S.; Lee, D. J.
Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) T{sub e} fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2–2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ∼2.0 m to 0.4 mmore » with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.« less
NASA Astrophysics Data System (ADS)
Smyth, R. T.; Ballance, C. P.; Ramsbottom, C. A.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.
2018-05-01
Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to characterize the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R -matrix method, and by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.
Improved Fast, Deep Record Length, Time-Resolved Visible Spectroscopy of Plasmas Using Fiber Grids
NASA Astrophysics Data System (ADS)
Brockington, S.; Case, A.; Cruz, E.; Williams, A.; Witherspoon, F. D.; Horton, R.; Klauser, R.; Hwang, D.
2017-10-01
HyperV Technologies is developing a fiber-coupled, deep record-length, low-light camera head for performing high time resolution spectroscopy on visible emission from plasma events. By coupling the output of a spectrometer to an imaging fiber bundle connected to a bank of amplified silicon photomultipliers, time-resolved spectroscopic imagers of 100 to 1,000 pixels can be constructed. A second generation prototype 32-pixel spectroscopic imager employing this technique was constructed and successfully tested at the University of California at Davis Compact Toroid Injection Experiment (CTIX). Pixel performance of 10 Megaframes/sec with record lengths of up to 256,000 frames ( 25.6 milliseconds) were achieved. Pixel resolution was 12 bits. Pixel pitch can be refined by using grids of 100 μm to 1000 μm diameter fibers. Experimental results will be discussed, along with future plans for this diagnostic. Work supported by USDOE SBIR Grant DE-SC0013801.
High-beta extended MHD simulations of stellarators
NASA Astrophysics Data System (ADS)
Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.; Roberds, N. A.
2016-10-01
The high beta properties of stellarator plasmas are studied using the nonlinear, extended MHD code NIMROD. In this work, we describe recent developments to the semi-implicit operator which allow the code to model 3D plasma evolution with better accuracy and efficiency. The configurations under investigation are an l=2, M=5 torsatron with geometry modeled after the Compact Toroidal Hybrid (CTH) experiment and an l=2, M=10 torsatron capable of having vacuum rotational transform profiles near unity. High-beta plasmas are created using a volumetric heating source and temperature dependent anisotropic thermal conduction and resistivity. To reduce computation expenses, simulations are initialized from stellarator symmetric pseudo-equilibria by turning on symmetry breaking modes at finite beta. The onset of MHD instabilities and nonlinear consequences are monitored as a function of beta as well as the fragility of the magnetic surfaces. Research supported by US DOE under Grant No. DE-FG02-99ER54546.
MHD Studies of Advanced Tokamak Equilibria
NASA Astrophysics Data System (ADS)
Strumberger, E.
2005-10-01
Advanced tokamak scenarios are often characterized by an extremely reversed profile of the safety factor, q, and a fast toroidal rotation. ASDEX Upgrade type equilibria with toroidal flow are computed up to a toroidal Mach number of Mta= 0.5, and compared with the static solution. Using these equilibria, the stabilizing effect of differential toroidal rotation on double tearing modes (DTMs) is investigated. These studies show that the computation of equilibria with flow is necessary for toroidally rotating plasma with Mta>=0.2. The use of ρtor instead of ρpol as radial coordinate enables us also to investigate the stability of equilibria with current holes. For numerical reasons, the rotational transform, = 1/q, has to be unequal zero in the CASTOR$FLOW code, but values of a>=0.001 (qa<=1000) can be easily handled. Stability studies of DTMs in the presence of a current hole are presented. Tokamak equilibria are only approximately axisymmetric. The finite number of toroidal field coils destroys the perfect axisymmetry of the device, and the coils produce a short wavelength ripple in the magnetic field strength. This toroidal field ripple plays a crucial role for the loss of high energy particles. Therefore, three-dimensional tokamak equilibria with and without current holes are computed for various plasma beta values. In addition the influence of the plasma beta on the toroidal field ripple is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, Peter A., E-mail: gilman@ucar.edu
We present results from an MHD model for baroclinic instability in the solar tachocline that includes rotation, effective gravity, and toroidal field that vary continuously with height. We solve the perturbation equations using a shooting method. Without toroidal fields but with an effective gravity declining linearly from a maximum at the bottom to much smaller values at the top, we find instability at all latitudes except at the poles, at the equator, and where the vertical rotation gradient vanishes (32.°3) for longitude wavenumbers m from 1 to >10. High latitudes are much more unstable than low latitudes, but both havemore » e -folding times that are much shorter than a sunspot cycle. The higher the m and the steeper the decline in effective gravity, the closer the unstable mode peak to the top boundary, where the energy available to drive instability is greatest. The effect of the toroidal field is always stabilizing, shrinking the latitude ranges of instability as the toroidal field is increased. The larger the toroidal field, the smaller the longitudinal wavenumber of the most unstable disturbance. All latitudes become stable for a toroidal field exceeding about 4 kG. The results imply that baroclinic instability should occur in the tachocline at latitudes where the toroidal field is weak or is changing sign, but not where the field is strong.« less
Design of new central solenoid for SST-1
NASA Astrophysics Data System (ADS)
Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh; Raj, Piyush; Tanna, V. L.; Khan, Ziauddin; Roy, Swati; Santra, Prosenjit; Biswas, Prabal; Sharma, A. N.; Khristi, Yohan; Kanaber, Deven; Varmora, Pankaj
2017-04-01
The key role of central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼ 655 mm. The physics basis of the design includes volt-sec storage capacity of ∼ 0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼ 0.3 volt/m. The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The interlayer low resistance (∼1 nΩ) terminal praying hand joints at 14 kA at 4.5 K has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼ 3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼ 10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K shield respectively. The protection system consists of SS310 made array of dump resistor of 20 mΩ. The detail physics and engineering design of new superconducting CS of SST-1 will be discussed in this presentation.
Handbook for Local Coordinators: Value-Added, Compact Disk, Union Catalog Test Phase.
ERIC Educational Resources Information Center
Townley, Charles
In 1988, the Associated College Libraries of Central Pennsylvania received a grant to create a value-added, compact disk, union catalog from the U.S. Department of Education's College Library Technology and Cooperative Grants Program, Title II of the Higher Education Act. Designed to contain, in time, 2,000,830 records from 17 member library…
Introductory Overview of Intermediate-luminosity X-ray Objects
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.
2001-05-01
Intermediate-luminosity X-ray Objects (IXOs) are defined as compact objects having X-ray luminosities between those of X-ray binaries and low-luminosity AGNs (i.e., 1039.0 erg s-1 < ~ LX [IXOs] < ~ 1041.0 erg s-1). It is not currently known if these objects are intermediate-mass (M ~ 102-104 Msun) black holes accreting near the Eddington limit, near-solar-mass black holes in a super-Eddington state, or are, in some cases, just supermassive black holes accreting at very low rates. However, the first idea has been popularized by recent press coverage. IXOs are quite common (present in about half of spiral galaxies) and are typically found displaced from the optical nucleus, reducing the likelihood that they are low-luminosity AGN. Nearly all of our knowledge of these objects comes from X-ray observations, as observations of optical, NIR and radio counterparts are not widely known. In this session, we will address (1) the phenomenology of the objects, (2) possible geometry and accretion mechanisms for these objects (i.e., are they more similar to black hole X-ray binaries or AGNs), (3) the central black hole masses, and (4) the formation mechanism for these black holes, if they are of intermediate mass. In this talk, I will focus primarily on giving background information of these fascinating objects.
HIDING IN PLAIN SIGHT: RECORD-BREAKING COMPACT STELLAR SYSTEMS IN THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, Michael A.; Vo, Richard P.; Romanowsky, Aaron J.
2015-07-20
Motivated by the recent, serendipitous discovery of the densest known galaxy, M60-UCD1, we present two initial findings from a follow-up search, using the Sloan Digital Sky Survey, Subaru/Suprime-Cam, and Hubble Space Telescope imaging, and SOuthern Astrophysical Research (SOAR)/Goodman spectroscopy. The first object discovered, M59-UCD3, has a similar size to M60-UCD1 (half-light radius of r{sub h} ∼ 20 pc) but is 40% more luminous (M{sub V} ∼ −14.6), making it the new densest-known galaxy. The second, M85-HCC1, has a size like a typical globular cluster (GC; r{sub h} ∼ 1.8 pc) but is much more luminous (M{sub V} ∼ −12.5). Thismore » hypercompact cluster is by far the densest confirmed free-floating stellar system, and is equivalent to the densest known nuclear star clusters. From spectroscopy, we find that both objects are relatively young (∼9 and ∼3 Gyr, respectively), with metal-abundances that resemble those of galaxy centers. Their host galaxies show clear signs of large-scale disturbances, and we conclude that these dense objects are the remnant nuclei of recently accreted galaxies. M59-UCD3 is an ideal target for follow-up with high-resolution imaging and spectroscopy to search for an overweight central supermassive black hole as was discovered in M60-UCD1. These findings also emphasize the potential value of ultra-compact dwarfs and massive GCs as tracers of the assembly histories of galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.
Here, we report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the densitymore » profile is nearly “stationary” such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wave number dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.« less
Role of DNA-DNA Interactions on the Structure and Thermodynamics of Bacteriophages Lambda and P4
Petrov, Anton S.; Harvey, Stephen C.
2010-01-01
Electrostatic interactions play an important role in both packaging of DNA inside bacteriophages and its release into bacterial cells. While at physiological conditions DNA strands repel each other, the presence of polyvalent cations such as spermine and spermidine in solutions leads to the formation of DNA condensates. In this study, we discuss packaging of DNA into bacteriophages P4 and Lambda under repulsive and attractive conditions using a coarse-grained model of DNA and capsids. Packaging under repulsive conditions leads to the appearance of the coaxial spooling conformations; DNA occupies all available space inside the capsid. Under the attractive potential both packed systems reveal toroidal conformations, leaving the central part of the capsids empty. We also present a detailed thermodynamic analysis of packaging and show that the forces required to pack the genomes in the presence of polyamines are significantly lower than those observed under repulsive conditions. The analysis reveals that in both the repulsive and attractive regimes the entropic penalty of DNA confinement has a significant non-negligible contribution into the total energy of packaging. Additionally we report the results of simulations of DNA condensation inside partially packed Lambda. We found that at low densities DNA behaves as free unconfined polymer and condenses into the toroidal structures; at higher densities rearrangement of the genome into toroids becomes hindered, and condensation results in the formation of non-equilibrium structures. In all cases packaging in a specific conformation occurs as a result of interplay between bending stresses experienced by the confined polymer and interactions between the strands. PMID:21074621
Investigation of intrinsic toroidal rotation scaling in KSTAR
NASA Astrophysics Data System (ADS)
Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.
2017-07-01
The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.
NASA Astrophysics Data System (ADS)
Franchini, Nicola; Pani, Paolo; Maselli, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos A. R.; Radu, Eugen; Ferrari, Valeria
2017-06-01
Light bosonic fields are ubiquitous in extensions of the Standard Model. Even when minimally coupled to gravity, these fields might evade the assumptions of the black-hole no-hair theorems and give rise to spinning black holes which can be drastically different from the Kerr metric. Furthermore, they allow for self-gravitating compact solitons, known as (scalar or Proca) boson stars. The quasiperiodic oscillations (QPOs) observed in the x-ray flux emitted by accreting compact objects carry information about the strong-field region, thus providing a powerful tool to constrain deviations from Kerr's geometry and to search for exotic compact objects. By using the relativistic precession model as a proxy to interpret the QPOs in terms of geodesic frequencies, we investigate how the QPO frequencies could be used to test the no-hair theorem and the existence of light bosonic fields near accreting compact objects. We show that a detection of two QPO triplets with current sensitivity can already constrain these models and that the future eXTP mission or a LOFT-like mission can set very stringent constraints on black holes with bosonic hair and on (scalar or Proca) boson stars. The peculiar geodesic structure of compact scalar/Proca boson stars implies that these objects can easily be ruled out as alternative models for x-ray source GRO J1655-40.
Discovery of Compact Quiescent Galaxies at Intermediate Redshifts in DEEP2
NASA Astrophysics Data System (ADS)
Blancato, Kirsten; Chilingarian, Igor; Damjanov, Ivana; Moran, Sean; Katkov, Ivan
2015-01-01
Compact quiescent galaxies in the redshift range 0.6 < z < 1.1 are the missing link needed to complete the evolutionary histories of these objects from the high redshift z ≥ 2 Universe to the local z ~ 0 Universe. We identify the first intermediate redshift compact quiescent galaxies by searching a sample of 1,089 objects in the DEEP2 Redshift Survey that have multi-band photometry, spectral fitting, and readily available structural parameters. We find 27 compact quiescent candidates between z = 0.6 and z = 1.1 where each candidate galaxy has archival Hubble Space Telescope (HST) imaging and is visually confirmed to be early-type. The candidates have half-light radii ranging from 0.83 < Re,c < 7.14 kpc (median Re,c = 1.77 kpc) and virial masses ranging from 2.2E10 < Mdyn < 5.6E11 Msun (median Mdyn = 7.7E10 Msun). Of our 27 compact quiescent candidates, 13 are truly compact with sizes at most half of the size of their z ~ 0 counterparts of the same mass. In addition to their structural properties bridging the gap between their high and low redshift counterparts, our sample of intermediate redshift quiescent galaxies span a large range of ages but is drawn from two distinct epochs of galaxy formation: formation at z > 2 which suggests these objects may be the relics of the observed high redshift compact galaxies and formation at z ≤ 2 which suggests there is an additional population of more recently formed massive compact galaxies. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.
Some topics in the magnetohydrodynamics of accreting magnetic compact objects
NASA Technical Reports Server (NTRS)
Aly, J. J.
1986-01-01
Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.
System and method for generating current by selective electron heating
Fisch, Nathaniel J.; Boozer, Allen H.
1984-01-01
A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.
Influence of toroidal rotation on resistive tearing modes in tokamaks
NASA Astrophysics Data System (ADS)
Wang, S.; Ma, Z. W.
2015-12-01
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.
Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity
NASA Astrophysics Data System (ADS)
Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka
We show a cooling scenario of compact stars to satisfy recent observations of compact stars. The central density of compact stars can exceed the nuclear density, and it is considered that many hadronic phases appear at such a density. It is discussed that neutron superfluidity (1S0 for lower density, and 3P2 for higher density) and proton superfluidity/superconductivity (1S0) appears in all compact stars. And some "Exotic" states are considered to appear in compact stars, such as meson condensation, hyperon mixing, deconfinement of quarks and quark colour superconductivity. These exotic states appear at the density region above the threshold densities of each state. We demonstrate the thermal evolution of isolated compact stars, adopting the effects of nucleon superfluidity and quark colour superconductivity. We assume large gap energy (Δ > 10 MeV) for colour superconducting quark phase, and include the effects of nucleon superfluidity with parametrised models. We simulate the cooling history of compact stars, and shows that the heavier star does not always cool faster than lighter one, which is determined by the parameters of neutron 3P2 superfluidity.
Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.
2015-08-27
Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.
Variable control of neutron albedo in toroidal fusion devices
Jassby, D.L.; Micklich, B.J.
1983-06-01
This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.
Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors.
Ahmadivand, Arash; Gerislioglu, Burak; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih
2017-09-22
Unconventional characteristics of magnetic toroidal multipoles have triggered researchers to study these unique resonant phenomena by using both 3D and planar resonators under intense radiation. Here, going beyond conventional planar unit cells, we report on the observation of magnetic toroidal modes using artificially engineered multimetallic planar plasmonic resonators. The proposed microstructures consist of iron (Fe) and titanium (Ti) components acting as magnetic resonators and torus, respectively. Our numerical studies and following experimental verifications show that the proposed structures allow for excitation of toroidal dipoles in the terahertz (THz) domain with the experimental Q-factor of ∼18. Taking the advantage of high-Q toroidal line shape and its dependence on the environmental perturbations, we demonstrate that room-temperature toroidal metasurface is a reliable platform for immunosensing applications. As a proof of concept, we utilized our plasmonic metasurface to detect Zika-virus (ZIKV) envelope protein (with diameter of 40 nm) using a specific ZIKV antibody. The sharp toroidal resonant modes of the surface functionalized structures shift as a function of the ZIKV envelope protein for small concentrations (∼pM). The results of sensing experiments reveal rapid, accurate, and quantitative detection of envelope proteins with the limit of detection of ∼24.2 pg/mL and sensitivity of 6.47 GHz/log(pg/mL). We envision that the proposed toroidal metasurface opens new avenues for developing low-cost, and efficient THz plasmonic sensors for infection and targeted bioagent detection.
NASA Astrophysics Data System (ADS)
Sokolov, V. V.; Vlasyuk, V. V.; Petkov, V. B.
2016-06-01
The International Workshop on Quark Phase Transition in Compact Objects and Multimessenger Astronomy: Neutrino Signals, Supernovae and Gamma-Ray Bursts (October, 7-14, 2015) was dedicated to Quantum ChromoDynamics (QCD) Phase Transitions and observational signals of these transitions related to formation of compact astrophysical objects. The aim of this workshop was to bring together researchers working on the problems of behavior of matter under critical conditions achievable in such astrophysical objects as "strange" or "hybrid" stars and in laboratories at heavy-ion collisions to discuss fundamental issues and recent developments. Topics included both observations (radio, optical and X-ray astronomy, gamma ray bursts, gravitational waves, neutrino detection, heavy-ion collisions, etc.) and theory (supernova simulations, proto-neutron and neutron stars, equation of state of dense matter, neutron star cooling, unstable modes, nucleosynthesis, explosive transitions, quark-gluon plasma).
Toroidal high-spin isomers in the nucleus 304120
NASA Astrophysics Data System (ADS)
Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.
2017-05-01
Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from multiparticle-multihole excitations in the toroidal system of 120304184 can lead to high-spin isomeric states, even though the toroidal shape of 120304184 without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, Z ≳122 , as reported previously [7 A. Staszczak and C. Y. Wong, Acta Phys. Pol. B 40, 753 (2008)].
Toroidal high-spin isomers in the nucleus 120 304
Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.
2017-05-22
Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis withmore » $$I=I_{z}$$. The toroidal high-$K$ isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus $$^{304}{120}_{184}$$. This method consists of three steps: first, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations we apply an additional cranking constraint of a large angular momentum $$I=I_{z}$$ about the symmetry $z$-axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with $$I=I_{z}$$ is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Furthemore, we have theoretically located two toroidal high-spin isomeric states of $$^{304}{120}_{184}$$ with an angular momentum $I$=$$I_z$$=81$$\\hbar$$ (proton 2p-2h, neutron 4p-4h excitation) and $I$=$$I_z$$=208$$\\hbar$$ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations $$Q_{20}=-297.7$$~b and $$Q_{20}=-300.8$$~b with energies 79.2 MeV and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers $$^{304}{120}_{184}(I_z$$=81$$\\hbar$$ and 208$$\\hbar$$) have the maximum density close to the nuclear matter density, 0.16 fm$$^{-3}$$, and a torus major to minor radius aspect ratio $R/d=3.25$. Here, we demonstrate that aligned angular momenta of $$I_z$$=81$$\\hbar$$ and 208$$\\hbar$$ arising from multi-particle-multi-hole excitations in the toroidal system of $$^{304}{120}_{184}$$ can lead to high-spin isomeric states, even though the toroidal shape of $$^{304}120_{184}$$ without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, $$Z\\gtrsim$$122, as reported previously [A. Staszczak and C. Y. Wong,Acta Phys. Pol. B 40 , 753 (2008)].« less
VLBI of supernovae and gamma-ray bursts
NASA Astrophysics Data System (ADS)
Bartel, N.; Karimi, B.; Bietenholz, M. F.
2017-04-01
Supernovae and gamma-ray bursts (GRBs) are among the brightest events in the universe. Excluding Type Ia supernovae and short GRBs, they are the result of the core collapse of a massive star with material being ejectedwith speeds of several 1000 km/s to nearly the speed of light, and with a neutron star or a black hole left over as the compact remnant of the explosion. Synchrotron radiation in the radio is generated in a shell when the ejecta interact with the surrounding medium and possibly also in the central region near the compact remnant itself. VLBI has allowed resolving some of these sources and monitoring their expansion in detail, thereby revealing characteristics of the dying star, the explosion, the expanding shock front, and the expected compact remnant. We report on updates of some of the most interesting results that have been obtained with VLBI so far. Movies of supernovae are available from our website. They show the evolution from shortly after the explosion to decades thereafter, in one case revealing an emerging compact central source, which may be associated with shock interaction near the explosion center or with the stellar corpse itself, a neutron star or a black hole.
NASA Astrophysics Data System (ADS)
Bakala, P.; Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M. A.; Vincent, F. H.; Mazur, G. P.
2015-09-01
Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars. Aims: Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. Methods: We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift. Results: We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic precession-like configurations that predict a constant frequency ratio equal to 1:2. We demonstrate a significant dependency of broadened Kα iron line profiles on the inclination of the distant observer. Conclusions: This study presents a further step towards the proper model of oscillating accretion tori producing HF QPOs. More realistic future simulations should be based on incorporating the resonant coupling of oscillation modes, the influence of torus opacity, and the pressure effects on the mode frequencies and the torus shape.
NASA Astrophysics Data System (ADS)
Tomov, N. A.; Tomova, M. T.; Bisikalo, D. V.
2017-12-01
The eclipsing symbiotic binary BF Cyg has had five orbital minima during its last optical outburst after 2006. The second minimum is much shallower than the first one and after that the minimum get deeper again. We determined the parameters of the accretion structure surrounding the compact object in two minima and traced its evolution until 2014. Moreover, we analysed the continuum of the system in the region of the UBVRCIC photometric bands to derive the parameters of its components at two times orbital maximum and calculated the mass-loss rate of the compact object. The results obtained allow us to conclude about the mechanism of fading of the optical light of the system until 2014. These results show that the optical flux of the outbursted compact object decreases because of "contraction" of its observed photosphere (pseudophotosphere) which, on its side, is due to increase of the velocity of its stellar wind, and the optical flux of the circumbinary nebula decreases mainly because of reduction of its mean density, which, on its side, is due to destruction of the accretion structure.
Recent Results on Central Compact Objects
NASA Astrophysics Data System (ADS)
Halpern, Jules P.; Gotthelf, E. V.
2011-09-01
We will review the latest observational results and theoretical puzzles about the class of central compact objects (CCOs) in supernova remnants (SNRs), 10 isolated neutron stars (NSs) with steady, thermal X-ray emission and absence of a surrounding pulsar wind nebula. Three CCOs have detected X-ray pulsations, with periods of 0.105, 0.112, and 0.424 s. X-ray timing studies reveal that their spin-down rates are extremely small, implying dipole magnetic fields of only 3.e10-1.e11 G, which is unprecedented among the population of young pulsars. In the absence of a stronger magnetic field, it is difficult to explain the high temperatures of their surface hot spots, which may instead require a magnetic field configuration that is different from a centered dipole. While CCOs are inconspicuous relative to ordinary young pulsars and active magnetars, that they are found in SNRs in comparable numbers to other classes of NSs implies that they must represent a significant fraction of NS births. Nevertheless, they fall in a region of the P,P-dot diagram for radio pulsars that is underpopulated, so it is not clear if CCOs are intrinsically radio quiet, and what happens to their descendants, the "orphaned CCOs" whose SNRs have dissipated. It has been speculated that if their magnetic fields were initially strong but were buried by prompt fall-back of supernova debris, then the dipole field may eventually diffuse back to the surface, and CCOs could join the main population of ordinary pulsars. We will also discuss how the absence of detected pulsations from the majority of CCOs makes them difficult to distinguish from magnetars in quiescence, which have X-ray spectra and luminosities similar to those of CCOs. However, they can be distinguished with long-term monitoring, since magnetars are eventually variable, while CCOs are steady X-ray emitters.
Theoretical studies of possible toroidal high-spin isomers in the light-mass region
Staszczak, A.; Wong, Cheuk-Yin
2016-05-11
We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ℏ and 140ℏ, which follow the same (multi-particle) (multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC) experiments.
Axisymmetric magnetic modes of neutron stars having mixed poloidal and toroidal magnetic fields
NASA Astrophysics Data System (ADS)
Lee, Umin
2018-05-01
We calculate axisymmetric magnetic modes of a neutron star possessing a mixed poloidal and toroidal magnetic field, where the toroidal field is assumed to be proportional to a dimensionless parameter ζ0. Here, we assume an isentropic structure for the neutron star and consider no effects of rotation. Ignoring the equilibrium deformation due to the magnetic field, we employ a polytrope of the index n = 1 as the background model for our modal analyses. For the mixed poloidal and toroidal magnetic field with ζ _0\
Confinement time exceeding one second for a toroidal electron plasma.
Marler, J P; Stoneking, M R
2008-04-18
Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.
Toroidal band limiter for a plasma containment device
Kelley, George G.
1978-01-01
This invention relates to a toroidal plasma confinement device having poloidal and toroidal magnetic fields for confining a toroidal plasma column with a plasma current induced therein along an endless, circular equilibrium axis in a torus vacuum cavity wherein the improvement comprises the use of a toroidal plasma band limiter mounted within the vacuum cavity in such a manner as to ensure that the plasma energy is distributed more uniformly over the limiter surface thereby avoiding intense local heating of the limiter while at the same time substantially preventing damage to the plasma containment wall of the cavity by the energetic particles diffusing out from the confined plasma. A plurality of poloidal plasma ring limiters are also utilized for containment wall protection during any disruptive instability that might occur during operation of the device.
Protamine mRNA ratio in stallion spermatozoa correlates with mare fecundity.
Paradowska-Dogan, A; Fernandez, A; Bergmann, M; Kretzer, K; Mallidis, C; Vieweg, M; Waliszewski, P; Zitzmann, M; Weidner, W; Steger, K; Kliesch, S
2014-07-01
Highly compacted sperm DNA in protamine toroids and a minor fraction of nucleohistones are prerequisites for the efficient transmission of the paternal genome into the oocyte at fertilization. The objective of this study was to evaluate whether protamines might serve as a prognostic factor for stallion fertility. In situ hybridization detected specific expression of P1 mRNA in the cytoplasm of stage I to VII spermatids, whereas comparable immunohistochemical stainings showed that protein expression was delayed till elongating spermatids in differentiation stages III to VIII. No staining was detectable in cryptorchid testis because of the lack of spermatids in the seminiferous tubules. Using quantitative real-time polymerase chain reaction, we identified mRNA transcripts of P1 and 2 variants of protamine- 2 (P2, P3) in ejaculated spermatozoa from 45 thoroughbred stallions. According to the mare fertility descriptor (i.e. the 'none-return-rate 28 percentage' or NRR28%), stallions were divided into three groups (i.e. high, reduced and low fertility). The P2/P1 mRNA ratio was found to be significantly reduced in the group with lower fertility (p = 0.016) and was slightly correlated with sperm concentration (correlation coefficient r = 0.263). Furthermore, morphologically abnormal sperm count negatively correlated with P2/P1 mRNA ratio, indicating that spermatozoa carrying head defects display a diminished protamine ratio (r = -0.348). Conversely, the P2/P1 ratio was positively correlated with mare fertility or NRR28% (r = 0.274). Interestingly, P3/P1 mRNA ratio remained unaltered in the investigated groups indicating that this variant plays a minor role in equine sperm chromatin compaction. Aberrant protamine transcripts content in equine spermatozoa was not associated with DNA defragmentation rate as measured by flow cytometric acridine orange test. On the basis of these results, we suggest that, similar to human, equine protamine expression constitutes a checkpoint of spermatogenesis and as a corollary the level of protamine mRNA may reflect the quality of spermatogenesis and spermatozoa's fertilizing capacity. © 2014 American Society of Andrology and European Academy of Andrology.
The flaring activity of Markarian 421 during April 2000
NASA Astrophysics Data System (ADS)
Fegan, D. J.; VERITAS Collaboration
2001-08-01
Evidence for correlated TeV γ and X-ray flaring of the extreme blazar Mrk421 during April 2000 is presented and discussed. The remarkably persistent TeV flare of April 30th 2000 (40 σ significance), exhibiting structure over almost six hours of continuous observation, is analysed in detail. 1 Extreme BL Lac objects The most extreme members of the Active Galactic Nucleus (AGN) family are BL Lac objects and optically violently variable (OVV) quasars, collectively known as blazars. These objects are dominated by the presence of relativistic jets. For jets fortuitously aligned with an observers line of sight, emission may exhibit dramatic variability over very short time scales, in turn implying remarkably compact emission regions. For blazars, the Spectral Energy Distribution (SED) is dominated by non-thermal continuum emission, extending from radio to TeV gamma rays. The broadband nature of the blazar emission offers unique insights into energetic physical processes at work in a very compact region, close to the base of the jet and near the underlying central engine, most likely a supermassive black hole. BL Lacs are very effectively characterized on the basis of their SED shape. X-ray and radio flux limited surveys apear to display a bimodal distribution of properties, with LBL (Low-energy peaked, or "Red" BL Lacs) having synchrotron peaks in the IR-optical bands, and HBL (High-energy peaked, or "Blue" BL Lacs) in the UV to soft X-ray band. Recent comprehensive surveys such as DXRBS, REX and RGB have extended, by almost two orders of magnitude, the range of observable synchrotron peak frequencies. For blazar class objects, broadband emission confirms that the synchrotron peak may span the entire IR Xray range, thus accounting for the multi-frequency emission properties of this class of object. Mrk421, Mrk501, 1ES2344 and 1H1426 all exhibit broadband emission properties, high
Compact torus accelerator as a driver for ICF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, M.T.; Meier, W.R.; Morse, E.C.
1986-01-01
The authors have carried out further investigations of the technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically confined, torus-shaped plasma is compressed, accelerated, and focused by two concentric electrodes. After its initial formation, the torus shape is maintained for lifetimes exceeding 1 ms by inherent poloidal and toroidal currents. Hartman suggests acceleration and focusing of such a plasma ring will not cause dissolution within certain constraints. In this study, we evaluated a point design based on an available capacitor bank energy of 9.2 MJ.more » This accelerator, which was modeled by a zero-dimensional code, produces a xenon plasma ring with a 0.73-cm radius, a velocity of 4.14 x 10/sup 9/ cm/s, and a mass of 4.42 ..mu..g. The energy of the plasma ring as it leaves the accelerator is 3.8 MJ, or 41% of the capacitor bank energy. Our studies confirm the feasibility of producing a plasma ring with the characteristics required to induce fusion in an ICF target with a gain greater than 50. The low cost and high efficiency of the CT accelerator are particularly attractive. Uncertainties concerning propagation, accelerator lifetime, and power supply must be resolved to establish the viability of the accelerator as an ICF driver.« less
Proposal for an observational test of the Vainshtein mechanism.
Hui, Lam; Nicolis, Alberto
2012-08-03
Modified gravity theories capable of genuine self-acceleration typically invoke a Galileon scalar which mediates a long-range force but is screened by the Vainshtein mechanism on small scales. In such theories, nonrelativistic stars carry the full scalar charge (proportional to their mass), while black holes carry none. Thus, for a galaxy free falling in some external gravitational field, its central massive black hole is expected to lag behind the stars. To look for this effect, and to distinguish it from other astrophysical effects, one can correlate the gravitational pull from the surrounding structure with the offset between the stellar center and the black hole. The expected offset depends on the central density of the galaxy and ranges up to ∼0.1 kpc for small galaxies. The observed offset in M87 cannot be explained by this effect unless the scalar force is significantly stronger than gravity. We also discuss the systematic offset of compact objects from the galactic plane as another possible signature.
WR 148 and the not so compact companion
NASA Astrophysics Data System (ADS)
Munoz, Melissa; Moffat, Anthony J.; Hill, Grant M.; Shenar, Tomer; Richardson, Noel D.; Pablo, Herbert; St-Louis, Nicole; Ramiaramanantsoa, Tahina
2017-11-01
The objective is to determine the nature of the unseen companion of the single-lined spectroscopic binary, WR 148 (= WN7h+?). The absence of companion lines supports a compact companion (cc) scenario. The lack of hard X-rays favours a non-compact companion scenario. Is WR 148 a commonplace WR+OB binary or a rare WR+cc binary?
Asphaltic mixture compaction and density validation : research brief.
DOT National Transportation Integrated Search
2017-02-01
Research Objectives: : Evaluate HMA longitudinal joint type, method and compaction data to produce specification recommendations to ensure the highest density at longitudinal joints : Evaluate thin lift overlay HMA and provide recommendations...
Experiment to investigate current drive by fast Alfven waves in a small tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gahl, J.; Ishihara, O.; Wong, K.
1985-07-01
An experiment has been carried out to study current generation by Doppler shifted cyclotron resonance heating of minority ions with a unidirectional wave in the small tokamak at Texas Tech University. One of the objectives of the experiment is to understand in detail the wave-particle interactions through which fast (compressional) Alfven waves in the ion cyclotron range of frequencies drive currents in toroidal devices.
Air core poloidal magnetic field system for a toroidal plasma producing device
Marcus, Frederick B.
1978-01-01
A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.
Method and apparatus for the formation of a spheromak plasma
Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo
1984-01-01
An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.
NASA Astrophysics Data System (ADS)
Militello, F.; Farley, T.; Mukhi, K.; Walkden, N.; Omotani, J. T.
2018-05-01
A statistical framework was introduced in Militello and Omotani [Nucl. Fusion 56, 104004 (2016)] to correlate the dynamics and statistics of L-mode and inter-ELM plasma filaments with the radial profiles of thermodynamic quantities they generate in the Scrape Off Layer. This paper extends the framework to cases in which the filaments are emitted from the separatrix at different toroidal positions and with a finite toroidal velocity. It is found that the toroidal velocity does not affect the profiles, while the toroidal distribution of filament emission renormalises the waiting time between two events. Experimental data collected by visual camera imaging are used to evaluate the statistics of the fluctuations, to inform the choice of the probability distribution functions used in the application of the framework. It is found that the toroidal separation of the filaments is exponentially distributed, thus suggesting the lack of a toroidal modal structure. Finally, using these measurements, the framework is applied to an experimental case and good agreement is found.
Quasiperiodic Oscillations in X-ray Binaries
NASA Astrophysics Data System (ADS)
van der Klis, M.; Murdin, P.
2000-11-01
The term quasiperiodic oscillation (QPO) is used in high-energy astrophysics for any type of non-periodic variability that is constrained to a relatively narrow range of variability frequencies. X-RAY BINARIES are systems in which a `compact object', either a BLACK HOLE or a NEUTRON STAR, orbits a normal star and captures matter from it. The matter spirals down to the compact object and heats up ...
Role of pressure anisotropy on relativistic compact stars
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Banerjee, Ayan; Hansraj, Sudan
2018-02-01
We investigate a compact spherically symmetric relativistic body with anisotropic particle pressure profiles. The distribution possesses characteristics relevant to modeling compact stars within the framework of general relativity. For this purpose, we consider a spatial metric potential of Korkina and Orlyanskii [Ukr. Phys. J. 36, 885 (1991)] type in order to solve the Einstein field equations. An additional prescription we make is that the pressure anisotropy parameter takes the functional form proposed by Lake [Phys. Rev. D 67, 104015 (2003), 10.1103/PhysRevD.67.104015]. Specifying these two geometric quantities allows for further analysis to be carried out in determining unknown constants and obtaining a limit of the mass-radius diagram, which adequately describes compact strange star candidates like Her X-1 and SMC X-1. Using the anisotropic Tolman-Oppenheimer-Volkoff equations, we explore the hydrostatic equilibrium and the stability of such compact objects. Then, we investigate other physical features of this model, such as the energy conditions, speeds of sound, and compactness of the star, in detail and show that our results satisfy all the required elementary conditions for a physically acceptable stellar model. The results obtained are useful in analyzing the stability of other anisotropic compact objects like white dwarfs, neutron stars, and gravastars.
Influence of toroidal rotation on resistive tearing modes in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shearmore » shows a destabilizing effect when the rotation is large.« less
System and method for generating current by selective minority species heating
Fisch, Nathaniel J.
1983-01-01
A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of low-frequency waves into the plasma by means of phased antenna arrays or phased waveguide arrays. The plasma is prepared with a minority ion species of different charge state and different gyrofrequency from the majority ion species. The wave frequency and wave phasing are chosen such that the wave energy is absorbed preferentially by minority species ions traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.
Probing Planckian Corrections at the Horizon Scale with LISA Binaries
NASA Astrophysics Data System (ADS)
Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria
2018-02-01
Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.
Probing Planckian Corrections at the Horizon Scale with LISA Binaries.
Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria
2018-02-23
Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.
D. Jordan; V. C. Hubbard; F., Jr. Ponder; E. C. Berry
1999-01-01
Earthworms can alter the physical, chemical, and biological properties of a forest ecosystem. Any physical manipulation to the soil ecosystem may, in turn, affect the activities and ecology of earthworms. The effects of organic matter removal (logs and forest floor) and soil compaction on earthworm activities were measured in a central hardwood region (oakhickory)...
Nine-year response of hardwood understory to organic matter removal and soil compaction
Felix Ponder
2008-01-01
The effects of three levels of organic matter removal (OMR) and three levels of soil compaction (SC) on the development of understory vegetation in a central hardwood forest were evaluated 9 years after treatments were applied as part of a national program of long-term soil productivity research. The three levels of biomass removal (OMR) were removal of merchantable...
Gamma-ray evidence for a stellar-mass black hole near the Galactic center
NASA Technical Reports Server (NTRS)
Ramaty, Reuven; Lingenfelter, Richard E.
1989-01-01
An analysis of the time variability of the observed 511-keV line emission from the direction of the Galactic center and the correlation of its variations in the continuum emission above 511 keV from the same direction suggest the existence of a compact object at or near the Galactic center. A possible mechanism of the observed positron annihilation is consistent with a compact interaction region of the order of 10 to the 8th cm. A black hole of several hundred solar masses is favored as a candidate for this compact object; arguments in support of this suggestion are presented.
Issues in Space Physics in Need of Reconnection with Laboratory Physics
NASA Astrophysics Data System (ADS)
Coppi, B.
2017-10-01
Predicted space observations, such as the ``foot'' in front of collisionless shocks or the occurrence of magnetic reconnection in the Earth`s magnetotail leading to auroral substorms, have highlighted the fruitful connection of laboratory and space plasma physics. The emergence of high energy astrophysics has then benefitted by the contribution of experiments devised for fusion research to the understanding of issues such as that of angular momentum transport processes that have a key role in allowing accretion of matter on a central object (e.g. black hole). The theory proposed for the occurrence of spontaneous rotation in toroidal plasmas was suggested by that developed for accretion. The particle density values, =1015 cm-3 that are estimated to be those of plasmas surrounding known galactic black holes have in fact been produced by the Alcator and other machines. Collective modes excited in the presence of high energy particle populations in laboratory plasmas (e.g. when the ``slide away'' regime has been produced) have found successful applications in space. Magnetic reconnection theory developments and the mode particle resonances associated with them have led to envision new processes for novel high energy particle acceleration. Sponsored in part by the U.S. DoE.
Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles
NASA Astrophysics Data System (ADS)
Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda
2018-01-01
Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzmán, Andrés E.; Garay, Guido; Bronfman, Leonardo
2014-12-01
We report the detection, made using ALMA, of the 92 GHz continuum and hydrogen recombination lines (HRLs) H40α, H42α, and H50β emission toward the ionized wind associated with the high-mass young stellar object G345.4938+01.4677. This is the luminous central dominating source located in the massive and dense molecular clump associated with IRAS 16562–3959. The HRLs exhibit Voigt profiles, which is a strong signature of Stark broadening. We successfully reproduce the observed continuum and HRLs simultaneously using a simple model of a slow ionized wind in local thermodynamic equilibrium, with no need for a high-velocity component. The Lorentzian line wings implymore » electron densities of 5 × 10{sup 7} cm{sup –3} on average. In addition, we detect SO and SO{sub 2} emission arising from a compact (∼3000 AU) molecular core associated with the central young star. The molecular core exhibits a velocity gradient that is perpendicular to the jet-axis, which we interpret as evidence of rotation. The set of observations toward G345.4938+01.4677 are consistent with it being a young high-mass star associated with a slow photo-ionized wind.« less
Effects of multi-pulsed coaxial helicity injection on dynamics of spherical torus
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.; Kagei, Y.
2012-10-01
The mechanism to rebuild the magnetic fields and to amplify the currents in the high-q spherical torus (ST) by the multi-pulsed coaxial helicity injection is investigated using the resistive nonlinear 3D-MHD simulations. During the driven phase, the dynamics is almost axisymmetric because the magnetic fluctuation level of n=0 mode compared with other higher modes is much larger. The toroidal current It is effectively amplified due to the merging of plasmoid ejected from the gun region with the pre-existing ST in the confinement region. The poloidal flux is not significantly amplified because the current sheet generated by the merging process does not rapidly decay. The negative toroidal flow vt is then induced in the direction of It around the central open flux column (OFC) region by inductive toroidal electric field Et (=-vzBr) because of the plasmoid ejection. The strong poloidal flow vz (=ErBt) is also driven from the gun to confinement region due to the Lorentz force. As the result of vz, the flow vortices associated with the dynamo effect are caused around the upper confinement region. During the decay phase, the closed field lines are regenerated due to the dissipation of magnetic fluctuations. The helical distortion of the OFC becomes small, and then ordered magnetic field structures without flows are built. Just after turning off the external electric field, the poloidal flow from the confinement to gun region is caused by the pressure gradients. The parallel current density λ concentrated in the OFC diffuses to the core region, but does not relax in the direction of the Taylor state due to the pressure gradients.
Turbulent fluctuations during pellet injection into a dipole confined plasma torus
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; Kesner, J.; Woskov, P. P.
2017-01-01
We report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the density profile is nearly "stationary" such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wavenumber dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.
Two-fluid equilibrium transition during multi-pulsing CHI in spherical torus
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2015-11-01
Two-fluid dynamo current drive has been studied to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The density gradient, poloidal flow shear, and radial electric shear enhanced by applying the second CHI pulse is observed around the separatrix in the high field side to cause not only the ExB drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The two-fluid equilibrium transition during the M-CHI in the ST is investigated by modelling the M-CHI in the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region due to the increase of the poloidal electron flow velocity in the central open flux column (OFC) region, while the diamagnetic profile is kept in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region due to the increase in the drift velocity and the Hall effect. As the ion diamagnetic drift velocity is changed in the same direction as the ExB drift velocity around the separatrix in the high field side through the negative ion pressure gradient there, the poloidal ion flow velocity is increased in the OFC region, enhancing the flow shear. The radial electric field shear around the separatrix is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The density is decreased in the closed flux region according to the generalized Bernoulli law and its negative gradient around the separatrix steepens.
Turbulent fluctuations during pellet injection into a dipole confined plasma torus
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; ...
2017-01-01
Here, we report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the densitymore » profile is nearly “stationary” such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wave number dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.« less
On the origin of X-ray variability of SS 433
NASA Astrophysics Data System (ADS)
Band, D. L.; Grindlay, J. E.
1984-10-01
The X-ray flares observed from the central source in SS 433 by the Einstein telescope are attributed to surges in the mass transfer rate due to changes in the critical Roche volume of the companion. Analysis of the Roche potential for a primary with spin misaligned with the orbital axis, as required by the slaved disk model, predicts that the critical Roche volume will contract twice per orbit if the orbit is circular. A critical Roche volume fractional change of 1-2 percent is found by applying this potential to SS 433. The nutation of the companion should not affect the steady precession of its spin. Aspects of this work strengthen the evidence that the compact object might be a black hole.
Strong lensing by fermionic dark matter in galaxies
NASA Astrophysics Data System (ADS)
Gómez, L. Gabriel; Argüelles, C. R.; Perlick, Volker; Rueda, J. A.; Ruffini, R.
2016-12-01
It has been shown that a self-gravitating system of massive keV fermions in thermodynamic equilibrium correctly describes the dark matter (DM) distribution in galactic halos (from dwarf to spiral and elliptical galaxies) and that, at the same time, it predicts a denser quantum core towards the center of the configuration. Such a quantum core, for a fermion mass in the range of 50 keV ≲m c2≲345 keV , can be an alternative interpretation of the central compact object in Sgr A*, traditionally assumed to be a black hole (BH). We present in this work the gravitational lensing properties of this novel DM configuration in nearby Milky-Way-like spiral galaxies. We describe the lensing effects of the pure DM component both on halo scales, where we compare them to the effects of the Navarro-Frenk-White and the nonsingular isothermal sphere DM models, and near the galaxy center, where we compare them with the effects of a Schwarzschild BH. For the particle mass leading to the most compact DM core, m c2≈1 02 keV , we draw the following conclusions. At distances r ≳20 pc from the center of the lens the effect of the central object on the lensing properties is negligible. However, we show that measurements of the deflection angle produced by the DM distribution in the outer region at a few kpc, together with rotation curve data, could help to discriminate between different DM models. In the inner regions 1 0-6≲r ≲20 pc , the lensing effects of a DM quantum core alternative to the BH scenario becomes a theme of an analysis of unprecedented precision which is challenging for current technological developments. We show that at distances ˜1 0-4 pc strong lensing effects, such as multiple images and Einstein rings, may occur. Large differences in the deflection angle produced by a DM central core and a central BH appear at distances r ≲1 0-6 pc ; in this regime the weak-field formalism is no longer applicable and the exact general-relativistic formula has to be used for the deflection angle which may become bigger than 2 π . An important difference in comparison to BHs is in the fact that quantum DM cores do not show a photon sphere; this implies that they do not cast a shadow (if they are transparent). Similar conclusions apply to the other DM distributions for other fermion masses in the above-specified range and for other galaxy types.
Soil disturbance-tree growth relations in central Idaho clearcuts
James L. Clayton; Gary Kellogg; Neal Forrester
1987-01-01
Two central Idaho clearcuts regenerated naturally to lodgepole pine (Pinus contorta) and one regenerated with planted ponderosa pine (Pinus ponderosa) were evaluated to see if soil compaction and displacement affected growth as measured by tree height, diameter at breast height, and radial growth increment. Pole-sized trees ranging...
DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)
This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...
Electrostatics of a Family of Conducting Toroids
ERIC Educational Resources Information Center
Lekner, John
2009-01-01
An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…
Transition From High Harmonic Fast Wave to Whistler/Helicon Regime in Tokamaks
NASA Astrophysics Data System (ADS)
Harris, S. P.; Pinsker, R. I.; Porkolab, M.
2014-10-01
Experiments are being prepared1 on DIII-D in which fast waves (FWs) at 0.5 GHz will be used to drive current noninductively in the mid-radius region. Previous DIII-D experiments used FWs at ~0.1 GHz to drive central current; in this work we examine the frequency dependence of wave propagation and damping in the 0.1-1.0 GHz range with the goal of identifying the optimum frequency range for a particular application. Strongly enhanced electron damping and reduced ion damping at higher frequencies must be weighed against increasing coupling difficulties at higher frequencies and more restrictive wave accessibility at low toroidal field. Wave propagation and accessibility is studied with ray tracing models in slab, cylindrical, and fully toroidal geometries. Analytic expressions for electron and ion damping will be derived with an emphasis on understanding the transition from the moderate-to-high ion cyclotron harmonic regime to the very high harmonic or ``whistler''/``helicon''/lower hybrid FW regime. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US Department of Energy under DE-FC02-04ER54698.
Ahmadivand, Arash; Gerislioglu, Burak; Tomitaka, Asahi; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih
2018-01-01
Engineered terahertz (THz) plasmonic metamaterials have emerged as promising platforms for quick infection diagnosis, cost-effective and real-time pharmacology applications owing to their non-destructive and harmless interaction with biological tissues in both in vivo and in vitro assays. As a recent member of THz metamaterials family, toroidal metamaterials have been demonstrated to be supporting high-quality sharp resonance modes. Here we introduce a THz metasensor based on a plasmonic surface consisting of metamolecules that support ultra-narrow toroidal resonances excited by the incident radiation and demonstrate detection of an ultralow concertation targeted biomarker. The toroidal plasmonic metasurface was designed and optimized through extensive numerical studies and fabricated by standard microfabrication techniques. The surface then functionalized by immobilizing the antibody for virus-envelope proteins (ZIKV-EPs) for selective sensing. We sensed and quantified the ZIKV-EP in the assays by measuring the spectral shifts of the toroidal resonances while varying the concentration. In an improved protocol, we introduced gold nanoparticles (GNPs) decorated with the same antibodies onto the metamolecules and monitored the resonance shifts for the same concentrations. Our studies verified that the presence of GNPs enhances capturing of biomarker molecules in the surrounding medium of the metamaterial. By measuring the shift of the toroidal dipolar momentum (up to Δω~0.35 cm−1) for different concentrations of the biomarker proteins, we analyzed the sensitivity, repeatability, and limit of detection (LoD) of the proposed toroidal THz metasensor. The results show that up to 100-fold sensitivity enhancement can be obtained by utilizing plasmonic nanoparticles-integrated toroidal metamolecules in comparison to analogous devices. This approach allows for detection of low molecular-weight biomolecules (≈13 kDa) in diluted solutions using toroidal THz plasmonic unit cells. PMID:29552379
Ahmadivand, Arash; Gerislioglu, Burak; Tomitaka, Asahi; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih
2018-02-01
Engineered terahertz (THz) plasmonic metamaterials have emerged as promising platforms for quick infection diagnosis, cost-effective and real-time pharmacology applications owing to their non-destructive and harmless interaction with biological tissues in both in vivo and in vitro assays. As a recent member of THz metamaterials family, toroidal metamaterials have been demonstrated to be supporting high-quality sharp resonance modes. Here we introduce a THz metasensor based on a plasmonic surface consisting of metamolecules that support ultra-narrow toroidal resonances excited by the incident radiation and demonstrate detection of an ultralow concertation targeted biomarker. The toroidal plasmonic metasurface was designed and optimized through extensive numerical studies and fabricated by standard microfabrication techniques. The surface then functionalized by immobilizing the antibody for virus-envelope proteins (ZIKV-EPs) for selective sensing. We sensed and quantified the ZIKV-EP in the assays by measuring the spectral shifts of the toroidal resonances while varying the concentration. In an improved protocol, we introduced gold nanoparticles (GNPs) decorated with the same antibodies onto the metamolecules and monitored the resonance shifts for the same concentrations. Our studies verified that the presence of GNPs enhances capturing of biomarker molecules in the surrounding medium of the metamaterial. By measuring the shift of the toroidal dipolar momentum (up to Δ ω ~0.35 cm -1 ) for different concentrations of the biomarker proteins, we analyzed the sensitivity, repeatability, and limit of detection (LoD) of the proposed toroidal THz metasensor. The results show that up to 100-fold sensitivity enhancement can be obtained by utilizing plasmonic nanoparticles-integrated toroidal metamolecules in comparison to analogous devices. This approach allows for detection of low molecular-weight biomolecules (≈13 kDa) in diluted solutions using toroidal THz plasmonic unit cells.
Images of the 10-micron source in the Cygnus 'Egg'
NASA Technical Reports Server (NTRS)
Jaye, D.; Fienberg, R. Tresch; Fazio, G. G.; Gezari, D. Y.; Lamb, G. M.; Shu, P. K.; Hoffmann, W. F.; Mccreight, C. R.
1989-01-01
Mid-IR images of AFGL 2688, the Egg nebula, obtained with a 16 x 16 pixel array camera (field of view 12.5 x 12.5 arcsec) resolve the central source. It appears as a centrally peaked ellipsoid with major axis of symmetry parallel to the axis of the visible nebulosity. This is contrary to the expected extension perpendicular to this axis implied by proposed dust-toroid models of the IR source. Maps of the spatial distribution of 8-13 micron color temperature and warm dust opacity derived from the multiwavelength images further characterize the IR emission. The remarkable flatness of the color temperature conflicts with the radial temperature gradient expected across a thick shell of material with a single heat source at its center. The new data suggest instead that the source consists of a central star surrounded by a dust shell that is too thin to provide a detectable temperature gradient and too small to permit the resolution of limb brightening.
Modeling of toroidal torques exerted by internal kink instability in a tokamak plasma
NASA Astrophysics Data System (ADS)
Zhang, N.; Liu, Y. Q.; Yu, D. L.; Wang, S.; Xia, G. L.; Dong, G. Q.; Bai, X.
2017-08-01
Toroidal modeling efforts are initiated to systematically compute and compare various toroidal torques, exerted by an unstable internal kink in a tokamak plasma, using the MARS-F/K/Q suite of codes. The torques considered here include the resonant electromagnetic torque due to the Maxwell stress (the EM or JXB torque), the neoclassical toroidal viscous (NTV) torque, and the torque associated with the Reynolds stress. Numerical results show that the relative magnitude of the net resonant electromagnetic and the Reynolds stress torques increases with the equilibrium flow speed of the plasma, whilst the net NTV torque follows the opposite trend. The global flow shear sensitively affects the Reynolds stress torque, but not the electromagnetic and the NTV torques. Detailed examinations reveal dominant contributions to the Maxwell and Reynolds stress torques, in terms of the poloidal harmonic numbers of various perturbation fields, as well as their relative toroidal phasing.
Tokamak reactor for treating fertile material or waste nuclear by-products
Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.
2012-10-02
Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2014-09-01
This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.
Note: A manifold ranking based saliency detection method for camera.
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Rahman, Mohammad Muntasir
2016-09-01
Research focused on salient object region in natural scenes has attracted a lot in computer vision and has widely been used in many applications like object detection and segmentation. However, an accurate focusing on the salient region, while taking photographs of the real-world scenery, is still a challenging task. In order to deal with the problem, this paper presents a novel approach based on human visual system, which works better with the usage of both background prior and compactness prior. In the proposed method, we eliminate the unsuitable boundary with a fixed threshold to optimize the image boundary selection which can provide more precise estimations. Then, the object detection, which is optimized with compactness prior, is obtained by ranking with background queries. Salient objects are generally grouped together into connected areas that have compact spatial distributions. The experimental results on three public datasets demonstrate that the precision and robustness of the proposed algorithm have been improved obviously.
Compact Stellar Groups in the 30 Doradus Nebula and their Nebular Environment
NASA Astrophysics Data System (ADS)
Walborn, Nolan
1997-07-01
We propose to further knowledge of the stellar content of 30 Doradus by examining the images of all OB stars in a current, major ground-based spectral-classification study, using the archival WFPC2 {and possibly PC1} data. It is expected, and indeed already known in a few cases, that many of them will be compact multiple systems resolved by WFPC. It is essential to account for such structure in luminosity, mass, and evolutionary inferences. We shall derive the most accurate possible photometric results for the resulting components, and we shall propose spatially resolved HST spectroscopy of them in Cycle 8. It should be emphasized that we are not addressing R136, the subject of other programs, but the rich, massive population throughout the Nebula beyond the central core, especially to the north and west where there is evidence for a younger generation, whose formation was possibly triggered by the energetic activity of the core. In addition, preliminary inspection of some of the WFPC2 data has shown many intricate structures in the ambient dust and ionized gas, including possible pre-stellar objects, which we shall describe and relate to the associated stellar component and known IR sources as appropriate.
Broad Halpha Wing Formation in the Planetary Nebula IC 4997.
Lee; Hyung
2000-02-10
The young and compact planetary nebula IC 4997 is known to exhibit very broad wings with a width exceeding 5000 km s-1 around Halpha. We propose that the broad wings are formed through Rayleigh-Raman scattering that involves atomic hydrogen, by which Lybeta photons with a velocity width of a few 102 km s-1 are converted to optical photons and fill the Halpha broad wing region. The conversion efficiency reaches 0.6 near the line center, where the scattering optical depth is much larger than 1, and rapidly decreases in the far wings. Assuming that close to the central star there exists an unresolved inner compact core of high density, nH approximately 109-1010 cm-3, we use the photoionization code "CLOUDY" to show that sufficient Lybeta photons for scattering are produced. Using a top-hat-incident profile for the Lybeta flux and a scattering region with a H i column density NHi=2x1020 cm-2 and a substantial covering factor, we perform a profile-fitting analysis in order to obtain a satisfactory fit to the observed flux. We briefly discuss the astrophysical implications of the Rayleigh-Raman processes in planetary nebulae and other emission objects.
SN 1987A: A Unique Laboratory for Shock Physics
NASA Technical Reports Server (NTRS)
Sonneborn, George
2012-01-01
Supernova 1987 A is the brightest and nearest supernova observed since Kepler's SN1604, and is the only one close enough to resolve and directly observe the temporal growth of the ejecta. Over the past 25 years, intensive observations across the electromagnetic spectrum with observatories on the ground (Australia Telescope Compact Array, Gemini-S, Magellan, VLT) and in space (IUE, KAO, CGRO, Hubble, Chandra, Spitzer, Herschel) have given us an unprecedented view of the evolution of the debris of the supernova and of its shock interaction with circumstellar matter. The outer supernova debris, now expanding with velocities -8000 km/s, encountered the relatively dense circumstellar ring formed by presupernova mass loss starting in 1994. The resulting shock interaction has been manifested by: rapidly brightening UV-optical "hotspots", an expanding X-ray ring. an expanding ring of knotty non-thermal radio emission, and a ring of thermal IR emission from silicate dust. The recent evolution of these emissions reveal new details about the shock interaction, circumstellar material, and the star that exploded. Certain critical problems about SN 1987 A, such as the still undiscovered compact object formed in the explosion and the structure of the central debris, require the capabilities of JWST.
Equilibrium configurations of a charged fluid around a Kerr black hole
NASA Astrophysics Data System (ADS)
Trova, Audrey; Schroven, Kris; Hackmann, Eva; Karas, Vladimír; Kovář, Jiří; Slaný, Petr
2018-05-01
Equilibrium configurations of electrically charged perfect fluid surrounding a central rotating black hole endowed with a test electric charge and embedded in a large-scale asymptotically uniform magnetic field are presented. Following our previous studies considering the central black hole to be nonrotating, we show that in the rotating case conditions for the configurations existence change according to the spin of the black hole. We focus our attention on the charged fluid in rigid rotation, which can form toroidal configurations centered in the equatorial plane or the ones hovering above the black hole, along the symmetry axis. We conclude that a nonzero value of spin changes the existence conditions and the morphology of the solutions significantly. In the case of fast rotation, the morphology of the structures is close to an oblate shape.
Bakhti, Mostafa; Snaidero, Nicolas; Schneider, David; Aggarwal, Shweta; Möbius, Wiebke; Janshoff, Andreas; Eckhardt, Matthias; Nave, Klaus-Armin; Simons, Mikael
2013-02-19
During the development of the central nervous system (CNS), oligodendrocytes wrap their plasma membrane around axons to form a multilayered stack of tightly attached membranes. Although intracellular myelin compaction and the role of myelin basic protein has been investigated, the forces that mediate the close interaction of myelin membranes at their external surfaces are poorly understood. Such extensive bilayer-bilayer interactions are usually prevented by repulsive forces generated by the glycocalyx, a dense and confluent layer of large and negatively charged oligosaccharides. Here we investigate the molecular mechanisms underlying myelin adhesion and compaction in the CNS. We revisit the role of the proteolipid protein and analyze the contribution of oligosaccharides using cellular assays, biophysical tools, and transgenic mice. We observe that differentiation of oligodendrocytes is accompanied by a striking down-regulation of components of their glycocalyx. Both in vitro and in vivo experiments indicate that the adhesive properties of the proteolipid protein, along with the reduction of sialic acid residues from the cell surface, orchestrate myelin membrane adhesion and compaction in the CNS. We suggest that loss of electrostatic cell-surface repulsion uncovers weak and unspecific attractive forces in the bilayer that bring the extracellular surfaces of a membrane into close contact over long distances.
Effects of magnetic islands on drift wave instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, P., E-mail: jiangp@pku.edu.cn; Department of Physics and Astronomy, University of California, Irvine, California 92697; Lin, Z., E-mail: zhihongl@uci.edu
2014-12-15
Magnetic islands have been implemented in the gyrokinetic toroidal code to study the effects of the islands on microturbulence. The pressure profile flattening is verified in the simulation with the islands. Simulations of ion temperature gradient instability find that different toroidal modes are linearly coupled together and that toroidal spectra become broader when the island width increases. The real frequencies and growth rates of different toroidal modes approach each other with the averaged value independent of the island width. The linear mode structures are enhanced at the island separatrices and weakened at the island centers, consistent with the flattening ofmore » the pressure profile inside the islands.« less
Single-molecule toroics in Ising-type lanthanide molecular clusters.
Ungur, Liviu; Lin, Shuang-Yan; Tang, Jinkui; Chibotaru, Liviu F
2014-01-01
Single-molecule toroics (SMTs) are defined, by analogy with single-molecule magnets, as bistable molecules with a toroidal magnetic state, and seem to be most promising for future applications in quantum computing and information storage and use as multiferroic materials with magnetoelectric effect. As an interdisciplinary research area that spans chemistry, physics and material sciences, synthetic chemists have produced systems suitable for detailed study by physicists and materials scientists, while ab initio calculations have been playing a major role in the detection of toroidal magnetization and the advancement of this field. In this tutorial review, we demonstrate the research developed in the fascinating and challenging field of molecular-based SMTs with particular focus on how recent studies tend to address the issue of toroidal arrangement of the magnetic moment in these systems. Herein, nine typical SMTs are summarized, showing that the assembly of wheel-shaped complexes with the high symmetry of the molecule unit and strong intra-molecular dipolar interactions using strong anisotropy metal ions represents the most promising route toward the design of a toroidal moment. Furthermore, the linkage of such robust toroidal moment units with ferromagnetic type through appropriate bridging ligands enhances the toroidal magnetic moment per unit cell.
Development of toroid-type HTS DC reactor series for HVDC system
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2015-11-01
This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.
Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes
NASA Astrophysics Data System (ADS)
Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata
2016-10-01
Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.
Drift Wave Simulation in Toroidal Geometry.
NASA Astrophysics Data System (ADS)
Lebrun, Maurice Joseph, III
1988-12-01
The drift wave, a general category of plasma behavior arising from a plasma inhomogeneity, is studied using the particle simulation method. In slab geometry, the drift wave (or universal mode) is stabilized by any finite amount of magnetic shear. In toroidal geometry, however, the coupling of the poloidal harmonics gives rise to a new branch of drift wave eigenmodes called the toroidicity -induced mode, which is predicted to be unstable in some regimes. The drift wave in a toroidal system is intrinsically three-dimensional, and is sensitive to the handling of the parallel electron dynamics, the (nearly) perpendicular wave dynamics, and the radial variation of magnetic field vector (shear). A simulation study must therefore be kinetic in nature, motivating the extension of particle simulation techniques to complex geometries. From this effort a three dimensional particle code in a toroidal coordinate system has been developed and applied to the toroidal drift wave problem. The code uses an (r,theta,phi) -type coordinate system, and a nonuniform radial grid that increases resolution near the mode-rational surfaces. Full ion dynamics and electron guiding center dynamics are employed. Further, the algorithm incorporates a straightforward limiting process to cylindrical geometry and slab geometry, enabling comparison to the theoretical results in these regimes. Simulations of the density-driven modes in toroidal geometry retain a single toroidal mode number (n = 9). In this regime, the poloidal harmonics are expected to be strongly coupled, giving rise to the marginally unstable toroidicity-induced drift mode. Analysis of the simulation data reveals a strong, low-frequency response that peaks near each mode rational surface. Further, the characteristic oscillation frequencies persist from one mode rational surface to the next, which identifies them as multiple harmonics of the toroidicity-induced mode. The lowest harmonic occurs at a frequency of omega/ omega^{*} ~ 0.26, which is reasonably close to the prediction of linear theory. Interferogram analysis of these modes indicates a "ballooning" structure toward the outside of the torus. The amplitude of the potential is observed to grow exponentially for the m = 8 through m = 10 poloidal mode numbers, with a growth rate of approximately gamma/omega ^{*} ~ 0.075. Saturation occurs at time t ~ 1000 Omega_sp{i}{-1}, and may be caused by quasilinear flattening of the density profile.
A Plasmoid Thruster for Space Propulsion
NASA Technical Reports Server (NTRS)
Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.
2003-01-01
There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (BP and Bt, respectively). An Object with B P t >> 1 is classified as a Field Reverse Configuration (FRC); if B, = Bt, it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids, and subsequently ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp s in the range of 5,000 - 10,000 s with thrust densities of order 10(exp 5) N/sq m. The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to several MW s. The plasmoids mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing.
Spectral Classification of the 30 Doradus Stellar Populations
NASA Astrophysics Data System (ADS)
Walborn, Nolan R.; Blades, J. Chris
1997-10-01
An optical spectral classification study of 106 OB stars within the 30 Doradus Nebula has sharpened the description of the spatial and temporal structures among the associated clusters. Five distinct stellar groups are recognized: (1) the central early-O (Carina phase) concentration, which includes Radcliffe 136 (R136); (2) a younger (Orion phase) population to the north and west of R136, containing heavily embedded early-O dwarfs and IR sources, the formation of which was likely triggered by the central concentration; (3) an older population of late-O and early-B supergiants (Scorpius OB1 phase) throughout the central field, whose structural relationship, if any, to the younger groups is unclear; (4) a previously known, even older compact cluster 3' northwest of R136, containing A- and M-type supergiants (h and χ Persei phase), which has evidently affected the nebular dynamics substantially; and (5) a newly recognized Sco OB1-phase association, surrounding the recently discovered luminous blue variable (LBV) R143, in the southern part of the Nebula. The intricacy of this region and the implications for the interpretation of more distant starbursts are emphasized. The evidence indicates that the formation of the 30 Dor stellar content was neither instantaneous nor continuous, but rather that the stars formed in discrete events at different epochs. The average difference between the derived and calibration absolute visual magnitudes of the stars is 0.05, indicating that the classification, calibration, and adopted distance modulus (V0 - MV = 18.6) are accurate. For 70 of the stars, either the absolute value of that difference is <=0.6 mag, or they are subluminous dwarfs or superluminous supergiants. Many astrophysically interesting objects have been isolated for further investigation. Surprisingly, in view of the presence of several O3 supergiants, the mid-Of star R139 is identified as the most massive object in this sample; it is located well along the 120 M⊙ track, very near the Humphreys-Davidson limit, and it is probably an immediate LBV precursor. This work can and should be extended in three ways: (1) higher resolution and higher S/N observations of many of the stars with larger ground-based telescopes for quantitative analysis, (2) ground-based spectral classification of the numerous additional accessible stars in the field, and (3) spatially resolved spectral classification of compact multiple systems with the Hubble Space Telescope.
Final Report: Levitated Dipole Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamicsmore » and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross-field transport. We find levitation causes the central plasma density to increase dramatically and to significantly improve the confinement of thermal plasma [Boxer, Nature-Physics, v8, p. 949, 2010]. Several diagnostic systems have been used to measure plasma fluctuations, and these appear to represent low-frequency convection that may lead to adiabatic heating and strongly peaked pressure profiles. These experiments are remarkable, and the motivate wide-ranging studies of plasma found in space and confined for fusion energy. In the following report, we describe: (i) observations of the centrally-peaked density profile that appears naturally as a consequence of a strong turbulent pinch, (ii) observations of overall density and pressure increases that suggest large improvements to the thermal electron confinement time result occur during levitation, and (iii) the remarkable properties of low-frequency plasma fluctuations that cause magnetized plasma to "self-organize" into well-confined, centrally-peaked profiles that are relative to fusion and to space.« less
NASA Astrophysics Data System (ADS)
Marchand, Tanguy; Bernard, Laura; Blanchet, Luc; Faye, Guillaume
2018-02-01
We present the first complete (i.e., ambiguity-free) derivation of the equations of motion of two nonspinning compact objects up to the 4PN (post-Newtonian) order, based on the Fokker action of point particles in harmonic coordinates. The last ambiguity parameter is determined from first principle, by resorting to a matching between the near-zone and far-zone fields, and a consistent computation of the 4PN tail effect in d dimensions. Dimensional regularization is used throughout for treating IR divergences appearing at 4PN order, as well as UV divergences due to the modeling of the compact objects as point particles.
A new direction for dark matter research: intermediate-mass compact halo objects
NASA Astrophysics Data System (ADS)
Chapline, George F.; Frampton, Paul H.
2016-11-01
The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15Msolar may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of these stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.
Evaluation of a compact tinnitus therapy by electrophysiological tinnitus decompensation measures.
Low, Yin Fen; Argstatter, Heike; Bolay, Hans Volker; Strauss, Daniel J
2008-01-01
Large-scale neural correlates of the tinnitus decompensation have been identified by using wavelet phase stability criteria of single sweep sequences of auditory late responses (ALRs). Our previous work showed that the synchronization stability in ALR sequences might be used for objective quantification of the tinnitus decompensation and attention which link to Jastreboff tinnitus model. In this study, we intend to provide an objective evaluation for quantifying the effect of music therapy in tinnitus patients. We examined neural correlates of the attentional mechanism in single sweep sequences of ALRs in chronic tinnitus patients who underwent compact therapy course by using the maximum entropy auditory paradigm. Results by our measure showed that the extent of differentiation between attended and unattended conditions improved significantly after the therapy. It is concluded that the wavelet phase synchronization stability of ALRs single sweeps can be used for the objective evaluation of tinnitus therapies, in this case the compact tinnitus music therapy.
Comparison of Laboratory and Field Density of Asphalt Mixtures
DOT National Transportation Integrated Search
1991-01-01
The objective of this paper is to investigate the relationships between the measured density of the mixture obtained in the mix design, during quality control of the mixture (laboratory compaction of field produced mix), after initial compaction (cor...
Do Accretion Disks Exist in High Energy Astrophysics?
NASA Astrophysics Data System (ADS)
Coppi, B.
2006-10-01
The familiar concept of an accretion disk is based on its gas dynamic description where, in particular, the vertical equilibrium is maintained by the (weak) vertical component of the gravitational force due to the central object. When a plasma structure differentially rotating around the same kind of object is considered in which the magnetic field diffusion due to finite resistivity is realistically weak, a radially periodic sequence of pairs of opposite current channels is found. Moreover, the vertical confinement of the structure is maintained by the resulting Lorentz force rather than by gravity. Thus, a ``Lorentz compression'' occurs. In addition, sequences of plasma rings^2 rather than disks emerge. (Note that H. Alfvén had proposed that planetary rings may be ``fossils'' of pre- existing envisioned plasma rings. Moreover, a large ring is the most prominent feature emerging from the high resolution X- ray image of the Crab). The ``seed'' magnetic field in which the structure is immersed is considerably smaller than that produced by the internal toroidal currents. The magnetic pressure is of the order of the plasma pressure. Thus, ring sequence configurations can be suitable for the emergence of a jet from their center. Two coupled non-linear equations have been solved, representing the vertical and the horizontal equilibrium conditions for the structure.*Sponsored in part by the U.S. D.O.E. B. Coppi, Phys. Plasmas 12, 057301, (2005) B. Coppi and F. Rousseau, Ap. J. 641 (1), 458 (2006)
Ultra Compact Optical Pickup with Integrated Optical System
NASA Astrophysics Data System (ADS)
Nakata, Hideki; Nagata, Takayuki; Tomita, Hironori
2006-08-01
Smaller and thinner optical pickups are needed for portable audio-visual (AV) products and notebook personal computers (PCs). We have newly developed an ultra compact recordable optical pickup for Mini Disc (MD) that measures less than 4 mm from the disc surface to the bottom of the optical pickup, making the optical system markedly compact. We have integrated all the optical components into an objective lens actuator moving unit, while fully satisfying recording and playback performance requirements. In this paper, we propose an ultra compact optical pickup applicable to portable MD recorders.
Grinding Inside A Toroidal Cavity
NASA Technical Reports Server (NTRS)
Mayer, Walter; Adams, James F.; Burley, Richard K.
1987-01-01
Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.
2009-01-01
three axis fluxgate magnetometer , CMOS sun and star sensors, and a Kalman filter. The work and tasks that have been accomplished on the TOROID... magnetometer . The problem was found to be a missing ferrite bead which connects the 12V power supply to the op-amps which are used to appropriately...establish an overall operational timeline for TOROID. Testing and calibration was performed on the three-axis magnetometer which is primary attitude
HST imaging of quasi-stellar objects with WFPC2
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Holtzman, Jon; Sparks, W. B.; Morris, S. C.; Hanisch, R. J.; Mo, J.
1994-01-01
Early images were taken with the optically corrected WFPC2 camera of the Hubble Space Telescope of the low-redshift quasars(QSOs) 1229+204 and 2141+175, which are radio-quiet and radio-loud, respectively. We discuss image restoration on the data. The objects were chosen on the basis of structure seen with 0.5 sec resolution with the Canada-France-Hawaii-Telescope (CFHT) high-resolution camera (HRCAM). 1229+204 was known to be a barred spiral with an asymmetrical extra blue feature: this is now resolved into a ring of knots which are probably young stellar populations in the tidal debris of a small gas-rich companion. There are also shell-like structures along the bar. 2141+175 has a faint smooth curved tidal arm without knots which extends on both sides of a compact elliptical-shaped central galaxy. There is also a short jetlike feature emerging from the nucleus. We discuss the properties and implications of these morphological details.
The Swift X-Ray Te1escope: Status and Performance
NASA Technical Reports Server (NTRS)
Burrows, David N.; Kennea, J.A.; Abbey, A.F.; Beardmore, A.; Campana, S.; Capalbi, M.; Chincarini, G.; Cusumano, G.; Evans, P.A.; Hill, J.E.;
2007-01-01
We present science highlights and performance from the Swift X-ray Telescope (XRT), which was launched on November 20,2004. The XRT covers the 0.2-10 keV band, and spends most of its time observing gamma-ray burst (GRB) afterglows, though it has also performed observations of many other objects. By mid-August 2007, the XRT had observed over 220 GRB afterglows, detecting about 96% of them. The XRT positions enable followup ground-based optical observations, with roughly 60% of the afterglows detected at optical or near IR wavelengths. Redshifts are measured for 33% of X-ray afterglows. Science highlights include the discovery of flaring behavior at quite late times, with implications for GRB central engines; localization of short GRBs, leading to observational support for compact merger progenitors for this class of bursts; a mysterious plateau phase to GRB afterglows; as well as many other interesting observations such as X-ray emission from comets, novae, galactic transients, and other objects.
NASA Astrophysics Data System (ADS)
Voggel, Karina Theresia
2015-08-01
Ultra-Compact Dwarf Galaxies (UCDs) have filled the size gap (10-100pc) in the scaling relations of early-type stellar systems. Before their discovery, no objects were known in the parameter space between globular clusters (GCs) and dwarf galaxies. The nature of UCDs is widely debated. Two formation channels have been suggested: either UCDs are surviving nuclei of tidally stripped dwarf galaxies, or they constitute the high mass end of the GC population. In this work we establish new strategies to constrain the formation channel of UCDs, looking for the observational signatures of stripped nuclei.Before falling into a galaxy cluster dwarf galaxies initially host their own GC system. Through tidal interaction the GCs outside of the shrinking tidal radius are lost and disperse in the general GC population of the cluster, whereas GCs inside the tidal radius remain bound to the dwarf galaxy. Therefore, we expect to find some GCs close to the stripped nuclei that have not been removed yet, but dragged towards the nucleus via dynamical friction.We tested this prediction in the halo of NGC 1399, the central Fornax cluster galaxy, where we find a local overabundance of GCs on scales of 0.5 to 1 kpc around UCDs. A similar analysis of GC overdensities around UCDs in the halo of M87, the central Virgo cluster galaxy, is ongoing. Such a clustering signal of GCs around UCDs could be a hint that these UCDs formed as nuclei, and what we see is the remnant GC population of the ancestor galaxy.We also have studied the detailed structural composition of ~100 UCDs in the halo of NGC 1399 by analyzing their surface brightness profiles. We present new evidence for faint asymmetric structures and tidal tails around several UCDs, possible tracers for the assembly history of the central cluster galaxy. With new numbers on the abundance of tidal features and close GC companions within large UCD samples, the contribution of each formation channel to the GC/UCD populations in galaxy halos can be constrained.
A contracting circumbinary molecular ring around Ori 139-409 with an inner cavity of about 140 au
NASA Astrophysics Data System (ADS)
Zapata, Luis A.; Schilke, Peter; Ho, Paul T. P.
2010-03-01
We present sensitive and subarcsecond resolution (~0.7 arcsec) CH3OH(7-2,6-6-2,5) line and 890-μm continuum observations, made with the Submillimeter Array (SMA), towards the hot molecular circumbinary ring associated with the young multiple star Ori 139-409. The CH3OH(7-2,6-6-2,5) emission from the ring is well resolved at this angular resolution, revealing an inner cavity with a size of about 140 au. A local thermodynamic equilibrium model of a Keplerian disc with an inner cavity of the same size confirms the presence of this cavity. Additionally, this model suggests that the circumbinary ring is contracting with a velocity of Vinf ~ 1.5kms-1 towards the binary central compact circumstellar discs reported at a wavelength of 7 mm. The inner central cavity seems to be formed by the tidal effects of the young stars in the middle of the ring. The ring does not appear to be a stationary object. Furthermore, the infall velocity we determine is about a factor of 3 slower than the free-fall velocity corresponding to the dynamical mass. This would correspond to a mass accretion rate of about 10-5 Msolar yr-1. We have found that the dust emission associated with Ori 139-409 appears to be arising from the circumstellar discs, with no strong contribution from the molecular gas ring. Furthermore, a simple comparison with other classical molecular dusty rings (e.g. GG Tau, UZ Tau and UY Aur) suggests that Ori 139-409 could be one of the youngest circumbinary rings reported to date. Finally, our results confirm that the circumbinary rings are actively funnelling fresh gas material to the central compact binary circumstellar discs (i.e. to the protostars in the very early phases of their evolution).
NASA Astrophysics Data System (ADS)
Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.
2018-03-01
Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).
The Solar Ultraviolet Magnetograph Investigation Sounding Rocket Program
NASA Technical Reports Server (NTRS)
West, E. A.; Kobayashi, K.; Davis, J. M.; Gary, G. A.
2007-01-01
This paper will describe the objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the unique optical components that have been developed to meet those objectives. A sounding rocket payload has been developed to test the feasibility of magnetic field measurements in the Sun's transition region. The optics have been optimized for simultaneous measurements of two magnetic sensitive lines formed in the transition region (CIV at 1550 A and MgII at 2800 A). This paper will concentrate on the polarization properties SUMI's toroidal varied-line-space (TVLS) gratings and its system level testing as we prepare to launch in the Summer of 2008.
Optimal design of compact and connected nature reserves for multiple species.
Wang, Yicheng; Önal, Hayri
2016-04-01
When designing a conservation reserve system for multiple species, spatial attributes of the reserves must be taken into account at species level. The existing optimal reserve design literature considers either one spatial attribute or when multiple attributes are considered the analysis is restricted only to one species. We built a linear integer programing model that incorporates compactness and connectivity of the landscape reserved for multiple species. The model identifies multiple reserves that each serve a subset of target species with a specified coverage probability threshold to ensure the species' long-term survival in the reserve, and each target species is covered (protected) with another probability threshold at the reserve system level. We modeled compactness by minimizing the total distance between selected sites and central sites, and we modeled connectivity of a selected site to its designated central site by selecting at least one of its adjacent sites that has a nearer distance to the central site. We considered structural distance and functional distances that incorporated site quality between sites. We tested the model using randomly generated data on 2 species, one ground species that required structural connectivity and the other an avian species that required functional connectivity. We applied the model to 10 bird species listed as endangered by the state of Illinois (U.S.A.). Spatial coherence and selection cost of the reserves differed substantially depending on the weights assigned to these 2 criteria. The model can be used to design a reserve system for multiple species, especially species whose habitats are far apart in which case multiple disjunct but compact and connected reserves are advantageous. The model can be modified to increase or decrease the distance between reserves to reduce or promote population connectivity. © 2015 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Dullo, Bililign T.; Graham, Alister W.
2013-05-01
We have used the full radial extent of images from the Hubble Space Telescope's Advanced Camera for Surveys and Wide Field Planetary Camera 2 to extract surface brightness profiles from a sample of six, local lenticular galaxy candidates. We have modeled these profiles using a core-Sérsic bulge plus an exponential disk model. Our fast rotating lenticular disk galaxies with bulge magnitudes MV <~ -21.30 mag have central stellar deficits, suggesting that these bulges may have formed from "dry" merger events involving supermassive black holes (BHs) while their surrounding disk was subsequently built up, perhaps via cold gas accretion scenarios. The central stellar mass deficits M def are roughly 0.5-2 M BH (BH mass), rather than ~10-20 M BH as claimed from some past studies, which is in accord with core-Sérsic model mass deficit measurements in elliptical galaxies. Furthermore, these bulges have Sérsic indices n ~3, half-light radii Re < 2 kpc and masses >1011 M ⊙, and therefore appear to be descendants of the compact galaxies reported at z ~ 1.5-2. Past studies which have searched for these local counterparts by using single-component galaxy models to provide the z ~ 0 size comparisons have overlooked these dense, compact, and massive bulges in today's early-type disk galaxies. This evolutionary scenario not only accounts for what are today generally old bulges—which must be present in z ~ 1.5 images—residing in what are generally young disks, but it eliminates the uncomfortable suggestion of a factor of three to five growth in size for the compact, z ~ 1.5 galaxies that are known to possess infant disks.
NMR apparatus for in situ analysis of fuel cells
Gerald, II, Rex E; Rathke, Jerome W
2012-11-13
The subject apparatus is a fuel cell toroid cavity detector for in situ analysis of samples through the use of nuclear magnetic resonance. The toroid cavity detector comprises a gas-tight housing forming a toroid cavity where the housing is exposed to an externally applied magnetic field B.sub.0 and contains fuel cell component samples to be analyzed. An NMR spectrometer is electrically coupled and applies a radiofrequency excitation signal pulse to the detector to produce a radiofrequency magnetic field B.sub.1 in the samples and in the toroid cavity. Embedded coils modulate the static external magnetic field to provide a means for spatial selection of the recorded NMR signals.
Effect of antistripping additives on the compaction of bituminous concrete.
DOT National Transportation Integrated Search
1981-01-01
The objective of this investigation was to determine the effect of antistripping additives on the compaction of bituminous concrete. To do this, the densities obtained on test sections with and without additive were compared. Comparisons of nuclear d...
WisDOT asphaltic mixture new specifications implementation : field compaction and density.
DOT National Transportation Integrated Search
2016-06-01
The main research objectives of this study were to evaluate HMA Longitudinal Joint type, method and compaction data to produce specification recommendations that will ensure the highest density longitudinal joint, as well as evaluate and produce a sp...
Refined beam measurements on the SNS H- injector
NASA Astrophysics Data System (ADS)
Han, B. X.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stinson, C. M.; Stockli, M. P.
2017-08-01
The H- injector for the SNS RFQ accelerator consists of an RF-driven, Cs-enhanced H- ion source and a compact, two-lens electrostatic LEBT. The LEBT output and the RFQ input beam current are measured by deflecting the beam on to an annular plate at the RFQ entrance. Our method and procedure have recently been refined to improve the measurement reliability and accuracy. The new measurements suggest that earlier measurements tended to underestimate the currents by 0-2 mA, but essentially confirm H- beam currents of 50-60 mA being injected into the RFQ. Emittance measurements conducted on a test stand featuring essentially the same H- injector setup show that the normalized rms emittance with 0.5% threshold (99% inclusion of the total beam) is in a range of 0.25-0.4 mm.mrad for a 50-60 mA beam. The RFQ output current is monitored with a BCM toroid. Measurements as well as simulations with the PARMTEQ code indicate an underperforming transmission of the RFQ since around 2012.
Injection of a coaxial-gun-produced magnetized plasma into a background helicon plasma
NASA Astrophysics Data System (ADS)
Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott
2014-10-01
A compact coaxial plasma gun is employed for experimental investigation of plasma bubble relaxation into a lower density background plasma. Experiments are being conducted in the linear device HelCat at UNM. The gun is powered by a 120-uF ignitron-switched capacitor bank, which is operated in a range of 5 to 10 kV and 100 kA. Multiple diagnostics are employed to investigate the plasma relaxation process. Magnetized argon plasma bubbles with velocities 1.2Cs, densities 1020 m-3 and electron temperature 13eV have been achieved. The background helicon plasma has density 1013 m-3, magnetic field from 200 to 500 Gauss and electron temperature 1eV. Several distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. Additionally a B-dot probe array has been employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify plasma bubble configurations. Experimental data and analysis will be presented.
A high performance field-reversed configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.
2015-05-15
Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions,more » highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.« less
Jenni, Peter
2012-02-28
For the past year, experiments at the Large Hadron Collider (LHC) have started exploring physics at the high-energy frontier. Thanks to the superb turn-on of the LHC, a rich harvest of initial physics results have already been obtained by the two general-purpose experiments A Toroidal LHC Apparatus (ATLAS) and the Compact Muon Solenoid (CMS), which are the subject of this report. The initial data have allowed a test, at the highest collision energies ever reached in a laboratory, of the Standard Model (SM) of elementary particles, and to make early searches Beyond the Standard Model (BSM). Significant results have already been obtained in the search for the Higgs boson, which would establish the postulated electro-weak symmetry breaking mechanism in the SM, as well as for BSM physics such as Supersymmetry (SUSY), heavy new particles, quark compositeness and others. The important, and successful, SM physics measurements are giving confidence that the experiments are in good shape for their journey into the uncharted territory of new physics anticipated at the LHC.
NASA Tech Briefs, February 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Insulation-Testing Cryostat With Lifting Mechanism; Optical Testing of Retroreflectors for Cryogenic Applications; Measuring Cyclic Error in Laser Heterodyne Interferometers; Self-Referencing Hartmann Test for Large-Aperture Telescopes; Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser; Reconfigurable Hardware for Compressing Hyperspectral Image Data; Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array; High-Speed Ring Bus; Nanoionics-Based Switches for Radio-Frequency Applications; Lunar Dust-Tolerant Electrical Connector; Compact, Reliable EEPROM Controller; Quad-Chip Double-Balanced Frequency Tripler; Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers; Radiation-Hardened Solid-State Drive; Use of Nanofibers to Strengthen Hydrogels of Silica, Other Oxides, and Aerogels; Two Concepts for Deployable Trusses; Concentric Nested Toroidal Inflatable Structures; Investigating Dynamics of Eccentricity in Turbomachines; Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes; Integrity Monitoring of Mercury Discharge Lamps; White-Light Phase-Conjugate Mirrors as Distortion Correctors; Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer; ICER-3D Hyperspectral Image Compression Software; and Context Modeler for Wavelet Compression of Spectral Hyperspectral Images.
Specific and highly efficient condensation of GC and IC DNA by polyaza pyridinophane derivatives.
Stojković, Marijana Radić; Gonzalez-Garcia, Jorge; Šupljika, Filip; Galiana-Rosello, Cristina; Guijarro, Lluis; Gazze, Salvatore A; Francis, Lewis W; Piantanida, Ivo; Garcia-Espana, Enrique
2018-04-01
Two bis-polyaza pyridinophane derivatives and their monomeric reference compounds revealed strong interactions with ds-DNA and RNA. The bis-derivatives show a specific condensation of GC- and IC-DNA, which is almost two orders of magnitude more efficient than the well-known condensation agent spermine. The type of condensed DNA was identified as ψ-DNA, characterized by the exceptionally strong CD signals. At variance to the almost silent AT(U) polynucleotides, these strong CD signals allow the determination of GC-condensates at nanomolar nucleobase concentrations. Detailed thermodynamic characterisation by ITC reveals significant differences between the DNA binding of the bis-derivative compounds (enthalpy driven) and that of spermine and of their monomeric counterparts (entropy driven). Atomic force microscopy confirmed GC-DNA compaction by the bis-derivatives and the formation of toroid- and rod-like structures responsible for the ψ-type pattern in the CD spectra. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mazaleyrat, F.; Varga, L. K.
2000-06-01
A survey of magnetic nanocomposites applicable in high-frequency signal and power electronics is given. First, the preparation and properties of ribbon and powder cores from the nanocrystalline "bulk" alloys (Finemet and Nanoperm) is reviewed. A technology is presented to apply continuously a large stress during the annealing and winding of the rapidly quenched ribbons in order to induce uniaxial anisotropy in it. The obtained toroidal cores with flat hysteresis curve are applicable up to 1 MHz with considerable permeability (˜250). The powder cores prepared from ground Finemet with powder size of 30-400 μm are applicable up to 1 MHz and in some cases up to 10 MHz for smaller powder sizes with low permeability (˜10). Finally, the most common methods used for the preparation of metallic nano-particle s are presented. Presently, the compacts prepared from nano-size (40-80 nm) iron powders do not show the expected behavior. It is anticipated that the iron-based ferromagnetic nanocomposites should replace partly the ferrite-type materials in the forthcoming years.
A model for chromosome organization during the cell cycle in live E. coli.
Liu, Yuru; Xie, Ping; Wang, Pengye; Li, Ming; Li, Hui; Li, Wei; Dou, Shuoxing
2015-11-24
Bacterial chromosomal DNA is a highly compact nucleoid. The organization of this nucleoid is poorly understood due to limitations in the methods used to monitor the complexities of DNA organization in live bacteria. Here, we report that circular plasmid DNA is auto-packaged into a uniform dual-toroidal-spool conformation in response to mechanical stress stemming from sharp bending and un-winding by atomic force microscopic analysis. The mechanism underlying this phenomenon was deduced with basic physical principles to explain the auto-packaging behaviour of circular DNA. Based on our observations and previous studies, we propose a dynamic model of how chromosomal DNA in E. coli may be organized during a cell division cycle. Next, we test the model by monitoring the development of HNS clusters in live E. coli during a cell cycle. The results were in close agreement with the model. Furthermore, the model accommodates a majority of the thus-far-discovered remarkable features of nucleoids in vivo.
A model for chromosome organization during the cell cycle in live E. coli
Liu, Yuru; Xie, Ping; Wang, Pengye; Li, Ming; Li, Hui; Li, Wei; Dou, Shuoxing
2015-01-01
Bacterial chromosomal DNA is a highly compact nucleoid. The organization of this nucleoid is poorly understood due to limitations in the methods used to monitor the complexities of DNA organization in live bacteria. Here, we report that circular plasmid DNA is auto-packaged into a uniform dual-toroidal-spool conformation in response to mechanical stress stemming from sharp bending and un-winding by atomic force microscopic analysis. The mechanism underlying this phenomenon was deduced with basic physical principles to explain the auto-packaging behaviour of circular DNA. Based on our observations and previous studies, we propose a dynamic model of how chromosomal DNA in E. coli may be organized during a cell division cycle. Next, we test the model by monitoring the development of HNS clusters in live E. coli during a cell cycle. The results were in close agreement with the model. Furthermore, the model accommodates a majority of the thus-far-discovered remarkable features of nucleoids in vivo. PMID:26597953
Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface.
Liu, Gui-Dong; Zhai, Xiang; Xia, Sheng-Xuan; Lin, Qi; Zhao, Chu-Jun; Wang, Ling-Ling
2017-10-16
In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consists of two mirrored asymmetric silicon split-ring resonators (ASSRRs) that can support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702) and contrast ratio (~100%). Numerical simulation results show that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer is integrated with the dielectric metasurface, and a max transmission coefficient difference up to 78% is achieved indicating that the proposed hybrid graphene/dielectric metasurface shows good performance as an optical modulator. The effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance are studied and the efficiency of the transmission amplitude modulation of graphene is also investigated. Our results may also provide potential applications in optical filter and bio-chemical sensing.
Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, N.; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Yan, N., E-mail: yanning@ipp.ac.cn
Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentummore » transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.« less
Vignesh, Kuduva R; Soncini, Alessandro; Langley, Stuart K; Wernsdorfer, Wolfgang; Murray, Keith S; Rajaraman, Gopalan
2017-10-18
Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr III Dy III 6 } complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr III Dy III 6 } reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.
Influence of toroidal rotation on tearing modes
NASA Astrophysics Data System (ADS)
Cai, Huishan; Cao, Jintao; Li, Ding
2017-10-01
Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, N.J.; Rax, J.M.
1994-12-20
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, S. R.; Hole, M. J.; Dewar, R. L.
2007-05-15
A generalized energy principle for finite-pressure, toroidal magnetohydrodynamic (MHD) equilibria in general three-dimensional configurations is proposed. The full set of ideal-MHD constraints is applied only on a discrete set of toroidal magnetic surfaces (invariant tori), which act as barriers against leakage of magnetic flux, helicity, and pressure through chaotic field-line transport. It is argued that a necessary condition for such invariant tori to exist is that they have fixed, irrational rotational transforms. In the toroidal domains bounded by these surfaces, full Taylor relaxation is assumed, thus leading to Beltrami fields {nabla}xB={lambda}B, where {lambda} is constant within each domain. Two distinctmore » eigenvalue problems for {lambda} arise in this formulation, depending on whether fluxes and helicity are fixed, or boundary rotational transforms. These are studied in cylindrical geometry and in a three-dimensional toroidal region of annular cross section. In the latter case, an application of a residue criterion is used to determine the threshold for connected chaos.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot
Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. Themore » resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.« less
Apparatus and method for extracting power from energetic ions produced in nuclear fusion
Fisch, Nathaniel J.; Rax, Jean M.
1994-01-01
An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.
Fluctuations and differential contraction during regeneration of Hydra vulgaris tissue toroids
NASA Astrophysics Data System (ADS)
Krahe, Michael; Wenzel, Iris; Lin, Kao-Nung; Fischer, Julia; Goldmann, Joseph; Kästner, Markus; Fütterer, Claus
2013-03-01
We studied regenerating bilayered tissue toroids dissected from Hydra vulgaris polyps and relate our macroscopic observations to the dynamics of force-generating mesoscopic cytoskeletal structures. Tissue fragments undergo a specific toroid-spheroid folding process leading to complete regeneration towards a new organism. The time scale of folding is too fast for biochemical signalling or morphogenetic gradients, which forced us to assume purely mechanical self-organization. The initial pattern selection dynamics was studied by embedding toroids into hydro-gels, allowing us to observe the deformation modes over longer periods of time. We found increasing mechanical fluctuations which break the toroidal symmetry, and discuss the evolution of their power spectra for various gel stiffnesses. Our observations are related to single-cell studies which explain the mechanical feasibility of the folding process. In addition, we observed switching of cells from a tissue bound to a migrating state after folding failure as well as in tissue injury. We found a supra-cellular actin ring assembled along the toroid's inner edge. Its contraction can lead to the observed folding dynamics as we could confirm by finite element simulations. This actin ring in the inner cell layer is assembled by myosin-driven length fluctuations of supra-cellular F-actin bundles (myonemes) in the outer cell layer. This paper is dedicated to Malcolm Steinberg.
Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE
Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...
2017-01-27
Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less
NASA Astrophysics Data System (ADS)
Suzuki, Akihiro; Maeda, Keiichi
2018-04-01
We investigate broad-band emission from supernova ejecta powered by a relativistic wind from a central compact object. A recent two-dimensional hydrodynamic simulation studying the dynamical evolution of supernova ejecta with a central energy source has revealed that outermost layers of the ejecta are accelerated to mildly relativistic velocities because of the breakout of a hot bubble driven by the energy injection. The outermost layers decelerate as they sweep a circumstellar medium surrounding the ejecta, leading to the formation of the forward and reverse shocks propagating in the circumstellar medium and the ejecta. While the ejecta continue to release the internal energy as thermal emission from the photosphere, the energy dissipation at the forward and reverse shock fronts gives rise to non-thermal emission. We calculate light curves and spectral energy distributions of thermal and non-thermal emission from central engine powered supernova ejecta embedded in a steady stellar wind with typical mass loss rates for massive stars. The light curves are compared with currently available radio and X-ray observations of hydrogen-poor superluminous supernovae, as well as the two well-studied broad-lined Ic supernovae, 1998bw and 2009bb, which exhibit bright radio emission indicating central engine activities. We point out that upper limits on radio luminosities of nearby superluminous supernovae may indicate the injected energy is mainly converted to thermal radiation rather than creating mildly relativistic flows owing to photon diffusion time scales comparable to the injection time scale.
Studies of compact objects with Einstein - Review and prospects
NASA Technical Reports Server (NTRS)
Grindlay, Jonathan E.
1990-01-01
X-ray images and spectra of a wide range of systems containing compact objects were obtained with the Einstein X-ray Observatory. Accreting white dwarfs, neutron stars and black holes were observed in binary systems in the Galaxy, and new constraints were derived for their formation, nature and evolution. Massive black holes were studied in active galactic nuclei, and X-ray spectra (and evolution) of AGN have led to a new model for the diffuse X-ray background.
Physics of Tokamak Plasma Start-up
NASA Astrophysics Data System (ADS)
Mueller, Dennis
2012-10-01
This tutorial describes and reviews the state-of-art in tokamak plasma start-up and its importance to next step devices such as ITER, a Fusion Nuclear Science Facility and a Tokamak/ST demo. Tokamak plasma start-up includes breakdown of the initial gas, ramp-up of the plasma current to its final value and the control of plasma parameters during those phases. Tokamaks rely on an inductive component, typically a central solenoid, which has enabled attainment of high performance levels that has enabled the construction of the ITER device. Optimizing the inductive start-up phase continues to be an area of active research, especially in regards to achieving ITER scenarios. A new generation of superconducting tokamaks, EAST and KSTAR, experiments on DIII-D and operation with JET's ITER-like wall are contributing towards this effort. Inductive start-up relies on transformer action to generate a toroidal loop voltage and successful start-up is determined by gas breakdown, avalanche physics and plasma-wall interaction. The goal of achieving steady-sate tokamak operation has motivated interest in other methods for start-up that do not rely on the central solenoid. These include Coaxial Helicity Injection, outer poloidal field coil start-up, and point source helicity injection, which have achieved 200, 150 and 100 kA respectively of toroidal current on closed flux surfaces. Other methods including merging reconnection startup and Electron Bernstein Wave (EBW) plasma start-up are being studied on various devices. EBW start-up generates a directed electron channel due to wave particle interaction physics while the other methods mentioned rely on magnetic helicity injection and magnetic reconnection which are being modeled and understood using NIMROD code simulations.
Magnetohydrodynamic Models of Molecular Tornadoes
NASA Astrophysics Data System (ADS)
Au, Kelvin; Fiege, Jason D.
2017-07-01
Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.
NASA Astrophysics Data System (ADS)
Wen, Yong-Mei; Wen, De-Hua
2017-06-01
By employing four typical equation of states (EOSs) of nuclear matter in the inner crust, the properties of low-mass neutron stars are investigated theoretically. Based on the well-known fact that there is a big gap between the neutron stars and white dwarfs in the mass-radius sequence of compact stars, according to the mass-radius relations of the four adopted EOSs, we conclude that there is a rough forbidden region for the central density and stellar radius to form a compact star; that is, there is no compact star in nature having central density in the region from about 1012kgm-3 to 1017kgm-3 , and there is also no compact star having a radius in the region from about 400 km to 2000 km. Moreover, the properties of the low-mass neutron stars are also explored. It is shown that for a stable neutron star near the minimum mass point, the stellar size (with radius >200 km) is much larger than that of normal neutron stars, and there is a compact "core" concentrated at about 95% of the stellar mass in the inner core with a radius of about 13 km and density higher than the neutron-drip point (4.3 ×1014kgm-3) . This property totally differs from that of normal neutron stars and white dwarfs. Furthermore, the Keplerian period, the moment of inertia, and the surface gravitational redshift of the star near the minimum-mass point are also investigated.
C 3-symmetric opioid scaffolds are pH-responsive DNA condensation agents
McStay, Natasha; Molphy, Zara; Coughlan, Alan; Cafolla, Attilio; McKee, Vickie; Gathergood, Nicholas; Kellett, Andrew
2017-01-01
Herein we report the synthesis of tripodal C3-symmetric opioid scaffolds as high-affinity condensation agents of duplex DNA. Condensation was achieved on both supercoiled and canonical B-DNA structures and identified by agarose electrophoresis, viscosity, turbidity and atomic force microscopy (AFM) measurements. Structurally, the requirement of a tris-opioid scaffold for condensation is demonstrated as both di- (C2-symmetric) and mono-substituted (C1-symmetric) mesitylene-linked opioid derivatives poorly coordinate dsDNA. Condensation, observed by toroidal and globule AFM aggregation, arises from surface-binding ionic interactions between protonated, cationic, tertiary amine groups on the opioid skeleton and the phosphate nucleic acid backbone. Indeed, by converting the 6-hydroxyl group of C3-morphine (MC3) to methoxy substituents in C3-heterocodeine (HC3) and C3-oripavine (OC3) molecules, dsDNA compaction is retained thus negating the possibility of phosphate—hydroxyl surface-binding. Tripodal opioid condensation was identified as pH dependent and strongly influenced by ionic strength with further evidence of cationic amine-phosphate backbone coordination arising from thermal melting analysis and circular dichroism spectroscopy, with compaction also witnessed on synthetic dsDNA co-polymers poly[d(A-T)2] and poly[d(G-C)2]. On-chip microfluidic analysis of DNA condensed by C3-agents provided concentration-dependent protection (inhibition) to site-selective excision by type II restriction enzymes: BamHI, HindIII, SalI and EcoRI, but not to the endonuclease DNase I. PMID:27899572
NASA Astrophysics Data System (ADS)
Holland, W. S.; Greaves, J. S.; Ward-Thompson, D.; Andre, P.
1996-05-01
We present 800μm polarization observations of the young low-mass candidate protostar VLA 1623, and of the high-mass young stellar object S 106-IR and its companion candidate protostar S 106-FIR. The polarized emission due to aligned dust grains has been used to derive the magnetic field direction around both sources. In the case of VLA 1623 we find that the field direction is almost exactly perpendicular to the extremely well-collimated CO outflow. This suggests that the large-scale magnetic field in the cloud cannot be responsible for the collimation of the outflow. However, the data may be consistent with a recent magneto-hydrodynamic model where the field follows stream lines through the central plane of a `cored apple' accretion structure. In S 106 our observations indicate a magnetic field along the dust lane connecting the IR/FIR sources, and perpendicular to the bipolar HII region. A model consistent both with these data, and previous Zeeman measurements, is presented, in which the large-scale magnetic field is poloidal, but is either twisted into a toroidal morphology, or highly `pinched-in', in the flattened dust lane. We also present a synopsis of recent submillimetre polarimetry observations of young disk/outflow sources. For high-mass objects, the data are consistent with super-critical collapse models, and there is evidence for varying degrees of field compression. There is also a correlation of net field orientation with source distance, which is explained by the inclusion of varying amounts of ambient cloud material within the telescope beam. For the few low-mass objects for which data is available, the polarization is less affected by ambient material, and there is some evidence that different outflow models may apply in different sources.
Well behaved anisotropic compact star models in general relativity
NASA Astrophysics Data System (ADS)
Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.
2016-11-01
Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).
NASA Astrophysics Data System (ADS)
Klochkov, D.; Suleimanov, V.; Pühlhofer, G.; Yakovlev, D. G.; Santangelo, A.; Werner, K.
2015-01-01
Context. Central compact objects (CCOs) in supernova remnants are isolated thermally emitting neutron stars (NSs). They are most probably characterized by a magnetic field strength that is roughly two orders of magnitude lower than that of most of the radio and accreting pulsars. The thermal emission of CCOs can be modeled to obtain constraints on the physical parameters of the star such as its mass, radius, effective temperature, and chemical composition. Aims: The CCO in HESS J1731-347 is one of the brightest objects in this class. Starting from 2007, it was observed several times with different X-ray satellites. Here we present our analysis of two new XMM-Newton observations of the source performed in 2013 which increase the total exposure time of the data available for spectral analysis by a factor of about five compared to the analyses presented before. Methods: We use our numerical spectral models for carbon and hydrogen atmospheres to fit the spectrum of the CCO. From our fits, we derive constraints on the physical parameters of the emitting star such as its mass, radius, distance, and effective temperature. We also use the new data to derive new upper limits on the source pulsations and to confirm the absence of a long-term flux and spectral variability. Results: The analysis shows that atmosphere models are clearly preferred by the fit over the blackbody spectral function. Under the assumption that the X-ray emission is uniformly produced by the entire star surface (supported by the lack of pulsations), hydrogen atmosphere models lead to uncomfortably large distances of the CCO, above 7-8 kpc. On the other hand, the carbon atmosphere model formally excludes distances above 5-6 kpc and is compatible with the source located in the Scutum-Crux (~3 kpc) or Norma-Cygnus (~4.5 kpc) Galactic spiral arm. We provide and discuss the corresponding confidence contours in the NS mass-radius plane. The measured effective temperature indicates that the NS is exceptionally hot for the estimated age of ~30 kyr. We discuss possible cooling scenarios to explain this property, as well as possible additional constraints on the star mass and radius from cooling theory.
'Damn that's bright!' - why ignoring the Eddington limit is so much fun
NASA Astrophysics Data System (ADS)
Middleton, M.
2017-10-01
Decades of studying compact objects has led to an explosion in our understanding, yet some puzzles remain unanswered. Whilst the vast majority of Galactic black hole binary systems accrete at a rate below their classical Eddington limit, several appear to exceed it and whilst doing so show the most dramatic of phenomenology including the most powerful ballistic jet events and equatorial outflows. Standing alone as the most extreme example is the Galactic microquasar SS433. Long considered by some to be a Galactic `ultraluminous X-ray source', it is literally shrouded in mystery thanks to an optically thick wind obscuring the central regions. I will discuss these systems and new work which sheds light on SS433 and how it might fit into the growing picture of super-critically accreting sources.
Grand unification of neutron stars
Kaspi, Victoria M.
2010-01-01
The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205
Spectroscopic observations of the symbiotic binary RW Hydrae
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Fernandez-Castro, Telmo
1987-01-01
Ultraviolet/optical spectrophotometry and infrared photometry show that the symbiotic binary RW Hya is comprised of an M giant (with L of about 1000 solar luminosities) and a compact object (with L of about 200 solar luminosities) which resembles the central star of a planetary nebula. The luminosity of the hot component is produced by a nuclear shell source which is replenished by the wind of the red giant at a rate of about 10 to the -8th solar mass/yr. Results indicate that the binary is surrounded by an H II region (of radius of about 10 AU) which gives rise to the observed emission lines and radio emission. The He(2+) and O(2+) regions are found to be confined to the immediate vicinity of the hot component.
Optical/Infrared properties of Be stars in X-ray Binary systems
NASA Astrophysics Data System (ADS)
Naik, Sachindra
2018-04-01
Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.
Improved high power/high frequency inductor
NASA Technical Reports Server (NTRS)
Mclyman, W. T. (Inventor)
1990-01-01
A toroidal core is mounted on an alignment disc having uniformly distributed circumferential notches or holes therein. Wire is then wound about the toroidal core in a uniform pattern defined by the notches or holes. Prior to winding, the wire may be placed within shrink tubing. The shrink tubing is then wound about the alignment disc and core and then heat-shrunk to positively retain the wire in the uniform position on the toroidal core.
Potthoff, Clifford M.
1978-01-01
The disclosure is directed to an apparatus for placing wire windings on a toroidal body, such as a transformer core, having an orifice in its center. The apparatus comprises a wire storage spool, a wire loop holding continuous belt maintained in a C-shaped loop by a belt supporting structure and provision for turning the belt to place and tighten loops of wire on a toroidal body, which is disposed within the gap of the C-shaped belt loop.
Thermal and magnetic properties of electron gas in toroidal quantum dot
NASA Astrophysics Data System (ADS)
Baghdasaryan, D. A.; Hayrapetyan, D. B.; Kazaryan, E. M.; Sarkisyan, H. A.
2018-07-01
One-electron states in a toroidal quantum dot in the presence of an external magnetic field have been considered. The magnetic field operator and the Schrodinger equation have been written in toroidal coordinates. The dependence of one-electron energy spectrum and wave function on the geometrical parameters of a toroidal quantum dot and magnetic field strength have been studied. The energy levels are employed to calculate the canonical partition function, which in its turn is used to obtain mean energy, heat capacity, entropy, magnetization, and susceptibility of noninteracting electron gas. The possibility to control the thermodynamic and magnetic properties of the noninteracting electron gas via changing the geometric parameters of the QD, magnetic field, and temperature, was demonstrated.
NASA Astrophysics Data System (ADS)
Abdoli-Arani, A.; Ramezani-Arani, R.
2012-11-01
The dielectric permittivity tensor elements of a rotating cold collisionless plasma spheroid in an external magnetic field with toroidal and axial components are obtained. The effects of inhomogeneity in the densities of charged particles and the initial toroidal velocity on the dielectric permittivity tensor and field equations are investigated. The field components in terms of their toroidal components are calculated and it is shown that the toroidal components of the electric and magnetic fields are coupled by two differential equations. The influence of thermal and collisional effects on the dielectric tensor and field equations in the rotating plasma spheroid are also investigated. In the limiting spherical case, the dielectric tensor of a stationary magnetized collisionless cold plasma sphere is presented.
STELLAR DYNAMO MODELS WITH PROMINENT SURFACE TOROIDAL FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonanno, Alfio
2016-12-20
Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy inmore » low-mass fast-rotating stars can be naturally explained with an underlying α Ω mechanism.« less
Evaluation of Veda, Inc. , central receiver solar collection system concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ator, J.
1981-08-01
The Unified Heliostat Array (UHA) is a geometrical heliostat field layout with rows of mirrors placed at various levels on terraces. The Veda Industrial Heliostat (VIH) is a toroidal segment mirror mounted on an equatorial mount. These two concepts are evaluated to assess the credibility of the optical designs and the validity of UHA and VIH performance estimates, to determine what the distinctive features embodied in UHA AND VIH concepts offer that more conventional central receiver technologies do not, and to determine where the UHA and VIH concepts might be most applicable in DOE's Solar Thermal Program. The UHA areamore » efficiency, flux density distribution, and beam safety are evaluated, and the feasibility of using a secondary mirror and the potential for special applications are assessed. The optical design, equatorial mount, and manufacturability of the VIH are evaluated. (LEW)« less
Estimating gravitational radiation from super-emitting compact binary systems
NASA Astrophysics Data System (ADS)
Hanna, Chad; Johnson, Matthew C.; Lehner, Luis
2017-06-01
Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.
Massive Compact Halo Objects from the relics of the cosmic quark-hadron transition
NASA Astrophysics Data System (ADS)
Banerjee, Shibaji; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Raha, Sibaji; Sinha, Bikash; Toki, Hiroshi
2003-03-01
The existence of compact gravitational lenses, with masses around 0.5 Msolar, has been reported in the halo of the Milky Way. The nature of these dark lenses is as yet obscure, particularly because these objects have masses well above the threshold for nuclear fusion. In this work, we show that they find a natural explanation as being the evolutionary product of the metastable false vacuum domains (the so-called strange quark nuggets) formed in a first order cosmic quark-hadron transition.
Impact of physics and technology innovations on compact tokamak fusion pilot plants
NASA Astrophysics Data System (ADS)
Menard, Jonathan
2016-10-01
For magnetic fusion to be economically attractive and have near-term impact on the world energy scene it is important to focus on key physics and technology innovations that could enable net electricity production at reduced size and cost. The tokamak is presently closest to achieving the fusion conditions necessary for net electricity at acceptable device size, although sustaining high-performance scenarios free of disruptions remains a significant challenge for the tokamak approach. Previous pilot plant studies have shown that electricity gain is proportional to the product of the fusion gain, blanket thermal conversion efficiency, and auxiliary heating wall-plug efficiency. In this work, the impact of several innovations is assessed with respect to maximizing fusion gain. At fixed bootstrap current fraction, fusion gain varies approximately as the square of the confinement multiplier, normalized beta, and major radius, and varies as the toroidal field and elongation both to the third power. For example, REBCO high-temperature superconductors (HTS) offer the potential to operate at much higher toroidal field than present fusion magnets, but HTS cables are also beginning to access winding pack current densities up to an order of magnitude higher than present technology, and smaller HTS TF magnet sizes make low-aspect-ratio HTS tokamaks potentially attractive by leveraging naturally higher normalized beta and elongation. Further, advances in kinetic stabilization and feedback control of resistive wall modes could also enable significant increases in normalized beta and fusion gain. Significant reductions in pilot plant size will also likely require increased plasma energy confinement, and control of turbulence and/or low edge recycling (for example using lithium walls) would have major impact on fusion gain. Reduced device size could also exacerbate divertor heat loads, and the impact of novel divertor solutions on pilot plant configurations is addressed. For missions including tritium breeding, high-thermal-efficiency liquid metal breeding blankets are attractive, and novel immersion blankets offer the potential for simplified fabrication and maintenance and reduced cost. Lastly, the optimal aspect ratio for a tokamak pilot plant is likely a function of the device mission and associated cost, with low aspect ratio favored for minimizing TF magnet mass and higher aspect ratio favored for minimizing blanket mass. The interplay between a range of physics and technology innovations for enabling compact pilot plants will be described. This work was supported by U.S. DOE Contract Number DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Terekhov, P. D.; Baryshnikova, K. V.; Evlyukhin, A. B.; Shalin, A. S.
2017-11-01
We demonstrate numerically the possibility of multipole interference in the TiO2 (titanium dioxide) microcylinders and microfrustums in the wavelength range 210-300 μm. Resonantly strong destructive interference between toroidal and electric dipole contributions to the scattered field is achieved by a geometry tuning. The toroidal and electric dipole mode overlapping at the resonant wavelength with almost total suppression of the total electric dipole moment is achieved.
The triangular kagomé lattices revisited
NASA Astrophysics Data System (ADS)
Liu, Xiaoyun; Yan, Weigen
2013-11-01
The dimer problem, Ising spins and bond percolation on the triangular kagomé lattice have been studied extensively by physicists. In this paper, based on the fact the triangular kagomé lattice with toroidal boundary condition can be regarded as the line graph of 3.12.12 lattice with toroidal boundary condition, we derive the formulae of the number of spanning trees, the energy, and the Kirchhoff index of the triangular kagomé lattice with toroidal boundary condition.
What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?
Kim, Kyuho; Chang, C. S.; Seo, Janghoon; ...
2017-01-24
Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less
What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyuho; Chang, C. S.; Seo, Janghoon
Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less