Sample records for toroidal null line

  1. A symplectic map for trajectories of magnetic field lines in double-null divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Crank, Willie; Ali, Halima; Punjabi, Alkesh

    2009-11-01

    The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in tokamaks can be any coordinates for which a transformation to (ψ,θ,φ) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. ψ is toroidal magnetic flux, θ is poloidal angle, and φ is toroidal angle. This freedom is exploited to construct a map that represents the magnetic topology of double-null divertor tokamaks. For this purpose, the generating function of the simple map [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)] is slightly modified. The resulting map equations for the double-null divertor tokamaks are: x1=x0-ky0(1-y0^2 ), y1=y0+kx1. k is the map parameter. It represents the generic topological effects of toroidal asymmetries. The O-point is at (0.0). The X-points are at (0,±1). The equilibrium magnetic surfaces are calculated. These surfaces are symmetric about the x- and y- axes. The widths of stochastic layer near the X-points in the principal plane, and the fractal dimensions of the magnetic footprints on the inboard and outboard side of upper and lower X-points are calculated from the map. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.

  2. Toroidally symmetric plasma vortex at tokamak divertor null point

    DOE PAGES

    Umansky, M. V.; Ryutov, D. D.

    2016-03-09

    Reduced MHD equations are used for studying toroidally symmetric plasma dynamics near the divertor null point. Numerical solution of these equations exhibits a plasma vortex localized at the null point with the time-evolution defined by interplay of the curvature drive, magnetic restoring force, and dissipation. Convective motion is easier to achieve for a second-order null (snowflake) divertor than for a regular x-point configuration, and the size of the convection zone in a snowflake configuration grows with plasma pressure at the null point. In conclusion, the trends in simulations are consistent with tokamak experiments which indicate the presence of enhanced transportmore » at the null point.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umansky, M. V.; Ryutov, D. D.

    Reduced MHD equations are used for studying toroidally symmetric plasma dynamics near the divertor null point. Numerical solution of these equations exhibits a plasma vortex localized at the null point with the time-evolution defined by interplay of the curvature drive, magnetic restoring force, and dissipation. Convective motion is easier to achieve for a second-order null (snowflake) divertor than for a regular x-point configuration, and the size of the convection zone in a snowflake configuration grows with plasma pressure at the null point. In conclusion, the trends in simulations are consistent with tokamak experiments which indicate the presence of enhanced transportmore » at the null point.« less

  4. Gyrokinetic simulations with external resonant magnetic perturbations: Island torque and nonambipolar transport with plasma rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.

  5. Comparison of Two Wire Model With Low MN Map

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Ali, Halima; Boozer, Allen

    2003-10-01

    Among the perturbations that affect the width of the stochastic layer of a single-null divertor tokamak is naturally occurring perturbations with low toroidal and poloidal mode numbers. In present day tokamaks, the n= +/- 1, m=1 Fourier component of the field error is roughly estimated to be typically of the order 10-3 times the toroidal field /1/. In this work, we analyze the features of the stochastic layer and the footprint of field lines using the Low MN Map (LMN)/2,3/. We also perform similar analysis using Rieman Two Wire Model (TWM) /1/. We then compare the results of the two approaches when the parameters of the TWM and of LMN are both 10-3. We show that the footprints from the TWM and the LMN match quantitatively and qualitatively. We compare the safety factor, Liapunov exponents, semi-connection length, and strike angles as functions of starting position of field lines in stochastic layer from the TWM and the LMN. We also discuss and compare the accuracy and the speed of both approaches. This work is done under the DOE grant number DE-FG02-01ER54624. 1. A. Reiman, Phys. Plasmas 3, 906 (1996). 2. A. Punjabi et al, Phys. Rev. lett., 69, 3322 (1992). 3. A. Punjabi et al, Phys. Plasmas, 4, 337 (1997).

  6. Nulling Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Vazquez, Juan M.; Berru, Robert I.

    1993-01-01

    Circuit measures electrical current via combination of Hall-effect-sensing and magnetic-field-nulling techniques. Known current generated by feedback circuit adjusted until it causes cancellation or near cancellation of magnetic field produced in toroidal ferrite core by current measured. Remaining magnetic field measured by Hall-effect sensor. Circuit puts out analog signal and digital signal proportional to current measured. Accuracy of measurement does not depend on linearity of sensing components.

  7. Grinding Inside A Toroidal Cavity

    NASA Technical Reports Server (NTRS)

    Mayer, Walter; Adams, James F.; Burley, Richard K.

    1987-01-01

    Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.

  8. EMC3-EIRENE modelling of toroidally-localized divertor gas injection experiments on Alcator C-Mod

    DOE PAGES

    Lore, Jeremy D.; Reinke, M. L.; LaBombard, Brian; ...

    2014-09-30

    Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ~50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modelling, with the simulation yielding a toroidal asymmetry in the heat flow to the outermore » strike point. Finally, toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.« less

  9. Beam current sensor

    DOEpatents

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  10. Beam current sensor

    DOEpatents

    Kuchnir, Moyses; Mills, Frederick E.

    1987-01-01

    A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

  11. Location of the first plasma response to resonant magnetic perturbations in DIII-D H-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, W. W.; Evans, T. E.; Tynan, G. R.

    2016-04-27

    The resonant location of the first plasma response to periodic toroidal phase flips of a Resonant Magnetic Perturbation (RMP) field is experimentally identified in the DIII-D tokamak using phase minima of the modulated plasma density and toroidal rotation relative to the RMP field. Furthermore, the plasma response coincides with the q=3 rational surface and electron fluid velocity null, which is consistent with simulations of the plasma response to the RMP field from a resistive Magnetohydrodynamics modeling. We also observe an asymmetric propagation of the particle and the momentum from the resonant location of the plasma response to the RMP intomore » to core and into the plasma edge.« less

  12. VORTEX CREEP AGAINST TOROIDAL FLUX LINES, CRUSTAL ENTRAINMENT, AND PULSAR GLITCHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gügercinoğlu, Erbil; Alpar, M. Ali, E-mail: egugercinoglu@gmail.com, E-mail: alpar@sabanciuniv.edu

    2014-06-10

    A region of toroidally oriented quantized flux lines must exist in the proton superconductor in the core of the neutron star. This region will be a site of vortex pinning and creep. Entrainment of the neutron superfluid with the crustal lattice leads to a requirement of superfluid moment of inertia associated with vortex creep in excess of the available crustal moment of inertia. This will bring about constraints on the equation of state. The toroidal flux region provides the moment of inertia necessary to complement the crust superfluid with postglitch relaxation behavior fitting the observations.

  13. The appearance, motion, and disappearance of three-dimensional magnetic null points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Nicholas A., E-mail: namurphy@cfa.harvard.edu; Parnell, Clare E.; Haynes, Andrew L.

    2015-10-15

    While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field,more » which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.« less

  14. Toroidal magnetized plasma device with sheared magnetic field lines using an internal ring conductor.

    PubMed

    Pierre, Th

    2013-01-01

    In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.

  15. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, James A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.

  16. ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontin, D. I.; Priest, E. R.; Galsgaard, K., E-mail: dpontin@maths.dundee.ac.uk

    2013-09-10

    Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome structure. Using analytical and computational models, we demonstrate several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takesmore » place in a manner similar to that observed in the quasi-separatrix layer or slip-running reconnection.« less

  17. Area of Stochastic Scrape-Off Layer for a Single-Null Divertor Tokamak Using Simple Map

    NASA Astrophysics Data System (ADS)

    Fisher, Tiffany; Verma, Arun; Punjabi, Alkesh

    1996-11-01

    The magnetic topology of a single-null divertor tokamak is represented by Simple Map (Punjabi A, Verma A and Boozer A, Phys Rev Lett), 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994). The Simple map is characterized by a single parameter k representing the toroidal asymmetry. The width of the stochastic scrape-off layer and its area varies with the map parameter k. We calculate the area of the stochastic scrape-off layer for different k's and obtain a parametric expression for the area in terms of k and y _LastGoodSurface(k). This work is supported by US DOE OFES. Tiffany Fisher is a HU CFRT Summer Fusion High school Workshop Scholar from New Bern High School in North Carolina. She is supported by NASA SHARP Plus Program.

  18. The triangular kagomé lattices revisited

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyun; Yan, Weigen

    2013-11-01

    The dimer problem, Ising spins and bond percolation on the triangular kagomé lattice have been studied extensively by physicists. In this paper, based on the fact the triangular kagomé lattice with toroidal boundary condition can be regarded as the line graph of 3.12.12 lattice with toroidal boundary condition, we derive the formulae of the number of spanning trees, the energy, and the Kirchhoff index of the triangular kagomé lattice with toroidal boundary condition.

  19. Field line twist and field-aligned currents in an axially symmetric equilibrium magnetosphere. [of Uranus

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes

    1986-01-01

    Field-aligned Birkeland currents and the angle of the magnetic line twist were calculated for an axially symmetric pole-on magnetosphere (assumed to be in MHD equilibrium). The angle of the field line twist was shown to have a strong radial dependence on the axisymmetric magnetotail as well as on the ionospheric conductivity and the amount of thermal plasma contained in closed magnetotail flux tubes. The field line twist results from the planetary rotation, which leads to the development of a toroidal magnetic B-sub-phi component and to differentially rotating magnetic field lines. It was shown that the time development of the toroidal magnetic B-sub-phi component and the rotation frequency are related through an induction equation.

  20. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, J.A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.

  1. Design and Construction of Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    An, Younghwa; Chung, Kyoung-Jae; Jung, Bongki; Lee, Hyunyeong; Sung, Choongki; Kim, Hyun-Seok; Na, Yong-Su; Hwang, Yong-Seok

    2011-10-01

    A new spherical torus, named as VEST (Versatile Experiment Spherical Torus), has been built at Seoul National University to investigate versatile research topics such as double null merging start-up, divertor engineering and non-inductive current drive. VEST is characterized by two partial solenoid coils installed at both vertical ends of a center stack, which will be used for double null merging start-up schemes. A poloidal field (PF) coil system including the partial solenoids for break-down and a long solenoid for the sustainment of merged plasma has been designed by solving circuit equations for the PF coils and vacuum vessel elements in consideration of required volt-second, null configuration and eddy current. To supply required currents to the PF coils and solenoids, power supplies based on double-swing circuit have been designed and fabricated with capacitor banks and thyristor switch assemblies. Also a power supply utilizing cost-effective commercial batteries has been developed for toroidal field(TF) coils. Detailed descriptions on the design of VEST and some initial test results will be presented.

  2. Spatial Variations of Poloidal and Toroidal Mode Field Line Resonances Observed by MMS

    NASA Astrophysics Data System (ADS)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B. J.; Kepko, L.; Nakamura, R.; Plaschke, F.; Torbert, R. B.

    2017-12-01

    Field line resonances (FLRs) are magnetosphere's responses to solar wind forcing and internal instabilities generated by solar wind-magnetospheric interactions. They are standing waves along the Earth's magnetic field lines oscillating in either poloidal or toroidal modes. The two types of waves have their unique frequency characteristics. The eigenfrequency of FLRs is determined by the length of the field line and the plasma density, and thus gradually changes with L. For toroidal mode oscillations with magnetic field perturbations in the azimuthal direction, ideal MHD predicts that each field line oscillates independently with its own eigenfrequency. For poloidal mode waves with field lines oscillating radially, their frequency cannot change with L easily as L shells need to oscillate in sync to avoid efficient damping due to phase mixing. Observations, mainly during quiet times, indeed show that poloidal mode waves often exhibit nearly constant frequency across L shells. Our recent observations, on the other hand, reveal a clear L-dependent frequency trend for a long lasting storm-time poloidal wave event, indicating the wave can maintain its power with changing frequencies for an extended period [Le et al., 2017]. The spatial variation of the frequency shows discrete spatial structures. The frequency remains constant within each discrete structure that spans about 1 REalong L, and changes discretely. We present a follow-up study to investigate spatial variations of wave frequencies using the Wigner-Ville distribution. We examine both poloidal and toroidal waves under different geomagnetic conditions using multipoint observations from MMS, and compare their frequency and occurrence characteristics for insights into their generation mechanisms. Reference: Le, G., et al. (2017), Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456-3464, doi:10.1002/2017GL073048.

  3. Review and perspectives of electrostatic turbulence and transport studies in the basic plasma physics device TORPEX

    NASA Astrophysics Data System (ADS)

    Avino, Fabio; Bovet, Alexandre; Fasoli, Ambrogio; Furno, Ivo; Gustafson, Kyle; Loizu, Joaquim; Ricci, Paolo; Theiler, Christian

    2012-10-01

    TORPEX is a basic plasma physics toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. We review recent advances in the understanding and control of electrostatic interchange turbulence, associated structures and their effect on suprathermal ions. These advances are obtained using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Furthermore, we discuss future developments including the possibility of generating closed field line configurations with rotational transform using an internal toroidal wire carrying a current. This system will also allow the study of innovative fusion-relevant configurations, such as the snowflake divertor.

  4. Nearly axisymmetric hot plasmas in a highly rippled tokamak

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2002-11-01

    Tokamak ohmic heating current flowing along toroidally rippled flux surfaces results in a poloidal torque. Since pressure gradients cannot offset torques, the torque drives plasma flows which convect plasma toroidally from ripple necks (high B_pol^2) to ripple bulges (low B_pol^2). Stagnation of the oppositely directed toroidal flows at the ripple bulges thermalizes the directed flow velocity ˜ B_pol/μ_0ρ , giving β _pol ˜1. These flows also convect frozen-in poloidal field lines which accumulate at the bulges enhancing the pinch force there and so reducing the bulge. Thus, a nearly axisymmetric β_pol ˜1 equilibrium is achieved using only a few TF coils. Particles bouncing in step between approaching flows will be Fermi accelerated to form a high energy tail. The ST tokamak magnetic mountain experiment [1] showed that, compared to a 1.8% ripple configuration, a 28% ripple configuration had four times the neutron production, and only a modest degradation of overall confinement; the former is consistent with the notion of Fermi acceleration of particles bouncing between colliding toroidal flows and the latter is consistent with ripple reduction due to toroidal convection of poloidal field lines. [1] W. Stodiek et al, Proc. 4th Intl. Conf. Plasma Phys. and Contr. Nuc. Fusion Res., (Madison, 1971), Vol. 1, p. 465

  5. Gyrokinetic Simulations with External Resonant Magnetic Perturbations: Island Torque and Nonambipolar Transport with Rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic perturbations (RMPs) have been added to the δf gyrokinetic code GYRO. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr and the corresponding plasma torque (density) R[jrBθ/c], induced by islands that break the toroidal symmetry of a tokamak. This extends previous GYRO simulations for the transport of toroidal angular momentum (TAM) [1,2]. The focus is on full torus radial slice electrostatic simulations of induced q=m/n=6/3 islands with widths 5% of the minor radius. The island torque scales with the radial electric field Er the island width w, and the intensity I of the high-n micro-turbulence, as wErI^1/2. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that there is a small co-directed magnetic acceleration to the small diamagnetic co-rotation corresponding to the zero Er which can be called the residual stress [2] from an externally induced island. Finite-beta GYRO simulations of a core radial slice demonstrate island unlocking and the RMP screening. 6pt[1] R.E. Waltz, et al., Phys. Plasmas 14, 122507 (2007). [2] R.E. Waltz, et al., Phys. Plasmas 18, 042504 (2011).

  6. Terrestrial Planet Finder cryogenic delay line development

    NASA Technical Reports Server (NTRS)

    Smythe, Robert F.; Swain, Mark R.; Alvarez-Salazar, Oscar; Moore, James D.

    2004-01-01

    Delay lines provide the path-length compensation that makes the measurement of interference fringes possible. When used for nulling interferometry, the delay line must control path-lengths so that the null is stable and controlled throughout the measurement. We report on a low noise, low disturbance, and high bandwidth optical delay line capable of meeting the TPF interferometer optical path length control requirements at cryogenic temperatures.

  7. Toroidal varied-line space (TVLS) gratings

    NASA Astrophysics Data System (ADS)

    Thomas, Roger J.

    2003-02-01

    It is a particular challenge to develop a stigmatic spectrograph for EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-space rulings (TULS). A number of solar EUV spectrographs have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. These ideas are now combined into a spectrograph concept that considers varied-line space grooves ruled onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrographs based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.

  8. Toroidal Varied-Line Space (TVLS) Gratings

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Oegerle, William (Technical Monitor)

    2002-01-01

    It is a particular challenge to develop a stigmatic spectrograph for XUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV (Extreme Ultraviolet) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrometers based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.

  9. Tokamak reactor for treating fertile material or waste nuclear by-products

    DOEpatents

    Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.

    2012-10-02

    Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.

  10. Experimental studies of toroidal correlations of plasma density fluctuations along the magnetic field lines in the T-10 tokamak and first results of numerical modeling

    NASA Astrophysics Data System (ADS)

    Buldakov, M. A.; Vershkov, V. A.; Isaev, M. Yu; Shelukhin, D. A.

    2017-10-01

    The antenna system of reflectometry diagnostics at the T-10 tokamak allows to study long-range toroidal correlations of plasma density fluctuations along the magnetic field lines. The antenna systems are installed in two poloidal cross-sections of the vacuum chamber separated by a 90° angle in the toroidal direction. The experiments, which were conducted at the low field side, showed that the high level of toroidal correlations is observed only for quasi-coherent fluctuations. However, broadband and stochastic low frequency fluctuations are not correlated. Numerical modeling of the plasma turbulence structure in the T-10 tokamak was conducted to interpret the experimental results and take into account non-locality of reflectometry measurements. In the model used, it was assumed that the magnitudes of density fluctuations are constant along the magnetic field lines. The 2D full-wave Tamic-RTH code was used to model the reflectometry signals. High level of correlations for quasi-coherent fluctuations was obtained during the modeling, which agrees with the experimental observations. However, the performed modeling also predicts high level of correlations for broadband fluctuations, which contradicts the experimental data. The modeling showed that the effective reflection radius, from which the information on quasi-coherent plasma turbulence is obtained, is shifted outwards from the reflection radius by approximately 7 mm.

  11. The importance of matched poloidal spectra to error field correction in DIII-D

    DOE PAGES

    Paz-Soldan, Carlos; Lanctot, Matthew J.; Logan, Nikolas C.; ...

    2014-07-09

    Optimal error field correction (EFC) is thought to be achieved when coupling to the least-stable "dominant" mode of the plasma is nulled at each toroidal mode number ( n). The limit of this picture is tested in the DIII-D tokamak by applying superpositions of in- and ex-vessel coil set n = 1 fields calculated to be fully orthogonal to the n = 1 dominant mode. In co-rotating H-mode and low-density Ohmic scenarios the plasma is found to be respectively 7x and 20x less sensitive to the orthogonal field as compared to the in-vessel coil set field. For the scenarios investigated,more » any geometry of EFC coil can thus recover a strong majority of the detrimental effect introduced by the n = 1 error field. Furthermore, despite low sensitivity to the orthogonal field, its optimization in H-mode is shown to be consistent with minimizing the neoclassical toroidal viscosity torque and not the higher-order n = 1 mode coupling.« less

  12. Laboratory Evidence That Line-Tied Toroidal Magnetic Fields Can Suppress Loss-of-Equilibrium Flux Rope Eruptions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W. R., II; Jara-Almonte, J.

    2014-12-01

    Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (potential) and internal (plasma-generated) magnetic fields. We find that forces due to the line-tied toroidal magnetic field, which are not included in the basic torus instability theory, can play a major role in preventing eruptions. The dependence of these toroidal magnetic forces on various potential field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  13. Optimization design of toroidal core for magnetic energy harvesting near power line by considering saturation effect

    NASA Astrophysics Data System (ADS)

    Park, Bumjin; Kim, Dongwook; Park, Jaehyoung; Kim, Kibeom; Koo, Jay; Park, HyunHo; Ahn, Seungyoung

    2018-05-01

    Recently, magnetic energy harvesting technologies have been studied actively for self-sustainable operation of applications around power line. However, magnetic energy harvesting around power lines has the problem of magnetic saturation, which can cause power performance degradation of the harvester. In this paper, optimal design of a toroidal core for magnetic energy harvesters has been proposed with consideration of magnetic saturation near power lines. Using Permeability-H curve and Ampere's circuital law, the optimum dimensional parameters needed to generate induced voltage were analyzed via calculation and simulation. To reflect a real environment, we consider the nonlinear characteristic of the magnetic core material and supply current through a 3-phase distribution panel used in the industry. The effectiveness of the proposed design methodology is verified by experiments in a power distribution panel and takes 60.9 V from power line current of 60 A at 60 Hz.

  14. Divertor for use in fusion reactors

    DOEpatents

    Christensen, Uffe R.

    1979-01-01

    A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.

  15. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo

    1984-01-01

    An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.

  16. The role of MHD in 3D aspects of massive gas injection

    DOE PAGES

    Izzo, Valerie A.; Parks, P. B.; Eidietis, Nicholas W.; ...

    2015-06-26

    Simulations of massive gas injection (MGI) for disruption mitigation in DIII-D are carried out to compare the toroidal peaking of radiated power for the cases of one and two gas jets. The radiation toroidal peaking factor (TPF) results from a combination of the distribution of impurities and the distribution of heat flux associated with then =1 mode. The injected impurities are found to spread helically along field lines preferentially toward the high-field-side, which is explained in terms of a nozzle equation. In light of this mechanism, reversing the current direction also reverses the toroidal direction of impurity spreading. During themore » pre-thermal quench phase of the disruption, the toroidal peaking of radiated power is reduced in the straightforward manner by increasing from one to two gas jets. However, during the thermal quench phase, reduction in the TPF is achieved only for a particular arrangement of the two gas valves with respect to the field line pitch. In particular, the relationship between the two valve locations and the 1/1 mode phase is critical, where gas valve spacing that is coherent with 1/1 symmetry effectively reduces TPF.« less

  17. Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.

    Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line trackings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented.

  18. Protein and quality characterization of complete and partial near isogenic lines of waxy wheat

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate protein composition and its effects on flour quality and physical dough test parameters using waxy wheat near-isogenic lines. Partial waxy (single and double nulls) and waxy (null at all three waxy loci, Wx-A1, Wx-B1, and Wx-D1) lines of N11 set (bread whe...

  19. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9.more » We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.« less

  20. Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface.

    PubMed

    Liu, Gui-Dong; Zhai, Xiang; Xia, Sheng-Xuan; Lin, Qi; Zhao, Chu-Jun; Wang, Ling-Ling

    2017-10-16

    In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consists of two mirrored asymmetric silicon split-ring resonators (ASSRRs) that can support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702) and contrast ratio (~100%). Numerical simulation results show that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer is integrated with the dielectric metasurface, and a max transmission coefficient difference up to 78% is achieved indicating that the proposed hybrid graphene/dielectric metasurface shows good performance as an optical modulator. The effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance are studied and the efficiency of the transmission amplitude modulation of graphene is also investigated. Our results may also provide potential applications in optical filter and bio-chemical sensing.

  1. Eigenvalue problems for Beltrami fields arising in a three-dimensional toroidal magnetohydrodynamic equilibrium problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, S. R.; Hole, M. J.; Dewar, R. L.

    2007-05-15

    A generalized energy principle for finite-pressure, toroidal magnetohydrodynamic (MHD) equilibria in general three-dimensional configurations is proposed. The full set of ideal-MHD constraints is applied only on a discrete set of toroidal magnetic surfaces (invariant tori), which act as barriers against leakage of magnetic flux, helicity, and pressure through chaotic field-line transport. It is argued that a necessary condition for such invariant tori to exist is that they have fixed, irrational rotational transforms. In the toroidal domains bounded by these surfaces, full Taylor relaxation is assumed, thus leading to Beltrami fields {nabla}xB={lambda}B, where {lambda} is constant within each domain. Two distinctmore » eigenvalue problems for {lambda} arise in this formulation, depending on whether fluxes and helicity are fixed, or boundary rotational transforms. These are studied in cylindrical geometry and in a three-dimensional toroidal region of annular cross section. In the latter case, an application of a residue criterion is used to determine the threshold for connected chaos.« less

  2. A Magnetohydrodynamic Simulation of Magnetic Null-point Reconnections in NOAA AR 12192, Initiated with an Extrapolated Non-force-free Field

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Bhattacharyya, R.; Hu, Qiang; Kumar, Sanjay; Nayak, Sushree S.

    2018-06-01

    The magnetohydrodynamics of the solar corona is simulated numerically. The simulation is initialized with an extrapolated non-force-free magnetic field using the vector magnetogram of the active region NOAA 12192, which was obtained from the solar photosphere. Particularly, we focus on the magnetic reconnections (MRs) occurring close to a magnetic null point that resulted in the appearance of circular chromospheric flare ribbons on 2014 October 24 around 21:21 UT, after the peak of an X3.1 flare. The extrapolated field lines show the presence of the three-dimensional (3D) null near one of the polarity-inversion lines—where the flare was observed. In the subsequent numerical simulation, we find MRs occurring near the null point, where the magnetic field lines from the fan plane of the 3D null form a X-type configuration with underlying arcade field lines. The footpoints of the dome-shaped field lines, inherent to the 3D null, show high gradients of the squashing factor. We find slipping reconnections at these quasi-separatrix layers, which are co-located with the post-flare circular brightening observed at chromospheric heights. This demonstrates the viability of the initial non-force-free field, along with the dynamics it initiates. Moreover, the initial field and its simulated evolution are found to be devoid of any flux rope, which is congruent with the confined nature of the flare.

  3. THE ROLE OF THE INNER CORONAL NULL POINT IN THE FORMATION AND EVOLUTION OF SOLAR QUIESCENT PROMINENCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y. Z., E-mail: yzzhangmail@sohu.com

    2015-02-10

    Using a 2.5-dimensional MHD simulation, we investigate the role played by the inner coronal null point in the formation and evolution of solar quiescent prominences. The flux rope is characterized by its magnetic fluxes, the toroidal magnetic flux Φ {sub p} and the poloidal flux Φ{sub ψ}. It is found that for a given Φ {sub p}, the catastrophe does not occur in the flux rope system until Φ{sub ψ} increases to a critical point. Moreover, the magnetic flux of the null point is the maximum value of the magnetic flux in the quadrupole background magnetic field, and represented bymore » ψ {sub N}. The results show that the bigger ψ {sub N} usually corresponds to the smaller catastrophic point, the lower magnetic energy of the flux rope system, and the lesser magnetic energy inside the flux rope. Our results confirm that catastrophic disruption of the prominence occurs more easily when there is a bigger ψ {sub N}. However, ψ {sub N} has little influence on the maximum speed of the coronal mass ejections (CMEs) with an erupted prominence. Thus we argue that a topological configuration with the inner coronal null point is a necessary structure for the formation and evolution of solar quiescent prominences. In conclusion, it is easier for the prominences to form and to erupt as a core part of the CMEs in the magnetic structure with a greater ψ {sub N}.« less

  4. Numerical simulations of sheared magnetic lines at the solar null line

    NASA Astrophysics Data System (ADS)

    Kuźma, B.; Murawski, K.; Solov'ev, A.

    2015-05-01

    Aims: We perform numerical simulations of sheared magnetic lines at the magnetic null line configuration of two magnetic arcades that are settled in a gravitationally stratified and magnetically confined solar corona. Methods: We developed a general analytical model of a 2.5D solar atmospheric structure. As a particular application of this model, we adopted it for the curved magnetic field lines with an inverted Y shape that compose the null line above two magnetic arcades, which are embedded in the solar atmosphere that is specified by the realistic temperature distribution. The physical system is described by 2.5D magnetohydrodynamic equations that are numerically solved by the FLASH code. Results: The magnetic field line shearing, implemented about 200 km below the transition region, results in Alfvén and magnetoacoustic waves that are able to penetrate solar coronal regions above the magnetic null line. As a result of the coupling of these waves, partial reflection from the transition region and scattering from inhomogeneous regions the Alfvén waves experience fast attenuation on time scales comparable to their wave periods, and the physical system relaxes in time. The attenuation time grows with the large amplitude and characteristic growing time of the shearing. Conclusions: By having chosen a different magnetic flux function, the analytical model we devised can be adopted to derive equilibrium conditions for a diversity of 2.5D magnetic structures in the solar atmosphere. Movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  5. Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors.

    PubMed

    Ahmadivand, Arash; Gerislioglu, Burak; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih

    2017-09-22

    Unconventional characteristics of magnetic toroidal multipoles have triggered researchers to study these unique resonant phenomena by using both 3D and planar resonators under intense radiation. Here, going beyond conventional planar unit cells, we report on the observation of magnetic toroidal modes using artificially engineered multimetallic planar plasmonic resonators. The proposed microstructures consist of iron (Fe) and titanium (Ti) components acting as magnetic resonators and torus, respectively. Our numerical studies and following experimental verifications show that the proposed structures allow for excitation of toroidal dipoles in the terahertz (THz) domain with the experimental Q-factor of ∼18. Taking the advantage of high-Q toroidal line shape and its dependence on the environmental perturbations, we demonstrate that room-temperature toroidal metasurface is a reliable platform for immunosensing applications. As a proof of concept, we utilized our plasmonic metasurface to detect Zika-virus (ZIKV) envelope protein (with diameter of 40 nm) using a specific ZIKV antibody. The sharp toroidal resonant modes of the surface functionalized structures shift as a function of the ZIKV envelope protein for small concentrations (∼pM). The results of sensing experiments reveal rapid, accurate, and quantitative detection of envelope proteins with the limit of detection of ∼24.2 pg/mL and sensitivity of 6.47 GHz/log(pg/mL). We envision that the proposed toroidal metasurface opens new avenues for developing low-cost, and efficient THz plasmonic sensors for infection and targeted bioagent detection.

  6. Altered Expression of a Malate-Permeable Anion Channel, OsALMT4, Disrupts Mineral Nutrition1[OPEN

    PubMed Central

    Delhaize, Emmanuel

    2017-01-01

    Aluminum-activated malate transporters (ALMTs) form a family of anion channels in plants, but little is known about most of its members. This study examined the function of OsALMT4 from rice (Oryza sativa). We show that OsALMT4 is expressed in roots and shoots and that the OsALMT4 protein localizes to the plasma membrane. Transgenic rice lines overexpressing (OX) OsALMT4 released malate from the roots constitutively and had 2-fold higher malate concentrations in the xylem sap than nulls, indicating greater concentrations of malate in the apoplast. OX lines developed brown necrotic spots on the leaves that did not appear on nulls. These symptoms were not associated with altered concentrations of any mineral element in the leaves, although the OX lines had higher concentrations of Mn and B in their grain compared with nulls. While total leaf Mn concentrations were not different between the OX and null lines, Mn concentrations in the apoplast were greater in the OX plants. The OX lines also displayed increased expression of Mn transporters and were more sensitive to Mn toxicity than null plants. We showed that the growth of wild-type rice was unaffected by 100 µm Mn in hydroponics but, when combined with 1 mm malate, this concentration inhibited growth. We conclude that increasing OsALMT4 expression affected malate efflux and compartmentation within the tissues, which increased Mn concentrations in the apoplast of leaves and induced the toxicity symptoms. This study reveals new links between malate transport and mineral nutrition. PMID:29101278

  7. Toroidal Variable-Line-Space Gratings: The Good, the Bad and The Ugly

    NASA Technical Reports Server (NTRS)

    West, Edward A.; Kobayashi, Ken; Cirtain, Jonathan; Gary, Allen; Davis, John; Reader, Joseph

    2009-01-01

    Toroidal variable-line-space (VLS) gratings are an important factor in the design of an efficient VUV solar telescope that will measure the CIV (155nm) and MgII (280nm) emissions lines in the Sun's transition region. In 1983 Kita and Harada described spherical VLS gratings but the technology to commercially fabricate these devices is a recent development, especially for toroidal surfaces. This paper will describe why this technology is important in the development of the Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program (the good), the delays due to the conversion between the TVLS grating design and the optical fabrication (the bad), and finally the optical testing, alignment and tolerancing of the gratings (the ugly). The Solar Ultraviolet Magnetograph Investigation, SUMI, has been reported in several papers since this program began in 2000. The emphasis of this paper is to describe SUMI's Toroidal Variable-Line-Space (TVLS) gratings. These gratings help SUMI meet its scientific goals which require both high spectral resolution and high optical efficiency for magnetic field measurements in the vacuum ultraviolet wavelength band of the solar spectrum (the good). Unfortunately, the technology readiness level of these gratings has made their implementation difficult, especially for a sounding rocket payload (the bad). Therefore, this paper emphasizes the problems and solutions that were developed to use these gratings in SUMI (the ugly). Section 2 contains a short review of the scientific goals of SUMI and why this mission is important in the understanding of the 3D structure of the magnetic field on the Sun. The flight hardware that makes up the SUMI payload is described in Section 3 with emphasis on those components that affect the TVLS gratings. Section 4 emphasizes the alignment, testing and optical modeling that were developed to optimize the performance of these gratings.

  8. Spectroscopic Measurement of Ion Flow During Merging Start-up of Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Oka, Hirotaka; Inomoto, Michiaki; Tanabe, Hiroshi; Annoura, Masanobu; Ono, Yasushi; Nemoto, Koshichi

    2012-10-01

    The counter-helicity merging method [1] of field-reversed configuration (FRC) formation involves generation of bidirectional toroidal flow, known as a ``sling-shot.'' In two fluids regime, reconnection process is strongly affected by the Hall effect [2]. In this study, we have investigated the behavior of toroidal bidirectional flow generated by the counter-helicity merging in two-fluids regime. We use 2D Ion Doppler Spectroscopy to mesure toroidal ion flow during merging start-up of FRC from Ar gas. We defined two cases: one case with a radially pushed-in X line (case I) and the other case with a radially pushed-out X line(case O). The flow during the plasma merging shows radial asymmetry, as expected from the magnetic measurement, but finally relaxes to a unidirectional flow in plasma current direction in both cases. We observed larger toroidal flow in the plasma current direction in case I after FRC is formed, though the FRC in case O has larger magnetic flux. These results suggest that more ions are lost during merging start-up in case I. This selective ion loss might account for stability and confinement of FRCs probably maintained by high energy ions.[4pt] [1] Y. Ono, et al., Nucl. Fusion 39, pp. 2001-2008 (1999).[0pt] [2] M. Inomoto, et al., Phys. Rev. Lett., 97, 135002, (2006)

  9. Ideal plasma response to vacuum magnetic fields with resonant magnetic perturbations in non-axisymmetric tokamaks

    DOE PAGES

    Kim, Kimin; Ahn, J. -W.; Scotti, F.; ...

    2015-09-03

    Ideal plasma shielding and amplification of resonant magnetic perturbations in non-axisymmetric tokamak is presented by field line tracing simulation with full ideal plasma response, compared to measurements of divertor lobe structures. Magnetic field line tracing simulations in NSTX with toroidal non-axisymmetry indicate the ideal plasma response can significantly shield/amplify and phase shift the vacuum resonant magnetic perturbations. Ideal plasma shielding for n = 3 mode is found to prevent magnetic islands from opening as consistently shown in the field line connection length profile and magnetic footprints on the divertor target. It is also found that the ideal plasma shielding modifiesmore » the degree of stochasticity but does not change the overall helical lobe structures of the vacuum field for n = 3. Furthermore, amplification of vacuum fields by the ideal plasma response is predicted for low toroidal mode n = 1, better reproducing measurements of strong striation of the field lines on the divertor plate in NSTX.« less

  10. A theory of the helical ripple-induced stochastic behavior of fast toroidal bananas in torsatrons and heliotrons

    NASA Astrophysics Data System (ADS)

    Smirnova, M. S.

    2001-05-01

    A theory of the helical ripple-induced stochastic behavior of fast toroidal bananas in torsatrons and heliotrons [K. Uo, J. Phys. Soc. Jpn. 16, 1380 (1961)] is developed. It is supplemented by an analysis of the structure of the secondary magnetic wells along field lines. Conditions, under which these wells are suppressed in torsatrons-heliotrons by poloidally modulated helical field ripple, are found. It is shown that inside the secondary magnetic well-free region, favorable conditions exist for a transition of fast toroidal bananas to stochastic trajectories. The analytical estimation for the value of an additional radial jump of a banana particle near its turning point, induced by the helical field ripple effect, is derived. It is found to be similar to the corresponding banana radial jump in a tokamak with the toroidal field ripple. Critical values of the helical field ripple dangerous from the viewpoint of a banana transition to stochastic behavior are estimated.

  11. Decoupled recovery of energy and momentum with correction of n = 2 error fields

    DOE PAGES

    Paz-Soldan, Carlos A.; Logan, Nikolas C.; Lanctot, Matthew J.; ...

    2015-07-06

    Experiments applying known n = 2 “proxy” error fields (EFs) find that the rotation braking introduced by the proxy EF cannot be completely alleviated through optimal n = 2 correction with poorly matched poloidal spectra. This imperfect performance recovery demonstrates the importance of correcting multiple components of the n = 2 field spectrum and is in contrast to previous results with n = 1 EFs despite similar execution. Measured optimal n = 2 proxy EF correction currents are consistent with those required to null dominant mode coupling to the resonant surfaces and minimize the neoclassical toroidal viscosity (NTV) torque, calculatedmore » using ideal MHD plasma response computation. Unlike rotation braking, density pumpout can be fully corrected despite poorly matched spectra, indicating density pumpout is driven only by a single component proportional to the resonant coupling. Through precise n = 2 spectral control density pumpout and rotation braking can thus be decoupled. Rotation braking with n = 2 fields is also found to be proportional to the level of concurrent toroidal rotation, consistent with NTV theory. Lastly, plasmas with modest countercurrent rotation are insensitive to the n = 2 field with neither rotation braking nor density pumpout observed.« less

  12. Modeling Pc4 Pulsations in Two and a Half Dimensions with Comparisons to Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    McEachern, Charles A.

    Field line resonances---that is, Alfven waves bouncing between the northern and southern foot points of a geomagnetic field line---serve to energize magnetospheric particles through drift-resonant interactions, carry energy from high to low altitude, induce currents in the magnetosphere, and accelerate particles into the atmosphere. Wave structure and polarization significantly impact the execution these roles. The present work showcases a new two and a half dimensional code, Tuna, ideally suited to model FLRs, with the ability to consider large-but-finite azimuthal modenumbers, coupling between the poloidal, toroidal, and compressional modes, and arbitrary harmonic structure. Using Tuna, the interplay between Joule dissipation and poloidal-to-toroidal rotation is considered for both dayside and nightside conditions. An attempt is also made to demystify giant pulsations, a class of FLR knows for its distinctive ground signatures. Numerical results are supplemented by a survey of ˜700 FLRs using data from the Van Allen Probes, the first such survey to characterize each event by both polarization and harmonic. The combination of numerical and observational results suggests an explanation for the disparate distributions observed in poloidal and toroidal FLR events.

  13. The origin of nulls mode changes and timing noise in pulsars

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    A solvable polar cap model obtained previously has normal states which may be associated with radio emission and null states. The solutions cannot be time-independent; the neutron star surface temperature T and mean surface nuclear charge Z are both functions of time. The normal and null states, and the transitions between them, form closed cycles in the T-Z plane. Normal-null transitions can occur inside a fraction of the area on the neutron star surface intersected by open magnetic flux lines. The fraction increases with pulsar period and becomes unity when the pulsar nears extinction. Frequency noise, mode changes, and pulse nulls have a common explanation in the transitions.

  14. The origin of nulls, mode changes and timing noise in pulsars

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    1982-09-01

    A solvable polar cap model obtained previously has normal states which may be associated with radio emission, and null states. The solutions cannot be time-independent; the neutron star surface temperature T and mean surface nuclear charge Z are both functions of time. The normal and null states and the transitions between them, form closed cycles in the T-Z plane. Normal-null transitions can occur inside a fraction of the area of the neutron star surface intersected by open magnetic flux lines. The fraction increases with pulsar period and becomes unity when the pulsar nears extinction. Frequency noise, mode changes and pulse nulls have a common explanation in the transitions.

  15. A Gaussian Mixture Model for Nulling Pulsars

    NASA Astrophysics Data System (ADS)

    Kaplan, D. L.; Swiggum, J. K.; Fichtenbauer, T. D. J.; Vallisneri, M.

    2018-03-01

    The phenomenon of pulsar nulling—where pulsars occasionally turn off for one or more pulses—provides insight into pulsar-emission mechanisms and the processes by which pulsars turn off when they cross the “death line.” However, while ever more pulsars are found that exhibit nulling behavior, the statistical techniques used to measure nulling are biased, with limited utility and precision. In this paper, we introduce an improved algorithm, based on Gaussian mixture models, for measuring pulsar nulling behavior. We demonstrate this algorithm on a number of pulsars observed as part of a larger sample of nulling pulsars, and show that it performs considerably better than existing techniques, yielding better precision and no bias. We further validate our algorithm on simulated data. Our algorithm is widely applicable to a large number of pulsars even if they do not show obvious nulls. Moreover, it can be used to derive nulling probabilities of nulling for individual pulses, which can be used for in-depth studies.

  16. Modular Hamiltonians on the null plane and the Markov property of the vacuum state

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-09-01

    We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.

  17. Design of new central solenoid for SST-1

    NASA Astrophysics Data System (ADS)

    Prasad, Upendra; Pradhan, Subrata; Ghate, Mahesh; Raj, Piyush; Tanna, V. L.; Khan, Ziauddin; Roy, Swati; Santra, Prosenjit; Biswas, Prabal; Sharma, A. N.; Khristi, Yohan; Kanaber, Deven; Varmora, Pankaj

    2017-04-01

    The key role of central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼ 655 mm. The physics basis of the design includes volt-sec storage capacity of ∼ 0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼ 0.3 volt/m. The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The interlayer low resistance (∼1 nΩ) terminal praying hand joints at 14 kA at 4.5 K has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼ 3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼ 10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K shield respectively. The protection system consists of SS310 made array of dump resistor of 20 mΩ. The detail physics and engineering design of new superconducting CS of SST-1 will be discussed in this presentation.

  18. Toroidal magnetized iron neutrino detector for a neutrino factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bross, A.; Wands, R.; Bayes, R.

    2013-08-01

    A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of largemore » $$\\theta_{13}$$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $$\\delta_{CP}$$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $$\\delta_{CP}$$.« less

  19. Biological and genetic properties of the p53 null preneoplastic mammary epithelium

    NASA Technical Reports Server (NTRS)

    Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.

    2002-01-01

    The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.

  20. Experimental evaluation of achromatic phase shifters for mid-infrared starlight suppression.

    PubMed

    Gappinger, Robert O; Diaz, Rosemary T; Ksendzov, Alexander; Lawson, Peter R; Lay, Oliver P; Liewer, Kurt M; Loya, Frank M; Martin, Stefan R; Serabyn, Eugene; Wallace, James K

    2009-02-10

    Phase shifters are a key component of nulling interferometry, one of the potential routes to enabling the measurement of faint exoplanet spectra. Here, three different achromatic phase shifters are evaluated experimentally in the mid-infrared, where such nulling interferometers may someday operate. The methods evaluated include the use of dispersive glasses, a through-focus field inversion, and field reversals on reflection from antisymmetric flat-mirror periscopes. All three approaches yielded deep, broadband, mid-infrared nulls, but the deepest broadband nulls were obtained with the periscope architecture. In the periscope system, average null depths of 4x10(-5) were obtained with a 25% bandwidth, and 2x10(-5) with a 20% bandwidth, at a central wavelength of 9.5 mum. The best short term nulls at 20% bandwidth were approximately 9x10(-6), in line with error budget predictions and the limits of the current generation of hardware.

  1. Elmo bumpy square plasma confinement device

    DOEpatents

    Owen, L.W.

    1985-01-01

    The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

  2. Toroidal gyro-Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Kerbel, G. D.; Milovich, J.

    1994-07-01

    The method of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] to model Landau damping has been recently applied to the moments of the gyrokinetic equation with curvature drift by Waltz, Dominguez, and Hammett [Phys. Fluids B 4, 3138 (1992)]. The higher moments are truncated in terms of the lower moments (density, parallel velocity, and parallel and perpendicular pressure) by modeling the deviation from a perturbed Maxwellian to fit the kinetic response function at all values of the kinetic parameters: k∥vth/ω, b=(k⊥ρ)2/2, and ωD/ω. Here the resulting gyro-Landau fluid equations are applied to the simulation of ion temperature gradient (ITG) mode turbulence in toroidal geometry using a novel three-dimensional (3-D) nonlinear ballooning mode representation. The representation is a Fourier transform of a field line following basis (ky',kx',z') with periodicity in toroidal and poloidal angles. Particular emphasis is given to the role of nonlinearly generated n=0 (ky' = 0, kx' ≠ 0) ``radial modes'' in stabilizing the transport from the finite-n ITG ballooning modes. Detailing the parametric dependence of toroidal ITG turbulence is a key result.

  3. Magnetic reconnection process in transient coaxial helicity injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, F.; Hooper, E. B.; Sovinec, C. R.

    The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic fieldmore » compression exerts a radial J × B force and generates a bi-directional radial E{sub toroidal}×B{sub poloidal} pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics.« less

  4. The Metallothionein-Null Phenotype Is Associated with Heightened Sensitivity to Lead Toxicity and an Inability to Form Inclusion Bodies

    PubMed Central

    Qu, Wei; Diwan, Bhalchandra A.; Liu, Jie; Goyer, Robert A.; Dawson, Tammy; Horton, John L.; Cherian, M. George; Waalkes, Michael P.

    2002-01-01

    Susceptibility to lead toxicity in MT-null mice and cells, lacking the major forms of the metallothionein (MT) gene, was compared to wild-type (WT) mice or cells. Male MT-null and WT mice received lead in the drinking water (0 to 4000 ppm) for 10 to 20 weeks. Lead did not alter body weight in any group. Unlike WT mice, lead-treated MT-null mice showed dose-related nephromegaly. In addition, after lead exposure renal function was significantly diminished in MT-null mice in comparison to WT mice. MT-null mice accumulated less renal lead than WT mice and did not form lead inclusion bodies, which were present in the kidneys of WT mice. In gene array analysis, renal glutathione S-transferases were up-regulated after lead in MT-null mice only. In vitro studies on fibroblast cell lines derived from MT-null and WT mice showed that MT-null cells were much more sensitive to lead cytotoxicity. MT-null cells accumulated less lead and formed no inclusion bodies. The MT-null phenotype seems to preclude lead-induced inclusion body formation and increases lead toxicity at the organ and cellular level despite reducing lead accumulation. This study reveals important roles for MT in chronic lead toxicity, lead accumulation, and inclusion body formation. PMID:11891201

  5. The symmetric quartic map for trajectories of magnetic field lines in elongated divertor tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Morgin; Wadi, Hasina; Ali, Halima

    The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in divertor tokamaks can be any coordinates for which a transformation to ({psi}{sub t},{theta},{phi}) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. {psi}{sub t} is toroidal magnetic flux, {theta} is poloidal angle, and {phi} is toroidal angle. This freedom is exploited to construct the symmetric quartic map such that the only parameter that determines magnetic geometry is the elongation of the separatrix surface. The poloidal flux inside the separatrix, the safety factor as a function of normalizedmore » minor radius, and the magnetic perturbation from the symplectic discretization are all held constant, and only the elongation is {kappa} varied. The width of stochastic layer, the area, and the fractal dimension of the magnetic footprint and the average radial diffusion coefficient of magnetic field lines from the stochastic layer; and how these quantities scale with {kappa} is calculated. The symmetric quartic map gives the correct scalings which are consistent with the scalings of coordinates with {kappa}. The effects of m=1, n={+-}1 internal perturbation with the amplitude that is expected to occur in tokamaks are calculated by adding a term [H. Ali, A. Punjabi, A. H. Boozer, and T. Evans, Phys. Plasmas 11, 1908 (2004)] to the symmetric quartic map. In this case, the width of stochastic layer scales as 0.35 power of {kappa}. The area of the footprint is roughly constant. The average radial diffusion coefficient of field lines near the X-point scales linearly with {kappa}. The low mn perturbation changes the quasisymmetric structure of the footprint, and reorganizes it into a single, large scale, asymmetric structure. The symmetric quartic map is combined with the dipole map [A. Punjabi, H. Ali, and A. H. Boozer, Phys. Plasmas 10, 3992 (2003)] to calculate the effects of magnetic perturbation from a current carrying coil. The coil position and coil current coil are constant. The dipole perturbation enhances the magnetic shear. The width of the stochastic layer scales exponentially with {kappa}. The area of the footprint decreases as the {kappa} increases. The radial diffusion coefficient of field lines scales exponentially with {kappa}. The dipole perturbation changes the topology of the footprint. It breaks up the toroidally spiraling footprint into a number of separate asymmetric toroidal strips. Practical applications of the symmetric quartic map to elongated divertor tokamak plasmas are suggested.« less

  6. The symmetric quartic map for trajectories of magnetic field lines in elongated divertor tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Jones, Morgin; Wadi, Hasina; Ali, Halima; Punjabi, Alkesh

    2009-04-01

    The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in divertor tokamaks can be any coordinates for which a transformation to (ψt,θ,φ) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. ψt is toroidal magnetic flux, θ is poloidal angle, and φ is toroidal angle. This freedom is exploited to construct the symmetric quartic map such that the only parameter that determines magnetic geometry is the elongation of the separatrix surface. The poloidal flux inside the separatrix, the safety factor as a function of normalized minor radius, and the magnetic perturbation from the symplectic discretization are all held constant, and only the elongation is κ varied. The width of stochastic layer, the area, and the fractal dimension of the magnetic footprint and the average radial diffusion coefficient of magnetic field lines from the stochastic layer; and how these quantities scale with κ is calculated. The symmetric quartic map gives the correct scalings which are consistent with the scalings of coordinates with κ. The effects of m =1, n =±1 internal perturbation with the amplitude that is expected to occur in tokamaks are calculated by adding a term [H. Ali, A. Punjabi, A. H. Boozer, and T. Evans, Phys. Plasmas 11, 1908 (2004)] to the symmetric quartic map. In this case, the width of stochastic layer scales as 0.35 power of κ. The area of the footprint is roughly constant. The average radial diffusion coefficient of field lines near the X-point scales linearly with κ. The low mn perturbation changes the quasisymmetric structure of the footprint, and reorganizes it into a single, large scale, asymmetric structure. The symmetric quartic map is combined with the dipole map [A. Punjabi, H. Ali, and A. H. Boozer, Phys. Plasmas 10, 3992 (2003)] to calculate the effects of magnetic perturbation from a current carrying coil. The coil position and coil current coil are constant. The dipole perturbation enhances the magnetic shear. The width of the stochastic layer scales exponentially with κ. The area of the footprint decreases as the κ increases. The radial diffusion coefficient of field lines scales exponentially with κ. The dipole perturbation changes the topology of the footprint. It breaks up the toroidally spiraling footprint into a number of separate asymmetric toroidal strips. Practical applications of the symmetric quartic map to elongated divertor tokamak plasmas are suggested.

  7. Reversible Block of Mouse Neural Stem Cell Differentiation in the Absence of Dicer and MicroRNAs

    PubMed Central

    Sansom, Stephen N.; Alsiö, Jessica M.; Kaneda, Masahiro; Smith, James; O'Carroll, Donal; Tarakhovsky, Alexander; Livesey, Frederick J.

    2010-01-01

    Background To investigate the functions of Dicer and microRNAs in neural stem (NS) cell self-renewal and neurogenesis, we established neural stem cell lines from the embryonic mouse Dicer-null cerebral cortex, producing neural stem cell lines that lacked all microRNAs. Principal Findings Dicer-null NS cells underwent normal self-renewal and could be maintained in vitro indefinitely, but had subtly altered cell cycle kinetics and abnormal heterochromatin organisation. In the absence of all microRNAs, Dicer-null NS cells were incapable of generating either glial or neuronal progeny and exhibited a marked dependency on exogenous EGF for survival. Dicer-null NS cells assumed complex differences in mRNA and protein expression under self-renewing conditions, upregulating transcripts indicative of self-renewing NS cells and expressing genes characteristic of differentiating neurons and glia. Underlining the growth-factor dependency of Dicer-null NS cells, many regulators of apoptosis were enriched in expression in these cells. Dicer-null NS cells initiate some of the same gene expression changes as wild-type cells under astrocyte differentiating conditions, but also show aberrant expression of large sets of genes and ultimately fail to complete the differentiation programme. Acute replacement of Dicer restored their ability to differentiate to both neurons and glia. Conclusions The block in differentiation due to loss of Dicer and microRNAs is reversible and the significantly altered phenotype of Dicer-null NS cells does not constitute a permanent transformation. We conclude that Dicer and microRNAs function in this system to maintain the neural stem cell phenotype and to facilitate the completion of differentiation. PMID:20976144

  8. Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement.

    PubMed

    Weisleder, Noah; Soumaka, Elisavet; Abbasi, Shahrzad; Taegtmeyer, Heinrich; Capetanaki, Yassemi

    2004-01-01

    Mice deficient in desmin, the muscle-specific member of the intermediate filament gene family, display defects in all muscle types and particularly in the myocardium. Desmin null hearts develop cardiomyocyte hypertrophy and dilated cardiomyopathy (DCM) characterized by extensive myocyte cell death, calcific fibrosis and multiple ultrastructural defects. Several lines of evidence suggest impaired vascular function in desmin null animals. To determine whether altered capillary function or an intrinsic cardiomyocyte defect is responsible for desmin null DCM, transgenic mice were generated to rescue desmin expression specifically to cardiomyocytes. Desmin rescue mice display a wild-type cardiac phenotype with no fibrosis or calcification in the myocardium and normalization of coronary flow. Cardiomyocyte ultrastructure is also restored to normal. Markers of hypertrophy upregulated in desmin null hearts return to wild-type levels in desmin rescue mice. Working hearts were perfused to assess coronary flow and cardiac power. Restoration of a wild-type cardiac phenotype in a desmin null background by expression of desmin specifically within cardiomyocyte indicates that defects in the desmin null heart are due to an intrinsic cardiomyocytes defect rather than compromised coronary circulation.

  9. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the spectral inversion makes it possible to estimate the odd-order lateral structure, which cannot be determined by the conventional spectral inversion, which takes no account of the mixed coupling. Higher order structure is biased by the mixed coupling when the conventional spectral inversion is applied to the amplitude spectra incorporating the mixed coupling.

  10. Targeted Metabolomics Reveals a Protective Role for Basal PPARα in Cholestasis Induced by α-Naphthylisothiocyanate.

    PubMed

    Dai, Manyun; Hua, Huiying; Lin, Hante; Xu, Gangming; Hu, Xiaowei; Li, Fei; Gonzalez, Frank J; Liu, Aiming; Yang, Julin

    2018-04-06

    α-Naphthylisothiocyanate (ANIT) is an experimental agent used to induce intrahepatic cholestasis. The Ppara-null mouse line is widely employed to explore the physiological and pathological roles of PPARα. However, little is known about how PPARα influences the hepatotoxicity of ANIT. In the present study, wild-type and Ppara-null mice were orally treated with ANIT to induce cholestasis. The serum metabolome of wild-type mice segregated from that of the Ppara-null mice, driven by changes of bile acid (BA) metabolites. Alkaline phosphatase and total BAs were elevated preferentially in Ppara-null mice, which correlated with changes in Cyp7a1, Cyp8b1, Mrp3, Cyp3a11, Cyp2b10, Ugt1a2, and Ugt1a5 genes and showed cross-talk between basal PPARα and potentially adaptive pathways. Il6, Tnfa, and target genes in the STAT3 pathway ( Socs3, Fga, Fgb, and Fgg) were up-regulated in Ppara-null mice but not in wild-type mice. The JNK pathway was activated in both mouse lines, while NF-κB and STAT3 were activated only in Ppara-null mice. These data suggest protection against cholestasis by basal PPARα involves regulation of BA metabolism and inhibition of NF-κB/STAT3 signaling. Considering studies on the protective effects of both basal and activated PPARα, caution should be exercised when one attempts to draw conclusions in which the PPARα is modified by genetic manipulation, fasting, or activation in pharmacological and toxicological studies.

  11. Resonant Transparency and Non-Trivial Non-Radiating Excitations in Toroidal Metamaterials

    PubMed Central

    Fedotov, V. A.; Rogacheva, A. V.; Savinov, V.; Tsai, D. P.; Zheludev, N. I.

    2013-01-01

    Engaging strongly resonant interactions allows dramatic enhancement of functionalities of many electromagnetic devices. However, resonances can be dampened by Joule and radiation losses. While in many cases Joule losses may be minimized by the choice of constituting materials, controlling radiation losses is often a bigger problem. Recent solutions include the use of coupled radiant and sub-radiant modes yielding narrow asymmetric Fano resonances in a wide range of systems, from defect states in photonic crystals and optical waveguides with mesoscopic ring resonators to nanoscale plasmonic and metamaterial systems exhibiting interference effects akin to electromagnetically-induced transparency. Here we demonstrate theoretically and confirm experimentally a new mechanism of resonant electromagnetic transparency, which yields very narrow isolated symmetric Lorentzian transmission lines in toroidal metamaterials. It exploits the long sought non-trivial non-radiating charge-current excitation based on interfering electric and toroidal dipoles that was first proposed by Afanasiev and Stepanovsky in [J. Phys. A Math. Gen. 28, 4565 (1995)]. PMID:24132231

  12. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    PubMed

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  13. The impact of the SSIIa null mutations on grain traits and composition in durum wheat.

    PubMed

    Botticella, Ermelinda; Sestili, Francesco; Ferrazzano, Gianluca; Mantovani, Paola; Cammerata, Alessandro; D'Egidio, Maria Grazia; Lafiandra, Domenico

    2016-09-01

    Starch represents a major nutrient in the human diet providing essentially a source of energy. More recently the modification of its composition has been associated with new functionalities both at the nutritional and technological level. Targeting the major starch biosynthetic enzymes has been shown to be a valuable strategy to manipulate the amylose-amylopectin ratio in reserve starch. In the present work a breeding strategy aiming to produce a set of SSIIa (starch synthases IIa) null durum wheat is described. We have characterized major traits such as seed weight, total starch, amylose, protein and β-glucan content in a set of mutant families derived from the introgression of the SSIIa null trait into Svevo, an elite Italian durum wheat cultivar. A large degree of variability was detected and used to select wheat lines with either improved quality traits or agronomic performances. Semolina of a set of two SSIIa null lines showed new rheological behavior and an increased content of all major dietary fiber components, namely arabinoxylans, β-glucans and resistant starch. Furthermore the investigation of gene expression highlighted important differences in some genes involved in starch and β-glucans biosynthesis.

  14. The study of heat flux for disruption on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen

    2016-05-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.

  15. Destruction of Last Good Surface of The Simple Map For Single-null Divertor Tokamaks

    NASA Astrophysics Data System (ADS)

    Leach, Genese; Ali, Halima; Punjabi, Alkesh

    2003-10-01

    The Simple Map (SM) for a single-null diverted tokamak is given by x_n+1=x_n-ky_n(1-y_n) and y_n+1=y_n+kx_n+1, where the map parameter k represents the effects of toroidal asymmetries. Here we investigate what happens to the last good surface of SM with k= 0.6 when the value of k is increased. When k is in the region between .6 to .611, the good surface disappears and islands of different sizes and shapes start to appear. We find chaos when k is in the region between .6110 to 0.640. Some of these islands exhibit self-similarity. Self- Similarity can occur for a limitless number of times if one magnifies into this chaotic region. A Fortran code and TecPlot are used to visualize the data. Study of this phenomenon may contribute to the magnetic confinement problem through a better understanding of why and how the deterioration of the last good surface occurs. This work is jointly supported by NASA SHARP and US DOE Grant number DE-FG02-02ER54673. 1. Punjabi et al, Phys. Rev. Lett., 69, 3322 (1992), 2. Punjabi et al, Phys. Plasma, 4, 337 (1997)

  16. FLiT: a field line trace code for magnetic confinement devices

    NASA Astrophysics Data System (ADS)

    Innocente, P.; Lorenzini, R.; Terranova, D.; Zanca, P.

    2017-04-01

    This paper presents a field line tracing code (FLiT) developed to study particle and energy transport as well as other phenomena related to magnetic topology in reversed-field pinch (RFP) and tokamak experiments. The code computes magnetic field lines in toroidal geometry using curvilinear coordinates (r, ϑ, ϕ) and calculates the intersections of these field lines with specified planes. The code also computes the magnetic and thermal diffusivity due to stochastic magnetic field in the collisionless limit. Compared to Hamiltonian codes, there are no constraints on the magnetic field functional formulation, which allows the integration of whichever magnetic field is required. The code uses the magnetic field computed by solving the zeroth-order axisymmetric equilibrium and the Newcomb equation for the first-order helical perturbation matching the edge magnetic field measurements in toroidal geometry. Two algorithms are developed to integrate the field lines: one is a dedicated implementation of a first-order semi-implicit volume-preserving integration method, and the other is based on the Adams-Moulton predictor-corrector method. As expected, the volume-preserving algorithm is accurate in conserving divergence, but slow because the low integration order requires small amplitude steps. The second algorithm proves to be quite fast and it is able to integrate the field lines in many partially and fully stochastic configurations accurately. The code has already been used to study the core and edge magnetic topology of the RFX-mod device in both the reversed-field pinch and tokamak magnetic configurations.

  17. Map LineUps: Effects of spatial structure on graphical inference.

    PubMed

    Beecham, Roger; Dykes, Jason; Meulemans, Wouter; Slingsby, Aidan; Turkay, Cagatay; Wood, Jo

    2017-01-01

    Fundamental to the effective use of visualization as an analytic and descriptive tool is the assurance that presenting data visually provides the capability of making inferences from what we see. This paper explores two related approaches to quantifying the confidence we may have in making visual inferences from mapped geospatial data. We adapt Wickham et al.'s 'Visual Line-up' method as a direct analogy with Null Hypothesis Significance Testing (NHST) and propose a new approach for generating more credible spatial null hypotheses. Rather than using as a spatial null hypothesis the unrealistic assumption of complete spatial randomness, we propose spatially autocorrelated simulations as alternative nulls. We conduct a set of crowdsourced experiments (n=361) to determine the just noticeable difference (JND) between pairs of choropleth maps of geographic units controlling for spatial autocorrelation (Moran's I statistic) and geometric configuration (variance in spatial unit area). Results indicate that people's abilities to perceive differences in spatial autocorrelation vary with baseline autocorrelation structure and the geometric configuration of geographic units. These results allow us, for the first time, to construct a visual equivalent of statistical power for geospatial data. Our JND results add to those provided in recent years by Klippel et al. (2011), Harrison et al. (2014) and Kay & Heer (2015) for correlation visualization. Importantly, they provide an empirical basis for an improved construction of visual line-ups for maps and the development of theory to inform geospatial tests of graphical inference.

  18. Advances in understanding quiescent H-mode plasmas in DIII-Da)

    NASA Astrophysics Data System (ADS)

    Burrell, K. H.; West, W. P.; Doyle, E. J.; Austin, M. E.; Casper, T. A.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Hyatt, A. W.; Jayakumar, R. J.; Kaplan, D. H.; Lao, L. L.; Leonard, A. W.; Makowski, M. A.; McKee, G. R.; Osborne, T. H.; Snyder, P. B.; Solomon, W. M.; Thomas, D. M.; Rhodes, T. L.; Strait, E. J.; Wade, M. R.; Wang, G.; Zeng, L.

    2005-05-01

    Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasing power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce particle transport; this includes the incoherent, broadband activity seen at high triangularity. Pedestal values of ν* and βT bracketing, those required for International Experimental Thermonuclear Reactor [Nucl. Fusion 39, 2137 (1999)] have been achieved in DIII-D, demonstrating the QH-mode edge densities are sufficient for future devices.

  19. Advances in understanding quiescent H-mode plasmas in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, K.H.; West, W.P.; Gohil, P.

    2005-05-15

    Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasingmore » power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce particle transport; this includes the incoherent, broadband activity seen at high triangularity. Pedestal values of {nu}{sub *} and {beta}{sub T} bracketing, those required for International Experimental Thermonuclear Reactor [Nucl. Fusion 39, 2137 (1999)] have been achieved in DIII-D, demonstrating the QH-mode edge densities are sufficient for future devices.« less

  20. Polarization Measurements on SUMI's TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Kobayashi, K.; West, E. A.; Davis, J. M.; Gary, G. A.

    2007-01-01

    We present measurements of toroidal variable-line-space (TVLS) gratings for the Solar Ultraviolet Magnetograph Investigation (SUMI), currently being developed at the National Space Science and Technology Center (NSSTC). SUMI is a spectro-polarimeter designed to measure magnetic fields in the solar chromosphere by observing two UV emission lines sensitive to magnetic fields, the CIY line at 155nm and the MgII line at 280nm. The instrument uses a pair of TVLS gratings, to observe both linear polarizations simultaneously. Efficiency measurements were done on bare aluminum gratings and aluminum/MgF2 coated gratings, at both linear polarizations.

  1. Polarization Measurements on SUMI's TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Kobayashi, K.; West, E. A.; Davis, J. M.; Gary, G. A.

    2007-01-01

    We present measurements of toroidal variable-line-space (TVLS) gratings for the Solar Ultraviolet Magnetograph Investigation (SUMI), currently being developed an the National Space Science and Technology Center (NSSTC). SUMI zs a spectro-polarimeter designed no measure magnetic fields in the solar chromosphere by observing two UV emission lines sensitive to magnetic fields, the C-IV line at 155nm and the Mg-II line at 280nm. The instrument uses a pair of TVLS gratings, to observe both linear polarizations simultaneously. Efficiency measurements were done on bare aluminum gratings and MgF2 coated gratings, at both linear polarizations.

  2. Measurement of poloidal velocity on the National Spherical Torus Experiment (invited).

    PubMed

    Bell, Ronald E; Feder, Russell

    2010-10-01

    A diagnostic suite has been developed to measure the impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all the quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both the active emission in the plane of the neutral heating beams and the background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent charge exchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. The local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. The radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  3. Shocks and currents in stratified atmospheres with a magnetic null point

    NASA Astrophysics Data System (ADS)

    Tarr, Lucas A.; Linton, Mark

    2017-08-01

    We use the resistive MHD code LARE (Arber et al 2001) to inject a compressive MHD wavepacket into a stratified atmosphere that has a single magnetic null point, as recently described in Tarr et al 2017. The 2.5D simulation represents a slice through a small ephemeral region or area of plage. The strong gradients in field strength and connectivity related to the presence of the null produce substantially different dynamics compared to the more slowly varying fields typically used in simple sunspot models. The wave-null interaction produces a fast mode shock that collapses the null into a current sheet and generates a set of outward propagating (from the null) slow mode shocks confined to field lines near each separatrix. A combination of oscillatory reconnection and shock dissipation ultimately raise the plasma's internal energy at the null and along each separatrix by 25-50% above the background. The resulting pressure gradients must be balanced by Lorentz forces, so that the final state has contact discontinuities along each separatrix and a persistent current at the null. The simulation demonstrates that fast and slow mode waves localize currents to the topologically important locations of the field, just as their Alfvenic counterparts do, and also illustrates the necessity of treating waves and reconnection as coupled phenomena.

  4. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.

    2003-05-01

    It is a particular challenge to develop a stigmatic spectrograph for UV/EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  5. Hydraulic jumps in inhomogeneous strongly coupled toroidal dust flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piel, Alexander, E-mail: piel@physik.uni-kiel.de; Wilms, Jochen

    2016-07-15

    The inhomogeneous flow of strongly coupled dust particles in a toroidal particle trap with harmonic radial confinement is analyzed in the incompressible fluid limit. It is shown that the flow can spontaneously generate shock-like events, which are similar to the hydraulic jump in open channel flows. A definition of the Froude number for this model is given and the critical speed is recovered as the group velocity of surface waves. This hydraulic model is compared with molecular-dynamics simulations, which show that a sudden bifurcation of the flow lines and a localized temperature peak appear just at the point where themore » critical condition for the hydraulic jump is located.« less

  6. Density Measurement of Compact Toroid with Mach-Zehnder Interferometer

    NASA Astrophysics Data System (ADS)

    Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary

    2016-10-01

    Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.

  7. Extreme ultraviolet performance of a multilayer coated high density toroidal grating

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Keski-Kuha, Ritva A. M.; Neupert, Werner M.; Condor, Charles E.; Gum, Jeffrey S.

    1991-01-01

    The performance of a multilayer coated diffraction grating has been evaluated at EUV wavelengths both in terms of absolute efficiency and spectral resolution. The application of ten-layer Ir/Si multilayer coating to a 3600-lines/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength of about 30 nm in first order, without degrading its excellent quasistigmatic spectral resolution. The measured EUV efficiency peaked at 3.3 percent and was improved over the full spectral range between 25 and 35 nm compared with the premultilayer replica which had a standard gold coating. In addition, the grating's spectral resolution of greater than 5000 was maintained.

  8. Interchange Slip-Running Reconnection and Sweeping SEP-Beams

    NASA Technical Reports Server (NTRS)

    Masson, S.; Aulanier, G.; Pariat, E.; Klein, K.-L.

    2011-01-01

    We present a new model to explain how particles, accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be travelling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radius, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth.

  9. The Simple Map for a Single-null Divertor Tokamak: How to Find the Footprint of Field lines

    NASA Astrophysics Data System (ADS)

    Figgins, Montoya; Ali, Halima; Punjabi, Alkesh

    2000-10-01

    We are working with the Simple Map^1 to find the footprint of field lines on the diverter plate in a single-null tokamak. Footprint of a field line is the position of the line when it escapes across the divertor plate. The Simple Map represents the magnetic field in a single-null divertor tokamak. The path of a field line is given by the equations: X_n+1=X_n-kY_n(1-Y_n) and Y_n+1=Y_n+kX_n+1. In order to find the footprint, we must first find the last good surface which is Y=0.997135768 and X=0. The value of k is fixed at 0.6. The starting values X0 are fixed at X_0=0. We use 10,000 points between the last good surface and the X-point. The X-point is located at (0,1). We also use the Continuous Analog of the Simple Map given by the equations: X(φ)=X_0-kY0 (1-Y_0)φ and Y(φ)=Y_0+kX(φ)φ. This will tell us what the (φ,X) is which represents the field lines crossing the divertor plate. The divertor plate is located at Y=1. When graphed, the footprint of field lines looks like the rings of Saturn. This work is supported by US DOES OFES. Ms. Montoya Figgins is HU CFRT Summer Fusion High School Scholar from E. E. Smith High School in North Carolina. She is supported by NASA under its NASA SHARP Plus Program. 1. Punjabi A, Verma A, and Boozer A, Phys Rev Lett, 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994)

  10. Studies of short-range tungsten migration in DIII-D divertor

    NASA Astrophysics Data System (ADS)

    Rudakov, D. L.; Stangeby, P. C.; Elder, J. D.; Ding, R.; Abrams, T.; Unterberg, E. A.; Briesemeister, A.; Donovan, D.; McLean, A. G.; Guo, H. Y.; Thomas, D. M.; Hinson, E.; Wampler, W. R.; Watkins, J. G.

    2016-10-01

    Two toroidal rings of 5 cm wide W-coated TZM inserts were installed in the lower divertor of DIII-D. Migration of W on the graphite tile surfaces 1-6 cm radially outwards from the outermost ring was studied in a series of 23 reproducible lower single null L-mode discharges with the Outer Strike Point (OSP) placed on the ring. The discharges used 3.2 MW of NBI heating power; plasma density and electron temperature at the OSP were about 1x1020m-3 and 30 eV. W gross erosion rates were measured via monitoring 400.9 nm WI line and applying S/XB coefficient. W deposition was measured on a graphite DiMES sample used as a divertor collector probe. The sample featured two 1 mm wide radial inserts; one was exposed for the whole experiment, the other was exchanged every 4-8 plasma discharges. Measurements of the areal density of W on the inserts by post-mortem RBS analysis show that W deposition is largest in the area of net carbon deposition, possibly due to W re-erosion suppression by C deposits. Measured W coverage in the area of net C erosion is comparable to ERO modeling predictions. Supported by US DOE under DE-FG02-07ER54917, DE-AC04-94AL85000, DE-AC05-00OR22725, DE-AC52-07NA27344, DE-FC02-04ER54698.

  11. Two-Wire to Four-Wire Audio Converter

    NASA Technical Reports Server (NTRS)

    Talley, G. L., Jr; Seale, B. L.

    1983-01-01

    Simple circuit provides interface between normally incompatible voicecommunication lines. Circuit maintains 40 dB of isolation between input and output halves of four-wire line permitting two-wire line to be connected. Balancing potentiometer, Rg, adjusts gain of IC2 to null feed through from input to output. Adjustment is done on workbench just after assembly.

  12. Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System.

    PubMed

    Hong, Cheol-Hwa; Sohn, Hyun-Jung; Lee, Hyun-Joo; Cho, Hyun-Il; Kim, Tai-Gyu

    Human leukocyte antigens (HLAs) are essential immune molecules that affect transplantation and adoptive immunotherapy. When hematopoietic stem cells or organs are transplanted with HLA-mismatched recipients, graft-versus-host disease or graft rejection can be induced by allogeneic immune responses. The function of each HLA allele has been studied using HLA-deficient cells generated from mutant cell lines or by RNA interference, zinc finger nuclease, and the CRISPR/Cas9 system. To improve HLA gene editing, we attempted to generate an HLA class I null cell line using the multiplex CRISPR/Cas9 system by targeting exons 2 and 3 of HLA-A, HLA-B, and HLA-C genes simultaneously. Multiplex HLA editing could induce the complete elimination of HLA class I genes by bi-allelic gene disruption on target sites which was defined by flow cytometry and target-specific polymerase chain reaction. Furthermore, artificial antigen-presenting cells were generated by transfer of a single HLA class I allele and co-stimulatory molecules into this novel HLA class I null cell line. Artificial antigen-presenting cells showed HLA-restricted antigen presentation following antigen processing and were successfully used for the efficient generation of tumor antigen-specific cytotoxic T cells in vitro. The efficient editing of HLA genes may provide a basis for universal cellular therapies and transplantation.

  13. Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF

    NASA Astrophysics Data System (ADS)

    Ellington, S. M.; Moldwin, M. B.; Liemohn, M. W.

    2016-03-01

    We present evidence of resonant wave-wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large-scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time-dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin-Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes.

  14. Elliptical varied line-space (EVLS) gratings

    NASA Astrophysics Data System (ADS)

    Thomas, Roger J.

    2004-10-01

    Imaging spectroscopy at wavelengths below 2000 Å offers an especially powerful method for studying many extended high-temperature astronomical objects, like the Sun and its outer layers. But the technology to make such measurements is also especially challenging, because of the poor reflectance of all standard materials at these wavelengths, and because the observation must be made from above the absorbing effects of the Earth's atmosphere. To solve these problems, single-reflection stigmatic spectrographs for XUV wavelengths have bee flown on several space missions based on designs with toroidal uniform line-space (TULS) or spherical varied line-space (SVLS) gratings that operate at near normal-incidence. More recently, three solar EUV/UV instruments have been selected that use toroidal varied line-space (TVLS) gratings; these are SUMI and RAISE, both sounding rocket payloads, and NEXUS, a SMEX satellite-mission. The next logical extension to such designs is the use of elliptical surfaces for varied line-space (EVLS) rulings. In fact, EVLS designs are found to provide superior imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. In some cases, such designs may be optimized even further by using a hyperbolic surface for the feeding telescope. The optical characteristics of two solar EUV spectrometers based on these concepts are described: EUS and EUI, both being developed as possible instruments for ESA's Solar Orbiter mission by consortia led by RAL and by MSSL, respectively.

  15. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2.

    PubMed

    Ler, Lian Dee; Ghosh, Sujoy; Chai, Xiaoran; Thike, Aye Aye; Heng, Hong Lee; Siew, Ee Yan; Dey, Sucharita; Koh, Liang Kai; Lim, Jing Quan; Lim, Weng Khong; Myint, Swe Swe; Loh, Jia Liang; Ong, Pauline; Sam, Xin Xiu; Huang, Dachuan; Lim, Tony; Tan, Puay Hoon; Nagarajan, Sanjanaa; Cheng, Christopher Wai Sam; Ho, Henry; Ng, Lay Guat; Yuen, John; Lin, Po-Hung; Chuang, Cheng-Keng; Chang, Ying-Hsu; Weng, Wen-Hui; Rozen, Steven G; Tan, Patrick; Creasy, Caretha L; Pang, See-Tong; McCabe, Michael T; Poon, Song Ling; Teh, Bin Tean

    2017-02-22

    Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, KDM6A (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of KDM6A mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in KDM6A -mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in KDM6A -null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that KDM6A -null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in KDM6A -null cell lines. EZH2 inhibition delayed tumor onset in KDM6A -null cells and caused regression of KDM6A -null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of KDM6A , which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2. Copyright © 2017, American Association for the Advancement of Science.

  16. Hypothesis Testing Using Spatially Dependent Heavy Tailed Multisensor Data

    DTIC Science & Technology

    2014-12-01

    Office of Research 113 Bowne Hall Syracuse, NY 13244 -1200 ABSTRACT HYPOTHESIS TESTING USING SPATIALLY DEPENDENT HEAVY-TAILED MULTISENSOR DATA Report...consistent with the null hypothesis of linearity and can be used to estimate the distribution of a test statistic that can discrimi- nate between the null... Test for nonlinearity. Histogram is generated using the surrogate data. The statistic of the original time series is represented by the solid line

  17. The sirtuin 1/2 inhibitor tenovin-1 induces a nonlinear apoptosis-inducing factor-dependent cell death in a p53 null Ewing's sarcoma cell line.

    PubMed

    Marx, Christian; Marx-Blümel, Lisa; Lindig, Nora; Thierbach, René; Hoelzer, Doerte; Becker, Sabine; Wittig, Susan; Lehmann, Roland; Slevogt, Hortense; Heinzel, Thorsten; Wang, Zhao-Qi; Beck, James F; Sonnemann, Jürgen

    2018-06-01

    The sirtuin 1/2 inhibitor tenovin-1 activates p53 and may have potential in the management of cancer. Here, we investigated the responsiveness of Ewing's sarcoma cells to tenovin-1. We examined its effects in two Ewing's sarcoma cell lines with different p53 status, i.e. in p53 wild-type and p53 null cells. Effects were assessed by flow cytometric analyses of cell death, mitochondrial membrane depolarization and reactive oxygen species (ROS) generation, by caspase 3/7 activity measurement, by mRNA expression profiling and by immunoblotting. Tenovin-1 elicited caspase-mediated cell death in p53 wild-type cells, but caspase-independent cell death in p53 null cells. Remarkably, it induced a nonlinear concentration response in the latter: low concentrations of tenovin-1 were much more effective than were higher concentrations. Tenovin-1's effects in p53 null cells involved gene expression changes of Bcl-2 family members, mitochondrial membrane depolarization, nuclear translocation of apoptosis-inducing factor, ROS formation and DNA damage; all these effects followed a bell-shaped pattern. In conclusion, our results provide new insights into tenovin-1's mode of action by demonstrating that it can induce different pathways of cell death.

  18. MHD simulation of relaxation transition to a flipped relaxed state in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2008-11-01

    Recently, it has been demonstrated in the HIST device that in spite of the violation of the Kruskal-Shafranov stability condition, a normal spherical torus (ST) plasma has relaxed to a flipped ST state through a transient reversed-field pinch-like state when the vacuum toroidal field is decreased and its direction is reversed [1]. It has been also observed during this relaxation transition process that not only the toroidal field but also the poloidal field reverses polarity spontaneously and that the ion flow velocity is strongly fluctuated and abruptly increased up to > 50 km/s. The purpose of the present study is to investigate the plasma flows and the relevant MHD relaxation phenomena to elucidate this transition mechanism by using three-dimensional MHD simulations [2]. It is found from the numerical results that the magnetic reconnection between the open and closed field lines occurs due to the non-linear growth of the n=1 kink instability of the central open flux, generating the toroidal flow ˜ 60 km/s in the direction of the toroidal current. The n=1 kink instability and the plasma flows driven by the magnetic reconnection are consider to be responsible for the self-reversal of the magnetic fields. [1] M. Nagata el al., Phys. Rev. Lett. 90, 225001 (2003). [2] Y. Kagei el al., Plasma. Phys. Control. Fusion 45, L17 (2003).

  19. The role of the density gradient on intermittent cross-field transport events in a simple magnetized toroidal plasma

    NASA Astrophysics Data System (ADS)

    Theiler, C.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Podestà, M.; Poli, F. M.; Ricci, P.

    2008-04-01

    Intermittent cross-field particle transport events (ITEs) are studied in the basic toroidal device TORPEX [TORoidal Plasma EXperiment, A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], with focus on the role of the density gradient. ITEs are due to the intermittent radial elongation of an interchange mode. The elongating positive wave crests can break apart and form blobs. This is not necessary, however, for plasma particles to be convected a considerable distance across the magnetic field lines. Conditionally sampled data reveal two different scenarios leading to ITEs. In the first case, the interchange mode grows radially from a slab-like density profile and leads to the ITE. A novel analysis technique reveals a monotonic dependence between the vertically averaged inverse radial density scale length and the probability for a subsequent ITE. In the second case, the mode is already observed before the start of the ITE. It does not elongate radially in a first stage, but at a later time. It is shown that this elongation is preceded by a steepening of the density profile as well.

  20. Cross-field transport by instabilities and blobs in a magnetized toroidal plasma.

    PubMed

    Podestà, M; Fasoli, A; Labit, B; Furno, I; Ricci, P; Poli, F M; Diallo, A; Müller, S H; Theiler, C

    2008-07-25

    The mechanisms for anomalous transport across the magnetic field are investigated in a toroidal magnetized plasma. The role of plasma instabilities and macroscopic density structures (blobs) is discussed. Examples from a scenario with open magnetic field lines are shown. A transition from a main plasma region into a loss region is reproduced. In the main plasma, which includes particle and heat source locations, the transport is dominated by the fluctuation-induced particle and heat flux associated with a plasma instability. On the low-field side, the cross-field transport is ascribed to the intermittent ejection of macroscopic blobs propagating toward the outer wall. It is shown that instabilities and blobs represent fundamentally different mechanisms for cross-field transport.

  1. A rapid quantification of binocular misalignment without recording eye movements: Vertical and torsional alignment nulling.

    PubMed

    Beaton, Kara H; Shelhamer, Mark J; Roberts, Dale C; Schubert, Michael C

    2017-05-01

    Small, innate asymmetries between the left and right otolith organs can cause ocular misalignment with symptoms that include double vision and motion sickness. Additionally, ocular misalignment affects nearly 5% of the US population. We have developed a portable, non-invasive technology that uses subjective perception of binocular visual signals to estimate relative binocular alignment. The Vertical Alignment Nulling (VAN) and Torsional Alignment Nulling (TAN) tests ask subjects to view one red and one blue line on a tablet computer while looking through color-matched red and blue filters so that each eye sees only one of the lines. Subjects align the red and blue lines, which are initially vertically offset from one another during VAN or rotated relative to one another during TAN, until they perceive a single continuous line. Ocular misalignments are inferred from actual offsets in the final line positions. During testing, all binocular visual cues are eliminated by employing active-matrix organic light-emitting diode (AMOLED) technology and testing in darkness. VAN and TAN can accurately account for visual offsets induced by prisms, and test-retest reliability is excellent, with resolution better than many current standard clinical tests. VAN and TAN tests are similar to the clinical Lancaster red-green test. However, VAN and TAN employ inexpensive, hand-held hardware that can be self-administered with results that are quickly quantifiable. VAN and TAN provide simple, sensitive, and quantitative measures of binocular positioning alignment that may be useful for detecting subtle abnormalities in ocular positioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Full-physics 3D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.

    In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water asmore » a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.« less

  3. Full-physics 3D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    DOE PAGES

    Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.; ...

    2015-10-01

    In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water asmore » a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.« less

  4. Impact of Magnetic Draping, Convection, and Field Line Tying on Magnetopause Reconnection Under Northward IMF

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.

    2010-01-01

    We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.

  5. A condition for small bootstrap current in three-dimensional toroidal configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailov, M. I., E-mail: mikhaylov-mi@nrcki.ru; Nührenberg, J.; Zille, R.

    2016-11-15

    It is shown that, if the maximum of the magnetic field strength on a magnetic surface in a threedimensional magnetic confinement configuration with stellarator symmetry constitutes a line that is orthogonal to the field lines and crosses the symmetry line, then the bootstrap current density is smaller compared to that in quasi-axisymmetric (qa) [J. Nührenberg et al., in Proc. of Joint Varenna−Lausanne Int. Workshop on Theory of Fusion Plasmas, Varenna, 1994, p. 3] and quasi-helically (qh) symmetric [J. Nührenberg and R. Zille, Phys. Lett. A 129, 113 (1988)] configurations.

  6. Current singularities at quasi-separatrix layers and three-dimensional magnetic nulls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, I. J. D.; Effenberger, Frederic, E-mail: feffen@waikato.ac.nz

    2014-11-10

    The open problem of how singular current structures form in line-tied, three-dimensional magnetic fields is addressed. A Lagrangian magneto-frictional relaxation method is employed to model the field evolution toward the final near-singular state. Our starting point is an exact force-free solution of the governing magnetohydrodynamic equations that is sufficiently general to allow for topological features like magnetic nulls to be inside or outside the computational domain, depending on a simple set of parameters. Quasi-separatrix layers (QSLs) are present in these structures and, together with the magnetic nulls, they significantly influence the accumulation of current. It is shown that perturbations affectingmore » the lateral boundaries of the configuration lead not only to collapse around the magnetic null but also to significant QSL currents. Our results show that once a magnetic null is present, the developing currents are always attracted to that specific location and show a much stronger scaling with resolution than the currents that form along the QSL. In particular, the null-point scalings can be consistent with models of 'fast' reconnection. The QSL currents also appear to be unbounded but give rise to weaker singularities, independent of the perturbation amplitude.« less

  7. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.

    2003-01-01

    It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  8. The study of heat flux for disruption on experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhendong, E-mail: dongyz@ipp.ac.cn, E-mail: jafang@dhu.edu.cn; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Fang, Jianan, E-mail: dongyz@ipp.ac.cn, E-mail: jafang@dhu.edu.cn

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptionsmore » have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dR{sub sep} = −2 cm, while it changes to upper single null (dR{sub sep} = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m{sup 2}.« less

  9. Heat flux and plasma flow in the far scrape-off layer of the inboard poloidal field null configuration in QUEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onchi, T.; Zushi, H.; Hanada, K.

    2015-08-15

    Heat flux and plasma flow in the scrape-off layer (SOL) are examined for the inboard poloidal field null (IPN) configuration of the spherical tokamak QUEST. In the plasma current (I{sub p}) ramp-up phase, high heat flux (>1 MW/m{sup 2}) and supersonic flow (Mach number M > 1) are found to be present simultaneously in the far-SOL. The heat flux is generated by energetic electrons excursed from the last closed flux surface. Supersonic flows in the poloidal and toroidal directions are correlated with each other. In the quasi-steady state, sawtooth-like oscillation of I{sub p} at 20 Hz is observed. Heat flux and subsonic plasma flowmore » in the far-SOL are modified corresponding to the I{sub p}-oscillation. The heat flow caused by motion of energetic electrons and the bulk-particle transport to the far-SOL is enhanced during the low-I{sub p} phase. Modification of plasma flow in the far SOL occurs earlier than the I{sub p} crash. The M–I{sub p} curve has a limit-cycle characteristic with sawtooth-like oscillation. Such a core–SOL relationship indicates that the far-SOL flow plays an important role in sustaining the oscillation of I{sub p} in the IPN configuration.« less

  10. Magnetoacoustic Waves in a Stratified Atmosphere with a Magnetic Null Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarr, Lucas A.; Linton, Mark; Leake, James, E-mail: lucas.tarr.ctr@nrl.navy.mil

    2017-03-01

    We perform nonlinear MHD simulations to study the propagation of magnetoacoustic waves from the photosphere to the low corona. We focus on a 2D system with a gravitationally stratified atmosphere and three photospheric concentrations of magnetic flux that produce a magnetic null point with a magnetic dome topology. We find that a single wavepacket introduced at the lower boundary splits into multiple secondary wavepackets. A portion of the packet refracts toward the null owing to the varying Alfvén speed. Waves incident on the equipartition contour surrounding the null, where the sound and Alfvén speeds coincide, partially transmit, reflect, and mode-convertmore » between branches of the local dispersion relation. Approximately 15.5% of the wavepacket’s initial energy ( E {sub input}) converges on the null, mostly as a fast magnetoacoustic wave. Conversion is very efficient: 70% of the energy incident on the null is converted to slow modes propagating away from the null, 7% leaves as a fast wave, and the remaining 23% (0.036 E {sub input}) is locally dissipated. The acoustic energy leaving the null is strongly concentrated along field lines near each of the null’s four separatrices. The portion of the wavepacket that refracts toward the null, and the amount of current accumulation, depends on the vertical and horizontal wavenumbers and the centroid position of the wavepacket as it crosses the photosphere. Regions that refract toward or away from the null do not simply coincide with regions of open versus closed magnetic field or regions of particular field orientation. We also model wavepacket propagation using a WKB method and find that it agrees qualitatively, though not quantitatively, with the results of the numerical simulation.« less

  11. High frequency generation in the corona: Resonant cavities

    NASA Astrophysics Data System (ADS)

    Santamaria, I. C.; Van Doorsselaere, T.

    2018-03-01

    Aims: Null points are prominent magnetic field singularities in which the magnetic field strength strongly decreases in very small spatial scales. Around null points, predicted to be ubiquitous in the solar chromosphere and corona, the wave behavior changes considerably. Null points are also responsible for driving very energetic phenomena, and for contributing to chromospheric and coronal heating. In previous works we demonstrated that slow magneto-acoustic shock waves were generated in the chromosphere propagate through the null point, thereby producing a train of secondary shocks escaping along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 MHz. The present work aims to investigate this high frequency region around a coronal null point to give a plausible explanation to its generation at that particular frequency. Methods: We carried out a set of two-dimensional numerical simulations of wave propagation in the neighborhood of a null point located in the corona. We varied both the amplitude of the driver and the atmospheric properties to investigate the sensitivity of the high frequency waves to these parameters. Results: We demonstrate that the wave frequency is sensitive to the atmospheric parameters in the corona, but it is independent of the strength of the driver. Thus, the null point behaves as a resonant cavity generating waves at specific frequencies that depend on the background equilibrium model. Moreover, we conclude that the high frequency wave train generated at the null point is not necessarily a result of the interaction between the null point and a shock wave. This wave train can be also developed by the interaction between the null point and fast acoustic-like magneto-acoustic waves, that is, this interaction within the linear regime.

  12. Null hypersurfaces in de Sitter and anti-de Sitter cosmologies

    NASA Astrophysics Data System (ADS)

    Hogan, P. A.

    The study of gravitational waves in the presence of a cosmological constant has led to interesting forms of the de Sitter and anti-de Sitter line elements based on families of null hypersurfaces. The forms are interesting because they focus attention on the geometry of null hypersurfaces in spacetimes of constant curvature. Two examples are worked out in some detail. The first originated in the study of collisions of impulsive gravitational waves in which the post-collision spacetime is a solution of Einstein’s field equations with a cosmological constant, and the second originated in the generalization of plane fronted gravitational waves with parallel rays to include a cosmological constant.

  13. Effects of resistivity and rotation on the linear plasma response to non-axisymmetric magnetic perturbations on DIII-D

    DOE PAGES

    Haskey, Shaun R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-01-05

    Parameter scans show the strong dependence of the plasma response on the poloidal structure of the applied field highlighting the importance of being able to control this parameter using non-axisymmetric coil sets. An extensive examination of the linear single fluid plasma response to n = 3 magnetic perturbations in L-mode DIII-D lower single null plasmas is presented. The effects of plasma resistivity, toroidal rotation and applied field structure are calculated using the linear single fluid MHD code, MARS-F. Measures which separate the response into a pitch-resonant and resonant field amplification (RFA) component are used to demonstrate the extent to whichmore » resonant screening and RFA occurs. The ability to control the ratio of pitch-resonant fields to RFA by varying the phasing between upper and lower resonant magnetic perturbations coils sets is shown. The predicted magnetic probe outputs and displacement at the x-point are also calculated for comparison with experiments. Additionally, modelling of the linear plasma response using experimental toroidal rotation profiles and Spitzer like resistivity profiles are compared with results which provide experimental evidence of a direct link between the decay of the resonant screening response and the formation of a 3D boundary. As a result, good agreement is found during the initial application of the MP, however, later in the shot a sudden drop in the poloidal magnetic probe output occurs which is not captured in the linear single fluid modelling.« less

  14. Parallel Transport with Sheath and Collisional Effects in Global Electrostatic Turbulent Transport in FRCs

    NASA Astrophysics Data System (ADS)

    Bao, Jian; Lau, Calvin; Kuley, Animesh; Lin, Zhihong; Fulton, Daniel; Tajima, Toshiki; Tri Alpha Energy, Inc. Team

    2017-10-01

    Collisional and turbulent transport in a field reversed configuration (FRC) is studied in global particle simulation by using GTC (gyrokinetic toroidal code). The global FRC geometry is incorporated in GTC by using a field-aligned mesh in cylindrical coordinates, which enables global simulation coupling core and scrape-off layer (SOL) across the separatrix. Furthermore, fully kinetic ions are implemented in GTC to treat magnetic-null point in FRC core. Both global simulation coupling core and SOL regions and independent SOL region simulation have been carried out to study turbulence. In this work, the ``logical sheath boundary condition'' is implemented to study parallel transport in the SOL. This method helps to relax time and spatial steps without resolving electron plasma frequency and Debye length, which enables turbulent transports simulation with sheath effects. We will study collisional and turbulent SOL parallel transport with mirror geometry and sheath boundary condition in C2-W divertor.

  15. The effect of safety factor profile on transport in steady-state, high-performance scenarios

    DOE PAGES

    Holcomb, C. T.; Ferron, J. R.; Luce, T. C.; ...

    2012-03-09

    In this study, an analysis of the dependence of transport on the safety factor profile in high-performance, steady-state scenario discharges is presented. This is based on experimental scans of q 95 and q min taken with fixed β N, toroidal field, double-null plasma shape, divertor pumping, and electron cyclotron current drive input. The temperature and thermal diffusivity profiles were found to vary considerably with the q-profile, and these variations were significantly different for electrons and ions. With fixed q 95, both temperature profiles increase and broaden as q min is increased and the magnetic shear becomes low or negative inmore » the inner half radius, but these temperature profile changes are stronger for the electrons. Power balance calculations show the peak in the ion thermal diffusivity (χ i) at ρ – 0.6 – 0.8 increases with q 95 or q min.« less

  16. Identifying Neurofibromin Specific Regulatory Nodes for Therapeutic Targeting in NF1

    DTIC Science & Technology

    2017-10-01

    neurofibromin depends on the adapter protein SPRED1, to function, and we are utilizing the latest technical innovations including CRISPR technology... CRISPR technology to find genes that regulate neurofibromin SPRED function. Keywords Neurofibromin, Spred1, Spred2, EGFR, mutant EGFR(L858R), Ras...Establish good NF1 and Spred1/2 knockdown protocols for indicated cell lines NF1-Null and Spred1-Null HEK 293T cells have been generated using CRISPR /Cas9

  17. pyNSMC: A Python Module for Null-Space Monte Carlo Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    White, J.; Brakefield, L. K.

    2015-12-01

    The null-space monte carlo technique is a non-linear uncertainty analyses technique that is well-suited to high-dimensional inverse problems. While the technique is powerful, the existing workflow for completing null-space monte carlo is cumbersome, requiring the use of multiple commandline utilities, several sets of intermediate files and even a text editor. pyNSMC is an open-source python module that automates the workflow of null-space monte carlo uncertainty analyses. The module is fully compatible with the PEST and PEST++ software suites and leverages existing functionality of pyEMU, a python framework for linear-based uncertainty analyses. pyNSMC greatly simplifies the existing workflow for null-space monte carlo by taking advantage of object oriented design facilities in python. The core of pyNSMC is the ensemble class, which draws and stores realized random vectors and also provides functionality for exporting and visualizing results. By relieving users of the tedium associated with file handling and command line utility execution, pyNSMC instead focuses the user on the important steps and assumptions of null-space monte carlo analysis. Furthermore, pyNSMC facilitates learning through flow charts and results visualization, which are available at many points in the algorithm. The ease-of-use of the pyNSMC workflow is compared to the existing workflow for null-space monte carlo for a synthetic groundwater model with hundreds of estimable parameters.

  18. Rapid electron beam accelerator (REBA-tron)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapetanakos, C.A.; Sprangle, P.A.; Dialetis, D.

    1986-03-05

    This invention comprises a particle accelerator with a toroidal vacuum chamber, an injector for injecting a charged-paticle beam into the chamber and an exit port to extract the accelerated particle beam. A toroidal magnetic field to confine the beam in the chamber is generated by a set of coils with their axis along the minor axis of the chamber and by two twisted wires that carry current in the same direction wrapped around the chamber. The two twisted wires also generate a torsatron magnetic field that controls the minor radius of the beam. A time-varying magnetic field is generated bymore » two concentric cylindrical plates surrounding the chamber. A convoluted transmission line generates a localized electric field in the chamber to accelerate the beam.« less

  19. Tokamak with mechanical compression of toroidal magnetic field

    DOEpatents

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A collapsible toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. A toroidal magnetic field is developed within the toroidal space about the major axis thereof. A toroidal plasma is developed within the toroidal space about the major axis thereof. Pressure is applied to the liquid metal to collapse the liner and reduce the volume of the toroidal space, thereby increasing the toroidal magnetic flux density therein.

  20. Resistive magnetohydrodynamics with toroidal rotation in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Cao, Jintao; Cai, Huishan

    2018-01-01

    Toroidal rotation has always existed in tokamak plasmas, and its Mach number can reach unity during neutral beam injection. Toroidal rotation can affect plasma equilibrium and magnetohydrodynamic instabilities significantly. Based on linearized equations including the toroidal rotation effect, the toroidal model derived by Glasser et al. [Phys. Fluids 18, 875 (1975)] is extended to include this effect, and a set of resistive equations including the toroidal rotation effect in the axi-symmetry toroidal geometry is derived. Based on these derived equations, the effect of toroidal rotation on tearing modes is considered, and the growth rate of tearing modes is obtained analytically. It is shown that the effect of toroidal rotation on tearing modes depends on both the direction of toroidal rotation flow and the sign of toroidal rotation flow shear. When they have the same sign, they play a role in stabilizing tearing modes, while when they have opposite signs, they have a destabilizing effect on tearing modes.

  1. Balloon Exoplanet Nulling Interferometer (BENI)

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  2. Toroidal turbulence simulations with gyro-Landau fluid models in a nonlinear ballooning mode representation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Kerbel, G. D.

    1994-05-01

    The method of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] to model Landau damping has been recently applied to the moments of the gyro-kinetic equation with curvature drift by Waltz, Dominguez, and Hammett [Phys. Fluids B 4, 3138 (1992)]. The higher moments are truncated in terms of the lower moments (density, parallel velocity, and parallel and perpendicular pressure) by modeling the deviation from a perturbed Maxwellian to fit the kinetic response function at all values of the kinetic parameters: k∥vth/ω, b=(k⊥ρ)2/2, and ωD/ω. Here the resulting gyro-Landau fluid equations are applied to the simulation of ion temperature gradient (ITG) mode turbulence in toroidal geometry using a novel 3D nonlinear ballooning mode representation. The representation is a Fourier transform of the Cowley et al. [Phys. Fluids B 3, 2767 (1991)] field line following twisted eddy basis (kx',ky',z') with periodicity in toroidal and poloidal angles. Particular emphasis is given to the role of nonlinearly generated n=0 (ky'=0, kx'≠0) ``radial modes'' in stabilizing the transport from the finite-n ITG ballooning modes.

  3. Linear instabilities near the DIII-D edge simulated in fluid models

    NASA Astrophysics Data System (ADS)

    Bass, Eric; Holland, Christopher

    2017-10-01

    The linear instability spectrum is reported near the DIII-D edge (within the separatrix) for L-mode and H-mode shots using the new eigenvalue solver FluTES (Fluid Toroidal Eigenvalue Solver). FluTES circumvents difficulties with convergence to clean linear eigenmodes (required for diagnosis of nonlinear simulations in codes such as BOUT++) often encountered with fluid initial-value solvers. FluTES is well-verified in analytic cases and against a BOUT++/ELITE benchmark toroidal case. We report results for both a 3-field, one-fluid model (the well-known ``elm-pb'' model) and a 5-field, two-fluid model. For the peeling-ballooning-dominated H-mode, the two solutions are qualitatively the same. In the driftwave-dominated L-mode edge, only the two-fluid solution gives robust instabilities which occur primarily at n > 50 . FluTES is optimized for this regime (near-flutelike limit, toroidally spectral). Cross-separatrix, coupled fluid and drift instabilities may play a role in explaining the gyrokinetic L-mode edge transport shortfall. Extension of FluTES into the open-field-line region is underway. Prepared by UCSD under Contract Number DE-FG02-06ER54871.

  4. A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and Rotation-velocity Profiles on the AlcatorC-Mod Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K. W.; Bitter, M. L.; Scott, S. D.

    2009-03-24

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (λ/dλ > 6000) of He-like and H-like Ar Kα lines with good spatial (~1 cm) and temporal (~10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (Ti), and toroidal plasma rotation velocity (vφ) from the line Doppler widths and shifts. The data analysis techniqu

  5. Formation of the Sun-aligned arc region and the void (polar slot) under the null-separator structure

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Obara, T.; Watanabe, M.; Fujita, S.; Ebihara, Y.; Kataoka, R.

    2017-04-01

    From the global magnetosphere-ionosphere coupling simulation, we examined the formation of the Sun-aligned arc region and the void (polar slot) under the northward interplanetary magnetic field (IMF) with negative By condition. In the magnetospheric null-separator structure, the separatrices generated from two null points and two separators divide the entire space into four types of magnetic region, i.e., the IMF, the northern open magnetic field, the southern open magnetic field, and the closed magnetic field. In the ionosphere, the Sun-aligned arc region and the void are reproduced in the distributions of simulated plasma pressure and field-aligned current. The outermost closed magnetic field lines on the boundary (separatrix) between the northern open magnetic field and the closed magnetic field are projected to the northern ionosphere at the boundary between the Sun-aligned arc region and the void, both on the morning and evening sides. The magnetic field lines at the plasma sheet inner edge are projected to the equatorward boundary of the oval. Therefore, the Sun-aligned arc region is on the closed magnetic field lines of the plasma sheet. In the plasma sheet, an inflated structure (bulge) is generated at the junction of the tilted plasma sheet in the far-to-middle tail and nontilted plasma sheet in the ring current region. In the Northern Hemisphere, the bulge is on the evening side wrapped by the outermost closed magnetic field lines that are connected to the northern evening ionosphere. This inflated structure (bulge) is associated with shear flows that cause the Sun-aligned arc.

  6. Parameterization of spectral baseline directly from short echo time full spectra in 1 H-MRS.

    PubMed

    Lee, Hyeong Hun; Kim, Hyeonjin

    2017-09-01

    To investigate the feasibility of parameterizing macromolecule (MM) resonances directly from short echo time (TE) spectra rather than pre-acquired, T 1 -weighted, metabolite-nulled spectra in 1 H-MRS. Initial line parameters for metabolites and MMs were set for rat brain spectra acquired at 9.4 Tesla upon a priori knowledge. Then, MM line parameters were optimized over several steps with fixed metabolite line parameters. The proposed method was tested by estimating metabolite T 1 . The results were compared with those obtained with two existing methods. Furthermore, subject-specific, spin density-weighted, MM model spectra were generated according to the MM line parameters from the proposed method for metabolite quantification. The results were compared with those obtained with subject-specific, T 1 -weighted, metabolite-nulled spectra. The metabolite T 1 were largely in close agreement among the three methods. The spin density-weighted MM resonances from the proposed method were in good agreement with the T 1 -weighted, metabolite-nulled spectra except for the MM resonance at ∼3.2 ppm. The metabolite concentrations estimated by incorporating these two different spectral baselines were also in good agreement except for several metabolites with resonances at ∼3.2 ppm. The MM parameterization directly from short-TE spectra is feasible. Further development of the method may allow for better representation of spectral baseline with negligible T 1 -weighting. Magn Reson Med 78:836-847, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Tokamak with liquid metal toroidal field coil

    DOEpatents

    Ohkawa, Tihiro; Schaffer, Michael J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  8. Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field

    DOEpatents

    Schaffer, Michael J.

    1986-01-01

    A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  9. BEAM EXTRACTION FROM THE RECYCLER RING TO P1 LINE AT FERMILAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, M.; Capista, D.; Adams, P.

    The transfer line for beam extraction from the Recycler ring to P1 line provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. It was designed in 2012. The kicker magnets at RR520 and the lambertson magnet at RR522 in the RR were installed in 2014 Summer Shutdown, the elements of RR to P1 Stub (permanent quads, trim quads, correctors, BPMs, the toroid at 703 and vertical bending dipole at V703 (ADCW) were installed in 2015 Summermore » Shutdown. On Tuesday, June 21, 2016, beam line from the Recycler Ring to P1 line was commissioned. The detailed results will be presented in this report.« less

  10. Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point

    NASA Astrophysics Data System (ADS)

    Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.

    2018-05-01

    The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.

  11. Design of charge exchange recombination spectroscopy for the joint Texas experimental tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Cheng, Z. F.

    The old diagnostic neutral beam injector first operated at the University of Texas at Austin is ready for rejoining the joint Texas experimental tokamak (J-TEXT). A new set of high voltage power supplies has been equipped and there is no limitation for beam modulation or beam pulse duration henceforth. Based on the spectra of fully striped impurity ions induced by the diagnostic beam the design work for toroidal charge exchange recombination spectroscopy (CXRS) system is presented. The 529 nm carbon VI (n = 8 − 7 transition) line seems to be the best choice for ion temperature and plasma rotationmore » measurements and the considered hardware is listed. The design work of the toroidal CXRS system is guided by essential simulation of expected spectral results under the J-TEXT tokamak operation conditions.« less

  12. Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes

    NASA Astrophysics Data System (ADS)

    Yanqing, HUANG; Tianyang, XIA; Bin, GUI

    2018-04-01

    The linear analysis of the influence of diamagnetic effect and toroidal rotation at the edge of tokamak plasmas with BOUT++ is discussed in this paper. This analysis is done by solving the dispersion relation, which is calculated through the numerical integration of the terms with different physics. This method is able to reveal the contributions of the different terms to the total growth rate. The diamagnetic effect stabilizes the ideal ballooning modes through inhibiting the contribution of curvature. The toroidal rotation effect is also able to suppress the curvature-driving term, and the stronger shearing rate leads to a stronger stabilization effect. In addition, through linear analysis using the energy form, the curvature-driving term provides the free energy absorbed by the line-bending term, diamagnetic term and convective term.

  13. High-throughput Toroidal Grating Beamline for Photoelectron Spectroscopy at CAMD

    PubMed Central

    Kizilkaya, O; Jiles, R W; Patterson, M C; Thibodeaux, C A; Poliakoff, E D; Sprunger, P T; Kurtz, R L; Morikawa, E

    2016-01-01

    A 5 meter toroidal grating (5m-TGM) beamline has been commissioned to deliver 28 mrad of bending magnet radiation to an ultrahigh vacuum endstation chamber to facilitate angle resolved photoelectron spectroscopy. The 5m-TGM beamline is equipped with Au-coated gratings with 300, 600 and 1200 lines/mm providing monochromatized synchrotron radiation in the energy ranges 25-70 eV, 50–120 eV and 100–240 eV, respectively. The beamline delivers excellent flux (~1014-1017 photons/sec/100mA) and a combined energy resolution of 189 meV for the beamline (at 1.0 mm slit opening) and HA-50 hemispherical analyzer was obtained at the Fermi level of polycrystalline gold crystal. Our preliminary photoelectron spectroscopy results of phenol adsorption on TiO2 (110) surface reveals the metal ion (Ti) oxidation. PMID:27134636

  14. Determination of electron temperature in a penning discharge by the helium line ratio method

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1975-01-01

    The helium line ratio technique was used to determine electron temperatures in a toroidal steady-state Penning discharge operating in helium. Due to the low background pressure, less than .0001 torr, and the low electron density, the corona model is expected to provide a good description of the excitation processes in this discharge. In addition, by varying the Penning discharge anode voltage and background pressure, it is possible to vary the electron temperature as measured by the line ratio technique over a wide range (10 to 100+ eV). These discharge characteristics allow a detailed comparison of electron temperatures measured from different possible line ratios over a wide range of temperatures and under reproducible steady-state conditions. Good agreement is found between temperatures determined from different neutral line ratios, but use of the helium ion line results in a temperature systematically 10 eV high compared to that from the neutral lines.

  15. Spectral Calibration of the MSFC Solar Ultraviolet Magnetograph

    NASA Technical Reports Server (NTRS)

    West, Edward; Kobayashi, Ken; Cirtain, Jonathan; Gary, Allen; Davis, John; Reader, Joseph

    2009-01-01

    This paper describes the scientific goals of a sounding rocket program called the Solar Ultraviolet Magnetograph Investigation (SUMI), presents a brief description of the optics that were developed to meet those goals and discusses the spectral, spatial and polarization characteristics of SUMI's Toroidal Variable-Line-Space (TVLS) gratings; which are critical to SUMI's measurements of the magnetic field in the Sun's transition region.

  16. Flow topology of rare back flow events and critical points in turbulent channels and toroidal pipes

    NASA Astrophysics Data System (ADS)

    Chin, C.; Vinuesa, R.; Örlü, R.; Cardesa, J. I.; Noorani, A.; Schlatter, P.; Chong, M. S.

    2018-04-01

    A study of the back flow events and critical points in the flow through a toroidal pipe at friction Reynolds number Re τ ≈ 650 is performed and compared with the results in a turbulent channel flow at Re τ ≈ 934. The statistics and topological properties of the back flow events are analysed and discussed. Conditionally-averaged flow fields in the vicinity of the back flow event are obtained, and the results for the torus show a similar streamwise wall-shear stress topology which varies considerably for the spanwise wall-shear stress when compared to the channel flow. The comparison between the toroidal pipe and channel flows also shows fewer back flow events and critical points in the torus. This cannot be solely attributed to differences in Reynolds number, but is a clear effect of the secondary flow present in the toroidal pipe. A possible mechanism is the effect of the secondary flow present in the torus, which convects momentum from the inner to the outer bend through the core of the pipe, and back from the outer to the inner bend through the pipe walls. In the region around the critical points, the skin-friction streamlines and vorticity lines exhibit similar flow characteristics with a node and saddle pair for both flows. These results indicate that back flow events and critical points are genuine features of wall-bounded turbulence, and are not artifacts of specific boundary or inflow conditions in simulations and/or measurement uncertainties in experiments.

  17. Whistler mode refraction in highly nonuniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R.

    2016-12-01

    In a large laboratory plasma the propagation of whistler modes is measured in highly nonuniform magnetic fields created by a current-carrying wires. Ray tracing is not applicable since the wavelength and gradient scale length are comparable. The waves are excited with a loop antenna near the wire. The antenna launches an m=1 helicon mode in a uniform plasma. The total magnetic field consists of a weak uniform background field and a nearly circular field of a straight wire across the background field. A circular loop produces 3D null points and a 2D null line. The whistler wave propagation will be shown. It is relevant to whistler mode propagation in space plasmas near magnetic null-points, small flux ropes, lunar crustal magnetic fields and active wave injection experiments.

  18. Plasma rotation measurement in small tokamaks using an optical spectrometer and a single photomultiplier as detector.

    PubMed

    Severo, J H F; Nascimento, I C; Kuznetov, Yu K; Tsypin, V S; Galvão, R M O; Tendler, M

    2007-04-01

    The method for plasma rotation measurement in the tokamak TCABR is reported in this article. During a discharge, an optical spectrometer is used to scan sequentially spectral lines of plasma impurities and spectral lines of a calibration lamp. Knowing the scanning velocity of the diffraction grating of the spectrometer with adequate precision, the Doppler shifts of impurity lines are determined. The photomultiplier output voltage signals are recorded with adequate sampling rate. With this method the residual poloidal and toroidal plasma rotation velocities were determined, assuming that they are the same as those of the impurity ions. The results show reasonable agreement with the neoclassical theory and with results from similar tokamaks.

  19. Shuttleless toroid winder

    DOEpatents

    Lindenmeyer, Carl W.

    1981-01-01

    A lower support receives a toroid at a winding station with the axis of the toroid aligned with a slot in the support. An upper guide member applies an axial force to hold the toroid against the lower support. A pair of movable jaws carried by an indexing mechanism engage the outer surface of the toroid to apply a radial holding force. While the toroid is thus held, a wire is placed axially through the toroid, assisted by a funnel-shaped surface in the upper guide member, and is drawn tight about the toroid by a pair of cooperating draw rollers. When operated in the "full cycle" mode, the operator then actuates a switch which energizes a power drive to release the axial clamp and to drive the indexing mechanism and the jaws to rotate the toroid about its axis. At the same time, the wire is ejected from the draw rollers beneath the toroid so that the operator may grasp it to form another loop. When the toroid is fully indexed, the jaws release it, and the upper guide member is returned to clamp the toroid axially while the indexing mechanism is returned to its starting position. The apparatus may also be operated in a "momentary contact" mode in which the mechanism is driven only for the time a switch is actuated.

  20. Soft X-ray studies on MST: Measuring the effects of toroidicity on tearing mode phase and installation of a multi-energy camera

    NASA Astrophysics Data System (ADS)

    Vanmeter, Patrick; Reusch, Lisa; Franz, Paolo; Sarff, John; Goetz, John; Delgado-Aparicio, Louis; den Hartog, Daniel

    2017-10-01

    The soft X-ray tomography (SXT) system on MST uses four cameras in a double-filter configuration to measure the emitted brightness along forty distinct lines of sight. These measurements can then be inverted to determine the emissivity, which depends on physical properties such as temperature, density, and impurity content. The SXR emissivity should correspond to the structure of the magnetic field; however, there is a discrepancy between the phase of the emissivity inversions and magnetic field reconstructions when using the typical cylindrical approximation to interpret the signal from the toroidal magnetics array. This discrepancy was measured for two distinct plasma conditions using all four SXT cameras, with results supporting the interpretation that it emerges from physical effects of the toroidal geometry. In addition, a new soft x-ray measurement system based on the PILATUS3 photon counting detector will be installed on MST. Emitted photons are counted by an array of pixels with individually adjustable energy cutoffs giving the device more spectral information than the double-filter system. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences program under Award Numbers DE-FC02-05ER54814 and DE-SC0015474.

  1. Saturated internal instabilities in advanced-tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Hua, M.-D.; Chapman, I. T.; Pinches, S. D.; Hastie, R. J.; MAST Team

    2010-06-01

    "Advanced tokamak" (AT) scenarios were developed with the aim of reaching steady-state operation in future potential tokamak fusion power plants. AT scenarios exhibit non-monotonic to flat safety factor profiles (q, a measure of the magnetic field line pitch), with the minimum q (qmin) slightly above an integer value (qs). However, it has been predicted that these q profiles are unstable to ideal magnetohydrodynamic instabilities as qmin approaches qs. These ideal instabilities, observed and diagnosed as such for the first time in MAST plasmas with AT-like q profiles, have far-reaching consequences like confinement degradation, flattening of the toroidal core rotation or enhanced fast ion losses. These observations motivate the stability analysis of advanced-tokamak plasmas, with a view to provide guidance for stability thresholds in AT scenarios. Additionally, the measured rotation damping is compared to the self-consistently calculated predictions from neoclassical toroidal viscosity theory.

  2. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    PubMed

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  3. A comparison between soft x-ray and magnetic phase data on the Madison symmetric torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanMeter, P. D., E-mail: pvanmeter@wisc.edu; Reusch, L. M.; Sarff, J. S.

    The Soft X-Ray (SXR) tomography system on the Madison Symmetric Torus uses four cameras to determine the emissivity structure of the plasma. This structure should directly correspond to the structure of the magnetic field; however, there is an apparent phase difference between the emissivity reconstructions and magnetic field reconstructions when using a cylindrical approximation. The difference between the phase of the dominant rotating helical mode of the magnetic field and the motion of the brightest line of sight for each SXR camera is dependent on both the camera viewing angle and the plasma conditions. Holding these parameters fixed, this phasemore » difference is shown to be consistent over multiple measurements when only toroidal or poloidal magnetic field components are considered. These differences emerge from physical effects of the toroidal geometry which are not captured in the cylindrical approximation.« less

  4. Construction and performance of combustion beamline at NSRL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Xuewei; Wei, Shen; Du, Liangliang

    2016-07-27

    An undulator-based VUV beamline BL03U is constructed at the National Synchrotron Radiation Laboratory. Optical design and performance test results are presented in this paper. The monochromator is a Czerny–Turner configuration with a toroidal collimating mirror, two plane gratings, and a toroidal focusing mirror. Plane gratings with line densities of 200 and 400 l/mm are used to cover the photon energy range of 5–21 eV. A gas absorption spectrum is used to evaluate the beamline performance. The photon energy resolving power (E/ΔE) of the beamline is approximately 3900 at 7.3 eV for the 200 l/mm grating and 4200 at 14.6 eVmore » for the 400 l/mm grating. The photon flux is approximately 5×10{sup 12} photons/s/300 mA at energy of 10 eV.« less

  5. Tokamak with liquid metal for inducing toroidal electrical field

    DOEpatents

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.

  6. Electromagnetic toroidal excitations in matter and free space.

    PubMed

    Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I

    2016-03-01

    The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.

  7. Interferometric rotation sensor

    NASA Technical Reports Server (NTRS)

    Walsh, T. M.

    1972-01-01

    Sensor generates interference fringes varying in number (horizontally and vertically) as a function of the total angular deviation relative to the line-of-sight axis. Device eliminates errors from zero or null shift due to lack of electrical circuitry stability.

  8. Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity.

    PubMed

    Zhu, W; Sabbagh, S A; Bell, R E; Bialek, J M; Bell, M G; LeBlanc, B P; Kaye, S M; Levinton, F M; Menard, J E; Shaing, K C; Sontag, A C; Yuh, H

    2006-06-09

    Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included.

  9. High beta-N experiments at JET

    NASA Astrophysics Data System (ADS)

    Challis, Clive

    2007-11-01

    JET has investigated the performance potential and limitations of highly triangular plasmas relevant to fully non-inductive tokamak operation. The q-profile shape has been varied from cases with highly negative core magnetic shear to low shear with q0 close to 1, allowing the effect on confinement and stability to be studied. Operation with beta-N above the no-wall `limit' has been demonstrated for durations comparable with the resistive time and direct measurements of the no-wall beta have been developed as a tool for systematic performance optimization. Regimes have been developed with ITBs at reduced plasma current and toroidal field (1.2-1.5MA/2.3-2.7T) to obtain high values of beta-N and beta-P with either impurity seeding or quasi-double-null plasma configurations used to mitigate ELMs. The importance of the q-profile shape for performance optimization has been demonstrated in plasmas without ITBs (1.2MA/1.8T) with low values of minimum q (1-2) providing access to the highest beta-N (above 3).

  10. Design Features and Commissioning of the Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    J. Chung, K.; H. An, Y.; K. Jung, B.; Y. Lee, H.; C., Sung; S. Na, Y.; S. Hahm, T.; S. Hwang, Y.

    2013-03-01

    A new spherical torus called VEST (Versatile Experiment Spherical Torus) is designed, constructed and successfully commissioned at Seoul National University. A unique design feature of the VEST is two partial solenoid coils installed at both vertical ends of a center stack, which can provide sufficient magnetic fluxes to initiate tokamak plasmas while keeping a low aspect ratio configuration in the central region. According to initial double null merging start-up scenario using the partial solenoid coils, appropriate power supplies for driving a toroidal field coil, outer poloidal field coils, and the partial solenoid coils are fabricated and successfully commissioned. For reliable start-up, a pre-ionization system with two cost-effective homemade magnetron power supplies is also prepared. In addition, magnetic and spectroscopic diagnostics with appropriate data acquisition and control systems are well prepared for initial operation of the device. The VEST is ready for tokamak plasma operation by completing and commissioning most of the designed components.

  11. Ballooning modes localized near the null point of a divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, W. A.; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550

    2014-04-15

    The stability of ballooning modes localized to the null point in both the standard and snowflake divertors is considered. Ideal magnetohydrodynamics is used. A series expansion of the flux function is performed in the vicinity of the null point with the lowest, non-vanishing term retained for each divertor configuration. The energy principle is used with a trial function to determine a sufficient instability threshold. It is shown that this threshold depends on the orientation of the flux surfaces with respect to the major radius with a critical angle appearing due to the convergence of the field lines away from themore » null point. When the angle the major radius forms with respect to the flux surfaces exceeds this critical angle, the system is stabilized. Further, the scaling of the instability threshold with the aspect ratio and the ratio of the scrape-off-layer width to the major radius is shown. It is concluded that ballooning modes are not a likely candidate for driving convection in the vicinity of the null for parameters relevant to existing machines. However, the results place a lower bound on the width of the heat flux in the private flux region. To explain convective mixing in the vicinity of the null point, new consideration should be given to an axisymmetric mixing mode [W. A. Farmer and D. D. Ryutov, Phys. Plasmas 20, 092117 (2013)] as a possible candidate to explain current experimental results.« less

  12. EFFECTS OF FIELD-LINE TOPOLOGY ON ENERGY PROPAGATION IN THE CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candelaresi, S.; Pontin, D. I.; Hornig, G.

    We study the effect of photospheric footpoint motions on magnetic field structures containing magnetic nulls. The footpoint motions are prescribed on the photospheric boundary as a velocity field that entangles the magnetic field. We investigate the propagation of the injected energy, the conversion of energy, emergence of current layers, and other consequences of the nontrivial magnetic field topology in this situation. These boundary motions lead initially to an increase in magnetic and kinetic energy. Following this, the energy input from the photosphere is partially dissipated and partially transported out of the domain through the Poynting flux. The presence of separatrixmore » layers and magnetic null points fundamentally alters the propagation behavior of disturbances from the photosphere into the corona. Depending on the field-line topology close to the photosphere, the energy is either trapped or free to propagate into the corona.« less

  13. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers

    PubMed Central

    Cho, Lily Ting-yin; Andrews, Robert; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G.; Fisher, Amanda G.; Skarnes, William C.

    2017-01-01

    Abstract Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC ‘knockout-first’ ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the ‘knockout-first’ allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency ‘2i’ media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. PMID:28981838

  14. Toroidal current asymmetry in tokamak disruptions

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.

  15. Acceleration and collimation of magnetized winds

    NASA Astrophysics Data System (ADS)

    Okamoto, Isao

    2000-10-01

    The acceleration-collimation problem is discussed for stationary, axisymmetric, polytropic, non-relativistic MHD outflows, with causality and the current-closure condition taken into account. To elucidate the properties of physically realizable `quasi-conical' winds, we consider four kinds of rather unphysical flows in contrast, namely `radial', `asymptotic', `conical' and `current-free' flows. `Radial' flows are supposed to possess the radial structure from the source to infinity, thereby not fulfilling the transfield equation, though keeping causal contact with the source. `Asymptotic' flows coincide in the asymptotic domain with the `quasi-conical' winds, and ones extrapolated inwards from them through the subasymptotic domain to the source. Thirdly, `conical' flows are supposed to satisfy the transfield equation in the subasymptotic domain; thus they are not literally conical, but are supposed to satisfy the `solvability condition at infinity for the conical structure'. It is, however, argued that there is one difficulty in connecting the asymptotic conical structure causally to the structure upstream. Finally, `current-free' flows with no poloidal and toroidal currents everywhere in the wind zone are treated, but it is pointed out that there is no means of satisfying the current-closure condition in the wind zone. Of physical relevance are the `quasi-conical' winds, for which it is shown that the condition that open field lines in the wind zone can reach infinity leads to the requirement that the Poynting flux, proportional to ζ≡αρϖ2η, is not carried to infinity along these field lines, i.e., ζ->0, where α is the angular velocity of field lines, ρ the gas density, and η the mass flux per unit flux tube. While ζ decreases from a value of ζB≡ζA+4πηδα near the coronal base through χχΑ = 4πηαω2Α at the Alfvénic surface to null at infinity, the specific angular momentum of the flow increases up to αω2Α, and the flow energy reaches nearly α2ω2Α at infinity, where δ is a constant of the Bernouilli integral, and ϖA is the axial distance of the Alfvénic surface. It is also argued that `quasi-conical' winds with the current-closure condition fulfilled in the wind zone possess the two-componentness of outflow as one of their generic properties.

  16. Symplectic approach to calculation of magnetic field line trajectories in physical space with realistic magnetic geometry in divertor tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punjabi, Alkesh; Ali, Halima

    A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates ({psi},{theta}) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. {psi} is the toroidal magnetic flux and {theta} is the poloidal angle. Natural canonical coordinates ({psi},{theta},{phi}) can be transformed to physical position (R,Z,{phi}) using a canonical transformation. (R,Z,{phi}) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonicalmore » coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.« less

  17. Symplectic approach to calculation of magnetic field line trajectories in physical space with realistic magnetic geometry in divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Ali, Halima

    2008-12-01

    A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.

  18. Potential role of alpha-synuclein and metallothionein in lead-induced inclusion body formation.

    PubMed

    Zuo, Peijun; Qu, Wei; Cooper, Ryan N; Goyer, Robert A; Diwan, Bhalchandra A; Waalkes, Michael P

    2009-09-01

    Lead (Pb) produces aggresome-like inclusion bodies (IBs) in target cells as a toxic response. Our prior work shows metallothionein (MT) is required for this process. We used MT-I/II double knockout (MT-null) and parental wild-type (WT) cell lines to further explore the formation process of Pb-induced IBs. Unlike WT cells, MT-null cells did not form IBs after Pb exposure. Western blot of cytosol showed soluble MT protein in WT cells was lost during Pb exposure as IBs formed. Transfection of MT-I into MT-null cells allowed IBs formation after Pb exposure. Considering Pb-induced IBs may be like disease-related aggresomes, which often contain alpha-synuclein (Scna), we investigated Scna expression in cells capable (WT) and incapable (MT-null) of producing IBs after Pb exposure. Scna protein showed poor basal expression in MT-null cells. Pb exposure increased Scna expression only in WT cells. MT transfection increased Scna transcript to WT levels. In WT or MT-transfected MT-null cells, Pb-induced Scna expression rapidly increased and then decreased over 48 h as Pb-induced IBs were formed. A direct interaction between Scna and MT was confirmed ex vivo by antibody pulldown assay where the proteins coprecipitated with an antibody to MT. Pb exposure caused increased colocalization of MT and Scna proteins with time only in WT cells. In WT mice after chronic Pb exposure Scna was localized in renal cells containing forming IBs, whereas MT-null mice did not form IBs. Thus, Scna could be component of Pb-induced IBs and, with MT, may play a role in IBs formation.

  19. Edge equilibrium code for tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xujing; Zakharov, Leonid E.; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  20. The Physics of Local Helicity Injection Non-Solenoidal Tokamak Startup

    NASA Astrophysics Data System (ADS)

    Redd, A. J.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Jardin, S.

    2013-10-01

    Non-solenoidal startup via Local Helicity Injection (LHI) uses compact current injectors to produce toroidal plasma current Ip up to 170 kA in the PEGASUS Toroidal Experiment, driven by 4-8 kA injector current on timescales of 5-20 milliseconds. Increasing the Ip buildup duration enables experimental demonstration of plasma position control on timescales relevant for high-current startup. LHI-driven discharges exhibit bursty MHD activity, apparently line-tied kinking of LHI-driven field lines, with the bursts correlating with rapid equilibrium changes, sharp Ip rises, and sharp drops in the injector impedance. Preliminary NIMROD results suggest that helical LHI-driven current channels remain coherent, with Ip increases due to reconnection between adjacent helical turns forming axisymmetric plasmoids, and corresponding sharp drops in the bias circuit impedance. The DC injector impedance is consistent with a space charge limit at low bias current and a magnetic limit at high bias current. Internal measurements show the current density profile starts strongly hollow and rapidly fills in during Ip buildup. Simulations of LHI discharges using the Tokamak Simulation Code (TSC) will provide insight into the detailed current drive mechanism and guide experiments on PEFASUS and NSTX-U. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  1. 2010 August 1–2 Sympathetic Eruptions. II. Magnetic Topology of the MHD Background Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, Viacheslav S.; Mikić, Zoran; Török, Tibor

    Using a potential field source-surface (PFSS) model, we recently analyzed the global topology of the background coronal magnetic field for a sequence of coronal mass ejections (CMEs) that occurred on 2010 August 1–2. Here we repeat this analysis for the background field reproduced by a magnetohydrodynamic (MHD) model that incorporates plasma thermodynamics. As for the PFSS model, we find that all three CME source regions contain a coronal hole (CH) that is separated from neighboring CHs by topologically very similar pseudo-streamer structures. However, the two models yield very different results for the size, shape, and flux of the CHs. Wemore » find that the helmet-streamer cusp line, which corresponds to a source-surface null line in the PFSS model, is structurally unstable and does not form in the MHD model. Our analysis indicates that, generally, in MHD configurations, this line instead consists of a multiple-null separator passing along the edge of disconnected-flux regions. Some of these regions are transient and may be the origin of the so-called streamer blobs. We show that the core topological structure of such blobs is a three-dimensional “plasmoid” consisting of two conjoined flux ropes of opposite handedness, which connect at a spiral null point of the magnetic field. Our analysis reveals that such plasmoids also appear in pseudo-streamers on much smaller scales. These new insights into the coronal magnetic topology provide some intriguing implications for solar energetic particle events and for the properties of the slow solar wind.« less

  2. 2010 August 1-2 Sympathetic Eruptions. II. Magnetic Topology of the MHD Background Field

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav S.; Mikić, Zoran; Török, Tibor; Linker, Jon A.; Panasenco, Olga

    2017-08-01

    Using a potential field source-surface (PFSS) model, we recently analyzed the global topology of the background coronal magnetic field for a sequence of coronal mass ejections (CMEs) that occurred on 2010 August 1-2. Here we repeat this analysis for the background field reproduced by a magnetohydrodynamic (MHD) model that incorporates plasma thermodynamics. As for the PFSS model, we find that all three CME source regions contain a coronal hole (CH) that is separated from neighboring CHs by topologically very similar pseudo-streamer structures. However, the two models yield very different results for the size, shape, and flux of the CHs. We find that the helmet-streamer cusp line, which corresponds to a source-surface null line in the PFSS model, is structurally unstable and does not form in the MHD model. Our analysis indicates that, generally, in MHD configurations, this line instead consists of a multiple-null separator passing along the edge of disconnected-flux regions. Some of these regions are transient and may be the origin of the so-called streamer blobs. We show that the core topological structure of such blobs is a three-dimensional “plasmoid” consisting of two conjoined flux ropes of opposite handedness, which connect at a spiral null point of the magnetic field. Our analysis reveals that such plasmoids also appear in pseudo-streamers on much smaller scales. These new insights into the coronal magnetic topology provide some intriguing implications for solar energetic particle events and for the properties of the slow solar wind.

  3. Nulling at the Keck Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. Mark; Serabyn, Gene; Wizinowich, Peter L.; Akeson, Rachel L.

    2006-01-01

    The nulling mode of the Keck Interferometer is being commissioned at the Mauna Kea summit. The nuller combines the two Keck telescope apertures in a split-pupil mode to both cancel the on-axis starlight and to coherently detect the residual signal. The nuller, working at 10 um, is tightly integrated with the other interferometer subsystems including the fringe and angle trackers, the delay lines and laser metrology, and the real-time control system. Since first 10 um light in August 2004, the system integration is proceeding with increasing functionality and performance, leading to demonstration of a 100:1 on-sky null in 2005. That level of performance has now been extended to observations with longer coherent integration times. An overview of the overall system is presented, with emphasis on the observing sequence, phasing system, and differences with respect to the V2 system, along with a presentation of some recent engineering data.

  4. High-frequency waves in the corona due to null points

    NASA Astrophysics Data System (ADS)

    Santamaria, I. C.; Khomenko, E.; Collados, M.; de Vicente, A.

    2017-06-01

    This work aims to understand the behavior of non-linear waves in the vicinity of a coronal null point. In previous works we have shown that high-frequency waves are generated in such a magnetic configuration. This paper studies those waves in detail in order to provide a plausible explanation of their generation. We demonstrate that slow magneto-acoustic shock waves generated in the chromosphere propagate through the null point and produce a train of secondary shocks that escape along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 mHz. We speculate that this frequency may be sensitive to the atmospheric parameters in the corona and therefore can be used to probe the structure of this solar layer. Movies attached to Figs 2 and 4 are available at http://www.aanda.org

  5. Toroid cavity/coil NMR multi-detector

    DOEpatents

    Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  6. Gaseous toroid around Saturn. [Saturnian ring system for atomic hydrogen trapping in Titan atmospheric model

    NASA Technical Reports Server (NTRS)

    Mcdonough, T. R.

    1974-01-01

    The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles.

  7. Capillary toroid cavity detector for high pressure NMR

    DOEpatents

    Gerald, II, Rex E.; Chen, Michael J.; Klingler, Robert J.; Rathke, Jerome W.; ter Horst, Marc

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  8. The Solar Ultraviolet Magnetograph Investigation Sounding Rocket Program

    NASA Technical Reports Server (NTRS)

    West, E. A.; Kobayashi, K.; Davis, J. M.; Gary, G. A.

    2007-01-01

    This paper will describe the objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the unique optical components that have been developed to meet those objectives. A sounding rocket payload has been developed to test the feasibility of magnetic field measurements in the Sun's transition region. The optics have been optimized for simultaneous measurements of two magnetic sensitive lines formed in the transition region (CIV at 1550 A and MgII at 2800 A). This paper will concentrate on the polarization properties SUMI's toroidal varied-line-space (TVLS) gratings and its system level testing as we prepare to launch in the Summer of 2008.

  9. A constant radius of curvature model for the organization of DNA in toroidal condensates.

    PubMed Central

    Hud, N V; Downing, K H; Balhorn, R

    1995-01-01

    Toroidal DNA condensates have received considerable attention for their possible relationship to the packaging of DNA in viruses and in general as a model of ordered DNA condensation. A spool-like model has primarily been supported for DNA organization within toroids. However, our observations suggest that the actual organization may be considerably different. We present an alternate model in which DNA for a given toroid is organized within a series of equally sized contiguous loops that precess about the toroid axis. A related model for the toroid formation process is also presented. This kinetic model predicts a distribution of toroid sizes for DNA condensed from solution that is in good agreement with experimental data. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:7724602

  10. Advancing High Current Startup via Localized Helicity Injection in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2013-10-01

    Non-solenoidal startup via local helicity injection (LHI) and poloidal field induction is used to produce Ip = 0 . 17 MA tokamak discharges. Impurity contamination has been reduced to negligible levels by use of conical frustum cathode geometry and local scraper limiters. Attainable currents are governed by global limits of helicity and energy balance, and Taylor relaxation. A simple lumped parameter model based on these limits is used to project discharge evolution, and indicates that attaining 1 MA in NSTX-U will require LHI-driven effective loop voltages to dominate contributions from dLp / dt . This regime contrasts with results to date and will be tested at 0.3 MA in PEGASUS with a new integrated multi-injector array. Injector impedance characteristics are consistent with magnetically-limited regimes observed in higher-power foilless diodes. Bursts of MHD are measured on time scales of order ~ 100 μ s, and correlate with rapid equilibrium changes, discrete rises in Ip, redistribution of the toroidal current, ion heating (Ti ~ 1 keV), transient drops in injector voltage, and apparent n = 1 line-tied kink activity at the injector. NIMROD simulations of high-field-side HI discharges in PEGASUS are in qualitative agreement, suggesting Ip buildup results from inward propagating toroidal current loops created by intermittent reconnection of injected current streams. Work supported by US DOE Grant DE-FG02-96ER54375.

  11. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3

    PubMed Central

    Zhou, Gaofeng; Ryan, Peter R.

    2014-01-01

    Malate and citrate efflux from root apices is a mechanism of Al3+ tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al3+-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al3+ tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al3+-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al3+-activated citrate efflux from root apices and greater tolerance to Al3+ toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al3+ tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al3+ tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al3+ tolerance of an important crop species. PMID:24692647

  12. Toroidal Tank Development for Upper-stages

    NASA Technical Reports Server (NTRS)

    DeLay, Tom; Roberts, Keith

    2003-01-01

    The advantages, development, and fabrication of toroidal propellant tanks are profiled in this viewgraph presentation. Several images are included of independent research and development (IR&D) of toroidal propellant tanks at Marshall Space Flight Center (MSFC). Other images in the presentation give a brief overview of Thiokol conformal tank technology development. The presentation describes Thiokol's approach to continuous composite toroidal tank fabrication in detail. Images are shown of continuous and segmented toroidal tanks fabricated by Thiokol.

  13. Mutations associated with base excision repair deficiency and methylation-induced genotoxic stress

    PubMed Central

    Sobol, Robert W.; Watson, David E.; Nakamura, Jun; Yakes, F. Michael; Hou, Esther; Horton, Julie K.; Ladapo, Joseph; Van Houten, Bennett; Swenberg, James A.; Tindall, Kenneth R.; Samson, Leona D.; Wilson, Samuel H.

    2002-01-01

    The long-term effect of exposure to DNA alkylating agents is entwined with the cell's genetic capacity for DNA repair and appropriate DNA damage responses. A unique combination of environmental exposure and deficiency in these responses can lead to genomic instability; this “gene–environment interaction” paradigm is a theme for research on chronic disease etiology. In the present study, we used mouse embryonic fibroblasts with a gene deletion in the base excision repair (BER) enzymes DNA β-polymerase (β-pol) and alkyladenine DNA glycosylase (AAG), along with exposure to methyl methanesulfonate (MMS) to study mutagenesis as a function of a particular gene–environment interaction. The β-pol null cells, defective in BER, exhibit a modest increase in spontaneous mutagenesis compared with wild-type cells. MMS exposure increases mutant frequency in β-pol null cells, but not in isogenic wild-type cells; UV light exposure or N-methyl-N′-nitro-N-nitrosoguanidine exposure increases mutant frequency similarly in both cell lines. The MMS-induced increase in mutant frequency in β-pol null cells appears to be caused by DNA lesions that are AAG substrates, because overexpression of AAG in β-pol null cells eliminates the effect. In contrast, β-pol/AAG double null cells are slightly more mutable than the β-pol null cells after MMS exposure. These results illustrate that BER plays a role in protecting mouse embryonic fibroblast cells against methylation-induced mutations and characterize the effect of a particular combination of BER gene defect and environmental exposure. PMID:11983862

  14. Nuclear resonance tomography with a toroid cavity detector

    DOEpatents

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1996-11-12

    A toroid cavity detection system is described for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is input to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties. 4 figs.

  15. Nuclear resonance tomography with a toroid cavity detector

    DOEpatents

    Woelk, Klaus; Rathke, Jerome W.; Klingler, Robert J.

    1996-01-01

    A toroid cavity detection system for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is inputted to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties.

  16. Edge Equilibrium Code (EEC) For Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xujling

    2014-02-24

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids

  17. Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak

    NASA Astrophysics Data System (ADS)

    Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.

    2018-02-01

    The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.

  18. Study of toroidal flow generation by ion cyclotron range of frequency minority heating in the Alcator C-Mod plasma

    NASA Astrophysics Data System (ADS)

    Murakami, S.; Itoh, K.; Zheng, L. J.; Van Dam, J. W.; Bonoli, P.; Rice, J. E.; Fiore, C. L.; Gao, C.; Fukuyama, A.

    2016-01-01

    The averaged toroidal flow of energetic minority ions during ICRF (ion cyclotron range of frequencies) heating is investigated in the Alcator C-Mod plasma by applying the GNET code, which can solve the drift kinetic equation with complicated orbits of accelerated energetic particles. It is found that a co-directional toroidal flow of the minority ions is generated in the region outside of the resonance location, and that the toroidal velocity reaches more than 40% of the central ion thermal velocity (Vtor ˜ 300 km/s with PICRF ˜ 2 MW). When we shift the resonance location to the outside of |r /a |˜0.5 , the toroidal flow immediately inside of the resonance location is reduced to 0 or changes to the opposite direction, and the toroidal velocity shear is enhanced at r/a ˜ 0.5. A radial diffusion equation for toroidal flow is solved by assuming a torque profile for the minority ion mean flow, and good agreements with experimental radial toroidal flow profiles are obtained. This suggests that the ICRF driven minority ion flow is related to the experimentally observed toroidal rotation during ICRF heating in the Alcator C-Mod plasma.

  19. In-situ observations of flux ropes formed in association with a pair of spiral nulls in magnetotail plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Ruilong; Xie, Lun; He, Jiansen

    Signatures of secondary islands are frequently observed in the magnetic reconnection regions of magnetotail plasmas. In this paper, magnetic structures with the secondary-island signatures observed by Cluster are reassembled by a fitting-reconstruction method. The results show three-dimensionally that a secondary island event can manifest the flux rope formed with an A{sub s}-type null and a B{sub s}-type null paired via their spines. We call this A{sub s}-spine-B{sub s}-like configuration the helically wrapped spine model. The reconstructed field lines wrap around the spine to form the flux rope, and an O-type topology is therefore seen on the plane perpendicular to themore » spine. Magnetized electrons are found to rotate on and cross the fan surface, suggesting that both the torsional-spine and the spine-fan reconnection take place in the configuration. Furthermore, detailed analysis implies that the spiral nulls and flux ropes were locally generated nearby the spacecraft in the reconnection outflow region, indicating that secondary reconnection may occur in the exhaust away from the primary reconnection site.« less

  20. A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak.

    PubMed

    Hill, K W; Bitter, M L; Scott, S D; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M-F; Lee, S G; Broennimann, Ch; Eikenberry, E F

    2008-10-01

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (lambda/d lambda>6000) of He-like and H-like Ar K alpha lines with good spatial (approximately 1 cm) and temporal (approximately 10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T(i)), and toroidal plasma rotation velocity (upsilon(phi)) from the line Doppler widths and shifts. The data analysis techniques, T(i) and upsilon(phi) profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.

  1. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    PubMed

    Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C

    2017-12-01

    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Immortalization and characterization of osteoblast cell lines generated from wild-type and Nmp4-null mouse bone marrow stromal cells using murine telomerase reverse transcriptase (mTERT).

    PubMed

    Alvarez, Marta B; Childress, Paul; Philip, Binu K; Gerard-O'Riley, Rita; Hanlon, Michael; Herbert, Brittney-Shea; Robling, Alexander G; Pavalko, Fredrick M; Bidwell, Joseph P

    2012-05-01

    Intermittent parathyroid hormone (PTH) adds new bone to the osteoporotic skeleton; the transcription factor Nmp4/CIZ represses PTH-induced bone formation in mice and as a consequence is a potential drug target for improving hormone clinical efficacy. To explore the impact of Nmp4/CIZ on osteoblast phenotype, we immortalized bone marrow stromal cells from wildtype (WT) and Nmp4-knockout (KO) mice using murine telomerase reverse transcriptase. Clonal lines were initially chosen based on their positive staining for alkaline phosphatase and capacity for mineralization. Disabling Nmp4/CIZ had no gross impact on osteoblast phenotype development. WT and KO clones exhibited identical sustained growth, reduced population doubling times, extended maintenance of the mature osteoblast phenotype, and competency for differentiating toward the osteoblast and adipocyte lineages. Additional screening of the immortalized cells for PTH-responsiveness permitted further studies with single WT and KO clones. We recently demonstrated that PTH-induced c-fos femoral mRNA expression is enhanced in Nmp4-KO mice and in the present study we observed that hormone stimulated either an equivalent or modestly enhanced increase in c-fos mRNA expression in both primary null and KO clone cells depending on PTH concentration. The null primary osteoblasts and KO clone cells exhibited a transiently enhanced response to bone morphogenetic protein 2 (BMP2). The clones exhibited lower and higher expressions of the PTH receptor (Pthr1) and the BMP2 receptor (Bmpr1a, Alk3), respectively, as compared to primary cells. These immortalized cell lines will provide a valuable tool for disentangling the complex functional roles underlying Nmp4/CIZ regulation of bone anabolism. Copyright © 2011 Wiley Periodicals, Inc.

  3. A study for the installation of the TEXT heavy-ion beam probe on DIII-D

    NASA Astrophysics Data System (ADS)

    Edmonds, P. H.; Solano, E. R.; Bravenec, R. V.; Wootton, A. J.; Schoch, P. M.; Crowley, T. P.; Hickok, R. L.; West, W. P.; Leuer, J.; Anderson, P.

    1997-01-01

    An assessment of the feasibility of installing the TEXT 2 MeV heavy-ion beam probe on the DIII-D tokamak has been completed. Detailed drawings of the machine cross section were imported into the CAD application AutoCAD. A set of programs written in AutoLisp were used to generate trajectories. Displays of the accessible cross section of the plasma, scan lines for the entire range of primary beam energy and injection angle ranges, and sample-volume dimensions can be rapidly generated. Because of the large deflection between the primary input beam and the emergent secondary beam, either the analyzer needs to be tracked over a ±20° angle or secondary poloidal deflector plates need to be installed at the exit port. Toroidal deflector plates will be installed at both the injection and exit ports to compensate for toroidal displacements and deflections. The sample volumes generated by this procedure are within a few centimeters of the locations derived from a full three-dimensional calculation.

  4. Toroidal standing waves excited by a storm sudden commencement - DE 1 observations

    NASA Technical Reports Server (NTRS)

    Cahill, L. J., Jr.; Lin, N. G.; Engebretson, M. J.; Waite, J. H.; Sugiura, M.

    1990-01-01

    A 74-nT sudden commencement on July 13, 1982, was observed in the magnetosphere, with instruments on the Dynamics Explorer 1 satellite. Inbound, near L = 4.5, the satellite was located at 1524 magnetic local time and 20 deg magnetic latitude. The sudden commmencement established a strong, east-west oscillation, with 100-s period, which was observed in the magnetic field, the electric field, and the plasma flow velocity records. There was also a compressional component of this 100-s oscillation and a rapidly damped 300-s compressional pulsation. The compressional oscillations may be an evidence of cavity resonances, excited by the sudden commencement. The cavity waves may, in turn, couple to toroidal waves in field line resonance at the satellite location. In addition, the sudden commencement caused the onset of waves with frequencies from 0.1 up to at least 0.5 Hz. The observations are compared with similar reports from earlier pulsations related to sudden commencements.

  5. Properties of Alfven Eigenmodes in the TAE range on the National Spherical Torus Experiment-Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-04-24

    A second Neutral Beam (NB) injection line is being installed on the NSTX Upgrade device, resulting in six NB sources with di erent tangency radii that will be available for heating and current drive. This work explores the properties of instabilities in the frequency range of the Toroidal Alfv en Eigenmode (TAE) for NSTX-U scenarios with various NB injection geometries, from more perpendicular to more tangential, and with increased toroidal magnetic eld with respect to previous NSTX scenarios. Predictions are based on analysis through the ideal MHD code NOVA-K. For the scenarios considered in this work, modi cations of themore » Alfv en continuum result in a frequency upshift and a broadening of the radial mode structure. The latter e ect may have consequences for fast ion transport and loss. Preliminary stability considerations indicate that TAEs are potentially unstable, with ion Landau damping representing the dominant damping mechanism« less

  6. Experimental Verification of the Kruskal-Shafranov Stability Limit in Line-Tied Partial Toroidal Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, E.; Myers, C. E.; Yamada, M.

    2011-07-19

    The stability properties of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys. Plasmas, 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kinkmore » instability. Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., qa = 1).« less

  7. Experimental verification of the Kruskal-Shafranov stability limit in line-tied partial-toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, E.; Myers, C. E.; Yamada, M.

    2011-10-15

    The stability properties of partial-toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys. Plasmas 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kink instability.more » Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., q{sub a} = 1).« less

  8. Single-beam, dark toroidal optical traps for cold atoms

    NASA Astrophysics Data System (ADS)

    Fatemi, Fredrik K.; Olson, Spencer E.; Bashkansky, Mark; Dutton, Zachary; Terraciano, Matthew

    2007-02-01

    We demonstrate the generation of single-beam dark toroidal optical intensity distributions, which are of interest for neutral atom storage and atom interferometry. We demonstrate experimentally and numerically optical potentials that contain a ring-shaped intensity minimum, bounded in all directions by higher intensity. We use a spatial light modulator to alter the phase of an incident laser beam, and analyze the resulting optical propagation characteristics. For small toroidal traps (< 50 μm diameter), we find an optimal superposition of Laguerre-Gaussian modes that allows the formation of single-beam toroidal traps. We generate larger toroidal bottle traps by focusing hollow beams with toroidal lenses imprinted onto the spatial light modulator.

  9. Rotation and neoclassical ripple transport in ITER

    DOE PAGES

    Paul, Elizabeth Joy; Landreman, Matt; Poli, Francesca M.; ...

    2017-07-13

    Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Furthermore, neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planckmore » Iterative Neoclassical Conservative Solver (SFINCS).« less

  10. Rotation and neoclassical ripple transport in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Elizabeth Joy; Landreman, Matt; Poli, Francesca M.

    Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Furthermore, neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planckmore » Iterative Neoclassical Conservative Solver (SFINCS).« less

  11. Stable Defects in Semiconductor Nanowires.

    PubMed

    Sanchez, A M; Gott, J A; Fonseka, H A; Zhang, Y; Liu, H; Beanland, R

    2018-05-09

    Semiconductor nanowires are commonly described as being defect-free due to their ability to expel mobile defects with long-range strain fields. Here, we describe previously undiscovered topologically protected line defects with null Burgers vector that, unlike dislocations, are stable in nanoscale crystals. We analyze the defects present in semiconductor nanowires in regions of imperfect crystal growth, i.e., at the nanowire tip formed during consumption of the droplet in self-catalyzed vapor-liquid-solid growth and subsequent vapor-solid shell growth. We use a form of the Burgers circuit method that can be applied to multiply twinned material without difficulty. Our observations show that the nanowire microstructure is very different from bulk material, with line defects either (a) trapped by locks or other defects, (b) arranged as dipoles or groups with a zero total Burgers vector, or (c) have a zero Burgers vector. We find two new line defects with a null Burgers vector, formed from the combination of partial dislocations in twinned material. The most common defect is the three-monolayer high twin facet with a zero Burgers vector. Studies of individual nanowires using cathodoluminescence show that optical emission is quenched in defective regions, showing that they act as strong nonradiative recombination centers.

  12. Toroidal cell and battery. [storage battery for high amp-hour load applications

    NASA Technical Reports Server (NTRS)

    Nagle, W. J. (Inventor)

    1981-01-01

    A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.

  13. Steady state toroidal magnetic field at earth's core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Levy, Eugene H.; Pearce, Steven J.

    1991-01-01

    Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.

  14. Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027

    2005-10-01

    The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes that carry net toroidal flux.« less

  15. HIGH TEMPERATURE SYSTEMS

    DOEpatents

    Thomson, G.P.; Blackman, M.

    1961-07-25

    BS>A device is descrined for producing nuclear fusion reactions by additional acceleration of a hydrogen isotope plasma formed and initially accelerated by a collapsing magnetic field. The plasma is enclosed in a toroidal cavity within a vessel composed of a plurality of insulated coaxial segments. The added acceleration is caused by providing progressing potentials to the insulated segments acting as electrodes by means of a segmented delay transmission line coupled to the electrode segments and excited by a two phase alternating current supply.

  16. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  17. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections atmore » the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.« less

  18. Ideal relaxation of the Hopf fibration

    NASA Astrophysics Data System (ADS)

    Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk

    2017-07-01

    Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.

  19. Modulation of auroras by Pc5 pulsations in the dawn sector in association with reappearance of energetic particles at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Saka, O.; Hayashi, K.; Klimushkin, D. Yu.; Mager, P. N.

    2014-04-01

    Geomagnetic Pc5 pulsations were observed in the dawn sector of the auroral zone on 17 January 1994 in association with increased energetic ion fluxes at geosynchronous orbit 10 min after the Pi2 onset. The characteristic properties of auroras associated with these pulsations were studied using movies taken by an all-sky imager. It was found that a pulsating aurora (PA) can be an optical manifestation of the Pc5 waves by a strong poloidal component observed with ground-based magnetometers. Goes7 observations showed compressional pulsations with the same period which can be attributed to the influence of the finite pressure of plasma and field line curvature on the poloidally polarized Alfvén waves. These poloidal pulsations may be generated by the ion injection observed with the LANL 1989-046 satellite. Two auroral arcs were observed north of the PA with optical features characteristic for the toroidal field line resonances: strong localization across L-shells, 180° phase change across the resonance, poleward phase propagation. Thus the Pc5 oscillations split into the toroidal and poloidal mode and oscillated coherently at latitudes from 62°N to 70°N. This study provides observational evidence of polarization splitting of the Alfven oscillation spectrum. Such a polarization splitting would occur in association with the reappearance of the energetic particles at geosynchronous orbit.

  20. RF current distribution and topology of RF sheath potentials in front of ICRF antennae

    NASA Astrophysics Data System (ADS)

    Colas, L.; Heuraux, S.; Brémond, S.; Bosia, G.

    2005-08-01

    The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pécoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed.

  1. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  2. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  3. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Kusunose, Hiroaki

    2018-03-01

    We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.

  4. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3.

    PubMed

    Zhou, Gaofeng; Pereira, Jorge F; Delhaize, Emmanuel; Zhou, Meixue; Magalhaes, Jurandir V; Ryan, Peter R

    2014-06-01

    Malate and citrate efflux from root apices is a mechanism of Al(3+) tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al(3+)-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al(3+) tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al(3+)-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al(3+)-activated citrate efflux from root apices and greater tolerance to Al(3+) toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al(3+) tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al(3+) tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al(3+) tolerance of an important crop species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Predictions of toroidal rotation and torque sources arising in non-axisymmetric perturbed magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.

    2017-11-01

    Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.

  6. Reconnection at three dimensional magnetic null points: Effect of current sheet asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F.; Jain, Rekha

    2013-05-15

    Asymmetric current sheets are likely to be prevalent in both astrophysical and laboratory plasmas with complex three dimensional (3D) magnetic topologies. This work presents kinematic analytical models for spine and fan reconnection at a radially symmetric 3D null (i.e., a null where the eigenvalues associated with the fan plane are equal) with asymmetric current sheets. Asymmetric fan reconnection is characterized by an asymmetric reconnection of flux past each spine line and a bulk flow of plasma across the null point. In contrast, asymmetric spine reconnection is characterized by the reconnection of an equal quantity of flux across the fan planemore » in both directions. The higher modes of spine reconnection also include localized wedges of vortical flux transport in each half of the fan. In this situation, two definitions for reconnection rate become appropriate: a local reconnection rate quantifying how much flux is genuinely reconnected across the fan plane and a global rate associated with the net flux driven across each semi-plane. Through a scaling analysis, it is shown that when the ohmic dissipation in the layer is assumed to be constant, the increase in the local rate bleeds from the global rate as the sheet deformation is increased. Both models suggest that asymmetry in the current sheet dimensions will have a profound effect on the reconnection rate and manner of flux transport in reconnection involving 3D nulls.« less

  7. Identifying the null subject: evidence from event-related brain potentials.

    PubMed

    Demestre, J; Meltzer, S; García-Albea, J E; Vigil, A

    1999-05-01

    Event-related brain potentials (ERPs) were recorded during spoken language comprehension to study the on-line effects of gender agreement violations in controlled infinitival complements. Spanish sentences were constructed in which the complement clause contained a predicate adjective marked for syntactic gender. By manipulating the gender of the antecedent (i.e., the controller) of the implicit subject while holding constant the gender of the adjective, pairs of grammatical and ungrammatical sentences were created. The detection of such a gender agreement violation would indicate that the parser had established the coreference relation between the null subject and its antecedent. The results showed a complex biphasic ERP (i.e., an early negativity with prominence at anterior and central sites, followed by a centroparietal positivity) in the violating condition as compared to the non-violating conditions. The brain reacts to NP-adjective gender agreement violations within a few hundred milliseconds of their occurrence. The data imply that the parser has properly coindexed the null subject of an infinitive clause with its antecedent.

  8. Simple Map with Low MN Perturbation for a Single-Null Divertor Tokamak with Constant Width of Stochastic Layer

    NASA Astrophysics Data System (ADS)

    Verma, Arun; Smith, Terry; Punjabi, Alkesh; Boozer, Allen

    1996-11-01

    In this work, we investigate the effects of low MN perturbations in a single-null divertor tokamak with stochastic scrape-off layer. The unperturbed magnetic topology of a single-null divertor tokamak is represented by Simple Map (Punjabi A, Verma A and Boozer A, Phys Rev Lett), 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994). We choose the combinations of the map parameter k, and the strength of the low MN perturbation such that the width of stochastic layer remains unchanged. We give detailed results on the effects of low MN perturbation on the magnetic topology of the stochastic layer and on the footprint of field lines on the divertor plate given the constraint of constant width of the stochastic layer. The low MN perturbations occur naturally and therefore their effects are of considerable importance in tokamak divertor physics. This work is supported by US DOE OFES. Use of CRAY at HU and at NERSC is gratefully acknowledged.

  9. Ikaros promotes rearrangement of TCR alpha genes in an Ikaros null thymoma cell line

    PubMed Central

    Collins, Bernard; Clambey, Eric T.; Scott-Browne, James; White, Janice; Marrack, Philippa; Hagman, James; Kappler, John W.

    2014-01-01

    Summary Ikaros is important in the development and maintenance of the lymphoid system, functioning in part by associating with chromatin-remodeling complexes. We have studied the functions of Ikaros in the transition from pre-T cell to the CD4+CD8+ thymocyte using an Ikaros null CD4−CD8− mouse thymoma cell line (JE131). We demonstrate that this cell line carries a single functional TCR β gene rearrangement and expresses a surface pre-TCR. JE131 cells also carry non-functional rearrangements on both alleles of their TCR α loci. Retroviral re-introduction of Ikaros dramatically increased the rate of transcription in the α locus and TCR Vα/Jα recombination resulting in the appearance of many new αβTCR+ cells. The process is RAG dependent, requires SWI/SNF chromatin-remodeling complexes and is coincident with the binding of Ikaros to the TCR α enhancer. Furthermore, knockdown of Mi2/NuRD complexes increased the frequency of TCR α rearrangement. Our data suggest that Ikaros controls Vα/Jα recombination in T cells by controlling access of the transcription and recombination machinery to the TCR α loci. The JE131 cell line should prove to be a very useful tool for studying the molecular details of this and other processes involved in the pre-T cell to αβTCR+ CD4+CD8+ thymocyte transition. PMID:23172374

  10. Demonstration of Inductive Flux Saving by Transient CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Raman, Roger

    2010-11-01

    Experiments in NSTX have now demonstrated the saving of central solenoid flux equivalent to 200kA of toroidal plasma current after coupling plasmas produced by Transient Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current [R. Raman, et al., PRL 104, 095003 (2010)]. This is a record for non-inductive plasma startup, and an important step for developing the spherical torus concept. With an injector current of only 4kA and total power supply energy of only 21 kJ, CHI initiated a toroidal current of 250 kA that when coupled to 0.11 Vs of induction ramped up to 525 kA without using any auxiliary heating, whereas an otherwise identical inductive-only discharge ramped to only 325 kA. This flux saving was realized by reducing the influx of low-Z impurities during the start-up phase through the use of electrode conditioning discharges, followed by lithium evaporative coating of the plasma-facing surfaces and reducing parasitic arcs in the upper divertor region through use of additional shaping-field coils. As a result of these improvements, and for the first time in NSTX, the electron temperature during the CHI phase continually increased with input energy, indicating that the additional injected energy was contributing to heating the plasma instead of being lost through impurity line radiation. Simulations with the Tokamak Simulation Code (TSC) show that the observed scaling of CHI start-up current with toroidal field in NSTX is consistent with theory, suggesting that use of CHI on larger machines is quite attractive. These exciting results from NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks. This work supported by U.S. DOE Contracts DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08.

  11. Ion beam analysis of C-13 and deuterium deposition in DIII-D and their removal by in-situ oxygen baking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, W. R.; Allen, S. L.; Brooks, N. H.

    An experiment was conducted in DIII-D to examine carbon deposition when a secondary separatrix is near the wall. The magnetic configuration for this experiment was a biased double-null, similar to that foreseen for ITER. C-13 methane was injected toroidally symmetrically near the secondary separatrix into ELMy H-mode deuterium plasmas. The resulting deposition of C-13 was determined by nuclear reaction analysis. These results show that very little of the injected C-13 was deposited at the primary separatrix, whereas a large fraction of injected C-13 was deposited close to the point of injection near the secondary separatrix. Six of the tiles weremore » put back into DIII-D, where they were baked at 350-360 degrees C for 2 h at similar to 1 kPa in a 20% O-2/80% He gas mixture. Subsequent ion beam analysis of these tiles showed that about 21% of the C-13 and 54% of the deuterium were removed by the bake.« less

  12. Divertor Coil Design and Implementation on Pegasus

    NASA Astrophysics Data System (ADS)

    Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.

    2012-10-01

    An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with Ip<=300 kA. Initial experiments using this system will employ 900 V IGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.

  13. Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

    NASA Astrophysics Data System (ADS)

    Kuang, A. Q.; Cao, N. M.; Creely, A. J.; Dennett, C. A.; Hecla, J.; Hoffman, H.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.

    2017-10-01

    A long leg X-point target divertor geometry in a double null geometry has been implemented in the ARC pilot plant design, exploiting ARC's demountable toroidal field (TF) coils and FLiBe immersion blanket, which allow superconducting poloidal field coils to be located inside the TF coils, adequately shielded from neutrons. This new design maintains the original TF coil size, core plasma shape, and attains a tritium breedin ratio 1.08. The long leg divertor geometry provides significant advantages. Neutron transport computations indicate a factor of 10 reduction in divertor material neutron damage rate compared to the first wall, easing requirements for high heat flux components. Simulations have shown that long legged divertors are able to maintain a passively stable detachment front that stays in the divertor leg over a wide power window, in principle, responding immediately to fast changes in power exhaust. The ARC design exploits this new paradigm for divertor heat flux control: fewer concerns about coping with fast transients and a focus on neutron-tolerant diagnostics to measure and adjust detachment front locations in the outer divertor legs over long timescales.

  14. The appearance and propagation of filaments in the private flux region in Mega Amp Spherical Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, J. R.; Fishpool, G. M.; Thornton, A. J.

    2015-09-15

    The transport of particles via intermittent filamentary structures in the private flux region (PFR) of plasmas in the MAST tokamak has been investigated using a fast framing camera recording visible light emission from the volume of the lower divertor, as well as Langmuir probes and IR thermography monitoring particle and power fluxes to plasma-facing surfaces in the divertor. The visible camera data suggest that, in the divertor volume, fluctuations in light emission above the X-point are strongest in the scrape-off layer (SOL). Conversely, in the region below the X-point, it is found that these fluctuations are strongest in the PFRmore » of the inner divertor leg. Detailed analysis of the appearance of these filaments in the camera data suggests that they are approximately circular, around 1–2 cm in diameter, but appear more elongated near the divertor target. The most probable toroidal quasi-mode number is between 2 and 3. These filaments eject plasma deeper into the private flux region, sometimes by the production of secondary filaments, moving at a speed of 0.5–1.0 km/s. Probe measurements at the inner divertor target suggest that the fluctuations in the particle flux to the inner target are strongest in the private flux region, and that the amplitude and distribution of these fluctuations are insensitive to the electron density of the core plasma, auxiliary heating and whether the plasma is single-null or double-null. It is found that the e-folding width of the time-average particle flux in the PFR decreases with increasing plasma current, but the fluctuations appear to be unaffected. At the outer divertor target, the fluctuations in particle and power fluxes are strongest in the SOL.« less

  15. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegna, C. C.

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  16. Stationary multifaceted asymmetric radiation from the edge and improved confinement mode in a superconducting tokamak.

    PubMed

    Gao, X; Xie, J K; Wan, Y X; Ushigusa, K; Wan, B N; Zhang, S Y; Li, J; Kuang, G L

    2002-01-01

    Stationary multifaceted asymmetric radiation from the edge (MARFE) is studied by gas-puffing feedback control according to an empirical MARFE critical density ( approximately 1.8 x 10(13) cm(-3)) in the HT-7 Ohmic discharges (where the plasma current I(p) is about 170 kA, loop voltage V(loop)=2-3 V, toroidal field B(T)=1.9 T, and Z(eff)=3-4). It is observed that an improved confinement mode characterized by D(alpha) line emissions drops and the line-averaged density increase is triggered in the stationary MARFE discharges. The mode is not a symmetric "detachment" state, because the quasi-steady-state poloidally asymmetric radiation (e.g., C III line emissions) still exists. This phenomenon has not been predicted by the current MARFE theory.

  17. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data.

    PubMed Central

    Orr, H A

    1998-01-01

    Evolutionary biologists have long sought a way to determine whether a phenotypic difference between two taxa was caused by natural selection or random genetic drift. Here I argue that data from quantitative trait locus (QTL) analyses can be used to test the null hypothesis of neutral phenotypic evolution. I propose a sign test that compares the observed number of plus and minus alleles in the "high line" with that expected under neutrality, conditioning on the known phenotypic difference between the taxa. Rejection of the null hypothesis implies a role for directional natural selection. This test is applicable to any character in any organism in which QTL analysis can be performed. PMID:9691061

  18. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  19. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  20. Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Xueyu; Xie, Baoyi; Chen, You

    2016-03-15

    With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.

  1. Model for the loop voltage of reversed field pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarboe, T.R.; Alper, B.

    1987-04-01

    A simple model is presented that uses the concept of helicity balance to predict the toroidal loop voltage of reversed field pinches (RFP's). Data from the RFP's at Culham (Plasma Phys. Controlled Fusion 27, 1307 (1985)) are used to calibrate and verify the model. The model indicates that most of the helicity dissipation occurs in edge regions that are outside the limiters or in regions where field lines contact the walls. The value of this new interpretation to future RFP and spheromak experiments is discussed.

  2. EXPERIMENTS WITH PLASMA RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfven, H.; Lindberg, L.; Mitlid, P.

    1960-03-01

    The construction of a coaxial plasma gun is described. At its output end the gun is provided with a radial magnetic field, which is trapped by the plasma. The plasma from the gun is studied by photographic and magnetic methods. It is demonstrated that the gun produces magnetized plasma rings with the same basic structure as the rings obtained in toroidal pinch experiments. When the plasma rings are formed, the magnetic field lines from the gun break, a result which is of interest from a theoretical point of view. (auth)

  3. Modular low-aspect-ratio high-beta torsatron

    DOEpatents

    Sheffield, G.V.

    1982-04-01

    A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.

  4. On the dynamic toroidal multipoles from localized electric current distributions.

    PubMed

    Fernandez-Corbaton, Ivan; Nanz, Stefan; Rockstuhl, Carsten

    2017-08-08

    We analyze the dynamic toroidal multipoles and prove that they do not have an independent physical meaning with respect to their interaction with electromagnetic waves. We analytically show how the split into electric and toroidal parts causes the appearance of non-radiative components in each of the two parts. These non-radiative components, which cancel each other when both parts are summed, preclude the separate determination of each part by means of measurements of the radiation from the source or of its coupling to external electromagnetic waves. In other words, there is no toroidal radiation or independent toroidal electromagnetic coupling. The formal meaning of the toroidal multipoles is clear in our derivations. They are the higher order terms of an expansion of the multipolar coefficients of electric parity with respect to the electromagnetic size of the source.

  5. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    DOEpatents

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  6. Convection in three dimensions with surface plates - Generation of toroidal flow

    NASA Technical Reports Server (NTRS)

    Gable, Carl W.; O'Connell, Richard J.; Travis, Bryan J.

    1991-01-01

    This work presents numerical calculations of mantle convection that incorporate some of the basic observational constraints imposed by plate tectonics. The model is three-dimensional and includes surface plates; it allows plate velocity to change dynamically according to the forces which result from convection. It is shown that plates are an effective means of introducing a toroidal component into the flow field. After initial transients the plate motion is nearly parallel to transform faults and in the direction that tends to minimize the toroidal flow field. The toroidal field decays with depth from its value at the surface; the poloidal field is relatively constant throughout the layer but falls off slightly at the top and bottom boundaries. Layered viscosity increasing with depth causes the toroidal field to decay more rapidly, effectively confining it to the upper, low-viscosity layer. The effect of viscosity layering on the poloidal field is relatively small, which is attributed to its generation by temperature variations distributed throughout the system. The generation of toroidal flow by surface plates would seem to account for the observed nearly equal energy of toroidal and poloidal fields of plate motions on the earth. A low-viscosity region in the upper mantle will cause the toroidal flow to decay significantly before reaching the lower mantle. The resulting concentration of toroidal flow in the upper mantle may result in more thorough mixing there and account for some of the geochemical and isotopic differences proposed to exist between the upper and lower mantles.

  7. Accumulation of True Single Strand Breaks and AP sites in Base Excision Repair Deficient Cells

    PubMed Central

    Luke, April M.; Chastain, Paul D.; Pachkowski, Brian F.; Afonin, Valeriy; Takeda, Shunichi; Kaufman, David G.; Swenberg, James A.; Nakamura, Jun

    2010-01-01

    Single strand breaks (SSBs) are one of the most frequent DNA lesions caused by endogenous and exogenous agents. The most utilized alkaline-based assays for SSB detection frequently give false positive results due to the presence of alkali-labile sites that are converted to SSBs. Methoxyamine, an acidic O-hydroxylamine, has been utilized to measure DNA damage in cells. However, the neutralization of methoxyamine is required prior to usage. Here we developed a convenient, specific SSB assay using alkaline gel electrophoresis (AGE) coupled with a neutral O-hydroxylamine, O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (OTX). OTX stabilizes abasic sites (AP sites) to prevent their alkaline incision while still allowing for strong alkaline DNA denaturation. DNA from DT40 and isogenic polymerase β null cells exposed to methyl methanesulfonate were applied to the OTX-coupled AGE (OTX-AGE) assay. Time-dependent increases in SSBs were detected in each cell line with more extensive SSB formation in the null cells. These findings were supported by an assay that indirectly detects SSBs through measuring NAD(P)H depletion. An ARP-slot blot assay demonstrated a significant time-dependent increase in AP sites in both cell lines by 1 mM MMS compared to control. Furthermore, the Pol β-null cells displayed greater AP site formation than the parental DT40 cells. OTX use represents a facile approach for assessing SSB formation, whose benefits can also be applied to other established SSB assays. PMID:20851134

  8. Functions of Tenascin-C and Integrin alpha9beta1 in Mediating Prostate Cancer Bone Metastasis

    DTIC Science & Technology

    2017-10-01

    additional engineered cell lines for verification and we plan to also generate stable knockout cell lines using CRISPR /Cas 9 gene editing technology...addition to the proposed study, we plan to also produce VCaP cells that are null (knockout) for alpha 9 integrin using CRISPR /Cas9 gene editing protocols...We are experienced with CRISPR -Cas knockdown and have successfully engineered cells previously. We do not expect any particular difficulty in

  9. Rotating toroids in G10.62-0.38, G19.61-0.23, and G29.96-0.02

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; Cesaroni, R.; Neri, R.; Codella, C.

    2011-01-01

    Context. In recent years, we have detected clear evidence of rotation in more than 5 hot molecular cores (HMCs). Their identification is confirmed by the fact that the rotation axes are parallel to the axes of the associated bipolar outflows. We have now pursued our investigation by extending the sample to 3 known massive cores, G10.62-0.38, G19.61-0.23, and G29.96-0.02. Aims: We wish to make a thorough study of the structure and kinematics of HMCs and corresponding molecular outflows to reveal possible velocity gradients indicative of the rotation of the cores. Methods: We carried out PdBI observations at 2.7 and 1.4 mm of gas and dust with angular resolutions of ~2”-3” and ~1”-2”, respectively. To trace both rotation and expansion, we simultaneously observed CH3CN, a typical HMC tracer, and 13CO, a typical outflow tracer. Results: The CH3CN (12-11) observations reveal clear velocity gradients in the three HMCs oriented perpendicular to the direction of the bipolar outflows. For G19 and G29 the molecular outflows have been mapped in 13CO. The gradients are interpreted as rotating toroids. The rotation temperatures, used to derive the mass of the cores, have been obtained by means of the rotational diagram method, and lie in the range of 87-244 K. The diameters and masses of the toroids lie in the range of 4550-12600 AU and 28-415 M_⊙, respectively. Given that the dynamical masses are 2 to 30 times lower than those of the cores (if the inclination of the toroids with respect to the plane of the sky is not much below 45°), we suggest that the toroids could be accreting onto the embedded cluster. For G19 and G29, the collapse is also suggested by the redshifted absorption seen in the 13CO (2-1) line. We infer that infall onto the embedded (proto)stars must proceed with rates of ~10-2 M_⊙ yr-1 and on timescales of ~4 × 103-104 yr. The infall rates derived for G19 and G29 are two orders of magnitude greater than the accretion rates indirectly estimated from the mass loss rate of the corresponding outflows. This suggests that the material in the toroids is not infalling onto a single massive star, which is responsible for the corresponding molecular outflow, but onto a cluster of stars. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  10. Tunable plasmonic toroidal terahertz metamodulator

    NASA Astrophysics Data System (ADS)

    Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih

    2018-04-01

    Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.

  11. Circuit model of the ITER-like antenna for JET and simulation of its control algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durodié, Frédéric, E-mail: frederic.durodie@rma.ac.be; Křivská, Alena; Dumortier, Pierre

    2015-12-10

    The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. Atmore » the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and simulate the effectiveness of a feedback control algorithm for the 2nd stage matching and demonstrates the simultaneous matching and control of the 4 RDLs: 11 feedback loops control 21 actuators (8 capacitors, 4 phase shifters and 4 stubs for the 2nd stage matching, 4 main phase shifters controlling of the toroidal phasing and the electronically controlled phase between RF sources feeding top and bottom parts of the array and determines the poloidal phasing of the array which is solved explicitly at each time step) on (simulated) ELMy plasmas.« less

  12. Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma.

    PubMed

    Dumble, Melissa L; Croager, Emma J; Yeoh, George C T; Quail, Elizabeth A

    2002-03-01

    Oval cells are bipotential liver stem cells able to differentiate into hepatocytes and bile duct epithelia. In normal adult liver oval cells are quiescent, existing in low numbers around the periportal region, and proliferate following severe, prolonged liver trauma. There is evidence implicating oval cells in the development of hepatocellular carcinoma, and hence the availability of an immortalized oval cell line would be invaluable for the study of liver cell lineage differentiation and carcinogenesis. A novel approach in the generation of cell lines is the use of the p53 knockout mouse. Absence of p53 allows a cell to cycle past the normal Hayflick limit, rendering it immortalized, although subsequent genetic alterations are thought necessary for transformation. p53 knockout mice were fed a choline-deficient, ethionine-supplemented diet, previously shown to increase oval cell numbers in wild-type mice. The oval cells were isolated by centrifugal elutriation and maintained in culture. Colonies of hepatic cells were isolated and characterized with respect to phenotype, growth characteristics and tumorigenicity. Analysis of gene expression by Northern blotting and immunocytochemistry suggests they are oval-like cells by virtue of albumin and transferrin expression, as well as the oval cell markers alpha fetoprotein, M(2)-pyruvate kinase and A6. Injection into athymic nude mice shows the cell lines are capable of forming tumors which phenotypically resemble hepatocellular carcinoma. Thus, the use of p53 null hepatic cells successfully generated immortalized and tumorigenic hepatic stem cell lines. The results presented support the idea that deleting p53 allows immortalization and contributes to the transformation of the oval-like cell lines. Further, the tumorigenic status of the cell lines is direct evidence for the participation of oval cells in the formation of hepatocellular carcinoma.

  13. Electrostatic shielding of transformers

    DOEpatents

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  14. Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma.

    PubMed

    Peeters, A G; Angioni, C; Strintzi, D

    2007-06-29

    In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.

  15. Toroidal Momentum Pinch Velocity due to the Coriolis Drift Effect on Small Scale Instabilities in a Toroidal Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, A. G.; Angioni, C.; Strintzi, D.

    In this Letter, the influence of the ''Coriolis drift'' on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torquemore » on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiment000.« less

  16. Modular low aspect ratio-high beta torsatron

    DOEpatents

    Sheffield, George V.; Furth, Harold P.

    1984-02-07

    A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.

  17. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less

  18. The Experiment of Modulated Toroidal Current on HT-7 and HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Mao, Jian-shan; P, Phillips; Luo, Jia-rong; Xu, Yu-hong; Zhao, Jun-yu; Zhang, Xian-mei; Wan, Bao-nian; Zhang, Shou-yin; Jie, Yin-xian; Wu, Zhen-wei; Hu, Li-qun; Liu, Sheng-xia; Shi, Yue-jiang; Li, Jian-gang; HT-6M; HT-7 Group

    2003-02-01

    The Experiments of Modulated Toroidal Current were done on the HT-6M tokamak and HT-7 superconducting tokamak. The toroidal current was modulated by programming the Ohmic heating field. Modulation of the plasma current has been used successfully to suppress MHD activity in discharges near the density limit where large MHD m = 2 tearing modes were suppressed by sufficiently large plasma current oscillations. The improved Ohmic confinement phase was observed during modulating toroidal current (MTC) on the Hefei Tokamak-6M (HT-6M) and Hefei superconducting Tokamak-7 (HT-7). A toroidal frequency-modulated current, induced by a modulated loop voltage, was added on the plasma equilibrium current. The ratio of A.C. amplitude of plasma current to the main plasma current ΔIp/Ip is about 12%-30%. The different formats of the frequency-modulated toroidal current were compared.

  19. Toroidal gyrofluid equations for simulations of tokamak turbulence

    NASA Astrophysics Data System (ADS)

    Beer, M. A.; Hammett, G. W.

    1996-11-01

    A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances, and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett [Phys. Fluids B 5, 812 (1993)] to toroidal geometry by including essential toroidal effects. The closures for phase mixing from toroidal ∇B and curvature drifts take the basic form presented in Waltz et al. [Phys. Fluids B 4, 3138 (1992)], but here a more rigorous procedure is used, including an extension to higher moments, which provides significantly improved accuracy. In addition, trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations accurately models most of the physics considered important for ion dynamics in core tokamak turbulence, and is simple enough to be used in high resolution direct numerical simulations.

  20. Laboratory study of low-β forces in arched, line-tied magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Fox, W.

    2016-11-01

    The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions [Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms the low-β assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.

  1. Laboratory study of low- β forces in arched, line-tied magnetic flux ropes

    DOE PAGES

    Myers, C. E.; Yamada, M.; Ji, H.; ...

    2016-11-04

    Here, the loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be appliedmore » to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruption. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.« less

  2. Laboratory study of low- β forces in arched, line-tied magnetic flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C. E.; Yamada, M.; Ji, H.

    Here, the loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be appliedmore » to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruption. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.« less

  3. Mammalian Exo1 encodes both structural and catalytic functions that play distinct roles in essential biological processes

    PubMed Central

    Schaetzlein, Sonja; Chahwan, Richard; Avdievich, Elena; Roa, Sergio; Wei, Kaichun; Eoff, Robert L.; Sellers, Rani S.; Clark, Alan B.; Kunkel, Thomas A.; Scharff, Matthew D.; Edelmann, Winfried

    2013-01-01

    Mammalian Exonuclease 1 (EXO1) is an evolutionarily conserved, multifunctional exonuclease involved in DNA damage repair, replication, immunoglobulin diversity, meiosis, and telomere maintenance. It has been assumed that EXO1 participates in these processes primarily through its exonuclease activity, but recent studies also suggest that EXO1 has a structural function in the assembly of higher-order protein complexes. To dissect the enzymatic and nonenzymatic roles of EXO1 in the different biological processes in vivo, we generated an EXO1-E109K knockin (Exo1EK) mouse expressing a stable exonuclease-deficient protein and, for comparison, a fully EXO1-deficient (Exo1null) mouse. In contrast to Exo1null/null mice, Exo1EK/EK mice retained mismatch repair activity and displayed normal class switch recombination and meiosis. However, both Exo1-mutant lines showed defects in DNA damage response including DNA double-strand break repair (DSBR) through DNA end resection, chromosomal stability, and tumor suppression, indicating that the enzymatic function is required for those processes. On a transformation-related protein 53 (Trp53)-null background, the DSBR defect caused by the E109K mutation altered the tumor spectrum but did not affect the overall survival as compared with p53-Exo1null mice, whose defects in both DSBR and mismatch repair also compromised survival. The separation of these functions demonstrates the differential requirement for the structural function and nuclease activity of mammalian EXO1 in distinct DNA repair processes and tumorigenesis in vivo. PMID:23754438

  4. Dielectric metamaterials with toroidal dipolar response

    DOE PAGES

    Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.; ...

    2015-03-27

    Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. In addition, we show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials’ macroscopic response. Due to the unique field configuration of the toroidal mode, the proposed metamaterialsmore » could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.« less

  5. MHD Studies of Advanced Tokamak Equilibria

    NASA Astrophysics Data System (ADS)

    Strumberger, E.

    2005-10-01

    Advanced tokamak scenarios are often characterized by an extremely reversed profile of the safety factor, q, and a fast toroidal rotation. ASDEX Upgrade type equilibria with toroidal flow are computed up to a toroidal Mach number of Mta= 0.5, and compared with the static solution. Using these equilibria, the stabilizing effect of differential toroidal rotation on double tearing modes (DTMs) is investigated. These studies show that the computation of equilibria with flow is necessary for toroidally rotating plasma with Mta>=0.2. The use of ρtor instead of ρpol as radial coordinate enables us also to investigate the stability of equilibria with current holes. For numerical reasons, the rotational transform, = 1/q, has to be unequal zero in the CASTOR$FLOW code, but values of a>=0.001 (qa<=1000) can be easily handled. Stability studies of DTMs in the presence of a current hole are presented. Tokamak equilibria are only approximately axisymmetric. The finite number of toroidal field coils destroys the perfect axisymmetry of the device, and the coils produce a short wavelength ripple in the magnetic field strength. This toroidal field ripple plays a crucial role for the loss of high energy particles. Therefore, three-dimensional tokamak equilibria with and without current holes are computed for various plasma beta values. In addition the influence of the plasma beta on the toroidal field ripple is investigated.

  6. Baroclinic Instability in the Solar Tachocline for Continuous Vertical Profiles of Rotation, Effective Gravity, and Toroidal Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, Peter A., E-mail: gilman@ucar.edu

    We present results from an MHD model for baroclinic instability in the solar tachocline that includes rotation, effective gravity, and toroidal field that vary continuously with height. We solve the perturbation equations using a shooting method. Without toroidal fields but with an effective gravity declining linearly from a maximum at the bottom to much smaller values at the top, we find instability at all latitudes except at the poles, at the equator, and where the vertical rotation gradient vanishes (32.°3) for longitude wavenumbers m from 1 to >10. High latitudes are much more unstable than low latitudes, but both havemore » e -folding times that are much shorter than a sunspot cycle. The higher the m and the steeper the decline in effective gravity, the closer the unstable mode peak to the top boundary, where the energy available to drive instability is greatest. The effect of the toroidal field is always stabilizing, shrinking the latitude ranges of instability as the toroidal field is increased. The larger the toroidal field, the smaller the longitudinal wavenumber of the most unstable disturbance. All latitudes become stable for a toroidal field exceeding about 4 kG. The results imply that baroclinic instability should occur in the tachocline at latitudes where the toroidal field is weak or is changing sign, but not where the field is strong.« less

  7. The flush-mounted rail Langmuir probe array designed for the Alcator C-Mod vertical target plate divertor

    NASA Astrophysics Data System (ADS)

    Kuang, A. Q.; Brunner, D.; LaBombard, B.; Leccacorvi, R.; Vieira, R.

    2018-04-01

    An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ˜1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.

  8. Modelling of Field-Reversed Configuration Experiment with Large Safety Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhauer, L; Guo, H; Hoffman, A

    2005-11-28

    The Translation-Confinement-Sustainment facility has been operated in the 'translation-formation' mode in which a plasma is ejected at high-speed from a {theta}-pinch-like source into a confinement chamber where it settles into a field-reversed-configuration state. Measurements of the poloidal and toroidal field have been the basis of modeling to infer the safety factor. It is found that the edge safety factor exceeds two, and that there is strong forward magnetic shear. The high-q arises because the large elongation compensates for the modest ratio of toroidal-to-poloidal field in the plasma. This is the first known instance of a very high-{beta} plasma with amore » safety factor greater than unity. Two-fluid modeling of the measurements also indicate several other significant features: a broad 'transition layer' at the plasma boundary with probable line-tying effects, complex high-speed flows, and the appearance of a two-fluid minimum-energy state in the plasma core. All these features may contribute to both the stability and good confinement of the plasma.« less

  9. Dynamics of magnetic flux tubes in an advective flow around a black hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Giri, Kinsuk; Chakrabarti, Sandip K.

    2017-12-01

    Entangled magnetic fields entering into an accretion flow would very soon be stretched into a dominant toroidal component due to strong differentially rotating motion inside the accretion disc. This is particularly true for weakly viscous, low angular momentum transonic or advective discs. We study the trajectories of toroidal flux tubes inside a geometrically thick flow that undergoes a centrifugal force supported shock. We also study effects of these flux tubes on the dynamics of the inflow and the outflow. We use a finite difference method (total variation diminishing) for this purpose and specifically focused on whether these flux tubes significantly affect the properties of the outflows such as its collimation and the rate. It is seen that depending upon the cross-sectional radius of the flux tubes that control the drag force, these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surfaces) along the vertical direction. A comparison of results obtained with and without flux tubes show these flux tubes could play a pivotal role in collimation and acceleration of jets and outflows.

  10. Qubit and fermionic Fock spaces from type II superstring black holes

    NASA Astrophysics Data System (ADS)

    Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.

    Using Hodge diagram combinatorial data, we study qubit and fermionic Fock spaces from the point of view of type II superstring black holes based on complex compactifications. Concretely, we establish a one-to-one correspondence between qubits, fermionic spaces and extremal black holes in maximally supersymmetric supergravity obtained from type II superstring on complex toroidal and Calabi-Yau compactifications. We interpret the differential forms of the n-dimensional complex toroidal compactification as states of n-qubits encoding information on extremal black hole charges. We show that there are 2n copies of n qubit systems which can be split as 2n = 2n-1 + 2n-1. More precisely, 2n-1 copies are associated with even D-brane charges in type IIA superstring and the other 2n-1 ones correspond to odd D-brane charges in IIB superstring. This correspondence is generalized to a class of Calabi-Yau manifolds. In connection with black hole charges in type IIA superstring, an n-qubit system has been obtained from a canonical line bundle of n factors of one-dimensional projective space ℂℙ1.

  11. [Optimum design of imaging spectrometer based on toroidal uniform-line-spaced (TULS) spectrometer].

    PubMed

    Xue, Qing-Sheng; Wang, Shu-Rong

    2013-05-01

    Based on the geometrical aberration theory, a optimum-design method for designing an imaging spectrometer based on toroidal uniform grating spectrometer is proposed. To obtain the best optical parameters, twice optimization is carried out using genetic algorithm(GA) and optical design software ZEMAX A far-ultraviolet(FUV) imaging spectrometer is designed using this method. The working waveband is 110-180 nm, the slit size is 50 microm x 5 mm, and the numerical aperture is 0.1. Using ZEMAX software, the design result is analyzed and evaluated. The results indicate that the MTF for different wavelengths is higher than 0.7 at Nyquist frequency 10 lp x mm(-1), and the RMS spot radius is less than 14 microm. The good imaging quality is achieved over the whole working waveband, the design requirements of spatial resolution 0.5 mrad and spectral resolution 0.6 nm are satisfied. It is certificated that the optimum-design method proposed in this paper is feasible. This method can be applied in other waveband, and is an instruction method for designing grating-dispersion imaging spectrometers.

  12. A study for the installation of the TEXT heavy-ion beam probe on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmonds, P.H.; Solano, E.R.; Bravenec, R.V.

    1997-01-01

    An assessment of the feasibility of installing the TEXT 2 MeV heavy-ion beam probe on the DIII-D tokamak has been completed. Detailed drawings of the machine cross section were imported into the CAD application AutoCAD. A set of programs written in AutoLisp were used to generate trajectories. Displays of the accessible cross section of the plasma, scan lines for the entire range of primary beam energy and injection angle ranges, and sample{endash}volume dimensions can be rapidly generated. Because of the large deflection between the primary input beam and the emergent secondary beam, either the analyzer needs to be tracked overmore » a {plus_minus}20{degree} angle or secondary poloidal deflector plates need to be installed at the exit port. Toroidal deflector plates will be installed at both the injection and exit ports to compensate for toroidal displacements and deflections. The sample volumes generated by this procedure are within a few centimeters of the locations derived from a full three-dimensional calculation.{copyright} {ital 1997 American Institute of Physics.}« less

  13. Verification of BOUT++ by the method of manufactured solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudson, B. D., E-mail: benjamin.dudson@york.ac.uk; Hill, P.; Madsen, J.

    2016-06-15

    BOUT++ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUT++, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, non-orthogonal toroidal field-aligned coordinate systemsmore » and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUT++ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry.« less

  14. Evidence of toroidally localized turbulence with applied 3D fields in the DIII-D tokamak

    DOE PAGES

    Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; ...

    2016-09-21

    New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agreesmore » qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. In conclusion, these processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.« less

  15. Three-dimensional photogrammetric measurement of magnetic field lines in the WEGA stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewelow, Peter; Braeuer, Torsten; Otte, Matthias

    2009-12-15

    The magnetic confinement of plasmas in fusion experiments can significantly degrade due to perturbations of the magnetic field. A precise analysis of the magnetic field in a stellarator-type experiment utilizes electrons as test particles following the magnetic field line. The usual fluorescent detector for this electron beam limits the provided information to two-dimensional cut views at certain toroidal positions. However, the technique described in this article allows measuring the three-dimensional structure of the magnetic field by means of close-range photogrammetry. After testing and optimizing the main diagnostic components, measurements of the magnetic field lines were accomplished with a spatial resolutionmore » of 5 mm. The results agree with numeric calculations, qualifying this technique as an additional tool to investigate magnetic field configurations in a stellarator. For a possible future application, ways are indicated on how to reduce experimental error sources.« less

  16. Plasma Equilibrium in a Magnetic Field with Stochastic Field-Line Trajectories

    NASA Astrophysics Data System (ADS)

    Krommes, J. A.; Reiman, A. H.

    2008-11-01

    The nature of plasma equilibrium in a magnetic field with stochastic field lines is examined, expanding upon the ideas first described by Reiman et al. The magnetic partial differential equation (PDE) that determines the equilibrium Pfirsch-Schlüter currents is treated as a passive stochastic PDE for μj/B. Renormalization leads to a stochastic Langevin equation for μ in which the resonances at the rational surfaces are broadened by the stochastic diffusion of the field lines; even weak radial diffusion can significantly affect the equilibrium, which need not be flattened in the stochastic region. Particular attention is paid to satisfying the periodicity constraints in toroidal configurations with sheared magnetic fields. A numerical scheme that couples the renormalized Langevin equation to Ampere's law is described. A. Reiman et al, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes, Phys. Reports 360, 1--351.

  17. On the origins of part-time radio pulsars

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Gil, Janusz; Dyks, Jaroslaw

    2007-01-01

    Growing evidence suggests that some radio pulsars only act sporadically. These `part-time' pulsars include long-term nulls, quasi-periodic radio flares in PSR B1931+24, as well as the so-called Rotating Radio Transients (RRATs). Based on the assumption that these objects are isolated neutron stars similar to conventional radio pulsars, we discuss two possible interpretations to the phenomenon. The first interpretation suggests that these objects are pulsars slightly below the radio emission `death line', which become occasionally active only when the conditions for pair production and coherent emission are satisfied. The second interpretation invokes a radio emission direction reversal in conventional pulsars, as has been introduced to interpret the peculiar mode changing phenomenon in PSR B1822-09. In this picture, our line of sight misses the main radio emission beam of the pulsar but happens to sweep the emission beam when the radio emission direction is reversed. These part-time pulsars are therefore the other half of `nulling' pulsars. We suggest that X-ray observations may provide clues to differentiate between these two possibilities.

  18. Null cosmological singularities and free strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, K.

    2010-03-15

    We continue exploring free strings in the background of null Kasner-like cosmological singularities, following K. Narayan, arXiv:0904.4532. We study the free string Schrodinger wave functional along the lines of K. Narayan, arXiv:0807.1517. We find the wave functional to be nonsingular in the vicinity of singularities whose Kasner exponents satisfy certain relations. We compare this with the description in other variables. We then study certain regulated versions of these singularities where the singular region is replaced by a substringy but nonsingular region and study the string spectra in these backgrounds. The string modes can again be solved for exactly, giving somemore » insight into how string oscillator states get excited near the singularity.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Derek P.; Jacklin, Neil; Punnoose, Ratish J.

    Time-reversal is a wave focusing technique that makes use of the reciprocity of wireless propagation channels. It works particularly well in a cluttered environment with associated multipath reflection. This technique uses the multipath in the environment to increase focusing ability. Time-reversal can also be used to null signals, either to reduce unintentional interference or to prevent eavesdropping. It does not require controlled geometric placement of the transmit antennas. Unlike existing techniques it can work without line-of-sight. We have explored the performance of time-reversal focusing in a variety of simulated environments. We have also developed new algorithms to simultaneously focus atmore » a location while nulling at an eavesdropper location. We have experimentally verified these techniques in a realistic cluttered environment.« less

  20. Ikaros promotes rearrangement of TCR α genes in an Ikaros null thymoma cell line.

    PubMed

    Collins, Bernard; Clambey, Eric T; Scott-Browne, James; White, Janice; Marrack, Philippa; Hagman, James; Kappler, John W

    2013-02-01

    Ikaros is important in the development and maintenance of the lymphoid system, functioning in part by associating with chromatin-remodeling complexes. We have studied the functions of Ikaros in the transition from pre-T cell to the CD4(+) CD8(+) thymocyte using an Ikaros null CD4(-) CD8(-) mouse thymoma cell line (JE131). We demonstrate that this cell line carries a single functional TCR β gene rearrangement and expresses a surface pre-TCR. JE131 cells also carry nonfunctional rearrangements on both alleles of their TCR α loci. Retroviral reintroduction of Ikaros dramatically increased the rate of transcription in the α locus and TCR Vα/Jα recombination resulting in the appearance of many new αβTCR(+) cells. The process is RAG dependent, requires switch/sucrose nonfermentable chromatin-remodeling complexes and is coincident with the binding of Ikaros to the TCR α enhancer. Furthermore, knockdown of Mi2/nucleosome remodeling and deacetylase complexes increased the frequency of TCR α rearrangement. Our data suggest that Ikaros controls Vα/Jα recombination in T cells by controlling access of the transcription and recombination machinery to the TCR α loci. The JE131 cell line should prove to be a very useful tool for studying the molecular details of this and other processes involved in the pre-T cell to αβTCR(+) CD4(+) CD8(+) thymocyte transition. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Investigation of intrinsic toroidal rotation scaling in KSTAR

    NASA Astrophysics Data System (ADS)

    Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.

    2017-07-01

    The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.

  2. The dependence of divertor power sharing on magnetic flux balance in near double-null configurations on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-07-01

    Management of power exhaust will be a crucial task for tokamak fusion reactors. Reactor concepts are often proposed with double-null divertors, i.e. having two magnetic separatrices in an up-down symmetric configuration. This arrangement is potentially advantageous since the majority of the tokamak exhaust power tends to flow to the outer pair of divertor legs at large major radius, where the geometry is favorable for spreading the heat over a large surface area and there is more room for advanced divertor configurations. Despite the importance, there have been relatively few studies of divertor power sharing in near double null configurations and no studies at the poloidal magnetic fields and scrape-off layer power widths anticipated for a reactor. Motivated by this need we have undertaken a systematic study on Alcator C-Mod, examining the effect of magnetic flux balance on the power sharing among the four divertor legs in near double-null plasmas. Ohmic L-modes at three values of plasma current and ICRF-heated enhanced D-alpha (EDA) H-modes and I-modes at a single value of plasma current are explored, producing poloidal magnetic fields of 0.42, 0.62 and 0.85 Tesla. For Ohmic L-modes and ICRF-heated EDA H-modes, we find that the point of equal power sharing between upper and lower divertors occurs remarkably close to a balanced double null. Power sharing amongst the outer (upper versus lower) and inner (upper versus lower) pairs of divertors can be described in terms of a logistic function of magnetic flux balance, consistent with heat flux mapping along magnetic field lines to the outer midplane. Power sharing between inner and outer legs is found to follow a Gaussian-like function of magnetic flux balance with non-zero power to the inner divertors at double null. The overall behavior of H-modes operated near double null and for I-modes operating to within one heat flux e-folding of double null are found similar to Ohmic L-modes, with a significant reduction of power on the inner divertor legs. The results are encapsulated in terms of empirically-informed analytic functions of magnetic flux balance. When combined with magnetic equilibrium control system specifications, these relationships can be used to specify the power flux handling requirements for each of the four divertor target plates.

  3. System and method for generating current by selective electron heating

    DOEpatents

    Fisch, Nathaniel J.; Boozer, Allen H.

    1984-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  4. Influence of toroidal rotation on resistive tearing modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Wang, S.; Ma, Z. W.

    2015-12-01

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  5. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappadone, C., E-mail: concettina.cappadone@unibo.it; Stefanelli, C.; Malucelli, E.

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of themore » cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.« less

  6. The Potential for Engineering Enhanced Functional-Feed Soybeans for Sustainable Aquaculture Feed.

    PubMed

    Herman, Eliot M; Schmidt, Monica A

    2016-01-01

    Aquaculture is the most rapidly growing segment of global animal production that now surpasses wild-capture fisheries production and is continuing to grow 10% annually. Sustainable aquaculture needs to diminish, and progressively eliminate, its dependence on fishmeal-sourced feed from over-harvested fisheries. Sustainable aquafeed sources will need to be primarily of plant-origin. Soybean is currently the primary global vegetable-origin protein source for aquaculture. Direct exchange of soybean meal for fishmeal in aquafeed has resulted in reduced growth rates due in part to soybean's anti-nutritional proteins. To produce soybeans for use in aquaculture feeds a new conventional line has been bred termed Triple Null by stacking null alleles for the feed-relevant proteins Kunitz Trypsin Inhibitor, lectin, and P34 allergen. Triple Null is now being further enhanced as a platform to build additional transgene traits for vaccines, altered protein composition, and to produce high levels of β-carotene an intrinsic orange-colored aquafeed marker to distinguish the seeds from commodity beans and as the metabolic feedstock precursor of highly valued astaxanthin.

  7. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  8. Reduction of toroidal rotation by fast wave power in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassie, J.S. de; Baker, D.R.; Burrell, K.H.

    1997-04-01

    The application of fast wave power in DIII-D has proven effective for both electron heating and current drive. Since the last RIF Conference FW power has been applied to advanced confinement regimes in DIII-D; negative central shear (NCS), VH- and H-modes, high {beta}{sub p}, and high-{ell}i. Typically these regimes show enhanced confinement of toroidal momentum exhibited by increased toroidal rotation velocity. Indeed, layers of large shear in toroidal velocity are associated with transport barriers. A rather common occurrence in these experiments is that the toroidal rotation velocity is decreased when the FW power is turned on, to lowest order independentmore » of whether the antennas are phased for co or counter current drive. At present all the data is for co-injected beams. The central toroidal rotation can be reduced to 1/2 of the non-FW level. Here the authors describe the effect in NCS discharges with co-beam injection.« less

  9. Toroidal high-spin isomers in the nucleus 304120

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from multiparticle-multihole excitations in the toroidal system of 120304184 can lead to high-spin isomeric states, even though the toroidal shape of 120304184 without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, Z ≳122 , as reported previously [7 A. Staszczak and C. Y. Wong, Acta Phys. Pol. B 40, 753 (2008)].

  10. Toroidal high-spin isomers in the nucleus 120 304

    DOE PAGES

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-22

    Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis withmore » $$I=I_{z}$$. The toroidal high-$K$ isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus $$^{304}{120}_{184}$$. This method consists of three steps: first, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations we apply an additional cranking constraint of a large angular momentum $$I=I_{z}$$ about the symmetry $z$-axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with $$I=I_{z}$$ is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Furthemore, we have theoretically located two toroidal high-spin isomeric states of $$^{304}{120}_{184}$$ with an angular momentum $I$=$$I_z$$=81$$\\hbar$$ (proton 2p-2h, neutron 4p-4h excitation) and $I$=$$I_z$$=208$$\\hbar$$ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations $$Q_{20}=-297.7$$~b and $$Q_{20}=-300.8$$~b with energies 79.2 MeV and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers $$^{304}{120}_{184}(I_z$$=81$$\\hbar$$ and 208$$\\hbar$$) have the maximum density close to the nuclear matter density, 0.16 fm$$^{-3}$$, and a torus major to minor radius aspect ratio $R/d=3.25$. Here, we demonstrate that aligned angular momenta of $$I_z$$=81$$\\hbar$$ and 208$$\\hbar$$ arising from multi-particle-multi-hole excitations in the toroidal system of $$^{304}{120}_{184}$$ can lead to high-spin isomeric states, even though the toroidal shape of $$^{304}120_{184}$$ without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, $$Z\\gtrsim$$122, as reported previously [A. Staszczak and C. Y. Wong,Acta Phys. Pol. B 40 , 753 (2008)].« less

  11. ESA to test the smartest technique for detecting extrasolar planets from the ground

    NASA Astrophysics Data System (ADS)

    2002-03-01

    GENIE will use ESO's Very Large Telescopes Credits: European Southern Observatory This photo shows an aerial view of the observing platform on the top of Paranal mountain (from late 1999), with the four enclosu Three 1.8-m VLTI Auxiliary Telescopes (ATs) and paths of the light beams have been superposed on the photo. Also seen are some of the 30 'stations' where the ATs will be positioned for observations and from where the light beams from the telescopes can enter the Interferometric Tunnel below. The straight structures are supports for the rails on which the telescopes can move from one station to another. The Interferometric Laboratory (partly subterranean) is at the centre of the platform. How nulling interferometry works Credits: ESA 2002/Medialab How nulling interferometry works In nulling interferometry, light from a distant star (red beams) hits each telescope, labelled T1 and T2, simultaneously. Before the resultant light beams are combined, the beam from one telescope is delayed by half a wavelength. This means that when the rays are brought together, peaks from one telescope line up with troughs from the other and so are cancelled out (represented by the straight red line), leaving no starlight. Light from a planet (blue beams), orbiting the star, enters the telescopes at an angle. This introduces a delay in the light reaching the second telescope. So, even after the half wavelength change in one of the rays, when the beams are combined they are reinforced (represented by the large blue waves) rather than cancelled out. Illustration by Medialab. Nulling interferometry combines the signal from a number of different telescopes in such a way that the light from the central star is cancelled out, leaving the much fainter planet easier to see. This is possible because light is a wave with peaks and troughs. Usually when combining light from two or more telescopes, a technique called interferometry, the peaks are lined up with one another to boost the signal. In nulling interferometry, however, the peaks are lined up with the troughs so they cancel out to nothing and the star disappears. Planets in orbit around the star show up, however, because they are offset from the central star and their light takes different paths through the telescope system. ESA and ESO will build a new instrument called GENIE (Ground-based European Nulling Interferometer Experiment) to perform nulling interferometry using ESO's Very Large Telescope (VLT), a collection of four 8-metre telescopes in Chile. It will be the biggest investigation of nulling interferometry to date. "It's being tested in the lab in a number of places but we can do more," says Malcolm Fridlund, project scientist for the Darwin mission at the European Space Research and Technology Centre, the Netherlands. "We intend to use the world's largest telescope and the world's largest interferometer to get very high resolution." Using GENIE to perfect this technique will provide invaluable information for engineers about how to build the 'hub' spacecraft of the Darwin flotilla. Scheduled for launch in the middle of the next decade Darwin is a collection of six space telescopes and two other spacecraft, which will together search for Earth-like planets around nearby stars. The hub will combine the light from the telescopes. "If you see the way of getting to Darwin as being outlined by a number of technological milestones this is one of the most important ones," says Malcolm Fridlund. Once up and running, GENIE will also provide a training ground for astronomers who will later use Darwin. For example, it will allow them to perfect their methods of interpreting Darwin data because, as well as the engineering tests, GENIE will be capable of real science. One of its greatest tasks will be to develop the target list of stars for Darwin to study. As recently discovered by ESA's Ulysses spaceprobe, the signature of a planetary system is probably a ring of dust surrounding the central star. GENIE will be able to look for these dust rings and make sure that the dust is not so dense that it will mask the planets from view. GENIE will see failed stars, known as brown dwarfs and, if the instrument performs to expectations, may also see some of the already-discovered giant planets. So far, these worlds have never been seen, only inferred to exist by the effect they have on their parent stars. From Earth, two things handicap nulling interferometry. Firstly, the atmosphere smears out the starlight so that its cancellation is a hundred times less effective than it will be in space. Secondly, planets are most easily seen using infrared wavelengths because they are warm. So, observing from the surface of Earth, itself a planet emitting infrared radiation, is like peering through fog. In space, these two problems disappear and Darwin will be able to see smaller, Earth-like worlds. "We have calculated that with Darwin we could see an 'Earth' if it were ten light-years away with a few hours of observation time. With the VLT, it would be impossible because of the atmosphere. Even if the atmosphere weren't there it would take 450 days because of the infrared background released by the Earth. So we have to go into space," says Fridlund. GENIE is expected to be on-line by 2006.

  12. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    DOE PAGES

    Staszczak, A.; Wong, Cheuk-Yin

    2016-05-11

    We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ℏ and 140ℏ, which follow the same (multi-particle) (multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC) experiments.

  13. Axisymmetric magnetic modes of neutron stars having mixed poloidal and toroidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Lee, Umin

    2018-05-01

    We calculate axisymmetric magnetic modes of a neutron star possessing a mixed poloidal and toroidal magnetic field, where the toroidal field is assumed to be proportional to a dimensionless parameter ζ0. Here, we assume an isentropic structure for the neutron star and consider no effects of rotation. Ignoring the equilibrium deformation due to the magnetic field, we employ a polytrope of the index n = 1 as the background model for our modal analyses. For the mixed poloidal and toroidal magnetic field with ζ _0\

  14. Confinement time exceeding one second for a toroidal electron plasma.

    PubMed

    Marler, J P; Stoneking, M R

    2008-04-18

    Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.

  15. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  16. Toroidal band limiter for a plasma containment device

    DOEpatents

    Kelley, George G.

    1978-01-01

    This invention relates to a toroidal plasma confinement device having poloidal and toroidal magnetic fields for confining a toroidal plasma column with a plasma current induced therein along an endless, circular equilibrium axis in a torus vacuum cavity wherein the improvement comprises the use of a toroidal plasma band limiter mounted within the vacuum cavity in such a manner as to ensure that the plasma energy is distributed more uniformly over the limiter surface thereby avoiding intense local heating of the limiter while at the same time substantially preventing damage to the plasma containment wall of the cavity by the energetic particles diffusing out from the confined plasma. A plurality of poloidal plasma ring limiters are also utilized for containment wall protection during any disruptive instability that might occur during operation of the device.

  17. Use of a Hand-Portable Gas Chromatograph-Toroidal Ion Trap Mass Spectrometer for Self-Chemical Ionization Identification of Degradation Products Related to O-ethyl S-(2-diisopropylaminoethyl) Methyl Phosphonothiolate (VX)

    DTIC Science & Technology

    2011-01-01

    Milwaukee WI). Analytical standards were synthesized for VX degradation product compounds by react- ing 2-(diisopropylamino)ethyl chloride ...Ar at 45 ◦C until the disulfide compound was no longer observed as verified by GC–MS. Methods described by Hook et al. [7] were followed for synthesis ...used was methylene chloride , and the 1.0L volume injected contained 50ng of each analyte. Injector and mass spectrometer transfer line

  18. Breakthroughs in Low-Profile Leaky-Wave HPM Antennas

    DTIC Science & Technology

    2016-06-21

    conical horn antenna, as was commonly done in the 1980s) yields a low-gain pattern with a null on the axis. This is inconvenient for both effects testing ...Line Oscillator," IEEE Trans. Plasma Sci., vol. 26, no. 3, pp. 312-319, Jun 1998. Honey , R.C., “A Flush-Mounted Leaky-Wave Antenna with Predictable

  19. Re-evaluating the role of phenolic glycosides and ascorbic acid in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L

    USDA-ARS?s Scientific Manuscript database

    To determine if membrane-bound G-proteins are involved in the regulation of defense responses against ozone in the leaf apoplast, the apoplastic concentrations of ascorbic acid and phenolic glycosides in Arabidopsis thaliana L. lines with null mutations in the alpha- and beta-subunits were compared ...

  20. [Overexpression of liver kinase B1 inhibits the proliferation of lung cancer cells].

    PubMed

    Li, Yang; Zhang, Libin; Wang, Ping

    2017-01-01

    Objective To explore the effect of overexpressed liver kinase B1(LKB1) on the proliferation of lung cancer cell lines. Methods The expression levels of LKB1 and PTEN in A549, NCI-H23, NCI-H157, XWLC-05, NCI-H446 lung cancer cells were detected by immunocytochemistry (ICC) and Western blotting. Plasmid pcDNA3.1 + -LKB1 and empty vector pcDNA3.1 + -null were separately transfected into the above five cell lines, and then the expression of LKB1 mRNA and protein were determined by quantitative real-time PCR and Western blotting, respectively. Finally, CCK-8 assay was used to analyze the proliferation ability of the transfected cells. Results LKB1 and PTEN were positive in NCI-H23 cells; LKB1 was negative while PTEN was positive in A549 and NCI-H446 cells; both LKB1 and PTEN were negative in NCI-H157 and XWLC-05 cells. Quantitative real-time PCR and Western blotting showed that the expression level of LKB1 significantly increased in the above cell lines transfected with plasmid pcDNA3.1 + -LKB1 compared with the ones with empty vector pcDNA3.1 + -null. Besides, CCK-8 assay showed that the overexpression of LKB1 in the lung cancer cells transfected with pcDNA3.1 + -LKB1 had an obvious inhibitory effect on cell proliferation. Conclusion The expression of LKB1 is down-regulated in most of the lung cell lines to different extent and the over-expression of LKB1 can remarkably inhibit the proliferation ability of lung cancer cell lines.

  1. Influence of near null magnetic field on in vitro growth of potato and wild Solanum species.

    PubMed

    Rakosy-Tican, Lenuta; Aurori, C M; Morariu, V V

    2005-10-01

    The influence of near null magnetic field on in vitro growth of different cultures of potato and related Solanum species was investigated for various exposure times and dates. Potato (Solanum tuberosum L. cv. Désirée) in vitro cultures of shoot tips or nodal segments were used. Three different exposure periods revealed either stimulation or inhibition of root, stem, or leaf in vitro growth after 14 or 28 days of exposure. In one experiment the significant stimulation of leaf growth was also demonstrated at biochemical level, the quantity of chlorophyll a and b and carotenoids increasing more than two-fold. For the wild species Solanum chacoense, S. microdontum, and S. verrucosum, standardized in vitro cultures of nodal stem segments were used. Root and stem growth was either stimulated or slightly inhibited after 9 days exposure to near null magnetic field. Callus cultures obtained from potato dihaploid line 120/19 were maintained in near null magnetic field in 2 different months. For these experiments as well as for Solanum verrucosum, callus cultures recorded either slight inhibition or no effect on fresh weight. For all experiments significant growth variation was brought about only when geomagnetic activity (AP index) showed variations at the beginning of in vitro growth and when the explant had at least one meristematic tissue. Moreover longer maintenance in near null magnetic field, 28 days as compared to 14 days or the controls, can also make a difference in plant growth in response to geomagnetic field variations when static component was reduced to zero value. These results of in vitro plant growth stimulation by variable component of geomagnetic field also sustain the so-called seasonal "window" effect. (c) 2005 Wiley-Liss, Inc.

  2. Interaction dynamics of high Reynolds number magnetized plasma flow on the CTIX plasma accelerator

    NASA Astrophysics Data System (ADS)

    Howard, Stephen James

    The Compact Toroid Injection eXperiment, (CTIX), is a coaxial railgun that forms and accelerates magnetized plasma rings called compact toroids (CT's). CTIX consists of a pair of cylindrical coaxial electrodes with the region between them kept at high vacuum (2 m long, 15 cm outer diameter). Hydrogen is typically the dominant constituent of the CT plasma, however helium can also be used. The railgun effect that accelerates the CT can be accounted for by the Lorentz j x B force density created by the power input from a capacitor bank of roughly a Giga-Watt peak. The final velocity of the CT can be as high as 300 km/s, with an acceleration of about 3 billion times Earth's gravity. The compact toroid is able to withstand these forces because of a large internal magnetic field of about 1 Tesla. Understanding the nature of high speed flow of a magnetized plasma has been the primary challenge of this work. In this dissertation we will explore a sequence of fundamental questions regarding the plasma physics of CTIX. First we will go over some new results about the structure and dynamics of the compact toroid's magnetic field, and its electrical resistivity. Then we will present the results from a sequence of key experiments involving reconnection/compression and thermalization of the plasma during interaction of the CT with target magnetic fields of various geometries. Next, we look at the Doppler shift of a spectral line of the He II ion as a measurement of plasma velocity, and to gain insight into the ionization physics of helium in our plasma. These preliminary experiments provide the background for our primary experimental tool for investigating turbulence, a technique called Gas Puff Imaging (GPI) in which a cloud of helium can be used to enhance plasma brightness, allowing plasma density fluctuations to be imaged. We will conclude with an analysis of the images that show coherent density waves, as well as the transition to turbulence during the interaction with a wire target perturbation.

  3. Diagnosis of warm dense conditions in foil targets heated by intense femtosecond laser pulses using Kα imaging spectroscopy

    DOE PAGES

    Bae, L. J.; Zastrau, U.; Chung, H. -K.; ...

    2018-03-01

    Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics – spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. Finally, the spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage tomore » generate uniform warm dense conditions in a large area.« less

  4. Diagnosis of warm dense conditions in foil targets heated by intense femtosecond laser pulses using Kα imaging spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, L. J.; Zastrau, U.; Chung, H. -K.

    Warm dense conditions in titanium foils irradiated with intense femtosecond laser pulses are diagnosed using an x-ray imaging spectroscopy technique. The line shapes of radially resolved titanium Kα spectra are measured with a toroidally bent GaAs crystal and an x-ray charge-coupled device. Measured spectra are compared with the K-shell emissions modeled using an atomic kinetics – spectroscopy simulation code. Kα line shapes are strongly affected by warm (5-40 eV) bulk electron temperatures and imply multiple temperature distributions in the targets. Finally, the spatial distribution of temperature is dependent on the target thickness, and a thin target shows an advantage tomore » generate uniform warm dense conditions in a large area.« less

  5. Disruption of BASIGIN decreases lactic acid export and sensitizes non-small cell lung cancer to biguanides independently of the LKB1 status.

    PubMed

    Granja, Sara; Marchiq, Ibtissam; Le Floch, Renaud; Moura, Conceição Souto; Baltazar, Fátima; Pouysségur, Jacques

    2015-03-30

    Most cancers rely on aerobic glycolysis to generate energy and metabolic intermediates. To maintain a high glycolytic rate, cells must efficiently export lactic acid through the proton-coupled monocarboxylate transporters (MCT1/4). These transporters require a chaperone, CD147/BASIGIN (BSG) for trafficking to the plasma membrane and function.To validate the key role of these transporters in lung cancer, we first analysed the expression of MCT1/4 and BSG in 50 non-small lung cancer (NSCLC) cases. These proteins were specifically upregulated in tumour tissues. We then disrupted BSG in three NSCLC cell lines (A549, H1975 and H292) via 'Zinc-Finger Nucleases'. The three homozygous BSG-/- cell lines displayed a low MCT activity (10- to 5-fold reduction, for MCT1 and MCT4, respectively) compared to wild-type cells. Consequently, the rate of glycolysis, compared to the wild-type counterpart, was reduced by 2.0- to 3.5-fold, whereas the rate of respiration was stimulated in BSG-/- cell lines. Both wild-type and BSG-null cells were extremely sensitive to the mitochondria inhibitor metformin/phenformin in normoxia. However, only BSG-null cells, independently of their LKB1 status, remained sensitive to biguanides in hypoxia in vitro and tumour growth in nude mice. Our results demonstrate that inhibiting glycolysis by targeting lactic acid export sensitizes NSCLC to phenformin.

  6. Oscillations in solar jets observed with the SOT of Hinode: viscous effects during reconnection

    NASA Astrophysics Data System (ADS)

    Tavabi, E.; Koutchmy, S.

    2014-07-01

    Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.

  7. Vortex line topology during vortex tube reconnection

    NASA Astrophysics Data System (ADS)

    McGavin, P.; Pontin, D. I.

    2018-05-01

    This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.

  8. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment.

    PubMed

    Gerhardt, S P; Fredrickson, E; Guttadora, L; Kaita, R; Kugel, H; Menard, J; Takahashi, H

    2011-10-01

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.

  9. Air core poloidal magnetic field system for a toroidal plasma producing device

    DOEpatents

    Marcus, Frederick B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.

  10. A two-dimensional statistical framework connecting thermodynamic profiles with filaments in the scrape off layer and application to experiments

    NASA Astrophysics Data System (ADS)

    Militello, F.; Farley, T.; Mukhi, K.; Walkden, N.; Omotani, J. T.

    2018-05-01

    A statistical framework was introduced in Militello and Omotani [Nucl. Fusion 56, 104004 (2016)] to correlate the dynamics and statistics of L-mode and inter-ELM plasma filaments with the radial profiles of thermodynamic quantities they generate in the Scrape Off Layer. This paper extends the framework to cases in which the filaments are emitted from the separatrix at different toroidal positions and with a finite toroidal velocity. It is found that the toroidal velocity does not affect the profiles, while the toroidal distribution of filament emission renormalises the waiting time between two events. Experimental data collected by visual camera imaging are used to evaluate the statistics of the fluctuations, to inform the choice of the probability distribution functions used in the application of the framework. It is found that the toroidal separation of the filaments is exponentially distributed, thus suggesting the lack of a toroidal modal structure. Finally, using these measurements, the framework is applied to an experimental case and good agreement is found.

  11. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment

    DOE PAGES

    Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; ...

    2011-10-06

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less

  12. Influence of toroidal rotation on resistive tearing modes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shearmore » shows a destabilizing effect when the rotation is large.« less

  13. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  14. System and method for generating current by selective minority species heating

    DOEpatents

    Fisch, Nathaniel J.

    1983-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of low-frequency waves into the plasma by means of phased antenna arrays or phased waveguide arrays. The plasma is prepared with a minority ion species of different charge state and different gyrofrequency from the majority ion species. The wave frequency and wave phasing are chosen such that the wave energy is absorbed preferentially by minority species ions traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  15. The effects of resonant magnetic perturbations on fast ion confinement in the Mega Amp Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Akers, R. J.; Boeglin, W. U.; Cecconello, M.; Keeling, D.; Jones, O. M.; Kirk, A.; Klimek, I.; Perez, R. V.; Shinohara, K.; Tani, K.

    2015-07-01

    The effects of resonant magnetic perturbations (RMPs) on the confinement of energetic (neutral beam) ions in the Mega Amp Spherical Tokamak (MAST) are assessed experimentally using measurements of neutrons, fusion protons and fast ion Dα (FIDA) light emission. In single null-diverted (SND) MAST pulses with relatively low plasma current (400 kA), the total neutron emission dropped by approximately a factor of two when RMPs with toroidal mode number n = 3 were applied. The measured neutron rate during RMPs was much lower than that calculated using the TRANSP plasma simulation code, even when non-classical (but axisymmetric) ad hoc fast ion transport was taken into account in the latter. Sharp drops in spatially-resolved neutron rates, fusion proton rates and FIDA emission were also observed. First principles-based simulations of RMP-induced fast ion transport in MAST, using the F3D-OFMC code, show similar losses for two alternative representations of the MAST first wall, with and without full orbit effects taken into account; for n = 6 RMPs in a 600 kA plasma, the additional loss of beam power due to the RMPs was found in the simulations to be approximately 11%.

  16. Depth variations of P-wave azimuthal anisotropy beneath Mainland China

    PubMed Central

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-01-01

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. PMID:27432744

  17. Asymmetric SOL Current in Vertically Displaced Plasma

    NASA Astrophysics Data System (ADS)

    Cabrera, J. D.; Navratil, G. A.; Hanson, J. M.

    2017-10-01

    Experiments at the DIII-D tokamak demonstrate a non-monotonic relationship between measured scrape-off layer (SOL) currents and vertical displacement event (VDE) rates with SOL currents becoming largely n=1 dominant as plasma is displaced by the plasma control system (PCS) at faster rates. The DIII-D PCS is used to displace the magnetic axis 10x slower than the intrinsic growth time of similar instabilities in lower single-null plasmas. Low order (n <=2) mode decomposition is done on toroidally spaced current monitors to attain measures of asymmetry in SOL current. Normalized to peak n=0 response, a 2-4x increase is seen in peak n=1 response in plasmas displaced by the PCS versus previous VDE instabilities observed when vertical control is disabled. Previous inquiry shows VDE asymmetry characterized by SOL current fraction and geometric parameters of tokamak plasmas. We note that, of plasmas displaced by the PCS, short displacement time scales near the limit of the PCS temporal control appear to result in larger n=1/n=2 asymmetries. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-FG02-04ER54761.

  18. Depth variations of P-wave azimuthal anisotropy beneath Mainland China

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhao, Dapeng; Xu, Jiandong; Zhou, Bengang; Shi, Yaolin

    2016-07-01

    A high-resolution model of P-wave anisotropic tomography beneath Mainland China and surrounding regions is determined using a large number of arrival-time data recorded by the China seismic network, the International Seismological Centre (ISC) and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducted Indian plate and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. There are multiple anisotropic layers with variable FVDs in some parts of the Tibetan Plateau, which may be the cause of the dominant null splitting measurements in these regions. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China, which reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab.

  19. Long-term magnetic field monitoring of the Sun-like star ξ Bootis A

    NASA Astrophysics Data System (ADS)

    Morgenthaler, A.; Petit, P.; Saar, S.; Solanki, S. K.; Morin, J.; Marsden, S. C.; Aurière, M.; Dintrans, B.; Fares, R.; Gastine, T.; Lanoux, J.; Lignières, F.; Paletou, F.; Ramírez Vélez, J. C.; Théado, S.; Van Grootel, V.

    2012-04-01

    Aims: We aim to investigate the long-term temporal evolution of the magnetic field of the solar-type star ξ Bootis A, both from direct magnetic field measurements and from the simultaneous estimate of indirect activity indicators. Methods: We obtained seven epochs of high-resolution, circularly-polarized spectra from the NARVAL spectropolarimeter between 2007 and 2011, for a total of 76 spectra. Using approximately 6100 photospheric spectral lines covering the visible domain, we employed a cross-correlation procedure to compute a mean polarized line profile from each spectrum. The large-scale photospheric magnetic field of the star was then modelled by means of Zeeman-Doppler Imaging, allowing us to follow the year-to-year evolution of the reconstructed magnetic topology. Simultaneously, we monitored the width of several magnetically sensitive spectral lines, the radial velocity, the line asymmetry of intensity line profiles, and the chromospheric emission in the cores of the Ca II H and Hα lines. Results: During the highest observed activity states, in 2007 and 2011, the large-scale field of ξ Bootis A is almost completely axisymmetric and is dominated by its toroidal component. The toroidal component persists with a constant polarity, containing a significant fraction of the magnetic energy of the large-scale surface field through all observing epochs. The magnetic topologies reconstructed for these activity maxima are very similar, suggesting a form of short cyclicity in the large-scale field distribution. The mean unsigned large-scale magnetic flux derived from the magnetic maps varies by a factor of about 2 between the lowest and highest observed magnetic states. The chromospheric flux is less affected and varies by a factor of 1.2. Correlated temporal evolution, due to both rotational modulation and seasonal variability, is observed between the Ca II emission, the Hα emission and the width of magnetically sensitive lines. The rotational dependence of polarimetric magnetic measurements displays a weak correlation with other activity proxies, presumably due to the different spatial scales and centre-to-limb darkening associated with polarimetric signatures, as compared to non-polarized activity indicators. Better agreement is observed on the longer term. When measurable, the differential rotation reveals a strong latitudinal shear in excess of 0.2 rad d-1. Based on observations obtained at the Bernard Lyot Telescope (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory, which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France.Tables 3-6 are available in electronic form at http://www.aanda.org

  20. Modeling Reconnection-Driven Solar Polar Jets with Gravity and Wind

    NASA Astrophysics Data System (ADS)

    Karpen, Judith T.; DeVore, C. R.; Antiochos, S. K.

    2013-07-01

    Solar polar jets are dynamic, narrow, radially extended structures observed in EUV emission. They have been found to originate within the open magnetic field of coronal holes in “anemone” regions, which are generally accepted to be intrusions of opposite polarity. The associated embedded-dipole topology consists of a spine line emanating from a null point atop a dome-shaped fan surface. Previous work (Pariat et al. 2009, 2010) has validated the idea that magnetic free energy stored on twisted closed field lines within the fan surface can be released explosively by the onset of fast reconnection between the highly stressed closed field inside the null and the unstressed open field outside (Antiochos 1996). The simulations showed that a dense jet comprising a nonlinear, torsional Alfven wave is ejected into the outer corona on the newly reconnected open field lines. While proving the principle of the basic model, those simulations neglected the important effects of gravity, the solar wind, and an expanding spherical geometry. We introduce those additional physical processes in new simulations of reconnection-driven jets, to determine whether the model remains robust in the resulting more realistic setting, and to begin establishing the signatures of the jets in the inner heliosphere for comparison with observations. Initial results demonstrate explosive energy release and a jet in the low corona very much like that in the earlier Cartesian, gravity-free, static-atmosphere runs. We report our analysis of the results, their comparison with previous work, and their implications for observations. This work was supported by NASA’s LWS TR&T program.Abstract (2,250 Maximum Characters): Solar polar jets are dynamic, narrow, radially extended structures observed in EUV emission. They have been found to originate within the open magnetic field of coronal holes in “anemone” regions, which are generally accepted to be intrusions of opposite polarity. The associated embedded-dipole topology consists of a spine line emanating from a null point atop a dome-shaped fan surface. Previous work (Pariat et al. 2009, 2010) has validated the idea that magnetic free energy stored on twisted closed field lines within the fan surface can be released explosively by the onset of fast reconnection between the highly stressed closed field inside the null and the unstressed open field outside (Antiochos 1996). The simulations showed that a dense jet comprising a nonlinear, torsional Alfven wave is ejected into the outer corona on the newly reconnected open field lines. While proving the principle of the basic model, those simulations neglected the important effects of gravity, the solar wind, and an expanding spherical geometry. We introduce those additional physical processes in new simulations of reconnection-driven jets, to determine whether the model remains robust in the resulting more realistic setting, and to begin establishing the signatures of the jets in the inner heliosphere for comparison with observations. Initial results demonstrate explosive energy release and a jet in the low corona very much like that in the earlier Cartesian, gravity-free, static-atmosphere runs. We report our analysis of the results, their comparison with previous work, and their implications for observations. This work was supported by NASA’s LWS TR&T program.

  1. Electrostatics of a Family of Conducting Toroids

    ERIC Educational Resources Information Center

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  2. Limiter Observations during W7-X First Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurden, Glen Anthony; Biedermann, C.; Effenberg, F.

    During the first operational phase (referred to as OP1.1) of the new Wendelstein 7-X (W7-X) stellarator, five poloidal graphite limiters were mounted on the inboard side of the vacuum vessel, one in each of the five toroidal modules which form the W7-X vacuum vessel. Each limiter consisted of nine specially shaped graphite tiles, designed to conform to the last closed field line geometry in the bean-shaped section of the standard OP1.1 magnetic field configuration (Sunn Pedersen et al 2015 Nucl. Fusion 55 126001). Here, we observed the limiters with multiple infrared and visible camera systems, as well as filtered photomultipliers.more » Power loads are calculated from infrared (IR) temperature measurements using THEODOR, and heating patterns (dual stripes) compare well with field line mapping and EMC3-EIRENE predictions. While the poloidal symmetry of the heat loads was excellent, the toroidal heating pattern showed up to a factor of 2× variation, with peak heat loads on Limiter 1. The total power intercepted by the limiters was up to ~60% of the input ECRH heating power. Calorimetry using bulk tile heating (measured via post-shot IR thermography) on Limiter 3 showed a difference between short high power discharges, and longer lower power ones, with regards to the fraction of energy deposited on the limiters. Finally, fast heating transients, with frequency >1 kHz were detected, and their visibility was enhanced by the presence of surface coatings which developed on the limiters by the end of the campaign.« less

  3. Limiter Observations during W7-X First Plasmas

    DOE PAGES

    Wurden, Glen Anthony; Biedermann, C.; Effenberg, F.; ...

    2017-04-03

    During the first operational phase (referred to as OP1.1) of the new Wendelstein 7-X (W7-X) stellarator, five poloidal graphite limiters were mounted on the inboard side of the vacuum vessel, one in each of the five toroidal modules which form the W7-X vacuum vessel. Each limiter consisted of nine specially shaped graphite tiles, designed to conform to the last closed field line geometry in the bean-shaped section of the standard OP1.1 magnetic field configuration (Sunn Pedersen et al 2015 Nucl. Fusion 55 126001). Here, we observed the limiters with multiple infrared and visible camera systems, as well as filtered photomultipliers.more » Power loads are calculated from infrared (IR) temperature measurements using THEODOR, and heating patterns (dual stripes) compare well with field line mapping and EMC3-EIRENE predictions. While the poloidal symmetry of the heat loads was excellent, the toroidal heating pattern showed up to a factor of 2× variation, with peak heat loads on Limiter 1. The total power intercepted by the limiters was up to ~60% of the input ECRH heating power. Calorimetry using bulk tile heating (measured via post-shot IR thermography) on Limiter 3 showed a difference between short high power discharges, and longer lower power ones, with regards to the fraction of energy deposited on the limiters. Finally, fast heating transients, with frequency >1 kHz were detected, and their visibility was enhanced by the presence of surface coatings which developed on the limiters by the end of the campaign.« less

  4. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells

    PubMed Central

    Ahmadivand, Arash; Gerislioglu, Burak; Tomitaka, Asahi; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih

    2018-01-01

    Engineered terahertz (THz) plasmonic metamaterials have emerged as promising platforms for quick infection diagnosis, cost-effective and real-time pharmacology applications owing to their non-destructive and harmless interaction with biological tissues in both in vivo and in vitro assays. As a recent member of THz metamaterials family, toroidal metamaterials have been demonstrated to be supporting high-quality sharp resonance modes. Here we introduce a THz metasensor based on a plasmonic surface consisting of metamolecules that support ultra-narrow toroidal resonances excited by the incident radiation and demonstrate detection of an ultralow concertation targeted biomarker. The toroidal plasmonic metasurface was designed and optimized through extensive numerical studies and fabricated by standard microfabrication techniques. The surface then functionalized by immobilizing the antibody for virus-envelope proteins (ZIKV-EPs) for selective sensing. We sensed and quantified the ZIKV-EP in the assays by measuring the spectral shifts of the toroidal resonances while varying the concentration. In an improved protocol, we introduced gold nanoparticles (GNPs) decorated with the same antibodies onto the metamolecules and monitored the resonance shifts for the same concentrations. Our studies verified that the presence of GNPs enhances capturing of biomarker molecules in the surrounding medium of the metamaterial. By measuring the shift of the toroidal dipolar momentum (up to Δω~0.35 cm−1) for different concentrations of the biomarker proteins, we analyzed the sensitivity, repeatability, and limit of detection (LoD) of the proposed toroidal THz metasensor. The results show that up to 100-fold sensitivity enhancement can be obtained by utilizing plasmonic nanoparticles-integrated toroidal metamolecules in comparison to analogous devices. This approach allows for detection of low molecular-weight biomolecules (≈13 kDa) in diluted solutions using toroidal THz plasmonic unit cells. PMID:29552379

  5. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells.

    PubMed

    Ahmadivand, Arash; Gerislioglu, Burak; Tomitaka, Asahi; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih

    2018-02-01

    Engineered terahertz (THz) plasmonic metamaterials have emerged as promising platforms for quick infection diagnosis, cost-effective and real-time pharmacology applications owing to their non-destructive and harmless interaction with biological tissues in both in vivo and in vitro assays. As a recent member of THz metamaterials family, toroidal metamaterials have been demonstrated to be supporting high-quality sharp resonance modes. Here we introduce a THz metasensor based on a plasmonic surface consisting of metamolecules that support ultra-narrow toroidal resonances excited by the incident radiation and demonstrate detection of an ultralow concertation targeted biomarker. The toroidal plasmonic metasurface was designed and optimized through extensive numerical studies and fabricated by standard microfabrication techniques. The surface then functionalized by immobilizing the antibody for virus-envelope proteins (ZIKV-EPs) for selective sensing. We sensed and quantified the ZIKV-EP in the assays by measuring the spectral shifts of the toroidal resonances while varying the concentration. In an improved protocol, we introduced gold nanoparticles (GNPs) decorated with the same antibodies onto the metamolecules and monitored the resonance shifts for the same concentrations. Our studies verified that the presence of GNPs enhances capturing of biomarker molecules in the surrounding medium of the metamaterial. By measuring the shift of the toroidal dipolar momentum (up to Δ ω ~0.35 cm -1 ) for different concentrations of the biomarker proteins, we analyzed the sensitivity, repeatability, and limit of detection (LoD) of the proposed toroidal THz metasensor. The results show that up to 100-fold sensitivity enhancement can be obtained by utilizing plasmonic nanoparticles-integrated toroidal metamolecules in comparison to analogous devices. This approach allows for detection of low molecular-weight biomolecules (≈13 kDa) in diluted solutions using toroidal THz plasmonic unit cells.

  6. Modeling of toroidal torques exerted by internal kink instability in a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Liu, Y. Q.; Yu, D. L.; Wang, S.; Xia, G. L.; Dong, G. Q.; Bai, X.

    2017-08-01

    Toroidal modeling efforts are initiated to systematically compute and compare various toroidal torques, exerted by an unstable internal kink in a tokamak plasma, using the MARS-F/K/Q suite of codes. The torques considered here include the resonant electromagnetic torque due to the Maxwell stress (the EM or JXB torque), the neoclassical toroidal viscous (NTV) torque, and the torque associated with the Reynolds stress. Numerical results show that the relative magnitude of the net resonant electromagnetic and the Reynolds stress torques increases with the equilibrium flow speed of the plasma, whilst the net NTV torque follows the opposite trend. The global flow shear sensitively affects the Reynolds stress torque, but not the electromagnetic and the NTV torques. Detailed examinations reveal dominant contributions to the Maxwell and Reynolds stress torques, in terms of the poloidal harmonic numbers of various perturbation fields, as well as their relative toroidal phasing.

  7. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2014-09-01

    This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  8. Toroidal Localized Spoof Plasmons on Compact Metadisks.

    PubMed

    Qin, Pengfei; Yang, Yihao; Musa, Muhyiddeen Yahya; Zheng, Bin; Wang, Zuojia; Hao, Ran; Yin, Wenyan; Chen, Hongsheng; Li, Erping

    2018-03-01

    Localized spoof surface plasmons (LSSPs) have recently emerged as a new research frontier due to their unique properties and increasing applications. Despite the importance, most of the current researches only focus on electric/magnetic LSSPs. Very recent research has revealed that toroidal LSSPs, LSSPs modes with multipole toroidal moments, can be achieved at a point defect in a 2D groove metal array. However, this metamaterial shows the limitations of large volume and poor compatibility to photonic integrated circuits. To overcome the above challenges, here it is proposed and experimentally demonstrated compact planar metadisks based on split ring resonators to support the toroidal LSSPs at microwave frequencies. Additionally, it is experimentally demonstrated that the toroidal LSSPs resonance is very sensitive to the structure changes and the background medium. These might facilitate its utilization in the design and application of plasmonic deformation sensors and the refractive index sensors.

  9. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Novikov, M. S.; Ivanov, D. P.; Novikov, S. I.; Shuvaev, S. A.

    2015-12-01

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20-30 kA, an operating temperature of 10-20 K, and a magnetic field on the winding of 12-15 T (prospectively ~20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet's casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  10. Effects of multi-pulsed coaxial helicity injection on dynamics of spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.; Kagei, Y.

    2012-10-01

    The mechanism to rebuild the magnetic fields and to amplify the currents in the high-q spherical torus (ST) by the multi-pulsed coaxial helicity injection is investigated using the resistive nonlinear 3D-MHD simulations. During the driven phase, the dynamics is almost axisymmetric because the magnetic fluctuation level of n=0 mode compared with other higher modes is much larger. The toroidal current It is effectively amplified due to the merging of plasmoid ejected from the gun region with the pre-existing ST in the confinement region. The poloidal flux is not significantly amplified because the current sheet generated by the merging process does not rapidly decay. The negative toroidal flow vt is then induced in the direction of It around the central open flux column (OFC) region by inductive toroidal electric field Et (=-vzBr) because of the plasmoid ejection. The strong poloidal flow vz (=ErBt) is also driven from the gun to confinement region due to the Lorentz force. As the result of vz, the flow vortices associated with the dynamo effect are caused around the upper confinement region. During the decay phase, the closed field lines are regenerated due to the dissipation of magnetic fluctuations. The helical distortion of the OFC becomes small, and then ordered magnetic field structures without flows are built. Just after turning off the external electric field, the poloidal flow from the confinement to gun region is caused by the pressure gradients. The parallel current density λ concentrated in the OFC diffuses to the core region, but does not relax in the direction of the Taylor state due to the pressure gradients.

  11. Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium.

    PubMed

    Dong, Zixun; Ran, Jianhua; Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue

    2013-01-01

    Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.

  12. Urea Transporter UT-B Deletion Induces DNA Damage and Apoptosis in Mouse Bladder Urothelium

    PubMed Central

    Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue

    2013-01-01

    Background Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Methodology/Principal Findings Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. Conclusions/Significance UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders. PMID:24204711

  13. A comprehensive study of electrostatic turbulence and transport in the laboratory basic plasma device TORPEX

    NASA Astrophysics Data System (ADS)

    Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.

    2012-04-01

    TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and we compare their time-averaged and statistical properties with experimental data. Finally, we discuss future developments including the possibility of closing the magnetic field lines and of performing magnetic reconnection experiments.

  14. Marshall N. Rosenbluth Outstanding Doctoral Thesis Award Talk: Control of Non-Axisymmetric Fields With Static and Dynamic Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.

    2013-10-01

    Small deformations of the otherwise axisymmetric field, known as ``error fields'' (EFs), lead to large changes in global MHD stability. This talk will compare results from both 1) a line-tied screw-pinch with rotating conducting walls and 2) the DIII-D tokamak to illustrate that in both devices the EF has greatest effect where it overlaps with the spatial structure of its global kink mode. In both configurations the kink structure in the symmetry direction is well described by a single mode number (azimuthal m = 1 , toroidal n = 1 , respectively) and EF ordering is clear. In the asymmetric direction (axial and poloidal, respectively) the harmonics of the kink are coupled (by line-tying and toroidicity, respectively) and thus EF ordering is not straightforward. In the pinch, the kink is axially localized to the anode region and consequently the anode EF dominates the MHD stability. In DIII-D, the poloidal harmonics of the n = 1 EF whose pitch is smaller than the local field-line pitch are empirically shown to be dominant across a wide breadth of EF optimization experiments. In analogy with the pinch, these harmonics are also where overlap with the kink is greatest and thus where the largest plasma kink response is found. The robustness of the kink structure further enables vacuum-field cost-function minimization techniques to accurately predict optimal EF correction coil currents by strongly weighting the kink-like poloidal harmonics in the minimization. To test the limits of this paradigm recent experiments in DIII-D imposed field structures that lack kink-overlapping harmonics, yielding ~10X less sensitivity. The very different plasmas of the pinch and tokamak thus both demonstrate the dominance of the kink mode in determining optimal EF correction. Supported by US DOE under DE-AC05-06OR23100, DE-FG02-00ER54603, DE-FC02-04ER54698, and NSF 0903900.

  15. Spectroscopic fingerprints of toroidal nuclear quantum delocalization via ab initio path integral simulations.

    PubMed

    Schütt, Ole; Sebastiani, Daniel

    2013-04-05

    We investigate the quantum-mechanical delocalization of hydrogen in rotational symmetric molecular systems. To this purpose, we perform ab initio path integral molecular dynamics simulations of a methanol molecule to characterize the quantum properties of hydrogen atoms in a representative system by means of their real-space and momentum-space densities. In particular, we compute the spherically averaged momentum distribution n(k) and the pseudoangular momentum distribution n(kθ). We interpret our results by comparing them to path integral samplings of a bare proton in an ideal torus potential. We find that the hydroxyl hydrogen exhibits a toroidal delocalization, which leads to characteristic fingerprints in the line shapes of the momentum distributions. We can describe these specific spectroscopic patterns quantitatively and compute their onset as a function of temperature and potential energy landscape. The delocalization patterns in the projected momentum distribution provide a promising computational tool to address the intriguing phenomenon of quantum delocalization in condensed matter and its spectroscopic characterization. As the momentum distribution n(k) is also accessible through Nuclear Compton Scattering experiments, our results will help to interpret and understand future measurements more thoroughly. Copyright © 2012 Wiley Periodicals, Inc.

  16. Numerical optimization of perturbative coils for tokamaks

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel; Park, Jong-Kyu; Logan, Nikolas; Boozer, Allen; NSTX-U Research Team

    2014-10-01

    Numerical optimization of coils which apply three dimensional (3D) perturbative fields to tokamaks is presented. The application of perturbative 3D magnetic fields in tokamaks is now commonplace for control of error fields, resistive wall modes, resonant field drive, and neoclassical toroidal viscosity (NTV) torques. The design of such systems has focused on control of toroidal mode number, with coil shapes based on simple window-pane designs. In this work, a numerical optimization suite based on the STELLOPT 3D equilibrium optimization code is presented. The new code, IPECOPT, replaces the VMEC equilibrium code with the IPEC perturbed equilibrium code, and targets NTV torque by coupling to the PENT code. Fixed boundary optimizations of the 3D fields for the NSTX-U experiment are underway. Initial results suggest NTV torques can be driven by normal field spectrums which are not pitch-resonant with the magnetic field lines. Work has focused on driving core torque with n = 1 and edge torques with n = 3 fields. Optimizations of the coil currents for the planned NSTX-U NCC coils highlight the code's free boundary capability. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.

  17. One-dimensional energetic particle quasilinear diffusion for realistic TAE instabilities

    NASA Astrophysics Data System (ADS)

    Duarte, Vinicius; Ghantous, Katy; Berk, Herbert; Gorelenkov, Nikolai

    2014-10-01

    Owing to the proximity of the characteristic phase (Alfvén) velocity and typical energetic particle (EP) superthermal velocities, toroidicity-induced Alfvén eigenmodes (TAEs) can be resonantly destabilized endangering the plasma performance. Thus, it is of ultimate importance to understand the deleterious effects on the confinement resulting from fast ion driven instabilities expected in fusion-grade plasmas. We propose to study the interaction of EPs and TAEs using a line broadened quasilinear model, which captures the interaction in both regimes of isolated and overlapping modes. The resonance particles diffuse in the phase space where the problem essentially reduces to one dimension with constant kinetic energy and the diffusion mainly along the canonical toroidal angular momentum. Mode structure and wave particle resonances are computed by the NOVA code and are used in a quasilinear diffusion code that is being written to study the evolution of the distribution function, under the assumption that they can be considered virtually unalterable during the diffusion. A new scheme for the resonant particle diffusion is being proposed that builds on the 1-D nature of the diffusion from a single mode, which leads to a momentum conserving difference scheme even when there is mode overlap.

  18. The distribution of cosmic rays in the galaxy and their dynamics as deduced from recent gamma ray observations. [noting maximum in toroidal region between 4 and 5 kpc from galactic center

    NASA Technical Reports Server (NTRS)

    Puget, J. L.; Stecker, F. W.

    1974-01-01

    Data from SAS-2 on the galactic gamma ray line flux as a function of longitude is examined. It is shown that the gamma ray emissivity varies with galactocentric distance and is about an order of magnitude higher than the local value in a toroidal region between 4 and 5 kpc from the galactic center. This enhancement is accounted for in part by first-order Fermi acceleration, compression, and trapping of cosmic rays consistent with present ideas of galactic dynamics and galactic structure theory. Calculations indicate that cosmic rays in the 4 to 5 kpc region are trapped and accelerated over a mean time of the order of a few million years or about 2 to 4 times the assumed trapping time in the solar region of the galaxy on the assumption that only an increased cosmic ray flux is responsible for the observed emission. Cosmic ray nucleons, cosmic ray electrons, and ionized hydrogen gas were found to have a strikingly similar distribution in the galaxy according to both the observational data and the theoretical model discussed.

  19. Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bongard, M. W.; Lewicki, B. T.; Reusch, J. A.; Winz, G. R.

    2017-10-01

    The Pegasus research program has been focused on developing a physical understanding and predictive models for non-solenoidal tokamak plasma startup using Local Helicity Injection (LHI). LHI employs strong localized electron currents injected along magnetic field lines in the plasma edge that relax through magnetic turbulence to form a tokamak-like plasma. Pending approval, the Pegasus program will address a broader, more comprehensive examination of non-solenoidal tokamak startup techniques. New capabilities may include: increasing the toroidal field to 0.6 T to support critical scaling tests to near-NSTX-U field levels; deploying internal plasma diagnostics; installing a coaxial helicity injection (CHI) capability in the upper divertor region; and deploying a modest (200-400 kW) electron cyclotron RF capability. These efforts will address scaling of relevant physics to higher BT, separate and comparative studies of helicity injection techniques, efficiency of handoff to consequent current sustainment techniques, and the use of ECH to synergistically improve the target plasma for consequent bootstrap and neutral beam current drive sustainment. This has an ultimate goal of validating techniques to produce a 1 MA target plasma in NSTX-U and beyond. Work supported by US DOE Grant DE-FG02-96ER54375.

  20. Global structure transitions in an experimental induction furnace

    NASA Astrophysics Data System (ADS)

    Tasaka, Yuji; Galindo, Vladimir; Vogt, Tobias; Eckert, Sven

    2017-11-01

    Flows induced by alternating magnetic field (AMF) in a cylindrical vessel filled with liquid metal, alloy of GaInSn, were examined experimentally using ultrasonic Doppler velocimetry (UDV). Measurement lines of UDV arranged vertically set at different radial and azimuthal positions extracted flow structures and their time variations as spatio-temporal velocity maps in the opaque liquid metal layer. At low frequency of AMF, corresponding to shielding parameter S =μm σωR2 = O(1) (μm and σ are magnetic permeability and electric conductivity of the test fluid, ω angular frequency of AMF, and R the radius of cylindrical vessel), two toroidal vortices exist in the fluid layer as the large scale flow structure and have interactions each other. With increasing of S the structure has transition from toroidal vortex pair to four large scale circulations (S >= 100) via transient state, where strong interactions of two vortices are observed (30 < S < 100). Faster vertical stream is observed near the cylinder wall because of ski effect caused by AMF, and the time-averaged velocity of the stream takes maximum around S = 20 , which is little smaller value of S for the onset of the transient state. JSPS KAKENHI No. 15KK0219.

  1. Magnetic Topology of the Global MHD Configuration on 2010 August 1-2

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Mikic, Z.; Torok, T.; Linker, J.; Panasenco, O.

    2014-12-01

    It appears that the global magnetic topology of the solar corona predetermines to a large extent the magnetic flux transfer during solar eruptions. We have recently analyzed the global topology for a source-surface model of the background magnetic field at the time of the 2010 August 1-2 sympathetic CMEs (Titov et al. 2012). Now we extend this analysis to a more accurate thermodynamic MHD model of the solar corona. As for the source-surface model, we find a similar triplet of pseudo-streamers in the source regions of the eruptions. The new study confirms that all these pseudo-streamers contain separatrix curtains that fan out from a basic magnetic null point, individual for each of the pseudo-streamers. In combination with the associated separatrix domes, these separatrix curtains fully isolate adjacent coronal holes of the like polarity from each other. However, the size and shape of the coronal holes, as well as their open magnetic fluxes and the fluxes in the lobes of the separatrix domes, are very different for the two models. The definition of the open separator field lines, where the (interchange) reconnection between open and closed magnetic flux takes place, is also modified, since the structurally unstable source-surface null lines do not exist anymore in the MHD model. In spite of all these differences, we reassert our earlier hypothesis that magnetic reconnection at these nulls and the associated separators likely plays a key role in coupling the successive eruptions observed by SDO and STEREO. The results obtained provide further validation of our recent simplified MHD model of sympathetic eruptions (Török et al. 2011). Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simoes, Maria L.; Hockley, Sarah L.; Schwerdtle, Tanja

    Aristolochic acid (AA) is the causative agent of urothelial tumours associated with aristolochic acid nephropathy. These tumours contain TP53 mutations and over-express TP53. We compared transcriptional and translational responses of two isogenic HCT116 cell lines, one expressing TP53 (p53-WT) and the other with this gene knocked out (p53-null), to treatment with aristolochic acid I (AAI) (50-100 {mu}M) for 6-48 h. Modulation of 118 genes was observed in p53-WT cells and 123 genes in p53-null cells. Some genes, including INSIG1, EGR1, CAV1, LCN2 and CCNG1, were differentially expressed in the two cell lines. CDKN1A was selectively up-regulated in p53-WT cells, leadingmore » to accumulation of TP53 and CDKN1A. Apoptotic signalling, measured by caspase-3 and -7 activity, was TP53-dependent. Both cell types accumulated in S phase, suggesting that AAI-DNA adducts interfere with DNA replication, independently of TP53 status. The oncogene MYC, frequently over-expressed in urothelial tumours, was up-regulated by AAI, whereas FOS was down-regulated. Observed modulation of genes involved in endocytosis, e.g. RAB5A, may be relevant to the known inhibition of receptor-mediated endocytosis, an early sign of AA-mediated proximal tubule injury. AAI-DNA adduct formation was significantly greater in p53-WT cells than in p53-null cells. Collectively, phenotypic anchoring of the AAI-induced expression profiles to DNA adduct formation, cell-cycle parameters, TP53 expression and apoptosis identified several genes linked to these biological outcomes, some of which are TP53-dependent. These results strengthen the importance of TP53 in AA-induced cancer, and indicate that other alterations, e.g. to MYC oncogenic pathways, may also contribute.« less

  3. Absence of suppressor of cytokine signalling 3 reduces self-renewal and promotes differentiation in murine embryonic stem cells.

    PubMed

    Forrai, Ariel; Boyle, Kristy; Hart, Adam H; Hartley, Lynne; Rakar, Steven; Willson, Tracy A; Simpson, Ken M; Roberts, Andrew W; Alexander, Warren S; Voss, Anne K; Robb, Lorraine

    2006-03-01

    Leukemia inhibitory factor (LIF) is required to maintain pluripotency and permit self-renewal of murine embryonic stem (ES) cells. LIF binds to a receptor complex of LIFR-beta and gp130 and signals via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, with signalling attenuated by suppressor of cytokine signalling (SOCS) proteins. Recent in vivo studies have highlighted the role of SOCS-3 in the negative regulation of signalling via gp130. To determine the role of SOCS-3 in ES cell biology, SOCS-3-null ES cell lines were generated. When cultured in LIF levels that sustain self-renewal of wild-type cells, SOCS-3-null ES cell lines exhibited less self-renewal and greater differentiation into primitive endoderm. The absence of SOCS-3 enhanced JAK-STAT and extracellular signal-related kinase 1/2 (ERK-1/2)-mitogen-activated protein kinase (MAPK) signal transduction via gp130, with higher levels of phosphorylated STAT-1, STAT-3, SH-2 domain-containing cytoplasmic protein tyrosine phosphatase 2 (SHP-2), and ERK-1/2 in steady state and in response to LIF stimulation. Attenuation of ERK signalling by the addition of MAPK/ERK kinase (MEK) inhibitors to SOCS-3-null ES cell cultures rescued the differentiation phenotype, but did not restore proliferation to wild-type levels. In summary, SOCS-3 plays a crucial role in the regulation of the LIF signalling pathway in murine ES cells. Its absence perturbs the balance between activation of the JAK-STAT and SHP-2-ERK-1/2-MAPK pathways, resulting in less self-renewal and a greater potential for differentiation into the primitive endoderm lineage.

  4. PTEN loss promotes intratumoral androgen synthesis and tumor microenvironment remodeling via aberrant activation of RUNX2 in castration-resistant prostate cancer

    PubMed Central

    Yang, Yinhui; Bai, Yang; He, Yundong; Zhao, Yu; Chen, Jiaxiang; Ma, Linlin; Pan, Yunqian; Hinten, Michael; Zhang, Jun; Karnes, R. Jeffrey; Kohli, Manish; Westendorf, Jennifer J.; Li, Benyi; Zhu, Runzhi; Huang, Haojie; Xu, Wanhai

    2018-01-01

    Purpose Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR)reactivation and anti-androgen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood. Experimental Design The effect of components of the AKT-RUNX2-osteocalcin (OCN)-GPRC6A-CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human PCa cell lines. Pten knockout mice were employed to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivo. Results We uncovered that activation of the AKT-RUNX2-OCN-GPRC6A-CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null PCa cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivo. Pten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9. Conclusions Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null PCa including CRPC. PMID:29167276

  5. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor.

    PubMed

    Fernandez-Moreno, Josefina-Patricia; Tzfadia, Oren; Forment, Javier; Presa, Silvia; Rogachev, Ilana; Meir, Sagit; Orzaez, Diego; Aharoni, Aspah; Granell, Antonio

    2016-07-01

    The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare

    NASA Astrophysics Data System (ADS)

    Masson, Sophie; Pariat, Étienne; Valori, Gherardo; Deng, Na; Liu, Chang; Wang, Haimin; Reid, Hamish

    2017-08-01

    Context. The dynamics of ultraviolet (UV) emissions during solar flares provides constraints on the physical mechanisms involved in the trigger and the evolution of flares. In particular it provides some information on the location of the reconnection sites and the associated magnetic fluxes. In this respect, confined flares are far less understood than eruptive flares generating coronal mass ejections. Aims: We present a detailed study of a confined circular flare dynamics associated with three UV late phases in order to understand more precisely which topological elements are present and how they constrain the dynamics of the flare. Methods: We perform a non-linear force-free field extrapolation of the confined flare observed with the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments on board Solar Dynamics Observatory (SDO). From the 3D magnetic field we compute the squashing factor and we analyse its distribution. Conjointly, we analyse the AIA extreme ultraviolet (EUV) light curves and images in order to identify the post-flare loops, and their temporal and thermal evolution. By combining the two analyses we are able to propose a detailed scenario that explains the dynamics of the flare. Results: Our topological analysis shows that in addition to a null-point topology with the fan separatrix, the spine lines and its surrounding quasi-separatix layer (QSL) halo (typical for a circular flare), a flux rope and its hyperbolic flux tube (HFT) are enclosed below the null. By comparing the magnetic field topology and the EUV post-flare loops we obtain an almost perfect match between the footpoints of the separatrices and the EUV 1600 Å ribbons and between the HFT field line footpoints and bright spots observed inside the circular ribbons. We show, for the first time in a confined flare, that magnetic reconnection occurred initially at the HFT below the flux rope. Reconnection at the null point between the flux rope and the overlying field is only initiated in a second phase. In addition, we showed that the EUV late phase observed after the main flare episode is caused by the cooling loops of different length which have all reconnected at the null point during the impulsive phase. Conclusions: Our analysis shows in one example that flux ropes are present in null-point topology not only for eruptive and jet events, but also for confined flares. This allows us to conjecture on the analogies between conditions that govern the generation of jets, confined flares or eruptive flares. A movie is available at http://www.aanda.org

  7. Effects of magnetic islands on drift wave instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, P., E-mail: jiangp@pku.edu.cn; Department of Physics and Astronomy, University of California, Irvine, California 92697; Lin, Z., E-mail: zhihongl@uci.edu

    2014-12-15

    Magnetic islands have been implemented in the gyrokinetic toroidal code to study the effects of the islands on microturbulence. The pressure profile flattening is verified in the simulation with the islands. Simulations of ion temperature gradient instability find that different toroidal modes are linearly coupled together and that toroidal spectra become broader when the island width increases. The real frequencies and growth rates of different toroidal modes approach each other with the averaged value independent of the island width. The linear mode structures are enhanced at the island separatrices and weakened at the island centers, consistent with the flattening ofmore » the pressure profile inside the islands.« less

  8. Single-molecule toroics in Ising-type lanthanide molecular clusters.

    PubMed

    Ungur, Liviu; Lin, Shuang-Yan; Tang, Jinkui; Chibotaru, Liviu F

    2014-01-01

    Single-molecule toroics (SMTs) are defined, by analogy with single-molecule magnets, as bistable molecules with a toroidal magnetic state, and seem to be most promising for future applications in quantum computing and information storage and use as multiferroic materials with magnetoelectric effect. As an interdisciplinary research area that spans chemistry, physics and material sciences, synthetic chemists have produced systems suitable for detailed study by physicists and materials scientists, while ab initio calculations have been playing a major role in the detection of toroidal magnetization and the advancement of this field. In this tutorial review, we demonstrate the research developed in the fascinating and challenging field of molecular-based SMTs with particular focus on how recent studies tend to address the issue of toroidal arrangement of the magnetic moment in these systems. Herein, nine typical SMTs are summarized, showing that the assembly of wheel-shaped complexes with the high symmetry of the molecule unit and strong intra-molecular dipolar interactions using strong anisotropy metal ions represents the most promising route toward the design of a toroidal moment. Furthermore, the linkage of such robust toroidal moment units with ferromagnetic type through appropriate bridging ligands enhances the toroidal magnetic moment per unit cell.

  9. Development of toroid-type HTS DC reactor series for HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  10. Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes

    NASA Astrophysics Data System (ADS)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2016-10-01

    Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.

  11. Drift Wave Simulation in Toroidal Geometry.

    NASA Astrophysics Data System (ADS)

    Lebrun, Maurice Joseph, III

    1988-12-01

    The drift wave, a general category of plasma behavior arising from a plasma inhomogeneity, is studied using the particle simulation method. In slab geometry, the drift wave (or universal mode) is stabilized by any finite amount of magnetic shear. In toroidal geometry, however, the coupling of the poloidal harmonics gives rise to a new branch of drift wave eigenmodes called the toroidicity -induced mode, which is predicted to be unstable in some regimes. The drift wave in a toroidal system is intrinsically three-dimensional, and is sensitive to the handling of the parallel electron dynamics, the (nearly) perpendicular wave dynamics, and the radial variation of magnetic field vector (shear). A simulation study must therefore be kinetic in nature, motivating the extension of particle simulation techniques to complex geometries. From this effort a three dimensional particle code in a toroidal coordinate system has been developed and applied to the toroidal drift wave problem. The code uses an (r,theta,phi) -type coordinate system, and a nonuniform radial grid that increases resolution near the mode-rational surfaces. Full ion dynamics and electron guiding center dynamics are employed. Further, the algorithm incorporates a straightforward limiting process to cylindrical geometry and slab geometry, enabling comparison to the theoretical results in these regimes. Simulations of the density-driven modes in toroidal geometry retain a single toroidal mode number (n = 9). In this regime, the poloidal harmonics are expected to be strongly coupled, giving rise to the marginally unstable toroidicity-induced drift mode. Analysis of the simulation data reveals a strong, low-frequency response that peaks near each mode rational surface. Further, the characteristic oscillation frequencies persist from one mode rational surface to the next, which identifies them as multiple harmonics of the toroidicity-induced mode. The lowest harmonic occurs at a frequency of omega/ omega^{*} ~ 0.26, which is reasonably close to the prediction of linear theory. Interferogram analysis of these modes indicates a "ballooning" structure toward the outside of the torus. The amplitude of the potential is observed to grow exponentially for the m = 8 through m = 10 poloidal mode numbers, with a growth rate of approximately gamma/omega ^{*} ~ 0.075. Saturation occurs at time t ~ 1000 Omega_sp{i}{-1}, and may be caused by quasilinear flattening of the density profile.

  12. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells.

    PubMed

    Kwiatkowski, David J; Zhang, Hongbing; Bandura, Jennifer L; Heiberger, Kristina M; Glogauer, Michael; el-Hashemite, Nisreen; Onda, Hiroaki

    2002-03-01

    Tuberous sclerosis (TSC) is a autosomal dominant genetic disorder caused by mutations in either TSC1 or TSC2, and characterized by benign hamartoma growth. We developed a murine model of Tsc1 disease by gene targeting. Tsc1 null embryos die at mid-gestation from a failure of liver development. Tsc1 heterozygotes develop kidney cystadenomas and liver hemangiomas at high frequency, but the incidence of kidney tumors is somewhat lower than in Tsc2 heterozygote mice. Liver hemangiomas were more common, more severe and caused higher mortality in female than in male Tsc1 heterozygotes. Tsc1 null embryo fibroblast lines have persistent phosphorylation of the p70S6K (S6K) and its substrate S6, that is sensitive to treatment with rapamycin, indicating constitutive activation of the mTOR-S6K pathway due to loss of the Tsc1 protein, hamartin. Hyperphosphorylation of S6 is also seen in kidney tumors in the heterozygote mice, suggesting that inhibition of this pathway may have benefit in control of TSC hamartomas.

  13. DTT: a divertor tokamak test facility for the study of the power exhaust issues in view of DEMO

    NASA Astrophysics Data System (ADS)

    Albanese, R.; WPDTT2 Team; DTT Project Proposal Contributors, the

    2017-01-01

    In parallel with the programme to optimize the operation with a conventional divertor based on detached conditions to be tested on the ITER device, a project has been launched to investigate alternative power exhaust solutions for DEMO, aimed at the definition and the design of a divertor tokamak test facility (DTT). The DTT project proposal refers to a set of parameters selected so as to have edge conditions as close as possible to DEMO, while remaining compatible with DEMO bulk plasma performance in terms of dimensionless parameters and given constraints. The paper illustrates the DTT project proposal, referring to a 6 MA plasma with a major radius of 2.15 m, an aspect ratio of about 3, an elongation of 1.6-1.8, and a toroidal field of 6 T. This selection will guarantee sufficient flexibility to test a wide set of divertor concepts and techniques to cope with large heat loads, including conventional tungsten divertors; liquid metal divertors; both conventional and advanced magnetic configurations (including single null, snow flake, quasi snow flake, X divertor, double null); internal coils for strike point sweeping and control of the width of the scrape-off layer in the divertor region; and radiation control. The Poloidal Field system is planned to provide a total flux swing of more than 35 Vs, compatible with a pulse length of more than 100 s. This is compatible with the mission of studying the power exhaust problem and is obtained using superconducting coils. Particular attention is dedicated to diagnostics and control issues, especially those relevant for plasma control in the divertor region, designed to be as compatible as possible with a DEMO-like environment. The construction is expected to last about seven years, and the selection of an Italian site would be compatible with a budget of 500 M€.

  14. TOROID II

    DTIC Science & Technology

    2009-01-01

    three axis fluxgate magnetometer , CMOS sun and star sensors, and a Kalman filter. The work and tasks that have been accomplished on the TOROID... magnetometer . The problem was found to be a missing ferrite bead which connects the 12V power supply to the op-amps which are used to appropriately...establish an overall operational timeline for TOROID. Testing and calibration was performed on the three-axis magnetometer which is primary attitude

  15. Neutron flux measurements around PLT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zankl, G.; Strachan, J.D.; Lewis, R.

    1980-09-01

    Using Indium activation foils, the toroidal and poloidal neutron emission patterns were determined for PLT plasmas which include ICRF and neutral beam heating. The activities produced the /sup 115/In (n,n') /sup 115m/In reaction were determined by counting the 336 keV ..gamma.. line of the /sup 115m/In decay. This activation cross section falls just below 2.5 MeV so that the influence of scattered neutrons of degraded energies is reduced. From the magnitude of the activity, the absolute calibration of the PLT fusion neutron emission is obtained with less than or equal to 40% accuracy.

  16. Strongly Magnetized Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell

    Accretion disks likely provide the conduit for fueling active galactic nuclei (AGN), linking the black hole's immediate surroundings to the host galaxy's nuclear star cluster, and possibly beyond. Yet detailed AGN disk models fail to explain several of the most basic observational features of AGN: How do the outer regions of the disk avoid stalling as a result of wholesale gravitational fragmentation? What regulates the amount of star formation that is inferred to accompany accretion in some AGN? Why is the broad emission line region a ubiquitous feature of luminous AGN? What processes create and maintain the so-called "dusty torus"? Analytic work suggests that vertical pressure support of the disk primarily by a toroidal magnetic field, rather than by gas or radiation pressure, can readily resolve these problems. And recent numerical simulations have indicated that such a strong toroidal field is the inevitable consequence of the magnetorotational instability (MRI) when a disk accumulates a modest amount of net magnetic flux, thus providing a sound theoretical basis for strongly magnetized disks. We propose an analytic and computational study of such disks in the AGN context, focusing on: (1) The basic physical properties of strongly magnetized AGN disks. We will focus on the competition between field generation and buoyancy, improving on previous work by considering realistic equations of state, dissipative processes and radiative losses. We will use global simulations to test the limiting magnetic fields that can be produced by MRIdriven accretion disk dynamos and explore the driving mechanisms of disk winds and the resulting levels of mass, angular momentum and energy loss. (2) Gravitational fragmentation and star formation in strongly magnetized disks. We will determine how a strong field reduces and regulates gravitational fragmentation, by both lowering the disk density and creating a stratified structure in which star formation near the equator can co-exist with accretion at large heights. Using simulations, we will study fragmentation conditions, the clumpiness of stable AGN disks, and the mass function of collapsed clumps. (3) Physics of the broad emission line region and dusty torus . We will study the possible role of the strong toroidal field in promoting thermal instabilities to create dense lineemitting filaments, transporting them in height, and confining the line-emitting gas. Extrapolating to slightly larger distances, we will examine whether the field can elevate dusty gas to heights at which it can reprocess a substantial fraction of the AGN radiation. This study will establish a new theoretical framework for interpreting multi-wavelength observations of AGN, involving NASA s infrared, ultraviolet and X-ray observatories as well as ground-based detectors. It addresses fundamental questions about how supermassive black holes interact with their galactic environments, as well as broader issues of feedback and black hole-galaxy co-evolution.

  17. A murine model of neurofibromatosis type 1 tibial pseudarthrosis featuring proliferative fibrous tissue and osteoclast-like cells.

    PubMed

    El-Hoss, Jad; Sullivan, Kate; Cheng, Tegan; Yu, Nicole Y C; Bobyn, Justin D; Peacock, Lauren; Mikulec, Kathy; Baldock, Paul; Alexander, Ian E; Schindeler, Aaron; Little, David G

    2012-01-01

    Neurofibromatosis type 1 (NF1) is a common genetic condition caused by mutations in the NF1 gene. Patients often suffer from tissue-specific lesions associated with local double-inactivation of NF1. In this study, we generated a novel fracture model to investigate the mechanism underlying congenital pseudarthrosis of the tibia (CPT) associated with NF1. We used a Cre-expressing adenovirus (AdCre) to inactivate Nf1 in vitro in cultured osteoprogenitors and osteoblasts, and in vivo in the fracture callus of Nf1(flox/flox) and Nf1(flox/-) mice. The effects of the presence of Nf1(null) cells were extensively examined. Cultured Nf1(null)-committed osteoprogenitors from neonatal calvaria failed to differentiate and express mature osteoblastic markers, even with recombinant bone morphogenetic protein-2 (rhBMP-2) treatment. Similarly, Nf1(null)-inducible osteoprogenitors obtained from Nf1 MyoDnull mouse muscle were also unresponsive to rhBMP-2. In both closed and open fracture models in Nf1(flox/flox) and Nf1(flox/-) mice, local AdCre injection significantly impaired bone healing, with fracture union being <50% that of wild type controls. No significant difference was seen between Nf1(flox/flox) and Nf1(flox/-) mice. Histological analyses showed invasion of the Nf1(null) fractures by fibrous and highly proliferative tissue. Mean amounts of fibrous tissue were increased upward of 10-fold in Nf1(null) fractures and bromodeoxyuridine (BrdU) staining in closed fractures showed increased numbers of proliferating cells. In Nf1(null) fractures, tartrate-resistant acid phosphatase-positive (TRAP+) cells were frequently observed within the fibrous tissue, not lining a bone surface. In summary, we report that local Nf1 deletion in a fracture callus is sufficient to impair bony union and recapitulate histological features of clinical CPT. Cell culture findings support the concept that Nf1 double inactivation impairs early osteoblastic differentiation. This model provides valuable insight into the pathobiology of the disease, and will be helpful for trialing therapeutic compounds. Copyright © 2012 American Society for Bone and Mineral Research.

  18. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Yamada, Masaaki; Furth, Harold P.; Stix, Thomas H.; Todd, Alan M. M.

    1982-01-01

    A method and apparatus for forming a detached, compact toroidally shaped spheromak plasma by an inductive mechanism. A generally spheroidal vacuum vessel (1) houses a toroidally shaped flux ring or core (2) which contains poloidal and toroidal field generating coils. A plasma discharge occurs with the pulsing of the toroidal field coil, and the plasma is caused to expand away from the core (2) and toward the center of the vacuum vessel (1). When the plasma is in an expanded state, a portion of it is pinched off in order to form a separate, detached spheromak plasma configuration. The detached plasma is supported by a magnetic field generated by externally arranged equilibrium field coils (5).

  19. NMR apparatus for in situ analysis of fuel cells

    DOEpatents

    Gerald, II, Rex E; Rathke, Jerome W

    2012-11-13

    The subject apparatus is a fuel cell toroid cavity detector for in situ analysis of samples through the use of nuclear magnetic resonance. The toroid cavity detector comprises a gas-tight housing forming a toroid cavity where the housing is exposed to an externally applied magnetic field B.sub.0 and contains fuel cell component samples to be analyzed. An NMR spectrometer is electrically coupled and applies a radiofrequency excitation signal pulse to the detector to produce a radiofrequency magnetic field B.sub.1 in the samples and in the toroid cavity. Embedded coils modulate the static external magnetic field to provide a means for spatial selection of the recorded NMR signals.

  20. Risk of hematological malignancies associated with magnetic fields exposure from power lines: a case-control study in two municipalities of northern Italy.

    PubMed

    Malagoli, Carlotta; Fabbi, Sara; Teggi, Sergio; Calzari, Mariagiulia; Poli, Maurizio; Ballotti, Elena; Notari, Barbara; Bruni, Maurizio; Palazzi, Giovanni; Paolucci, Paolo; Vinceti, Marco

    2010-03-30

    Some epidemiologic studies have suggested an association between electromagnetic field exposure induced by high voltage power lines and childhood leukemia, but null results have also been yielded and the possibility of bias due to unmeasured confounders has been suggested. We studied this relation in the Modena and Reggio Emilia municipalities of northern Italy, identifying the corridors along high voltage power lines with calculated magnetic field intensity in the 0.1-<0.2, 0.2-<0.4, and > or = 0.4 microTesla ranges. We identified 64 cases of newly-diagnosed hematological malignancies in children aged <14 within these municipalities from 1986 to 2007, and we sampled four matched controls for each case, collecting information on historical residence and parental socioeconomic status of these subjects. Relative risk of leukemia associated with antecedent residence in the area with exposure > or = 0.1 microTesla was 3.2 (6.7 adjusting for socioeconomic status), but this estimate was statistically very unstable, its 95% confidence interval being 0.4-23.4, and no indication of a dose-response relation emerged. Relative risk for acute lymphoblastic leukemia was 5.3 (95% confidence interval 0.7-43.5), while there was no increased risk for the other hematological malignancies. Though the number of exposed children in this study was too low to allow firm conclusions, results were more suggestive of an excess risk of leukemia among exposed children than of a null relation.

  1. Disruption of BASIGIN decreases lactic acid export and sensitizes non-small cell lung cancer to biguanides independently of the LKB1 status

    PubMed Central

    Floch, Renaud Le; Moura, Conceição Souto

    2015-01-01

    Most cancers rely on aerobic glycolysis to generate energy and metabolic intermediates. To maintain a high glycolytic rate, cells must efficiently export lactic acid through the proton-coupled monocarboxylate transporters (MCT1/4). These transporters require a chaperone, CD147/BASIGIN (BSG) for trafficking to the plasma membrane and function. To validate the key role of these transporters in lung cancer, we first analysed the expression of MCT1/4 and BSG in 50 non-small lung cancer (NSCLC) cases. These proteins were specifically upregulated in tumour tissues. We then disrupted BSG in three NSCLC cell lines (A549, H1975 and H292) via ‘Zinc-Finger Nucleases’. The three homozygous BSG−/− cell lines displayed a low MCT activity (10- to 5-fold reduction, for MCT1 and MCT4, respectively) compared to wild-type cells. Consequently, the rate of glycolysis, compared to the wild-type counterpart, was reduced by 2.0- to 3.5-fold, whereas the rate of respiration was stimulated in BSG−/− cell lines. Both wild-type and BSG-null cells were extremely sensitive to the mitochondria inhibitor metformin/phenformin in normoxia. However, only BSG-null cells, independently of their LKB1 status, remained sensitive to biguanides in hypoxia in vitro and tumour growth in nude mice. Our results demonstrate that inhibiting glycolysis by targeting lactic acid export sensitizes NSCLC to phenformin. PMID:25894929

  2. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, N.; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; Yan, N., E-mail: yanning@ipp.ac.cn

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentummore » transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.« less

  3. Ferrotoroidic ground state in a heterometallic {CrIIIDyIII6} complex displaying slow magnetic relaxation.

    PubMed

    Vignesh, Kuduva R; Soncini, Alessandro; Langley, Stuart K; Wernsdorfer, Wolfgang; Murray, Keith S; Rajaraman, Gopalan

    2017-10-18

    Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr III Dy III 6 } complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr III Dy III 6 } reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.

  4. Influence of toroidal rotation on tearing modes

    NASA Astrophysics Data System (ADS)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  5. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, N.J.; Rax, J.M.

    1994-12-20

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot

    Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. Themore » resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.« less

  7. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  8. Double-stranded DNA organization in bacteriophage heads: an alternative toroid-based model.

    PubMed Central

    Hud, N V

    1995-01-01

    Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent will all available data. Recently we proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here we propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8534805

  9. Fluctuations and differential contraction during regeneration of Hydra vulgaris tissue toroids

    NASA Astrophysics Data System (ADS)

    Krahe, Michael; Wenzel, Iris; Lin, Kao-Nung; Fischer, Julia; Goldmann, Joseph; Kästner, Markus; Fütterer, Claus

    2013-03-01

    We studied regenerating bilayered tissue toroids dissected from Hydra vulgaris polyps and relate our macroscopic observations to the dynamics of force-generating mesoscopic cytoskeletal structures. Tissue fragments undergo a specific toroid-spheroid folding process leading to complete regeneration towards a new organism. The time scale of folding is too fast for biochemical signalling or morphogenetic gradients, which forced us to assume purely mechanical self-organization. The initial pattern selection dynamics was studied by embedding toroids into hydro-gels, allowing us to observe the deformation modes over longer periods of time. We found increasing mechanical fluctuations which break the toroidal symmetry, and discuss the evolution of their power spectra for various gel stiffnesses. Our observations are related to single-cell studies which explain the mechanical feasibility of the folding process. In addition, we observed switching of cells from a tissue bound to a migrating state after folding failure as well as in tissue injury. We found a supra-cellular actin ring assembled along the toroid's inner edge. Its contraction can lead to the observed folding dynamics as we could confirm by finite element simulations. This actin ring in the inner cell layer is assembled by myosin-driven length fluctuations of supra-cellular F-actin bundles (myonemes) in the outer cell layer. This paper is dedicated to Malcolm Steinberg.

  10. Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE

    DOE PAGES

    Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...

    2017-01-27

    Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less

  11. Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra

    Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less

  12. Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits

    DOE PAGES

    Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra; ...

    2016-01-21

    Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less

  13. Quasi-static three-dimensional magnetic field evolution in solar active region NOAA 11166 associated with an X1.5 flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemareddy, P.; Wiegelmann, T., E-mail: vema@prl.res.in, E-mail: wiegelmann@mps.mpg.de

    We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology andmore » is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.« less

  14. Influence of ribosomal protein L39-L in the drug resistance mechanisms of lacrimal gland adenoid cystic carcinoma cells.

    PubMed

    Ye, Qing; Ding, Shao-Feng; Wang, Zhi-An; Feng, Jie; Tan, Wen-Bin

    2014-01-01

    Cancer constitutes a key pressure on public health regardless of the economy state in different countries. As a kind of highly malignant epithelial tumor, lacrimal gland adenoid cystic carcinoma can occur in any part of the body, such as salivary gland, submandibular gland, trachea, lung, breast, skin and lacrimal gland. Chemotherapy is one of the key treatment techniques, but drug resistance, especially MDR, seriously blunts its effects. As an element of the 60S large ribosomal subunit, the ribosomal protein L39-L gene appears to be documented specifically in the human testis and many human cancer samples of different origins. Total RNA of cultured drug-resistant and susceptible lacrimal gland adenoid cystic carcinoma cells was seperated, and real time quantitative RT-PCR were used to reveal transcription differences between amycin resistant and susceptible strains of lacrimal gland adenoid cystic carcinoma cells. Viability assays were used to present the amycin resistance difference in a RPL39-L transfected lacrimal gland adenoid cystic carcinoma cell line as compared to control vector and null-transfected lacrimal gland adenoid cystic carcinoma cell lines. The ribosomal protein L39-L transcription level was 6.5-fold higher in the drug-resistant human lacrimal gland adenoid cystic carcinoma cell line than in the susceptible cell line by quantitative RT-PCR analysis. The ribosomal protein L39-L transfected cells revealed enhanced drug resistance compared to plasmid vector-transfected or null-transfected cells as determined by methyl tritiated thymidine (3H-TdR) incorporation. The ribosomal protein L39-L gene could possibly have influence on the drug resistance mechanism of lacrimal gland adenoid cystic carcinoma cells.

  15. Improved high power/high frequency inductor

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1990-01-01

    A toroidal core is mounted on an alignment disc having uniformly distributed circumferential notches or holes therein. Wire is then wound about the toroidal core in a uniform pattern defined by the notches or holes. Prior to winding, the wire may be placed within shrink tubing. The shrink tubing is then wound about the alignment disc and core and then heat-shrunk to positively retain the wire in the uniform position on the toroidal core.

  16. Toroidal core winder

    DOEpatents

    Potthoff, Clifford M.

    1978-01-01

    The disclosure is directed to an apparatus for placing wire windings on a toroidal body, such as a transformer core, having an orifice in its center. The apparatus comprises a wire storage spool, a wire loop holding continuous belt maintained in a C-shaped loop by a belt supporting structure and provision for turning the belt to place and tighten loops of wire on a toroidal body, which is disposed within the gap of the C-shaped belt loop.

  17. Thermal and magnetic properties of electron gas in toroidal quantum dot

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. A.; Hayrapetyan, D. B.; Kazaryan, E. M.; Sarkisyan, H. A.

    2018-07-01

    One-electron states in a toroidal quantum dot in the presence of an external magnetic field have been considered. The magnetic field operator and the Schrodinger equation have been written in toroidal coordinates. The dependence of one-electron energy spectrum and wave function on the geometrical parameters of a toroidal quantum dot and magnetic field strength have been studied. The energy levels are employed to calculate the canonical partition function, which in its turn is used to obtain mean energy, heat capacity, entropy, magnetization, and susceptibility of noninteracting electron gas. The possibility to control the thermodynamic and magnetic properties of the noninteracting electron gas via changing the geometric parameters of the QD, magnetic field, and temperature, was demonstrated.

  18. Dielectric tensor elements for the description of waves in rotating inhomogeneous magnetized plasma spheroids

    NASA Astrophysics Data System (ADS)

    Abdoli-Arani, A.; Ramezani-Arani, R.

    2012-11-01

    The dielectric permittivity tensor elements of a rotating cold collisionless plasma spheroid in an external magnetic field with toroidal and axial components are obtained. The effects of inhomogeneity in the densities of charged particles and the initial toroidal velocity on the dielectric permittivity tensor and field equations are investigated. The field components in terms of their toroidal components are calculated and it is shown that the toroidal components of the electric and magnetic fields are coupled by two differential equations. The influence of thermal and collisional effects on the dielectric tensor and field equations in the rotating plasma spheroid are also investigated. In the limiting spherical case, the dielectric tensor of a stationary magnetized collisionless cold plasma sphere is presented.

  19. STELLAR DYNAMO MODELS WITH PROMINENT SURFACE TOROIDAL FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonanno, Alfio

    2016-12-20

    Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy inmore » low-mass fast-rotating stars can be naturally explained with an underlying α Ω mechanism.« less

  20. Expression of Basigin in Reproductive Tissues of Oestrogen Receptor-α or –β Null Mice

    PubMed Central

    Chen, Li; Bi, Jiajia; Nakai, Masaaki; Bunick, David; Couse, John F.; Korach, Kenneth S.; Nowak, Romana A.

    2016-01-01

    Basigin plays important roles in both male and female reproduction because basigin (Bsg) null male and female mice are infertile. The aim of the present study was to determine whether basigin expression in reproductive organs requires oestrogen receptor (ER) α or ERβ. Expression of basigin protein in the testis, ovary and male and female reproductive tracts was studied in adult wild type, ERα-null (αERKO) and ERβ-null (βERKO) mice by immunohistochemistry and immunoblotting. Basigin mRNA levels in ovary and uterus were examined by quantitative RT-PCR. In females, basigin protein expression was observed mainly in granulosa and interstitial cells of the ovary and epithelial cells of the proximal oviduct in all genotypes. Basigin protein was also expressed in the uterine epithelium at prooestrus and oestrus in WT and βERKO mice but not in αERKO mice. However, a higher level of basigin mRNA was observed in uteri of αERKO mice compared with WT and βERKO mice. In males, basigin was expressed in Leydig cells and all germ cells except spermatogonia in all genotypes. Basigin was present in epithelial cells lining the efferent ductules in WT and βERKO mice but expression was greatly reduced in αERKO mice. In epididymal ducts, basigin expression was observed in epithelial cells in the caput and cauda in all genotypes. These data suggest that expression of basigin protein requires ERα, but not ERβ, in the uterus and efferent ductules, but is independent of ER in the ovary, oviduct, testis and epididymis. PMID:20388736

  1. Defective Generation of a Humoral Immune Response Is Associated with a Reduced Incidence and Severity of Collagen-Induced Arthritis in Microsomal Prostaglandin E Synthase-1 Null Mice1

    PubMed Central

    Kojima, Fumiaki; Kapoor, Mohit; Yang, Lihua; Fleishaker, Erica L.; Ward, Martin R.; Monrad, Seetha U.; Kottangada, Ponnappa C.; Pace, Charles Q.; Clark, James A.; Woodward, Jerold G.; Crofford, Leslie J.

    2008-01-01

    Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that acts downstream of cyclooxygenase and specifically catalyzes the conversion of PGH2 to PGE2. The present study demonstrates the effect of genetic deletion of mPGES-1 on the developing immunologic responses and its impact on the clinical model of bovine collagen-induced arthritis. mPGES-1 null and heterozygous mice exhibited decreased incidence and severity of arthritis compared with wild-type mice in a gene dose-dependent manner. Histopathological examination revealed significant reduction in lining hyperplasia and tissue destruction in mPGES-1 null mice compared with their wild-type littermates. mPGES-1 deficient mice also exhibited attenuation of mechanical nociception in a gene dose-dependent manner. In addition, mPGES-1 null and heterozygous mice showed a marked reduction of serum IgG against type II collagen (CII), including subclasses IgG1, IgG2a, IgG2b, IgG2c, and IgG3, compared with wild-type mice, which correlated with the reduction in observed inflammatory features. These results demonstrate for the first time that deficiency of mPGES-1 inhibits the development of collagen-induced arthritis, at least in part, by blocking the development of a humoral immune response against type II collagen. Pharmacologic inhibition of mPGES-1 may therefore impact both the inflammation and the autoimmunity associated with human diseases such as rheumatoid arthritis. PMID:18523303

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassuk, James; Lendvay, Thomas S.; Sweet, Robert

    Diseases and conditions affecting the lower urinary tract are a leading cause of dysfunctional sexual health, incontinence, infection, and kidney failure. The growth, differentiation, and repair of the bladder's epithelial lining are regulated, in part, by fibroblast growth factor (FGF)-7 and -10 via a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the receptor for FGF-7 and -10 within the transitional epithelium (urothelium). The FGF-7 gene is located at the 15q15-q21.1 locus on chromosome 15 and four exons generate a 3.852-kb mRNA. Five duplicated FGF-7 gene sequences that localized to chromosome 9 were predicted not to generate functionalmore » protein products, thus validating the use of FGF-7-null mice as an experimental model. Recombinant FGF-7 and -10 induced proliferation of human urothelial cells in vitro and transitional epithelium of wild-type and FGF-7-null mice in vivo.To determine the extent that induction of urothelial cell proliferation during the bladder response to injury is dependent on FGF-7, an animal model of partial bladder outlet obstruction was developed. Unbiased stereology was used to measure the percentage of proliferating urothelial cells between obstructed groups of wild-type and FGF-7-null mice. The stereological analysis indicated that a statistical significant difference did not exist between the two groups, suggesting that FGF-7 is not essential for urothelial cell proliferation in response to partial outlet obstruction. In contrast, a significant increase in FGF-10 expression was observed in the obstructed FGF-7-null group, indicating that the compensatory pathway that functions in this model results in urothelial repair.« less

  3. Vacuum Nuller Testbed Performance, Characterization and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, R. G.; Clampin, M.; Petrone, P.; Mallik, U.; Madison, T.; Bolcar, M.; Noecker, C.; Kendrick, S.; Helmbrecht, M. A.

    2011-01-01

    The Visible Nulling Coronagraph (VNC) can detect and characterize exoplanets with filled, segmented and sparse aperture telescopes, thereby spanning the choice of future internal coronagraph exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has developed a Vacuum Nuller Testbed (VNT) to advance this approach, and assess and advance technologies needed to realize a VNC as a flight instrument. The VNT is an ultra-stable testbed operating at 15 Hz in vacuum. It consists of a MachZehnder nulling interferometer; modified with a "W" configuration to accommodate a hexpacked MEMS based deformable mirror (DM), coherent fiber bundle and achromatic phase shifters. The 2-output channels are imaged with a vacuum photon counting camera and conventional camera. Error-sensing and feedback to DM and delay line with control algorithms are implemented in a real-time architecture. The inherent advantage of the VNC is that it is its own interferometer and directly controls its errors by exploiting images from bright and dark channels simultaneously. Conservation of energy requires the sum total of the photon counts be conserved independent of the VNC state. Thus sensing and control bandwidth is limited by the target stars throughput, with the net effect that the higher bandwidth offloads stressing stability tolerances within the telescope. We report our recent progress with the VNT towards achieving an incremental sequence of contrast milestones of 10(exp 8) , 10(exp 9) and 10(exp 10) respectively at inner working angles approaching 2A/D. Discussed will be the optics, lab results, technologies, and null control. Shown will be evidence that the milestones have been achieved.

  4. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jie; Krausz, Kristopher W.; Li, Feng

    Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-typemore » mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.« less

  5. Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tresemer, K. R.

    2015-07-01

    ITER is an international project under construction in France that will demonstrate nuclear fusion at a power plant-relevant scale. The Toroidal Interferometer and Polarimeter (TIP) Diagnostic will be used to measure the plasma electron line density along 5 laser-beam chords. This line-averaged density measurement will be input to the ITER feedback-control system. The TIP is considered the primary diagnostic for these measurements, which are needed for basic ITER machine control. Therefore, system reliability & accuracy is a critical element in TIP’s design. There are two major challenges to the reliability of the TIP system. First is the survivability and performancemore » of in-vessel optics and second is maintaining optical alignment over long optical paths and large vessel movements. Both of these issues greatly depend on minimizing the overall distortion due to neutron & gamma heating of the Corner Cube Retroreflectors (CCRs). These are small optical mirrors embedded in five first wall locations around the vacuum vessel, corresponding to certain plasma tangency radii. During the development of the design and location of these CCRs, several iterations of neutronics analyses were performed to determine and minimize the total distortion due to nuclear heating of the CCRs. The CCR corresponding to TIP Channel 2 was chosen for analysis as a good middle-road case, being an average distance from the plasma (of the five channels) and having moderate neutron shielding from its blanket shield housing. Results show that Channel 2 meets the requirements of the TIP Diagnostic, but barely. These results suggest other CCRs might be at risk of exceeding thermal deformation due to nuclear heating.« less

  6. Influence of pinches on magnetic reconnection in turbulent space plasmas

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey

    A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.

  7. Solar Coronal Loop Dynamics Near the Null Point Above Active Region NOAA 2666

    NASA Astrophysics Data System (ADS)

    Filippov, B.

    2018-06-01

    We analyse observations of a saddle-like structure in the corona above the western limb of the Sun on 2017 July 18. The structure was clearly outlined by coronal loops with typical coronal temperature no more than 1 MK. The dynamics of loops showed convergence towards the centre of the saddle in the vertical direction and divergence in the horizontal direction. The event is a clear example of smooth coronal magnetic field reconnection. No heating manifestations in the reconnection region or magnetically connected areas were observed. Potential magnetic field calculations, which use as the boundary condition the SDO/HMI magnetogram taken on July 14, showed the presence of a null point at the height of 122 arcsec above the photosphere just at the centre of the saddle structure. The shape of field lines fits the fan-spine magnetic configuration above NOAA 2666.

  8. Interface extinction and subsurface peaking of the radiation pattern of a line source

    NASA Technical Reports Server (NTRS)

    Engheta, N.; Papas, C. H.; Elachi, C.

    1981-01-01

    The radiation pattern of a line source lying along the plane interface of two dielectric half-spaces is calculated. It is found that the pattern at the interface has a null (interface extinction); that the pattern in the upper half-space, whose index of refraction is taken to be less than that of the lower half-space, has a single lobe with a maximum normal to the interface; and that the pattern in the lower half-space (subsurface region) has two maxima (peaks) straddling symmetrically a minimum. Interpretation of these results in terms of ray optics, Oseen's extinction theorem, and the Cerenkov effect are given.

  9. An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Moore, R. L.; Porter, J. G.; Falconer, D. A.

    1999-01-01

    We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global non-potentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main- arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares. From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global non-potentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the island. (3) The main-arch bright loops are likely to be heated via reconnection driven at the magnetic null over the island. The details of how and where (along the null line) the reconnection is driven determine which of the split-end loops are selected for strong heating. (4) The null does not appear to be directly involved in the heating of the sheared core fields or in the heating of an extended loop rooted in the island. Rather, these all appear to be heated by microflares in the sheared core field.

  10. Magnetism of toroidal field in two-fluid equilibrium of CHI driven spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2016-10-01

    Double-pulsing CHI (D-CHI) experiment has been conducted in the HIST device to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas. The feature of CHI driven ST such as diamagnetic toroidal field in the central open flux column (OFC) region and strong poloidal flow shear around the separatrix in the high field side suggests the two-fluid effect. The relationship between the magnetism of the toroidal field and the poloidal flow velocity is investigated by modelling the D-CHI (mainly driving the poloidal electron flow along the open flux) in the two-fluid equilibrium calculations. The poloidal component of Ampere's law leads that the toroidal field is related to the difference between the stream functions of ion ψi and electron ψe for the poloidal flow, indicating that the toroidal field with ψe >ψi results in a diamagnetic profile, while that with ψe <ψi results in a paramagnetic one. The gradient of the stream function determines the polarity and the strength of the poloidal flow velocity. It is found that the two-fluid equilibrium of CHI driven ST satisfies ψe > 0 and ψi < 0 in the OFC region, and ψe < 0 and ψi < 0 in the closed flux region. The toroidal field is a diamagnetic profile in the OFC region due to ψe >ψi and |uez | > |uiz | , where uez and uiz denote the poloidal electron and ion flow velocities, respectively. It becomes from a diamagnetic to a paramagnetic profile in the closed flux region, because ψe (uez) approaches ψi (uiz) around the magnetic axis. The poloidal ion flow shear is enhanced in the OFC region due to the ion inertial effect through the toroidal ion flow velocity.

  11. Destructive interference between electric and toroidal dipole moments in TiO2 cylinders and frustums with coaxial voids

    NASA Astrophysics Data System (ADS)

    Terekhov, P. D.; Baryshnikova, K. V.; Evlyukhin, A. B.; Shalin, A. S.

    2017-11-01

    We demonstrate numerically the possibility of multipole interference in the TiO2 (titanium dioxide) microcylinders and microfrustums in the wavelength range 210-300 μm. Resonantly strong destructive interference between toroidal and electric dipole contributions to the scattered field is achieved by a geometry tuning. The toroidal and electric dipole mode overlapping at the resonant wavelength with almost total suppression of the total electric dipole moment is achieved.

  12. Trypanosoma brucei (UMP synthase null mutants) are avirulent in mice, but recover virulence upon prolonged culture in vitro while retaining pyrimidine auxotrophy

    PubMed Central

    Ong, Han B; Sienkiewicz, Natasha; Wyllie, Susan; Patterson, Stephen; Fairlamb, Alan H

    2013-01-01

    African trypanosomes are capable of both de novo synthesis and salvage of pyrimidines. The last two steps in de novo synthesis are catalysed by UMP synthase (UMPS) – a bifunctional enzyme comprising orotate phosphoribosyl transferase (OPRT) and orotidine monophosphate decarboxylase (OMPDC). To investigate the essentiality of pyrimidine biosynthesis in Trypanosoma brucei, we generated a umps double knockout (DKO) line by gene replacement. The DKO was unable to grow in pyrimidine-depleted medium in vitro, unless supplemented with uracil, uridine, deoxyuridine or UMP. DKO parasites were completely resistant to 5-fluoroorotate and hypersensitive to 5-fluorouracil, consistent with loss of UMPS, but remained sensitive to pyrazofurin indicating that, unlike mammalian cells, the primary target of pyrazofurin is not OMPDC. The null mutant was unable to infect mice indicating that salvage of host pyrimidines is insufficient to support growth. However, following prolonged culture in vitro, parasites regained virulence in mice despite retaining pyrimidine auxotrophy. Unlike the wild-type, both pyrimidine auxotrophs secreted substantial quantities of orotate, significantly higher in the virulent DKO line. We propose that this may be responsible for the recovery of virulence in mice, due to host metabolism converting orotate to uridine, thereby bypassing the loss of UMPS in the parasite. PMID:23980694

  13. INTERACTION OF TWO FILAMENT CHANNELS OF DIFFERENT CHIRALITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae

    2016-07-10

    We present observations of the interactions between the two filament channels of different chiralities and associated dynamics that occurred during 2014 April 18–20. While two flux ropes of different helicity with parallel axial magnetic fields can only undergo a bounce interaction when they are brought together, the observations at first glance show that the heated plasma is moving from one filament channel to the other. The SDO /AIA 171 Å observations and the potential-field source-surface magnetic field extrapolation reveal the presence of a fan-spine magnetic configuration over the filament channels with a null point located above them. Three different eventsmore » of filament activations, partial eruptions, and associated filament channel interactions have been observed. The activation initiated in one filament channel seems to propagate along the neighboring filament channel. We believe that the activation and partial eruption of the filaments brings the field lines of flux ropes containing them closer to the null point and triggers the magnetic reconnection between them and the fan-spine magnetic configuration. As a result, the hot plasma moves along the outer spine line toward the remote point. Utilizing the present observations, for the first time we have discussed how two different-chirality filament channels can interact and show interrelation.« less

  14. Characteristics of the Footprints of Field Lines for Variable Location of Plate for a Single-Null Divertor Tokamak with the Effects of Dipole Coil Using Method of Maps

    NASA Astrophysics Data System (ADS)

    Burton, Joni; Ali, Halima; Punjabi, Alkesh

    1996-11-01

    We determine the properties of the footprint of the magnetic field lines from the stochastic scrape-off layer of a single-null divertor tokamak including the effects of an externally placed dipole coil as the location of the divertor plate is varied. We use the Method of Maps (Punjabi A, Verma A and Boozer A, Phys Rev Lett), 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994) for this investigation. The unperturbed magnetic topology is represented by the Symmetric Simple Map (Ali H, Watson M, Mayer C, Punjabi A and Boozer A, Bull Am Phys Soc), 40, 1855 (1995). The effects of the dipole coil are repesented by the Dipole Map (Ali H, Watson M, Punjabi A and Boozer A, Sherwood Mtg), paper 1C20 (1996). A single dipole coil is placed across from the X-point below the last good surface. The area of the footprint is calculated using the method of fractal dimesion. This work is supported by US DOE OFES. Joni Burton is an undergraduate mathematics major at Hampton University. She is a Ronald E. McNair Scholar at HU supported by R. E. McNair Foundation.

  15. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE PAGES

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon; ...

    2017-01-24

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  16. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  17. Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi

    2007-11-01

    Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.

  18. Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Kota; Hoshino, Masahiro

    2016-05-01

    We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.

  19. INSTABILITY OF NON-UNIFORM TOROIDAL MAGNETIC FIELDS IN ACCRETION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp

    We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of thismore » growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.« less

  20. Living Toroids - Cells on Toroidal Surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Angelini, Thomas; Marquez, Samantha; Kim, Harold; Fernandez-Nieves, Alberto

    2014-03-01

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. Substrate mechanics has been recognized as one of the important physical cues that governs cell behavior at single cell level as well as in collective cell motion. Past research has suggested several contact-guided behaviors to be the result of surface curvature. However, studies on the effect of curvature are relatively scarce likely due to the difficulty in generating substrates with well-defined curvature. Here we describe the generation of toroidal droplets, which unlike spherical droplets, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus. Cells are either encapsulated inside toroidal droplets or located on toroidal hydrogel surfaces. Preliminary studies use B. Subtilis to study the organization of bacteria biofilms. When confined in droplets surrounded by yield-stress fluid, bacteria self-organize into heterogeneous biofilm at fluid- substrate interface. It is found that the surface curvature in the sub-millimeter scale has little effect on biofilm architecture.

  1. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  2. The evaluation of a deformable diffraction grating for a stigmatic EUV spectroheliometer

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1987-01-01

    A high-efficiency, extreme ultraviolet (EUV) imaging spectrometer is constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically-deformable sub-master grating replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a two-dimensional, pulse-counting detector system verify the image quality of the toroidal grating at wavelengths near 600 A. The results of these tests and the basic designs of two instruments which could employ the imaging spectrometer for astrophysical investigations in space are described; i.e., a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona; and an EUV spectroscopic telescope for studies of non-solar objects.

  3. Dynamic divertor control using resonant mixed toroidal harmonic magnetic fields during ELM suppression in DIII-D

    NASA Astrophysics Data System (ADS)

    Jia, M.; Sun, Y.; Paz-Soldan, C.; Nazikian, R.; Gu, S.; Liu, Y. Q.; Abrams, T.; Bykov, I.; Cui, L.; Evans, T.; Garofalo, A.; Guo, W.; Gong, X.; Lasnier, C.; Logan, N. C.; Makowski, M.; Orlov, D.; Wang, H. H.

    2018-05-01

    Experiments using Resonant Magnetic Perturbations (RMPs), with a rotating n = 2 toroidal harmonic combined with a stationary n = 3 toroidal harmonic, have validated predictions that divertor heat and particle flux can be dynamically controlled while maintaining Edge Localized Mode (ELM) suppression in the DIII-D tokamak. Here, n is the toroidal mode number. ELM suppression over one full cycle of a rotating n = 2 RMP that was mixed with a static n = 3 RMP field has been achieved. Prominent heat flux splitting on the outer divertor has been observed during ELM suppression by RMPs in low collisionality regime in DIII-D. Strong changes in the three dimensional heat and particle flux footprint in the divertor were observed during the application of the mixed toroidal harmonic magnetic perturbations. These results agree well with modeling of the edge magnetic field structure using the TOP2D code, which takes into account the plasma response from the MARS-F code. These results expand the potential effectiveness of the RMP ELM suppression technique for the simultaneous control of divertor heat and particle load required in ITER.

  4. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less

  5. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    DOE PAGES

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    2017-09-21

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less

  6. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    2017-10-01

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) in a slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. This physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, which resulted from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement, and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. Modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.

  7. The influence of centrifugal forces on the B field structure of an axially symmetric equilibrium magnetosphere

    NASA Technical Reports Server (NTRS)

    Ye, Gang; Voigt, Gerd-Hannes

    1989-01-01

    A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.

  8. Tomography of a simply magnetized toroidal plasma

    NASA Astrophysics Data System (ADS)

    Ruggero, BARNI; Stefano, CALDIROLA; Luca, FATTORINI; Claudia, RICCARDI

    2018-02-01

    Optical emission spectroscopy is a passive diagnostic technique, which does not perturb the plasma state. In particular, in a hydrogen plasma, Balmer-alpha (H α ) emission can be easily measured in the visible range along a line of sight from outside the plasma vessel. Other emission lines in the visible spectral range from hydrogen atoms and molecules can be exploited too, in order to gather complementary pieces of information on the plasma state. Tomography allows us to capture bi-dimensional structures. We propose to adopt an emission spectroscopy tomography for studying the transverse profiles of magnetized plasmas when Abel inversion is not exploitable. An experimental campaign was carried out at the Thorello device, a simple magnetized torus. The characteristics of the profile extraction method, which we implemented for this purpose are discussed, together with a few results concerning the plasma profiles in a simply magnetized torus configuration.

  9. Power balance and characterization of impurities in the Maryland Spheromak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, Claude

    1993-01-01

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low T e and higher n e than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to bemore » directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase.« less

  10. Dirac R -matrix calculations for the electron-impact excitation of neutral tungsten providing noninvasive diagnostics for magnetic confinement fusion

    NASA Astrophysics Data System (ADS)

    Smyth, R. T.; Ballance, C. P.; Ramsbottom, C. A.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.

    2018-05-01

    Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to characterize the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R -matrix method, and by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.

  11. BMP suppresses PTEN expression via RAS/ERK signaling.

    PubMed

    Beck, Stayce E; Carethers, John M

    2007-08-01

    Bone morphogenetic protein (BMP), a member of the transforming growth factor beta family, classically utilizes the SMAD signaling pathway for its growth suppressive effects,and loss of this signaling cascade may accelerate cell growth. In the colon cancer predisposition syndrome Juvenile Polyposis, as well as in the late progression stages of nonsyndromic colorectal cancers, SMAD4 function is typically abrogated. Here, we utilized the SMAD4-null SW480 colon cancer cell line to examine BMPs effect on a potential target gene, PTEN, and how its expression might be regulated. Initial treatment of the SMAD4-null cells with BMP resulted in mild growth suppression, but with prolonged exposure to BMP, the cells become growth stimulatory, which coincided with observed decreases in transcription and translation of PTEN, and with corresponding increases in phospho-AKT protein levels. BMP-induced PTEN suppression was mediated via the RAS/ERK pathway, as pharmacologic inhibition of RAS/ERK, or interference with protein function in the cytosol by DN-RAS prevented BMP-induced growth promotion and changes in PTEN levels, as did treatment with noggin, a BMP ligand inhibitor. Thus, BMP downregulates PTEN via RAS/ERK in a SMAD4-null environment that contributes to cell growth, and constitutes a SMAD4-independent but BMP-responsive signaling pathway.

  12. Revisiting self-regulatory techniques to promote physical activity in older adults: null-findings from a randomised controlled trial.

    PubMed

    Warner, Lisa M; Wolff, Julia K; Ziegelmann, Jochen P; Schwarzer, Ralf; Wurm, Susanne

    2016-10-01

    A randomised controlled trial (RCT) was conducted to evaluate a three-hour face-to-face physical activity (PA) intervention in community-dwelling older German adults with four groups: The intervention group (IG) received behaviour change techniques (BCTs) based on the health action process approach plus a views-on-ageing component to increase PA. The second intervention group 'planning' (IGpl) contained the same BCTs, only substituted the views-on-ageing component against an additional planning task. An active control group received the same BCTs, however, targeting volunteering instead of PA. A passive control group (PCG) received no intervention. The RCT comprised 5 time-points over 14 months in N = 310 participants aged 64+. Self-reported as well as accelerometer-assessed PA. Neither PA measure increased in the IG as compared to the other groups at any point in time. Bayes analyses supported these null-effects. A possible explanation for this null-finding in line with a recent meta-analysis is that some self-regulatory BCTs may be ineffective or even negatively associated with PA in interventions for older adults as they are assumed to be less acceptable for older adults. This interpretation was supported by observed reluctance to participate in self-regulatory BCTs in the current study.

  13. IL-4/Stat6 activities correlate with apoptosis and metastasis in colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Benhui; Yang Xianzi; Department of Medical Oncology, Taihe Hospital, Yunyang Medical College, Shiyan, Hubei 442000

    2008-05-02

    IL-4-induced Stat6 signaling is active in a variety of cell types and plays a role in cell proliferation/growth and resistance to apoptosis. Using EMSA, we identified differential IL-4/Stat6 activities in colorectal cancer cell lines, HT-29 being active Stat6{sup high} phenotype and Caco-2 being defective Stat6{sup null} phenotype, respectively. Active Stat6{sup high} HT-29 cells exhibited resistance to apoptosis by flowcytometry and aggressive metastasis by Transwell assay compared with defective Stat6{sup null} Caco-2 cells. Comparing one another using RT-PCR, Stat6{sup high} HT-29 cells expressed more mRNA of anti-apoptotic and pro-metastatic genes Survivin, MDM2, and TMPRSS4, while Stat6{sup null} Caco-2 cells expressed moremore » mRNA of pro-apoptotic and anti-metastatic genes BAX, CAV1, and P53, respectively. This is the first study describing correlations of IL-4/Stat6 activities with apoptosis and metastasis in colon cancer. These findings, together with the observation of constitutive Stat6 activation in many human malignancies, suggest that Stat6 activities could be a biomarker for cancer cell's invasive/metastatic capability.« less

  14. Modern gyrokinetic formulation of collisional and turbulent transport in toroidally rotating plasmas

    NASA Astrophysics Data System (ADS)

    Sugama, H.

    2017-12-01

    Collisional and turbulent transport processes in toroidal plasmas with large toroidal flows on the order of the ion thermal velocity are formulated based on the modern gyrokinetic theory. Governing equations for background and turbulent electromagnetic fields and gyrocenter distribution functions are derived from the Lagrangian variational principle with effects of collisions and external sources taken into account. Noether's theorem modified for collisional systems and the collision operator given in terms of Poisson brackets are applied to derivation of the particle, energy, and toroidal momentum balance equations in the conservative forms which are desirable properties for long-time global transport simulation. The resultant balance equations are shown to include the classical, neoclassical, and turbulent transport fluxes which agree with those obtained from the conventional recursive formulations.

  15. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  16. Comparison of JET AVDE disruption data with M3D simulations and implications for ITER

    DOE PAGES

    Strauss, H.; Joffrin, E.; Riccardo, V.; ...

    2017-10-02

    Nonlinear 3D MHD asymmetric vertical displacement disruption simulations have been performed using JET equilibrium reconstruction initial data. There were several experimentally measured quantities compared with the simulation. These include vertical displacement, halo current, toroidal current asymmetry, and toroidal rotation. The experimental data and the simulations are in reasonable agreement. Also compared was the correlation of the toroidal current asymmetry and the vertical displacement asymmetry. The Noll relation between asymmetric wall force and vertical current moment is verified in the simulations. Also verified is the toroidal flux asymmetry. Though, JET is a good predictor of ITER disruption behavior, JET and ITERmore » can be in different parameter regimes, and extrapolating from JET data can overestimate the ITER wall force.« less

  17. Comparison of JET AVDE disruption data with M3D simulations and implications for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, H.; Joffrin, E.; Riccardo, V.

    Nonlinear 3D MHD asymmetric vertical displacement disruption simulations have been performed using JET equilibrium reconstruction initial data. There were several experimentally measured quantities compared with the simulation. These include vertical displacement, halo current, toroidal current asymmetry, and toroidal rotation. The experimental data and the simulations are in reasonable agreement. Also compared was the correlation of the toroidal current asymmetry and the vertical displacement asymmetry. The Noll relation between asymmetric wall force and vertical current moment is verified in the simulations. Also verified is the toroidal flux asymmetry. Though, JET is a good predictor of ITER disruption behavior, JET and ITERmore » can be in different parameter regimes, and extrapolating from JET data can overestimate the ITER wall force.« less

  18. Efficiency of wave-driven rigid body rotation toroidal confinement

    NASA Astrophysics Data System (ADS)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  19. Magnetic dipolar ordering and hysteresis of geometrically defined nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Kure, Mathias; Beleggia, Marco; Frandsen, Cathrine

    2017-10-01

    Magnetic nanoparticle clusters have several biomedical and engineering applications, and revealing the basic interplay between particle configuration and magnetic properties is important for tuning the clusters for specific uses. Here, we consider the nanoparticles as macrospins and use computer simulations to determine their magnetic configuration when placed at the vertices of various polyhedra. We find that magnetic dipoles of equal magnitude arrange in flux-closed vortices on a layer basis, giving the structures a null remanent magnetic moment. Assigning a toroidal moment to each layer, we find that the geometrical arrangement, i.e., "triangular packing" vs. "square packing," of the moments in the adjacent layer determines whether the flux-closed layers are ferrotoroidal (co-rotating vortices) or antiferrotoroidal (counter-rotating vortices). Interestingly, upon adding a single magnetic moment at the center of the polyhedra, the central moment relaxes along one of the principal axes and induces partial alignment of the surrounding moments. The resulting net moment is up to nearly four times that of the single moment added. Furthermore, we model quasi-static hysteresis loops for structures with and without a central moment. We find that a central moment ensures an opening of the hysteresis loop, and the resultant loop areas are typically many-fold larger compared to the same structure without a central moment.

  20. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields

    NASA Astrophysics Data System (ADS)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team

    2014-01-01

    First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.

  1. Magnetic diagnostics for equilibrium reconstructions in the presence of nonaxisymmetric eddy current distributions in tokamaks (invited).

    PubMed

    Berzak, L; Jones, A D; Kaita, R; Kozub, T; Logan, N; Majeski, R; Menard, J; Zakharov, L

    2010-10-01

    The lithium tokamak experiment (LTX) is a modest-sized spherical tokamak (R(0)=0.4 m and a=0.26 m) designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 °C. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.

  2. Conceptual design study for heat exhaust management in the ARC fusion pilot plant

    NASA Astrophysics Data System (ADS)

    Dennett, C. A.; Cao, N. M.; Creely, A. J.; Hecla, J.; Hoffman, H.; Kuang, A. Q.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.

    2017-10-01

    The ARC pilot plant conceptual design study has been extended to explore solutions for managing heat exhaust resulting from 525 MW of fusion power in a compact (R 3.3 m) tokamak. Superconducting poloidal field coils are configured to produce double-null equilibria that support X-point target divertors while maintaining the original core plasma shape and toroidal field coil size. Long outer divertor legs are appended to the original vacuum vessel, providing both large surface areas for surface dissipation of radiative heat and significantly reduced neutron damage for divertor components. A molten salt FLiBe blanket adequately shields all superconductors and functions as a tritium breeder, with advanced neutronics calculations indicating a tritium breeding ratio of 1.08. In addition, FLiBe is used as the active coolant for the entire vessel. A tungsten swirl-tube cooling channel is implemented in the divertor, capable of exhausting 12 MW/m2, heat flux while keeping total FliBe pumping power below 1% of fusion power. Finally, three novel diagnostics are explored: Cherenkov radiation emitted in FLiBe to measure fusion reaction rate, microwave interferometry to measure divertor detachment front location, and IR imaging through the FLiBe blanket to monitor selected divertor ``hotspots.''

  3. Benefits and drawbacks of low magnetic shears on the confinement in magnetic fusion toroidal devices

    NASA Astrophysics Data System (ADS)

    Firpo, Marie-Christine; Constantinescu, Dana

    2012-10-01

    The issue of confinement in magnetic fusion devices is addressed within a purely magnetic approach. As it is well known, the magnetic field being divergence-free, the equations of its field lines can be cast in Hamiltonian form. Using then some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is demonstrated. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and turbulence reduction. However, when low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be much lower than the ones obtained for strong shear profiles. The approach can be applied to assess the robustness versus magnetic perturbations of general almost-integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  4. Loads specification and embedded plate definition for the ITER cryoline system

    NASA Astrophysics Data System (ADS)

    Badgujar, S.; Benkheira, L.; Chalifour, M.; Forgeas, A.; Shah, N.; Vaghela, H.; Sarkar, B.

    2015-12-01

    ITER cryolines (CLs) are complex network of vacuum-insulated multi and single process pipe lines, distributed in three different areas at ITER site. The CLs will support different operating loads during the machine life-time; either considered as nominal, occasional or exceptional. The major loads, which form the design basis are inertial, pressure, temperature, assembly, magnetic, snow, wind, enforced relative displacement and are put together in loads specification. Based on the defined load combinations, conceptual estimation of reaction loads have been carried out for the lines located inside the Tokamak building. Adequate numbers of embedded plates (EPs) per line have been defined and integrated in the building design. The finalization of building EPs to support the lines, before the detailed design, is one of the major design challenges as the usual logic of the design may alter. At the ITER project level, it was important to finalize EPs to allow adequate design and timely availability of the Tokamak building. The paper describes the single loads, load combinations considered in load specification and the approach for conceptual load estimation and selection of EPs for Toroidal Field (TF) Cryoline as an example by converting the load combinations in two main load categories; pressure and seismic.

  5. Initial results from the rebuilt EXTRAP T2R RFP device

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.; Gravestijn, R. M.; Hedqvist\\ad{2 }, A.; Malmberg, J.-A.

    2001-11-01

    The EXTRAP T2R thin shell reversed-field pinch (RFP) device has recently resumed operation after a major rebuild including the replacement of the graphite armour with molybdenum limiters, a fourfold increase of the shell time constant, and the replacement of the helical coil used for the toroidal field with a conventional solenoid-type coil. Wall-conditioning using hydrogen glow discharge cleaning was instrumental for successful RFP operation. Carbon was permanently removed from the walls during the first week of operation. The initial results from RFP operation with relatively low plasma currents in the range Ip = 70-100 kA are reported. RFP discharges are sustained for more than three shell times. Significant improvements in plasma parameters are observed, compared to operation before the rebuild. There is a substantial reduction in the carbon impurity level. The electron density behaviour is more shot-to-shot reproducible. The typical density is ne = 0.5-1×1019 m-3. Monitors of Hα line radiation indicate that the plasma wall interaction is more toroidally symmetric and that there is less transient gas release from the wall. The minimum loop voltage is in the range Vt = 28-35 V, corresponding to a reduction by a factor of two to three compared to the value before the rebuild.

  6. Model for a transformer-coupled toroidal plasma source

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid; Balakrishna, Ajit; Chen, Zhigang; Collins, Ken

    2012-01-01

    A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH3 plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH3, NHx+ ions are more prevalent near the gas inlet and Ar+ ions are the dominant ions farther downstream. NH3 and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH3 dissociates more readily and NHx+ ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH3 dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH4+ ions are produced and dissociation by-products have higher concentrations near the outlet.

  7. Calculation of Eddy Currents In the CTH Vacuum Vessel and Coil Frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Zolfaghari, A. Brooks, A. Michaels, J. Hanson, and G. Hartwell

    2012-09-25

    Knowledge of eddy currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the eddy currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B ≤ 0.7 T), the primary driver of the eddy currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are usedmore » to calculate eddy current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the eddy currents in the structures. SPARK code was used to calculate the eddy currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the eddy currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. __________________________________________________« less

  8. Dynamo-driven plasmoid formation from a current-sheet instability

    DOE PAGES

    Ebrahimi, F.

    2016-12-15

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearingmore » parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.« less

  9. Generation of a Tph2 Conditional Knockout Mouse Line for Time- and Tissue-Specific Depletion of Brain Serotonin

    PubMed Central

    Migliarini, Sara; Pacini, Giulia; Pasqualetti, Massimo

    2015-01-01

    Serotonin has been gaining increasing attention during the last two decades due to the dual function of this monoamine as key regulator during critical developmental events and as neurotransmitter. Importantly, unbalanced serotonergic levels during critical temporal phases might contribute to the onset of neuropsychiatric disorders, such as schizophrenia and autism. Despite increasing evidences from both animal models and human genetic studies have underpinned the importance of serotonin homeostasis maintenance during central nervous system development and adulthood, the precise role of this molecule in time-specific activities is only beginning to be elucidated. Serotonin synthesis is a 2-step process, the first step of which is mediated by the rate-limiting activity of Tph enzymes, belonging to the family of aromatic amino acid hydroxylases and existing in two isoforms, Tph1 and Tph2, responsible for the production of peripheral and brain serotonin, respectively. In the present study, we generated and validated a conditional knockout mouse line, Tph2 flox/flox, in which brain serotonin can be effectively ablated with time specificity. We demonstrated that the Cre-mediated excision of the third exon of Tph2 gene results in the production of a Tph2 null allele in which we observed the near-complete loss of brain serotonin, as well as the growth defects and perinatal lethality observed in serotonin conventional knockouts. We also revealed that in mice harbouring the Tph2 null allele, but not in wild-types, two distinct Tph2 mRNA isoforms are present, namely Tph2Δ3 and Tph2Δ3Δ4, with the latter showing an in-frame deletion of amino acids 84–178 and coding a protein that could potentially retain non-negligible enzymatic activity. As we could not detect Tph1 expression in the raphe, we made the hypothesis that the Tph2Δ3Δ4 isoform can be at the origin of the residual, sub-threshold amount of serotonin detected in the brain of Tph2 null/null mice. Finally, we set up a tamoxifen administration protocol that allows an efficient, time-specific inactivation of brain serotonin synthesis. On the whole, we generated a suitable genetic tool to investigate how serotonin depletion impacts on time-specific events during central nervous system development and adulthood life. PMID:26291320

  10. High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Danchi, W. C.; Sokoloski, J. L.; Koresko, C.; Wisniewski, J. P.; Serabyn, E.; Traub, W.; Kuchner, M.; Greenhouse, M. A.

    2007-01-01

    We report new observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nulling Instrument, approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. The Keck Interferometer Nuller (KIN) operates in K-band from 8 to 12.5 pm in a nulling mode, which means that the central broad-band interference fringe is a dark fringe - with an angular width of 25 mas at mid band - rather than the bright fringe used ill a conventional optical interferometer. In this mode the stellar light itself is suppressed by the destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. By subsequently shifting the neighboring bright fringe onto the center of the source brightness distribution and integrating, a second spatial regime dominated by light from the central portion of the source is almost simultaneously sampled. The nulling technique is the sparse aperture equivalent of the conventional corongraphic technique used in filled aperture telescopes. By fitting the unique KIK inner and outer spatial regime data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0. or 5.4 mas for a disk profile, gaussian profile (fwhm), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission located in the inner spatial regime relative to the outer regime. There is also evidence of a 9.7 micron silicate feature seen outside of this region. Importantly, we see spectral lines excited by the nova flash in the outer region before the blast wave reaches these regions. These lines are from neutral, weakly excited atoms which support the following interpretation. We discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.

  11. Toroidal marginally outer trapped surfaces in closed Friedmann-Lemaître-Robertson-Walker spacetimes: Stability and isoperimetric inequalities

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Xie, Naqing

    2017-10-01

    We investigate toroidal marginally outer trapped surfaces (MOTS) and marginally outer trapped tubes (MOTT) in closed Friedmann-Lemaître-Robertson-Walker (FLRW) geometries. They are constructed by embedding constant mean curvature (CMC) Clifford tori in a FLRW spacetime. This construction is used to assess the quality of certain isoperimetric inequalities, recently proved in axial symmetry. Similarly to spherically symmetric MOTS existing in FLRW spacetimes, the toroidal ones are also unstable.

  12. Influence of bending stress on flux distribution in toroidal transducers

    NASA Astrophysics Data System (ADS)

    Goktepe, M.; Meydan, T.

    1994-05-01

    Amorphous transducers consisting of toroidally wound amorphous ribbon with a magnetising winding and search coil windings have been investigated. The application of displacement to the toroid gives a linear search coil voltage against the applied force characteristics. The position of the search coils with respect to the applied force has been studied and it is shown that the effect of applied force is localised. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.

  13. Quasilinear Line Broadened Model for Energetic Particle Transport

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2011-10-01

    We present a self-consistent quasi-linear model that describes wave-particle interaction in toroidal geometry and computes fast ion transport during TAE mode evolution. The model bridges the gap between single mode resonances, where it predicts the analytically expected saturation levels, and the case of multiple modes overlapping, where particles diffuse across phase space. Results are presented in the large aspect ratio limit where analytic expressions are used for Fourier harmonics of the power exchange between waves and particles, . Implemention of a more realistic mode structure calculated by NOVAK code are also presented. This work is funded by DOE contract DE-AC02-09CH11466.

  14. A reversible transition in liquid Bi under pressure.

    PubMed

    Emuna, M; Matityahu, S; Yahel, E; Makov, G; Greenberg, Y

    2018-01-21

    The electrical resistance of solid and liquid Bi has been measured at high pressures and temperatures using a novel experimental design for high sensitivity measurements utilizing a "Paris-Edinburgh" toroid large volume press. An anomalous sharp decrease in resistivity with increasing temperature at constant pressures was observed in the region beyond melting which implies a possible novel transition in the melt. The proposed transition was observed across a range of pressures both in heating and cooling cycles of the sample demonstrating its reversibility. From the measurements it was possible to determine a "phase-line" of this transition on the Bi pressure-temperature phase diagram terminating at the melting curve.

  15. Rapid adhesive bonding of advanced composites and titanium

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryart, J. R.; Hodgest, W. T.

    1985-01-01

    Rapid adhesive bonding (RAB) concepts utilize a toroid induction technique to heat the adhesive bond line directly. This technique was used to bond titanium overlap shear specimens with 3 advanced thermoplastic adhesives and APC-2 (graphite/PEEK) composites with PEEK film. Bond strengths equivalent to standard heated-platen press bonds were produced with large reductions in process time. RAB produced very strong bonds in APC-2 adherend specimens; the APC-2 adherends were highly resistant to delamination. Thermal cycling did not significantly affect the shear strengths of RAB titanium bonds with polyimide adhesives. A simple ultrasonic non-destructive evaluation process was found promising for evaluating bond quality.

  16. Thermal bifurcation in the upper solar photosphere inferred from heterodyne spectroscopy of OH rotational lines

    NASA Technical Reports Server (NTRS)

    Deming, D.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D. M.

    1984-01-01

    Low noise high spectral resolution observations of two pure rotation transitions of OH from the solar photosphere were obtained. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a v=1 and a v=0 transition near 12 microns. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. The v=0 R22 (24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one dimensional photospheric models. Data for this line support a two dimensional model in which horizontal thermal fluctuations of order + or - 800K occur in the region Tau (sub 5000) approximately .001 to .01. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30 to 200 micron region.

  17. Deleterious CHEK2 1100delC and L303X mutants identified among 38 human breast cancer cell lines.

    PubMed

    Wasielewski, Marijke; Hanifi-Moghaddam, Pejman; Hollestelle, Antoinette; Merajver, Sofia D; van den Ouweland, Ans; Klijn, Jan G M; Ethier, Stephen P; Schutte, Mieke

    2009-01-01

    The CHEK2 protein plays a major role in the regulation of DNA damage response pathways. Mutations in the CHEK2 gene, in particular 1100delC, have been associated with increased cancer risks, but the precise function of CHEK2 mutations in carcinogenesis is not known. Human cancer cell lines with CHEK2 mutations are therefore of main interest. Here, we have sequenced 38 breast cancer cell lines for mutations in the CHEK2 gene and identified two cell lines with deleterious CHEK2 mutations. Cell line UACC812 has a nonsense truncating mutation in the CHEK2 kinase domain (L303X) and cell line SUM102PT has the well-known oncogenic CHEK2 1100delC founder mutation. Immunohistochemical analysis revealed that the two CHEK2 mutant cell lines expressed neither CHEK2 nor P-Thr(68) CHEK2 proteins, implying abrogation of normal CHEK2 DNA repair functions. Cell lines UACC812 and SUM102PT thus are the first human CHEK2 null cell lines reported and should therefore be a major help in further unraveling the function of CHEK2 mutations in carcinogenesis.

  18. Risk of hematological malignancies associated with magnetic fields exposure from power lines: a case-control study in two municipalities of northern Italy

    PubMed Central

    2010-01-01

    Background Some epidemiologic studies have suggested an association between electromagnetic field exposure induced by high voltage power lines and childhood leukemia, but null results have also been yielded and the possibility of bias due to unmeasured confounders has been suggested. Methods We studied this relation in the Modena and Reggio Emilia municipalities of northern Italy, identifying the corridors along high voltage power lines with calculated magnetic field intensity in the 0.1-<0.2, 0.2-<0.4, and ≥ 0.4 microTesla ranges. We identified 64 cases of newly-diagnosed hematological malignancies in children aged <14 within these municipalities from 1986 to 2007, and we sampled four matched controls for each case, collecting information on historical residence and parental socioeconomic status of these subjects. Results Relative risk of leukemia associated with antecedent residence in the area with exposure ≥ 0.1 microTesla was 3.2 (6.7 adjusting for socioeconomic status), but this estimate was statistically very unstable, its 95% confidence interval being 0.4-23.4, and no indication of a dose-response relation emerged. Relative risk for acute lymphoblastic leukemia was 5.3 (95% confidence interval 0.7-43.5), while there was no increased risk for the other hematological malignancies. Conclusions Though the number of exposed children in this study was too low to allow firm conclusions, results were more suggestive of an excess risk of leukemia among exposed children than of a null relation. PMID:20353586

  19. Toroidal reactor

    DOEpatents

    Dawson, John M.; Furth, Harold P.; Tenney, Fred H.

    1988-12-06

    Method for producing fusion power wherein a neutral beam is injected into a toroidal bulk plasma to produce fusion reactions during the time permitted by the slowing down of the particles from the injected beam in the bulk plasma.

  20. Functional form for plasma velocity in a rapidly rotating tokamak discharge

    DOE PAGES

    Burrell, Keith H.; Chrystal, C. olin

    2014-07-25

    A recently developed technique using charge exchange spectroscopy determines the ion poloidal rotation in tokamak plasmas from the poloidal variation in the toroidal angular rotation speed. The basis for this technique is the functional form for the plasma velocity calculated from the equilibrium equations. The initial development of this technique utilized the functional form determined for conditions where the ion toroidal rotation speed is much smaller than the ion thermal speed. There are cases, however, where the toroidal rotation can be comparable to the ion thermal speed, especially for high atomic number impurities. Furthermore, the present paper extends the previousmore » analysis to this high rotation speed case and demonstrates how to extract the poloidal rotation speed from measurements of the toroidal angular rotation speed at two points on a flux surface.« less

  1. Toroidal magnet system

    DOEpatents

    Ohkawa, Tihiro; Baker, Charles C.

    1981-01-01

    In a plasma device having a toroidal plasma containment vessel, a toroidal field-generating coil system includes fixed linking coils each formed of first and second sections with the first section passing through a central opening through the containment vessel and the second section completing the linking coil to link the containment vessel. A plurality of removable unlinked coils are each formed of first and second C-shaped sections joined to each other at their open ends with their bights spaced apart. The second C-shaped section of each movable coil is removably mounted adjacent the second section of a linking coil, with the containment vessel disposed between the open ends of the first and second C-shaped sections. Electric current is passed through the linking and removable coils in opposite sense in the respective adjacent second sections to produce a net toroidal field.

  2. High-beta spherical tokamak startup in TS-4 merging experiment by use of toroidal field ramp-up

    NASA Astrophysics Data System (ADS)

    Kaminou, Yasuhiro; , Toru, II; Kato, Joji; Inomoto, Michiaki; Ono, Yasushi; TS Group Team; National InstituteFusion Science Collaboration

    2014-10-01

    We demonstrated the formation method of an ultrahigh-beta spherical tokamak by use of a field-reversed configuration and a spheromak in TS-4 device (R ~ 0.5 m, A ~ 1.5, Ip ~ 30-100 kA, B ~ 100 mT). This method is composed of the following steps: 1. Two spheromaks are merged together and a high-beta spheromak or FRC is formed by reconnection heating. 2. External toroidal magnetic field is added (current rising time ~50 μs), and spherical tokamak-like configuration is formed. In this way, the ultrahigh-beta ST is formed. The ultrahigh-beta ST formed by FRC has a diamagnetic toroidal field, and it presumed to be in a second-stable state for ballooning stability, and the one formed by spheromak has a weak paramagnetic toroidal magnetic field, while a spheormak has a strong paramagnetic toroidal magnetic field. This diamagnetic current derives from inductive electric field by ramping up the external toroidal magnetic field, and the diamagnetic current sustains high thermal pressure of the ultrahigh-beta spherical tokamak. And the beta of the ultrahigh-beta ST formed by FRC reaches about 50%. To sustain the high-beta state, 0.6 MW neutral beam injection and center solenoid coils are installed to the TS-4 device. In the poster, we report the experimental results of ultrahigh-beta spherical tokamak startup and sustainment by NBI and CS current driving experiment.

  3. Long-wavelength microinstabilities in toroidal plasmas*

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Rewoldt, G.

    1993-07-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities.

  4. Both LOV1 and LOV2 domains of phototropin2 function as the photosensory domain for hypocotyl phototropic responses in Arabidopsis thaliana (Brassicaceae).

    PubMed

    Suetsugu, Noriyuki; Kong, Sam-Geun; Kasahara, Masahiro; Wada, Masamitsu

    2013-01-01

    Phototropins (phot) are blue light receptor proteins that mediate phototropism and control photomovement responses, such as chloroplast photorelocation movement and stomatal opening. Arabidopsis thaliana has two phototropins, phot1 and phot2. Although both phot1 and phot2 redundantly mediate photomovement responses, phot2 uniquely regulates phototropism and the chloroplast avoidance response under high-intensity blue light. However, compared to that of phot1, the mechanistic basis of phot2 function is poorly understood, and in particular, the importance of the LOV2 domain in phot2 function has not been clearly demonstrated. Indeed, photocycle-deficient LOV2 transgenic lines expressing phot2 in a phot1phot2 mutant background retained phototropism, although with less sensitivity than wild-type plants. We isolated 11 alleles of phot2 mutants and determined the molecular lesion in each allele. We analyzed hypocotyl phototropism, chloroplast photorelocation movement, and leaf flattening in the phot2 mutant and the respective phot1phot2 double mutant plants. We demonstrated that unlike the phot2 null mutant, the phot2-10 mutant, which has the defective phot2 LOV2 domain, retained the phototropic response and had unusual chloroplast movement. Mutants phot2-2 and phot2-6, which have a missense mutation in the kinase activation loop of phot2, had the phot2-null mutant phenotype. Furthermore, we convincingly demonstrated that the commonly used phot2-1 mutant allele is a phot2-null mutant. The analyses of the multiple phot2 mutant alleles provided strong evidence for the importance of both LOV domains and the kinase activation loop of phot2 in phototropism and other phot-dependent responses and also demonstrated that phot2-1 allele is a null mutant.

  5. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    DOE PAGES

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-03-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less

  6. Scrape-off-layer currents during MHD activity and disruptions in HBT-EP

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Desanto, S.; Battey, A.; Bialek, J.; Brooks, J. W.; Mauel, M. E.; Navratil, G. A.

    2017-10-01

    We report scrape-off layer (SOL) current measurements during MHD mode activity and disruptions in the HBT-EP tokamak. Currents are measured via Rogowski coils mounted on tiles in the low-field-side SOL, toroidal jumpers between otherwise-isolated vessel sections, and segmented plasma current Rogowski coils. These currents strongly depend on the plasma's major radius, mode amplitude, and mode phase. Plasma current asymmetries and SOL currents during disruptions reach 4% of the plasma current. Asymmetric toroidal currents between vessel sections rotate at tens of kHz through most of the current quench, then symmetrize once Ip reaches 30% of its pre-disruptive value. Toroidal jumper currents oscillate between co- and counter-Ip, with co-Ip being dominant on average during disruptions. Increases in local plasma current correlate with counter-Ip current in the nearest toroidal jumper. Measurements are interpreted in the context of two models that produce contrary predictions for the toroidal vessel current polarity during disruptions. Plasma current asymmetries are consistent with both models, and scale with plasma displacement toward the wall. Progress of ongoing SOL current diagnostic upgrades is also presented. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  7. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.

    1985-05-31

    This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.

  8. Collisionality Scaling of Main-ion Toroidal and Poloidal Rotation in Low Torque DIII-D Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B A Grierson, et al

    In tokamak plasmas with low levels of toroidal rotation, the radial electric fi eld Er is a combination of pressure gradient and toroidal and poloidal rotation components, all having similar magnitudes. In order to assess the validity of neoclassical poloidal rotation theory for determining the poloidal rotation contribution to Er , Dα emission from neutral beam heated tokamak discharges in DIII-D [J.L. Luxon, Nucl. Fusion 42 , 614 (2002)] has been evaluated in a sequence of low torque (electron cyclotron resonance heating and balanced diagnostic neutral beam pulse) discharges to determine the local deuterium toroidal rotation velocity. By invoking themore » radial force balance relation the deuterium poloidal rotation can be inferred. It is found that the deuterium poloidal low exceeds the neoclassical value in plasmas with collisionality νi < 0: 1, being more ion diamagnetic, and with a stronger dependence on collisionality than neoclassical theory predicts. At low toroidal rotation, the poloidal rotation contribution to the radial electric fi eld and its shear is signi cant. The eff ect of anomalous levels of poloidal rotation on the radial electric fi eld and cross fi eld heat transport is investigated for ITER parameters.« less

  9. Escape of magnetic toroids from the Sun

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Rust, David M.

    1995-01-01

    Analysis of heliospheric magnetic fields at 1 AU shows that 10(exp 24) Mx of net azimuthal flux escapes from the Sun per solar cycle. This rate is consistent with rates derived from other indicators of flux escape, including coronal mass ejections and filament eruptions. The toroidal flux escape rate is compared with the apparent rate of flux emergence at the solar surface, and it is concluded that escaping toroids will remove at least 20% of the emerging flux, and may remove as much as 100% of emerging flux if multiple eruptions occur on the toroids. The data imply that flux escapes the Sun with an efficiency far exceeding Parker's upper limit estimate of 3%. Toroidal flux escape is almost certainly the source of the observed overwinding of the interplanetary magnetic field spiral. Two mechanisms to facilitate net flux escape are discussed: helicity charging to push open the fields and flux transport with reconnection to close them off. We estimate the Sun will shed approximately 2 x 10(exp 45) of magnetic helicity per solar cycle, leading to a mean helicity density of 100 Mx(exp 2)cm(exp -3) at 1 AU, which agrees well with observations.

  10. Plasma Properties of Microwave Produced Plasma in a Toroidal Device

    NASA Astrophysics Data System (ADS)

    Singh, Ajay; Edwards, W. F.; Held, Eric

    2011-10-01

    We have modified a small tokamak, STOR-1M, on loan from University of Saskatchewan, to operate as a low-temperature (~5 eV) toroidal plasma machine with externally induced toroidal magnetic fields ranging from zero to ~50 G. The plasma is produced using microwave discharges at relatively high pressures. Microwaves are produced by a kitchen microwave-oven magnetron operating at 2.45 GHz in continuous operating mode, resulting in pulses ~0.5 s in duration. Initial measurements of plasma formation in this device with and without applied magnetic fields are presented. Plasma density and temperature profiles have been measured using Langmuir probes and the magnetic field profile inside the plasma has been obtained using Hall probes. When the discharge is created with no applied toroidal magnetic field, the plasma does not fill the entire torus due to high background pressure. However, when a toroidal magnetic field is applied, the plasma flows along the applied field, filling the torus. Increasing the applied magnetic field seems to aid plasma formation - the peak density increases and the density gradient becomes steeper. Above a threshold magnetic field, the plasma develops low-frequency density oscillations due to probable excitation of flute modes in the plasma.

  11. High power heating of magnetic reconnection in merging tokamak experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Y.; Tanabe, H.; Gi, K.

    2015-05-15

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magneticmore » reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2}  ∼  B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating facility.« less

  12. Toroids as NMR detectors in metal pressure probes and in flow systems

    DOEpatents

    Rathke, Jerome W.

    1991-01-01

    A nuclear magnetic resonance probe to measure the properties of a sample under high pressure conditions. The apparatus employs a free standing, elongated toroidal coil as the RF transmitter and receiver.

  13. Ideal magnetohydrodynamic theory for localized interchange modes in toroidal anisotropic plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tonghui, E-mail: thshi@ipp.ac.cn; Wan, B. N.; Sun, Y.

    2016-08-15

    Ideal magnetohydrodynamic theory for localized interchange modes is developed for toroidal plasmas with anisotropic pressure. The work extends the existing theories of Johnson and Hastie [Phys. Fluids 31, 1609 (1988)], etc., to the low n mode case, where n is the toroidal mode number. Also, the plasma compressibility is included, so that the coupling of the parallel motion to perpendicular one, i.e., the so-called apparent mass effect, is investigated in the anisotropic pressure case. The singular layer equation is obtained, and the generalized Mercier's criterion is derived.

  14. Full toroidal imaging of non-axisymmetric plasma material interaction in the National Spherical Torus Experiment divertor.

    PubMed

    Scotti, Filippo; Roquemore, A L; Soukhanovskii, V A

    2012-10-01

    A pair of two dimensional fast cameras with a wide angle view (allowing a full radial and toroidal coverage of the lower divertor) was installed in the National Spherical Torus Experiment in order to monitor non-axisymmetric effects. A custom polar remapping procedure and an absolute photometric calibration enabled the easier visualization and quantitative analysis of non-axisymmetric plasma material interaction (e.g., strike point splitting due to application of 3D fields and effects of toroidally asymmetric plasma facing components).

  15. Fixture for winding transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, M. T.

    1980-01-01

    Bench-mounted fixture assists operator in winding toroid-shaped transformer cores. Toroid is rigidly held in place as wires are looped around. Arrangement frees both hands for rapid winding and untangling of wires that occurs when core is hand held.

  16. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  17. Investigating Trapped Particle Asymmetry Modes and Temperature Effects in the Lawrence Non-neutral Torus II

    NASA Astrophysics Data System (ADS)

    Nirwan, R.; Swanson, P.; Stoneking, M. R.

    2017-10-01

    Electron plasma is confined in the Lawrence Non-Neutral Torus II using a purely toroidal magnetic field (R0 = 18 cm, B < 1 kG) for confinement times exceeding 1 second. The LNT II can be configured for fully toroidal traps or variable-length partial toroidal traps. The behavior of the plasma is observed by monitoring the image charge on isolated wall sectors. The plasma is excited by application of a sinusoidal tone burst to selected wall sectors. Phase-space separatrices are introduced by applying squeeze potentials to toroidally localized, but poloidally continuous sectors and the resulting interaction between trapped and passing particles populations results in asymmetry modes and transport. These experiments provide a comparison with similar experiments in cylindrical traps. We also report on the development of temperature measurement techniques and assess temperature affects on diocotron and asymmetry modes. This work is supported by National Science Foundation Grant No. PHY-1202540.

  18. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  19. Fast Erase Method and Apparatus For Digital Media

    NASA Technical Reports Server (NTRS)

    Oakely, Ernest C. (Inventor)

    2006-01-01

    A non-contact fast erase method for erasing information stored on a magnetic or optical media. The magnetic media element includes a magnetic surface affixed to a toroidal conductor and stores information in a magnetic polarization pattern. The fast erase method includes applying an alternating current to a planar inductive element positioned near the toroidal conductor, inducing an alternating current in the toroidal conductor, and heating the magnetic surface to a temperature that exceeds the Curie-point so that information stored on the magnetic media element is permanently erased. The optical disc element stores information in a plurality of locations being defined by pits and lands in a toroidal conductive layer. The fast erase method includes similarly inducing a plurality of currents in the optical media element conductive layer and melting a predetermined portion of the conductive layer so that the information stored on the optical medium is destroyed.

  20. Observations of toroidicity-induced Alfvén eigenmodes in a reversed field pinch plasma

    NASA Astrophysics Data System (ADS)

    Regnoli, G.; Bergsâker, H.; Tennfors, E.; Zonca, F.; Martines, E.; Serianni, G.; Spolaore, M.; Vianello, N.; Cecconello, M.; Antoni, V.; Cavazzana, R.; Malmberg, J.-A.

    2005-04-01

    High frequency peaks in the spectra of magnetic field signals have been detected at the edge of Extrap-T2R [P. R. Brunsell, H. Bergsåker, M. Cecconello, J. R. Drake, R. M. Gravestijn, A. Hedqvist, and J.-A. Malmberg, Plasma Phys. Controlled Fusion, 43, 1457 (2001)]. The measured fluctuation is found to be mainly polarized along the toroidal direction, with high toroidal periodicity n and Alfvénic scaling (f∝B/√mini ). Calculations for a reversed field pinch plasma predict the existence of an edge resonant, high frequency, high-n number toroidicity-induced Alfvén eigenmode with the observed frequency scaling. In addition, gas puffing experiments show that edge density fluctuations are responsible for the rapid changes of mode frequency. Finally a coupling with the electron drift turbulence is proposed as drive mechanism for the eigenmode.

  1. GTC simulations of ion temperature gradient driven instabilities in W7-X and LHD stellarators

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu

    2017-10-01

    We report GTC linear simulations of ion temperature gradient (ITG) instabilities in Wendelstein 7-X (W7-X) and Large Helical Device (LHD) stellarators. GTC has recently been updated to treat 3D equilibria by interfacing with MHD equilibrium code VMEC. GTC simulations of ITG have been carried out in both full torus and partial torus taking into account the toroidal periodicity of the stellarators. The effects of toroidal mode coupling on linear dispersions and mode structures in W7-X and LHD are studied. The mode structure in W7-X is more localized in the toroidal direction, and LHD is more extended in the toroidal direction and tokamak-like. Linear growth rates, real frequencies, and mode structures agree reasonably with results of EUTERPE simulations. In collaboration with I. Holod, J. Riemann, Z. Lin, J. Bao, L. Shi, S. Taimourzadeh, R. Kleiber, and M. Borchardt.

  2. Effect of toroidal field ripple on the formation of internal transport barriers

    NASA Astrophysics Data System (ADS)

    de Vries, P. C.; Joffrin, E.; Hawkes, N. C.; Litaudon, X.; Challis, C. D.; Andrew, Y.; Beurskens, M.; Brix, M.; Brzozowski, J.; Crombé, K.; Giroud, C.; Hobirk, J.; Johnson, T.; Lönnroth, J.; Salmi, A.; Tala, T.; Yavorskij, V.; Zastrow, K.-D.; EFDA Contributors, JET

    2008-06-01

    The effect of a toroidal field (TF) ripple on the formation and performance of internal transport barriers (ITBs) has been studied in JET. It was found that the TF ripple had a profound effect on the toroidal plasma rotation. An increased TF ripple up to δ = 1% led to a lower rotation and reduced the rotational shear in the region where the ITBs were formed. ITB triggering events were observed in all cases and it is thought that the rotational shear may be less important for this process than, for example, the q-profile. However, the increase in the pressure gradient following the ITB trigger was reduced in discharges with a larger TF ripple and consequently a lower rotational shear. This suggests that toroidal rotation and its shear play a role in the growth of the ITB once it has been triggered.

  3. Toroidal Ampere-Faraday Equations Solved Consistently with the CQL3D Fokker-Planck Time-Evolution

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Petrov, Yu. V.

    2013-10-01

    A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). In the present CQL3D finite-difference model, the electric field E(rho,t) is either prescribed, or iteratively adjusted to obtain prescribed toroidal or parallel currents. We discuss first results of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to the runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we will examine modifications due to the more complete Ampere-Faraday solution. Work supported by US DOE under DE-FG02-ER54744.

  4. A feasibility study of developing toroidal tanks for a spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Anderson, J. E.; Fester, D. A.

    1973-01-01

    A study was made to determine the feasibility of developing toroidal propellant tanks for a bipropellant (N204/MMH) propulsion system to be used in a proposed advanced Pioneer spin-stabilized vehicle intended for a Jupiter-orbiter and possibly a Saturn-orbiter mission. The rationale for considering the use of two toroidal tanks rather than the proposed use of four spherical tanks includes the belief that a more symmetrical distribution of propellant mass and a smaller variation in the position of the vehicle center-of-mass during propellant consumption would result, reducing requirements for attitude-control propellants, for balance weight, and for other weights associated with the dynamics of the spinning spacecraft. Results lead to the conclusion that a toroidal tank containing an effective, passive surface tension propellant acquisition device could be fabricated with available manufacturing methods and could be used interchangeably for either fuel or oxidizer.

  5. A feasibility study of developing toroidal tanks for a spinning spacecraft. Part 2: Evaluation of fluid behavior in spinning toroidal tanks

    NASA Technical Reports Server (NTRS)

    Anderson, J. E.

    1974-01-01

    An experimental program was conducted for the purpose of evaluating propellant behavior characteristics in spinning toroidal tanks. The effects of typical mission requirements, and related phenomena upon propellant slosh and settling, and orientation and stability of the ullage were investigated in a subscale model tank under both one-g and low-g acceleration environments. Specific conditions included were axial acceleration, spin rate, spinrate change, and spacecraft wobble, both singly and in combination. Methanol and water in combination with appropriate spin-rates and accelerations of the scale model system were used to simulate the behavior of fluorine, nitrogen tetroxide, monomethylhydrazine, and hydrazine. The experimental results indicate that no major fluid behavior problems would be encountered with the use of toroidal tanks containing any of the four propellants in a proposed spin-stabilized orbiter spacecraft.

  6. Video Toroid Cavity Imager

    DOEpatents

    Gerald, II, Rex E.; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  7. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  8. Detection of long nulls in PSR B1706-16, a pulsar with large timing irregularities

    NASA Astrophysics Data System (ADS)

    Naidu, Arun; Joshi, Bhal Chandra; Manoharan, P. K.; Krishnakumar, M. A.

    2018-04-01

    Single pulse observations, characterizing in detail, the nulling behaviour of PSR B1706-16 are being reported for the first time in this paper. Our regular long duration monitoring of this pulsar reveals long nulls of 2-5 h with an overall nulling fraction of 31 ± 2 per cent. The pulsar shows two distinct phases of emission. It is usually in an active phase, characterized by pulsations interspersed with shorter nulls, with a nulling fraction of about 15 per cent, but it also rarely switches to an inactive phase, consisting of long nulls. The nulls in this pulsar are concurrent between 326.5 and 610 MHz. Profile mode changes accompanied by changes in fluctuation properties are seen in this pulsar, which switches from mode A before a null to mode B after the null. The distribution of null durations in this pulsar is bimodal. With its occasional long nulls, PSR B1706-16 joins the small group of intermediate nullers, which lie between the classical nullers and the intermittent pulsars. Similar to other intermediate nullers, PSR B1706-16 shows high timing noise, which could be due to its rare long nulls if one assumes that the slowdown rate during such nulls is different from that during the bursts.

  9. Bivariate least squares linear regression: Towards a unified analytic formalism. I. Functional models

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2011-08-01

    Concerning bivariate least squares linear regression, the classical approach pursued for functional models in earlier attempts ( York, 1966, 1969) is reviewed using a new formalism in terms of deviation (matrix) traces which, for unweighted data, reduce to usual quantities leaving aside an unessential (but dimensional) multiplicative factor. Within the framework of classical error models, the dependent variable relates to the independent variable according to the usual additive model. The classes of linear models considered are regression lines in the general case of correlated errors in X and in Y for weighted data, and in the opposite limiting situations of (i) uncorrelated errors in X and in Y, and (ii) completely correlated errors in X and in Y. The special case of (C) generalized orthogonal regression is considered in detail together with well known subcases, namely: (Y) errors in X negligible (ideally null) with respect to errors in Y; (X) errors in Y negligible (ideally null) with respect to errors in X; (O) genuine orthogonal regression; (R) reduced major-axis regression. In the limit of unweighted data, the results determined for functional models are compared with their counterparts related to extreme structural models i.e. the instrumental scatter is negligible (ideally null) with respect to the intrinsic scatter ( Isobe et al., 1990; Feigelson and Babu, 1992). While regression line slope and intercept estimators for functional and structural models necessarily coincide, the contrary holds for related variance estimators even if the residuals obey a Gaussian distribution, with the exception of Y models. An example of astronomical application is considered, concerning the [O/H]-[Fe/H] empirical relations deduced from five samples related to different stars and/or different methods of oxygen abundance determination. For selected samples and assigned methods, different regression models yield consistent results within the errors (∓ σ) for both heteroscedastic and homoscedastic data. Conversely, samples related to different methods produce discrepant results, due to the presence of (still undetected) systematic errors, which implies no definitive statement can be made at present. A comparison is also made between different expressions of regression line slope and intercept variance estimators, where fractional discrepancies are found to be not exceeding a few percent, which grows up to about 20% in the presence of large dispersion data. An extension of the formalism to structural models is left to a forthcoming paper.

  10. A note on the application of the Prigogine theorem to rotation of tokamak-plasmas in absence of external torques.

    PubMed

    Sonnino, Giorgio; Cardinali, Alessandro; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György; Zonca, Fulvio

    2014-03-01

    Rotation of tokamak-plasmas, not at the mechanical equilibrium, is investigated using the Prigogine thermodynamic theorem. This theorem establishes that, for systems confined in rectangular boxes, the global motion of the system with barycentric velocity does not contribute to dissipation. This result, suitably applied to toroidally confined plasmas, suggests that the global barycentric rotations of the plasma, in the toroidal and poloidal directions, are pure reversible processes. In case of negligible viscosity and by supposing the validity of the balance equation for the internal forces, we show that the plasma, even not in the mechanical equilibrium, may freely rotate in the toroidal direction with an angular frequency, which may be higher than the neoclassical estimation. In addition, its toroidal rotation may cause the plasma to rotate globally in the poloidal direction at a speed faster than the expression found by the neoclassical theory. The eventual configuration is attained when the toroidal and poloidal angular frequencies reaches the values that minimize dissipation. The physical interpretation able to explain the reason why some layers of plasma may freely rotate in one direction while, at the same time, others may freely rotate in the opposite direction, is also provided. Invariance properties, herein studied, suggest that the dynamic phase equation might be of the second order in time. We then conclude that a deep and exhaustive study of the invariance properties of the dynamical and thermodynamic equations is the most correct and appropriate way for understanding the triggering mechanism leading to intrinsic plasma-rotation in toroidal magnetic configurations.

  11. Dynamical model for the toroidal sporadic meteors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokorný, Petr; Vokrouhlický, David; Nesvorný, David

    More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper modeling of the toroidal sources has not to date been accomplished. Here, wemore » develop a steady-state model for the toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period) comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including the most troublesome low-eccentricity component, which is due to a combination of two effects: particles' ability to decouple from Jupiter and circularize by the Poynting-Robertson effect, and large collision probability for orbits similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust in space and check the flux necessary to maintain the cloud in a steady state.« less

  12. Instabilities of Current Carrying Torus

    NASA Astrophysics Data System (ADS)

    Liu, Wenjuan; Qiu, J.

    2010-05-01

    We investigate the initial equilibrium and stability conditions for an uniform current-carrying plasma ring with a non-trivial toroidal magnetic field Bt. Realistic parameters comparable to observations are used to describe the magnetic field inside and outside the torus. The external poloidal magnetic field is assumed to fall off as a power function with decay index n (n = - d log (Bex) /d log(h)). The parameter space is explored to find all initial equilibrium solutions, at which perturbation is introduced. It is shown that with non-trivial toroidal field, the current ring attains equilibrium with a weaker external field. It is also shown that the torus attains equilibrium at higher altitude when the external field decays more rapidly (greater n) or the ratio of the toroidal flux in the torus to the external field increases. We further study stabilities of the torus at equilibrium by defining a critical decay index ncr (Kliem and Török 2006). A sufficiently strong toroidal field can completely suppress the torus instability due to the current hoop force. With a weak toroidal field, similar to the case of Bt=0, the instability occurs when the external magnetic field declines rapidly with height when the field decay index n>ncr. For realistic sets of parameters, the equilibrium height is within 10 solar radii, and the effective ncr is in the range of 1.0-1.6. The critical decay index increases when the ratio of the toroidal flux to the external field decreases. This work is supported by NSF CAREER grant ATM-0748428.

  13. ICBP90 Regulation of DNA Methylation, Histone Ubiquitination, and Tumor Suppressor Gene Expression in Breast Cancer Cells

    DTIC Science & Technology

    2013-09-01

    accomplishments include creation of relevant plant lines, development of in vitro assays, and profiling of mRNA expression in null mutants. 15. SUBJECT TERMS...DNA methylation, UHRF1, VIM1, ubiquitination, epigenetics, chromatin 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...Molecular Basis of Human Disease ,” which covered several weeks’ worth of material specifically related to the molecular and epigenetic basis of cancer

  14. The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma

    PubMed Central

    Bianchi-Frias, Daniella; Hernandez, Susana A.; Coleman, Roger; Wu, Hong; Nelson, Peter S.

    2015-01-01

    Human prostate cancer (PCa) is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined if structural chromosomal alterations occur in GEM models of PCa and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNAs) in the widely used TRAMP, Hi-Myc, Pten-null and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). PMID:25298407

  15. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies

    PubMed Central

    Brydges, Susannah D.; Broderick, Lori; McGeough, Matthew D.; Pena, Carla A.; Mueller, James L.; Hoffman, Hal M.

    2013-01-01

    The inflammasome is a cytoplasmic multiprotein complex that promotes proinflammatory cytokine maturation in response to host- and pathogen-derived signals. Missense mutations in cryopyrin (NLRP3) result in a hyperactive inflammasome that drives overproduction of the proinflammatory cytokines IL-1β and IL-18, leading to the cryopyrin-associated periodic syndromes (CAPS) disease spectrum. Mouse lines harboring CAPS-associated mutations in Nlrp3 have elevated levels of IL-1β and IL-18 and closely mimic human disease. To examine the role of inflammasome-driven IL-18 in murine CAPS, we bred Nlrp3 mutations onto an Il18r-null background. Deletion of Il18r resulted in partial phenotypic rescue that abolished skin and visceral disease in young mice and normalized serum cytokines to a greater extent than breeding to Il1r-null mice. Significant systemic inflammation developed in aging Nlrp3 mutant Il18r-null mice, indicating that IL-1 and IL-18 drive pathology at different stages of the disease process. Ongoing inflammation in double-cytokine knockout CAPS mice implicated a role for caspase-1–mediated pyroptosis and confirmed that CAPS is inflammasome dependent. Our results have important implications for patients with CAPS and residual disease, emphasizing the need to explore other NLRP3-mediated pathways and the potential for inflammasome-targeted therapy. PMID:24084736

  16. Cyclin A2 promotes DNA repair in the brain during both development and aging.

    PubMed

    Gygli, Patrick E; Chang, Joshua C; Gokozan, Hamza N; Catacutan, Fay P; Schmidt, Theresa A; Kaya, Behiye; Goksel, Mustafa; Baig, Faisal S; Chen, Shannon; Griveau, Amelie; Michowski, Wojciech; Wong, Michael; Palanichamy, Kamalakannan; Sicinski, Piotr; Nelson, Randy J; Czeisler, Catherine; Otero, José J

    2016-07-01

    Various stem cell niches of the brain have differential requirements for Cyclin A2. Cyclin A2 loss results in marked cerebellar dysmorphia, whereas forebrain growth is retarded during early embryonic development yet achieves normal size at birth. To understand the differential requirements of distinct brain regions for Cyclin A2, we utilized neuroanatomical, transgenic mouse, and mathematical modeling techniques to generate testable hypotheses that provide insight into how Cyclin A2 loss results in compensatory forebrain growth during late embryonic development. Using unbiased measurements of the forebrain stem cell niche, we parameterized a mathematical model whereby logistic growth instructs progenitor cells as to the cell-types of their progeny. Our data was consistent with prior findings that progenitors proliferate along an auto-inhibitory growth curve. The growth retardation inCCNA2-null brains corresponded to cell cycle lengthening, imposing a developmental delay. We hypothesized that Cyclin A2 regulates DNA repair and that CCNA2-null progenitors thus experienced lengthened cell cycle. We demonstrate that CCNA2-null progenitors suffer abnormal DNA repair, and implicate Cyclin A2 in double-strand break repair. Cyclin A2's DNA repair functions are conserved among cell lines, neural progenitors, and hippocampal neurons. We further demonstrate that neuronal CCNA2 ablation results in learning and memory deficits in aged mice.

  17. Ellipsometry with polarisation analysis at cryogenic temperatures inside a vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, S.; Grees, B.; Spitzer, D.

    2013-12-15

    In this paper we describe a new variant of null ellipsometry to determine thicknesses and optical properties of thin films on a substrate at cryogenic temperatures. In the PCSA arrangement of ellipsometry the polarizer and the compensator are placed before the substrate and the analyzer after it. Usually, in the null ellipsometry the polarizer and the analyzer are rotated to find the searched minimum in intensity. In our variant we rotate the polarizer and the compensator instead, both being placed in the incoming beam before the substrate. Therefore the polarisation analysis of the reflected beam can be realized by anmore » analyzer at fixed orientation. We developed this method for investigations of thin cryogenic films inside a vacuum chamber where the analyzer and detector had to be placed inside the cold shield at a temperature of T≈ 90 K close to the substrate. All other optical components were installed at the incoming beam line outside the vacuum chamber, including all components which need to be rotated during the measurements. Our null ellipsometry variant has been tested with condensed krypton films on a highly oriented pyrolytic graphite substrate (HOPG) at a temperature of T≈ 25 K. We show that it is possible to determine the indices of refraction of condensed krypton and of the HOPG substrate as well as thickness of krypton films with reasonable accuracy.« less

  18. The Simple Map for a Single-null Divertor Tokamak: How to Find the Last Good Surface

    NASA Astrophysics Data System (ADS)

    Phan, Huong; Ali, Halima; Punjabi, Alkesh

    2000-10-01

    The Simple Map^1 is a representation of the magnetic field inside a single-null divertor tokamak. It is given by the equations: X_n+1=X_n kYn (1-Y_n), Y_n+1= Y_n+kX_n+1. These equations mimic the motion of the magnetic field lines in a single-null divertor tokamak. The fixed stable point is (0,0) and the unstable fixed oint is (0,1). k is fixed at 0.60. In our work, the starting values of Y in the map is kept in the interval of 0 to 1, and the starting value of X is 0. Using the successive bifurcation method, we first run these equations for 10^6 iterations to find the approximate value of Y when chaos occurs. We examine the neighborhood of this Y value to find the exact value of Y for the last good surface. We call this value Y_lgs. We find Y_lgs to be 0.997135768 for k=0.60 and X=0. This work is supported by US DOE OFES. Ms. Huong Phan is a HU CFRT Summer Fusion High School Workshop Scholar from Andrew P. Hill High School in California. She is supported by NASA SHARP Plus Program. 1. Punjabi A, Verma A and Boozer A, Phys Rev Lett 69 3322 (1992) and J Plasma Phys 52 91 (1994)

  19. Trypanosoma brucei (UMP synthase null mutants) are avirulent in mice, but recover virulence upon prolonged culture in vitro while retaining pyrimidine auxotrophy.

    PubMed

    Ong, Han B; Sienkiewicz, Natasha; Wyllie, Susan; Patterson, Stephen; Fairlamb, Alan H

    2013-10-01

    African trypanosomes are capable of both de novo synthesis and salvage of pyrimidines. The last two steps in de novo synthesis are catalysed by UMP synthase (UMPS) - a bifunctional enzyme comprising orotate phosphoribosyl transferase (OPRT) and orotidine monophosphate decarboxylase (OMPDC). To investigate the essentiality of pyrimidine biosynthesis in Trypanosoma brucei, we generated a umps double knockout (DKO) line by gene replacement. The DKO was unable to grow in pyrimidine-depleted medium in vitro, unless supplemented with uracil, uridine, deoxyuridine or UMP. DKO parasites were completely resistant to 5-fluoroorotate and hypersensitive to 5-fluorouracil, consistent with loss of UMPS, but remained sensitive to pyrazofurin indicating that, unlike mammalian cells, the primary target of pyrazofurin is not OMPDC. The null mutant was unable to infect mice indicating that salvage of host pyrimidines is insufficient to support growth. However, following prolonged culture in vitro, parasites regained virulence in mice despite retaining pyrimidine auxotrophy. Unlike the wild-type, both pyrimidine auxotrophs secreted substantial quantities of orotate, significantly higher in the virulent DKO line. We propose that this may be responsible for the recovery of virulence in mice, due to host metabolism converting orotate to uridine, thereby bypassing the loss of UMPS in the parasite. © 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  20. Magnetic Topology of Coronal Hole Linkages

    NASA Technical Reports Server (NTRS)

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  1. Abrogation of both short and long forms of latent transforming growth factor-β binding protein-1 causes defective cardiovascular development and is perinatally lethal.

    PubMed

    Horiguchi, Masahito; Todorovic, Vesna; Hadjiolova, Krassimira; Weiskirchen, Ralf; Rifkin, Daniel B

    2015-04-01

    Latent transforming growth factor-β binding protein-1 (LTBP-1) is an extracellular protein that is structurally similar to fibrillin and has an important role in controlling transforming growth factor-β (TGF-β) signaling by storing the cytokine in the extracellular matrix and by being involved in the conversion of the latent growth factor to its active form. LTBP-1 is found as both short (LTBP-1S) and long (LTBP-1L) forms, which are derived through the use of separate promoters. There is controversy regarding the importance of LTBP-1L, as Ltbp1L knockout mice showed multiple cardiovascular defects but the complete null mice did not. Here, we describe a third line of Ltbp1 knockout mice generated utilizing a conditional knockout strategy that ablated expression of both L and S forms of LTBP-1. These mice show severe developmental cardiovascular abnormalities and die perinatally; thus these animals display a phenotype similar to previously reported Ltbp1L knockout mice. We reinvestigated the other "complete" knockout line and found that these mice express a splice variant of LTBP-1L and, therefore, are not complete Ltbp1 knockouts. Our results clarify the phenotypes of Ltbp1 null mice and re-emphasize the importance of LTBP-1 in vivo. Copyright © 2015. Published by Elsevier B.V.

  2. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models

    PubMed Central

    Solana, José Carlos; Ramírez, Laura; Corvo, Laura; de Oliveira, Camila Indiani; Barral-Netto, Manoel; Requena, José María

    2017-01-01

    Background The immunization with genetically attenuated Leishmania cell lines has been associated to the induction of memory and effector T cell responses against Leishmania able to control subsequent challenges. A Leishmania infantum null mutant for the HSP70-II genes has been described, possessing a non-virulent phenotype. Methodology/Principal findings The L. infantum attenuated parasites (LiΔHSP70-II) were inoculated in BALB/c (intravenously and subcutaneously) and C57BL/6 (subcutaneously) mice. An asymptomatic infection was generated and parasites diminished progressively to become undetectable in most of the analyzed organs. However, inoculation resulted in the long-term induction of parasite specific IFN-γ responses able to control the disease caused by a challenge of L. major infective promastigotes. BALB/c susceptible mice showed very low lesion development and a drastic decrease in parasite burdens in the lymph nodes draining the site of infection and internal organs. C57BL/6 mice did not show clinical manifestation of disease, correlated to the rapid migration of Leishmania specific IFN-γ producing T cells to the site of infection. Conclusion/Significance Inoculation of the LiΔHSP70-II attenuated line activates mammalian immune system for inducing moderate pro-inflammatory responses. These responses are able to confer long-term protection in mice against the infection of L. major virulent parasites. PMID:28558043

  3. Fabrication of artificial toroid nanostructures by modified β-sheet peptides.

    PubMed

    Li, Wen; Li, Jingfang; Lee, Myongsoo

    2013-09-25

    Facial peptide P1 carrying repeating hydrophobic and hydrophilic residues as well as lysine terminals self-assemble into uniform toroid structures. The sensitive balance between the hydrophobic interactions and electrostatic repulsion dominates the formation of highly curved assemblies.

  4. Determination of broken KAM surfaces for particle orbits in toroidal confinement systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. B.

    2015-10-05

    Here, the destruction of Kolmogorov–Arnold–Moser surfaces in a Hamiltonian system is an important topic in nonlinear dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement systems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to give the effect of these resonances on transport. In this paper we compare three different methods for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal magnetic confinement device in the presence of time dependent magnetic perturbations.

  5. Grazing incidence toroidal mirror pairs in imaging and spectroscopic applications.

    PubMed

    Malvezzi, A M; Tondello, G

    1983-08-15

    The optical performance of pairs of toroidal mirrors in grazing incidence has been studied analytically and numerically. Two types of toroidal surface are possible: football and bicycle tire. In grazing incidence and for configurations that compensate up to second-order aberrations, there are significant differences in performance between the two types. For football-type tori the best configuration appears to be Z-shaped with tangential and sagittal foci at the middle point between the mirrors. For bicycle tire-type tori the best configuration is U-shaped with the tangential focus at the middle point and the sagittal at infinity.

  6. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  7. Dual mTORC1/2 inhibition induces anti-proliferative effect in NF1-associated plexiform neurofibroma and malignant peripheral nerve sheath tumor cells

    PubMed Central

    Hivelin, Mikael; Nusbaum, Patrick; Hubas, Arnaud; Laurendeau, Ingrid; Lantieri, Laurent; Wolkenstein, Pierre; Vidaud, Michel; Pasmant, Eric; Chapuis, Nicolas; Parfait, Béatrice

    2016-01-01

    Approximately 30-50% of individuals with Neurofibromatosis type 1 develop benign peripheral nerve sheath tumors, called plexiform neurofibromas (PNFs). PNFs can undergo malignant transformation to highly metastatic malignant peripheral nerve sheath tumors (MPNSTs) in 5-10% of NF1 patients, with poor prognosis. No effective systemic therapy is currently available for unresectable tumors. In tumors, the NF1 gene deficiency leads to Ras hyperactivation causing the subsequent activation of the AKT/mTOR and Raf/MEK/ERK pathways and inducing multiple cellular responses including cell proliferation. In this study, three NF1-null MPNST-derived cell lines (90-8, 88-14 and 96-2), STS26T sporadic MPNST cell line and PNF-derived primary Schwann cells were used to test responses to AZD8055, an ATP-competitive “active-site” mTOR inhibitor. In contrast to rapamycin treatment which only partially affected mTORC1 signaling, AZD8055 induced a strong inhibition of mTORC1 and mTORC2 signaling in MPNST-derived cell lines and PNF-derived Schwann cells. AZD8055 induced full blockade of mTORC1 leading to an efficient decrease of global protein synthesis. A higher cytotoxic effect was observed with AZD8055 compared to rapamycin in the NF1-null MPNST-derived cell lines with IC50 ranging from 70 to 140 nM and antiproliferative effect was confirmed in PNF-derived Schwann cells. Cell migration was impaired by AZD8055 treatment and cell cycle analysis showed a G0/G1 arrest. Combined effects of AZD8055 and PD0325901 MEK inhibitor as well as BRD4 (BromoDomain-containing protein 4) inhibitors showed a synergistic antiproliferative effect. These data suggest that NF1-associated peripheral nerve sheath tumors are an ideal target for AZD8055 as a single molecule or in combined therapies. PMID:26840085

  8. Ring stability of underground toroidal tanks

    NASA Astrophysics Data System (ADS)

    Lubis, Asnawi; Su'udi, Ahmad

    2017-06-01

    The design of pressure vessels subjected to internal pressure is governed by its strength, while the design of pressure vessels subjected to external pressure is governed by its stability, which is for circular cross-section is called the ring stability. This paper presented the results of finite element study of ring stability of circular toroidal tank without stiffener under external pressure. The tank was placed underground and external pressure load from soil was simulated as pressure at the top of the vessel along 30° circumferentially. One might ask the reason for choosing toroidal rather than cylindrical tank. Preliminary finite element studies showed that toroidal shells can withstand higher external pressure than cylindrical shells. In this study, the volume of the tank was fixed for 15,000 litters. The buckling external pressure (pL) was calculated for radius ratio (R/r) of 2, 3, and 4. The corresponding cross-section radiuses were 724.3 mm, 632.7 mm, and 574.9 mm, respectively. The selected element type was SHELL 281 from the ANSYS element library. To obtain the buckling load, the arc-length method was used in the nonlinear analysis. Both material and geometric nonlinearities were activated during the analysis. The conclusion of this study is that short-radius and thin-walled toroidal shell produces higher buckling load.

  9. Parallel Reconstruction Using Null Operations (PRUNO)

    PubMed Central

    Zhang, Jian; Liu, Chunlei; Moseley, Michael E.

    2011-01-01

    A novel iterative k-space data-driven technique, namely Parallel Reconstruction Using Null Operations (PRUNO), is presented for parallel imaging reconstruction. In PRUNO, both data calibration and image reconstruction are formulated into linear algebra problems based on a generalized system model. An optimal data calibration strategy is demonstrated by using Singular Value Decomposition (SVD). And an iterative conjugate- gradient approach is proposed to efficiently solve missing k-space samples during reconstruction. With its generalized formulation and precise mathematical model, PRUNO reconstruction yields good accuracy, flexibility, stability. Both computer simulation and in vivo studies have shown that PRUNO produces much better reconstruction quality than autocalibrating partially parallel acquisition (GRAPPA), especially under high accelerating rates. With the aid of PRUO reconstruction, ultra high accelerating parallel imaging can be performed with decent image quality. For example, we have done successful PRUNO reconstruction at a reduction factor of 6 (effective factor of 4.44) with 8 coils and only a few autocalibration signal (ACS) lines. PMID:21604290

  10. The universal instability in general geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helander, P.; Plunk, G. G.

    2015-09-15

    The “universal” instability has recently been revived by Landreman et al. [Phys. Rev. Lett. 114, 095003 (2015)], who showed that it indeed exists in plasma geometries with straight (but sheared) magnetic field lines. Here, it is demonstrated analytically that this instability can be presented in more general sheared and toroidal geometries. In a torus, the universal instability is shown to be closely related to the trapped-electron mode, although the trapped-electron drive is usually dominant. However, this drive can be weakened or eliminated, as in the case in stellarators with the maximum-J property, leaving the parallel Landau resonance to drive amore » residual mode, which is identified as the universal instability.« less

  11. A titanium hydride gun for plasma injection into the T2-reversed field pinch device

    NASA Astrophysics Data System (ADS)

    Voronin, A. V.; Hellblom, K. G.

    1999-02-01

    A study of a plasma gun (modified Bostic type) with titanium hydride electrodes has been carried out. The total number of released hydrogen atoms was in the range 1016-1018 and the maximum plasma flow velocity was 2.5×105 m s-1. The ion density near the gun edge reached 1.8×1020 m-3 and the electron temperature was around 40 eV as estimated from probe measurements. No species other than hydrogen or titanium were seen in the plasma line radiation. The plasma injector was successfully used for gas pre-ionization in the Extrap T2 reversed-field pinch device (ohmic heating toroidal experiment (OHTE)).

  12. Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner

    PubMed Central

    Rattan, R; Giri, S; Hartmann, LC; Shridhar, V

    2011-01-01

    Abstract Metformin, the most widely used drug for type 2 diabetes activates 59 adenosine monophosphate (AMP)-activated protein kinase (AMPK), which regulates cellular energy metabolism. Here, we report that ovarian cell lines VOSE, A2780, CP70, C200, OV202, OVCAR3, SKOV3ip, PE01 and PE04 predominantly express -α1, -β1, -γ1 and -γ2 isoforms of AMPK subunits. Our studies show that metformin treatment (1) significantly inhibited proliferation of diverse chemo-responsive and -resistant ovarian cancer cell lines (A2780, CP70, C200, OV202, OVCAR3, SKVO3ip, PE01 and PE04), (2) caused cell cycle arrest accompanied by decreased cyclin D1 and increased p21 protein expression, (3) activated AMPK in various ovarian cancer cell lines as evident from increased phosphorylation of AMPKα and its downstream substrate; acetyl co-carboxylase (ACC) and enhanced β-oxidation of fatty acid and (4) attenuated mTOR-S6RP phosphorylation, inhibited protein translational and lipid biosynthetic pathways, thus implicating metformin as a growth inhibitor of ovarian cancer cells. We also show that metformin-mediated effect on AMPK is dependent on liver kinase B1 (LKB1) as it failed to activate AMPK-ACC pathway and cell cycle arrest in LKB1 null mouse embryo fibroblasts (mefs). This observation was further supported by using siRNA approach to down-regulate LKB1 in ovarian cancer cells. In contrast, met formin inhibited cell proliferation in both wild-type and AMPKα1/2 null mefs as well as in AMPK silenced ovarian cancer cells. Collectively, these results provide evidence on the role of metformin as an anti-proliferative therapeutic that can act through both AMPK-dependent as well as AMPK-independent pathways. PMID:19874425

  13. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs.

    PubMed

    Xin, Jige; Yang, Huaqiang; Fan, Nana; Zhao, Bentian; Ouyang, Zhen; Liu, Zhaoming; Zhao, Yu; Li, Xiaoping; Song, Jun; Yang, Yi; Zou, Qingjian; Yan, Quanmei; Zeng, Yangzhi; Lai, Liangxue

    2013-01-01

    Inbred mini-pigs are ideal organ donors for future human xenotransplantations because of their clear genetic background, high homozygosity, and high inbreeding endurance. In this study, we chose fibroblast cells from a highly inbred pig line called Banna mini-pig inbred line (BMI) as donor nuclei for nuclear transfer, combining with transcription activator-like effector nucleases (TALENs) and successfully generated α-1,3-galactosyltransferase (GGTA1) gene biallelic knockout (KO) pigs. To validate the efficiency of TALEN vectors, in vitro-transcribed TALEN mRNAs were microinjected into one-cell stage parthenogenetically activated porcine embryos. The efficiency of indel mutations at the GGTA1-targeting loci was as high as 73.1% (19/26) among the parthenogenetic blastocysts. TALENs were co-transfected into porcine fetal fibroblasts of BMI with a plasmid containing neomycin gene. The targeting efficiency reached 89.5% (187/209) among the survived cell clones after a 10 d selection. More remarkably 27.8% (58/209) of colonies were biallelic KO. Five fibroblast cell lines with biallelic KO were chosen as nuclear donors for somatic cell nuclear transfer (SCNT). Three miniature piglets with biallelic mutations of the GGTA1 gene were achieved. Gal epitopes on the surface of cells from all the three biallelic KO piglets were completely absent. The fibroblasts from the GGTA1 null piglets were more resistant to lysis by pooled complement-preserved normal human serum than those from wild-type pigs. These results indicate that a combination of TALENs technology with SCNT can generate biallelic KO pigs directly with high efficiency. The GGTA1 null piglets with inbred features created in this study can provide a new organ source for xenotransplantation research.

  14. Solar Polar Jets Driven by Magnetic Reconnection, Gravity, and Wind

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.

    2014-06-01

    Polar jets are dynamic, narrow, radially extended structures observed in solar EUV emission near the limb. They originate within the open field of coronal holes in “anemone” regions, which are intrusions of opposite magnetic polarity. The key topological feature is a magnetic null point atop a dome-shaped fan surface of field lines. Applied stresses readily distort the null into a current patch, eventually inducing interchange reconnection between the closed and open fields inside and outside the fan surface (Antiochos 1996). Previously, we demonstrated that magnetic free energy stored on twisted closed field lines inside the fan surface is released explosively by the onset of fast reconnection across the current patch (Pariat et al. 2009, 2010). A dense jet comprised of a nonlinear, torsional Alfvén wave is ejected into the outer corona along the newly reconnected open field lines. Now we are extending those exploratory simulations by including the effects of solar gravity, solar wind, and expanding spherical geometry. We find that the model remains robust in the resulting more complex setting, with explosive energy release and dense jet formation occurring in the low corona due to the onset of a kink-like instability, as found in the earlier Cartesian, gravity-free, static-atmosphere cases. The spherical-geometry jet including gravity and wind propagates far more rapidly into the outer corona and inner heliosphere than a comparison jet simulation that excludes those effects. We report detailed analyses of our new results, compare them with previous work, and discuss the implications for understanding remote and in-situ observations of solar polar jets.This work was supported by NASA’s LWS TR&T program.

  15. SYMPATHETIC PARTIAL AND FULL FILAMENT ERUPTIONS OBSERVED IN ONE SOLAR BREAKOUT EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yuandeng; Liu Yu; Su Jiangtao, E-mail: ydshen@ynao.ac.cn

    2012-05-01

    We report two sympathetic solar eruptions including a partial and a full flux rope eruption in a quadrupolar magnetic region where a large and a small filament resided above the middle and the east neutral lines, respectively. The large filament first rose slowly at a speed of 8 km s{sup -1} for 23 minutes; it then accelerated to 102 km s{sup -1}. Finally, this filament erupted successfully and caused a coronal mass ejection. During the slow rising phase, various evidence for breakout-like external reconnection has been identified at high and low temperature lines. The eruption of the small filament startedmore » around the end of the large filament's slow rising. This filament erupted partially, and no associated coronal mass ejection could be detected. Based on a potential field extrapolation, we find that the topology of the three-dimensional coronal field above the source region is composed of three low-lying lobes and a large overlying flux system, and a null point located between the middle lobe and the overlying antiparallel flux system. We propose a possible mechanism within the framework of the magnetic breakout model to interpret the sympathetic filament eruptions, in which the magnetic implosion mechanism is thought to be a possible link between the sympathetic eruptions, and the external reconnection at the null point transfers field lines from the middle lobe to the lateral lobes and thereby leads to the full (partial) eruption of the observed large (small) filament. Other possible mechanisms are also discussed briefly. We conclude that the structural properties of coronal fields are important for producing sympathetic eruptions.« less

  16. System and Method for Null-Lens Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Hill, Peter C. (Inventor); Thompson, Patrick L. (Inventor); Aronstein, David L. (Inventor); Bolcar, Matthew R. (Inventor); Smith, Jeffrey S. (Inventor)

    2015-01-01

    A method of measuring aberrations in a null-lens including assembly and alignment aberrations. The null-lens may be used for measuring aberrations in an aspheric optic with the null-lens. Light propagates from the aspheric optic location through the null-lens, while sweeping a detector through the null-lens focal plane. Image data being is collected at locations about said focal plane. Light is simulated propagating to the collection locations for each collected image. Null-lens aberrations may extracted, e.g., applying image-based wavefront-sensing to collected images and simulation results. The null-lens aberrations improve accuracy in measuring aspheric optic aberrations.

  17. Adaptive jammer nulling in EHF communications satellites

    NASA Astrophysics Data System (ADS)

    Bhagwan, Jai; Kavanagh, Stephen; Yen, J. L.

    A preliminary investigation is reviewed concerning adaptive null steering multibeam uplink receiving system concepts for future extremely high frequency communications satellites. Primary alternatives in the design of the uplink antenna, the multibeam adaptive nulling receiver, and the processing algorithm and optimization criterion are discussed. The alternatives are phased array, lens or reflector antennas, nulling at radio frequency or an intermediate frequency, wideband versus narrowband nulling, and various adaptive nulling algorithms. A primary determinant of the hardware complexity is the receiving system architecture, which is described for the alternative antenna and nulling concepts. The final concept chosen will be influenced by the nulling performance requirements, cost, and technological readiness.

  18. Broken chiral symmetry on a null plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beane, Silas R., E-mail: silas@physics.unh.edu

    2013-10-15

    On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-planemore » description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.« less

  19. Determination of tungsten and molybdenum concentrations from an x-ray range spectrum in JET with the ITER-like wall configuration

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Shumack, A. E.; Maggi, C. F.; Reinke, M.; Lawson, K. D.; Coffey, I.; Pütterich, T.; Brezinsek, S.; Lipschultz, B.; Matthews, G. F.; Chernyshova, M.; Jakubowska, K.; Scholz, M.; Rzadkiewicz, J.; Czarski, T.; Dominik, W.; Kasprowicz, G.; Pozniak, K.; Zabolotny, W.; Zastrow, K.-D.; Conway, N. J.; contributors, JET

    2015-07-01

    The {{W}45+} and {{W}46+} 3p-4d inner shell excitation lines in addition to M{{o}32+} 2p-3s lines have been identified from the spectrum taken by an upgraded high-resolution x-ray spectrometer. It is found from analysis of the absolute intensities of the {{W}46+} and M{{o}32+} lines that W and Mo concentrations are in the range of ˜ {{10}-5} and ˜ {{10}-6}, respectively, with a ratio of ˜5% in JET with the ITER-like wall configuration for ELMy H-mode plasmas with a plasma current of 2.0-2.5 MA, a toroidal magnetic field of 2.7 T and a neutral beam injection power of 14-18 MW. For the purpose of checking self-consistency, it is confirmed that the W concentration determined from the {{W}45+} line is in agreement with that from the {{W}46+} line within 20% and that the plasma effective charge determined from the continuum of the first order reflection spectrum is also in agreement with that from the second order within 50%. Further, the determined plasma effective charge is in agreement with that determined from a visible spectroscopy, confirming that the sensitivity of the x-ray spectrometer is valid and that the W and the Mo concentrations are also likely to be valid.

  20. Very Fast Current Diagnostic for Linear Pulsed Beams

    NASA Astrophysics Data System (ADS)

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito

    2018-01-01

    Fast current pulses manage lasers and particle accelerators and require sophisticate systems to be detected. At today Rogowski coils are well known. They are designed and built with a toroidal structure. In recently application, flat transmission lines are imploded and for this reason we develop a linear Rogowski coil to detect current pulses inside flat conductors. To get deep information from the system, it was approached by means of the theory of the transmission lines. The coil we build presents a resistance but it doesn't influence the rise time of the response, instead the integrating time. We also studied the influence of the magnetic properties of coil support. The new device was able to record pulses of more hundred nanoseconds depending on the inductance, load impedance and resistance of the coil. Furthermore, its response was characterized by a sub-nanosecond rise time ( 100 ps), The attenuation coefficient depends mainly on the turn number of the coil, while the quality of the response depends both on the manufacture quality of the coil and on the magnetic core characteristics. In biophysical applications often, a double line is employed in order to have a sample as control and a sample stressed by a light source. So, in this case we build two equal plane lines by 100 Ω characteristic resistance connected in parallel. We diagnosed the current present in a line. The attenuation factor resulted to be 11,5 A/V.

  1. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    DOE PAGES

    Frerichs, H.; Schmitz, O.; Covele, B.; ...

    2018-02-28

    Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Therefore, small changes in the strikemore » point location can be expected to have a large impact on diverter conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the diverter slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which three dimensional edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.« less

  2. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.

  3. Model for a transformer-coupled toroidal plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauf, Shahid; Balakrishna, Ajit; Chen Zhigang

    2012-01-15

    A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH{sub 3} plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due tomore » rapid dissociation of NH{sub 3}, NH{sub x}{sup +} ions are more prevalent near the gas inlet and Ar{sup +} ions are the dominant ions farther downstream. NH{sub 3} and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH{sub 3} dissociates more readily and NH{sub x}{sup +} ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH{sub 3} dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH{sub 4}{sup +} ions are produced and dissociation by-products have higher concentrations near the outlet.« less

  4. Plasma response to m/n  =  3/1 resonant magnetic perturbation at J-TEXT Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, Qiming; Li, Jianchao; Wang, Nengchao; Yu, Q.; Chen, Jie; Cheng, Zhifeng; Chen, Zhipeng; Ding, Yonghua; Jin, Hai; Li, Da; Li, Mao; Liu, Yang; Rao, Bo; Zhu, Lizhi; Zhuang, Ge; the J-TEXT Team

    2016-09-01

    The influence of resonant magnetic perturbations (RMPs) with a large m/n  =  3/1 component on electron density has been studied at J-TEXT tokamak by using externally applied static and rotating RMPs, where m and n are the poloidal and toroidal mode number, respectively. The detailed time evolution of electron density profile, measured by the polarimeter-interferometer, shows that the electron density n e first increases (decreases) inside (around/outside) of the 3/1 rational surface (RS), and it is increased globally later together with enhanced edge recycling. Associated with field penetration, the toroidal rotation around the 3/1 RS is accelerated in the co-I p direction and the poloidal rotation is changed from the electron to ion diamagnetic drift direction. Spontaneous unlocking-penetration circles occur after field penetration if the RMPs amplitude is not strong enough. For sufficiently strong RMPs, the 2/1 locked mode is also triggered due to mode coupling, and the global density is increased. The field penetration threshold is found to be linearly proportional to n eL (line-integrated density) at the 3/1 RS but to (n eL)0.73 for n e at the plasma core. In addition, for rotating RMPs with a large 3/1 component, field penetration causes a global increase in electron density.

  5. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frerichs, H.; Schmitz, O.; Covele, B.

    Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Therefore, small changes in the strikemore » point location can be expected to have a large impact on diverter conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the diverter slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which three dimensional edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.« less

  6. Numerical exploration of non-axisymmetric divertor closure in the small angle slot (SAS) divertor at DIII-D

    NASA Astrophysics Data System (ADS)

    Frerichs, H.; Schmitz, O.; Covele, B.; Feng, Y.; Guo, H. Y.; Hill, D.

    2018-05-01

    Numerical simulations of toroidal asymmetries in a tightly baffled small angle slot (SAS) divertor on the DIII-D tokamak show that toroidal asymmetries in divertor closure result in (non-axisymmetric) local onset of detachment within a density window of 10-15% on top of the nominal threshold separatrix density. The SAS divertor is explored at DIII-D for improving access to cold, dissipative/detached divertor conditions. The narrow width of the slot divertor coupled with a small magnetic field line-to-target angle facilitates the buildup of neutral density, thereby increasing radiative and neutrals-related (atoms and molecules) losses in the divertor. Small changes in the strike point location can be expected to have a large impact on divertor conditions. The combination of misaligned slot structure and non-axisymmetric perturbations to the magnetic field configuration causes the strike point to move along the divertor target plate, possibly leaving the divertor slot at some locations. The latter extreme case essentially introduces an opening in the divertor slot from where recycling neutrals can easily escape, and thereby degrade the performance of the slot divertor. Such a strike point dislocation is approximated by a finite gap in the divertor baffle for which 3D edge plasma and neutral gas simulations are performed with the EMC3-EIRENE code.

  7. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traverso, P. J., E-mail: pjt0002@auburn.edu; Maurer, D. A.; Ennis, D. A.

    2014-11-15

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum systemmore » through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#∼ 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19} m{sup −3} dependent upon operational scenario.« less

  8. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  9. Experimental evidence of edge intrinsic momentum source driven by kinetic ion loss and edge radial electric fields in tokamaks

    DOE PAGES

    Boedo, J. A.; deGrassie, J. S.; Grierson, B.; ...

    2016-09-21

    Here, bulk ion toroidal velocity profiles, V D+ ||, peaking at 40–60 km/s are observed with Mach probes in a narrow edge region of DIII-D discharges without external momentum input. This intrinsic rotation can be well reproduced by a first principle, collisionless kinetic loss model of thermal ion loss that predicts the existence of a loss-cone distribution in velocity space resulting in a co-Ip directed velocity. We consider two kinetic models, one of which includes turbulence-enhanced momentum transport, as well as the Pfirsch-Schluter (P-S) fluid mechanism. We measure a fine structure of the boundary radial electric field, Er, insofar ignored,more » featuring large (10–20 kV/m) positive peaks in the scrape off layer (SOL) at, or slightly inside, the last closed flux surface of these low power L- and H-mode discharges in DIII-D. The Er structure significantly affects the ion-loss model, extended to account for a non-uniform electric field. We also find that V D+ || is reduced when the magnetic topology is changed from lower single null to upper single null. The kinetic ion loss model containing turbulence-enhanced momentum transport can explain the reduction, as we find that the potential fluctuations decay with radius, while we need to invoke a topology-enhanced collisionality on the simpler kinetic model. The P-S mechanism fails to reproduce the damping. We show a clear correlation between the near core V C6+ || velocity and the peak edge V D+ || in discharges with no external torque, further supporting the hypothesis that ion loss is the source for intrinsic torque in the present tokamaks. However, we also show that when external torque is injected in the core, it can complete with, and eventually overwhelm, the edge source, thus determining the near SOL flows. Finally, we show some additional evidence that the ion/electron distribution in the SOL is non-Maxwellian.« less

  10. Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern.

    PubMed

    Dobson, Deborah E; Kamhawi, Shaden; Lawyer, Phillip; Turco, Salvatore J; Beverley, Stephen M; Sacks, David L

    2010-11-11

    Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In "selective" sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the "selective" fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both 'poly-scGal' and 'null-scGal' lines survived poorly relative to PpapJ-sympatric L. major FV1 and other 'mono-scGal' lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing 'null-scGal'-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a 'PpapJ-optimal' scGal-LPG PAMP. Unexpectedly, these "L. major FV1-cloaked" L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific 'mono-scGal' pattern. However, failure of 'mono-scGal' L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is "selective" or "permissive", with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania.

  11. Minimum magnetic curvature for resilient divertors using Compact Toroidal Hybrid geometry

    NASA Astrophysics Data System (ADS)

    Bader, A.; Hegna, C. C.; Cianciosa, M.; Hartwell, G. J.

    2018-05-01

    The properties of resilient divertors are explored using equilibria derived from Compact Toroidal Hybrid (CTH) geometries. Resilience is defined here as the robustness of the strike point patterns as the plasma geometry and/or plasma profiles are changed. The addition of plasma current in the CTH configurations significantly alters the shape of the last closed flux surface and the rotational transform profile, however, it does not alter the strike point pattern on the target plates, and hence has resilient divertor features. The limits of when a configuration transforms to a resilient configuration is then explored. New CTH-like configurations are generated that vary from a perfectly circular cross section to configurations with increasing amounts of toroidal shaping. It is found that even small amounts of toroidal shaping lead to strike point localization that is similar to the standard CTH configuration. These results show that only a small degree of three-dimensional shaping is necessary to produce a resilient divertor, implying that any highly shaped optimized stellarator will possess the resilient divertor property.

  12. Demountable externally anchored low-stress magnet system and related method

    DOEpatents

    Powell, James; Hsieh, Shih-Yung; Lehner, John R.

    1981-01-01

    Toroidal field coils are interlaced with other toroidal structures and are operated under supercooled conditions. To facilitate demounting the toroidal field coils, which are supercooled, they are made in the form of connected segments constituting coils of polygonal form. The segments may be rectilinear in form, but some may also be U-shaped or L-shaped. The segments are detachable from one another and are supported in load relieving manner. Power devices are used to displace the segments to facilitate removal of the coils from the aforesaid toroidal structures and to provide for the accommodation of dimensional changes and stresses due to thermal and magnetic conditions. The segments are formed of spaced parallel conductive slabs with the slabs of one segment being interdigitated with the slabs of the adjacent segment. The interdigitated slabs may be soldered together or slidingly engaged. The slabs are shaped to accommodate superconductors and to provide passages for a cooling medium. The slabs are moreover separated by insulator slabs with which they form a coil structure which is jacketed.

  13. Thermal magnetic noise in a strip wound crystalline ferromagnetic core at 4.2 K

    NASA Astrophysics Data System (ADS)

    Snigirev, O. V.; Maslennikov, Yu. V.; Vitale, S.; Cerdonio, M.; Prodi, G. A.

    1996-01-01

    A dc SQUID magnetometer-based system has been developed and used to measure, in the frequency range 50-2300 Hz, the complex magnetic permeability μr(ν) and the magnetization noise at 4.2 K in a strip wound toroid. This toroidal core has been made of the 3-μm-thick ribbon fabricated from a crystalline magnetically soft alloy, Ultraperm. Below 1 kHz a constant value of -arg[μr(ν)]≊2×10-3 and 1/ν shaped noise spectral density have been measured. For frequencies higher than 1 kHz a linear growth of the imaginary part μr and a white noise have been found. The noise due to the sample is found in quantitative agreement with the standard fluctuation-dissipation formula for the thermal noise, while a comparison of the permeability imaginary part magnitude with the theoretical value has indicated a partially shorted windings in the toroid, which have decreased the toroid roll-off frequency down to 1 MHz.

  14. Measurements of the toroidal torque balance of error field penetration locked modes

    DOE PAGES

    Shiraki, Daisuke; Paz-Soldan, Carlos; Hanson, Jeremy M.; ...

    2015-01-05

    Here, detailed measurements from the DIII-D tokamak of the toroidal dynamics of error field penetration locked modes under the influence of slowly evolving external fields, enable study of the toroidal torques on the mode, including interaction with the intrinsic error field. The error field in these low density Ohmic discharges is well known based on the mode penetration threshold, allowing resonant and non-resonant torque effects to be distinguished. These m/n = 2/1 locked modes are found to be well described by a toroidal torque balance between the resonant interaction with n = 1 error fields, and a viscous torque inmore » the electron diamagnetic drift direction which is observed to scale as the square of the perturbed field due to the island. Fitting to this empirical torque balance allows a time-resolved measurement of the intrinsic error field of the device, providing evidence for a time-dependent error field in DIII-D due to ramping of the Ohmic coil current.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, H.; Nunami, M.; Department of Fusion Science, SOKENDAI

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novelmore » gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Severson; M Bissen; M Fisher

    SRC has recently commissioned a new Varied Line-Spacing Plane Grating Monochromator (VLS-PGM) utilizing as its source a 1 m long APPLE II insertion device in short-straight-section 9 of the Aladdin storage ring. The insertion device reliably delivers horizontal, vertical, and right and left circularly polarized light to the beamline. Measurements from an in situ polarimeter can be used for undulator corrections to compensate for depolarizing effects of the beamline. The beamline has only three optical elements and covers the energy range from 11.1 to 270 eV using two varied line-spacing gratings. A plane mirror rotates to illuminate the gratings atmore » the correct angle to cancel the defocus term at all photon energies. An exit slit and elliptical-toroid refocusing mirror complete the beamline. Using a 50 {mu}m exit slit, the beamline provides moderate to high resolution, with measured flux in the mid 10{sup 12} (photons/s/200 mA) range, and a spot size of 400 {mu}m horizontal by 30 {mu}m vertical.« less

  17. Detection of an electron beam in a high density plasma via an electrostatic probe

    NASA Astrophysics Data System (ADS)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki

    2018-07-01

    An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.

  18. Detection of an electron beam in a high density plasma via an electrostatic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart

    Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less

  19. Detection of an electron beam in a high density plasma via an electrostatic probe

    DOE PAGES

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...

    2018-05-08

    Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less

  20. Regulation of hTERT Expression and Function in Newly Immortalized p53(+) Human Mammary Epithelial Cell Lines

    DTIC Science & Technology

    2006-06-01

    transfected into 184A1-Babe and 184A1-GSE22 cells at a 1:1 ratio with the promoterless Renilla reporter plasmid (pRL- Null). Following a 48h incubation...reporter luminescence to the Renilla reporter luminescence. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 184A1-Babe p15 pGL3- Basic 184A1-Babe p15 pGL3- 3396

Top