Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle
Boberg, Evan S.; Gebby, Brian P.
1999-09-28
A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.
Design of digital load torque observer in hybrid electric vehicle
NASA Astrophysics Data System (ADS)
Sun, Yukun; Zhang, Haoming; Wang, Yinghai
2008-12-01
In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.
Brake blending strategy for a hybrid vehicle
Boberg, Evan S.
2000-12-05
A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.
Torque control for electric motors
NASA Technical Reports Server (NTRS)
Bernard, C. A.
1980-01-01
Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.
NASA Astrophysics Data System (ADS)
Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping
2018-02-01
In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.
A flight simulator control system using electric torque motors
NASA Technical Reports Server (NTRS)
Musick, R. O.; Wagner, C. A.
1975-01-01
Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.
NASA Astrophysics Data System (ADS)
Luo, Yugong; Chen, Tao; Li, Keqiang
2015-12-01
The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.
Manipulation of Spin-Torque Generation Using Ultrathin Au
NASA Astrophysics Data System (ADS)
An, Hongyu; Haku, Satoshi; Kanno, Yusuke; Nakayama, Hiroyasu; Maki, Hideyuki; Shi, Ji; Ando, Kazuya
2018-06-01
The generation and the manipulation of current-induced spin-orbit torques are of essential interest in spintronics. However, in spite of the vital progress in spin orbitronics, electric control of the spin-torque generation still remains elusive and challenging. We report on electric control of the spin-torque generation using ionic-liquid gating of ultrathin Au. We show that by simply depositing a SiO2 capping layer on an ultrathin-Au /Ni81Fe19 bilayer, the spin-torque generation efficiency is drastically enhanced by a maximum of 7 times. This enhancement is verified to be originated from the rough ultrathin-Au /Ni81Fe19 interface induced by the SiO2 deposition, which results in the enhancement of the interface spin-orbit scattering. We further show that the spin-torque generation efficiency from the ultrathin Au film can be reversibly manipulated by a factor of 2 using the ionic gating with an external electric field within a small range of 1 V. These results pave a way towards the efficient control of the spin-torque generation in spintronic applications.
NASA Astrophysics Data System (ADS)
Fgeppert, E.
1984-09-01
Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.
Schearer, Eric M.; Liao, Yu-Wei; Perreault, Eric J.; Tresch, Matthew C.; Memberg, William D.; Kirsch, Robert F.; Lynch, Kevin M.
2016-01-01
We present a method to identify the dynamics of a human arm controlled by an implanted functional electrical stimulation neuroprosthesis. The method uses Gaussian process regression to predict shoulder and elbow torques given the shoulder and elbow joint positions and velocities and the electrical stimulation inputs to muscles. We compare the accuracy of torque predictions of nonparametric, semiparametric, and parametric model types. The most accurate of the three model types is a semiparametric Gaussian process model that combines the flexibility of a black box function approximator with the generalization power of a parameterized model. The semiparametric model predicted torques during stimulation of multiple muscles with errors less than 20% of the total muscle torque and passive torque needed to drive the arm. The identified model allows us to define an arbitrary reaching trajectory and approximately determine the muscle stimulations required to drive the arm along that trajectory. PMID:26955041
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Performance data on the Prestolite MTC-4001 series wound dc motor and General Electric EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing show the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 76% and 82%, regardless of temperature or mode of operation.
Extraneous torque and compensation control on the electric load simulator
NASA Astrophysics Data System (ADS)
Jiao, Zongxia; Li, Chenggong; Ren, Zhiting
2003-09-01
In this paper a novel motor-drive load simulator based on compensation control strategy is proposed and designed. Through analyzing the torque control system consisting of DC torque motor, PWM module and torque sensor, it is shown that performance of the motor-drive load simulator is possible to be as good as that of the electro-hydraulic load simulator in the range of small torque. In the course of loading, the rotation of the actuator would cause a strong disturbance torque through the motor back-EMF, which produces extraneous torque similar as in electro-hydraulic load simulator. This paper analyzes the cause of extraneous torque inside the torque motor in detail and presents an appropriate compensation control with which the extraneous torque can be compensated and the good performance of the torque control system can be obtained. The results of simulation indicate that the compensation is very effective and the track performance is according with the request.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu
This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-01-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-06-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
Torque shudder protection device and method
King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.
1997-01-01
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.
Torque shudder protection device and method
King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.
1997-03-11
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.
Rear wheel torque vectoring model predictive control with velocity regulation for electric vehicles
NASA Astrophysics Data System (ADS)
Siampis, Efstathios; Velenis, Efstathios; Longo, Stefano
2015-11-01
In this paper we propose a constrained optimal control architecture for combined velocity, yaw and sideslip regulation for stabilisation of the vehicle near the limit of lateral acceleration using the rear axle electric torque vectoring configuration of an electric vehicle. A nonlinear vehicle and tyre model are used to find reference steady-state cornering conditions and design two model predictive control (MPC) strategies of different levels of fidelity: one that uses a linearised version of the full vehicle model with the rear wheels' torques as the input, and another one that neglects the wheel dynamics and uses the rear wheels' slips as the input instead. After analysing the relative trade-offs between performance and computational effort, we compare the two MPC strategies against each other and against an unconstrained optimal control strategy in Simulink and Carsim environment.
Energy control strategy for a hybrid electric vehicle
Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava
2002-08-27
An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.
Energy control strategy for a hybrid electric vehicle
Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava
2002-01-01
An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.
Control system and method for a hybrid electric vehicle
Tamor, Michael Alan
2001-03-06
Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.
Torque blending and wheel slip control in EVs with in-wheel motors
NASA Astrophysics Data System (ADS)
de Castro, Ricardo; Araújo, Rui E.; Tanelli, Mara; Savaresi, Sergio M.; Freitas, Diamantino
2012-01-01
Among the many opportunities offered by electric vehicles (EVs), the design of power trains based on in-wheel electric motors represents, from the vehicle dynamics point of view, a very attractive prospect, mainly due to the torque-vectoring capabilities. However, this distributed propulsion also poses some practical challenges, owing to the constraints arising from motor installation in a confined space, to the increased unsprung mass weight and to the integration of the electric motor with the friction brakes. This last issue is the main theme of this work, which, in particular, focuses on the design of the anti-lock braking system (ABS). The proposed structure for the ABS is composed of a tyre slip controller, a wheel torque allocator and a braking supervisor. To address the slip regulation problem, an adaptive controller is devised, offering robustness to uncertainties in the tyre-road friction and featuring a gain-scheduling mechanism based on the vehicle velocity. Further, an optimisation framework is employed in the torque allocator to determine the optimal split between electric and friction brake torque based on energy performance metrics, actuator constraints and different actuators bandwidth. Finally, based on the EV working condition, the priorities of this allocation scheme are adapted by the braking supervisor unit. Simulation results obtained with the CarSim vehicle model, demonstrate the effectiveness of the overall approach.
High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple
NASA Astrophysics Data System (ADS)
Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei
2017-07-01
With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.
Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong
2017-01-01
Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization. PMID:29311798
Zhang, Dingguo; Ren, Yong; Gui, Kai; Jia, Jie; Xu, Wendong
2017-01-01
Functional electrical stimulation (FES) and robotic exoskeletons are two important technologies widely used for physical rehabilitation of paraplegic patients. We developed a hybrid rehabilitation system (FEXO Knee) that combined FES and an exoskeleton for swinging movement control of human knee joints. This study proposed a novel cooperative control strategy, which could realize arbitrary distribution of torque generated by FES and exoskeleton, and guarantee harmonic movements. The cooperative control adopted feedfoward control for FES and feedback control for exoskeleton. A parameter regulator was designed to update key parameters in real time to coordinate FES controller and exoskeleton controller. Two muscle groups (quadriceps and hamstrings) were stimulated to generate active torque for knee joint in synchronization with torque compensation from exoskeleton. The knee joint angle and the interactive torque between exoskeleton and shank were used as feedback signals for the control system. Central pattern generator (CPG) was adopted that acted as a phase predictor to deal with phase confliction of motor patterns, and realized synchronization between the two different bodies (shank and exoskeleton). Experimental evaluation of the hybrid FES-exoskeleton system was conducted on five healthy subjects and four paraplegic patients. Experimental results and statistical analysis showed good control performance of the cooperative control on torque distribution, trajectory tracking, and phase synchronization.
NASA Astrophysics Data System (ADS)
Zhao, Zhiguo; Lei, Dan; Chen, Jiayi; Li, Hangyu
2018-05-01
When the four-wheel-drive hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT) is in the mode transition process from pure electrical rear wheel drive to front wheel drive with engine or hybrid drive, the problem of vehicle longitudinal jerk is prominent. A mode transition robust control algorithm which resists external disturbance and model parameter fluctuation has been developed, by taking full advantage of fast and accurate torque (or speed) response of three electrical power sources and getting the clutch of DCT fully involved in the mode transition process. Firstly, models of key components of driveline system have been established, and the model of five-degrees-of-freedom vehicle longitudinal dynamics has been built by using a Uni-Tire model. Next, a multistage optimal control method has been produced to realize the decision of engine torque and clutch-transmitted torque. The sliding-mode control strategy for measurable disturbance has been proposed at the stage of engine speed dragged up. Meanwhile, the double tracking control architecture that integrates the model calculating feedforward control with H∞ robust feedback control has been presented at the stage of speed synchronization. Finally, the results from Matlab/Simulink software and hardware-in-the-loop test both demonstrate that the proposed control strategy for mode transition can not only coordinate the torque among different power sources and clutch while minimizing vehicle longitudinal jerk, but also provide strong robustness to model uncertainties and external disturbance.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Performance data on the General Electric 5BT 2366C10 series wound dc motor and EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data is provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing shows the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 86% and 87%, regardless of temperature or mode of operation. When the chopper is utilized, maximum motor efficiency occurs when the chopper duty cycle approaches 100%.
NASA Astrophysics Data System (ADS)
Drid, S.; Nait-Said, M.-S.; Tadjine, M.; Makouf, A.
2008-06-01
There is an increasing interest in electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved propulsion system for electric vehicles applications with minimal power losses. This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.
Electronic differential control of 2WD electric vehicle considering steering stability
NASA Astrophysics Data System (ADS)
Hua, Yiding; Jiang, Haobin; Geng, Guoqing
2017-03-01
Aiming at the steering wheel differential steering control technology of rear wheel independent driving electric wheel, considering the assisting effect of electronic differential control on vehicle steering, based on the high speed steering characteristic of electric wheel car, the electronic differential speed of auxiliary wheel steering is also studied. A yaw moment control strategy is applied to the vehicle at high speed. Based on the vehicle stability reference value, yaw rate is used to design the fuzzy controller to distribute the driving wheel torque. The simulation results show that the basic electronic differential speed function is realized based on the yaw moment control strategy, while the vehicle stability control is improved and the driving safety is enhanced. On the other hand, the torque control strategy can also assist steering of vehicle.
Design and Performance Improvement of AC Machines Sharing a Common Stator
NASA Astrophysics Data System (ADS)
Guo, Lusu
With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be discussed in this dissertation. In the design stage, an optimization method based on orthogonal experimental design will be introduced. Besides, a universal current profiling technique is proposed to minimize the torque pulsation along with the stator copper losses in modular interior permanent magnet motors. Instead of sinusoidal current waveforms, this algorithm will calculate the proper currents which can minimize the torque pulsation. Finite element analysis and Matlab programing will be used to develop this optimal current profiling algorithm. Permanent magnet machines are becoming more attractive in some modern traction applications, such as traction motors and generators for an electrified vehicle. The operating speed or the load condition in these applications may be changing all the time. Compared to electric machines used to operate at a constant speed and constant load, better control performance is required. In this dissertation, a novel model reference adaptive control (MRAC) used on five-phase interior permanent magnet motor drives is presented. The primary controller is designed based on artificial neural network (ANN) to simulate the nonlinear characteristics of the system without knowledge of accurate motor model or parameters. The proposed motor drive decouples the torque and flux components of five-phase IPM motors by applying a multiple reference frame transformation. Therefore, the motor can be easily driven below the rated speed with the maximum torque per ampere (MTPA) operation or above the rated speed with the flux weakening operation. The ANN based primary controller consists of a radial basis function (RBF) network which is trained on-line to adapt system uncertainties. The complete IPM motor drive is simulated in Matlab/Simulink environment and implemented experimentally utilizing dSPACE DS1104 DSP board on a five-phase prototype IPM motor. The proposed model reference adaptive control method has been applied on the commons stator SynRM and IPM machine as well.
Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle
NASA Astrophysics Data System (ADS)
Xiangyang, Xu; Siqi, Zhao; Peng, Dong
2017-12-01
A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyuan; Zhang, Hui; Yang, Bo; Zhang, Guichen
2018-01-01
In order to improve oscillation damping control performance as well as gear shift quality of electric vehicle equipped with integrated motor-transmission system, a cloud-based shaft torque estimation scheme is proposed in this paper by using measurable motor and wheel speed signals transmitted by wireless network. It can help reduce computational burden of onboard controllers and also relief network bandwidth requirement of individual vehicle. Considering possible delays during signal wireless transmission, delay-dependent full-order observer design is proposed to estimate the shaft torque in cloud server. With these random delays modeled by using homogenous Markov chain, robust H∞ performance is adopted to minimize the effect of wireless network-induced delays, signal measurement noise as well as system modeling uncertainties on shaft torque estimation error. Observer parameters are derived by solving linear matrix inequalities, and simulation results using acceleration test and tip-in, tip-out test demonstrate the effectiveness of proposed shaft torque observer design.
Precessional switching of antiferromagnets by electric field induced Dzyaloshinskii-Moriya torque
NASA Astrophysics Data System (ADS)
Kim, T. H.; Grünberg, P.; Han, S. H.; Cho, B. K.
2018-05-01
Antiferromagnetic insulators (AFIs) have attracted much interest from many researchers as promising candidates for use in ultrafast, ultralow-dissipation spintronic devices. As a fast method of reversing magnetization, precessional switching is realized when antiferromagnetic Néel orders l =(s1+s2 )/2 surmount the magnetic anisotropy or potential barrier in a given magnetic system, which is described well by the antiferromagnetic plane pendulum (APP) model. Here, we report that, as an alternative switching scenario, the direct coupling of an electric field with Dzyaloshinskii-Moriya (DM) interaction, which stems from spin-orbit coupling, is exploited for optimal switching. We derive the pendulum equation of motion of antiferromagnets, where DM torque is induced by a pulsed electric field. The temporal DM interaction is found to not only be in the form of magnetic torques (e.g., spin-orbit torque or magnetic field) but also modifies the magnetic potential that limits l 's activity; as a result, appropriate controls (e.g., direction, magnitude, and pulse shape) of the induced DM vector realize deterministic reversal in APP. The results present an approach for the control of a magnetic storage device by means of an electric field.
Torque vectoring for improving stability of small electric vehicles
NASA Astrophysics Data System (ADS)
Grzegożek, W.; Weigel-Milleret, K.
2016-09-01
The electric vehicles solutions based on the individually controlled electric motors propel a single wheel allow to improve the dynamic properties of the vehicle by varying the distribution of the driving torque. Most of the literature refer to the vehicles with a track typical for passenger cars. This paper examines whether the narrow vehicle (with a very small track) torque vectoring bring a noticeable change of the understeer characteristics and whether torque vectoring is possible to use in securing a narrow vehicle from roll over (roll mitigation). The paper contains road tests of the steering characteristics (steady state understeer characteristic quasi-static acceleration with a fixed steering wheel (SH = const) and on the constant radius track (R = const)) of the narrow vehicle. The vehicle understeer characteristic as a function of a power distribution is presented.
Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission
Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.; Naqvi, Ali K.; Heap, Anthony H.; Sah, Jy-Jen F.
2014-08-12
A hybrid transmission includes first and second electric machines. A method for operating the hybrid transmission in response to a command to execute a shift from an initial continuously variable mode to a target continuously variable mode includes increasing torque of an oncoming clutch associated with operating in the target continuously variable mode and correspondingly decreasing a torque of an off-going clutch associated with operating in the initial continuously variable mode. Upon deactivation of the off-going clutch, torque outputs of the first and second electric machines and the torque of the oncoming clutch are controlled to synchronize the oncoming clutch. Upon synchronization of the oncoming clutch, the torque for the oncoming clutch is increased and the transmission is operated in the target continuously variable mode.
Current control of PMSM based on maximum torque control reference frame
NASA Astrophysics Data System (ADS)
Ohnuma, Takumi
2017-07-01
This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.
NASA Astrophysics Data System (ADS)
Asyraf, S. M.; Heerwan, P. M.; Izhar, I. M.
2018-04-01
During descending on a slope, the speed of Electric Powered Wheelchair (EPW) tends to changed rapidly. Normally, most EPW is provided with mechanical braking system which transfers human pulling force of the lever creating friction at the tire. However, the task is difficult for the users are elderly or paralyses. However, even for normal user with good strength, in fear condition they tend to give sudden braking which leads to tire locking up and skidding, eventually EPW unstable. These problems will cause accident and injuries to the users if speed does not properly control. In this paper, the automated braking torque control method was proposed in EPW as alternative to solve this problem and increase the mobility and stability especially during descending on slope in other to help the user of the EPW as their daily transportation. In this research, Proportional-Integral-Derivative and Sliding Mode Control controller are compared to determine the best response for torque braking control. The rapid change of speed can be controlled by the braking torque using proposed controllers based on the desired constant speed set by the control designer. Moreover, the sudden braking that caused tire to lock up and skid can be avoided. Furthermore, result from SMC shows this controller have good time respond to maintain the speed based on desired value when descending at slope condition by controlling the braking torque compared to the PID controller.
Ratkevicius, A; Skurvydas, A; Povilonis, E; Quistorff, B; Lexell, J
1998-04-01
The aims of this study were to investigate if low-frequency fatigue (LFF) dependent on the duration of repeated muscle contractions and to compare LFF in voluntary and electrically induced exercise. Male subjects performed three 9-min periods of repeated isometric knee extensions at 40% maximal voluntary contraction with contraction plus relaxation periods of 30 plus 60 s, 15 plus 30 s and 5 plus 10 s in protocols 1, 2 and 3, respectively. The same exercise protocols were repeated using feedback-controlled electrical stimulation at 40% maximal tetanic torque. Before and 15 min after each exercise period, knee extension torque at 1, 7, 10, 15, 20, 50 and 100 Hz was assessed. During voluntary exercise, electromyogram root mean square (EMGrms) of the vastus lateralis muscle was evaluated. The 20-Hz torque:100-Hz torque (20:100 Hz torque) ratio was reduced more after electrically induced than after voluntary exercise (P < 0.05). During electrically induced exercise, the decrease in 20:100 Hz torque ratio was gradually (P < 0.05) reduced as the individual contractions shortened. During voluntary exercise, the decrease in 20:100 Hz torque ratio and the increase in EMGrms were greater in protocol 1 (P < 0.01) than in protocols 2 and 3, which did not differ from each other. In conclusion, our results showed that LFF is dependent on the duration of individual muscle contractions during repetitive isometric exercise and that the electrically induced exercise produced a more pronounced LFF compared to voluntary exercise of submaximal intensity. It is suggested that compensatory recruitment of faster-contracting motor units is an additional factor affecting the severity of LFF during voluntary exercise.
Torque equilibrium attitude control for Skylab reentry
NASA Technical Reports Server (NTRS)
Glaese, J. R.; Kennel, H. F.
1979-01-01
All the available torque equilibrium attitudes (most were useless from the standpoint of lack of electrical power) and the equilibrium seeking method are presented, as well as the actual successful application during the 3 weeks prior to Skylab reentry.
The increase in the starting torque of PMSM motor by applying of FOC method
NASA Astrophysics Data System (ADS)
Plachta, Kamil
2017-05-01
The article presents field oriented control method of synchronous permanent magnet motor equipped in optical sensors. This method allows for a wide range regulation of torque and rotational speed of the electric motor. The paper presents mathematical model of electric motor and vector control method. Optical sensors have shorter time response as compared to the inductive sensors, which allow for faster response of the electronic control system to changes of motor loads. The motor driver is based on the digital signal processor which performs advanced mathematical operations in real time. The appliance of Clark and Park transformation in the software defines the angle of rotor position. The presented solution provides smooth adjustment of the rotational speed in the first operating zone and reduces the dead zone of the torque in the second and third operating zones.
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Tadakuma, Susumu
This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.
1999-01-01
The Attitude Control and Energy Storage Experiment is currently under development for the International Space Station; two counter-rotating flywheels will be levitated with magnetic bearings and placed in vacuum housings. The primary objective of the experiment is to store and discharge energy, in combination with existing batteries, into the electrical power system. The secondary objective is to use the flywheels to exert torque on the Station; a simple torque profile has been designed so that the Station's Control Moment Gyroscopes will be assisted in maintaining torque equilibrium attitude. Two energy storage contingencies could result in the inadvertent application of torque by the flywheels to the Station: an emergency shutdown of one flywheel rotor while the other remains spinning, and energy storage with only one rotor instead of the counterrotating pair. Analysis of these two contingencies shows that attitude control and the microgravity environment will not be adversely affected.
Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid
NASA Astrophysics Data System (ADS)
Oh, Jong-Seok; Choi, Seung-Bok; Lee, Yang-Sub
2015-02-01
This work presents a torque measurement method of 3-degree-of-freedom (3-DOF) haptic master featuring controllable electrorheological (ER) fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.
NASA Astrophysics Data System (ADS)
Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong
2016-02-01
Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle force reproduction and muscle fatigue reduction.
Li, Zhan; Guiraud, David; Andreu, David; Benoussaad, Mourad; Fattal, Charles; Hayashibe, Mitsuhiro
2016-06-22
Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the synchronous recruitment of motor units with its compound electromyography (EMG) signal is called M-wave. The recorded evoked EMG (eEMG) can be employed to predict the resultant joint torque, and modeling of FES-induced joint torque based on eEMG is an essential step to provide necessary prediction of the expected muscle response before achieving accurate joint torque control by FES. Previous works on FES-induced torque tracking issues were mainly based on offline analysis. However, toward personalized clinical rehabilitation applications, real-time FES systems are essentially required considering the subject-specific muscle responses against electrical stimulation. This paper proposes a wireless portable stimulator used for estimating/predicting joint torque based on real time processing of eEMG. Kalman filter and recurrent neural network (RNN) are embedded into the real-time FES system for identification and estimation. Prediction results on 3 able-bodied subjects and 3 SCI patients demonstrate promising performances. As estimators, both Kalman filter and RNN approaches show clinically feasible results on estimation/prediction of joint torque with eEMG signals only, moreover RNN requires less computational requirement. The proposed real-time FES system establishes a platform for estimating and assessing the mechanical output, the electromyographic recordings and associated models. It will contribute to open a new modality for personalized portable neuroprosthetic control toward consolidated personal healthcare for motor-impaired patients.
NASA Astrophysics Data System (ADS)
Su, Yanzhao; Hu, Minghui; Su, Ling; Qin, Datong; Zhang, Tong; Fu, Chunyun
2018-07-01
The fuel economy of the hybrid electric vehicles (HEVs) can be effectively improved by the mode transition (MT). However, for a power-split powertrain whose power-split transmission is directly connected to the engine, the engine ripple torque (ERT), inconsistent dynamic characteristics (IDC) of engine and motors, model estimation inaccuracies (MEI), system parameter uncertainties (SPU) can cause jerk and vibration of transmission system during the MT process, which will reduce the driving comfort and the life of the drive parts. To tackle these problems, a dynamic coordinated control strategy (DCCS), including a staged engine torque feedforward and feedback estimation (ETFBC) and an active damping feedback compensation (ADBC) based on drive shaft torque estimation (DSTE), is proposed. And the effectiveness of this strategy is verified using a plant model. Firstly, the powertrain plant model is established, and the MT process and problems are analyzed. Secondly, considering the characteristics of the engine torque estimation (ETE) model before and after engine ignition, a motor torque compensation control based on the staged ERT estimation is developed. Then, considering the MEI, SPU and the load change, an ADBC based on a real-time nonlinear reduced-order robust observer of the DSTE is designed. Finally, the simulation results show that the proposed DCCS can effectively improve the driving comfort.
NASA Technical Reports Server (NTRS)
Das, H.; Zak, H.; Kim, W. S.; Bejczy, A. K.; Schenker, P. S.
1992-01-01
Experiments are described which were conducted at the JPL Advanced Teleoperator Lab to demonstrate and evaluate the effectiveness of various teleoperator control modes in the performance of a simulated Solar Max Satellite Repair (SMSR) task. THe SMSR was selected as a test because it is very rich in performance capability requirements and it actually has been performed by two EVA astronauts in the Space Shuttle Bay in 1984. The main subtasks are: thermal blanket removal; installation of a hinge attachment for electrical panel opening; opening of electrical panel; removal of electrical connectors; relining of cable bundles; replacement of electrical panel; securing parts and cables; re-mate electrical connectors; closing of electrical panel; and reinstating thermal blanket. The current performance experiments are limited to thermal blanket cutting, electrical panel unbolting and handling electrical bundles and connectors. In one formal experiment even different control modes were applied to the unbolting and reinsertion of electrical panel screws subtasks. The seven control modes are alternative combinations of manual position and rate control with force feedback and remote compliance referenced to force-torque sensor information. Force-torque sensor and end effector position data and task completion times were recorded for analysis and quantification of operator performance.
Thrust Control Loop Design for Electric-Powered UAV
NASA Astrophysics Data System (ADS)
Byun, Heejae; Park, Sanghyuk
2018-04-01
This paper describes a process of designing a thrust control loop for an electric-powered fixed-wing unmanned aerial vehicle equipped with a propeller and a motor. In particular, the modeling method of the thrust system for thrust control is described in detail and the propeller thrust and torque force are modeled using blade element theory. A relation between current and torque of the motor is obtained using an experimental setup. Another relation between current, voltage and angular velocity is also obtained. The electric motor and the propeller dynamics are combined to model the thrust dynamics. The associated trim and linearization equations are derived. Then, the thrust dynamics are coupled with the flight dynamics to allow a proper design for the thrust loop in the flight control. The proposed method is validated by an application to a testbed UAV through simulations and flight test.
NASA Technical Reports Server (NTRS)
Haefner, K. B.; Honda, T. S.
1973-01-01
A fluidic emergency roll control system for aircraft stabilization in the event of primary flight control failure was evaluated. The fluidic roll control units were designed to provide roll torque proportional to an electrical command as operated by two diametrically opposed thrust nozzles located in the wing tips. The control package consists of a solid propellant gas generator, two diametrically opposed vortex valve modulated thrust nozzles, and an electromagnetic torque motor. The procedures for the design, development, and performance testing of the system are described.
NASA Technical Reports Server (NTRS)
Oppenheimer, Frank L.; Lazar, James
1951-01-01
A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.
Electric motor designs for attenuating torque disturbance in sensitive space mechanisms
NASA Astrophysics Data System (ADS)
Marks, David B.; Fink, Richard A.
2003-09-01
When a motion control system introduces unwanted torque jitter and motion anomalies into sensitive space flight optical or positioning mechanisms, the pointing accuracy, positioning capability, or scanning resolution of the mission suffers. Special motion control technology must be employed to provide attenuation of the harmful torque disturbances. Brushless DC (BLDC) Motors with low torque disturbance characteristics have been successfully used on such notable missions as the Hubble Space Telescope when conventional approaches to motor design would not work. Motor designs for low disturbance mechanisms can include two and three phase sinusoidal BLDC motors, BLDC motors without iron teeth, and sometimes skewed or non-integral slot designs for motors commutated with Hall effect devices. The principal components of motor torque disturbance, successful BLDC motor designs for attenuating disturbances, and design trade-offs for optimum performance are examined.
Oscillation control system for electric motor drive
Slicker, J.M.; Sereshteh, A.
1988-08-30
A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.
Influence of torque control motors and the operator's proficiency on ProTaper failures.
Yared, Ghassan; Bou Dagher, Fadia; Kulkarni, Kiran
2003-08-01
The purpose of this study was to evaluate the influence of 2 electric torque control motors and operator experience with a specific nickel-titanium rotary instrumentation technique on the incidence of deformation and separation of instruments. ProTaper (PT) nickel-titanium rotary instruments were used at 300 rpm. In the first part of the study, electric high torque control (group 1) and low torque control (group 2) motors were compared. In the second part of the study, 3 operators with varying experience (groups 3, 4, and 5) were also compared. Twenty sets of PT instruments and 100 canals of extracted human molars were used in each group. Each set of PT instruments was used in up to 5 canals and sterilized before each case. For irrigation, 2.5% NaOCl was used. The number of deformed and separated instruments among the groups (within each part of the study) was statistically analyzed for significance with pair-wise comparisons by using the Fisher exact test (alpha =.05). In part 1, instrument deformation and separation did not occur in groups 1 and 2. In part 2, 25 and 12 instruments were deformed and separated, respectively, with the least experienced operator. Instrument deformation and separation did not occur with the most experienced operator. The Fisher exact test revealed a significant difference between groups 3 and 4 with respect to instrument deformation (P =.0296). In addition, the Fisher exact test revealed that the incidence of instrument deformation was statistically different between groups 3 and 5 (P <.0001) and groups 4 and 5 (P =.0018). The incidence of instrument separation was significantly higher in group 5 than in groups 3 and 4 (P =.001). Preclinical training in the use of the PT technique at 300 rpm is crucial to prevent instrument separation and reduce the incidence of instrument deformation. The use of an electric high torque control motor is safe with the experienced operator.
Abdelli, Radia; Rekioua, Djamila; Rekioua, Toufik; Tounzi, Abdelmounaïm
2013-07-01
This paper presents a modulated hysteresis direct torque control (MHDTC) applied to an induction generator (IG) used in wind energy conversion systems (WECs) connected to the electrical grid through a back-to-back converter. The principle of this strategy consists in superposing to the torque reference a triangular signal, as in the PWM strategy, with the desired switching frequency. This new modulated reference is compared to the estimated torque by using a hysteresis controller as in the classical direct torque control (DTC). The aim of this new approach is to lead to a constant frequency and low THD in grid current with a unit power factor and a minimum voltage variation despite the wind variation. To highlight the effectiveness of the proposed method, a comparison was made with classical DTC and field oriented control method (FOC). The obtained simulation results, with a variable wind profile, show an adequate dynamic of the conversion system using the proposed method compared to the classical approaches. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Electromagnetic processes during phase commutation in field regulated reluctance machine
NASA Astrophysics Data System (ADS)
Shishkov, A. N.; Sychev, D. A.; Zemlyansky, A. A.; Krupnova, M. N.; Funk, T. A.; Ishmet'eva, V. D.
2018-03-01
The processes of currents switching in stator windings have been explained by the existence of the electromagnetic torque ripples in the electric drive with the field-regulated reluctance machine. The maximum value of ripples in the open loop control system for the six-phase machine can reach 20 percent from the developed electromagnetic torque. This method allows one to make calculation of ripple spike towards average torque developed by the electromotor for the different number of phases. Application of a trapezoidal form of current at six phases became the solution. In case of a less number of phases than six, a ripple spike considerably increases, which is inadmissible. On the other hand, increasing the number of phases tends to the increase of the semiconductor inverter external dimensions based on the inconspicuous decreasing of a ripple spike. The creation and usage of high-speed control loops of current (HCLC) have been recommended for a reduction of the electromagnetic torque’s ripple level, as well as the appliance of positive current feedback in switching phase currents. This decision allowed one to receive a mean value of the torque more than 10%, compared to system without change, to reduce greatly ripple spike of the electromagnetic torque. The possibility of the electric drive effective operation with FRRM in emergency operation has been shown.
Mode transition coordinated control for a compound power-split hybrid car
NASA Astrophysics Data System (ADS)
Wang, Chen; Zhao, Zhiguo; Zhang, Tong; Li, Mengna
2017-03-01
With a compound power-split transmission directly connected to the engine in hybrid cars, dramatic fluctuations in engine output torque result in noticeable jerks when the car is in mode transition from electric drive mode to hybrid drive mode. This study designed a mode transition coordinated control strategy, and verified that strategy's effectiveness with both simulations and experiments. Firstly, the mode transition process was analyzed, and ride comfort issues during the mode transition process were demonstrated. Secondly, engine ripple torque was modeled using the measured cylinder pumping pressure when the engine was not in operation. The complete dynamic plant model of the power-split hybrid car was deduced, and its effectiveness was validated by a comparison of experimental and simulation results. Thirdly, a coordinated control strategy was designed to determine the desired engine torque, motor torque, and the moment of fuel injection. Active damping control with two degrees of freedom, based on reference output shaft speed estimation, was designed to mitigate driveline speed oscillations. Carrier torque estimation based on transmission kinematics and dynamics was used to suppress torque disturbance during engine cranking. The simulation and experimental results indicate that the proposed strategy effectively suppressed vehicle jerks and improved ride comfort during mode transition.
Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller
NASA Astrophysics Data System (ADS)
Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.
2016-09-01
In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).
NASA Astrophysics Data System (ADS)
Ghosh, Abhijit; Garello, Kevin; Avci, Can Onur; Gabureac, Mihai; Gambardella, Pietro
2017-01-01
Magnetic heterostructures that combine large spin-orbit torque efficiency, perpendicular magnetic anisotropy, and low resistivity are key to developing electrically controlled memory and logic devices. Here, we report on vector measurements of the current-induced spin-orbit torques and magnetization switching in perpendicularly magnetized Pd /Co /AlOx layers as a function of Pd thickness. We find sizable dampinglike (DL) and fieldlike (FL) torques, on the order of 1 mT per 107 A /cm2 , which have different thicknesses and magnetization angle dependencies. The analysis of the DL torque efficiency per unit current density and the electric field using drift-diffusion theory leads to an effective spin Hall angle and spin-diffusion length of Pd larger than 0.03 and 7 nm, respectively. The FL spin-orbit torque includes a significant interface contribution, is larger than estimated using drift-diffusion parameters, and, furthermore, is strongly enhanced upon rotation of the magnetization from the out-of-plane to the in-plane direction. Finally, taking advantage of the large spin-orbit torques in this system, we demonstrate bipolar magnetization switching of Pd /Co /AlOx layers with a similar current density to that used for Pt /Co layers with a comparable perpendicular magnetic anisotropy.
NASA Astrophysics Data System (ADS)
Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou
2017-07-01
All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.
NASA Astrophysics Data System (ADS)
Nikitczuk, Jason; Weinberg, Brian; Mavroidis, Constantinos
2006-03-01
In this paper we present the design and control algorithms for novel electro-rheological fluid based torque generation elements that will be used to drive the joint of a new type of portable and controllable Active Knee Rehabilitation Orthotic Device (AKROD) for gait retraining in stroke patients. The AKROD is composed of straps and rigid components for attachment to the leg, with a central hinge mechanism where a gear system is connected. The key features of AKROD include: a compact, lightweight design with highly tunable torque capabilities through a variable damper component, full portability with on board power, control circuitry, and sensors (encoder and torque), and real-time capabilities for closed loop computer control for optimizing gait retraining. The variable damper component is achieved through an electro-rheological fluid (ERF) element that connects to the output of the gear system. Using the electrically controlled rheological properties of ERFs, compact brakes capable of supplying high resistive and controllable torques, are developed. A preliminary prototype for AKROD v.2 has been developed and tested in our laboratory. AKROD's v.2 ERF resistive actuator was tested in laboratory experiments using our custom made ERF Testing Apparatus (ETA). ETA provides a computer controlled environment to test ERF brakes and actuators in various conditions and scenarios including emulating the interaction between human muscles involved with the knee and AKROD's ERF actuators / brakes. In our preliminary results, AKROD's ERF resistive actuator was tested in closed loop torque control experiments. A hybrid (non-linear, adaptive) Proportional-Integral (PI) torque controller was implemented to achieve this goal.
Ishihara, Koji; Morimoto, Jun
2018-03-01
Humans use multiple muscles to generate such joint movements as an elbow motion. With multiple lightweight and compliant actuators, joint movements can also be efficiently generated. Similarly, robots can use multiple actuators to efficiently generate a one degree of freedom movement. For this movement, the desired joint torque must be properly distributed to each actuator. One approach to cope with this torque distribution problem is an optimal control method. However, solving the optimal control problem at each control time step has not been deemed a practical approach due to its large computational burden. In this paper, we propose a computationally efficient method to derive an optimal control strategy for a hybrid actuation system composed of multiple actuators, where each actuator has different dynamical properties. We investigated a singularly perturbed system of the hybrid actuator model that subdivided the original large-scale control problem into smaller subproblems so that the optimal control outputs for each actuator can be derived at each control time step and applied our proposed method to our pneumatic-electric hybrid actuator system. Our method derived a torque distribution strategy for the hybrid actuator by dealing with the difficulty of solving real-time optimal control problems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu
This paper describes a novel straight road driving control scheme of power assisted wheelchair. Power assisted wheelchair which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people. The straight driving can be prevented by the road conditions such as branches, grass and carpets because the right and left wheels drive independently. This paper proposes a straight road driving control system based on the disturbance torque estimation. The proposed system estimates the difference of the driving torque by disturbance torque observer and compensates to one side of the wheels. Some practical driving experiments on various road conditions show the effectiveness of the proposed control system.
Chen, Quan; Li, Yaoyu; Seem, John E
2015-09-01
This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaida, Yukiko; Murakami, Toshiyuki
A wheelchair is an important apparatus of mobility for people with disability. Power-assist motion in an electric wheelchair is to expand the operator's field of activities. This paper describes force sensorless detection of human input torque. Reaction torque estimation observer calculates the total disturbance torque first. Then, the human input torque is extracted from the estimated disturbance. In power-assist motion, assist torque is synthesized according to the product of assist gain and the average torque of the right and left input torque. Finally, the proposed method is verified through the experiments of power-assist motion.
Electric drive motors for industrial robots
NASA Astrophysics Data System (ADS)
Fichtner, K.
1985-04-01
In robotized industrial plants it is possible to use electric motors in the technological process and also for control, assembly, transport, testing, and measurements. Particularly suitable for these applications are permanent-magnet d.c. motors. A new special series was developed for industrial robots with hinge joints in kinematic pairs. The complete drive includes thyristors or transistor controls with regulators and, if necessary, a line transformer as well as a servomotor with tachometer and odometer for speed, current, and position control. The drive is coupled to a robot tong through mechanical torque and force converters. In addition to a 0 to 4000 rpm speed regulation, without wobble at low speeds, and a high torque-to-weight ratio for repetitive short-time heavy duty, these low-inertia motors develop high starting and accelerating torques over the entire speed range. They operate from a 1 to O 220 V a.c. line through a rectifier. The motors are totally enclosed, or of open construction for better ventilation. Their windings have class F insulation for operation at ambient temperatures up to 40 C.
Zarei, Mina; Javidi, Maryam; Erfanian, Mahdi; Lomee, Mahdi; Afkhami, Farzaneh
2013-01-01
Cleaning and shaping is one of the most important phases in root canal therapy. Various rotary NiTi systems minimize accidents and facilitate the shaping process. Todays NiTi files are used with air-driven and electric handpieces. This study compared the canal centering after instrumentation using the ProTaper system using Endo IT, electric torque-control motor, and NSK air-driven handpiece. This ex vivo randomized controlled trial study involved 26 mesial mandibular root canals with 10 to 35° curvature. The roots were randomly divided into 2 groups of 13 canals each. The roots were mounted in an endodontic cube with acrylic resin, sectioned horizontally at 2, 6 and 10 mm from the apex and then reassembled. The canals were instrumented according to the manufacturer's instructions using ProTaper rotary files and electric torque-control motors (group 1) or air-driven handpieces (group 2). Photographs of the cross-sections included shots before and after instrumentation, and image analysis was performed using Photoshop software. The centering ability and canal transportation was also evaluated. Repeated measurement and independent t-test provided statistical analysis of canal transportation. The comparison of the rate of transportation toward internal or external walls between the two groups was not statistically significant (p = 0.62). Comparison of the rate of transportation of sections within one group was not significant (p = 0.28). Use of rotary NiTi file with either electric torquecontrol motor or air-driven handpiece had no effect on canal centering. NiTi rotary instruments can be used with air-driven motors without any considerable changes in root canal anatomy, however it needs the clinician to be expert.
A novel dual motor drive system for three wheel electric vehicles
NASA Astrophysics Data System (ADS)
Panmuang, Piyapat; Thongsan, Taweesak; Suwapaet, Nuchida; Laohavanich, Juckamass; Photong, Chonlatee
2018-03-01
This paper presents a novel dual motor drive system used for three wheel electric vehicles that have one free wheel at the front and two wheels with a drive system at the end of the vehicles. A novel dual motor drive system consists of two identical DC motors that are independently controlled by its speed-torque controller. Under light load conditions, only one of the DC motors will operate around it rated whilst under hard load conditions both of the DC motors will operate. With this drive system, the motors will operate only at its high performance at rated or else no operate to retain longer lifetime. The simulated results for the Skylab three wheel electric vehicle prototype with 8kW at full load (high torque, low speed) and around 4kW at light/normal operating loads (regular speed-torque) showed that the proposed system provides better dynamic responses with faster overshoot current/voltage recovery time, has lower investment costs, has longer lifetime of the motors and allows the motors to always operate at their high performance and thus achieve more cost effective system compared to a single motor drive system with 8kW DC motors.
Control system design for the MOD-5A 7.3 mW wind turbine generator
NASA Technical Reports Server (NTRS)
Barton, Robert S.; Hosp, Theodore J.; Schanzenbach, George P.
1995-01-01
This paper provides descriptions of the requirements analysis, hardware development and software development phases of the Control System design for the MOD-5A 7.3 mW Wind Turbine Generator. The system, designed by General Electric Company, Advanced Energy Programs Department, under contract DEN 3-153 with NASA Lewis Research Center and DOE, provides real time regulation of rotor speed by control of both generator torque and rotor torque. A variable speed generator system is used to provide both airgap torque control and reactive power control. The wind rotor is designed with segmented ailerons which are positioned to control blade torque. The central component of the control system, selected early in the design process, is a programmable controller used for sequencing, alarm monitoring, communication, and real time control. Development of requirements for use of aileron controlled blades and a variable speed generator required an analytical simulation that combined drivetrain, tower and blade elastic modes with wind disturbances and control behavior. An orderly two phase plan was used for controller software development. A microcomputer based turbine simulator was used to facilitate hardware and software integration and test.
NASA Astrophysics Data System (ADS)
Ren, Y. J.; Deng, W. Y.; Geng, H.; Shen, R.; Shao, L. B.; Sheng, L.; Xing, D. Y.
2017-12-01
The spin-orbit torque provides an efficient method for switching the direction of a magnetization by using an electric field. Owing to the spin-orbit coupling, when an electric field is applied, a nonequilibrium spin density is generated, which exerts a torque on the local magnetization. Here, we investigate the spin-orbit torque in a thin film of topological insulator \\text{Bi}2\\text{Se}3 based upon a Boltzmann equation, with proper boundary conditions, which is applicable from the ballistic regime to the diffusive regime. It is shown that due to the spin-momentum interlocking of the electron surface states, the magnitude of the field-like torque is simply in linear proportion to the longitudinal electrical current. For a fixed electric field, the spin-orbit torque is proportional to the sample length in the ballistic limit, and saturates to a constant in the diffusive limit. The dependence of the torque on the magnetization direction and exchange coupling strength is also studied. Our theory may offer useful guidance for experimental investigations of the spin-orbit torque in finite-size systems.
Torque-Summing Brushless Motor
NASA Technical Reports Server (NTRS)
Vaidya, J. G.
1986-01-01
Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.
Electric vehicle drive train with rollback detection and compensation
Konrad, C.E.
1994-12-27
An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.
Electric vehicle drive train with rollback detection and compensation
Konrad, Charles E.
1994-01-01
An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.
Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle.
Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang
2015-01-01
This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.
Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle
Peng, Jiankun; He, Hongwen; Guo, Hongqiang
2015-01-01
This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved. PMID:26236772
Effect of handling characteristics on minimum time cornering with torque vectoring
NASA Astrophysics Data System (ADS)
Smith, E. N.; Velenis, E.; Tavernini, D.; Cao, D.
2018-02-01
In this paper, the effect of both passive and actively-modified vehicle handling characteristics on minimum time manoeuvring for vehicles with 4-wheel torque vectoring (TV) capability is studied. First, a baseline optimal TV strategy is sought, independent of any causal control law. An optimal control problem (OCP) is initially formulated considering 4 independent wheel torque inputs, together with the steering angle rate, as the control variables. Using this formulation, the performance benefit using TV against an electric drive train with a fixed torque distribution, is demonstrated. The sensitivity of TV-controlled manoeuvre time to the passive understeer gradient of the vehicle is then studied. A second formulation of the OCP is introduced where a closed-loop TV controller is incorporated into the system dynamics of the OCP. This formulation allows the effect of actively modifying a vehicle's handling characteristic via TV on its minimum time cornering performance of the vehicle to be assessed. In particular, the effect of the target understeer gradient as the key tuning parameter of the literature-standard steady-state linear single-track model yaw rate reference is analysed.
Transistorized PWM inverter-induction motor drive system
NASA Technical Reports Server (NTRS)
Peak, S. C.; Plunkett, A. B.
1982-01-01
This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.
Slip control design of electric vehicle using indirect Dahlin Adaptive Pid
NASA Astrophysics Data System (ADS)
Fauzi, I. R.; Koko, F.; Kirom, M. R.
2016-11-01
In this paper the problem to be solved is to build a slip control on a wheel that may occur in an electric car wheel. Slip is the difference in vehicle velocity and wheel tangential velocity and to be enlarged when the torque given growing. Slip can be reduced by controlling the torque of the wheel so that the wheel tangential speed does not exceed the vehicle speed. The experiment in this paper is a simulation using MATLAB Simulink and using Adaptive control. The response adaptive PID control more quickly 1.5 s than PID control and can controlled wheel tangential speed close to the vehicle velocity on a dry asphalt, wet asphalt, snow and ice surface sequent at time 2s, 4s, 10s, and 50s. The maximum acceleration of the vehicle (V) on the surface of the dry asphalt, wet asphalt, snow, and ice surface sequent at 8.9 m/s2, 6.2 m/s2, 2.75 m/s2, and 0.34 m/s2.
Chan, Bill K S; Ng, Shamay S M; Ng, Gabriel Y F
2015-01-01
Impaired trunk motor control is common after stroke. Combining transcutaneous electrical nerve stimulation (TENS) with task-related trunk training (TRTT) has been shown to enhance the recovery of lower limb motor function. This study investigated whether combining TENS with TRTT would enhance trunk control after stroke. Methods. Thirty-seven subjects with stroke were recruited into a randomized controlled clinical trial. Subjects were randomly assigned to any one of the three 6-week home-based training groups: (1) TENS + TRTT, (2) placebo TENS + TRTT, or (3) control without active training. The outcome measures included isometric peak trunk flexion torque and extension torque; forward seated and lateral seated reaching distance to the affected and unaffected side; and Trunk Impairment Scale (TIS) scores. All outcome measures were assessed at baseline, after 3 and 6 weeks of training, and 4 weeks after training ended at follow-up. Both the TENS + TRTT and the placebo-TENS + TRTT groups had significantly greater improvements in isometric peak trunk flexion torque and extension torque, lateral seated reaching distance to affected and unaffected side, and TIS score than the control group after 3 weeks of training. The TENS + TRTT group had significantly greater and earlier improvement in its mean TIS score than the other 2 groups. Home-based TRTT is effective for improving trunk muscle strength, sitting functional reach and trunk motor control after stroke in subjects without somatosensory deficits. The addition of TENS to the trunk augments the effectiveness of the exercise in terms of TIS scores within the first 3 weeks of training. © The Author(s) 2014.
Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Wie, Bong; Roithmayr, Carlos M.
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Electrical torques on the electrostatic gyro in the gyro relativity experiment
NASA Technical Reports Server (NTRS)
Eby, P.; Darbo, W.
1980-01-01
A comprehensive discussion and calculation of electrical torques on an electrostatic gyro as they relate to the gyroscope experiment to test general relativity is presented. Drift rates were computed for some typical state of the art rotors, including higher harmonics in the rotor shape. The effect of orbital averaging of gravity gradient forces, roll averaging of torques, and the effect of spin averaging on the effective shape of the rotor were considered. The electrical torques are reduced sufficiently in a low g environment to permit a measurement of the relativistic drifts predicted by general relativity.
Compact Hybrid Automotive Propulsion System
NASA Technical Reports Server (NTRS)
Lupo, G.
1986-01-01
Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.
Jankovic, Miroslava; Powell, Barry Kay
2000-12-26
A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.
Tool for Torquing Circular Electrical-Connector Collars
NASA Technical Reports Server (NTRS)
Gaulke, Kathryn; Werneth, Russell; Grunsfeld, John; O'Neill, Patrick; Snyder, Russ
2006-01-01
An improved tool has been devised for applying torque to lock and unlock knurled collars on circular electrical connectors. The tool was originally designed for, and used by, astronauts working in outer space on the Hubble Space Telescope (HST). The tool is readily adaptable to terrestrial use in installing and removing the same or similar circular electrical connectors as well as a wide variety of other cylindrical objects, the tightening and loosening of which entail considerable amounts of torque.
Are friends electric?: A review of the electric handpiece in clinical dental practice.
Campbell, Stuart C
2013-04-01
Contemporary restorative procedures demand precise detail in tooth preparation to achieve optimal results. Inadequate tooth preparation is a frequent cause of failure. This review considers the electric high-speed, high-torque handpiece and how it may assist clinicians in achieving greater accuracy in tooth preparation. The electric handpiece provides a satisfactory alternative to the air-turbine and may be considered by clinicians who wish greater control with operative procedures.
High speed reaction wheels for satellite attitude control and energy storage
NASA Technical Reports Server (NTRS)
Studer, P.; Rodriguez, E.
1985-01-01
The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.
Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.
2012-01-01
Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI. PMID:16575026
Shields, Richard K; Dudley-Javoroski, Shauna; Littmann, Andrew E
2006-08-01
Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.
Wu, Zhihong; Lu, Ke; Zhu, Yuan
2015-01-01
The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment.
Zhu, Yuan
2015-01-01
The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment. PMID:26114557
40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones
Code of Federal Regulations, 2011 CFR
2011-07-01
... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...
40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones
Code of Federal Regulations, 2010 CFR
2010-07-01
... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...
40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones
Code of Federal Regulations, 2014 CFR
2014-07-01
... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...
40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones
Code of Federal Regulations, 2013 CFR
2013-07-01
... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...
40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones
Code of Federal Regulations, 2012 CFR
2012-07-01
... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...
NASA Astrophysics Data System (ADS)
Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji
When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.
ELECTROMAGNETIC AND ELECTROSTATIC GENERATORS: ANNOTATED BIBLIOGRAPHY.
generator with split poles, ultrasonic-frequency generator, unipolar generator, single-phase micromotors , synchronous motor, asynchronous motor...asymmetrical rotor, magnetic circuit, dc micromotors , circuit for the automatic control of synchronized induction motors, induction torque micromotors , electric
Engineering of Machine tool’s High-precision electric drives
NASA Astrophysics Data System (ADS)
Khayatov, E. S.; Korzhavin, M. E.; Naumovich, N. I.
2018-03-01
In the article it is shown that in mechanisms with numerical program control, high quality of processes can be achieved only in systems that provide adjustment of the working element’s position with high accuracy, and this requires an expansion of the regulation range by the torque. In particular, the use of synchronous reactive machines with independent excitation control makes it possible to substantially increase the moment overload in the sequential excitation circuit. Using mathematical and physical modeling methods, it is shown that in the electric drive with a synchronous reactive machine with independent excitation in a circuit with sequential excitation, it is possible to significantly expand the range of regulation by the torque and this is achieved by the effect of sequential excitation, which makes it possible to compensate for the transverse reaction of the armature.
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Hata, Naoki; Koyasu, Yuichi; Hori, Yoichi
Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. In this paper, control method to prevent power assisted wheelchair from overturning is proposed. It is found the front wheels rising is caused by magnitude and rapid increase of assisted torque. Therefore, feedforward control method to limit the assisted torque by tuning its magnitude or time constant is proposed. In order to emphasize safety and feeling of security, these methods make the front wheels no rise. The effectiveness of the proposed method is verified by the practical experiments and field test based performance evaluation using many trial subjects.
NASA Astrophysics Data System (ADS)
Gajewski, Juliusz B.; Glogowski, Marek J.
2008-12-01
The former research [1] was carried out on the influence of tribocharging in a system: metal rotating shaft-oil-lip seal on its work, especially on changes in the shaft braking torque with the increasing angular shaft velocity and oil temperature. The results obtained suggested that there be a possibility of reducing the braking torque by an external electric field. The compensation for the electric field generated in the system by natural tribocharging was proposed. The reduction in the braking torque seemed possible while applying an external DC electric field to the system. In general, the torque tended to increase with the increasing DC electric field for a variety of the oils and lip seals used and for different shaft angular velocities (rotational speeds) and oil temperatures. The braking torque reduction was achieved only for one lip seal and some different oils, which was and is a promising, expected result. The research results were yet presented elsewhere [1-3] and here some novel attempt has been made to interpret the results obtained in their physical—tribological and especially electrostatic—aspects since there has been a lack of such an interpretation in the literature of the subject.
Goetschius, John; Hart, Joseph M
2016-01-01
When returning to physical activity, patients with a history of anterior cruciate ligament reconstruction (ACL-R) often experience limitations in knee-joint function that may be due to chronic impairments in quadriceps motor control. Assessment of knee-extension torque variability may demonstrate underlying impairments in quadriceps motor control in patients with a history of ACL-R. To identify differences in maximal isometric knee-extension torque variability between knees that have undergone ACL-R and healthy knees and to determine the relationship between knee-extension torque variability and self-reported knee function in patients with a history of ACL-R. Descriptive laboratory study. Laboratory. A total of 53 individuals with primary, unilateral ACL-R (age = 23.4 ± 4.9 years, height = 1.7 ± 0.1 m, mass = 74.6 ± 14.8 kg) and 50 individuals with no history of substantial lower extremity injury or surgery who served as controls (age = 23.3 ± 4.4 years, height = 1.7 ± 0.1 m, mass = 67.4 ± 13.2 kg). Torque variability, strength, and central activation ratio (CAR) were calculated from 3-second maximal knee-extension contraction trials (90° of flexion) with a superimposed electrical stimulus. All participants completed the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, and we determined the number of months after surgery. Group differences were assessed using independent-samples t tests. Correlation coefficients were calculated among torque variability, strength, CAR, months after surgery, and IKDC scores. Torque variability, strength, CAR, and months after surgery were regressed on IKDC scores using stepwise, multiple linear regression. Torque variability was greater and strength, CAR, and IKDC scores were lower in the ACL-R group than in the control group (P < .05). Torque variability and strength were correlated with IKDC scores (P < .05). Torque variability, strength, and CAR were correlated with each other (P < .05). Torque variability alone accounted for 14.3% of the variance in IKDC scores. The combination of torque variability and number of months after surgery accounted for 21% of the variance in IKDC scores. Strength and CAR were excluded from the regression model. Knee-extension torque variability was moderately associated with IKDC scores in patients with a history of ACL-R. Torque variability combined with months after surgery predicted 21% of the variance in IKDC scores in these patients.
Electric-field assisted spin torque nano-oscillator and binary frequency shift keying modulation
NASA Astrophysics Data System (ADS)
Zhang, Xiangli; Chen, Hao-Hsuan; Zhang, Zongzhi; Liu, Yaowen
2018-04-01
Electric-controlled magnetization precession introduces technologically relevant possibility for developing spin torque nano-oscillators (STNO) with potential applications in microwave emission. Using the perpendicularly magnetized magnetic tunnel junction (MTJ), we show that the magnetization oscillation frequency can be tuned by the co-action of electric field and spin polarized current. The dynamical phase diagram of MTJ-based STNO is analytically predicted through coordinate transformation from the laboratory frame to the rotation frame, by which the nonstationary out-of-plane magnetization precession process is therefore transformed into the stationary process in the rotation frame. Furthermore, using this STNO as a microwave source, we numerically demonstrate that the bit signal can be transmitted by a binary frequency shift keying (BFSK) modulation technique. The BFSK scheme shows good modulation features with no transient state.
In-line rotating capacitive torque sensor
Kronberg, James W.
1991-01-01
A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolbert, Leon M; Lee, Seong T
2010-01-01
This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as amore » result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).« less
In-line rotating torque sensor with on-board amplifier
Kronberg, James W.
1990-01-01
A rotating torque sensor apparatus and method for measuring small torques comprising a shaft, a platform having a circuit board and a first moment arm attached to the shaft, a rotatable wheel coaxial with the shaft and having a second moment arm spaced apart from the first moment arm with a load cell therebetween for generating an electric signal as the torque is applied to the shaft and transferred through the moment arms to the load cell. The electrical signal is conducted from the load cell to the circuit board for filtering and amplification before being extracted from the torque assembly through a slip ring.
Memory-Metal Electromechanical Actuators
NASA Technical Reports Server (NTRS)
Ruoff, C. F.
1984-01-01
Electrically controlled actuator produces predetermined force, torque, or displacement without motors, solenoids, or gears. Using memory-metal elements, actuator responds to digital input without electronic digitalto-analog conversion. To prevent overheating and consequent loss of hotformed shape, each element protected by thermostat turns off current when predetermined temperature is exceeded. Memory metals used to generate fast mechanical response to electric signals.
Practical To Tactical: Making the Case for a Shift in Ground Vehicle Robotics
2012-05-10
with Driver Warning I C R M x x x V x UNCLASSIFIED 21 Electronic Brake System ( ELB ) w/ Electronic Stability Control (ESC) Electric Power Assist...System ( ELB ) w/ Electronic Stability Control (ESC) Electric Power Assist Steering Steering Position Sensor Steering Torque Sensor Transmission...Computer I C R M x x x V x x Wheel Speed Sensors ESC Accelerometer/Rate Gyro UNCLASSIFIED 23 Electronic Brake System ( ELB ) w/ Electronic
Simulation of an Electromechanical Spin Motor System of a Control Moment Gyroscope
NASA Technical Reports Server (NTRS)
Inampudi, Ravi; Gordeuk, John
2016-01-01
A two-phase brushless DC motor (BDCM) with pulse-width modulated (PWM) voltage drive is simulated to control the flywheel speed of a control moment gyroscope (CMG). An overview of a double-gimballed control moment gyroscope (DGCMG) assembly is presented along with the CMG torque effects on the spacecraft. The operating principles of a two-phase brushless DC motor are presented and the system's electro-mechanical equations of motion are developed for the root-mean-square (RMS) currents and wheel speed. It is shown that the system is an extremely "stiff" set of first-order equations for which an implicit Euler integrator is required for a stable solution. An adaptive proportional voltage controller is presented which adjusts the PWM voltages depending on several control modes for speed, current, and torque. The simulation results illustrate the interaction between the electrical system and the load dynamics and how these influence the overall performance of the system. As will be shown, the CMG spin motor model can directly provide electrical power use and thermal power output to spacecraft subsystems for effective (average) calculations of CMG power consumption.
Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation
NASA Astrophysics Data System (ADS)
Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles
2011-10-01
In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.
In-line rotating capacitive torque sensor
Kronberg, J.W.
1991-09-10
Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.
Fault tolerant vector control of induction motor drive
NASA Astrophysics Data System (ADS)
Odnokopylov, G.; Bragin, A.
2014-10-01
For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.
Drilling Precise Orifices and Slots
NASA Technical Reports Server (NTRS)
Richards, C. W.; Seidler, J. E.
1983-01-01
Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.
NASA Astrophysics Data System (ADS)
Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.
An advanced pitch change mechanism incorporating a hybrid traction drive
NASA Technical Reports Server (NTRS)
Steinetz, B. M.; Loewenthal, S. H.; Sargisson, D. F.; White, G.
1984-01-01
A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed.
Control of large wind turbine generators connected to utility networks
NASA Technical Reports Server (NTRS)
Hinrichsen, E. N.
1983-01-01
This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.
Torque-based optimal acceleration control for electric vehicle
NASA Astrophysics Data System (ADS)
Lu, Dongbin; Ouyang, Minggao
2014-03-01
The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.
An advanced pitch change mechanism incorporating a hybrid traction drive
NASA Technical Reports Server (NTRS)
Steinetz, B. M.; Sargisson, D. F.; White, G.; Loewenthal, S. H.
1984-01-01
A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed. Comparisons are made to the more conventional pitch control mechanisms.
Direct mechanical torque sensor for model wind turbines
NASA Astrophysics Data System (ADS)
Kang, Hyung Suk; Meneveau, Charles
2010-10-01
A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.
An electric motor with magnetic bearings: A concept
NASA Technical Reports Server (NTRS)
Studer, P. A.
1973-01-01
Because same magnetic flux is used to control rotor as to drive it, size, weight, and power required are minimized. Constant total current keeps motor torque invarient, and absence of mechanical bearings eliminates wear and reduces frictional power loss.
Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression.
Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Abdul Wahab, Ahmad Khairi; Hasnan, Nazirah; Olatunji, Sunday Olusanya; Davis, Glen M
2016-07-19
The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES) in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG) of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR) due to its good generalization ability in related fields. Inputs to the proposed model were MMG amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle. Gaussian kernel function, as well as its optimal parameters were identified with the best performance measure and were applied as the SVR kernel function to build an effective knee torque estimation model. To train and test the model, the data were partitioned into training (70%) and testing (30%) subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R²) between the actual and the estimated torque values was up to 94% and 89% during the training and testing cases, with root mean square errors (RMSE) of 9.48 and 12.95, respectively. The knee torque estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic dynamometer. These findings support the realization of a closed-loop NMES system for functional tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation.
NASA Astrophysics Data System (ADS)
Kodama, Shinya; Hori, Yoichi
It is well-known that the separately-excited DC motor has effective torque (current) reduction characteristics in response to rapid increase in the rotational speed of the motor. These characteristics have been utilized in adhesion control of electric railway trains with separately-excited DC motor. Up to now, we have proposed a new skid prevention method for EVs, utilizing these characteristics and have made experiments with the hardware skid simulator “Motor-Generator setup”. In this paper, we applied this skid prevention control to our new vehicle “UOT CADWELL EV" equipped with BLDC motors and showed its effectiveness.
Frequency analysis of tangential force measurements on a vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Rossander, Morgan; Goude, Anders; Bernhoff, Hans; Eriksson, Sandra
2016-09-01
This paper presents experimental results of the torque ripple obtained from a three bladed 12 kW experimental H-rotor prototype. The measurements are performed by means of load cells installed on the base of the struts and by electrical measurements on the generator. The resulting torques are analysed in terms of frequency spectrum and order spectrum (synchronized with rotation). The measurements are compared to aerodynamic simulations of the turbine. The expected large torque ripple at three times the rotational speed (3 p) is only weakly represented at the hub and in the generator. This suggests that the system is filtering the ripple and/or that the simulations are overestimating the 3 p component. The torque ripple loads on the drive train are therefore lower than anticipated. Even if highly attenuated, most of the low frequencies correlating to aerodynamics are still represented in the generator electrical torque. Given a certain baseline, this opens for possible online monitoring of unbalances in the turbine by electrical measurements.
NASA Astrophysics Data System (ADS)
Liu, Wei; He, Hongwen; Sun, Fengchun; Lv, Jiangyi
2017-05-01
This paper describes an integrated chassis control framework for a novel three-axle electric bus with active rear steering (ARS) axle and four motors at the middle and rear wheels. The proposed integrated framework consists of four parts: (1) an active speed limiting controller is designed for anti-body slip control and rollover prevention; (2) an ARS controller is designed for coordinating the tyre wear between the driving wheels; (3) an inter-axle torque distribution controller is designed for optimal torque distribution between the axles, considering anti-wheel slip and battery power limitations and (4) a data acquisition and estimation module for collecting the measured and estimated vehicle states. To verify the performances, a simulation platform is established in Trucksim software combined with Simulink. Three test cases are particularly designed to show the performances. The proposed algorithm is compared with a simple even control algorithm. The test results show satisfactory lateral stability and rollover prevention performances under severe steering conditions. The desired tyre wear coordinating performance is also realised, and the wheel slip ratios are restricted within stable region during intensive driving and emergency braking with complicated road conditions.
High Ripples Reduction in DTC of Induction Motor by Using a New Reduced Switching Table
NASA Astrophysics Data System (ADS)
Mokhtari, Bachir; Benkhoris, Mohamed F.
2016-05-01
The direct torque and flux control (DTC) of electrical motors is characterized by ripples of torque and flux. Among the many solutions proposed to reduce them is to use modified switching tables which is very advantageous; because its implementation is easy and requires no additional cost compared to other solutions. This paper proposes a new reduced switching table (RST) to improve the DTC by reducing harmful ripples of torque and flux. This new switching table is smaller than the conventional one (CST) and depends principally at the flux error. This solution is studied by simulation under Matlab/Simulink and experimentally validated on a testbed with DSPACE1103. The results obtained of a DTC with RST applied to a three-phase induction motor (IM) show a good improvement and an effectiveness of proposed solution, the torque ripple decreases about 47% and 3% for the stator flux compared with a basic DTC.
Development of a biomechanical energy harvester.
Li, Qingguo; Naing, Veronica; Donelan, J Maxwell
2009-06-23
Biomechanical energy harvesting-generating electricity from people during daily activities-is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 +/- 0.8 W of electrical power with only a 5.0 +/- 21 W increase in metabolic cost. Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices.
Development of a biomechanical energy harvester
Li, Qingguo; Naing, Veronica; Donelan, J Maxwell
2009-01-01
Background Biomechanical energy harvesting–generating electricity from people during daily activities–is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Methods Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. Results The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 ± 0.8 W of electrical power with only a 5.0 ± 21 W increase in metabolic cost. Conclusion Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices. PMID:19549313
Control and Optimization of Electric Ship Propulsion Systems with Hybrid Energy Storage
NASA Astrophysics Data System (ADS)
Hou, Jun
Electric ships experience large propulsion-load fluctuations on their drive shaft due to encountered waves and the rotational motion of the propeller, affecting the reliability of the shipboard power network and causing wear and tear. This dissertation explores new solutions to address these fluctuations by integrating a hybrid energy storage system (HESS) and developing energy management strategies (EMS). Advanced electric propulsion drive concepts are developed to improve energy efficiency, performance and system reliability by integrating HESS, developing advanced control solutions and system integration strategies, and creating tools (including models and testbed) for design and optimization of hybrid electric drive systems. A ship dynamics model which captures the underlying physical behavior of the electric ship propulsion system is developed to support control development and system optimization. To evaluate the effectiveness of the proposed control approaches, a state-of-the-art testbed has been constructed which includes a system controller, Li-Ion battery and ultra-capacitor (UC) modules, a high-speed flywheel, electric motors with their power electronic drives, DC/DC converters, and rectifiers. The feasibility and effectiveness of HESS are investigated and analyzed. Two different HESS configurations, namely battery/UC (B/UC) and battery/flywheel (B/FW), are studied and analyzed to provide insights into the advantages and limitations of each configuration. Battery usage, loss analysis, and sensitivity to battery aging are also analyzed for each configuration. In order to enable real-time application and achieve desired performance, a model predictive control (MPC) approach is developed, where a state of charge (SOC) reference of flywheel for B/FW or UC for B/UC is used to address the limitations imposed by short predictive horizons, because the benefits of flywheel and UC working around high-efficiency range are ignored by short predictive horizons. Given the multi-frequency characteristics of load fluctuations, a filter-based control strategy is developed to illustrate the importance of the coordination within the HESS. Without proper control strategies, the HESS solution could be worse than a single energy storage system solution. The proposed HESS, when introduced into an existing shipboard electrical propulsion system, will interact with the power generation systems. A model-based analysis is performed to evaluate the interactions of the multiple power sources when a hybrid energy storage system is introduced. The study has revealed undesirable interactions when the controls are not coordinated properly, and leads to the conclusion that a proper EMS is needed. Knowledge of the propulsion-load torque is essential for the proposed system-level EMS, but this load torque is immeasurable in most marine applications. To address this issue, a model-based approach is developed so that load torque estimation and prediction can be incorporated into the MPC. In order to evaluate the effectiveness of the proposed approach, an input observer with linear prediction is developed as an alternative approach to obtain the load estimation and prediction. Comparative studies are performed to illustrate the importance of load torque estimation and prediction, and demonstrate the effectiveness of the proposed approach in terms of improved efficiency, enhanced reliability, and reduced wear and tear. Finally, the real-time MPC algorithm has been implemented on a physical testbed. Three different efforts have been made to enable real-time implementation: a specially tailored problem formulation, an efficient optimization algorithm and a multi-core hardware implementation. Compared to the filter-based strategy, the proposed real-time MPC achieves superior performance, in terms of the enhanced system reliability, improved HESS efficiency, and extended battery life.
NASA Astrophysics Data System (ADS)
Gajewski, Juliusz B.; Głogowski, Marek J.
2013-03-01
The paper presents the results of experiments on electrostatic and tribological aspects of different anti-wear additive's contents when an additive is blended with different fully synthetic (poly-α-olefin) and PAG (polyalkylene glycol) base oils in a rotating shaft-oil and oil-lip seal interfacial system. The experimental results are the relationships of electric potential induced in a lip seal's stiffening ring to angular velocity of a rotating metal shaft and to temperature of the oils tested. The braking torque of a shaft is measured with a torquemeter sensor connected directly with a microprocessor-based system for controlling the rotational speed and for measuring the shaft's braking torque and oil temperature. The beneficial and promising results are obtained for PAG when an external DC electric field is applied to the system and the braking torque is then reduced for a certain combination of the base oil and additive's contents. On the basis of the former and present research results an analysis is made to permit one to show how the type of the oils and additives tested can affect both interfaces: rotating shaft-oil and oil-lip of the lip seal and especially the braking torque.
Comolli, Lorenzo; Ferrante, Simona; Pedrocchi, Alessandra; Bocciolone, Marco; Ferrigno, Giancarlo; Molteni, Franco
2010-05-01
Functional electrical stimulation (FES) is a well established method in the rehabilitation of stroke patients. Indeed, a bilateral movement such as cycling induced by FES would be crucial for these patients who had an unilateral motor impairment and had to recover an equivalent use of limbs. The aim of this study was to develop a low-cost meteorologically qualified cycle-ergometer, optimized for patients with stroke. A commercial ergometer was instrumented with resistive strain gauges and was able to provide the torque produced at the right and left crank, independently. The developed system was integrated with a stimulator, obtaining a novel FES cycling device able to control in real-time the movement unbalance. A dynamic calibration of the sensors was performed and a total torque uncertainty was computed. The system was tested on a healthy subject and on a stroke patient. Results demonstrated that the proposed sensors could be successfully used during FES cycling sessions where the maximum torque produced is about 9Nm, an order of magnitude less than the torque produced during voluntary cycling. This FES cycling system will assist in future investigations on stroke rehabilitation by means of FES and in new exercise regimes designed specifically for patients with unilateral impairments.
NASA Technical Reports Server (NTRS)
Dekramer, Cornelis
1994-01-01
The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.
Medeiros, Flávia V A; Vieira, Amilton; Carregaro, Rodrigo L; Bottaro, Martim; Maffiuletti, Nicola A; Durigan, João L Q
2015-01-01
Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES). This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. To investigate the effects of skinfold thickness (SFT) on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm) vs. thinner (n=10; 29.4 mm) SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC) torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS). NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01) while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01). A positive correlation was found between current intensity and SFT (r=0.540, p=0.017). A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012). No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53). These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness) affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Both straight and chopped dc motor performance data for a General Electric 5BY436A1 motor with a General Electric EV-1 controller is presented in tabular and graphical formats. Effects of motor temperature and operating voltage are also shown. The maximum motor efficiency is approximately 85% at low operating temperatures in the straight dc mode. Chopper efficiency can be assumed to be 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight mode.
Research on Acceleration Compensation Strategy of Electric Vehicle Based on Fuzzy Control Theory
NASA Astrophysics Data System (ADS)
Zhu, Tianjun; Li, Bin; Zong, Changfu; Wei, Zhicheng
2017-09-01
Nowadays, the driving technology of electric vehicle is developing rapidly. There are many kinds of methods in driving performance control technology. The paper studies the acceleration performance of electric vehicle. Under the premise of energy management, an acceleration power compensation method by fuzzy control theory based on driver intention recognition is proposed, which can meet the driver’s subjective feelings better. It avoids the problem that the pedal opening and power output are single correspondence when the traditional vehicle accelerates. Through the simulation test, this method can significantly improve the performance of acceleration and output torque smoothly in non-emergency acceleration to ensure vehicle comfortable and stable.
In-line drivetrain and four wheel drive work machine using same
Hoff, Brian
2008-08-05
A four wheel drive articulated mine loader is powered by a fuel cell and propelled by a single electric motor. The drivetrain has the first axle, second axle, and motor arranged in series on the work machine chassis. Torque is carried from the electric motor to the back differential via a pinion meshed with the ring gear of the back differential. A second pinion oriented in an opposite direction away from the ring gear is coupled to a drive shaft to transfer torque from the ring gear to the differential of the front axle. Thus, the ring gear of the back differential acts both to receive torque from the motor and to transfer torque to the forward axle. The in-line drive configuration includes a single electric motor and a single reduction gear to power the four wheel drive mine loader.
Electrical Control of Magnetic Dynamics in Hybrid Metal-Semiconductor Systems
2014-07-25
abandoning perfection for quantum technologies”, Munich Center for NanoScience Workshop on Nanosciences: Great Adventures on Small Scales, Venice ...International University, Venice , Italy, September 16-20, 2013. 20. R. A. Buhrman, “Spin Hall effects, spin torque and interfacial spin-orbit phenomena in
Hart, D J; Taylor, P N; Chappell, P H; Wood, D E
2006-06-01
Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.
Dynamic model tracking design for low inertia, high speed permanent magnet ac motors.
Stewart, P; Kadirkamanathan, V
2004-01-01
Permanent magnet ac (PMAC) motors have existed in various configurations for many years. The advent of rare-earth magnets and their associated highly elevated levels of magnetic flux makes the permanent magnet motor attractive for many high performance applications from computer disk drives to all electric racing cars. The use of batteries as a prime storage element carries a cost penalty in terms of the unladen weight of the vehicle. Minimizing this cost function requires the minimum electric motor size and weight to be specified, while still retaining acceptable levels of output torque. This tradeoff can be achieved by applying a technique known as flux weakening which will be investigated in this paper. The technique allows the speed range of a PMAC motor to be greatly increased, giving a constant power range of more than 4:1. A dynamic model reference controller is presented which has advantages in ease of implementation, and is particularly suited to dynamic low inertia applications such as clutchless gear changing in high performance electric vehicles. The benefits of this approach are to maximize the torque speed envelope of the motor, particularly advantageous when considering low inertia operation. The controller is examined experimentally, confirming the predicted performance.
NASA Astrophysics Data System (ADS)
Zhao, Z.-G.; Zhou, L.-J.; Zhang, J.-T.; Zhu, Q.; Hedrick, J.-K.
2017-05-01
Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.
NASA Technical Reports Server (NTRS)
Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.; Zhu, S.
2004-01-01
A transient torque method was developed to rapidly and simultaneously determine the viscosity and electrical conductivity of liquid metals and molten semiconductors. The experimental setup of the transient torque method is similar to that of the oscillation cup method. The melt sample is sealed inside a fused silica ampoule, and the ampoule is suspended by a long quartz fiber to form a torsional oscillation system. A rotating magnetic field is used to induce a rotating flow in the conductive melt, which causes the ampoule to rotate around its vertical axis. A sensitive angular detector is used to measure the deflection angle of the ampoule. Based on the transient behavior of the deflection angle as the rotating magnetic field is applied, the electrical conductivity and viscosity of the melt can be obtained simultaneously by numerically fitting the data to a set of governing equations. The transient torque viscometer was applied successfully to measure the viscosity and electrical conductivity of high purity mercury at 53.4 C. The results were in excellent agreement with published data. The method is nonintrusive; capable of rapid measurement of the viscosity of toxic, high vapor pressure melts at elevated temperatures. In addition, the transient torque viscometer can also be operated as an oscillation cup viscometer to measure just the viscosity of the melt or as a rotating magnetic field method to determine the electrical conductivity of a melt or a solid if desired.
Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.
Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming
2015-01-01
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.
Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission
Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming
2015-01-01
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179
Current driven dynamics of magnetic domain walls in permalloy nanowires
NASA Astrophysics Data System (ADS)
Hayashi, Masamitsu
The significant advances in micro-fabrication techniques opened the door to access interesting properties in solid state physics. With regard to magnetic materials, geometrical confinement of magnetic structures alters the defining parameters that govern magnetism. For example, development of single domain nano-pillars made from magnetic multilayers led to the discovery of electrical current controlled magnetization switching, which revealed the existence of spin transfer torque. Magnetic domain walls (DWs) are boundaries in magnetic materials that divide regions with distinct magnetization directions. DWs play an important role in the magnetization reversal processes of both bulk and thin film magnetic materials. The motion of DW is conventionally controlled by magnetic fields. Recently, it has been proposed that spin polarized current passed across the DW can also control the motion of DWs. Current in most magnetic materials is spin-polarized, due to spin-dependent scattering of the electrons, and thus can deliver spin angular momentum to the DW, providing a "spin transfer" torque on the DW which leads to DW motion. In addition, owing to the development of micro-fabrication techniques, geometrical confinement of magnetic materials enables creation and manipulation of a "single" DW in magnetic nanostructures. New paradigms for DW-based devices are made possible by the direct manipulation of DWs using spin polarized electrical current via spin transfer torque. This dissertation covers research on current induced DW motion in magnetic nanowires. Fascinating effects arising from the interplay between DWs with spin polarized current will be revealed.
Wheel slip control with torque blending using linear and nonlinear model predictive control
NASA Astrophysics Data System (ADS)
Basrah, M. Sofian; Siampis, Efstathios; Velenis, Efstathios; Cao, Dongpu; Longo, Stefano
2017-11-01
Modern hybrid electric vehicles employ electric braking to recuperate energy during deceleration. However, currently anti-lock braking system (ABS) functionality is delivered solely by friction brakes. Hence regenerative braking is typically deactivated at a low deceleration threshold in case high slip develops at the wheels and ABS activation is required. If blending of friction and electric braking can be achieved during ABS events, there would be no need to impose conservative thresholds for deactivation of regenerative braking and the recuperation capacity of the vehicle would increase significantly. In addition, electric actuators are typically significantly faster responding and would deliver better control of wheel slip than friction brakes. In this work we present a control strategy for ABS on a fully electric vehicle with each wheel independently driven by an electric machine and friction brake independently applied at each wheel. In particular we develop linear and nonlinear model predictive control strategies for optimal performance and enforcement of critical control and state constraints. The capability for real-time implementation of these controllers is assessed and their performance is validated in high fidelity simulation.
NASA Astrophysics Data System (ADS)
Taylor, M. J.; Fornusek, C.; de Chazal, P.; Ruys, A. J.
2017-10-01
Functional Electrical Stimulation (FES) activates nerves and muscles that have been ravished and rendered paralysed by disease. As such, it is advantageous to study joint torques that arise due to electrical stimulation of muscle, to measure fatigue in an indirect, minimally-invasive way. Dynamometry is one way in which this can be achieved. In this paper, torque data is presented from an FES experiment on quadriceps, using isometric dynamometry to measure torque. A library of fatigue metrics to quantify these data are put forward. These metrics include; start and end torque peaks, percentage changes in torque over time, and maximum and minimum torque period algorithms (MTPA 1 and 2), and associated torque-time plots. It is illustrated, by example, how this novel library of metrics can model fatigue over time. Furthermore, these methods are critiqued by a qualitative assessment and compared against one another for their utility in modelling fatigue. Linear trendlines with coefficients of correlation (R 2) and qualitative descriptions of data are used to achieve this. We find that although arduous, individual peak plots yield the most relevant values upon which fatigue can be assessed. Methods to calculate peaks in data have less of a utility, offset by an order of magnitude of ˜101 in comparison with theoretically expected peak numbers. In light of this, we suggest that future methods would be well-inclined to investigate optimized form of peak analysis.
NASA Astrophysics Data System (ADS)
Lv, Chen; Zhang, Junzhi; Li, Yutong
2014-11-01
Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.
Radiation Forces and Torques without Stress (Tensors)
ERIC Educational Resources Information Center
Bohren, Craig F.
2011-01-01
To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…
Ng, Shamay S M; Hui-Chan, Christina W Y
2007-11-01
Previous studies have shown that repeated sensory inputs could enhance brain plasticity and cortical motor output. The purpose of this study was to investigate whether combining electrically induced sensory inputs through transcutaneous electrical nerve stimulation (TENS) with task-related training (TRT) in a home-based program would augment voluntary motor output in chronic stroke survivors better than either treatment alone or no treatment. Eighty-eight patients with stroke were assigned randomly to receive a home-based program of (1) TENS, (2) TENS+TRT, (3) placebo TENS+TRT, or (4) no treatment (control) 5 days a week for 4 weeks. Outcome measurements included Composite Spasticity Scale, peak torques generated during maximum isometric voluntary contraction of ankle dorsiflexors and plantarflexors, and gait velocity recorded at baseline, after 2 and 4 weeks of treatment, and 4 weeks after treatment ended. When compared with TENS, the combined TENS+TRT group showed significantly greater improvement in ankle dorsiflexion torque at follow-up and in ankle plantarflexion torque at week 2 and follow-up (P<0.01). When compared with placebo+TRT, the TENS+TRT group produced earlier and greater reduction of plantarflexor spasticity and improvement in ankle dorsiflexion torque at week 2 (P<0.01). When compared with all 3 groups, the TENS+TRT group showed significantly greater improvement in gait velocity (P<0.01). In patients with chronic stroke, 20 sessions of a combined TENS+TRT home-based program decreased plantarflexor spasticity, improved dorsiflexor and plantarflexor strength, and increased gait velocity significantly more than TENS alone, placebo+TRT, or no treatment. Such improvements can even be maintained 4 weeks after treatment ended.
Cyclic Parameter Refinement of 4S-10 Hybrid Flux-Switching Motor for Lightweight Electric Vehicle
NASA Astrophysics Data System (ADS)
Rani, J. Abd; Sulaiman, E.; Kumar, R.
2017-08-01
A great deal of attention has been given to the reduction of lighting the vehicle because the lighter the vehicle the energy consumption is comparatively low. Hence, the lightweight electric vehicle was introduced for lower carbon footprint and the sizing of the vehicle itself. One of the components to reduce the weight of the vehicle is the propulsion system which comprised of electric motor functioning as the source of torque to drive the propulsion system of the machine. This paper presents the refinement methodology for the optimized design of the 4S-10P E-Core hybrid excitation flux switching motor. The purpose of the refinement methodology is to improve the torque production of the optimized motor. The result of the successful improvement of the torque production is justifiable for a lightweight electric vehicle to drive the propulsion system.
Resonance measurement of nonlocal spin torque in a three-terminal magnetic device.
Xue, Lin; Wang, Chen; Cui, Yong-Tao; Liu, Luqiao; Swander, A; Sun, J Z; Buhrman, R A; Ralph, D C
2012-04-06
A pure spin current generated within a nonlocal spin valve can exert a spin-transfer torque on a nanomagnet. This nonlocal torque enables new design schemes for magnetic memory devices that do not require the application of large voltages across tunnel barriers that can suffer electrical breakdown. Here we report a quantitative measurement of this nonlocal spin torque using spin-torque-driven ferromagnetic resonance. Our measurement agrees well with the prediction of an effective circuit model for spin transport. Based on this model, we suggest strategies for optimizing the strength of nonlocal torque. © 2012 American Physical Society
A torque estimator for a traveling wave ultrasonic motor--application to an active claw.
Giraud, Frédéric; Semail, Betty
2006-08-01
Depending on its electrical-to-mechanical energy conversion process, the torque on a traveling wave ultrasonic motor (TWUM)'s shaft is not directly proportional to a measurable electrical variable, such as current or voltage. But it is derived from a complicated process at the stator/rotor interface. The load torque is thus quite unknown, and this can be a disadvantage in applications in which a torque limitation is required or a torque measurement is needed. The aim of this article is to come up with a straightforward torque estimator on a TWUM. For that purpose, the motor is modeled; this modeling leads to different estimator strategies. More specifically, we chose a strategy for which a speed sensor is useless, relying only on the stator's resonant behavior. The parameters of the motor needed for the estimator are measured afterward, and some nonlinearities are identified and taken into account. Several experimental trials then are carried out to check the performance of the estimator. A claw actuated by a TWUM is presented because this is a typical application in which the knowledge of the torque helps guarantee the safety of the device.
Electric Machine with Boosted Inductance to Stabilize Current Control
NASA Technical Reports Server (NTRS)
Abel, Steve
2013-01-01
High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.
A New Type Hi-Speed BLDC Control System Base on Indirect Current Control Strategy
NASA Astrophysics Data System (ADS)
Wang, D. P.; Wang, Y. C.; Zhang, F. G.; Jin, S.
2017-05-01
High speed BLDC has the characteristic as larger air gap smaller armature inductance, traditional PWM modulation will produce a great number of high frequency current harmonics which led problem like large torque ripple and serious motor heat. In the meantime traditional PWM modulation use the diode rectifier which cause harmonic pollution in electric power net. To solve the problem above, proposes a new motor controller topology. Using the IGBT device to replace the diode on frequency converter rectifier side, apply the power factor correction technology, reduce the pollution on the grid. Using busbar current modulation on the inverter, driving bridge-arm use 3-phase 6-state open as driving Mode, realize the control on a 10000r/min,10kw BLDC. The results of Simulation on matlab show the topological structure as proposed can effectively improve the network side power factor and reduce the motor armature winding harmonic and motor torque ripple.
NASA Astrophysics Data System (ADS)
Xu, Kun; Xu, Guo-Qing; Zheng, Chun-Hua
2016-04-01
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability, improving the adhesion utilization, and achieving deep energy recovery. There remain technical challenges mainly because of the nonlinear, uncertain, and varying features of wheel-rail contact conditions. This research analyzes the torque transmitting behavior during regenerative braking, and proposes a novel methodology to detect the wheel-rail adhesion stability. Then, applications to the wheel slip prevention during braking are investigated, and the optimal slip ratio control scheme is proposed, which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control. The proposed methodology achieves the optimal braking performance without the wheel-rail contact information. Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
Garrett Electric Boosting Systems (EBS) Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steve Arnold; Craig Balis; Pierre Barthelet
2005-03-31
Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-Turbo{trademark} designs do both The purpose of this project is to design and develop an electrically assistedmore » turbocharger, e-Turbo{trademark}, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-Turbo{trademark} can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-Turbo{trademark} consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration is slightly better. It was shown that in order to make full use of additional capabilities of e-Turbo{trademark} wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-Turbo{trademark} designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-Turbo{trademark} are to be developed in a future project. There is concern about high power demands (even though momentary) of e-Turbo{trademark}. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-Turbo{trademark} designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-Turbo{trademark}. Designs and hardware combining IBT and e-Turbo{trademark} are to be developed in a future project. e-Turbo{trademark} provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-Turbo{trademark} performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.« less
Apparatus producing constant cable tension for intermittent demand
Lauritzen, Ted
1985-01-01
The disclosed apparatus produces constant tension in superconducting electrical cable, or some other strand, under conditions of intermittent demand, as the cable is unreeled from a reel or reeled thereon. The apparatus comprises a pivotally supported swing frame on which the reel is rotatably supported, a rotary motor, a drive train connected between the motor and the reel and including an electrically controllable variable torque slip clutch, a servo transducer connected to the swing frame for producing servo input signals corresponding to the position thereof, a servo control system connected between the transducer and the clutch for regulating the torque transmitted by the clutch to maintain the swing frame in a predetermined position, at least one air cylinder connected to the swing frame for counteracting the tension in the cable, and pressure regulating means for supplying a constant air pressure to the cylinder to establish the constant tension in the cable, the servo system and the clutch being effective to produce torque on the reel in an amount sufficient to provide tension in the cable corresponding to the constant force exerted by the air cylinder. The drive train also preferably includes a fail-safe brake operable to its released position by electrical power in common with the servo system, for preventing rotation of the reel if there is a power failure. A shock absorber and biasing springs may also be connected to the swing frame, such springs biasing the frame toward its predetermined position. The tension in the cable may be measured by force measuring devices engageable with the bearings for the reel shaft, such bearings being supported for slight lateral movement. The reel shaft is driven by a Shmidt coupler which accommodates such movement.
Electronic measurement of variable torques in precision work technology
NASA Technical Reports Server (NTRS)
Maehr, M.
1978-01-01
Approaches for the determination of torques on the basis of length measurements are discussed. Attention is given to torque determinations in which the deformation of a shaft is measured, an electric measurement of the torsion angle, and an approach proposed by Buschmann (1970). Methods for a torque determination conducted with the aid of force measurements make use of piezoelectric approaches. The components used by these methods include a quartz crystal and a charge amplifier.
NASA Astrophysics Data System (ADS)
Munira, Kamaram; Pandey, Sumeet C.; Kula, Witold; Sandhu, Gurtej S.
2016-11-01
Voltage-controlled magnetic anisotropy (VCMA) effect has attracted a significant amount of attention in recent years because of its low cell power consumption during the anisotropy modulation of a thin ferromagnetic film. However, the applied voltage or electric field alone is not enough to completely and reliably reverse the magnetization of the free layer of a magnetic random access memory (MRAM) cell from anti-parallel to parallel configuration or vice versa. An additional symmetry-breaking mechanism needs to be employed to ensure the deterministic writing process. Combinations of voltage-controlled magnetic anisotropy together with spin-transfer torque (STT) and with an applied magnetic field (Happ) were evaluated for switching reliability, time taken to switch with low error rate, and energy consumption during the switching process. In order to get a low write error rate in the MRAM cell with VCMA switching mechanism, a spin-transfer torque current or an applied magnetic field comparable to the critical current and field of the free layer is necessary. In the hybrid processes, the VCMA effect lowers the duration during which the higher power hungry secondary mechanism is in place. Therefore, the total energy consumed during the hybrid writing processes, VCMA + STT or VCMA + Happ, is less than the energy consumed during pure spin-transfer torque or applied magnetic field switching.
Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra
2010-08-01
This study deals with the design of a controller for cycling induced by functional electrical stimulation. The controller will be exploitable in the rehabilitation of hemiparetic patients who need to recover motor symmetry. It uses the pulse width as the control variable in the stimulation of the two legs in order to nullify the unbalance between the torques produced at the two crank arms. It was validated by means of isokinetic trials performed both by healthy subjects and stroke patients. The results showed that the controller was able to reach, and then maintain, a symmetrical pedaling. In the future, the controller will be validated on a larger number of stroke patients.
Force reflecting hand controller for manipulator teleoperation
NASA Technical Reports Server (NTRS)
Bryfogle, Mark D.
1991-01-01
A force reflecting hand controller based upon a six degree of freedom fully parallel mechanism, often termed a Stewart Platform, has been designed, constructed, and tested as an integrated system with a slave robot manipulator test bed. A force reflecting hand controller comprises a kinesthetic device capable of transmitting position and orientation commands to a slave robot manipulator while simultaneously representing the environmental interaction forces of the slave manipulator back to the operator through actuators driving the hand controller mechanism. The Stewart Platform was chosen as a novel approach to improve force reflecting teleoperation because of its inherently high ratio of load generation capability to system mass content and the correspondingly high dynamic bandwidth. An additional novelty of the program was to implement closed loop force and torque control about the hand controller mechanism by equipping the handgrip with a six degree of freedom force and torque measuring cell. The mechanical, electrical, computer, and control systems are discussed and system tests are presented.
Park, Seong Hoon; Hwangbo, Gak
2015-03-01
[Purpose] The aim of this study was to investigate the effects of combined application of progressive resistance training and Russian electrical stimulation on quadriceps femoris muscle strength in elderly women with osteoarthritis of the knee. [Subjects] Thirty women over 65 years of age diagnosed with knee osteoarthritis participated in the present study. The subjects were randomly assigned to a control group (n=10), a progressive resistance training group (n=10), or a Russian electrical stimulation group (n=10). [Methods] Each group was treated 3 times weekly for 8 weeks, and each session lasted 45 minutes. Muscle strength was assessed by measuring the peak torque of the quadriceps femoris muscle. Outcome measurements were performed at baseline and at the fourth and eighth weeks of the treatment period. [Results] All groups showed significant intragroup differences in the quadriceps femoris muscle peak torque after the treatment intervention. There were significant intergroup differences between the Russian electrical stimulation group and the other groups. [Conclusion] The results of this study suggest that combined application of progressive resistance training and Russian electrical stimulation can be effective in strengthening the quadriceps femoris muscle in elderly women with knee osteoarthritis.
NASA Astrophysics Data System (ADS)
Georges, F.; Remouche, M.; Meyrueis, P.
2011-06-01
Usually manufacturer's specifications do not deal with the ability of linear sheet polarizers to have a constant transmittance function over their geometric area. These parameters are fundamental for developing low cost polarimetric sensors(for instance rotation, torque, displacement) specifically for hybrid car (thermic + electricity power). It is then necessary to specially characterize commercial polarizers sheets to find if they are adapted to this kind of applications. In this paper, we present measuring methods and bench developed for this purpose, and some preliminary characterization results. We state conclusions for effective applications to hybrid car gearbox control and monitoring.
NASA Astrophysics Data System (ADS)
Ozgenel, Mehmet Cihat
2017-09-01
Permanent magnet brushless dc (BLDC) motors are very convenient for many applications such as industrial, medical, robotic, aerospace, small electric vehicles, and home applications because of their inherent satisfying dynamic characteristics. There are numerous studies about these motors and their control schemes such as sensorless control and different speed and torque control schemes. All electric motors need commutation in order to produce speed and torque. Commutation in brushed DC motors is performed by means of a brush and collector. In BLDC motors, commutation is provided electronically in contrast to the brushed dc motors. In BLDC motors, motor phase windings are energized according to the information of the rotor position by inverter transistors. Rotor position information is used for commutation. Therefore, rotor position information is required to produce speed and torque for BLDC motors. The easiest and cheapest way to obtain rotor position information is to use Hall-effect or optical sensors. BLDC motor manufacturers generally produce BLDC motors equipped with three Hall-effect position sensors. Having three position sensors on BLDC motors provides six-step commutation which ensures two phase windings are energized in each moment. The third phase is empty. In this study, all phase windings are energized in the same time. This commutation method is twelve-step or 150 degrees commutation. So that more speed can be achieved from the same BLDC motor by comparison with six-step commutation. In this paper, both six-step and twelve-step commutation methods applied to the same BLDC motor and obtained experimental results from this study were presented, examined, and discussed.
Ozgenel, Mehmet Cihat
2017-09-01
Permanent magnet brushless dc (BLDC) motors are very convenient for many applications such as industrial, medical, robotic, aerospace, small electric vehicles, and home applications because of their inherent satisfying dynamic characteristics. There are numerous studies about these motors and their control schemes such as sensorless control and different speed and torque control schemes. All electric motors need commutation in order to produce speed and torque. Commutation in brushed DC motors is performed by means of a brush and collector. In BLDC motors, commutation is provided electronically in contrast to the brushed dc motors. In BLDC motors, motor phase windings are energized according to the information of the rotor position by inverter transistors. Rotor position information is used for commutation. Therefore, rotor position information is required to produce speed and torque for BLDC motors. The easiest and cheapest way to obtain rotor position information is to use Hall-effect or optical sensors. BLDC motor manufacturers generally produce BLDC motors equipped with three Hall-effect position sensors. Having three position sensors on BLDC motors provides six-step commutation which ensures two phase windings are energized in each moment. The third phase is empty. In this study, all phase windings are energized in the same time. This commutation method is twelve-step or 150 degrees commutation. So that more speed can be achieved from the same BLDC motor by comparison with six-step commutation. In this paper, both six-step and twelve-step commutation methods applied to the same BLDC motor and obtained experimental results from this study were presented, examined, and discussed.
Scanning-SQUID investigation of spin-orbit torque acting on yttrium iron garnet devices
NASA Astrophysics Data System (ADS)
Rosenberg, Aaron J.; Jermain, Colin L.; Aradhya, Sriharsha V.; Brangham, Jack T.; Nowack, Katja C.; Kirtley, John R.; Yang, Fengyuan; Ralph, Daniel C.; Moler, Kathryn A.
Successful manipulation of electrically insulating magnets, such as yttrium iron garnet, by by current-driven spin-orbit torques could provide a highly efficient platform for spintronic memory. Compared to devices fabricated using magnetic metals, magnetic insulators have the advantage of the ultra-low magnetic damping and the elimination of shunting currents in the magnet that reduce the torque efficiency. Here, we apply current in the spin Hall metal β-Ta to manipulate the magnetic orientation of micron-sized, electrically-insulating yttrium iron garnet devices. We do not observe spin-torque switching even for applied currents well above the critical current expected in a macrospin switching model. This suggests either inefficient transfer of spin torque at our Ta/YIG interface or a breakdown of the macrospin approximation. This work is supported by FAME, one of six centers of STARnet sponsored by MARCO and DARPA. The SQUID microscope and sensors were developed with support from the NSF-sponsored Center NSF-NSEC 0830228, and from NSF IMR-MIP 0957616.
A wearable robotic orthosis with a spring-assist actuator.
Seungmin Jung; Chankyu Kim; Jisu Park; Dongyoub Yu; Jaehwan Park; Junho Choi
2016-08-01
This paper introduces a wearable robotic orthosis with spring-assist actuators, which is designed to assist people who have difficulty in walking. The spring-assist actuator consists of an electrical motor and a spring, which are attached to a rotational axis in parallel to each other. The spring-assist actuator is developed based on the analysis on the stiffness of the knee and hip joints during walking. "COWALK-Mobile," which is a wearable robotic orthosis, is developed using the spring-assist actuators to reduce the required motor torque during walking. The COWALK-Mobile has active hip and knee joints and passive ankle joints to provide assistive torque to the wearer. The required joint torque is generated by the spring as well as the electrical motor, which results in a decrease of maximum required torque for the motor. In order to evaluate the performance of the spring-assist actuator, experiments are carried out. The experiments show that the spring-assist actuators reduced the required motor torque during walking.
Interleaved neuromuscular electrical stimulation: Motor unit recruitment overlap.
Wiest, Matheus J; Bergquist, Austin J; Schimidt, Helen L; Jones, Kelvin E; Collins, David F
2017-04-01
In this study, we quantified the "overlap" between motor units recruited by single pulses of neuromuscular electrical stimulation (NMES) delivered over the tibialis anterior muscle (mNMES) and the common peroneal nerve (nNMES). We then quantified the torque produced when pulses were alternated between the mNMES and nNMES sites at 40 Hz ("interleaved" NMES; iNMES). Overlap was assessed by comparing torque produced by twitches evoked by mNMES, nNMES, and both delivered together, over a range of stimulus intensities. Trains of iNMES were delivered at the intensity that produced the lowest overlap. Overlap was lowest (5%) when twitches evoked by both mNMES and nNMES produced 10% peak twitch torque. iNMES delivered at this intensity generated 25% of maximal voluntary dorsiflexion torque (11 Nm). Low intensity iNMES leads to low overlap and produces torque that is functionally relevant to evoke dorsiflexion during walking. Muscle Nerve 55: 490-499, 2017. © 2016 Wiley Periodicals, Inc.
Optimization to reduce fuel consumption in charge depleting mode
Roos, Bryan Nathaniel; Martini, Ryan D.
2014-08-26
A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.
NASA Astrophysics Data System (ADS)
Velev, Julian P.; Merodio, Pablo; Pollack, Cesar; Kalitsov, Alan; Chshiev, Mairbek; Kioussis, Nicholas
2017-12-01
Using model calculations, we demonstrate a very high level of control of the spin-transfer torque (STT) by electric field in multiferroic tunnel junctions with composite dielectric/ferroelectric barriers. We find that, for particular device parameters, toggling the polarization direction can switch the voltage-induced part of STT between a finite value and a value close to zero, i.e. quench and release the torque. Additionally, we demonstrate that under certain conditions the zero-voltage STT, i.e. the interlayer exchange coupling, can switch sign with polarization reversal, which is equivalent to reversing the magnetic ground state of the tunnel junction. This bias- and polarization-tunability of the STT could be exploited to engineer novel functionalities such as softening/hardening of the bit or increasing the signal-to-noise ratio in magnetic sensors, which can have important implications for magnetic random access memories or for combined memory and logic devices.
A new model to compute the desired steering torque for steer-by-wire vehicles and driving simulators
NASA Astrophysics Data System (ADS)
Fankem, Steve; Müller, Steffen
2014-05-01
This paper deals with the control of the hand wheel actuator in steer-by-wire (SbW) vehicles and driving simulators (DSs). A novel model for the computation of the desired steering torque is presented. The introduced steering torque computation does not only aim to generate a realistic steering feel, which means that the driver should not miss the basic steering functionality of a modern conventional steering system such as an electric power steering (EPS) or hydraulic power steering (HPS), and this in every driving situation. In addition, the modular structure of the steering torque computation combined with suitably selected tuning parameters has the objective to offer a high degree of customisability of the steering feel and thus to provide each driver with his preferred steering feel in a very intuitive manner. The task and the tuning of each module are firstly described. Then, the steering torque computation is parameterised such that the steering feel of a series EPS system is reproduced. For this purpose, experiments are conducted in a hardware-in-the-loop environment where a test EPS is mounted on a steering test bench coupled with a vehicle simulator and parameter identification techniques are applied. Subsequently, how appropriate the steering torque computation mimics the test EPS system is objectively evaluated with respect to criteria concerning the steering torque level and gradient, the feedback behaviour and the steering return ability. Finally, the intuitive tuning of the modular steering torque computation is demonstrated for deriving a sportier steering feel configuration.
da Silva, Vinicius Zacarias Maldaner; Durigan, João Luiz Quaglioti; Arena, Ross; de Noronha, Marcos; Gurney, Burke; Cipriano, Gerson
2015-01-01
Neuromuscular electrical stimulation (NMES) is widely utilized to enhance muscle performance. However, the optimal NMES waveform with respect to treatment effect has not been established. To investigate the effects of kilohertz-frequency alternating current (KFAC) and low-frequency pulsed current (PC) on quadriceps evoked torque and self-reported discomfort. PubMed, The Cochrane Library, EMBASE, MEDLINE, Physiotherapy Evidence Database (PEDro), SinoMed, ISI Web of Knowledge, and CINAHL were searched for randomized controlled trials (RCTs) and quasi-randomized controlled trials (QRCTs). Two reviewers independently selected potential studies according to the inclusion criteria, extracted data, and assessed methodological quality. Studies were eligible if they compared KFAC versus PC interventions. Studies that included outcome measures for percentage of maximal isometric voluntary contraction (%MIVC) torque and self-reported discomfort level were eligible for evaluation. Seven studies involving 127 individuals were included. The methodological quality of eligible trials was moderate, with a mean of 5 on the 10-point PEDro scale. Overall, PC was no better than KFAC in terms of evoked torque and there was no difference in self-reported discomfort level. KFAC and PC have similar effects on quadriceps evoked torque and self-reported discomfort level in healthy individuals. The small number and overall methodological quality of currently available studies included in this meta-analysis indicate that new RCTs are needed to better determine optimal NMES treatment parameters.
Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.
2014-01-01
NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance using hardware-in-the-loop (HIL).
Electric field control of magnon-induced magnetization dynamics in multiferroics.
Risinggård, Vetle; Kulagina, Iryna; Linder, Jacob
2016-08-24
We consider theoretically the effect of an inhomogeneous magnetoelectric coupling on the magnon-induced dynamics of a ferromagnet. The magnon-mediated magnetoelectric torque affects both the homogeneous magnetization and magnon-driven domain wall motion. In the domains, we predict a reorientation of the magnetization, controllable by the applied electric field, which is almost an order of magnitude larger than that observed in other physical systems via the same mechanism. The applied electric field can also be used to tune the domain wall speed and direction of motion in a linear fashion, producing domain wall velocities several times the zero field velocity. These results show that multiferroic systems offer a promising arena to achieve low-dissipation magnetization rotation and domain wall motion by exciting spin-waves.
Spin Transfer Torque in Graphene
NASA Astrophysics Data System (ADS)
Lin, Chia-Ching; Chen, Zhihong
2014-03-01
Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.
Apparatus and method for non-invasive diagnosis and control of motor operated valve condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyon, R.H.; Chai, J.; Lang, J.H.
1997-01-14
An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signalmore » and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.« less
Apparatus and method for non-invasive diagnosis and control of motor operated valve condition
Lyon, R.H.; Chai, J.; Lang, J.H.; Hagman, W.H.; Umans, S.D.; Saarela, O.J.
1997-01-14
An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.
Apparatus and method for non-invasive diagnosis and control of motor operated valve condition
Lyon, Richard H.; Chai, Jangbom; Lang, Jeffrey H.; Hagman, Wayne H.; Umans, Stephen D.; Saarela, Olli J.
1997-01-01
An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit.
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1983-01-01
The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.
Torque limit of PM motors for field-weakening region operation
Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH
2012-02-14
The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.
Robust tuning of robot control systems
NASA Technical Reports Server (NTRS)
Minis, I.; Uebel, M.
1992-01-01
The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller.
Noncontact torque measurement using stroboscopic techniques
NASA Technical Reports Server (NTRS)
Leonard, W. H.
1972-01-01
Noncontact torquemeter measures torsional deflection of rotating shaft and results are viewed on vernier scale. Magnitude of torque must be calculated from measured deflection. Device has no electric connections with the rotating member and is easy to use.
Tire-road friction estimation and traction control strategy for motorized electric vehicle.
Jin, Li-Qiang; Ling, Mingze; Yue, Weiqiang
2017-01-01
In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS).
Tire-road friction estimation and traction control strategy for motorized electric vehicle
Jin, Li-Qiang; Yue, Weiqiang
2017-01-01
In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053
Electrode position markedly affects knee torque in tetanic, stimulated contractions.
Vieira, Taian M; Potenza, Paolo; Gastaldi, Laura; Botter, Alberto
2016-02-01
The purpose of this study was to investigate how much the distance between stimulation electrodes affects the knee extension torque in tetanic, electrically elicited contractions. Current pulses of progressively larger amplitude, from 0 mA to maximally tolerated intensities, were delivered at 20 pps to the vastus medialis, rectus femoris and vastus lateralis muscles of ten, healthy male subjects. Four inter-electrode distances were tested: 32.5% (L1), 45.0% (L2), 57.5% (L3) and 70% (L4) of the distance between the patella apex and the anterior superior iliac spine. The maximal knee extension torque and the current leading to the maximal torque were measured and compared between electrode configurations. The maximal current tolerated by each participant ranged from 60 to 100 mA and did not depend on the inter-electrode distance. The maximal knee extension torque elicited did not differ between L3 and L4 (P = 0.15) but, for both conditions, knee torque was significantly greater than for L1 and L2 (P < 0.024). On average, the extension torque elicited for L3 and L4 was two to three times greater than that obtained for L1 and L2. The current leading to maximal torque was not as sensitive to inter-electrode distance. Except for L1 current intensity did not change with electrode configuration (P > 0.16). Key results presented here revealed that for a given stimulation intensity, knee extension torque increased dramatically with the distance between electrodes. The distance between electrodes seems therefore to critically affect knee torque, with potential implication for optimising exercise protocols based on electrical stimulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hessell, Steven M.; Morris, Robert L.; McGrogan, Sean W.
A powertrain including an engine and torque machines is configured to transfer torque through a multi-mode transmission to an output member. A method for controlling the powertrain includes employing a closed-loop speed control system to control torque commands for the torque machines in response to a desired input speed. Upon approaching a power limit of a power storage device transferring power to the torque machines, power limited torque commands are determined for the torque machines in response to the power limit and the closed-loop speed control system is employed to determine an engine torque command in response to the desiredmore » input speed and the power limited torque commands for the torque machines.« less
NASA Astrophysics Data System (ADS)
Wang, Rongrong; Chen, Yan; Feng, Daiwei; Huang, Xiaoyu; Wang, Junmin
This paper presents the development and experimental characterizations of a prototyping pure electric ground vehicle, which is equipped with four independently actuated in-wheel motors (FIAIWM) and is powered by a 72 V 200 Ah LiFeYPO 4 battery pack. Such an electric ground vehicle (EGV) employs four in-wheel (or hub) motors to independently drive/brake the four wheels and is one of the promising vehicle architectures primarily due to its actuation flexibility, energy efficiency, and performance potentials. Experimental data obtained from the EGV chassis dynamometer tests were employed to generate the in-wheel motor torque response and power efficiency maps in both driving and regenerative braking modes. A torque distribution method is proposed to show the potentials of optimizing the FIAIWM EGV operational energy efficiency by utilizing the actuation flexibility and the characterized in-wheel motor efficiency and torque response.
A reactive torque control law for gyroscopically controlled space vehicles
NASA Technical Reports Server (NTRS)
Farmer, J. E.
1973-01-01
A method of control is developed based on the reactive torques as seen by the individual CMG gimbals. The application of a torque to the gimbal of a CMG rotates the momentum vector and applies a torque to the spacecraft according to well-known laws. The response (rotation) of the vehicle produces a reverse or reaction torque opposing the torque producing the gimbal movement. The reactive torque and the pseudoinverse control schemes are contrasted in order to point out the simplicity of the first method. Simulation was performed only to the extent necessary to prove that reactive torque stabilization and control is feasible.
NASA Astrophysics Data System (ADS)
Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The generator was fabricated and experimentally validated to qualify its loaded characteristics. The rotational torque and power output are measured and efficiency is then analyzed. At 100Ω load, the generator power output increased with the increased of rotational speed. Nearly 78% of efficiency was achieved when the generator was rotated at 250rpm. At this speed, the generator produced RMS voltage of 81VAC. Torque required to rotate the generator was found to be 3.2Nm. The slight increment of mechanical torque to spin the generator was due to the counter electromotive force (CEMF) existed in the copper windings. However, the torque required is still lower by nearly 30% than conventional AFPM generator. It is there concluded that this generator is suitable to be used for low wind density power generation application.
Dantas, Lucas Ogura; Vieira, Amilton; Siqueira, Aristides Leite; Salvini, Tania Fatima; Durigan, João Luiz Quagliotti
2015-01-01
We studied the effects of different neuromuscular electrical stimulation (NMES) currents, 2 kHz-frequency alternating currents (KACs, Russian and Aussie) and 2 pulsed currents (PCs), on isometric knee extension torque and discomfort level, both in isolation and combined, with maximum voluntary contraction (MVC). Twenty-one women (age 21.6 ± 2.5 years) were studied. We evaluated torque evoked by NMES or NMES combined with maximum voluntary contraction of the quadriceps muscle of healthy women. Discomfort level was measured using a visual analog pain scale. Despite comparable levels of discomfort, evoked torque was lower for Russian current compared with the other modalities (Russian 50.8%, Aussie 71.7%, PC500 76.9%, and PC200 70.1%; P < 0.001). There was no advantage in combining NMES with MVC compared with isolated NMES. The Aussie and PC approaches proved superior to Russian current for inducing isometric knee extension torque. This information is important in guiding decision making with regard to NMES protocols for muscle strengthening. © 2014 Wiley Periodicals, Inc.
Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses
Foglyano, Kevin M.; Kobetic, Rudi; To, Curtis S.; Bulea, Thomas C.; Schnellenberger, John R.; Audu, Musa L.; Nandor, Mark J.; Quinn, Roger D.; Triolo, Ronald J.
2015-01-01
Feasibility of using pressurized hydraulic fluid as a source of on-demand assistive power for hybrid neuroprosthesis combining exoskeleton with functional neuromuscular stimulation was explored. Hydraulic systems were selected as an alternative to electric motors for their high torque/mass ratio and ability to be located proximally on the exoskeleton and distribute power distally to assist in moving the joints. The power assist system (PAS) was designed and constructed using off-the-shelf components to test the feasibility of using high pressure fluid from an accumulator to provide assistive torque to an exoskeletal hip joint. The PAS was able to provide 21 Nm of assistive torque at an input pressure of 3171 kPa with a response time of 93 ms resulting in 32° of hip flexion in an able-bodied test. The torque output was independent of initial position of the joint and was linearly related to pressure. Thus, accumulator pressure can be specified to provide assistive torque as needed in exoskeletal devices for walking or stair climbing beyond those possible either volitionally or with electrical stimulation alone. PMID:27017963
NASA Astrophysics Data System (ADS)
Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam
2017-09-01
This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.
Electric field control of magnon-induced magnetization dynamics in multiferroics
Risinggård, Vetle; Kulagina, Iryna; Linder, Jacob
2016-01-01
We consider theoretically the effect of an inhomogeneous magnetoelectric coupling on the magnon-induced dynamics of a ferromagnet. The magnon-mediated magnetoelectric torque affects both the homogeneous magnetization and magnon-driven domain wall motion. In the domains, we predict a reorientation of the magnetization, controllable by the applied electric field, which is almost an order of magnitude larger than that observed in other physical systems via the same mechanism. The applied electric field can also be used to tune the domain wall speed and direction of motion in a linear fashion, producing domain wall velocities several times the zero field velocity. These results show that multiferroic systems offer a promising arena to achieve low-dissipation magnetization rotation and domain wall motion by exciting spin-waves. PMID:27554064
Estimators of wheel slip for electric vehicles using torque and encoder measurements
NASA Astrophysics Data System (ADS)
Boisvert, M.; Micheau, P.
2016-08-01
For the purpose of regenerative braking control in hybrid and electrical vehicles, recent studies have suggested controlling the slip ratio of the electric-powered wheel. A slip tracking controller requires an accurate slip estimation in the overall range of the slip ratio (from 0 to 1), contrary to the conventional slip limiter (ABS) which calls for an accurate slip estimation in the critical slip area, estimated at around 0.15 in several applications. Considering that it is not possible to directly measure the slip ratio of a wheel, the problem is to estimate the latter from available online data. To estimate the slip of a wheel, both wheel speed and vehicle speed must be known. Several studies provide algorithms that allow obtaining a good estimation of vehicle speed. On the other hand, there is no proposed algorithm for the conditioning of the wheel speed measurement. Indeed, the noise included in the wheel speed measurement reduces the accuracy of the slip estimation, a disturbance increasingly significant at low speed and low torque. Herein, two different extended Kalman observers of slip ratio were developed. The first calculates the slip ratio with data provided by an observer of vehicle speed and of propeller wheel speed. The second observer uses an original nonlinear model of the slip ratio as a function of the electric motor. A sinus tracking algorithm is included in the two observers, in order to reject harmonic disturbances of wheel speed measurement. Moreover, mass and road uncertainties can be compensated with a coefficient adapted online by an RLS. The algorithms were implemented and tested with a three-wheel recreational hybrid vehicle. Experimental results show the efficiency of both methods.
Parallel elastic elements improve energy efficiency on the STEPPR bipedal walking robot
Mazumdar, Anirban; Spencer, Steven J.; Hobart, Clinton; ...
2016-11-23
This study describes how parallel elastic elements can be used to reduce energy consumption in the electric motor driven, fully-actuated, STEPPR bipedal walking robot without compromising or significantly limiting locomotive behaviors. A physically motivated approach is used to illustrate how selectively-engaging springs for hip adduction and ankle flexion predict benefits for three different flat ground walking gaits: human walking, human-like robot walking and crouched robot walking. Based on locomotion data, springs are designed and substantial reductions in power consumption are demonstrated using a bench dynamometer. These lessons are then applied to STEPPR (Sandia Transmission-Efficient Prototype Promoting Research), a fully actuatedmore » bipedal robot designed to explore the impact of tailored joint mechanisms on walking efficiency. Featuring high-torque brushless DC motors, efficient low-ratio transmissions, and high fidelity torque control, STEPPR provides the ability to incorporate novel joint-level mechanisms without dramatically altering high level control. Unique parallel elastic designs are incorporated into STEPPR, and walking data shows that hip adduction and ankle flexion springs significantly reduce the required actuator energy at those joints for several gaits. These results suggest that parallel joint springs offer a promising means of supporting quasi-static joint torques due to body mass during walking, relieving motors of the need to support these torques and substantially improving locomotive energy efficiency.« less
Parallel elastic elements improve energy efficiency on the STEPPR bipedal walking robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazumdar, Anirban; Spencer, Steven J.; Hobart, Clinton
This study describes how parallel elastic elements can be used to reduce energy consumption in the electric motor driven, fully-actuated, STEPPR bipedal walking robot without compromising or significantly limiting locomotive behaviors. A physically motivated approach is used to illustrate how selectively-engaging springs for hip adduction and ankle flexion predict benefits for three different flat ground walking gaits: human walking, human-like robot walking and crouched robot walking. Based on locomotion data, springs are designed and substantial reductions in power consumption are demonstrated using a bench dynamometer. These lessons are then applied to STEPPR (Sandia Transmission-Efficient Prototype Promoting Research), a fully actuatedmore » bipedal robot designed to explore the impact of tailored joint mechanisms on walking efficiency. Featuring high-torque brushless DC motors, efficient low-ratio transmissions, and high fidelity torque control, STEPPR provides the ability to incorporate novel joint-level mechanisms without dramatically altering high level control. Unique parallel elastic designs are incorporated into STEPPR, and walking data shows that hip adduction and ankle flexion springs significantly reduce the required actuator energy at those joints for several gaits. These results suggest that parallel joint springs offer a promising means of supporting quasi-static joint torques due to body mass during walking, relieving motors of the need to support these torques and substantially improving locomotive energy efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, S.K.; Kim, H.S.; Kim, C.G.
1998-05-01
a new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal fluxmore » distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results well demonstrate the effectiveness of the proposed control.« less
Evaluation Method for Fieldlike-Torque Efficiency by Modulation of the Resonance Field
NASA Astrophysics Data System (ADS)
Kim, Changsoo; Kim, Dongseuk; Chun, Byong Sun; Moon, Kyoung-Woong; Hwang, Chanyong
2018-05-01
The spin Hall effect has attracted a lot of interest in spintronics because it offers the possibility of a faster switching route with an electric current than with a spin-transfer-torque device. Recently, fieldlike spin-orbit torque has been shown to play an important role in the magnetization switching mechanism. However, there is no simple method for observing the fieldlike spin-orbit torque efficiency. We suggest a method for measuring fieldlike spin-orbit torque using a linear change in the resonance field in spectra of direct-current (dc)-tuned spin-torque ferromagnetic resonance. The fieldlike spin-orbit torque efficiency can be obtained in both a macrospin simulation and in experiments by simply subtracting the Oersted field from the shifted amount of resonance field. This method analyzes the effect of fieldlike torque using dc in a normal metal; therefore, only the dc resistivity and the dimensions of each layer are considered in estimating the fieldlike spin-torque efficiency. The evaluation of fieldlike-torque efficiency of a newly emerging material by modulation of the resonance field provides a shortcut in the development of an alternative magnetization switching device.
Complex collective dynamics of active torque-driven colloids at interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snezhko, Alexey
Modern self-assembly techniques aiming to produce complex structural order or functional diversity often rely on non-equilibrium conditions in the system. Light, electric, or magnetic fields are predominantly used to modify interaction profiles of colloidal particles during self-assembly or induce complex out-of-equilibrium dynamic ordering. The energy injection rate, properties of the environment are important control parameters that influence the outcome of active (dynamic) self-assembly. The current review is focused on a case of collective dynamics and self-assembly of particles with externally driven torques coupled to a liquid or solid interface. The complexity of interactions in such systems is further enriched bymore » strong hydrodynamic coupling between particles. Unconventionally ordered dynamic self-assembled patterns, spontaneous symmetry breaking phenomena, self-propulsion, and collective transport have been reported in torque-driven colloids. Some of the features of the complex collective behavior and dynamic pattern formation in those active systems have been successfully captured in simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kyungmi; Lee, Kyung-Jin, E-mail: kj-lee@korea.ac.kr; Department of Materials Science and Engineering, Korea University, Seoul 136-713
2015-08-07
We numerically investigate the effect of magnetic and electrical damages at the edge of a perpendicular magnetic random access memory (MRAM) cell on the spin-transfer-torque (STT) efficiency that is defined by the ratio of thermal stability factor to switching current. We find that the switching mode of an edge-damaged cell is different from that of an undamaged cell, which results in a sizable reduction in the switching current. Together with a marginal reduction of the thermal stability factor of an edge-damaged cell, this feature makes the STT efficiency large. Our results suggest that a precise edge control is viable formore » the optimization of STT-MRAM.« less
NASA Astrophysics Data System (ADS)
Ubertini, Filippo; Venanzi, Ilaria; Comanducci, Gabriele
2015-06-01
The current trend in full-scale applications of active mass drivers for mitigating buildings' vibrations is to rely on the use of electric servomotors and low friction transmission devices. While similar full-scale applications have been recently documented, there is still the need for deepening the understanding of the behavior of such active mass drivers, especially as it concerns their reliability in the case of extreme loading events. This paper presents some considerations arisen in the physical implementation of a prototype active mass driver system, fabricated by coupling an electric torsional servomotor with a ball screw transmission device, using state-of-the-art electronics and a high speed digital communication protocol between controller and servomotor drive. The prototype actuator is mounted on top of a scaled-down five-story frame structure, subjected to base excitation provided by a sliding table actuated by an electrodynamic shaker. The equations of motion are rigorously derived, at first, by considering the torque of the servomotor as the control input, in agreement with other literature work. Then, they are extended to the case where the servomotor operates under kinematic control, that is, by commanding its angular velocity instead of its torque, including control-structure-interaction effects. Experiments are carried out by employing an inherently stable collocated skyhook control algorithm, proving, on the one hand, the control effectiveness of the device but also revealing, on the other hand, the possibility of closed-loop system instability at high gains. Theoretical interpretation of the results clarifies that the dynamic behavior of the actuator plays a central role in determining its control effectiveness and is responsible for the observed stability issues, operating similarly to time delay effects. Numerical extension to the case of earthquake excitation confirms the control effectiveness of the device and highlights that different controllers essentially provide similar performances in the mitigation of the structural response.
Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle
NASA Astrophysics Data System (ADS)
Huang, Lei; Cui, Ying
2017-07-01
Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.
Torque Characteristics Analysis of Hybrid Stepping Motor Using 3-D Finite Element Method
NASA Astrophysics Data System (ADS)
Kawase, Yoshihiro; Yamaguchi, Tadashi; Masuda, Tatsuya; Domeki, Hideo; Kobori, Masaru
Hybrid stepping motors are widely used for various electric instruments because of high torque, high accuracy and small step angle. It is necessary for the optimum design of hybrid stepping motors to analyze torque characteristics accurately. In this paper, a hybrid stepping motor is analyzed using the 3-D finite element method taking into account the rotation of the armature. The effects of the interlaminar gap in the core on the torque characteristics are clarified using the gap elements. The validity of our method is clarified by comparison between the calculated results and measured ones.
Room-temperature spin-orbit torque in NiMnSb
NASA Astrophysics Data System (ADS)
Ciccarelli, C.; Anderson, L.; Tshitoyan, V.; Ferguson, A. J.; Gerhard, F.; Gould, C.; Molenkamp, L. W.; Gayles, J.; Železný, J.; Šmejkal, L.; Yuan, Z.; Sinova, J.; Freimuth, F.; Jungwirth, T.
2016-09-01
Materials that crystallize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, inversion asymmetries in their crystal structure and relativistic spin-orbit coupling led to discoveries of non-equilibrium spin-polarization phenomena that are now extensively explored as an electrical means for manipulating magnetic moments in a variety of spintronic structures. Current research of these relativistic spin-orbit torques focuses primarily on magnetic transition-metal multilayers. The low-temperature diluted magnetic semiconductor (Ga, Mn)As, in which spin-orbit torques were initially discovered, has so far remained the only example showing the phenomenon among bulk non-centrosymmetric ferromagnets. Here we present a general framework, based on the complete set of crystallographic point groups, for identifying the potential presence and symmetry of spin-orbit torques in non-centrosymmetric crystals. Among the candidate room-temperature ferromagnets we chose to use NiMnSb, which is a member of the broad family of magnetic Heusler compounds. By performing all-electrical ferromagnetic resonance measurements in single-crystal epilayers of NiMnSb we detect room-temperature spin-orbit torques generated by effective fields of the expected symmetry and of a magnitude consistent with our ab initio calculations.
Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length.
García-Sánchez, Pablo; Ramos, Antonio
2015-11-01
We theoretically study the rotation induced on a metal sphere immersed in an electrolyte and subjected to a rotating electric field. The rotation arises from the interaction of the field with the electric charges induced at the metal-electrolyte interface, i.e., the induced electrical double layer (EDL). Particle rotation is due to the torque on the induced dipole, and also from induced-charge electro-osmostic flow (ICEO). The interaction of the electric field with the induced dipole on the system gives rise to counterfield rotation, i.e., the direction opposite to the rotation of the electric field. ICEO generates co-field rotation of the sphere. For thin EDL, ICEO generates negligible rotation. For increasing size of EDL, co-field rotation appears and, in the limit of very thick EDL, it compensates the counter-field rotation induced by the electrical torque. We also report computations of the rotating fluid velocity field around the sphere.
Electric Boosting System for Light Truck/SUV Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Steve; Balis, Craig; Barthelet, Pierre
2005-06-22
Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assistedmore » turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.« less
NASA Astrophysics Data System (ADS)
Guo, Jinghua; Luo, Yugong; Li, Keqiang; Dai, Yifan
2018-05-01
This paper presents a novel coordinated path following system (PFS) and direct yaw-moment control (DYC) of autonomous electric vehicles via hierarchical control technique. In the high-level control law design, a new fuzzy factor is introduced based on the magnitude of longitudinal velocity of vehicle, a linear time varying (LTV)-based model predictive controller (MPC) is proposed to acquire the wheel steering angle and external yaw moment. Then, a pseudo inverse (PI) low-level control allocation law is designed to realize the tracking of desired external moment torque and management of the redundant tire actuators. Furthermore, the vehicle sideslip angle is estimated by the data fusion of low-cost GPS and INS, which can be obtained by the integral of modified INS signals with GPS signals as initial value. Finally, the effectiveness of the proposed control system is validated by the simulation and experimental tests.
Four quadrant control of induction motors
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1991-01-01
Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.
Propulsion System Technology for Military Land Vehicles
1981-08-01
torques) to decrease specific weight and volume; and (3) hybrid transmissions using low-torque devices (electrical converters or traction drives) with a... VEICLE SPEC POMWE, bWtu FIGURE 1. Impact of vehicle specific power on weight and manufacturing cost of armored vehicles. 15 [ !00, LCV .30 *1
NASA Technical Reports Server (NTRS)
Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.; Lehoczky, S. L.; Zhu, S.
2003-01-01
A transient torque method was developed to rapidly and simultaneously determine the viscosity and electrical conductivity of semiconducting or metallic melts. The experimental setup is similar to that for the oscillation cup technique. The melt sample is sealed inside a fused silica ampoule, and the ampoule is suspended by a long quartz fiber to form a torsional oscillation system. A rotating magnetic field is used to induce a rotating flow in the conductive melt, which causes the ampoule to rotate along its axis. A sensitive angular detector is used to measure the deflection angle of the ampoule. Based on the transient behavior of the deflection angle as the rotating magnetic field is applied, the electrical conductivity and viscosity of the melt can be obtained simultaneously by numerically fitting the data to a set of governing equations. The transient torque viscometer was applied successfully to measure the viscosity and electrical conductivity of high purity mercury at 53.4 C. The results were in excellent agreement with the published data. The main advantage of the technique is that the measurement can be completed in one or two minutes, as opposed to the one or two-hour measurement time required by the oscillation cup technique. The method is non-intrusive; capable of rapid measurement of the viscosity of toxic, high vapor pressure melts at elevated temperatures. In addition, the transient torque viscometer can also be operated as an oscillation cup viscometer if desired.
Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface
NASA Astrophysics Data System (ADS)
Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.
2018-01-01
The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.
Pedullà, Eugenio; Lo Savio, Fabio; Boninelli, Simona; Plotino, Gianluca; Grande, Nicola M; La Rosa, Guido; Rapisarda, Ernesto
2016-01-01
The purpose of this study was to evaluate the torsional and cyclic fatigue resistance of the new Hyflex EDM OneFile (Coltene/Whaledent AG, Altstatten, Switzerland) manufactured by electrical discharge machining and compare the findings with the ones of Reciproc R25 (VDW, Munich, Germany) and WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland). One hundred-twenty new Hyflex EDM OneFile (#25/0.08), Reciproc R25, and WaveOne Primary files were used. Torque and angle of rotation at failure of new instruments (n = 20) were measured according to ISO 3630-1 for each brand. Cyclic fatigue resistance was tested measuring the number of cycles to failure in an artificial stainless steel canal with a 60° angle and a 3-mm radius of curvature. Data were analyzed using the analysis of variance test and the Student-Newman-Keuls test for multiple comparisons. The fracture surface of each fragment was examined with a scanning electron microscope. The cyclic fatigue of Hyflex EDM was significantly higher than the one of Reciproc R25 and WaveOne Primary (P < .05 and P < .001, respectively). Hyflex EDM showed a lower maximum torque load (P < .05) but a significantly higher angular rotation (P < .0001) to fracture than Reciproc R25 and WaveOne Primary. No significant difference was found comparing the maximum torque load, angular rotation, and cyclic fatigue of Reciproc R25 and WaveOne Primary (P > .05). The new Hyflex EDM instruments (controlled memory wire) have higher cyclic fatigue resistance and angle of rotation to fracture but lower torque to failure than Reciproc R25 and WaveOne Primary files (M-wire for both files). Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Estigoni, Eduardo H.; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M.; Davis, Glen M.
2014-01-01
This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. PMID:25479324
Estigoni, Eduardo H; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M; Davis, Glen M
2014-12-03
This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery.
High performance stepper motors for space mechanisms
NASA Technical Reports Server (NTRS)
Sega, Patrick; Estevenon, Christine
1995-01-01
Hybrid stepper motors are very well adapted to high performance space mechanisms. They are very simple to operate and are often used for accurate positioning and for smooth rotations. In order to fulfill these requirements, the motor torque, its harmonic content, and the magnetic parasitic torque have to be properly designed. Only finite element computations can provide enough accuracy to determine the toothed structures' magnetic permeance, whose derivative function leads to the torque. It is then possible to design motors with a maximum torque capability or with the most reduced torque harmonic content (less than 3 percent of fundamental). These later motors are dedicated to applications where a microstep or a synchronous mode is selected for minimal dynamic disturbances. In every case, the capability to convert electrical power into torque is much higher than on DC brushless motors.
High performance stepper motors for space mechanisms
NASA Astrophysics Data System (ADS)
Sega, Patrick; Estevenon, Christine
1995-05-01
Hybrid stepper motors are very well adapted to high performance space mechanisms. They are very simple to operate and are often used for accurate positioning and for smooth rotations. In order to fulfill these requirements, the motor torque, its harmonic content, and the magnetic parasitic torque have to be properly designed. Only finite element computations can provide enough accuracy to determine the toothed structures' magnetic permeance, whose derivative function leads to the torque. It is then possible to design motors with a maximum torque capability or with the most reduced torque harmonic content (less than 3 percent of fundamental). These later motors are dedicated to applications where a microstep or a synchronous mode is selected for minimal dynamic disturbances. In every case, the capability to convert electrical power into torque is much higher than on DC brushless motors.
2013-01-01
Background Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity” vs. “contracture”). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Methods Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. Results In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Conclusions Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy. PMID:23880287
de Gooijer-van de Groep, Karin L; de Vlugt, Erwin; de Groot, Jurriaan H; van der Heijden-Maessen, Hélène C M; Wielheesen, Dennis H M; van Wijlen-Hempel, Rietje M S; Arendzen, J Hans; Meskers, Carel G M
2013-07-23
Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: "spasticity" vs. "contracture"). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy.
Pressurized fluid torque driver control and method
NASA Technical Reports Server (NTRS)
Cook, Joseph S., Jr. (Inventor)
1994-01-01
Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.
Displaceable Gear Torque Controlled Driver
NASA Technical Reports Server (NTRS)
Cook, Joseph S., Jr. (Inventor)
1997-01-01
Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.
NASA Astrophysics Data System (ADS)
Zhao, Z.-G.; Chen, H.-J.; Yang, Y.-Y.; He, L.
2015-09-01
For a hybrid car equipped with dual clutch transmission (DCT), the coordination control problems of clutches and power sources are investigated while taking full advantage of the integrated starter generator motor's fast response speed and high accuracy (speed and torque). First, a dynamic model of the shifting process is established, the vehicle acceleration is quantified according to the intentions of the driver, and the torque transmitted by clutches is calculated based on the designed disengaging principle during the torque phase. Next, a robust H∞ controller is designed to ensure speed synchronisation despite the existence of model uncertainties, measurement noise, and engine torque lag. The engine torque lag and measurement noise are used as external disturbances to initially modify the output torque of the power source. Additionally, during the torque switch phase, the torque of the power sources is smoothly transitioned to the driver's demanded torque. Finally, the torque of the power sources is further distributed based on the optimisation of system efficiency, and the throttle opening of the engine is constrained to avoid sharp torque variations. The simulation results verify that the proposed control strategies effectively address the problem of coordinating control of clutches and power sources, establishing a foundation for the application of DCT in hybrid cars.
NASA Astrophysics Data System (ADS)
Woo, Byung-Chul; Hong, Do-Kwan; Lee, Ji-Young
The most distinctive advantage of transverse flux motor(TFM) is high torque density which has prompted many researches into studying various design variants. TFM is well suited for low speed direct drive applications due to its high torque density. This paper deals with simulation based comparisons between a surface permanent magnet transverse flux motor(SPM-TFM) and an interior permanent magnet transverse flux motor(IPM-TFM). A commercial finite element analysis(FEA) software Maxwell 3D is used for electromagnetic field computation to fully analyze complex geometry of the TFMs. General characteristics, such as cogging torque, rated torque and torque ripple characteristics of the two TFMs are analyzed and compared by extensive 3D FEA.
NASA Astrophysics Data System (ADS)
Toporkov, D. M.; Vialcev, G. B.
2017-10-01
The implementation of parallel branches is a commonly used manufacturing method of the realizing of fractional slot concentrated windings in electrical machines. If the rotor eccentricity is enabled in a machine with parallel branches, the equalizing currents can arise. The simulation approach of the equalizing currents in parallel branches of an electrical machine winding based on magnetic field calculation by using Finite Elements Method is discussed in the paper. The high accuracy of the model is provided by the dynamic improvement of the inductances in the differential equation system describing a machine. The pre-computed table flux linkage functions are used for that. The functions are the dependences of the flux linkage of parallel branches on the branches currents and rotor position angle. The functions permit to calculate self-inductances and mutual inductances by partial derivative. The calculated results obtained for the electric machine specimen are presented. The results received show that the adverse combination of design solutions and the rotor eccentricity leads to a high value of the equalizing currents and windings heating. Additional torque ripples also arise. The additional ripples harmonic content is not similar to the cogging torque or ripples caused by the rotor eccentricity.
NASA Astrophysics Data System (ADS)
Velayudhan, C.; Bundell, J. H.
This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.
Energy efficient motion control of the electric bus on route
NASA Astrophysics Data System (ADS)
Kotiev, G. O.; Butarovich, D. O.; Kositsyn, B. B.
2018-02-01
At present, the urgent problem is the reduction of energy costs of urban motor transport. The article proposes a method of solving this problem by developing an energy-efficient law governing the movement of an electric bus along a city route. To solve this problem, an algorithm is developed based on the dynamic programming method. The proposed method allows you to take into account the constraints imposed on the phase coordinates, control action, as well as on the time of the route. In the course of solving the problem, the model of rectilinear motion of an electric bus on a horizontal reference surface is considered, taking into account the assumptions that allow it to be adapted for the implementation of the method. For the formation of a control action in the equations of motion dynamics, an algorithm for changing the traction / braking torque on the wheels of an electric bus is considered, depending on the magnitude of the control parameter and the speed of motion. An optimal phase trajectory was obtained on a selected section of the road for the prototype of an electric bus. The article presents the comparison of simulation results obtained with the optimal energy efficient control law with the results obtained by a test driver. The comparison proved feasibility of the energy efficient control law for the automobile city electric transport.
Design and Control of a Pneumatically Actuated Transtibial Prosthesis.
Zheng, Hao; Shen, Xiangrong
2015-04-01
This paper presents the design and control of a pneumatically actuated transtibial prosthesis, which utilizes a pneumatic cylinder-type actuator to power the prosthetic ankle joint to support the user's locomotion. The pneumatic actuator has multiple advantages over the traditional electric motor, such as light weight, low cost, and high power-to-weight ratio. The objective of this work is to develop a compact and lightweight transtibial prosthesis, leveraging the multiple advantages provided by this highly competitive actuator. In this paper, the design details of the prosthesis are described, including the determination of performance specifications, the layout of the actuation mechanism, and the calculation of the torque capacity. Through the authors' design calculation, the prosthesis is able to provide sufficient range of motion and torque capacity to support the locomotion of a 75 kg individual. The controller design is also described, including the underlying biomechanical analysis and the formulation of the finite-state impedance controller. Finally, the human subject testing results are presented, with the data indicating that the prosthesis is able to generate a natural walking gait and sufficient power output for its amputee user.
Design and Control of a Pneumatically Actuated Transtibial Prosthesis
Zheng, Hao; Shen, Xiangrong
2015-01-01
This paper presents the design and control of a pneumatically actuated transtibial prosthesis, which utilizes a pneumatic cylinder-type actuator to power the prosthetic ankle joint to support the user's locomotion. The pneumatic actuator has multiple advantages over the traditional electric motor, such as light weight, low cost, and high power-to-weight ratio. The objective of this work is to develop a compact and lightweight transtibial prosthesis, leveraging the multiple advantages provided by this highly competitive actuator. In this paper, the design details of the prosthesis are described, including the determination of performance specifications, the layout of the actuation mechanism, and the calculation of the torque capacity. Through the authors’ design calculation, the prosthesis is able to provide sufficient range of motion and torque capacity to support the locomotion of a 75 kg individual. The controller design is also described, including the underlying biomechanical analysis and the formulation of the finite-state impedance controller. Finally, the human subject testing results are presented, with the data indicating that the prosthesis is able to generate a natural walking gait and sufficient power output for its amputee user. PMID:26146497
Extended cage adjustable speed electric motors and drive packages
Hsu, John S.
1999-01-01
The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.
Electromechanical systems with transient high power response operating from a resonant ac link
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Hansen, Irving G.
1992-01-01
The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.
Lee, Du-Hyeong; Kim, Yong-Gun; Lee, Jong-Ho; Hong, Sam-Pyo; Lim, Young-Jun; Lee, Kyu-Bok
2015-01-01
To determine the accuracy of applied torque of different implant controller and handpiece combinations by using an electronic torque gauge. Four combinations of the following devices were tested: Surgic XT controller (NSK), XIP10 controller (Saeshin), X-SG20L handpiece (NSK), CRB26LX handpiece (Saeshin). For five torque settings, 30 measurements were recorded at 30 revolutions per minute by using an electronic torque gauge fixed to jigs, and means were calculated. Applied torques were generally higher than the set torque of 10 and 20 Ncm and lower than the set values of 40 and 50 Ncm. The average torque deviations differed significantly among the combinations (P < .05). At 10 and 20 Ncm, the Surgic XT/X-SG20L combination yielded the closest value to the intended torque, followed by the XIP10/X-SG20L combination. At 30 Ncm, the XIP10/X-SG20L combination showed the nearest value. At 40 Ncm, the Surgic XT/X-SG20L, XIP10/CRB26LX, and XIP10/X-SG20L combinations showed deviations within 10%. At 50 Ncm, all the combinations showed lower applied torque than the set value. Large standard deviations were observed in the Surgic XT/CRB26LX (13.288) and Surgic XT/X-SG20L (7.858) combinations. Different combinations of implant controllers and handpieces do not generate significant variations in applied torque. The actual torque varies according to the torque setting. It is necessary to calibrate devices before use to reduce potentially problematic torque.
Perspective: Interface generation of spin-orbit torques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.
We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less
Kelledes, William L.; St. John, Don K.
1992-01-01
The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.
Perspective: Interface generation of spin-orbit torques
Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...
2016-11-14
We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less
NASA Astrophysics Data System (ADS)
Wan, Danny; Manfrini, Mauricio; Vaysset, Adrien; Souriau, Laurent; Wouters, Lennaert; Thiam, Arame; Raymenants, Eline; Sayan, Safak; Jussot, Julien; Swerts, Johan; Couet, Sebastien; Rassoul, Nouredine; Babaei Gavan, Khashayar; Paredis, Kristof; Huyghebaert, Cedric; Ercken, Monique; Wilson, Christopher J.; Mocuta, Dan; Radu, Iuliana P.
2018-04-01
Magnetic tunnel junctions (MTJs) interconnected via a continuous ferromagnetic free layer were fabricated for spin torque majority gate (STMG) logic. The MTJs are biased independently and show magnetoelectric response under spin transfer torque. The electrical control of these devices paves the way to future spin logic devices based on domain wall (DW) motion. In particular, it is a significant step towards the realization of a majority gate. To our knowledge, this is the first fabrication of a cross-shaped free layer shared by several perpendicular MTJs. The fabrication process can be generalized to any geometry and any number of MTJs. Thus, this framework can be applied to other spin logic concepts based on magnetic interconnect. Moreover, it allows exploration of spin dynamics for logic applications.
Park, Jihong; Hopkins, J Ty
2013-01-01
A ratio between the torque generated by maximal voluntary isometric contraction (MVIC) and exogenous electrical stimulus, central activation ratio (CAR), has been widely used to assess quadriceps function. To date, no data exist regarding between-session reliability of this measurement. Thirteen neurologically sound volunteers underwent three testing sessions (three trials per session) with 48 hours between-session. Subjects performed MVICs of the quadriceps with the knee locked at 90° flexion and the hip at 85°. Once the MVIC reached a plateau, an electrical stimulation from superimposed burst technique (SIB: 125 V with peak output current 450 mA) was manually delivered and transmitted directly to the quadriceps via stimulating electrodes. CAR was calculated by using the following equation: CAR = MVIC torque/MVIC + SIB torque. Intraclass correlation coefficients (ICC) were calculated within- (ICC((2,1))) and between-session (ICC((2,k))) for MVIC torques and CAR values. Our data show that quadriceps MVIC and CAR are very reliable both within- (ICC((2,1)) = 0.99 for MVIC; 0.94 for CAR) and between-measurement sessions (ICC((2,k)) = 0.92 for MVIC; 0.86 for CAR) in healthy young adults. For clinical research, more data of the patients with pathological conditions are required to ensure reproducibility of calculation of CAR.
Matching initial torque with different stimulation parameters influences skeletal muscle fatigue.
Bickel, C Scott; Gregory, Chris M; Azuero, Andres
2012-01-01
A fundamental barrier to using electrical stimulation in the clinical setting is an inability to maintain torque production secondary to muscle fatigue. Electrical stimulation parameters are manipulated to influence muscle torque production, and they may also influence fatigability during repetitive stimulation. Our purpose was to determine the response of the quadriceps femoris to three different fatigue protocols using the same initial torque obtained by altering stimulator parameter settings. Participants underwent fatigue protocols in which either pulse frequency (lowHz), pulse duration (lowPD), or voltage (lowV) was manipulated to obtain an initial torque that equaled 25% of maximum voluntary isometric contraction. Muscle soreness was reported on a visual analog scale 48 h after each fatigue test. The lowHz protocol resulted in the least fatigue (25% +/- 14%); the lowPD (50% +/- 13%) and lowV (48% +/- 14%) protocols had similar levels of fatigue. The lowHz protocol resulted in significantly less muscle soreness than the higher frequency protocols. Stimulation protocols that use a lower frequency coupled with long pulse durations and high voltages result in lesser amounts of muscle fatigue and perceived soreness. The identification of optimal stimulation patterns to maximize muscle performance will reduce the effect of muscle fatigue and potentially improve clinical efficacy.
Comparison of spin transfer mechanisms in three terminal spin-torque-oscillators
NASA Astrophysics Data System (ADS)
Jue, Emilie; Rippard, William; Pufall, Matthew; Evarts, Eric R.; Quantum Electromagnetics Division Team
The manipulation of magnetization by electric current is one of the most active field of spintronics due to its interests for memory and logic applications. This control can be achieved through the transfer of angular momentum via a spin polarized current (the mechanism of spin-transfer torque - STT) or through a direct transfer of angular momentum from the crystal lattice through the spin-orbit interaction (the mechanism of spin-orbit torque - SOT). Over the five past years, SOT gained a lot of attention especially for the new possibilities that it offers for data storage application. However, the quantification and the comparison of both mechanisms' efficiencies remains uncertain. In this work, we compare for the first time the STT and SOT efficiencies in individual devices. For this, we created 3-terminal spin-torque oscillators (STO) composed of spin-valves (SV) on top of a Pt wires. The devices can be excited either by STT or by SOT depending on whether the current is applied through the SV or through the Pt wire. By varying the Pt width and the dimensions of the SV, we tune the SOT and STT and compare their efficiencies. We will discuss the complexity of such a structure and the differences in the magnetization dynamics induced by the different excitation mechanisms.
Interaction of In-wheel permanent magnet synchronous motor with tire dynamics
NASA Astrophysics Data System (ADS)
Song, Ziyou; Li, Jianqiu; Wei, Yintao; Xu, Liangfei; Ouyang, Minggao
2015-05-01
Drive wheel systems combined with the in-wheel permanent magnet synchronous motor (I-PMSM) and the tire are highly electromechanical-coupled. However, the deformation dynamics of this system, which may influence the system performance, is neglected in most existing literatures. For this reason, a deformable tire and a detailed I-PMSM are modeled using Matlab/Simulink. Furthermore, the influence of tire/road contact interface is accurately described by the non-linear relaxation length-based model and magic formula pragmatic model. The drive wheel model used in this paper is closer to that of a real tire in contrast to the rigid tire model which is widely used. Based on the near-precise model mentioned above, the sensitivity of the dynamic tire and I-PMSM parameters to the relative error of slip ratio estimation is analyzed. Additionally, the torsional and longitudinal vibrations of the drive wheel are presented both in time and frequency domains when a quarter vehicle is started under conditions of a specific torque curve, which includes an abrupt torque change from 30 N · m to 200 N · m. The parameters sensitivity on drive wheel vibrations is also studied, and the parameters include the mass distribution ratio of tire, the tire torsional stiffness, the tire damping coefficient, and the hysteresis band of the PMSM current control algorithm. Finally, different target torque curves are compared in the simulation, which shows that the estimation error of the slip ratio gets violent, and the longitudinal force includes more fluctuation components with the increasing change rate of the torque. This paper analyzes the influence of the drive wheel deformation on the vehicle dynamic control, and provides useful information regarding the electric vehicle traction control.
EDITORIAL: Spin-transfer-torque-induced phenomena Spin-transfer-torque-induced phenomena
NASA Astrophysics Data System (ADS)
Hirohata, Atsufumi
2011-09-01
This cluster, consisting of five invited articles on spin-transfer torque, offers the very first review covering both magnetization reversal and domain-wall displacement induced by a spin-polarized current. Since the first theoretical proposal on spin-transfer torque—reported by Berger and Slonczewski independently—spin-transfer torque has been experimentally demonstrated in both vertical magnetoresistive nano-pillars and lateral ferromagnetic nano-wires. In the former structures, an electrical current flowing vertically in the nano-pillar exerts spin torque onto the thinner ferromagnetic layer and reverses its magnetization, i.e., current-induced magnetization switching. In the latter structures, an electrical current flowing laterally in the nano-wire exerts torque onto a domain wall and moves its position by rotating local magnetic moments within the wall, i.e., domain wall displacement. Even though both phenomena are induced by spin-transfer torque, each phenomenon has been investigated separately. In order to understand the physical meaning of spin torque in a broader context, this cluster overviews both cases from theoretical modellings to experimental demonstrations. The earlier articles in this cluster focus on current-induced magnetization switching. The magnetization dynamics during the reversal has been calculated by Kim et al using the conventional Landau--Lifshitz-Gilbert (LLG) equation, adding a spin-torque term. This model can explain the dynamics in both spin-valves and magnetic tunnel junctions in a nano-pillar form. This phenomenon has been experimentally measured in these junctions consisting of conventional ferromagnets. In the following experimental part, the nano-pillar junctions with perpendicularly magnetized FePt and half-metallic Heusler alloys are discussed from the viewpoint of efficient magnetization reversal due to a high degree of spin polarization of the current induced by the intrinsic nature of these alloys. Such switching can be further operated at high frequency resulting in an oscillator, as shown in the article by Sulka et al. These results provide fundamental elements for magnetic random access memories. The later articles discuss domain-wall displacement. Again this phenomenon is also described by Shibata et al based on the LLG equation with spin-torque terms. This analytical model can explain the details of the depinning mechanism and a critical current for the displacement. Experimental observation is presented in the subsequent article by Malinowski et al, showing the depinning processes for the cases of intrinsic and extrinsic pinning sites. Here, the detailed magnetic moment configurations within the wall hold the dominant control over the critical current. These results can be used for future 3-dimensional magnetic memories, such as racetrack memory proposed by IBM. We sincerely hope this cluster offers an up-to-date understanding of macroscopic behaviour induced by spin-transfer torque and contributes to further advancement in this exciting research field. We are grateful to all the authors for spending their precious time and knowledge submitting to this cluster. We would also like to thank Professor Kevin O'Grady for his kind offer of the opportunity to make this review accessible to a general audience.
Controllable rotating behavior of individual dielectric microrod in a rotating electric field.
Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Chen, Xiaoming
2017-06-01
We report herein controllable rotating behavior of an individual dielectric microrod driven by a background rotating electric field. By disposing or removing structured floating microelectrode, the rigid rod suspended in electrolyte solution accordingly exhibits cofield or antifield rotating motion. In the absence of the ideally polarizable metal surface, the dielectric rod rotates opposite to propagation of electric field, with the measured rotating rate much larger than predicted by Maxwell-Wager interfacial polarization theory incorporating surface conduction of fixed bond charge. Surprisingly, with floating electrode embedded, a novel kind of cofield rotation mode occurs in the presence of induced double-layer polarization, due to the action of hydrodynamic torque from rotating induced-charge electroosmosis. This method of achieving switchable spin modes of dielectric particles would direct implications in constructing flexible electrokinetic framework for analyzing 3D profile of on-chip biomicrofluidic samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Hai-peng; Bi, Zheng-yang; Zhou, Yang; Zhou, Yu-xuan; Wang, Zhi-gong; Lv, Xiao-ying
2017-01-01
Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training. PMID:28250759
Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti
2017-06-01
To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.
Fault tolerant operation of switched reluctance machine
NASA Astrophysics Data System (ADS)
Wang, Wei
The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and experiments. With the proposed optimal waveform, torque production is greatly improved under the same Root Mean Square (RMS) current constraint. Additionally, position sensorless operation methods under phase faults are investigated to account for the combination of physical position sensor and phase winding faults. A comprehensive solution for position sensorless operation under single and multiple phases fault are proposed and validated through experiments. Continuous position sensorless operation with seamless transition between various numbers of phase fault is achieved.
Optimal control for wind turbine system via state-space method
NASA Astrophysics Data System (ADS)
Shanoob, Mudhafar L.
Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on using type 1 servo system that depends on the full state feedback variables and tracking error. The LQR improves the transient stability and time response of the wind turbine system in all three-disturbance scenarios. The results of both methods are deeply explained in the simulation section.
Universal adaptive torque control for PM motors for field-weakening region operation
Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH; Breitzmann, Robert J [South Russel, OH; Nondahl, Thomas A [Wauwatosa, WI; Schmidt, Peter B [Franklin, WI; Liu, Jingbo [Milwaukee, WI
2011-03-29
The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.
NASA Astrophysics Data System (ADS)
Goodarzi, Avesta; Mohammadi, Masoud
2014-04-01
In this paper, vehicle stability control and fuel economy for a 4-wheel-drive hybrid vehicle are investigated. The integrated controller is designed within three layers. The first layer determines the total yaw moment and total lateral force made by using an optimal controller method to follow the desired dynamic behaviour of a vehicle. The second layer determines optimum tyre force distribution in order to optimise tyre usage and find out how the tyres should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. In the third layer, the active steering, wheel slip, and electrical motor torque controllers are designed. In the front axle, internal combustion engine (ICE) is coupled to an electric motor (EM). The control strategy has to determine the power distribution between ICE and EM to minimise fuel consumption and allowing the vehicle to be charge sustaining. Finally, simulations performed in MATLAB/SIMULINK environment show that the proposed structure could enhance the vehicle stability and fuel economy in different manoeuvres.
Speed And Power Control Of An Engine By Modulation Of The Load Torque
Ziph, Benjamin; Strodtman, Scott; Rose, Thomas K
1999-01-26
A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.
Neuromuscular electrical stimulation of the hindlimb muscles for movement therapy in a rodent model.
Ichihara, Kazuhiko; Venkatasubramanian, Ganapriya; Abbas, James J; Jung, Ranu
2009-01-30
Neuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES-induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations. We present a rodent model for NMES of the flexor and extensor muscles of the hip, knee, and ankle hindlimb muscles. Custom fabricated intramuscular stimulating electrodes for rodents were implanted near identified motor points of targeted muscles in ten adult, female Long Evans rats. The effects of altering NMES pulse stimulation parameters were characterized using strength duration curves, isometric joint torque recruitment curves and joint angle measures. The data indicate that short pulse widths have the advantage of producing graded torque recruitment curves when current is used as the control parameter. A stimulus frequency of 75 Hz or more produces fused contractions. The data demonstrate ability to accurately implant the electrodes and obtain selective, graded, repeatable, strong muscle contractions. Knee and ankle angular excursions comparable to those obtained in normal treadmill walking in the same rodent species can be obtained by stimulating the target muscles. Joint torques (normalized to body weight) obtained were larger than those reported in the literature for small tailed therian mammals and for peak isometric ankle plantarflexion in a different rodent species. This model system could be used for investigations of NMES assisted hindlimb movement therapy.
NASA Astrophysics Data System (ADS)
Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal
2015-05-01
In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.
Muscle activation and the isokinetic torque-velocity relationship of the human triceps surae.
Harridge, S D; White, M J
1993-01-01
The influence of muscle activation and the time allowed for torque generation on the angle-specific torque-velocity relationship of the triceps surae was studied during plantar flexion using supramaximal electrical stimulation and a release technique on six male subjects [mean (SD) age 25 (4) years]. Torque-velocity data were obtained under different levels of constant muscle activation by varying the stimulus frequency and the time allowed for isometric torque generation prior to release and isokinetic shortening. To eliminate the effects of the frequency response on absolute torque the isokinetic data were normalized to the maximum isometric torque values at 0.44 rad. There were no significant differences in the normalized torques generated at any angular velocity using stimulus frequencies of 20, 50 or 80 Hz. When the muscle was stimulated at 50 Hz the torques obtained after a 400 ms and 1 s pre-release isometric contraction did not differ significantly. However, with no pre-release contraction significantly less torque was generated at all angular velocities beyond 1.05 rad.s-1 when compared with either the 200, 400 ms or 1 s condition. With a 200 ms pre-release contraction significantly less torque was generated at angular velocities beyond 1.05 rad.s-1 when compared with the 400 ms or 1 s conditions. It would seem that the major factor governing the shape of the torque-velocity curve at a constant level of muscle activation is the time allowed for torque generation.
Precision increase in electric drive speed loop of robotic complexes and process lines
NASA Astrophysics Data System (ADS)
Tulegenov, E.; Imanova, A. A.; Platonov, V. V.
2018-05-01
The article presents the principles of synthesis of control structures for highprecision electric drives of robotic complexes and manipulators. It has been theoretically shown and experimentally confirmed that improved characteristics of speed maintenance in the zone of significant overloads are achieved in systems of series excitation. They are achieved due to the redistribution of control signals both in the zone of setting the armature current and in the excitation currents. At the same time, the characteristic of the electromagnetic torque becomes linear because the demagnetizing effect of the armature response is compensated by the setting of the excitation current. It is recommended in those cases when it is necessary to extend the range of speed control with a significant reduction in load to apply structures with two-zone speed control. The regulation of the weakening of the excitation flow is more convenient as a function of the voltage in the armature windings.
NASA Technical Reports Server (NTRS)
Vess, Melissa F.; Starin, Scott R.
2007-01-01
During design of the SDO Science and Inertial mode PID controllers, the decision was made to disable the integral torque whenever system stability was in question. Three different schemes were developed to determine when to disable or enable the integral torque, and a trade study was performed to determine which scheme to implement. The trade study compared complexity of the control logic, risk of not reenabling the integral gain in time to reject steady-state error, and the amount of integral torque space used. The first scheme calculated a simplified Routh criterion to determine when to disable the integral torque. The second scheme calculates the PD part of the torque and looked to see if that torque would cause actuator saturation. If so, only the PD torque is used. If not, the integral torque is added. Finally, the third scheme compares the attitude and rate errors to limits and disables the integral torque if either of the errors is greater than the limit. Based on the trade study results, the third scheme was selected. Once it was decided when to disable the integral torque, analysis was performed to determine how to disable the integral torque and whether or not to reset the integrator once the integral torque was reenabled. Three ways to disable the integral torque were investigated: zero the input into the integrator, which causes the integral part of the PID control torque to be held constant; zero the integral torque directly but allow the integrator to continue integrating; or zero the integral torque directly and reset the integrator on integral torque reactivation. The analysis looked at complexity of the control logic, slew time plus settling time between each calibration maneuver step, and ability to reject steady-state error. Based on the results of the analysis, the decision was made to zero the input into the integrator without resetting it. Throughout the analysis, a high fidelity simulation was used to test the various implementation methods.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Straight and chopped DC motor performances for a Reliance EV-250AT motor with an EV-1 controller were examined. Effects of motor temperature and operating voltage are shown. It is found that the maximum motor efficiency is approximately 85% at low operating temperatures in the straight DC mode. Chopper efficiency is 95% under all operating conditions. For equal speeds, the motor operated in the chopped mode develops slightly more torque and draws more current than it does in the straight DC mode.
Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators
NASA Astrophysics Data System (ADS)
Chen, X. Z.; Zarzuela, R.; Zhang, J.; Song, C.; Zhou, X. F.; Shi, G. Y.; Li, F.; Zhou, H. A.; Jiang, W. J.; Pan, F.; Tserkovnyak, Y.
2018-05-01
We investigate the current-induced switching of the Néel order in NiO (001 )/Pt heterostructures, which is manifested electrically via the spin Hall magnetoresistance. Significant reversible changes in the longitudinal and transverse resistances are found at room temperature for a current threshold lying in the range of 1 07 A /cm2 . The order-parameter switching is ascribed to the antiferromagnetic dynamics triggered by the (current-induced) antidamping torque, which orients the Néel order towards the direction of the writing current. This is in stark contrast to the case of antiferromagnets such as Mn2Au and CuMnAs, where fieldlike torques induced by the Edelstein effect drive the Néel switching, therefore resulting in an orthogonal alignment between the Néel order and the writing current. Our findings can be readily generalized to other biaxial antiferromagnets, providing broad opportunities for all-electrical writing and readout in antiferromagnetic spintronics.
Extended cage adjustable speed electric motors and drive packages
Hsu, J.S.
1999-03-23
The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.
Lv, Chen; Liu, Yahui; Hu, Xiaosong; Guo, Hongyan; Cao, Dongpu; Wang, Fei-Yue
2017-08-22
As a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer.
Tan, Keson B; Nicholls, Jack I
2002-01-01
This study measured the gold screw preload at the gold cylinder-abutment screw joint interface obtained by 3 torque delivery systems. Using a precalibrated, strain-gauged standard abutment as the load cell, 3 torque delivery systems tested were shown to have significant differences in gold screw preload when a gold cylinder was attached. Mean preloads measured were 291.2 N for hand torque drivers set at 10 Ncm, 340.3 N for electronic torque controllers at low setting/10 Ncm, 384.4 N for electronic torque controllers at high setting/10 Ncm; and 140.8 N for hand-tightening with a prosthetic slot screwdriver. Significant differences in screw preload were also found between operators using a hand torque driver. Hand-tightening delivered insufficient preload and cannot be recommended for final gold screw tightening. Different electronic torque controller units set at 10 Ncm induced mean gold screw preloads that ranged from 264.1 N to as high as 501.2 N. Electronic torque controllers should be regularly recalibrated to ensure optimal output.
Accuracy of electronic implant torque controllers following time in clinical service.
Mitrani, R; Nicholls, J I; Phillips, K M; Ma, T
2001-01-01
Tightening of the screws in implant-supported restorations has been reported to be problematic, in that if the applied torque is too low, screw loosening occurs. If the torque is too high, then screw fracture can take place. Thus, accuracy of the torque driver is of the utmost importance. This study evaluated 4 new electronic torque drivers (controls) and 10 test electronic torque drivers, which had been in clinical service for a minimum of 5 years. Torque values of the test drivers were measured and were compared with the control values using a 1-way analysis of variance. Torque delivery accuracy was measured using a technique that simulated the clinical situation. In vivo, the torque driver turns the screw until the selected tightening torque is reached. In this laboratory experiment, an implant, along with an attached abutment and abutment gold screw, was held firmly in a Tohnichi torque gauge. Calibration accuracy for the Tohnichi is +/- 3% of the scale value. During torque measurement, the gold screw turned a minimum of 180 degrees before contact was made between the screw and abutment. Three torque values (10, 20, and 32 N-cm) were evaluated, at both high- and low-speed settings. The recorded torque measurements indicated that the 10 test electronic torque drivers maintained a torque delivery accuracy equivalent to the 4 new (unused) units. Judging from the torque output values obtained from the 10 test units, the clinical use of the electronic torque driver suggests that accuracy did not change significantly over the 5-year period of clinical service.
Unusual negative permeability of single magnetic nanowire excited by the spin transfer torque effect
NASA Astrophysics Data System (ADS)
Han, Mangui; Zhou, Wu
2018-07-01
Due to the effect of spin transfer torque, negative imaginary parts of permeability (μ″ < 0) are reported in a ferromagnetic nanowire. It is found that negative μ″ values are resulted from the interaction of spin polarized conduction electrons with the spatially non-uniform distributed magnetic moments at both ends of nanowires. The results are well explained from the effect of spin transfer torque on the precession of magnetization under the excitation of both the pulsed magnetic field and static electric field.
Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui
2018-01-01
The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases. PMID:29304102
NASA Astrophysics Data System (ADS)
Wu, Guang; Dong, Zuomin
2017-09-01
Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.
Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui; Bull, Anthony M J
2018-01-01
The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases.
Development of a low-cost, low micro-vibration CMG for small agile satellite applications
NASA Astrophysics Data System (ADS)
Kawak, B. J.
2017-02-01
The agility of the spacecraft which refers to the spacecraft's ability to execute fast and accurate manoeuvers within a fixed period of time, is a key satellite parameter. The spacecraft' s agility is directly proportional to the spacecraft actuators' output torque. For high torque inertial actuators (>0.5 Nm), Control Moment Gyroscope (CMG) exhibits better performances in terms of mass and electrical power consumption than reaction wheels. However, in addition to the complex steering law required to avoid CMG singularities, one of the reasons why CMGs are not widely used is also due to their high micro-vibration emission which may interfere and disrupt the spacecraft' s sensitive instruments such as optical payloads. In this paper, an innovative two-stage viscoelastic isolation system has been designed and implemented in a new low micro-vibration CMG prototype. The first stage of the damping system acts at bearing level to attenuate the possible shock vibrations while the second stage acts at mechanism level to attenuate the structural resonances and motor noise. The developed CMG enables to combine high actuator output torque with a low micro-vibration signature. The viscoelastic damping system is cost effective as it is a fully passive system which requires no thermal control and no electronics. Furthermore, the attenuation provided by this innovative two stage damping system can reach a slope up to -80 dB/dec which leads to a Mini-CMG micro-vibration signature lower than similar output torque reaction wheels not equipped with a damping system.
Closed-loop torque feedback for a universal field-oriented controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.
A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.
Closed-loop torque feedback for a universal field-oriented controller
De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.
1992-11-24
A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.
Closed-loop torque feedback for a universal field-oriented controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Doncker, Rik W. A. A.; King, Robert D.; Sanza, Peter C.
A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.
Leung, Joan; Harvey, Lisa A; Moseley, Anne M; Whiteside, Bhavini; Simpson, Melissa; Stroud, Katarina
2014-12-01
Is a combination of standing, electrical stimulation and splinting more effective than standing alone for the management of ankle contractures after severe brain injury? A multi-centre randomised trial with concealed allocation, assessor blinding and intention-to-treat analysis. Thirty-six adults with severe traumatic brain injury and ankle plantarflexion contractures. All participants underwent a 6-week program. The experimental group received tilt table standing, electrical stimulation and ankle splinting. The control group received tilt table standing alone. The primary outcome was passive ankle dorsiflexion with a 12Nm torque. Secondary outcomes included: passive dorsiflexion with lower torques (3, 5, 7 and 9Nm); spasticity; the walking item of the Functional Independence Measure; walking speed; global perceived effect of treatment; and perceived treatment credibility. OUTCOME MEASURES were taken at baseline (Week 0), end of intervention (Week 6), and follow-up (Week 10). The mean between-group differences (95% CI) for passive ankle dorsiflexion at Week 6 and Week 10 were -3 degrees (-8 to 2) and -1 degrees (-6 to 4), respectively, in favour of the control group. There was a small mean reduction of 1 point in spasticity at Week 6 (95% CI 0.1 to 1.8) in favour of the experimental group, but this effect disappeared at Week 10. There were no differences for other secondary outcome measures except the physiotherapists' perceived treatment credibility. Tilt table standing with electrical stimulation and splinting is not better than tilt table standing alone for the management of ankle contractures after severe brain injury. ACTRN12608000637347. [Leung J, Harvey LA, Moseley AM, Whiteside B, Simpson M, Stroud K (2014) Standing with electrical stimulation and splinting is no better than standing alone for management of ankle plantarflexion contractures in people with traumatic brain injury: a randomised trial.Journal of Physiotherapy60: 201-208]. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Wiest, Matheus J; Bergquist, Austin J; Collins, David F
2017-08-01
The benefits of neuromuscular electrical stimulation (NMES) for rehabilitation depend on the capacity to generate functionally relevant torque with minimal fatigability and discomfort. Traditionally, NMES is delivered either over a muscle belly (mNMES) or a nerve trunk (nNMES). Recently, a technique that minimizes contraction fatigability by alternating pulses between the mNMES and nNMES sites, termed "interleaved" NMES (iNMES), was developed. However, discomfort and the ability to generate large torque during iNMES have not been explored adequately. The study objective was to compare discomfort and maximal torque between mNMES, nNMES, and iNMES. Stimulation trains (12 pulses at 40 Hz) were delivered to produce dorsiflexion torque using mNMES, nNMES, and iNMES. Discomfort was assessed using a visual analogue scale for contractions that generated 5-30% of a maximal voluntary isometric contraction (MVIC), and for the maximal tolerable torque. Discomfort scores were not different between NMES types when torque was ≤20% MVIC. At 30% MVIC, mNMES produced more discomfort than nNMES and iNMES. nNMES produced the most torque (65% MVIC), followed by iNMES (49% MVIC) and mNMES (33% MVIC); in these trials, mNMES produced more discomfort than nNMES, but not iNMES. The present results may be limited to individuals with no history of neuromusculoskeletal impairment. In terms of discomfort, there were no differences between mNMES, nNMES, or iNMES for contractions between 5-20% MVIC. However, mNMES produced more discomfort than nNMES and iNMES for contractions of 30% MVIC, while for larger contractions, mNMES only produced more discomfort than nNMES. The advantages and disadvantages of each NMES type should be considered prior to implementation in rehabilitation programs. © 2017 American Physical Therapy Association
14 CFR 23.397 - Limit control forces and -torques.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...
14 CFR 23.397 - Limit control forces and -torques.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...
14 CFR 23.397 - Limit control forces and -torques.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...
14 CFR 23.397 - Limit control forces and -torques.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...
14 CFR 23.397 - Limit control forces and -torques.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...
Computerized Torque Control for Large dc Motors
NASA Technical Reports Server (NTRS)
Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.
1987-01-01
Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.
Optimization of gear ratio and power distribution for a multimotor powertrain of an electric vehicle
NASA Astrophysics Data System (ADS)
Urbina Coronado, Pedro Daniel; Orta Castañón, Pedro; Ahuett-Garza, Horacio
2018-02-01
The architecture and design of the propulsion system of electric vehicles are highly important for the reduction of energy losses. This work presents a powertrain composed of four electric motors in which each motor is connected with a different gear ratio to the differential of the rear axle. A strategy to reduce energy losses is proposed, in which two phases are applied. Phase 1 uses a divide-and-conquer approach to increase the overall output efficiency by obtaining the optimal torque distribution for the electric motors. Phase 2 applies a genetic algorithm to find the optimal value of the gear ratios, in which each individual of each generation applies Phase 1. The results show an optimized efficiency map for the output torque and speed of the powertrain. The increase in efficiency and the reduction of energy losses are validated by the use of numerical experiments in various driving cycles.
A theoretical model of speed-dependent steering torque for rolling tyres
NASA Astrophysics Data System (ADS)
Wei, Yintao; Oertel, Christian; Liu, Yahui; Li, Xuebing
2016-04-01
It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange-Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.
Force, torque, linear momentum, and angular momentum in classical electr odynamics
NASA Astrophysics Data System (ADS)
Mansuripur, Masud
2017-10-01
The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic (EM) field, force, energy, and momentum, which are intimately tied together by Poynting's theorem and by the Lorentz force law. Whereas Maxwell's equations relate the fields to their material sources, Poynting's theorem governs the flow of EM energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. An alternative force law, first proposed by Einstein and Laub, exists that is consistent with Maxwell's equations and complies with the conservation laws as well as with the requirements of special relativity. While the Lorentz law requires the introduction of hidden energy and hidden momentum in situations where an electric field acts on a magnetized medium, the Einstein-Laub (E-L) formulation of EM force and torque does not invoke hidden entities under such circumstances. Moreover, total force/torque exerted by EM fields on any given object turns out to be independent of whether the density of force/torque is evaluated using the law of Lorentz or that of Einstein and Laub. Hidden entities aside, the two formulations differ only in their predicted force and torque distributions inside matter. Such differences in distribution are occasionally measurable, and could serve as a guide in deciding which formulation, if either, corresponds to physical reality.
Design and control of the phase current of a brushless dc motor to eliminate cogging torque
NASA Astrophysics Data System (ADS)
Jang, G. H.; Lee, C. J.
2006-04-01
This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.
NASA Technical Reports Server (NTRS)
Mehling, Joshua S.; Holley, James; O'Malley, Marcia K.
2015-01-01
The fidelity with which series elastic actuators (SEAs) render desired impedances is important. Numerous approaches to SEA impedance control have been developed under the premise that high-precision actuator torque control is a prerequisite. Indeed, the design of an inner torque compensator has a significant impact on actuator impedance rendering. The disturbance observer (DOB) based torque control implemented in NASA's Valkyrie robot is considered here and a mathematical model of this torque control, cascaded with an outer impedance compensator, is constructed. While previous work has examined the impact a disturbance observer has on torque control performance, little has been done regarding DOBs and impedance rendering accuracy. Both simulation and a series of experiments are used to demonstrate the significant improvements possible in an SEA's ability to render desired dynamic behaviors when utilizing a DOB. Actuator transparency at low impedances is improved, closed loop hysteresis is reduced, and the actuator's dynamic response to both commands and interaction torques more faithfully matches that of the desired model. All of this is achieved by leveraging DOB based control rather than increasing compensator gains, thus making improved SEA impedance control easier to achieve in practice.
Eddy Current Sensing of Torque in Rotating Shafts
NASA Astrophysics Data System (ADS)
Varonis, Orestes J.; Ida, Nathan
2013-12-01
The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.
Hsieh, Chao-Jung; Indelicato, Peter A; Moser, Michael W; Vandenborne, Krista; Chmielewski, Terese L
2015-11-01
To examine the magnitude and speed of knee extensor torque production at the initiation of advanced anterior cruciate ligament (ACL) reconstruction rehabilitation and the associations with self-reported knee function. Twenty-eight subjects who were 12 weeks post-ACL reconstruction and 28 age- and sex-matched physically active controls participated in this study. Knee extensor torque was assessed bilaterally with an isokinetic dynamometer at 60°/s. The variables of interest were peak torque, average rate of torque development, time to peak torque and quadriceps symmetry index. Knee function was assessed with the International Knee Documentation Committee Subjective Knee Form (IKDC-SKF). Peak torque and average rate of torque development were lower on the surgical side compared to the non-surgical side and controls. Quadriceps symmetry index was lower in subjects with ACL reconstruction compared to controls. On the surgical side, average rate of torque development was positively correlated with IKDC-SKF score (r = 0.379) while time to peak torque was negatively correlated with IKDC-SKF score (r = -0.407). At the initiation of advanced ACL reconstruction rehabilitation, the surgical side displayed deficits in peak torque and average rate of torque development. A higher rate of torque development and shorter time to peak torque were associated with better self-reported knee function. The results suggest that the rate of torque development should be addressed during advanced ACL reconstruction rehabilitation and faster knee extensor torque generation may lead to better knee function. III.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helsen, Jan; Guillaume, Patrick; Guo, Yi
Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer periodmore » of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helsen, Jan; Guillaume, Patrick; Guo, Yi
Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer periodmore » of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.« less
Heat Control via Torque Control in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Venable, Richard; Colligan, Kevin; Knapp, Alan
2004-01-01
In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).
Kenyon, Brian J; Van Zyl, Ian; Louie, Kenneth G
2005-08-01
The high-speed high-torque (electric motor) handpiece is becoming more popular in dental offices and laboratories in the United States. It is reported to cut more precisely and to assist in the creation of finer margins that enhance cavity preparations. The authors conducted an in vitro study to compare the quality of cavity preparations fabricated with a high-speed high-torque (electric motor) handpiece and a high-speed low-torque (air turbine) handpiece. Eighty-six dental students each cut two Class I preparations, one with an air turbine handpiece and the other with an electric motor high-speed handpiece. The authors asked the students to cut each preparation accurately to a circular outline and to establish a flat pulpal floor with 1.5 millimeters' depth, 90-degree exit angles, parallel vertical walls and sharp internal line angles, as well as to refine the preparation to achieve flat, smooth walls with a well-defined cavosurface margin. A single faculty member scored the preparations for criteria and refinement using a nine-point scale (range, 1-9). The authors analyzed the data statistically using paired t tests. In preparation criteria, the electric motor high-speed handpiece had a higher average grade than did the air turbine handpiece (5.07 and 4.90, respectively). For refinement, the average grade for the air turbine high-speed handpiece was greater than that for the electric motor high-speed handpiece (5.72 and 5.52, respectively). The differences were not statistically significant. The electric motor high-speed handpiece performed as well as, but not better than, the air turbine handpiece in the fabrication of high-quality cavity preparations.
NASA Astrophysics Data System (ADS)
Yoneda, Makoto; Dohmeki, Hideo
The position control system with the advantage large torque, low vibration, and high resolution can be obtained by the constant current micro step drive applied to hybrid stepping motor. However loss is large, in order not to be concerned with load torque but to control current uniformly. As the one technique of a position control system in which high efficiency is realizable, the same sensorless control as a permanent magnet motor is effective. But, it was the purpose that the control method proposed until now controls speed. Then, this paper proposed changing the drive method of micro step drive and sensorless drive. The change of the drive method was verified from the simulation and the experiment. On no load, it was checked not producing change of a large speed at the time of a change by making electrical angle and carrying out zero reset of the integrator. On load, it was checked that a large speed change arose. The proposed system could change drive method by setting up the initial value of an integrator using the estimated result, without producing speed change. With this technique, the low loss position control system, which employed the advantage of the hybrid stepping motor, has been built.
Design and Control of a Closed-Loop Brushless Torque Activator
1990-05-01
AD-A270 760 Technical Report 1244 Design and Control of a Closed-Loop Brushless Torque Activator Michael Dean Levi MIT Artificial Intelligence... Brushless N00014-86-K-0685 Torque Actuator 6. AUTHOR(S) Michael Dean Levin 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) B. PERFORMING...200 words) This’report explores the design and control issues associated with a brushless actuator capable of achieving extremely high torque
2016-01-01
Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking. PMID:26791608
Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Islam, Md Anamul; Kean, Victor S P; Davis, Glen M
2016-08-01
The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; P<0.001). MMG peak-to-peak (MMG-PTP) and stimulation intensity were less well related (R(2)=0.63 at 30°; R(2)=0.67 at 60°; and R(2)=0.45 at 90° knee angles), although were still significantly associated (P≤0.006). Test-retest interclass correlation coefficients (ICC) for the dependent variables ranged from 0.82 to 0.97 for NMES-evoked torque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during leg exercise and functional movements in the SCI population. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Magnetospheric Multiscale Mission Attitude Dynamics: Observations from Flight Data
NASA Technical Reports Server (NTRS)
Williams, Trevor; Shulman, Seth; Sedlak, Joseph; Ottenstein, Neil; Lounsbury, Brian
2016-01-01
Extensive flight data is being collected throughout the MMS mission that includes quantities that are of interest for attitude dynamics studies such as spin rate, spin axis orientation nutation rate, etc. One example of such data is the long-term evolution of the spin rates of the four spacecraft. Spikes in these rates are observed that are separated by the MMS orbital period (just under 24 hr) and occur around perigee due to gravity-gradient torque. Periodic discontinuities in spin rate are caused by the controller resetting the spin rate approximately to the nominal 3.1 RPM value at the time of each maneuver. In between, a slow decay in spin rate can be seen to occur. The paper will discuss various disturbance torque mechanisms that could potentially be responsible for this behavior: these include magnetic hysteresis, eddy currents, solar radiation pressure, and a possible interaction between gravity-gradient and wire boom flexibility effects. One additional disturbance mechanism is produced by the Active Spacecraft Potential Control (ASPOC) devices: these emit positive indium ions to keep the MMS spacecraft electrically neutral, so as not to corrupt the electric field observations that are made by some of the on-board instruments. The spin rate decays that could be produced by these various mechanisms will be quantified in the paper, and their signatures described. Comparing these with the observations from flight data then allow the most likely candidate to be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong T; Burress, Timothy A; Tolbert, Leon M
2009-01-01
This paper introduces a new method for calculating the power factor and output torque by considering the cross saturation between direct-axis (d-axis) and quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux atmore » high speed, which was developed for the traction motor of a hybrid electric vehicle. The conventional two-axis IPMSM model was modified to include the cross-saturation effect by adding the cross-coupled inductance terms Ldq and Lqd. By the advantage of the excited structure of the experimental IPMSM, the analyzing works were performed under two conditions, the highest and lowest excited conditions. Therefore, it is possible to investigate the cross-saturation effect when a machine has higher magnetic flux from its rotor. The following is a summary of conclusions that may be drawn from this work: (1) Considering cross saturation of an IPMSM offers more accurate expected values of motor parameters in output torque calculation, especially when negative d-axis current is high; (2) A less saturated synchronous machine could be more affected by the cross-coupled saturation effect; (3) Both cross-coupled inductances, L{sub qd} and L{sub dq}, are mainly governed by d-axis current rather than q-axis current; (4) The modified torque equation, can be used for the dynamic model of an IPMSM for developing a better control model or control strategy; and (5) It is possible that the brushless field excitation structure has a common magnetic flux path on both d- and q-axis, and as a result, the reluctance torque of the machine could be reduced.« less
Janssen, Xander J A; Lipfert, Jan; Jager, Tessa; Daudey, Renier; Beekman, Jaap; Dekker, Nynke H
2012-07-11
The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.
Cooling of Electric Motors Used for Propulsion on SCEPTOR
NASA Technical Reports Server (NTRS)
Christie, Robert; Dubois, Authur; Derlaga, Joseph
2016-01-01
Benefits of Electric Power: Reduced energy consumption, Lower emissions, Less noise. Traction motors: Permanent magnet, Synchronous, High torque at low rotational speeds, High power density, (High concentration of heat). Annular inlet: Very compatible with PM motors, (Provides cooling where needed, No need for complicated ducting, Leads to a larger motor diameter which is beneficial for motor torque) Effect of prop wash on heat transfer coefficients: Assumed propeller induced turbulence would increase heat transfer coefficients, Holmes, Obara Yip reported 'propeller slipstream showed little if any apparent effect of the slip stream', Derlaga @ LaRC also found little change in heat transfer in the wake of the propeller.
NASA Technical Reports Server (NTRS)
Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.; Feth, S.; Zhu, S.; Curreri, Peter A. (Technical Monitor)
2002-01-01
A novel apparatus based on transient torque technique is constructed in MSFC/NASA. The apparatus uses a 125um diameter quartz fiber as torsion wire. A high sensitive angular detector is implemented to measure the deflection angle of the crucible containing the liquid. A rotating magnetic field (RMF) is used to induce a rotating flow of a conducting or semiconducting melts. By measuring the magnitude and transient behavior of the induced deflection angle, the electrical conductivity and viscosity of the melt can be measured simultaneously. High purity elements namely Hg, Ga, Zn and Te are tested at room temperature and high temperature up to 900 C.
PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM
NASA Astrophysics Data System (ADS)
Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.
2018-02-01
This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.
A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui
2012-04-01
The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.
An alternative resolution to the Mansuripur paradox
NASA Astrophysics Data System (ADS)
Redfern, Francis
2016-04-01
In 2013 an article published online by the journal Science declared that the paradox proposed by Masud Mansuripur was resolved. This paradox concerns a point charge-Amperian magnetic dipole system as seen in a frame of reference where they are at rest and one in which they are moving. In the latter frame an electric dipole appears on the magnetic dipole. A torque is then exerted upon the electric dipole by the point charge, a torque that is not observed in the at-rest frame. Mansuripur points out this violates the relativity principle and suggests the Lorentz force responsible for the torque be replaced by the Einstein-Laub force. The resolution of the paradox reported by Science, based on numerous papers in the physics literature, preserves the Lorentz force but depends on the concept of hidden momentum. Here I propose a different resolution based on the overlooked fact that the charge-magnetic dipole system contains linear and angular electromagnetic field momentum. The time rate of change of the field angular-momentum in the frame through which the system is moving cancels that due to the charge-electric dipole interaction. From this point of view hidden momentum is not needed in the resolution of the paradox.
Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes.
Tarler, Matthew D; Mortimer, J Thomas
2003-09-01
Using a self-sizing spiral-cuff electrode placed on the sciatic nerve of the cat, the joint torque evoked with stimulation applied to contacts in a monopolar configuration was judged to be the same as the torque evoked by stimulation applied to contacts in a tripolar configuration. Experiments were carried out in six acute cat preparations. In each experiment, a 12-contact electrode was placed on the sciatic nerve and used to effect both the monopolar and tripolar electrode configurations. The ankle torque produced by electrically evoked isometric muscle contraction was measured in three dimensions: plantar flexion, internal rotation, and inversion. Based on the recorded ankle torque, qualitative and quantitative comparisons were performed to determine if any significant difference existed in the pattern or order in which motor nerve fibers were recruited. No significant difference was found at a 98% confidence interval in either the recruitment properties or the repeatability of the monopolar and tripolar configurations. Further, isolated activation of single fascicles within the sciatic nerve was observed. Once nerve fibers in a fascicle were activated, recruitment of that fascicle was modulated over the full range before "spill-over" excitation occurred in neighboring fascicles. These results indicate that a four contact, monopolar nerve-cuff electrode is a viable substitute for a 12 contact, tripolar nerve-cuff electrode. The results of this study are also consistent with the hypothesis that multicontact self-sizing spiral-cuff electrodes can be used in motor prostheses to provide selective control of many muscles. These findings should also apply to other neuroprostheses employing-cuff electrodes on nerve trunks.
NASA Astrophysics Data System (ADS)
Griffin, J. W.; Popov, A. A.
2018-07-01
It is now possible, through electrical, hydraulic or mechanical means, to power the front wheel of a motorcycle. The aim of this is often to improve performance in limit-handling scenarios including off-road low-traction conditions and on-road high-speed cornering. Following on from research into active torque distribution in 4-wheeled vehicles, the possibility exists for efficiency improvements to be realised by reducing the total amount of energy dissipated as slip at the wheel-road contact. This paper presents the results of an investigation into the effect that varying the torque distribution ratio has on the energy consumption of the two-wheeled vehicle. A 13-degree of freedom multibody model was created, which includes the effects of suspension, aerodynamics and gyroscopic bodies. SimMechanics, from the MathWorks?, is used for automatic generation of equations of motion and time-domain simulation, in conjunction with MATLAB and Simulink. A simple driver model is used to control the speed and yaw rate of the motorcycle. The handling characteristics of the motorcycle are quantitatively analysed, and the impact of torque distribution on energy consumption is considered during straight line and cornering situations. The investigation has shown that only a small improvement in efficiency can be made by transferring a portion of the drive torque to the front wheel. Tyre longevity could be improved by reduced slip energy dissipation.
Experimental evaluation of a high performance superconducting torquer
NASA Astrophysics Data System (ADS)
Goldie, James H.; Avakian, Kevin M.; Downer, James R.; Gerver, Michael; Gondhalekar, Vijay; Johnson, Bruce G.
The high performance superconducting torquer (HPSCT) was designed to slew a large inertia in one degree of freedom with a double versine torque profile, a profile used for pointing applications which minimizes the exciting of structural resonances. The program culminated with the successful demonstration of closed loop torque control, following a desired double versine torque profile to an accuracy of approximately 1 percent of the peak torque of the profile. The targeted double versine possessed a peak torque which matches the torque capacity of the Sperry M4500 CMG (controlled moment gyro). The research provided strong evidence of the feasibility of an advanced concept CMG which would use cryoresistive control coils in conjunction with an electromagnetically suspended rotor and superconducting source coil. The cryoresistive coils interact with the superconducting solenoid to develop the desired torque and, in addition, the required suspension forces.
A novel torsional exciter for modal vibration testing of large rotating machinery
NASA Astrophysics Data System (ADS)
Sihler, Christof
2006-10-01
A novel exciter for applying a dynamic torsional force to a rotating structure is presented in this paper. It has been developed at IPP in order to perform vibration tests with shaft assemblies of large flywheel generators (synchronous machines). The electromagnetic exciter (shaker) needs no fixture to the rotating shaft because the torque is applied by means of the stator winding of an electrical machine. Therefore, the exciter can most easily be applied in cases where a three-phase electrical machine (a motor or generator) is part of the shaft assembly. The oscillating power for the shaker is generated in a separate current-controlled DC circuit with an inductor acting as a buffer storage of magnetic energy. An AC component with adjustable frequency is superimposed on the inductor current in order to generate pulsating torques acting on the rotating shaft with the desired waveform and frequency. Since this torsional exciter does not require an external power source, can easily be installed (without contact to the rotating structure) and provides dynamic torsional forces which are sufficient for multi-megawatt applications, it is best suited for on-site tests of large rotating machinery.
Performance evaluation of a six-axis generalized force-reflecting teleoperator
NASA Technical Reports Server (NTRS)
Hannaford, B.; Wood, L.; Guggisberg, B.; Mcaffee, D.; Zak, H.
1989-01-01
Work in real-time distributed computation and control has culminated in a prototype force-reflecting telemanipulation system having a dissimilar master (cable-driven, force-reflecting hand controller) and a slave (PUMA 560 robot with custom controller), an extremely high sampling rate (1000 Hz), and a low loop computation delay (5 msec). In a series of experiments with this system and five trained test operators covering over 100 hours of teleoperation, performance was measured in a series of generic and application-driven tasks with and without force feedback, and with control shared between teleoperation and local sensor referenced control. Measurements defining task performance included 100-Hz recording of six-axis force/torque information from the slave manipulator wrist, task completion time, and visual observation of predefined task errors. The task consisted of high precision peg-in-hole insertion, electrical connectors, velcro attach-de-attach, and a twist-lock multi-pin connector. Each task was repeated three times under several operating conditions: normal bilateral telemanipulation, forward position control without force feedback, and shared control. In shared control, orientation was locally servo controlled to comply with applied torques, while translation was under operator control. All performance measures improved as capability was added along a spectrum of capabilities ranging from pure position control through force-reflecting teleoperation and shared control. Performance was optimal for the bare-handed operator.
Accuracy of torque-limiting devices: A comparative evaluation.
Albayrak, Haydar; Gumus, Hasan Onder; Tursun, Funda; Kocaagaoglu, Hasan Huseyin; Kilinc, Halil Ibrahim
2017-01-01
To prevent the loosening of implant screws, clinicians should be aware of the output torque values needed to achieve the desired preload. Accurate torque-control devices are crucial in this regard; however, little information is currently available comparing the accuracy of mechanical with that of electronic torque-control devices. The purpose of this in vitro study was to identify and compare the accuracy of different types of torque-control devices. Devices from 5 different dental implant manufacturers were evaluated, including 2 spring-type (Straumann, Implance) mechanical devices (MTLD), 2 friction-type (Biohorizons, Dyna) MTLDs, and 1 (Megagen) electronic torque-control device (ETLD). For each manufacturer, 5 devices were tested 5 times with a digital torque tester, and the average for each device was calculated and recorded. The percentage of absolute deviations from the target torque values (PERDEV) were calculated and compared by using 1-way ANOVA. A 1-sample t test was used to evaluate the ability of each device to achieve its target torque value within a 95% confidence interval for the true population mean of measured values (α=.05 for all statistical analyses). One-way ANOVAs revealed statistically significant differences among torque-control devices (P<.001). ETLD showed higher PERDEVs (28.33 ±9.53) than MTLDs (P<.05), whereas PERDEVS of friction-type (7.56 ±3.64) and spring-type (10.85 ±4.11) MTLDs did not differ significantly. In addition, devices produced by Megagen had a significantly higher (P<.05) PERDEV (28.33 ±9.53) other devices, whereas no differences were found in devices manufactured by Biohorizons (7.31 ±5.34), Dyna (7.82 ±1.08), Implance (8.43 ±4.77), and Straumann (13.26 ±0.79). However, 1-sample t tests showed none of the torque-control devices evaluated in this study were capable of achieving their target torque values (P<.05). Within the limitations of this in vitro study, MTLDs were shown to be significantly more accurate than ETLDs. However, none of the torque-control devices evaluated were able to meet their target torque values successfully. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Controller for computer control of brushless dc motors. [automobile engines
NASA Technical Reports Server (NTRS)
Hieda, L. S. (Inventor)
1981-01-01
A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.
77 FR 36137 - Airworthiness Directives; AGUSTA S.p.A. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... the upper end of collective control rod C2 to torque tube C3 is properly installed. This AD is... prevent separation of the collective control rod from the torque tube, loss of control of the collective... helicopters because the production quality control procedures did not require recording the applied torque on...
Gambarini, G
2001-12-01
The main problem with the NiTi rotary instrumentation technique is instrument failure. During shaping procedures, rotary instruments might lock and/or screw into canals and, consequently, be subjected to high levels of stress. This may frequently lead to instrument separation or deformation. If a high-torque motor is used, the applied forces are usually very high and the instrument-fracture limit is often exceeded, thus increasing the risk of intracanal failure. A possible solution of this problem is to use a low-torque endodontic motor, which operates below the maximum permissible torque limit of each and every rotary instrument. During clinical instrumentation of root canals, if a torque-controlled motor is loaded right up to the instrument-specific torque, the motor stops momentarily and/or starts rotating counter-clockwise (auto-reverse function) to disengage the locked instrument. These safety mechanisms were developed to reduce the risk of instrument fracture. The author fully discusses the rationale for selecting lower torque values in everyday endodontic practice, and provides clinicians with useful information on the advantages and disadvantages of new endodontic motors with torque control.
Power And Propulsion Systems For Mobile Robotic Applications
NASA Astrophysics Data System (ADS)
Layuan, Li; Haiming, Zou
1987-02-01
Choosing the best power and propulsion systems for mobile robotic land vehicle applications requires consideration of technologies. The electric power requirements for onboard electronic and auxiliary equipment include 110/220 volt 60 Hz ac power as well as low voltage dc power. Weight and power are saved by either direct dc power distribution, or high frequency (20 kHz) ac power distribution. Vehicle control functions are performed electronically but steering, braking and traction power may be distributed electrically, mechanically or by fluid (hydraulic) means. Electric drive is practical, even for small vehicles, provided that advanced electric motors are used. Such electric motors have demonstrated power densities of 3.1 kilowatts per kilogram with devices in the 15 kilowatt range. Electric motors have a lower torque, but higher power density as compared to hydraulic or mechanical transmission systems. Power density being comparable, electric drives were selected to best meet the other requirements for robotic vehicles. Two robotic vehicle propulsion system designs are described to illustrate the implementation of electric drive over a vehicle size range of 250-7500 kilograms.
Technical Errors May Affect Accuracy of Torque Limiter in Locking Plate Osteosynthesis.
Savin, David D; Lee, Simon; Bohnenkamp, Frank C; Pastor, Andrew; Garapati, Rajeev; Goldberg, Benjamin A
2016-01-01
In locking plate osteosynthesis, proper surgical technique is crucial in reducing potential pitfalls, and use of a torque limiter makes it possible to control insertion torque. We conducted a study of the ways in which different techniques can alter the accuracy of torque limiters. We tested 22 torque limiters (1.5 Nm) for accuracy using hand and power tools under different rotational scenarios: hand power at low and high velocity and drill power at low and high velocity. We recorded the maximum torque reached after each torque-limiting event. Use of torque limiters under hand power at low velocity and high velocity resulted in significantly (P < .0001) different mean (SD) measurements: 1.49 (0.15) Nm and 3.73 (0.79) Nm. Use under drill power at controlled low velocity and at high velocity also resulted in significantly (P < .0001) different mean (SD) measurements: 1.47 (0.14) Nm and 5.37 (0.90) Nm. Maximum single measurement obtained was 9.0 Nm using drill power at high velocity. Locking screw insertion with improper technique may result in higher than expected torque and subsequent complications. For torque limiters, the most reliable technique involves hand power at slow velocity or drill power with careful control of insertion speed until 1 torque-limiting event occurs.
Wind turbine power tracking using an improved multimodel quadratic approach.
Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier
2010-07-01
In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2011-05-01
A planar sheet immersed in an electrically polar liquid like water can propel itself by means of a plane wave charge density propagating in the sheet. The corresponding running electric wave polarizes the fluid and causes an electrical torque density to act on the fluid. The sheet is convected by the fluid motion resulting from the conversion of rotational particle motion, generated by the torque density, into translational fluid motion by the mechanism of friction and spin diffusion. Similarly, a planar sheet immersed in a magnetic ferrofluid can propel itself by means of a plane wave current density in the sheet and the torque density acting on the fluid corresponding to the running wave magnetic field and magnetization. The effect is studied on the basis of the micropolar fluid equations of motion and Maxwell’s equations of electrostatics or magnetostatics, respectively. An analytic expression is derived for the velocity of the sheet by perturbation theory to second order in powers of the amplitude of the driving charge or current density. Under the assumption that the equilibrium magnetic equation of state may be used in linearized form and that higher harmonics than the first may be neglected, a set of self-consistent integral equations is derived which can be solved numerically by iteration. In typical situations the second-order perturbation theory turns out to be quite accurate.
Torque Control of a Rehabilitation Teaching Robot Using Magneto-Rheological Fluid Clutches
NASA Astrophysics Data System (ADS)
Hakogi, Hokuto; Ohaba, Motoyoshi; Kuramochi, Naimu; Yano, Hidenori
A new robot that makes use of MR-fluid clutches for simulating torque is proposed to provide an appropriate device for training physical therapy students in knee-joint rehabilitation. The feeling of torque provided by the robot is expected to correspond to the torque performance obtained by physical therapy experts in a clinical setting. The torque required for knee-joint rehabilitation, which is a function of the rotational angle and the rotational angular velocity of a knee movement, is modeled using a mechanical system composed of typical spring-mass-damper elements. The robot consists of two MR-fluid clutches, two induction motors, and a feedback control system. In the torque experiments, output torque is controlled using the spring and damper coefficients separately. The values of these coefficients are determined experimentally. The experimental results show that the robot would be suitable for training physical therapy students to experience similar torque feelings as needed in a clinical situation.
Compensation of an attitude disturbance torque caused by magnetic substances in LEO satellites
NASA Astrophysics Data System (ADS)
Inamori, Takaya; Wang, Jihe; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki
This research considers an attitude disturbance torque caused by ferromagnetic substances in a LEO satellite. In most LEO satellite missions, a gravity gradient torque, solar pressure torque, aerodynamic torque, and magnetic dipole moment torque are considered for their attitude control systems, however, the effect of the ferromagnetic substances causing a disturbance torque in the geomagnetic field is not considered in previous satellite missions. The ferromagnetic substances such as iron cores of MTQs and a magnetic hysteresis damper for a passive attitude control system are used in various small satellites. These substances cause a disturbance torque which is almost the same magnitude of the dipole magnetic disturbance and the dominant disturbance in the worst cases. This research proposes a method to estimate and compensate for the effect of the ferromagnetic substances using an extended Kalman filter. From simulation results, the research concludes that the proposed method is useful and attractive for precise attitude control for LEO satellite missions.
NASA Astrophysics Data System (ADS)
Harmon, Frederick G.
2005-11-01
Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric propulsion system. The CMAC neural network approximates the hyper-plane generated from the instantaneous optimization algorithm and produces torque commands for the internal combustion engine and electric motor. The CMAC neural network controller saves on the required memory as compared to a large look-up table by two orders of magnitude. The CMAC controller also prevents the need to compute a hyper-plane or complex logic every time step.
Marshall, Paul W M; Cross, Rebecca; Lovell, Ric
2015-12-01
This study examined changes in muscle temperature, electrically evoked muscle contractile properties, and voluntary power before and after a soccer specific active warm-up and subsequent rest period. Ten amateur soccer players performed two experimental sessions that involved performance of a modified FIFA 11+ soccer specific warm-up, followed by a 12.5-min rest period where participants were required to wear either normal clothing or a passive electrical heating garment was applied to the upper thigh muscles. Assessments around the warm-up and cool-down included measures of maximal torque, rate of torque development, muscle temperature (Tm), and electrically evoked measures of quadriceps contractile function. Tm was increased after the warm-up by 3.2 ± 0.7°C (P < 0.001). Voluntary and evoked rates of torque development increased after the warm-up between 20% and 30% (P < 0.05), despite declines in both maximal voluntary torque and voluntary activation (P < 0.05). Application of a passive heating garment in the cool-down period after the warm-up did not effect variables measured. While Tm was reduced by 1.4 ± 0.4°C after the rest period (P < 0.001), this value was still higher than pre warm-up levels. Voluntary and evoked rate of torque development remained elevated from pre warm-up levels at the end of the cool-down (P < 0.05). The soccer specific warm-up elevated muscle temperature by 3.2°C and was associated with concomitant increases of between 20% and 30% in voluntary rate of torque development, which seems explained by elevations in rate-dependent measures of intrinsic muscle contractile function. Application of a passive heating garment did not attenuate declines in muscle temperature during a 12.5-min rest period. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Adaptive controller for regenerative and friction braking system
Davis, R.I.
1990-10-16
A regenerative and friction braking system for a vehicle having one or more road wheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the road wheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the road wheels of the vehicle without skidding or slipping will not be exceeded. 8 figs.
Adaptive controller for regenerative and friction braking system
Davis, Roy I.
1990-01-01
A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.
Experimental and theoretical study of friction torque from radial ball bearings
NASA Astrophysics Data System (ADS)
Geonea, Ionut; Dumitru, Nicolae; Dumitru, Ilie
2017-10-01
In this paper it is presented a numerical simulation and an experimental study of total friction torque from radial ball bearings. For this purpose it is conceived a virtual CAD model of the experimental test bench for bearing friction torque measurement. The virtual model it is used for numerical simulation in Adams software, that allows dynamic study of multi-body systems and in particularly with facility Adams Machinery of dynamic behavior of machine parts. It is manufactured an experimental prototype of the test bench for radial ball bearings friction torque measurement. In order to measure the friction torque of the tested bearings it is used an equal resistance elastic beam element, with strain gauge transducer to measure bending deformations. The actuation electric motor of the bench has the shaft mounted on two bearings and the motor housing is fixed to the free side of the elastic beam, which is bended by a force proportional with the total friction torque. The beam elastic element with strain gauge transducer is calibrated in order to measure the force occurred. Experimental determination of the friction torque is made for several progressive radial loads. It is established the correlation from the friction torque and bearing radial load. The bench allows testing of several types and dimensions of radial bearings, in order to establish the bearing durability and of total friction torque.
Torque generation mechanism of ATP synthase
NASA Astrophysics Data System (ADS)
Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.
2010-03-01
ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.
NASA Technical Reports Server (NTRS)
Hamilton, H. B.; Strangas, E.
1980-01-01
The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.
Electric field control of spin transfer torque in multiferroic tunnel junctions
NASA Astrophysics Data System (ADS)
Useinov, Artur; Kalitsov, Alan; Velev, Julian; Kioussis, Nicholas
2014-03-01
Based on model calculations we predict that the spin transfer torque (STT) in magnetic tunnel junctions with ferroelectric barriers can be strongly influenced by the saturated polarization of the barrier. The STT in such multiferroic tunnel junctions is calculated within the non-equilibrium Keldysh formalism generalized for non-collinear transport and implemented in the framework of a single-band tight-binding (TB) model. We calculate the bias dependence of both the in-plane (T∥) and out-of-plane (T⊥) components of STT as a function of the ferroelectric polarization (P) in the barrier. We find that the components of STT strongly depend on both the magnitude and the direction of the polarization. In particular switching of the polarization direction can dramatically alter the value of the STT and can even lead to a change of sign of T∥ and the voltage-induced part of T⊥. The effect is proportional to the magnitude of the polarization.
Torque equilibrium attitudes for the Space Station
NASA Technical Reports Server (NTRS)
Thompson, Roger C.
1993-01-01
All spacecraft orbiting in a low earth orbit (LEO) experience external torques due to environmental effects. Examples of these torques include those induced by aerodynamic, gravity-gradient, and solar forces. It is the gravity-gradient and aerodynamic torques that produce the greatest disturbances to the attitude of a spacecraft in LEO, and large asymmetric spacecraft, such as the space station, are affected to a greater degree because the magnitude of the torques will, in general, be larger in proportion to the moments of inertia. If left unchecked, these torques would cause the attitude of the space station to oscillate in a complex manner and the resulting motion would destroy the micro-gravity environment as well as prohibit the orbiter from docking. The application of control torques will maintain the proper attitude, but the controllers have limited momentum capacity. When any controller reaches its limit, propellant must then be used while the device is reset to a zero or negatively-biased momentum state. Consequently, the rate at which momentum is accumulated is a significant factor in the amount of propellant used and the frequency of resupply necessary to operate the station. A torque profile in which the area curve for a positive torque is not equal to the area under the curve for a negative torque is 'biased,' and the consequent momentum build-up about that axis is defined as secular momentum because it continues to grow with time. Conversely, when the areas are equal, the momentum is cyclic and bounded. A Torque Equilibrium Attitude (TEA) is thus defined as an attitude at which the external torques 'balance' each other as much as possible, and which will result in lower momentum growth in the controllers. Ideally, the positive and negative external moments experienced by a spacecraft at the TEA would exactly cancel each other out and small cyclic control torques would be required only for precise attitude control. Over time, the only momentum build-up in the controllers would be due to electro-mechanical losses within the device. However, the atmospheric torques are proportional to the density of the atmosphere and the density varies with the orbital position, time of day, time of year, and the solar cycle. In addition, there are unmodeled disturbances and uncertainties in the mass and inertias. Therefore, there is no constant attitude that will completely balance the environmental torques and the dynamic TEA cannot be solved in closed form. The objective of this research was to determine a method to calculate a dynamic TEA such that the rate of momentum build-up in the controllers would be minimized and to implement this method in the MATRIX(x) simulation software by Integrated Systems, Inc.
Janzen, Natalie R; Hight, Robert E; Patel, Darshit S; Campbell, Jason A; Larson, Rebecca D; Black, Christopher D
2018-05-02
Characterization of critical power/torque (CP/CT) during voluntary exercise requires maximal effort, making difficult for those with neuromuscular impairments. To address this issue we sought to determine if electrically stimulated intermittent isometric exercise resulted in a critical end-test torque (ETT) that behaved similar to voluntary CT. In the first experiment participants (n = 9) completed four bouts of stimulated exercise at a 3:2 duty cycle, at frequencies of 100, 50, 25 Hz, and a low frequency below ETT (Sub-ETT; ≤ 15 Hz). The second experiment (n = 20) consisted of four bouts at a 2:2 duty cycle-two bouts at 100 Hz, one at an intermediate frequency (15-30 Hz), and one at Sub-ETT. The third experiment (n = 12) consisted of two bouts at 50 Hz at a 3:2 duty* cycle with proximal blood flow occlusion during one of the bouts. ETT torque was similar (p ≥ 0.43) within and among stimulation frequencies in experiment 1. No fatigue was observed during the Sub-ETT bouts (p > 0.05). For experiment 2, ETT was similar at 100 Hz and at the intermediate frequency (p ≥ 0.29). Again, Sub-ETT stimulation did not result in fatigue (p > 0.05). Altering oxygen delivery by altering the duty cycle (3:2 vs. 2:2; p = 0.02) and by occlusion (p < 0.001) resulted in lower ETT values. Stimulated exercise resulted in an ETT that was consistent from day-to-day and similar regardless of initial torque, as long as that torque exceeded ETT, and was sensitive to oxygen delivery. As such we propose it represents a parameter similar to voluntary CT.
Control torque generation of a CMG-based small satellite with MTGAC system: a trade-off study
NASA Astrophysics Data System (ADS)
Salleh, M. B.; Suhadis, N. M.; Rajendran, P.; Mazlan, N. M.
2018-05-01
In this paper, the gimbal angle compensation method using magnetic control law has been adopted for a small satellite operating in low earth orbit under disturbance toques influence. Three light weight magnetic torquers have been used to generate the magnetic compensation torque to bring diverge gimbals at preferable angle. The magnetic control torque required to compensate the gimbal angle is based on the gimbal error rate which depends on the gimbal angle converging time. A simulation study has been performed without and with the MTGAC system to investigate the amount of generated control torque as a trade-off between the power consumption, attitude control performance and CMG dynamic performance. Numerical simulations show that the satellite with the MTGAC system generates more control torques which leads to the additional power requirement but in return results in a favorable attitude control performance and gimbal angle management.
NASA Astrophysics Data System (ADS)
Kodkin, V. L.; Anikin, A. S.; Baldenkov, A. A.
2018-01-01
The results of researches of asynchronous electric drives with the frequency control which are carried out for the purpose of establishment of causes and effect relationships between a control method, the implementable standard frequency converter of the Schneider Electric company (ATV-71, ATV-32) and its efficiency are given in article. Tests with asynchronous motors with wound rotor were for the first time carried out. It allowed registering during the experiments the instantaneous values not only the stator currents, but also rotor currents. Authors for the first time applied spectrum analysis of stator and rotor currents, it showed that «sensorless vector» control leads to origin of high-frequency harmonicas with the considerable amplitude and, as a result of they are non-sinusoidal of the created torque and inefficiency of the electric drive. The accelerations that are carried out during the researches to 94, 157 and 251 Rad/s confirmed this feature of vector control that appears incapable to linearize the asynchronous electric drive as it was supposed authors of a method. These results do not contradict theoretical provisions if not to neglect assumptions which usually become in case of an output of the equations of vector control. Unfortunately, the modern researchers do not subject these assumptions to doubts. Continued studies make it possible to create an effective frequency management of asynchronous electric drives required for current technology.
Investigation on pitch system loads by means of an integral multi body simulation approach
NASA Astrophysics Data System (ADS)
Berroth, J.; Jacobs, G.; Kroll, T.; Schelenz, R.
2016-09-01
In modern horizontal axis wind turbines the rotor blades are adjusted by three individual pitch systems to control power output. The pitch system consists of either a hydraulic or an electrical actuator, the blade bearing, the rotor blade itself and the control. In case of an electrical drive a gearbox is used to transmit the high torques that are required for blade pitch angle adjustment. In this contribution a new integral multi body simulation approach is presented that enables detailed assessment of dynamic pitch system loads. The simulation results presented are compared and evaluated with measurement data of a 2 MW-class reference wind turbine. Major focus of this contribution is on the assessment of non linear tooth contact behaviour incorporating tooth backlash for the single gear stages and the impact on dynamic pitch system loads.
Field-Oriented Control Of Induction Motors
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Roth, Mary Ellen; Zinger, Don S.
1993-01-01
Field-oriented control system provides for feedback control of torque or speed or both. Developed for use with commercial three-phase, 400-Hz, 208-V, 5-hp motor. Systems include resonant power supply operating at 20 kHz. Pulse-population-modulation subsystem selects individual pulses of 20-kHz single-phase waveform as needed to synthesize three waveforms of appropriate lower frequency applied to three phase windings of motor. Electric actuation systems using technology currently being built to peak powers of 70 kW. Amplitude of voltage of effective machine-frequency waveform determined by momentary frequency of pulses, while machine frequency determined by rate of repetition of overall temporal pattern of pulses. System enables independent control of both voltage and frequency.
Tillin, Neale A.; Pain, Matthew T. G.; Folland, Jonathan P.
2012-01-01
The influence of contraction type on the human ability to use the torque capacity of skeletal muscle during explosive efforts has not been documented. Fourteen male participants completed explosive voluntary contractions of the knee extensors in four separate conditions: concentric (CON) and eccentric (ECC); and isometric at two knee angles (101°, ISO101 and 155°, ISO155). In each condition, torque was measured at 25 ms intervals up to 150 ms from torque onset, and then normalized to the maximum voluntary torque (MVT) specific to that joint angle and angular velocity. Explosive voluntary torque after 50 ms in each condition was also expressed as a percentage of torque generated after 50 ms during a supramaximal 300 Hz electrically evoked octet in the same condition. Explosive voluntary torque normalized to MVT was more than 60 per cent larger in CON than any other condition after the initial 25 ms. The percentage of evoked torque expressed after 50 ms of the explosive voluntary contractions was also greatest in CON (ANOVA; p < 0.001), suggesting higher concentric volitional activation. This was confirmed by greater agonist electromyography normalized to Mmax (recorded during the explosive voluntary contractions) in CON. These results provide novel evidence that the ability to use the muscle's torque capacity explosively is influenced by contraction type, with concentric contractions being more conducive to explosive performance due to a more effective neural strategy. PMID:22258636
1992-04-10
vi LIST OF FIGURES.......................................... Viii CHAPTER 1: INTRODUCTION ................................... 1... INTRODUCTION Physical therapists have used neuromuscular electrical stimulation (NMES) to strengthen muscle (improve muscle performance, ie torque) and prevent...found NMES induced strength gains, though showing a positive trend, to be statistically insignificant.39,52 These results may be due to technological
Cerebellar ataxia: abnormal control of interaction torques across multiple joints.
Bastian, A J; Martin, T A; Keating, J G; Thach, W T
1996-07-01
1. We studied seven subjects with cerebellar lesions and seven control subjects as they made reaching movements in the sagittal plane to a target directly in front of them. Reaches were made under three different conditions: 1) "slow-accurate," 2) "fast-accurate," and 3) "fast as possible." All subjects were videotaped moving in a sagittal plane with markers on the index finger, wrist, elbow, and shoulder. Marker positions were digitized and then used to calculate joint angles. For each of the shoulder, elbow and wrist joints, inverse dynamics equations based on a three-segment limb model were used to estimate the net torque (sum of components) and each of the component torques. The component torques consisted of the torque due to gravity, the dynamic interaction torques induced passively by the movement of the adjacent joint, and the torque produced by the muscles and passive tissue elements (sometimes called "residual" torque). 2. A kinematic analysis of the movement trajectory and the change in joint angles showed that the reaches of subjects with cerebellar lesions were abnormal compared with reaches of control subjects. In both the slow-accurate and fast-accurate conditions the cerebellar subjects made abnormally curved wrist paths; the curvature was greater in the slow-accurate condition. During the slow-accurate condition, cerebellar subjects showed target undershoot and tended to move one joint at a time (decomposition). During the fast-accurate reaches, the cerebellar subjects showed target overshoot. Additionally, in the fast-accurate condition, cerebellar subjects moved the joints at abnormal rates relative to one another, but the movements were less decomposed. Only three subjects were tested in the fast as possible condition; this condition was analyzed only to determine maximal reaching speeds of subjects with cerebellar lesions. Cerebellar subjects moved more slowly than controls in all three conditions. 3. A kinetic analysis of torques generated at each joint during the slow-accurate reaches and the fast-accurate reaches revealed that subjects with cerebellar lesions produced very different torque profiles compared with control subjects. In the slow-accurate condition, the cerebellar subjects produced abnormal elbow muscle torques that prevented the normal elbow extension early in the reach. In the fast-accurate condition, the cerebellar subjects produced inappropriate levels of shoulder muscle torque and also produced elbow muscle torques that did not very appropriately with the dynamic interaction torques that occurred at the elbow. Lack of appropriate muscle torque resulted in excessive contributions of the dynamic interaction torque during the fast-accurate reaches. 4. The inability to produce muscle torques that predict, accommodate, and compensate for the dynamic interaction torques appears to be an important cause of the classic kinematic deficits shown by cerebellar subjects during attempted reaching. These kinematic deficits include incoordination of the shoulder and the elbow joints, a curved trajectory, and overshoot. In the fast-accurate condition, cerebellar subjects often made inappropriate muscle torques relative to the dynamic interaction torques. Because of this, interaction torques often determined the pattern of incoordination of the elbow and shoulder that produced the curved trajectory and target overshoot. In the slow-accurate condition, we reason that the cerebellar subjects may use a decomposition strategy so as to simplify the movement and not have to control both joints simultaneously. From these results, we suggest that a major role of the cerebellum is in generating muscle torques at a joint that will predict the interaction torques being generated by other moving joints and compensate for them as they occur.
Robots Would Couple And Uncouple Fluid And Electrical Lines
NASA Technical Reports Server (NTRS)
Del Castillo, Eduardo Lopez; Davis, Virgil; Ferguson, Bob; Reichle, Garland
1992-01-01
Robots make and break connections between umbilical plates and mating connectors on rockets about to be launched. Sensing and control systems include vision, force, and torque subsystems. Enhances safety by making it possible to couple and uncouple umbilical plates quickly, without exposing human technicians to hazards of leaking fuels and oxidizers. Significantly reduces time spent to manually connect umbilicals. Robots based on similar principles used in refueling of National AeroSpace Plane (NASP) and satellites and orbital transfer vehicles in space.
Electric Propulsion Pointing Mechanism for BepiColombo
NASA Astrophysics Data System (ADS)
Janu, Paul; Neugebauer, Christian; Schermann, Rudolf; Supper, Ludwig
2013-09-01
Since 17 years the development of Electric Propulsion Pointing Mechanisms for commercial and scientific satellite applications is a key-product activity for RUAG Space in Vienna.As one of the most innovative EP mechanisms presently under development in Vienna this paper presents the Electric Propulsion Mechanism for the ESA Bepi Colombo Mission.RUAG Space delivers the mechanism assembly, consisting of the mechanisms and the control electronics.The design-driving requirements are:- the pointing capability around the stowed configuration under resitive torque coming from the thruster supply harness, the thruster supply piping, and the mechanism harness. The pointing capability around the stowed configuration is realized via a central release nut together with a spring loaded knuckle-lever system which in essence forms a "frangible pipe" that is stiff during launch and collapses upon release. The resistive torques are minimized by a helical arrangement of the supply pipes and of the mechanism harness, and a guided low stiffness routing of the thruster supply harness. A high detent torque actuator is used to maintain pointing direction in un-powered condition. Also the direct measurement of the torque on the actuator shaft during random vibration is presented in the paper.- the specified maximum input loads to the thruster. The mechanism has not only to point the thruster, but also to protect it against high launch loads. A very low Eigen- frequency of the mechanism/thruster sub-assembly of around 65 Hz was selected to minimize coupling with the thruster's modes and so to minimize load input to the thruster. An elastomer damping system is implemented which minimizes amplification in this frequency area so that the sine input can be sustained by the mechanism and the thruster. The measured amplification of 3.1 turned out to successfully protect the thruster from the launch vibrations.- the thermal load on the mechanism from the dissipation of the thruster and from the solar radiation.A staged temperature zone concept was selected, separating different temperature zones, and keeping the thermally sensitive elements in their operating temperature ranges.This paper outlines the design solution for these design driving requirements, presents the test results, and compares the results of the predictions with the tested values of the qualification tests. It also points out the lessons learnt during this development process.
Behrens, Martin; Mau-Moeller, Anett; Mueller, Karoline; Heise, Sandra; Gube, Martin; Beuster, Nico; Herlyn, Philipp K E; Fischer, Dagmar-C; Bruhn, Sven
2016-02-01
This study investigated effects of plyometric training (6 weeks, 3 sessions/week) on maximum voluntary contraction (MVC) strength and neural activation of the knee extensors during isometric, concentric and eccentric contractions. Twenty-seven participants were randomly assigned to the intervention or control group. Maximum voluntary torques (MVT) during the different types of contraction were measured at 110° knee flexion (180°=full extension). The interpolated twitch technique was applied at the same knee joint angle during isometric, concentric and eccentric contractions to measure voluntary activation. In addition, normalized root mean square of the EMG signal at MVT was calculated. The twitch torque signal induced by electrical nerve stimulation at rest was used to evaluate training-related changes at the muscle level. In addition, jump height in countermovement jump was measured. After training, MVT increased by 20Nm (95% CI: 5-36Nm, P=0.012), 24Nm (95% CI: 9-40Nm, P=0.004) and 27Nm (95% CI: 7-48Nm, P=0.013) for isometric, concentric and eccentric MVCs compared to controls, respectively. The strength enhancements were associated with increases in voluntary activation during isometric, concentric and eccentric MVCs by 7.8% (95% CI: 1.8-13.9%, P=0.013), 7.0% (95% CI: 0.4-13.5%, P=0.039) and 8.6% (95% CI: 3.0-14.2%, P=0.005), respectively. Changes in the twitch torque signal of the resting muscle, induced by supramaximal electrical stimulation of the femoral nerve, were not observed, indicating no alterations at the muscle level, whereas jump height was increased. Given the fact that the training exercises consisted of eccentric muscle actions followed by concentric contractions, it is in particular relevant that the plyometric training increased MVC strength and neural activation of the quadriceps muscle regardless of the contraction mode. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jang, G. H.; Yeom, J. H.; Kim, M. G.
2007-03-01
This paper presents a method to determine the torque constant and the torque-speed-current characteristics of a brushless DC (BLDC) motor by utilizing back-EMF variation of nonenergized phase. It also develops a BLDC motor controller with a digital signal processor (DSP) to monitor its current, voltage and speed in real time. Torque-speed-current characteristics of a BLDC motor are determined by using the proposed method and the developed controller. They are compared with the torque-speed-current characteristics measured by dynamometer experimentally. This research shows that the proposed method is an effective method to determine the torque constant and the torque-speed-current characteristics of the BLDC motor without using dynamometer.
Improved transistorized AC motor controller for battery powered urban electric passenger vehicles
NASA Technical Reports Server (NTRS)
Peak, S. C.
1982-01-01
An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.
Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W
2017-06-01
In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.
Remote Spacecraft Attitude Control by Coulomb Charging
NASA Astrophysics Data System (ADS)
Stevenson, Daan
The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to achieve rotation rate and absolute attitude control. Collectively, these studies decisively validate the feasibility of Coulomb charging for remote spacecraft attitude control.
High-Torque, Lightweight, Pneumatically Driven Wrench For Small Spaces
NASA Technical Reports Server (NTRS)
Miller, Thomas W.
1995-01-01
Pneumatically driven wrench provides torque up to 3,000 lb. per ft. in small space. Designed to reach into 2.6 x 2.75 x 6 in. pocket. Weighs approximately 25 lbs. Includes reversible pneumatic motor (electric motor could be used instead) and slip clutch. Also includes device indicating total angle through which wrench turned bolt or nut. This feature used for turn-of-the-nut tightening method.
Torques on the gyro in the gyro relativity experiment
NASA Technical Reports Server (NTRS)
Eby, P.
1982-01-01
Whether the Newtonian drifts on the gyro as conceived in the gyro relativity experiment can be reduced to a level such that the geodetic and motional earth precessions of general relativity can be detected is addressed. Torques due to gas drag, electrical charging, mass unbalance, cosmic ray impacts, magnetic fields, and gravity gradients in a inclined orbit are calculated and discussed. The conditions necessary for the required accuracy are given.
NASA Astrophysics Data System (ADS)
Mitri, Farid G.
2018-01-01
Generalized solutions of vector Airy light-sheets, adjustable per their derivative order m, are introduced stemming from the Lorenz gauge condition and Maxwell's equations using the angular spectrum decomposition method. The Cartesian components of the incident radiated electric, magnetic and time-averaged Poynting vector fields in free space (excluding evanescent waves) are determined and computed with particular emphasis on the derivative order of the Airy light-sheet and the polarization on the magnetic vector potential forming the beam. Negative transverse time-averaged Poynting vector components can arise, while the longitudinal counterparts are always positive. Moreover, the analysis is extended to compute the optical radiation force and spin torque vector components on a lossless dielectric prolate subwavelength spheroid in the framework of the electric dipole approximation. The results show that negative forces and spin torques sign reversal arise depending on the derivative order of the beam, the polarization of the magnetic vector potential, and the orientation of the subwavelength prolate spheroid in space. The spin torque sign reversal suggests that counter-clockwise or clockwise rotations around the center of mass of the subwavelength spheroid can occur. The results find useful applications in single Airy light-sheet tweezers, particle manipulation, handling, and rotation applications to name a few examples.
NASA Astrophysics Data System (ADS)
Wang, Jing; Wu, Shizhe; Ma, Ji; Xie, Lishan; Wang, Chuanshou; Malik, Iftikhar Ahmed; Zhang, Yuelin; Xia, Ke; Nan, Ce-Wen; Zhang, Jinxing
2018-02-01
Stripe-ordered domains with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in high-density magnetic data-storage devices. However, the conventional control methods (e.g., epitaxial strain, local heating, magnetic field, and magnetoelectric effect) of the stripe-ordered domain walls either cannot meet the demands for miniaturization and low power consumption of spintronic devices or require high strength of the electric field due to the small value of the magnetoelectric effect at room temperature. Here, a domain-wall resistive effect of 0.1% was clarified in La0.67Sr0.33MnO3 thin films between the configurations of current in the plane and perpendicular to the plane of walls. Furthermore, a reversible nanoscale control of the domain-wall re-orientation by vertical spin transfer torque across the probe/film interface was achieved, where a probe voltage of 0.1 V was applied on a manganite-based capacitor. We also demonstrated that the stripe-ordered magnetic domain-wall re-orientation strongly depends on the AC frequency of the scanning probe voltage which was applied on the capacitor.
Controller for a High-Power, Brushless dc Motor
NASA Technical Reports Server (NTRS)
Fleming, David J.; Makdad, Terence A.
1987-01-01
Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.
Servo Reduces Friction In Flexure Bearing
NASA Technical Reports Server (NTRS)
Clingman, W. Dean
1991-01-01
Proposed servocontrol device reduces such resistive torques as stiction, friction, ripple, and cogging in flexure bearing described in LAR-14348, "Flexure Bearing Reduces Startup Friction". Reduces frictional "bump" torque encountered when bearing ball runs into buildup of grease on bearing race. Also used as cable follower to reduce torque caused by cable and hoses when they bend because of motion of bearing. New device includes torquer across ball race. Torquer controlled by servo striving to keep flexure at null, removing torque to outer ring. In effect, device is inner control loop reducing friction, but does not control platforms or any outer-control-loop functions.
Electronic 4-wheel drive control device
NASA Technical Reports Server (NTRS)
Hayato, S.; Takanori, S.; Shigeru, H.; Tatsunori, S.
1984-01-01
The internal rotation torque generated during operation of a 4-wheel drive vehicle is reduced using a control device whose clutch is attached to one part of the rear-wheel drive shaft. One torque sensor senses the drive torque associated with the rear wheel drive shaft. A second sensor senses the drive torque associated with the front wheel drive shaft. Revolution count sensors sense the revolutions of each drive shaft. By means of a microcomputer, the engagement of the clutch is changed to insure that the ratio of the torque sensors remains constant.
A propulsion and steering control system for the Mars rover
NASA Technical Reports Server (NTRS)
Turner, J. M.
1980-01-01
The design of a propulsion and steering control system for the Rensselaer Polytechnic Institute prototype autonomous Mars roving vehicle is presented. The vehicle is propelled and steered by four independent electric motors. The control system must regulate the speeds of the motors so they work in unison during turns and on irregular terrain. An analysis of the motor coordination problem on irregular terrain, where each motor must supply a different torque at a different speed is presented. A procedure was developed to match the output of each motor to the varying load. A design for the control system is given. The controller uses a microprocessor which interprets speed and steering commands from an off-board computer, and produces the appropriate drive voltages for the motors.
Toney, Megan E.; Chang, Young-Hui
2016-01-01
Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888
Force-sensed interface for control and training space robot
NASA Astrophysics Data System (ADS)
Moiseev, O. S.; Sarsadskikh, A. S.; Povalyaev, N. D.; Gorbunov, V. I.; Kulakov, F. M.; Vasilev, V. V.
2018-05-01
A method of positional and force-torque control of robots is proposed. Prototypes of the system and the master handle have been created. Algorithm of bias estimation and gravity compensation for force-torque sensor and force-torque trajectory correction are described.
Hughes, Douglas A.
2006-04-04
A method and system are provided for determining the torque required to launch a vehicle having a hybrid drive-train that includes at least two independently operable prime movers. The method includes the steps of determining the value of at least one control parameter indicative of a vehicle operating condition, determining the torque required to launch the vehicle from the at least one determined control parameter, comparing the torque available from the prime movers to the torque required to launch the vehicle, and controlling operation of the prime movers to launch the vehicle in response to the comparing step. The system of the present invention includes a control unit configured to perform the steps of the method outlined above.
Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles
Walid Rezanoor, Md.; Dutta, Prashanta
2016-01-01
Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion. PMID:27014394
Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.
Walid Rezanoor, Md; Dutta, Prashanta
2016-03-01
Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion.
Variable-Reluctance Motor For Electric Vehicles
NASA Technical Reports Server (NTRS)
Lang, Jeffrey H.
1987-01-01
Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.
Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2016-10-01
An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas.
Young, Aaron J; Gannon, Hannah; Ferris, Daniel P
2017-01-01
Despite a large increase in robotic exoskeleton research, there are few studies that have examined human performance with different control strategies on the same exoskeleton device. Direct comparison studies are needed to determine how users respond to different types of control. The purpose of this study was to compare user performance using a robotic hip exoskeleton with two different controllers: a controller that targeted a biological hip torque profile and a proportional myoelectric controller. We tested both control approaches on 10 able-bodied subjects using a pneumatically powered hip exoskeleton. The state machine controller targeted a biological hip torque profile. The myoelectric controller used electromyography (EMG) of lower limb muscles to produce a proportional control signal for the hip exoskeleton. Each subject performed two 30-min exoskeleton walking trials (1.0 m/s) using each controller and a 10-min trial with the exoskeleton unpowered. During each trial, we measured subjects' metabolic cost of walking, lower limb EMG profiles, and joint kinematics and kinetics (torques and powers) using a force treadmill and motion capture. Compared to unassisted walking in the exoskeleton, myoelectric control significantly reduced metabolic cost by 13% ( p = 0.005) and biological hip torque control reduced metabolic cost by 7% ( p = 0.261). Subjects reduced muscle activity relative to the unpowered condition for a greater number of lower limb muscles using myoelectric control compared to the biological hip torque control. More subjects subjectively preferred the myoelectric controller to the biological hip torque control. Myoelectric control had more advantages (metabolic cost and muscle activity reduction) compared to a controller that targeted a biological torque profile for walking with a robotic hip exoskeleton. However, these results were obtained with a single exoskeleton device with specific control configurations while level walking at a single speed. Further testing on different exoskeleton hardware and with more varied experimental protocols, such as testing over multiple types of terrain, is needed to fully elucidate the potential benefits of myoelectric control for exoskeleton technology.
NASA Astrophysics Data System (ADS)
Yang, Chao; Jiao, Xiaohong; Li, Liang; Zhang, Yuanbo; Chen, Zheng
2018-01-01
To realize a fast and smooth operating mode transition process from electric driving mode to engine-on driving mode, this paper presents a novel robust hierarchical mode transition control method for a plug-in hybrid electric bus (PHEB) with pre-transmission parallel hybrid powertrain. Firstly, the mode transition process is divided into five stages to clearly describe the powertrain dynamics. Based on the dynamics models of powertrain and clutch actuating mechanism, a hierarchical control structure including two robust H∞ controllers in both upper layer and lower layer is proposed. In upper layer, the demand clutch torque can be calculated by a robust H∞controller considering the clutch engaging time and the vehicle jerk. While in lower layer a robust tracking controller with L2-gain is designed to perform the accurate position tracking control, especially when the parameters uncertainties and external disturbance occur in the clutch actuating mechanism. Simulation and hardware-in-the-loop (HIL) test are carried out in a traditional driving condition of PHEB. Results show that the proposed hierarchical control approach can obtain the good control performance: mode transition time is greatly reduced with the acceptable jerk. Meanwhile, the designed control system shows the obvious robustness with the uncertain parameters and disturbance. Therefore, the proposed approach may offer a theoretical reference for the actual vehicle controller.
NASA Astrophysics Data System (ADS)
Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
The magnetism attraction between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator is often known as cogging. Cogging requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator to see its performance characteristic. In the maximum power point tracking test, the fabricated ironless coreless electricity generator was tested by applying the load on the ironless coreless electricity generator optimization to maximize the power generated, voltage and the current produced by the ironless coreless electricity generator when the rotational speed of the rotor increased throughout the test. The rotational torque and power output are measured, and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 200VAC at rotational speed of 318 RPM. Torque required to rotate the generator was at 10.8Nm. The generator had working efficiency of 77.73% and the power generated was at 280W.
Robust Fault Diagnosis in Electric Drives Using Machine Learning
2004-09-08
detection of fault conditions of the inverter. A machine learning framework is developed to systematically select torque-speed domain operation points...were used to generate various fault condition data for machine learning . The technique is viable for accurate, reliable and fast fault detection in electric drives.
Starting characteristics of direct current motors powered by solar cells
NASA Technical Reports Server (NTRS)
Singer, S.; Appelbaum, J.
1989-01-01
Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Accioly, Artur; Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay; Locatelli, Nicolas
2016-09-07
A theoretical study on how synchronization and resonance-like phenomena in superparamagnetic tunnel junctions can be driven by spin-transfer torques is presented. We examine the magnetization of a superparamagnetic free layer that reverses randomly between two well-defined orientations due to thermal fluctuations, acting as a stochastic oscillator. When subject to an external ac forcing, this system can present stochastic resonance and noise-enhanced synchronization. We focus on the roles of the mutually perpendicular damping-like and field-like torques, showing that the response of the system is very different at low and high frequencies. We also demonstrate that the field-like torque can increase themore » efficiency of the current-driven forcing, especially at sub-threshold electric currents. These results can be useful for possible low-power, more energy efficient applications.« less
Electric-field-driven switching of individual magnetic skyrmions
NASA Astrophysics Data System (ADS)
Hsu, Pin-Jui; Kubetzka, André; Finco, Aurore; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland
2017-02-01
Controlling magnetism with electric fields is a key challenge to develop future energy-efficient devices. The present magnetic information technology is mainly based on writing processes requiring either local magnetic fields or spin torques, but it has also been demonstrated that magnetic properties can be altered on the application of electric fields. This has been ascribed to changes in magnetocrystalline anisotropy caused by spin-dependent screening and modifications of the band structure, changes in atom positions or differences in hybridization with an adjacent oxide layer. However, the switching between states related by time reversal, for example magnetization up and down as used in the present technology, is not straightforward because the electric field does not break time-reversal symmetry. Several workarounds have been applied to toggle between bistable magnetic states with electric fields, including changes of material composition as a result of electric fields. Here we demonstrate that local electric fields can be used to switch reversibly between a magnetic skyrmion and the ferromagnetic state. These two states are topologically inequivalent, and we find that the direction of the electric field directly determines the final state. This observation establishes the possibility to combine electric-field writing with the recently envisaged skyrmion racetrack-type memories.
Alibeji, Naji A; Molazadeh, Vahidreza; Dicianno, Brad E; Sharma, Nitin
2018-01-01
A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.
Electromechanical systems with transient high power response operating from a resonant AC link
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Hansen, Irving G.
1992-01-01
The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).
Matkowski, Boris; Lepers, Romuald; Martin, Alain
2015-05-01
The aim of this study was to analyze the neuromuscular mechanisms involved in the torque decrease induced by submaximal electromyostimulation (EMS) of the quadriceps muscle. It was hypothesized that torque decrease after EMS would reflect the fatigability of the activated motor units (MUs), but also a reduction in the number of MUs recruited as a result of changes in axonal excitability threshold. Two experiments were performed on 20 men to analyze 1) the supramaximal twitch superimposed and evoked at rest during EMS (Experiment 1, n = 9) and 2) the twitch response and torque-frequency relation of the MUs activated by EMS (Experiment 2, n = 11). Torque loss was assessed by 15 EMS-evoked contractions (50 Hz; 6 s on/6 s off), elicited at a constant intensity that evoked 20% of the maximal voluntary contraction (MVC) torque. The same stimulation intensity delivered over the muscles was used to induce the torque-frequency relation and the single electrical pulse evoked after each EMS contraction (Experiment 2). In Experiment 1, supramaximal twitch was induced by femoral nerve stimulation. Torque decreased by ~60% during EMS-evoked contractions and by only ~18% during MVCs. This was accompanied by a rightward shift of the torque-frequency relation of MUs activated and an increase of the ratio between the superimposed and posttetanic maximal twitch evoked during EMS contraction. These findings suggest that the torque decrease observed during submaximal EMS-evoked contractions involved muscular mechanisms but also a reduction in the number of MUs recruited due to changes in axonal excitability. Copyright © 2015 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Singer, S.
1989-01-01
Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.
An ironless armature brushless torque motor
NASA Technical Reports Server (NTRS)
Studer, P. A.
1973-01-01
A high torque motor with improved servo mechanism is reported. Armature windings are cast into an epoxy cylinder and armature conductors are integrally cast with an aluminum mounting ring which provides thermal conductance directly into the structure. This configuration eliminates magnetic hysteresis because there is no relative motion between the rotating magnetic field and any stationary iron. The absence of destabilization forces provides a fast electrical response compared with a typical torquer of conventional construction.
Spacecraft stability and control
NASA Technical Reports Server (NTRS)
Barret, Chris
1992-01-01
The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Today, satellite stability and control has become a higher priority. For a satellite design that is to have a life expectancy of 14 years, appropriate spacecraft flight control systems will be reviewed, stability requirements investigated, and an appropriate flight control system recommended in order to see the design process. Disturbance torques, including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques, will be assessed to quantify the disturbance environment so that the required compensating torques can be determined. The control torques, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, inertia augmentation techniques, three-axis control, and reaction control systems (RCSs), will be considered. Conditions for stability will also be considered.
NASA Astrophysics Data System (ADS)
Huang, Wentao; Hua, Wei; Yu, Feng
2017-05-01
Due to high airgap flux density generated by magnets and the special double salient structure, the cogging torque of the flux-switching permanent magnet (FSPM) machine is considerable, which limits the further applications. Based on the model predictive current control (MPCC) and the compensation control theory, a compensating-current MPCC (CC-MPCC) scheme is proposed and implemented to counteract the dominated components in cogging torque of an existing three-phase 12/10 FSPM prototyped machine, and thus to alleviate the influence of the cogging torque and improve the smoothness of electromagnetic torque as well as speed, where a comprehensive cost function is designed to evaluate the switching states. The simulated results indicate that the proposed CC-MPCC scheme can suppress the torque ripple significantly and offer satisfactory dynamic performances by comparisons with the conventional MPCC strategy. Finally, experimental results validate both the theoretical and simulated predictions.
Callahan, Damien M.; Umberger, Brian R.; Kent-Braun, Jane A.
2013-01-01
The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output. PMID:23405245
Zhang, Juanjuan; Collins, Steven H.
2017-01-01
This study uses theory and experiments to investigate the relationship between the passive stiffness of series elastic actuators and torque tracking performance in lower-limb exoskeletons during human walking. Through theoretical analysis with our simplified system model, we found that the optimal passive stiffness matches the slope of the desired torque-angle relationship. We also conjectured that a bandwidth limit resulted in a maximum rate of change in torque error that can be commanded through control input, which is fixed across desired and passive stiffness conditions. This led to hypotheses about the interactions among optimal control gains, passive stiffness and desired quasi-stiffness. Walking experiments were conducted with multiple angle-based desired torque curves. The observed lowest torque tracking errors identified for each combination of desired and passive stiffnesses were shown to be linearly proportional to the magnitude of the difference between the two stiffnesses. The proportional gains corresponding to the lowest observed errors were seen inversely proportional to passive stiffness values and to desired stiffness. These findings supported our hypotheses, and provide guidance to application-specific hardware customization as well as controller design for torque-controlled robotic legged locomotion. PMID:29326580
Anandkumar, Sudarshan; Sudarshan, Shobhalakshmi; Nagpal, Pratima
2014-08-01
Double blind pre-test post-test control group design. To compare the isokinetic quadriceps torque, standardized stair-climbing task (SSCT) and pain during SSCT between subjects diagnosed with knee osteoarthritis pre and post kinesio tape (KT) application with and without tension. Strength of the quadriceps and torque producing capability is frequently found to be compromised in knee osteoarthritis. The efficacy of KT in improving isokinetic quadriceps torque in knee osteoarthritis is unknown, forming the basis for this study. Forty subjects were randomly allocated to either the experimental (therapeutic KT with tension) or control group (sham KT without tension) with the allocation being concealed. Pre and post test measurements of isokinetic quadriceps torque, SSCT and pain during SSCT were carried out by a blinded assessor. A large effect size with significant improvements in the peak quadriceps torque (concentric and eccentric at angular velocities of 90° per second and 120° per second), SSCT and pain were obtained in the experimental group when compared to the control group. Application of therapeutic KT is effective in improving isokinetic quadriceps torque, SSCT and reducing pain in knee osteoarthritis.
Rice, David A; McNair, Peter J; Lewis, Gwyn N
2011-01-01
A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA. Fifteen subjects with knee joint OA and 15 controls with no history of knee joint pathology participated in this study. Quadriceps and hamstrings peak isometric torque (Nm) and electromyography (EMG) amplitude were collected before and after 20 minutes of 50 Hz vibration applied to the infrapatellar tendon. Between-group differences in pre-vibration torque were analysed using a one-way analysis of covariance, with age, gender and body mass (kg) as the covariates. If the γ-loop is intact, vibration should decrease torque and EMG levels in the target muscle; if dysfunctional, then torque and EMG levels should not change following vibration. One-sample t tests were thus undertaken to analyse whether percentage changes in torque and EMG differed from zero after vibration in each group. In addition, analyses of covariance were utilised to analyse between-group differences in the percentage changes in torque and EMG following vibration. Pre-vibration quadriceps torque was significantly lower in the OA group compared with the control group (P = 0.005). Following tendon vibration, quadriceps torque (P < 0.001) and EMG amplitude (P ≤0.001) decreased significantly in the control group but did not change in the OA group (all P > 0.299). Hamstrings torque and EMG amplitude were unchanged in both groups (all P > 0.204). The vibration-induced changes in quadriceps torque and EMG were significantly different between the OA and control groups (all P < 0.011). No between-group differences were observed for the change in hamstrings torque or EMG (all P > 0.554). γ-loop dysfunction may contribute to AMI in individuals with knee joint OA, partially explaining the marked quadriceps weakness and atrophy that is often observed in this population.
2011-01-01
Introduction A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA. Methods Fifteen subjects with knee joint OA and 15 controls with no history of knee joint pathology participated in this study. Quadriceps and hamstrings peak isometric torque (Nm) and electromyography (EMG) amplitude were collected before and after 20 minutes of 50 Hz vibration applied to the infrapatellar tendon. Between-group differences in pre-vibration torque were analysed using a one-way analysis of covariance, with age, gender and body mass (kg) as the covariates. If the γ-loop is intact, vibration should decrease torque and EMG levels in the target muscle; if dysfunctional, then torque and EMG levels should not change following vibration. One-sample t tests were thus undertaken to analyse whether percentage changes in torque and EMG differed from zero after vibration in each group. In addition, analyses of covariance were utilised to analyse between-group differences in the percentage changes in torque and EMG following vibration. Results Pre-vibration quadriceps torque was significantly lower in the OA group compared with the control group (P = 0.005). Following tendon vibration, quadriceps torque (P < 0.001) and EMG amplitude (P ≤0.001) decreased significantly in the control group but did not change in the OA group (all P > 0.299). Hamstrings torque and EMG amplitude were unchanged in both groups (all P > 0.204). The vibration-induced changes in quadriceps torque and EMG were significantly different between the OA and control groups (all P < 0.011). No between-group differences were observed for the change in hamstrings torque or EMG (all P > 0.554). Conclusions γ-loop dysfunction may contribute to AMI in individuals with knee joint OA, partially explaining the marked quadriceps weakness and atrophy that is often observed in this population. PMID:21933392
Gerrits, K. H. L.; Rittweger, J.; Felsenberg, D.; Stegeman, D. F.; de Haan, A.
2008-01-01
The contractile characteristics of fast voluntary and electrically evoked unilateral isometric knee extensions were followed in 16 healthy men during 56 days of horizontal bed rest and assessed at bed rest days 4, 7, 10, 17, 24, 38 and 56. Subjects were randomized to either an inactive control group (Ctrl, n = 8) or a resistive vibration exercise countermeasure group (RVE, n = 8). No changes were observed in neural activation, indicated by the amplitude of the surface electromyogram, or the initial rate of voluntary torque development in either group during bed rest. In contrast, for Ctrl, the force oscillation amplitude at 10 Hz stimulation increased by 48% (P < 0.01), the time to reach peak torque at 300 Hz stimulation decreased by 7% (P < 0.01), and the half relaxation time at 150 Hz stimulation tended to be slightly reduced by 3% (P = 0.056) after 56 days of bed rest. No changes were observed for RVE. Torque production at 10 Hz stimulation relative to maximal (150 Hz) stimulation was increased after bed rest for both Ctrl (15%; P < 0.05) and RVE (41%; P < 0.05). In conclusion, bed rest without exercise countermeasure resulted in intrinsic speed properties of a faster knee extensor group, which may have partly contributed to the preserved ability to perform fast voluntary contractions. The changes in intrinsic contractile properties were prevented by resistive vibration exercise, and voluntary motor performance remained unaltered for RVE subjects as well. PMID:18386049
System and method for heating ferrite magnet motors for low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly.more » The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.« less
System and method for heating ferrite magnet motors for low temperatures
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
2017-07-04
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.
Snieckus, Audrius; Kamandulis, Sigitas; Venckūnas, Tomas; Brazaitis, Marius; Volungevičius, Gintautas; Skurvydas, Albertas
2013-03-01
Here, we test the hypothesis that continuous concentric exercise training renders skeletal muscles more susceptible to damage in response to eccentric exercise. Elite road cyclists (CYC; n = 10, training experience 8.1 ± 2.0 years, age 22.9 ± 3.7 years), long-distance runners (LDR; n = 10, 9.9 ± 2.3 years, 24.4 ± 2.5 years), and healthy untrained (UT) men (n = 10; 22.4 ± 1.7 years) performed 100 submaximal eccentric contractions at constant angular velocity of 60° s(-1). Concentric isokinetic peak torque, isometric maximal voluntary contraction (MVC), and electrically induced knee extension torque were measured at baseline and immediately and 48 h after an eccentric exercise bout. Muscle soreness was assessed and plasma creatine kinase (CK) activity was measured at baseline and 48 h after exercise. Voluntary and electrically stimulated knee extension torque reduction were significantly greater (p < 0.05) in UT than in LDR and CYC. Immediately and 48 h after exercise, MVC decreased by 32 % and 20 % in UT, 20 % and 5 % in LDR, and 25 % and 6 % in CYC. Electrically induced 20 Hz torque decreased at the same times by 61 and 29 % in UT, 40 and 17 % in LDR, and 26 and 14 % in CYC. Muscle soreness and plasma CK activity 48 h after exercise did not differ significantly between athletes and UT subjects. In conclusion, even though elite endurance athletes are more resistant to eccentric exercise-induced muscle damage than are UT people, stretch-shortening exercise-trained LDR have no advantage over concentrically trained CYC.
40 CFR 1066.240 - Torque transducer verification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification. Verify torque-measurement systems by performing the verifications described in §§ 1066.270 and... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Torque transducer verification. 1066...
New Technique of High-Performance Torque Control Developed for Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.
2003-01-01
Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a method to clearly visualize the solution. The graphical technique allows a more insightful understanding of the operation of the machine under various conditions.
Phase diagrams of orientational transitions in absorbing nematic liquid crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolot’ko, A. S., E-mail: zolotko@lebedev.ru; Ochkin, V. N.; Smayev, M. P.
2015-05-15
A theory of orientational transitions in nematic liquid crystals (NLCs), which employs the expansion of optical torques acting on the NLC director with respect to the rotation angle, has been developed for NLCs with additives of conformationally active compounds under the action of optical and low-frequency electric and magnetic fields. Phase diagrams of NLCs are constructed as a function of the intensity and polarization of the light field, the strength of low-frequency electric field, and a parameter that characterizes the feedback between the rotation of the NLC director and optical torque. Conditions for the occurrence of first- and second-order transitionsmore » are determined. The proposed theory agrees with available experimental data.« less
NASA Astrophysics Data System (ADS)
Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun
2018-07-01
Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.
Experimental study of camel powered electricity generation unit
NASA Astrophysics Data System (ADS)
Jakhar, O. P.; Choudhary, Rahul Raj; Budaniya, Mukesh; Kumar, Ashish
2018-05-01
Developing nations are facing a huge gap in generation and demand of electricity across the world. In present scenario the demand of electricity is increasing day by day and the shortfall of electricity has become one of the major obstructions in the development of rural areas. There is a big gap between electricity supply and demand. In India it is very difficult that to give twenty four hours electric supply in rural areas. The traditional use of camel as draught animal, for the purpose of transport of goods and agricultural work, has been drastically reduced during last few decades, due to advancements and cheaper availability of mechanical machineries. In this research paper we experimentally studied the camel powered electricity generation system at National Research Centre on Camels (NRCC) Bikaner. Camel Energy in form of high torque low speed can be converted into low torque high speed through motion converting system i.e. gear and pulley mechanism for high RPM output. This high RPM (more than 3000) output is used for electricity generation. The electricity generated can be used directly or stored in the battery and later may be used whenever it is required either for DC light or AC light using inverter. According to experimental study a camel can comfortably generate electricity up to 1KW by rotating shaft. The complete set up for electricity generation using camel power has been designed, developed and physically commissioned at National Research Centre on Camels (NRCC) Bikaner.
Damping torque analysis of VSC-based system utilizing power synchronization control
NASA Astrophysics Data System (ADS)
Fu, Q.; Du, W. J.; Zheng, K. Y.; Wang, H. F.
2017-05-01
Power synchronization control is a new control strategy of VSC-HVDC for connecting a weak power system. Different from the vector control method, this control method utilizes the internal synchronization mechanism in ac systems, in principle, similar to the operation of a synchronous machine. So that the parameters of controllers in power synchronization control will change the electromechanical oscillation modes and make an impact on the transient stability of power system. This paper present a mathematical model for small-signal stability analysis of VSC station used power synchronization control and analyse the impact of the dynamic interactions by calculating the contribution of the damping torque from the power synchronization control, besides, the parameters of controllers which correspond to damping torque and synchronous torque in the power synchronization control is defined respectively. At the end of the paper, an example power system is presented to demonstrate and validate the theoretical analysis and associated conclusions are made.
Bevel gear driver and method having torque limit selection
NASA Technical Reports Server (NTRS)
Cook, Joseph S., Jr. (Inventor)
1994-01-01
This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior torque drivers such as 'click-type' torque wrenches do not actually limit torque application but only provide an audible warning that the limit has been reached.
Li, Yinfeng; Liu, Silin; Datta, Dibakar; Li, Zhonghua
2015-11-12
Wrinkles as intrinsic topological feature have been expected to affect the electrical and mechanical properties of atomically thin graphene. Molecular dynamics simulations are adopted to investigate the wrinkling characteristics in hydrogenated graphene annulus under circular shearing at the inner edge. The amplitude of wrinkles induced by in-plane rotation around the inner edge is sensitive to hydrogenation, and increases quadratically with hydrogen coverage. The effect of hydrogenation on mechanical properties is investigated by calculating the torque capability of annular graphene with varying hydrogen coverage and inner radius. Hydrogenation-enhanced wrinkles cause the aggregation of carbon atoms towards the inner edge and contribute to the critical torque strength of annulus. Based on detailed stress distribution contours, a shear-to-tension conversion mechanism is proposed for the contribution of wrinkles on torque capacity. As a result, the graphane annulus anomalously has similar torque capacity to pristine graphene annulus. The competition between hydrogenation caused bond strength deterioration and wrinkling induced local stress state conversion leads to a U-shaped evolution of torque strength relative to the increase of hydrogen coverage from 0 to 100%. Such hydrogenation tailored topological and mechanical characteristics provides an innovative mean to develop novel graphene-based devices.
Understanding movement control in infants through the analysis of limb intersegmental dynamics.
Schneider, K; Zernicke, R F; Ulrich, B D; Jensen, J L; Thelen, E
1990-12-01
One important component in the understanding of the control of limb movements is the way in which the central nervous system accounts for joint forces and torques that may be generated not only by muscle actions but by gravity and by passive reactions related to the movements of limb segments. In this study, we asked how the neuromotor system of young infants controls a range of active and passive forces to produce a stereotypic, nonintentional movement. We specifically analyzed limb intersegmental dynamics in spontaneous, cyclic leg movements (kicking) of varying intensity in supine 3-month-old human infants. Using inverse dynamics, we calculated the contributions of active (muscular) and passive (motion-dependent and gravitational) torque components at the hip, knee, and ankle joints from three-dimensional limb kinematics. To calculate joint torques, accurate estimates were needed of the limb's anthropometric parameters, which we determined using a model of the human body. Our analysis of limb intersegmental dynamics explicitly quantified the complex interplay of active and passive forces producing the simple, involuntary kicking movements commonly seen in 3-month-old infants. our results revealed that in nonvigorous kicks, hip joint reversal was the result of an extensor torque due to gravity, opposed by the combined flexor effect of the muscle torque and the total motion-dependent torque. The total motion-dependent torque increased as a hip flexor torque in more vigorous kicks; an extensor muscle torque was necessary to counteract the flexor influences of the total motion-dependent torque and, in the case of large ranges of motion, a flexor gravity torque as well. Thus, with changing passive torque influences due to motions of the linked segments, the muscle torques were adjusted to produce a net torque to reverse the kicking motion. As a consequence, despite considerable heterogeneity in the intensity, range of motion, coordination, and movement context of each kick, smooth trajectories resulted from the muscle torque, counteracting and complementing not only gravity but also the motion-dependent torques generated by movement of the linked segments.
Quality control of FWC during assembly and commissioning in SST-1 Tokamak
NASA Astrophysics Data System (ADS)
Patel, Hitesh; Santra, Prosenjit; Parekh, Tejas; Biswas, Prabal; Jayswal, Snehal; Chauhan, Pradeep; Paravastu, Yuvakiran; George, Siju; Semwal, Pratibha; Thankey, Prashant; Ramesh, Gattu; Prakash, Arun; Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Pradhan, Subrata
2017-04-01
First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma, comprises of limiters, divertors, baffles, passive stabilizers designed to operate long duration (∼1000 s) discharges of elongated plasma. All FWC consist of copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at inter-connected ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a rigorous quality control and checks at every stage of the assembly process. This paper will present the quality control aspects and checks of FWC from commencement of assembly procedure, namely material test reports, leak testing of high temperature baked components, assembled dimensional tolerances, leak testing of all welded joints, graphite tile tightening torques, electrical continuity and electrical isolation of passive stabilizers from vacuum vessel, baking and cooling hydraulic connections inside vacuum vessel.
Dynamics and control of instrumented harmonic drives
NASA Technical Reports Server (NTRS)
Kazerooni, H.; Ellis, S. R. (Principal Investigator)
1995-01-01
Since torque in harmonic drives is transmitted by a pure couple, harmonic drives do not generate radial forces and therefore can be instrumented with torque sensors without interference from radial forces. The installation of torque sensors on the stationary component of harmonic drives (the Flexipline cup in this research work) produce backdrivability needed for robotic and telerobotic compliant maneuvers. Backdrivability of a harmonic drive, when used as torque increaser, means that the output shaft can be rotated via finite amount of torque. A high ratio harmonic drive is non-backdrivable because its output shaft cannot be turned by applying a torque on it. This article first develops the dynamic behavior of a harmonic drive, in particular the non-backdrivability, in terms of a sensitivity transfer function. The instrumentation of the harmonic drive with torque sensor is then described. This leads to a description of the control architecture which allows modulation of the sensitivity transfer function within the limits established by the closed-loop stability. A set of experiments on an active hand controller, powered by a DC motor coupled to an instrumented harmonic drive, is given to exhibit this method's limitations.
40 CFR 1066.240 - Torque transducer verification and calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification and calibration. Calibrate torque-measurement systems as described in 40 CFR 1065.310. ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Torque transducer verification and...
40 CFR 1066.240 - Torque transducer verification and calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.240 Torque transducer verification and calibration. Calibrate torque-measurement systems as described in 40 CFR 1065.310. ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Torque transducer verification and...
Enhanced spin–orbit torques by oxygen incorporation in tungsten films
Demasius, Kai-Uwe; Phung, Timothy; Zhang, Weifeng; Hughes, Brian P.; Yang, See-Hun; Kellock, Andrew; Han, Wei; Pushp, Aakash; Parkin, Stuart S. P.
2016-01-01
The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films. PMID:26912203
Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston
NASA Astrophysics Data System (ADS)
Upadhyaya, Pramey; Tserkovnyak, Yaroslav
2016-07-01
We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.
Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.
Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A
2018-02-20
Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.
Prieske, Olaf; Maffiuletti, Nicola A; Granacher, Urs
2018-01-01
High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players ( N = 12) aged 14-15 years conducted three experimental conditions in randomized order: S included 3 sets of 8-10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties ( p < 0.05, d = 1.1) and jump performance outputs ( p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend ( p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development ( p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height ( p < 0.01, d = 1.9, 3%) and DJ contact time were found ( p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties.
Prieske, Olaf; Maffiuletti, Nicola A.; Granacher, Urs
2018-01-01
High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players (N = 12) aged 14–15 years conducted three experimental conditions in randomized order: S included 3 sets of 8–10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties (p < 0.05, d = 1.1) and jump performance outputs (p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend (p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development (p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height (p < 0.01, d = 1.9, 3%) and DJ contact time were found (p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties. PMID:29628898
Sensorless Load Torque Estimation and Passivity Based Control of Buck Converter Fed DC Motor
Kumar, S. Ganesh; Thilagar, S. Hosimin
2015-01-01
Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response in estimating the load torque. Sensitivity analysis is also performed to select the appropriate control variables. Simulation and experimental results fully confirm the superiority of the proposed approach suggested in this paper. PMID:25893208
Magnetic attitude control torque generation of a gravity gradient stabilized satellite
NASA Astrophysics Data System (ADS)
Suhadis, N. M.; Salleh, M. B.; Rajendran, P.
2018-05-01
Magnetic torquer is used to generate a magnetic dipole moment onboard satellites whereby a control torque for attitude control purposes is generated when it couples with the geomagnetic field. This technique has been considered very attractive for satellites operated in Low Earth Orbit (LEO) as the strength of the geomagnetic field is relatively high below the altitude of 1000 km. This paper presents the algorithm used to generate required magnetic dipole moment by 3 magnetic torquers mounted onboard a gravity gradient stabilized satellite operated at an altitude of 540 km with nadir pointing mission. As the geomagnetic field cannot be altered and its magnitude and direction vary with respect to the orbit altitude and inclination, a comparison study of attitude control torque generation performance with various orbit inclination is performed where the structured control algorithm is simulated for 13°, 33° and 53° orbit inclinations to see how the variation of the satellite orbit affects the satellite's attitude control torque generation. Results from simulation show that the higher orbit inclination generates optimum magnetic attitude control torque for accurate nadir pointing mission.
Inertial torque during reaching directly impacts grip-force adaptation to weightless objects.
Giard, T; Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P
2015-11-01
A hallmark of movement control expressed by healthy humans is the ability to gradually improve motor performance through learning. In the context of object manipulation, previous work has shown that the presence of a torque load has a direct impact on grip-force control, characterized by a significantly slower grip-force adjustment across lifting movements. The origin of this slower adaptation rate remains unclear. On the one hand, information about tangential constraints during stationary holding may be difficult to extract in the presence of a torque. On the other hand, inertial torque experienced during movement may also potentially disrupt the grip-force adjustments, as the dynamical constraints clearly differ from the situation when no torque load is present. To address the influence of inertial torque loads, we instructed healthy adults to perform visually guided reaching movements in weightlessness while holding an unbalanced object relative to the grip axis. Weightlessness offered the possibility to remove gravitational constraints and isolate the effect of movement-related feedback on grip force adjustments. Grip-force adaptation rates were compared with a control group who manipulated a balanced object without any torque load and also in weightlessness. Our results clearly show that grip-force adaptation in the presence of a torque load is significantly slower, which suggests that the presence of torque loads experienced during movement may alter our internal estimates of how much force is required to hold an unbalanced object stable. This observation may explain why grasping objects around the expected location of the center of mass is such an important component of planning and control of manipulation tasks.
Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander
2016-09-01
This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.
Skof, B; Strojnik, V
2006-03-01
The aim of this study was to determine the influence of intensive aerobic running on some muscle contractile characteristics and the dynamics of their recovery during a 2 hour period afterwards. Seven well trained runners performed a 6 km run at anaerobic threshold (V(OBLA)). Knee torque during single twitch, low and high frequency electrical stimulation (ES), maximum voluntary knee extension, and muscle activation level test of the quadriceps femoris muscles were measured before and immediately after the run, and at several time points during a 120 minute interval that followed the run. After exercise, the mean (SE) maximum twitch torque (T(TW)) and torque at ES with 20 Hz (low frequency ES; T(F20)) dropped by 14.1 (5.1)% (p<0.05) and 20.6 (7.9)% (p<0.05) respectively, while torque at stimulation with 100 Hz (high frequency ES; T(F100)), maximum isometric knee extension torque (maximum voluntary contraction torque; T(MVC)), and activation level did not change significantly. Twitch contraction time was shortened by 8 (2)% (p<0.05). Ten minutes after the run, T(TW) was 40% higher than immediately after the run and 10% (p<0.05) higher than before the run. T(F20), T(F100), and T(MVC) remained lower for 60 minutes (p<0.05) than before the run. A 6 km continuous run at V(OBLA) caused peripheral fatigue by impairing excitation-contraction coupling. Twitch torque recovered very quickly. However, the process of torque restoration at maximum isometric knee extension torque and at high and low frequency ES took much longer.
Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints
NASA Technical Reports Server (NTRS)
Naasz, Bo; Hall, Christopher; Berry, Matthew; Hy-Young, Kim
2003-01-01
Small satellites tend to be power-limited, so that actuators used to control the orbit and attitude must compete with each other as well as with other subsystems for limited electrical power. The Virginia Tech nanosatellite project, HokieSat, must use its limited power resources to operate pulsed-plasma thrusters for orbit control and magnetic torque coils for attitude control, while also providing power to a GPS receiver, a crosslink transceiver, and other subsystems. The orbit and attitude control strategies were developed independently. The attitude control system is based on an application of Linear Quadratic Regulator (LQR) to an averaged system of equations, whereas the orbit control is based on orbit element feedback. In this paper we describe the strategy for integrating these two control systems and present simulation results to verify the strategy.
? stability of wind turbine switching control
NASA Astrophysics Data System (ADS)
Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei
2015-01-01
In order to maximise the wind energy capture, wind turbines are operated at variable speeds. Depending on the wind speed, a turbine switches between two operating modes: a low wind speed mode and a high wind speed mode. During the low wind speed mode, the control objective is to maximise wind energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high wind speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of wind turbines using ? gain under the nonlinear control framework. Also, the performance of the wind turbine system is analysed by using the step response, a well-known measure for second-order linear systems.
Lee, Dale Y.; Wetzsteon, Rachel J.; Zemel, Babette S.; Shults, Justine; Organ, Jason M.; Foster, Bethany J.; Herskovitz, Rita M.; Foerster, Debbie L.; Leonard, Mary B.
2015-01-01
Measures of muscle mass or size are often used as surrogates of forces acting on bone. However, chronic diseases may be associated with abnormal muscle force relative to muscle size. The muscle-bone unit was examined in 64 children and adolescents with new-onset Crohn’s disease (CD), 54 with chronic kidney disease (CKD), 51 treated with glucocorticoids for nephrotic syndrome (NS), and 264 healthy controls. Muscle torque was assessed by isometric ankle dynamometry. Calf muscle cross-sectional area (CSA) and tibia cortical section modulus (Zp) were assessed by quantitative CT. Log-linear regression was used to determine the relations among muscle CSA, muscle torque, and Zp, adjusted for tibia length, age, Tanner stage, sex, and race. Muscle CSA and muscle torque-relative-to-muscle CSA were significantly lower than controls in advanced CKD (CSA −8.7%, p = 0.01; torque −22.9%, p < 0.001) and moderate-to-severe CD (CSA −14.1%, p < 0.001; torque −7.6%, p = 0.05), but not in NS. Zp was 11.5% lower in advanced CKD (p = 0.005) compared to controls, and this deficit was attenuated to 6.7% (p = 0.05) with adjustment for muscle CSA. With additional adjustment for muscle torque and body weight, Zp was 5.9% lower and the difference with controls was no longer significant (p = 0.09). In participants with moderate-to-severe CD, Zp was 6.8% greater than predicted (p = 0.01) given muscle CSA and torque deficits (R2=0.92), likely due to acute muscle loss in newly diagnosed patients. Zp did not differ in NS, compared with controls. In conclusion, muscle torque relative to muscle CSA was significantly lower in CKD and CD, compared with controls, and was independently associated with Zp. Future studies are needed to determine if abnormal muscle strength contributes to progressive bone deficits in chronic disease, independent of muscle area. PMID:25264231
Right-Angle Mechanized Electrical Connector
NASA Technical Reports Server (NTRS)
Collins, Clint A.; Blackler, David T.
1996-01-01
Right-angle electrical connector embedded in mechanism accommodates some initial misalignment and aligns itself. Connection and disconnection effected with relatively small forces and torques and simple movements. Actuated by one gloved hand or by robotic manipulator. Useful in underwater, nuclear, hot, cold, or toxic environments in which connections made or broken by heavily clothed technicians or by robots.
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2010-01-01
Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…
Mousa, Mohamed G; Allam, S M; Rashad, Essam M
2018-01-01
This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Arazpour, Mokhtar; Chitsazan, Ahmad; Bani, Monireh Ahmadi; Rouhi, Gholamreza; Ghomshe, Farhad Tabatabai; Hutchins, Stephen W
2013-10-01
The aim of this case study was to identify the effect of a powered stance control knee ankle foot orthosis on the kinematics and temporospatial parameters of walking by a person with poliomyelitis when compared to a knee ankle foot orthosis. A knee ankle foot orthosis was initially manufactured by incorporating drop lock knee joints and custom molded ankle foot orthoses and fitted to a person with poliomyelitis. The orthosis was then adapted by adding electrically activated powered knee joints to provide knee extension torque during stance and also flexion torque in swing phase. Lower limb kinematic and kinetic data plus data for temporospatial parameters were acquired from three test walks using each orthosis. Walking speed, step length, and vertical and horizontal displacement of the pelvis decreased when walking with the powered stance control knee ankle foot orthosis compared to the knee ankle foot orthosis. When using the powered stance control knee ankle foot orthosis, the knee flexion achieved during swing and also the overall pattern of walking more closely matched that of normal human walking. The reduced walking speed may have caused the smaller compensatory motions detected when the powered stance control knee ankle foot orthosis was used. The new powered SCKAFO facilitated controlled knee flexion and extension during ambulation for a volunteer poliomyelitis person.
Design of a lightweight, tethered, torque-controlled knee exoskeleton.
Witte, Kirby Ann; Fatschel, Andreas M; Collins, Steven H
2017-07-01
Lower-limb exoskeletons show promise for improving gait rehabilitation for those with chronic gait abnormalities due to injury, stroke or other illness. We designed and built a tethered knee exoskeleton with a strong lightweight frame and comfortable, four-point contact with the leg. The device is structurally compliant in select directions, instrumented to measure joint angle and applied torque, and is lightweight (0.76 kg). The exoskeleton is actuated by two off-board motors. Closed loop torque control is achieved using classical proportional feedback control with damping injection in conjunction with iterative learning. We tested torque measurement accuracy and found root mean squared (RMS) error of 0.8 Nm with a max load of 62.2 Nm. Bandwidth was measured to be phase limited at 45 Hz when tested on a rigid test stand and 23 Hz when tested on a person's leg. During bandwidth tests peak extension torques were measured up to 50 Nm. Torque tracking was tested during walking on a treadmill at 1.25 m/s with peak flexion torques of 30 Nm. RMS torque tracking error averaged over a hundred steps was 0.91 Nm. We intend to use this knee exoskeleton to investigate robotic assistance strategies to improve gait rehabilitation and enhance human athletic ability.
NASA Technical Reports Server (NTRS)
Wiwattananon, Peerawan; Bryant, Robert G.
2015-01-01
This report compiles a review of 130 commercial small scale motors (piezoelectric and electric motors) and almost 20 researched-type small scale piezoelectricmotors for potential use in a 2 blades Heliogyro Solar Sail 6U CubeSat. In this application, a motor and gearhead (drive system) will deploy a roll of solar sailthin film (2 um thick)accommodated in a 2U CubeSat (100 x 200 x 100 mm) housing. The application requirements are: space rated, output torque at fulldeployment of 0.8 Nm, reel speed of 3 rpm, drive system weight limited to 150 grams, diameter limited to 50 mm, and the length not to exceed 40 mm. The 50mm diameter limit was imposed as motors with larger diameters would likely weigh too much and use more space on the satellite wall. This would limit theamount of the payload. The motors performance are compared between small scale, volume within 3x102 cm3 (3x105 mm3), commercial electric DC motors,commercial piezoelectric motors, and researched-type (non-commercial) piezoelectric motors extracted from scientific and product literature. The comparisonssuggest that piezoelectric motors without a gearhead exhibit larger output torque with respect to their volume and weight and require less input power toproduce high torque. A commercially available electric motor plus a gearhead was chosen through a proposed selection process to meet the applications designrequirements.
Step-to-Step Ankle Inversion/Eversion Torque Modulation Can Reduce Effort Associated with Balance.
Kim, Myunghee; Collins, Steven H
2017-01-01
Below-knee amputation is associated with higher energy expenditure during walking, partially due to difficulty maintaining balance. We previously found that once-per-step push-off work control can reduce balance-related effort, both in simulation and in experiments with human participants. Simulations also suggested that changing ankle inversion/eversion torque on each step, in response to changes in body state, could assist with balance. In this study, we investigated the effects of ankle inversion/eversion torque modulation on balance-related effort among amputees ( N = 5) using a multi-actuated ankle-foot prosthesis emulator. In stabilizing conditions, changes in ankle inversion/eversion torque were applied so as to counteract deviations in side-to-side center-of-mass acceleration at the moment of intact-limb toe off; higher acceleration toward the prosthetic limb resulted in a corrective ankle inversion torque during the ensuing stance phase. Destabilizing controllers had the opposite effect, and a zero gain controller made no changes to the nominal inversion/eversion torque. To separate the balance-related effects of step-to-step control from the potential effects of changes in average mechanics, average ankle inversion/eversion torque and prosthesis work were held constant across conditions. High-gain stabilizing control lowered metabolic cost by 13% compared to the zero gain controller ( p = 0.05). We then investigated individual responses to subject-specific stabilizing controllers following an enforced exploration period. Four of five participants experienced reduced metabolic rate compared to the zero gain controller (-15, -14, -11, -6, and +4%) an average reduction of 9% ( p = 0.05). Average prosthesis mechanics were unchanged across all conditions, suggesting that improvements in energy economy might have come from changes in step-to-step corrections related to balance. Step-to-step modulation of inversion/eversion torque could be used in new, active ankle-foot prostheses to reduce walking effort associated with maintaining balance.
NASA Astrophysics Data System (ADS)
Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. There were several parameters analysed using the JMAG Designer. Transient response analysis was used in the JMAG Designer. The parameters analysed were the number of coil turns per phase, gap distance between the magnet pairs as well as the magnet grade used. These few parameters were analysed under the open circuit condition. Results showed with the increasing of gap distance, output voltage produced decreased. The increment of number of turns in the coils and higher magnet grades used, these increased the output voltage of the generator. With the help of these results, a reference point is established to get optimum design parameter for fabrication of working prototype.
A system for spacecraft attitude control and energy storage
NASA Technical Reports Server (NTRS)
Shaughnessy, J. D.
1974-01-01
A conceptual design for a double-gimbal reaction-wheel energy-wheel device which has three-axis attitude control and electrical energy storage capability is given. A mathematical model for the three-axis gyroscope (TAG) was developed, and a system of multiple units is proposed for attitude control and energy storage for a class of spacecraft. Control laws were derived to provide the required attitude-control torques and energy transfer while minimizing functions of TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel speed differences. A control law is also presented for a magnetic torquer desaturation system. A computer simulation of a three-TAG system for an orbiting telescope was used to evaluate the concept. The results of the study indicate that all control and power requirements can be satisfied by using the TAG concept.
NASA Astrophysics Data System (ADS)
Daikoku, Akihiro; Yamaguchi, Shinichi; Toide, Yukari; Fujiwara, Koji; Takahashi, Norio
This paper examines the cogging torque of permanent magnet motors resulting from the magnetic anisotropy of non-oriented steel sheets used for magnetic core. The cogging torque due to the magnetic anisotropy is calculated by FEM using two modeling methods; one is the newly developed method which takes account of the two-dimensional magnetic properties in arbitrary directions, and the other is the conventional method which uses only two magnetization curves both in rolling and transverse directions. In the proposed method, the measured magnetic properties are treated in two different ways; in the first way the data are used directly, and in the second way the data are interpolated using Bèzier surface. As a result, all of three models show the cogging torque component resulting from the magnetic anisotropy, that has less pulsation numbers per rotation than that of isotropic model. The difference of the cogging torque amplitude between the three models is small in the region of low magnetic flux density, however, it gradually becomes large along with the increase in magnetic flux density. The measured results of cogging torque is proximate to the results calculated by two-dimensional magnetic property method using the magnetic property data directly. The error is approximately 4% at the point where the cogging torque component resulting from the magnetic anisotropy is maximum.
NASA Astrophysics Data System (ADS)
Berger, Andrew J.; Edwards, Eric R. J.; Nembach, Hans T.; Karenowska, Alexy D.; Weiler, Mathias; Silva, Thomas J.
2018-03-01
Functional spintronic devices rely on spin-charge interconversion effects, such as the reciprocal processes of electric field-driven spin torque and magnetization dynamics-driven spin and charge flow. Both dampinglike and fieldlike spin-orbit torques have been observed in the forward process of current-driven spin torque and dampinglike inverse spin-orbit torque has been well studied via spin pumping into heavy metal layers. Here, we demonstrate that established microwave transmission spectroscopy of ferromagnet/normal metal bilayers under ferromagnetic resonance can be used to inductively detect the ac charge currents driven by the inverse spin-charge conversion processes. This technique relies on vector network analyzer ferromagnetic resonance (VNA-FMR) measurements. We show that in addition to the commonly extracted spectroscopic information, VNA-FMR measurements can be used to quantify the magnitude and phase of all ac charge currents in the sample, including those due to spin pumping and spin-charge conversion. Our findings reveal that Ni80Fe20/Pt bilayers exhibit both dampinglike and fieldlike inverse spin-orbit torques. While the magnitudes of both the dampinglike and fieldlike inverse spin-orbit torque are of comparable scale to prior reported values for similar material systems, we observed a significant dependence of the dampinglike magnitude on the order of deposition. This suggests interface quality plays an important role in the overall strength of the dampinglike spin-to-charge conversion.
Microgrid Restraining Strategy Based on Improved DC Grid Connected DFIG Torque Ripple
NASA Astrophysics Data System (ADS)
Fei, Xia; Yang, Zhixiong; Zongze, Xia
2017-05-01
Aiming to the voltage of the stator side is generated by the modulation of the SSC in the improved topology, especially under the circumstance with the asymmTeric fault of stator side, DFIG’s electromagnTeic torque, amplifies ripple of grid-connected power for the grid side. The novel control mTehod suitable to stator side converter and rotor side converter based on reduced-order resonant controller (RORC) is proposed in this thesis, DFIG’s torque and output power performance are improved. Under the RORC control conditions the transfer functions of stator current and torque control system are established, the amplitude characteristic and the system stability of RORC control are analysed. The simulation results in Matlab/Simulink verify the correctness and validity of the proposed mTehod.
Control Strategies for Smoothing of Output Power of Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Pratap, Alok; Urasaki, Naomitsu; Senju, Tomonobu
2013-10-01
This article presents a control method for output power smoothing of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG) using the inertia of wind turbine and the pitch control. The WECS used in this article adopts an AC-DC-AC converter system. The generator-side converter controls the torque of the PMSG, while the grid-side inverter controls the DC-link and grid voltages. For the generator-side converter, the torque command is determined by using the fuzzy logic. The inputs of the fuzzy logic are the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. By means of the proposed method, the generator torque is smoothed, and the kinetic energy stored by the inertia of the wind turbine can be utilized to smooth the output power fluctuations of the PMSG. In addition, the wind turbines shaft stress is mitigated compared to a conventional maximum power point tracking control. Effectiveness of the proposed method is verified by the numerical simulations.
Attitude control system design using a flywheel suspended by two gimbals
NASA Astrophysics Data System (ADS)
Peres, R. W.; Ricci, M. C.
2015-10-01
This work presents the attitude control system design procedures for a three axis stabilized satellite in geostationary orbit, which contains a flywheel suspended by two gimbals. The use of a flywheel with two DOFs is an interesting option because with only one device it's possible to control the torques about vehicle's three axes; through the wheel speed control and gyrotorquing phenomenon with two DOFs. If the wheel size and speed are determined properly it's possible to cancel cyclic torques using gas jets only periodically to cancel secular disturbance torques. The system, based on a flywheel, takes only one pitch/roll (earth) sensor to maintain precise attitude, unlike mass expulsion based control systems, which uses propellants continuously, beyond roll, pitch and yaw sensors. It is considered the satellite is in nominal orbit and, therefore, that the attitude's acquisition phase has already elapsed. Control laws and system parameters are determined in order to cancel the solar pressure radiation disturbance torque and the torque due to misalignment of the thrusters. Stability is analyzed and step and cyclic responses are obtained.
Flextensional ultrasonic piezoelectric micro-motor.
Leinvuo, Joni T; Wilson, Stephen A; Whatmore, Roger W; Cain, Markys G
2006-12-01
This paper presents the experimental design, construction, and operational characteristics of a new type of standing wave piezoelectric ultrasonic micro-motor. The motor uses a composite stator, consisting of a metallic flex-tensional mode converter, or "cymbal", bonded to a 2-mm-square piezoelectric plate. The cymbal converts contour-mode vibrations of the plate into oscillations in the cymbal, perpendicular to the stator plane. These are further converted into rotational movement in a rotor pressed against the cymbal by means of an elastic-fin friction drive to produce the required rotary actuation. The motor operates on a single-phase electrical supply, and direct control of the output speed and torque can be achieved by adjusting the amplitude and frequency of the supply voltage. Noncontact optical techniques were used to assess the performance of the developed micro-motor. The operational characteristics were developed from the acceleration and deceleration characteristics. No-load output speed (11 rev s(-1)) and stall torque (27 nNm) were derived using high-speed imaging and image analysis. Maximum efficiency was 0.6%.
Gate-Driven Pure Spin Current in Graphene
NASA Astrophysics Data System (ADS)
Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng
2017-09-01
The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.
Pol, Tejas R; Vandekar, Meghna; Patil, Anuradha; Desai, Sanjana; Shetty, Vikram; Hazarika, Saptarshi
2018-01-01
The aim of present study was to investigate the difference of torque control during intrusive force on upper central incisors with normal, under and high torque in lingual and labial orthodontic systems through 3D finite element analysis. Six 3D models of an upper right central incisor with different torque were designed in Solid Works 2006. Software ANSYS Version 16.0 was used to evaluate intrusive force on upper central incisor model . An intrusive force of 0.15 N was applied to the bracket slot in different torque models and the displacements along a path of nodes in the upper central incisor was assessed. On application of Intrusive force on under torqued upper central incisor in Labial system produce labial crown movement but in Lingual system caused lingual movement in the apical and incisal parts. The same intrusive force in normal-torqued central incisor led to a palatal movement in apical and labial displacement of incisal edge in Lingual system and a palatal displacement in apical area and a labial movement in the incisal edge in Labial systemin. In overtorqued upper central incisor, the labial crown displacement in Labial system is more than Lingual system. In labial and lingual system on application of the same forces in upper central incisor with different inclinations showed different responses. The magnitudes of torque Loss during intrusive loads in incisors with normal, under and over-torque were higher in Labial system than Lingual orthodontic appliances. Key words: FEM, lingual orthodontics, intrusion, torque control, labial bracket systems.
A magneto-rheological fluid-based torque sensor for smart torque wrench application
NASA Astrophysics Data System (ADS)
Ahmadkhanlou, Farzad; Washington, Gregory N.
2013-04-01
In this paper, the authors have developed a new application where MR fluid is being used as a sensor. An MR-fluid based torque wrench has been developed with a rotary MR fluid-based damper. The desired set torque ranges from 1 to 6 N.m. Having continuously controllable yield strength, the MR fluid-based torque wrench presents a great advantage over the regular available torque wrenches in the market. This design is capable of providing continuous set toque from the lower limit to the upper limit while regular torque wrenches provide discrete set torques only at some limited points. This feature will be especially important in high fidelity systems where tightening torque is very critical and the tolerances are low.
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1985-01-01
Wind tunnel tests were conducted at Mach numbers 1.70, 2.16, and 2.86 to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed or free rolling tailfin afterbodies. Mechanical coupling effects of the free-rolling-tail afterbody were investigated by using an electronic electromagnetic brake system providing arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail roll rate. Remote-controlled canards were deflected to provide pitch, yaw, and roll control. Results indicate that the induced rolling moment coefficients due to canard yaw control are reduced and linearized for the free-rolling-tail (free-tail) configuration. The canards of the latter provide conventional roll control for the entire angle-of-attack test range. For the free-tail configuration, the induced rolling moment coefficient due to canard yaw control increased and the canard roll control decreased with increases in brake torque, which simulated bearing friction torque. It appears that a compromise in regard to bearing friction, for example, low-cost bearings with some friction, may allow satisfactory free-tail aerodynamic characteristics that include reductions in adverse rolling-moment coefficients and lower tail roll rates.
Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
Qu, Ronghai; Lipo, Thomas A.
2005-08-02
The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.
Signal and power roll ring testing update
NASA Technical Reports Server (NTRS)
Smith, Dennis W.
1989-01-01
The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.
Frequency control of a spin-torque oscillator using magnetostrictive anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min Gyu Albert; Lee, Seok-Hee, E-mail: bgpark@kaist.ac.kr, E-mail: shlee@kaist.edu; Baek, Seung-heon Chris
2016-01-11
We report the working principle of a spin-torque oscillator, of which the frequency is efficiently controlled by manipulating the magnetostrictive anisotropy. To justify the scheme, we simulate a conventional magnetic-tunnel junction-based oscillator which is fabricated on a piezoelectric material. By applying mechanical stress to a free layer using a piezoelectric material, the oscillation frequency can be controlled to ensure a broad tuning range without a significant reduction of the dynamic resistance variation. Such controllability, which appears in the absence of an external magnetic field, will not only enable the integration of spin-torque oscillators and conventional complimentary metal-oxide semiconductor technology butmore » will also broaden the applicability of spin-torque oscillators.« less
Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2015-02-01
The self-propulsion of a sphere immersed in a polar liquid or ferrofluid is studied on the basis of ferrohydrodynamics. In the electrical case an oscillating charge density located inside the sphere generates an electrical field that polarizes the fluid. The lag of polarization with respect to the electrical field due to relaxation generates a time-independent electrical torque density acting on the fluid, causing it to move. The resulting propulsion velocity of the sphere is calculated in perturbation theory to second order in powers of the charge density.
NASA Technical Reports Server (NTRS)
Barret, C.
1992-01-01
The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Now, as we launch the Mars observer and the Cassini spacecraft, stability and control have become higher priorities. The flight control system design selection process is reviewed using as an example a geostationary communication satellite which is to have a life expectancy of 10 to 14 years. Disturbance torques including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques are assessed to quantify the disturbance environment so that the required compensating torque can be determined. Then control torque options, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, nutation dampers, inertia augmentation techniques, three-axis control, reactions control system (RCS), and RCS sizing, are considered. A flight control system design is then selected and preliminary stability criteria are met by the control gains selection.
WaveSAX device: design optimization through scale modelling and a PTO strategical control system
NASA Astrophysics Data System (ADS)
Peviani, Maximo; Danelli, Andrea; Dadone, Gianluca; Dalmasso, Alberto
2017-04-01
WaveSAX is an innovative OWC (Oscillating Water Column) device for the generation of electricity from wave power, conceived to be installed in coastal marine structures, such as ports and harbours. The device - especially designed for the typical wave climate of Mediterranean Sea - is characterized by two important aspects: flexibility to fit in different structural configurations and replication in a large number of units. A model of the WaveSAX device on a scale 1:5 has been built and tested in the ocean tank at Ecole Centrale de Nantes (France). The study aimed to analyse the behaviour of the device, including two Wells turbine configurations (with three and four blades), with regular and irregular wave conditions in the ocean wave tank. The model and the wave basin were equipped with a series of sensors which allowed to measure the following parameters during the tests: pressure in different points inside the device, the free water surface displacement inside and outside the device, the rotational velocity and the torque at the top of the axis. The tests had the objective to optimize the device design, especially as far as the characteristics of the rotor of the turbine is concern. Although the performance of the WaveSAX has been satisfactory for regular wave conditions, the behaviour of the Wells turbines for irregular wave climate has shown limitations in terms of maintaining the capacity to transform hydraulics energy into mechanical power. To optimize the efficiency of the turbine, an electronical system has been built on the basis of the ocean tank tests. It allows to continuously monitor and command the rotational speed and the torque of the rotor connected with the turbine, and to control in real time the electrical flow of a motor-generator, either absorbing energy as a generator, or providing power to the turbine working as an engine. Two strategies - based on the velocity and the torque control - have been investigate in the electronic test bench simulating four wave conditions previously tested in the ocean tank at the ECN (Nantes, France). The results showed a satisfactory behaviour of the system and allowed to define the optimal velocity and torque conditions to maximize the PTO. REFERENCES 1. M. Peviani, 2015, 'WAVESAX device: conceptual design and perspectives', 8th European Seminar OWEMES 2015, Offshore Wind and other marine renewable Energies in Mediterranean and European Seas, Rome, Italy 2. B. Holmes, K. Nielsen, 2010, Guidelines for the Development & Testing of Wave Energy Systems, OES-IA Annex II Task 2.1, Report T02-2.1 3. G. Agate, A. Amicarelli, M. Peviani, 2014, 'Analisi fluidodinamica di un prototipo per la conversione di energia da moto ondoso: ottimizzazione della componente fissa e stime preliminari di potenza assorbita con la girante', RSE Ricerca di Sistema, Report 14001669 4. G. Agate, A. Amicarelli, A. Danelli, M. Peviani, 2015, 'Ottimizzazione del disegno di un dispositivo di generazione d'energia dal moto ondoso: simulazioni numeriche e studi in vasca di laboratorio idraulico, RSE Ricerca di Sistema, Report 15000671 5. A. Agate, A. Amicarelli, A. Danelli, M. Peviani, 2015. 'Optimization of the WaveSAX device: numerical modelling and ocean wave basin tests', VI International Conference on Computational Methods in Marine Engineering MARINE 2015, Rome, Italy 6. A. Danelli, M. Peviani, 2016. 'Performance evaluation of an innovative device to transform wave power into electric energy in ports and harbours". CORE 2nd International Conference on Offshore Renewable Energy; Glasgow, UK 7. M. Peviani, A. Danelli, G. Agate, F. Thiebaut, 2014, 'WAVETUBE RSE1, addressed to test an innovative device to transform wave power into electric energy in ports and harbours', Infrastructure post access report in the MARINET project framework 8. M. Peviani, A. Danelli, G. Agate, S. Bourdier, 2015, WAVESAX RSE2, addressed to test an innovative device to transform wave power into electric energy in ports and harbours', Infrastructure post access report in the MARINET project framework.
Parametric motion control of robotic arms: A biologically based approach using neural networks
NASA Technical Reports Server (NTRS)
Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.
1993-01-01
A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.
Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamai, Goro; Zhou, Jing; Weslati, Feisel
An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating costmore » for the hybrid electric vehicle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grezes, C.; Alzate, J. G.; Cai, X.
2016-01-04
We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memorymore » and logic integrated circuits.« less
Okuno, Yukako; Takahashi, Ryoichi; Sewa, Yoko; Ohse, Hirotaka; Imura, Shigeyuki; Tomita, Kazuhide
2017-03-01
[Purpose] Continuous electrical stimulation of abdominal wall muscles is known to induce mild muscle fatigue. However, it is not clear whether this is also true for functional electrical stimulation delivered only during the expiratory phase of breathing. This study aimed to examine whether or not intermittent electrical stimulation delivered to abdominal wall muscles induces muscle fatigue. [Subjects and Methods] The subjects were nine healthy adults. Abdominal electrical stimulation was applied for 1.5 seconds from the start of expiration and then turned off during inspiration. The electrodes were attached to both sides of the abdomen at the lower margin of the 12th rib. Abdominal electrical stimulation was delivered for 15 minutes with the subject in a seated position. Expiratory flow was measured during stimulus. Trunk flexor torque and electromyography activity were measured to evaluate abdominal muscle fatigue. [Results] The mean stimulation on/off ratio was 1:2.3. The declining rate of abdominal muscle torque was 61.1 ± 19.1% before stimulus and 56.5 ± 20.9% after stimulus, not significantly different. The declining rate of mean power frequency was 47.8 ± 11.7% before stimulus and 47.9 ± 10.2% after stimulus, not significantly different. [Conclusion] It was found that intermittent electrical stimulation to abdominal muscles synchronized with the expiratory would not induce muscle fatigue.
Duffell, Lynsey D; Donaldson, Nick de N; Perkins, Tim A; Rushton, David N; Hunt, Kenneth J; Kakebeeke, Tanja H; Newham, Di J
2008-10-01
Inactivity and muscular adaptations following spinal cord injury (SCI) result in secondary complications such as cardiovascular disease, obesity, and pressure sores. Functional electrically stimulated (FES) cycling can potentially reduce these complications, but previous studies have provided inconsistent results. We studied the effect of intensive long-term FES cycle training on muscle properties in 11 SCI subjects (mean +/- SEM: 41.8 +/- 2.3 years) who had trained for up to 1 hour/day, 5 days/week, for 1 year. Comparative measurements were made in 10 able-bodied (AB) subjects. Quadriceps maximal electrically stimulated torque increased fivefold (n = 5), but remained lower than in AB individuals. Relative force response at 1 HZ decreased, relaxation rate remained unchanged, and fatigue resistance improved significantly. Power output (PO) improved to a lesser extent than quadriceps torque and not to a greater extent than has been reported previously. We need to understand the factors that limit PO in order to maximize the benefits of FES cycling.
Satellite Attitude Control Utilizing the Earth's Magnetic Field
NASA Technical Reports Server (NTRS)
White, John S.; Shigemoto, Fred H.; Bourquin, Kent
1961-01-01
A study was conducted to determine the feasibility of a satellite attitude fine-control system using the interaction of the earth's magnetic field with current-carrying coils to produce torque. The approximate intensity of the earth's magnetic field was determined as a function of the satellite coordinates. Components of the magnetic field were found to vary essentially sinusoidally at approximately twice orbital frequency. Amplitude and distortion of the sinusoidal components were a function of satellite orbit. Two systems for two-axis attitude control evolved from this study, one using three coils and the other using two coils. The torques developed by the two systems differ only when the component of magnetic field along the tracking line is zero. For this case the two-coil system develops no torque whereas the three-coil system develops some effective torque which allows partial control. The equations which describe the three-coil system are complex in comparison to those of the two-coil system and require the measurement of all three components of the magnetic field as compared with only one for the two-coil case. Intermittent three-axis torquing can also be achieved. This torquing can be used for coarse attitude control, or for dumping the stored momentum of inertia reaction wheels. Such a system has the advantage of requiring no fuel aboard the satellite. For any of these magnetic torquing schemes the power required to produce the magnetic moment and the weight of the coil seem reasonable.
Development of a sliding mode control model for quiet upright stance.
Zhang, Hongbo; Nussbaum, Maury A; Agnew, Michael J
2016-02-01
Human upright stance appears maintained or controlled intermittently, through some combination of passive and active ankle torques, respectively representing intrinsic and contractile contributions of the ankle musculature. Several intermittent postural control models have been proposed, though it has been challenging to accurately represent actual kinematics and kinetics and to separately estimate passive and active ankle torque components. Here, a simplified single-segment, 2D (sagittal plane) sliding mode control model was developed for application to track kinematics and kinetics during upright stance. The model was implemented and evaluated using previous experimental data consisting of whole body angular kinematics and ankle torques. Tracking errors for the whole-body center-of-mass (COM) angle and angular velocity, as well as ankle torque, were all within ∼10% of experimental values, though tracking performance for COM angular acceleration was substantially poorer. The model also enabled separate estimates of the contributions of passive and active ankle torques, with overall contributions estimated here to be 96% and 4% of the total ankle torque, respectively. Such a model may have future utility in understanding human postural control, though additional work is needed, such as expanding the model to multiple segments and to three dimensions. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
MacNeille, S.M.
1958-12-01
Control systems for automatic positioning of an electric motor operated vapor valve are described which is operable under the severe conditions existing in apparatus for electro-magnetlcally separating isotopes. In general, the system includes a rotor for turning the valve comprising two colls mounted mutually perpendicular to each other and also perpendicular to the magnetic field of the isotope separating apparatus. The coils are furnished with both a-c and d- c current by assoclate control circuitry and a position control is provided for varying the ratlo of the a-c currents in the coils and at the same time, but in an inverse manner, the ratio between the d-c currents in the coils is varied. With the present system the magnitude of the motor torque is constant for all valves of the rotor orientatlon angle.
Acceleration and torque feedback for robotic control - Experimental results
NASA Technical Reports Server (NTRS)
Mclnroy, John E.; Saridis, George N.
1990-01-01
Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.
Azevedo, Diego de Paiva; Medeiros, Wladimir Musetti; de Freitas, Flávia Fernandes Manfredi; Ferreira Amorim, Cesar; Gimenes, Ana Cristina Oliveira; Neder, Jose Alberto; Chiavegato, Luciana Dias
2016-10-01
It was hypothesized that patients with chronic obstructive pulmonary disease (COPD) would exhibit a slow muscle deoxygenation (HHb) recovery time when compared with sedentary controls. Neuromuscular electrical stimulation (NMES 40 and 50 mA, 50 Hz, 400 µs) was employed to induce isometric contraction of the quadriceps. Microvascular oxygen extraction (µO2EF) and HHb were estimated by near-infrared spectroscopy (NIRS). Recovery kinetic was characterized by measuring the time constant Tau (HHb-τ). Torque and work were measured by isokinetic dynamometry in 13 non-hypoxaemic patients with moderate-to-severe COPD [SpO2 = 94.1 ± 1.6 %; FEV1 (% predict) 48.0 ± 9.6; GOLD II-III] and 13 age- and sex-matched sedentary controls. There was no desaturation in either group during NMES. Torque and work were reduced in COPD versus control for 40 and 50 mA [torque (Nm) 50 mA = 28.9 ± 6.9 vs 46.1 ± 14.2; work (J) 50 mA = 437.2 ± 130.0 vs. 608.3 ± 136.8; P < 0.05 for all]. High µO2EF values were observed in the COPD group at both NMES intensities (corrected by muscle mass 50 mA = 6.18 ± 1.1 vs. 4.68 ± 1.0 %/kg; corrected by work 50 mA = 0.12 ± 0.05 vs. 0.07 ± 0.02 %/J; P < 0.05 for all). Absolute values of HHb-τ (50 mA = 31.11 ± 9.27 vs. 18.08 ± 10.70 s), corrected for muscle mass (50 mA 3.80 ± 1.28 vs. 2.05 ± 1.45 s/kg) and corrected for work (50 mA = 0.08 ± 0.04 vs. 0.03 ± 0.02 s/J) were reduced in COPD (P < 0.05 for all). The variables behaviour for 40 mA was similar to those of 50 mA. COPD patients exhibited a slower muscle deoxygenation recovery time after NMES. The absence of desaturation, low torque and work, high µO2EF and high values for recovery time corrected by muscle mass and work suggest that intrinsic muscle dysfunction has an impact on muscle recovery capacity.
Knee extension torque variability after exercise in ACL reconstructed knees.
Goetschius, John; Kuenze, Christopher M; Hart, Joseph M
2015-08-01
The purpose of this study was to compare knee extension torque variability in patients with ACL reconstructed knees before and after exercise. Thirty two patients with an ACL reconstructed knee (ACL-R group) and 32 healthy controls (control group) completed measures of maximal isometric knee extension torque (90° flexion) at baseline and following a 30-min exercise protocol (post-exercise). Exercise included 30-min of repeated cycles of inclined treadmill walking and hopping tasks. Dependent variables were the coefficient of variation (CV) and raw-change in CV (ΔCV): CV = (torque standard deviation/torque mean x 100), ΔCV = (post-exercise - baseline). There was a group-by-time interaction (p = 0.03) on CV. The ACL-R group demonstrated greater CV than the control group at baseline (ACL-R = 1.07 ± 0.55, control = 0.79 ± 0.42, p = 0.03) and post-exercise (ACL-R = 1.60 ± 0.91, control = 0.94 ± 0.41, p = 0.001). ΔCV was greater (p = 0.03) in the ACL-R group (0.52 ± 0.82) than control group (0.15 ± 0.46). CV significantly increased from baseline to post-exercise (p = 0.001) in the ACL-R group, while the control group did not (p = 0.06). The ACL-R group demonstrated greater knee extension torque variability than the control group. Exercise increased torque variability more in the ACL-R group than control group. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Integrated High-Speed Torque Control System for a Robotic Joint
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)
2013-01-01
A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).
A description of the thruster attitude control simulation and its application to the HEAO-C study
NASA Technical Reports Server (NTRS)
Brandon, L. B.
1971-01-01
During the design and evaluation of a reaction control system (RCS), it is desirable to have a digital computer program simulating vehicle dynamics, disturbance torques, control torques, and RCS logic. The thruster attitude control simulation (TACS) is just such a computer program. The TACS is a relatively sophisticated digital computer program that includes all the major parameters involved in the attitude control of a vehicle using an RCS for control. It includes the effects of gravity gradient torques and HEAO-C aerodynamic torques so that realistic runs can be made in the areas of fuel consumption and engine actuation rates. Also, the program is general enough that any engine configuration and logic scheme can be implemented in a reasonable amount of time. The results of the application of the TACS in the HEAO-C study are included.
Ammar, Abdelkarim; Bourek, Amor; Benakcha, Abdelhamid
2017-03-01
This paper presents a nonlinear Direct Torque Control (DTC) strategy with Space Vector Modulation (SVM) for an induction motor. A nonlinear input-output feedback linearization (IOFL) is implemented to achieve a decoupled torque and flux control and the SVM is employed to reduce high torque and flux ripples. Furthermore, the control scheme performance is improved by inserting a super twisting speed controller in the outer loop and a load torque observer to enhance the speed regulation. The combining of dual nonlinear strategies ensures a good dynamic and robustness against parameters variation and disturbance. The system stability has been analyzed using Lyapunov stability theory. The effectiveness of the control algorithm is investigated by simulation and experimental validation using Matlab/Simulink software with real-time interface based on dSpace 1104. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Performance Analysis of Three-Phase Induction Motor with AC Direct and VFD
NASA Astrophysics Data System (ADS)
Kumar, Dinesh
2018-03-01
The electrical machine analysis and performance calculation is a very important aspect of efficient drive system design. The development of power electronics devices and power converters provide smooth speed control of Induction Motors by changing the frequency of input supply. These converters, on one hand are providing a more flexible speed control that also leads to problems of harmonics and their associated ailments like pulsating torque, distorted current and voltage waveforms, increasing losses etc. This paper includes the performance analysis of three phase induction motor with three-phase AC direct and variable frequency drives (VFD). The comparison has been concluded with respect to various parameters. MATLAB-SIMULINKTM is used for the analysis.
Data Base On Cables And Connectors
NASA Technical Reports Server (NTRS)
Bowen, Arlen R.; Oliver, John D.
1995-01-01
Report describes Connector Adapter Cable Information Data Base (CONNAID) computer program, managing data base containing necessary information concerning electrical connectors, breakout boxes, adapter cables, backshells, and pertinent torque specifications for engineering project.
Postural control model interpretation of stabilogram diffusion analysis
NASA Technical Reports Server (NTRS)
Peterka, R. J.
2000-01-01
Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.
Spline screw multiple rotations mechanism
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.
NASA Astrophysics Data System (ADS)
Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.
2018-06-01
Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6 × 9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.
Control of interjoint coordination during the swing phase of normal gait at different speeds
Shemmell, Jonathan; Johansson, Jennifer; Portra, Vanessa; Gottlieb, Gerald L; Thomas, James S; Corcos, Daniel M
2007-01-01
Background It has been suggested that the control of unconstrained movements is simplified via the imposition of a kinetic constraint that produces dynamic torques at each moving joint such that they are a linear function of a single motor command. The linear relationship between dynamic torques at each joint has been demonstrated for multijoint upper limb movements. The purpose of the current study was to test the applicability of such a control scheme to the unconstrained portion of the gait cycle – the swing phase. Methods Twenty-eight neurologically normal individuals walked along a track at three different speeds. Angular displacements and dynamic torques produced at each of the three lower limb joints (hip, knee and ankle) were calculated from segmental position data recorded during each trial. We employed principal component (PC) analysis to determine (1) the similarity of kinematic and kinetic time series at the ankle, knee and hip during the swing phase of gait, and (2) the effect of walking speed on the range of joint displacement and torque. Results The angular displacements of the three joints were accounted for by two PCs during the swing phase (Variance accounted for – PC1: 75.1 ± 1.4%, PC2: 23.2 ± 1.3%), whereas the dynamic joint torques were described by a single PC (Variance accounted for – PC1: 93.8 ± 0.9%). Increases in walking speed were associated with increases in the range of motion and magnitude of torque at each joint although the ratio describing the relative magnitude of torque at each joint remained constant. Conclusion Our results support the idea that the control of leg swing during gait is simplified in two ways: (1) the pattern of dynamic torque at each lower limb joint is produced by appropriately scaling a single motor command and (2) the magnitude of dynamic torque at all three joints can be specified with knowledge of the magnitude of torque at a single joint. Walking speed could therefore be altered by modifying a single value related to the magnitude of torque at one joint. PMID:17466065
Improvement of the limit torque for the torque limiter with magnetic rheological fluid
NASA Astrophysics Data System (ADS)
Umehara, Noritsugu; Kita, Shizuo
Robots are coming to support and help our life. The robots that work together with human need to avoid sever hitting and holding that force is more than the adequate and comfortable range. In order to keep the force to the safe level in the robot arms, t he limit torque should be controlled on the basis of the case the robot used. Magnetic rheological fluids were tried to be used for the clutch that transmission torque can be controlled continuously because MR fluids can be controlled its viscosity by magnetic field. However those clutch devices were too heavy and large to use for the robot arms. Therefore we tried to increase the sensitivity of magnetic field to viscosity of MR fluids. By applying rough surface for the mating surface, sensitivity of the magnetic field to the shearing torque increase drastically in the case of co-axial torque meter. On the other hand, the changing of the size of the orifice is effective to increase the sensitivity of the magnetic field on the flow resistance in the case of the orifice type equipment.
Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto
2013-03-19
A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.
NASA Astrophysics Data System (ADS)
Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.
2018-02-01
The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.
NASA Astrophysics Data System (ADS)
Arnold, F.; Naumann, M.; Lühmann, Th.; Mackenzie, A. P.; Hassinger, E.
2018-02-01
Torque magnetometry is a key method to measure the magnetic anisotropy and quantum oscillations in metals. In order to resolve quantum oscillations in sub-millimeter sized samples, piezo-electric micro-cantilevers were introduced. In the case of strongly correlated metals with large Fermi surfaces and high cyclotron masses, magnetic torque resolving powers in excess of 104 are required at temperatures well below 1 K and magnetic fields beyond 10 T. Here, we present a new broadband read-out scheme for piezo-electric micro-cantilevers via Wheatstone-type resistance measurements in magnetic fields up to 15 T and temperatures down to 200 mK. By using a two-stage superconducting-quantum interference device as a null detector of a cold Wheatstone bridge, we were able to achieve a magnetic moment resolution of Δm = 4 × 10-15 J/T at maximal field and 700 mK, outperforming conventional magnetometers by at least one order of magnitude in this temperature and magnetic field range. Exemplary de Haas-van Alphen measurement of a newly grown delafossite, PdRhO2, was used to show the superior performance of our setup.
An integrated power/attitude control system /IPACS/ for space vehicle application
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Keckler, C. R.
1973-01-01
An integrated power and attitude control system (IPACS) concept with potential application to a broad class of space missions is discussed. The concept involves the storage and supply on demand of electrical energy in rotating flywheels while simultaneously providing control torques by controlled precession of the flywheels. The system is thus an alternative to the storage batteries used on present spacecraft while providing similar capability for attitude control as that represented by a control moment gyroscope (CMG) system. Potential IPACS configurations discussed include single- and double-rotor double-gimbal IPACS units. Typical sets of control laws which would manage the momentum and energy exchange between the IPACS and a typical space vehicle are discussed. Discussion of a simulation of a typical potential IPACS configuration and candidate mission concerned with pointing capability, power supply and demand flow, and discussion of the interactions between stabilization and control requirements and power flow requirements are presented.
EVA Metro Sedan electric-propulsion system: test and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimers, E.
1979-09-01
The procedure and results of the performance evaluation of the EVA Metro Sedan (car No. 1) variable speed dc chopper motor drive and its three speed automatic transmission are presented. The propulsion system for a battery powered vehicle manufactured by Electric Vehicle Associates, Valley View, Ohio, was removed from the vehicle, mounted on the programmable electric dynamometer test facility and evaluated with the aid of a hp 3052A Data Acquisition System. Performance data for the automatic transmission, the solid state dc motor speed controller, and the dc motor in the continuous and pulsating dc power mode, as derived on themore » dynamometer test facility, as well as the entire propulsion system are given. This concept and the system's components were evaluated in terms of commercial applicability, maintainability, and energy utility to establish a design base for the further development of this system or similar propulsion drives. The propulsion system of the EVA Metro Sedan is powered by sixteen 6-volt traction batteries, Type EV 106 (Exide Battery Mfg. Co.). A thyristor controlled cable form Pulsomatic Mark 10 controller, actuated by a foot throttle, controls the voltage applied to a dc series field motor, rated at 10 hp at 3800 rpm (Baldor Electric Co.). Gear speed reduction to the wheel is accomplished by the original equipment three speed automatic transmission with torque converter (Renault 12 Sedan). The brake consists of a power-assisted, hydraulic braking system with front wheel disk and rear drum. An ability to recuperate electric energy with subsequent storage in the battery power supply is not provided.« less
14 CFR Appendix E to Part 135 - Helicopter Flight Recorder Specifications
Code of Federal Regulations, 2011 CFR
2011-01-01
... Keying On-Off (Discrete) 1 0.25 sec Power in Each Engine: Free Power Turbine Speed and Engine Torque 0-130% (power Turbine Speed) Full range (Torque) ±2% 1 speed 1 torque (per engine) 0.2% 1 to 0.4% 1 Main... Controls (Collective, Longitudinal Cyclic, Lateral Cyclic, Pedal) 3 Full range ±3% 2 0.5% 1 Flight Control...
14 CFR Appendix E to Part 135 - Helicopter Flight Recorder Specifications
Code of Federal Regulations, 2014 CFR
2014-01-01
... Keying On-Off (Discrete) 1 0.25 sec Power in Each Engine: Free Power Turbine Speed and Engine Torque 0-130% (power Turbine Speed) Full range (Torque) ±2% 1 speed 1 torque (per engine) 0.2% 1 to 0.4% 1 Main... Controls (Collective, Longitudinal Cyclic, Lateral Cyclic, Pedal) 3 Full range ±3% 2 0.5% 1 Flight Control...
14 CFR Appendix E to Part 135 - Helicopter Flight Recorder Specifications
Code of Federal Regulations, 2012 CFR
2012-01-01
... Keying On-Off (Discrete) 1 0.25 sec Power in Each Engine: Free Power Turbine Speed and Engine Torque 0-130% (power Turbine Speed) Full range (Torque) ±2% 1 speed 1 torque (per engine) 0.2% 1 to 0.4% 1 Main... Controls (Collective, Longitudinal Cyclic, Lateral Cyclic, Pedal) 3 Full range ±3% 2 0.5% 1 Flight Control...
Remote control canard missile with a free-rolling tail brake torque system
NASA Technical Reports Server (NTRS)
Blair, A. B., Jr.
1981-01-01
An experimental wind-tunnel investigation has been conducted at supersonic Mach numbers to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed and free-rolling tail-fin afterbodies. Mechanical coupling effects of the free-rolling tail afterbody were investigated using an electronic/electromagnetic brake system that provides arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail-roll rate. Results are summarized to show the effects of fixed and free-rolling tail-fin afterbodies that include simulated measured bearing friction torques on the longitudinal and lateral-directional aerodynamic characteristics.
Receding horizon online optimization for torque control of gasoline engines.
Kang, Mingxin; Shen, Tielong
2016-11-01
This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Qian; Liu, Guohai; Gong, Wensheng; Qu, Li; Zhao, Wenxiang; Shen, Yue
2012-04-01
The spoke-type motor has higher torque density than the conventional one resulting from its structure for concentrating flux from permanent magnets (PMs). However, this motor suffers from the serious distortion of back electromotive force (EMF). This paper proposes a cost-effective approach to design a spoke-type motor with lower harmonics of back-EMF for electric vehicle. The key is to superimpose the coil-EMF of one phase in such a way that the harmonics of the phase-EMF can be canceled, resulting in essentially sinusoidal waveforms. By using finite element method (FEM), an optimal coil-EMF vectors distribution for minimum harmonics of the phase-EMF is obtained and verified. In addition, the co-simulation technology is adopted to verify that the torque ripple under the optimal winding configuration can be significantly suppressed.
Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Thiem; Loeb, Abraham, E-mail: thiemhoang@kasi.re.kr, E-mail: aloeb@cfa.harvard.edu
2017-10-10
A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with amore » period of ∼0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.« less
Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium
NASA Astrophysics Data System (ADS)
Hoang, Thiem; Loeb, Abraham
2017-10-01
A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ˜0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.
Investigation of Motorcycle Steering Torque Components
NASA Astrophysics Data System (ADS)
Cossalter, V.; Lot, R.; Massaro, M.; Peretto, M.
2011-10-01
When driving along a circular path, the rider controls a motorcycle mainly by the steering torque. This work addresses an in-depth analysis of the steady state cornering and in particular the decomposition of the motorcycle steering torque in its main components, such as road-tyre forces, gyroscopic torques, centrifugal and gravity effects. A detailed and experimentally validated multibody model of the motorcycle is used herein to analyze the steering torque components at different speeds and lateral accelerations. First the road tests are compared with the numerical results for three different vehicles and then a numerical investigation is carried out to decompose the steering torque. Finally, the effect of longitudinal acceleration and deceleration on steering torque components is presented.
ERIC Educational Resources Information Center
Daffron, John A.; Greenslade, Thomas B., Jr.
2015-01-01
Barlow's wheel has been a favorite demonstration since its invention by Peter Barlow (1776-1862) in 1822. In the form shown in Fig. 1, it represents the first electric motor. The interaction between the electric current passing from the axle of the wheel to the rim and the magnetic field produced by the U-magnet produces a torque that turns…
Chowdhary, Ramesh; Jimbo, Ryo; Thomsen, Christian; Carlsson, Lennart; Wennerberg, Ann
2013-03-01
To investigate the combined effect of macro and pitch shortened threads on primary and secondary stability during healing, but before dynamic loading. Two sets of turned implants with different macro geometry were prepared. The test group possessed pitch shortened threads in between the large threads and the control group did not have thread alterations. The two implant groups were placed in both femur and tibiae of 10 lop-eared rabbits, and at the time of implant insertion, insertion torques were recorded. After 4 weeks, all implants were subjected to removal torque tests. The insertion torque values for the control and test groups for the tibia were 15.7 and 20.6 Ncm, respectively, and for the femur, 11.8, and 12.8 Ncm respectively. The removal torque values for the control and test groups in the tibia were 7.9 and 9.1 Ncm, respectively, and for the femur, 7.9 and 7.7 Ncm respectively. There was no statistically significant difference between the control and test groups. Under limited dynamic load, the addition of pitch shortened threads did not significantly improve either the primary or the secondary stability of the implants in bone. © 2011 John Wiley & Sons A/S.
On the Design and Test of a Liquid Injection Electric Thruster
NASA Technical Reports Server (NTRS)
Jones, T. A.; Kenney, J. T.; Youmans, E. H.
1973-01-01
A liquid injection electric thruster (LINJET) was designed and tested. The results of the tests were very encouraging with thruster performance levels well in excess of design goals. Supporting activities to the engine design and test included a five-million pulse life test on the main capacitor, a 46-million pulse test on the trigger electronics, design and fabrication of a zero resistance torque connector for use with the torsional pendulum thrust stand, design and fabrication of a logic box for control of engine firing, and a physical and chemical properties characterization of the perfluorocarbon propellant. While the results were encouraging, testing was limited, as many problems existed with the design. The most significant problem was involved with excessive propellant flow which contributed to false triggering and shorting. Low power active thermal control of the propellant storage cavity, coupled with a re-evaluation of the injection ring pore size and area exposed to the main capacitor discharge are areas that should be investigated should this design be carried forward.
Kinesthetic coupling between operator and remote manipulator
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Salisbury, J. K., Jr.
1980-01-01
A universal force-reflecting hand controller has been developed which allows the establishment of a kinesthetic coupling between the operator and a remote manipulator. The six-degree-of-freedom controller was designed to generate forces and torques on its three positional and three rotational axes in order to permit the operator to accurately feel the forces encountered by the manipulator and be as transparent to operate as possible. The universal controller has been used in an application involving a six-degree-of-freedom mechanical arm equipped with a six-dimensional force-torque sensor at its base. In this application, the hand controller acts as a position control input device to the arm, while forces and torques sensed at the base of the mechanical hand back drive the hand controller. The positional control relation and the back driving of the controller according to inputs experienced by the force-torque sensor are established through complex mathematical transformations performed by a minicomputer. The hand controller is intended as a development tool for investigating force-reflecting master-slave manipulator control technology.
On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart
2014-01-01
Various machines have been developed to address the need for countermeasures of bone and muscle deterioration when humans operate over extended time in space. Even though these machines are in use, each of them has many limitations that need to be addressed in an effort to prepare for human missions to distant bodies in the solar system. An exercise exoskeleton was conceived that performs on-demand resistivity by inducing force and torque impedance via ElectroRheological Fluid (ERF). The resistive elements consist of pistons that are moving inside ERF-filled cylinders or a donut-shaped cavity, and the fluid flows through the piston when the piston is moved. Tests of the operation of ERF against load showed the feasibility of this approach. ERF properties of high yield stress, low current density, and fast response (less than one millisecond) offer essential characteristics for the construction of the exoskeleton. ERFs can apply very high electrically controlled resistive forces or torque while their size (weight and geometric parameters) can be very small. Their long life and ability to function in a wide temperature range (from -40 to 200 C) allows for their use in extreme environments. ERFs are also nonabrasive, non-toxic, and nonpolluting (meet health and safety regulations). The technology is applicable as a compact exercise machine for astronauts' countermeasure of microgravity, an exercise machine for sport, or as a device for rehabilitation of patients with limb issues.
Glaviano, Neal R; Langston, William T; Hart, Joseph M; Saliba, Susan
2014-12-01
Neuromuscular Electrical Stimulation is a common intervention to address muscle weakness, however presents with many limitations such as fatigue, muscle damage, and patient discomfort that may influence its effectiveness. One novel form of electrical stimulation purported to improve neuromuscular re-education is Patterned Electrical Neuromuscular Stimulation (PENS), which is proposed to mimic muscle-firing patterns of healthy individuals. PENS provides patterned stimulating to the agonist muscle, antagonist muscle and then agonist muscle again in an effort to replicate firing patterns. The purpose of this study was to determine the effect of a single PENS treatment on knee extension torque and quadriceps activation in individuals with quadriceps inhibition. 18 subjects (10 males and 8 females: 24.2±3.4 years, 175.3±11.8cm, 81.8±12.4kg) with a history of knee injury/pain participated in this double-blinded randomized controlled laboratory trial. Participants demonstrated quadriceps inhibition with a central activation ratio of ≤90%. Maximal voluntary isometric contraction of the quadriceps and central activation ratio were measured before and after treatment. The treatment intervention was a 15-minute patterned electrical stimulation applied to the quadriceps and hamstring muscles with a strong motor contraction or a sham group, who received an identical set up as the PENS group, but received a 1mA subsensory stimulation. A 2×2 (group × time) ANCOVA was used to determine differences in maximal voluntary isometric contraction and central activation ratio between groups. The maximal voluntary isometric contraction was selected as a covariate due to baseline differences. There were no differences in change scores between pre- and post-intervention for maximal voluntary isometric contraction: (PENS: 0.09±0.32Nm/kg and Sham 0.15±0.18Nm/kg, p=0.713), or central activation ratio:(PENS: -1.22±6.06 and Sham: 1.48±3.7, p=0.270). A single Patterned Electrical Neuromuscular Stimulation treatment did not alter quadriceps central activation ratio or maximal voluntary isometric contraction. Unlike other types of muscle stimulation, PENS did not result in a reduction of quadriceps torque. Level III.
Design study of toroidal traction CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Raynard, A. E.; Kraus, J.; Bell, D. D.
1980-01-01
The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.
PREFACE: The Science of Making Torque from Wind 2014 (TORQUE 2014)
NASA Astrophysics Data System (ADS)
Mann, Jakob; Bak, Christian; Bechmann, Andreas; Bingöl, Ferhat; Dellwik, Ebba; Dimitrov, Nikolay; Giebel, Gregor; Hansen, Martin O. L.; Jensen, Dorte Juul; Larsen, Gunner; Aagaard Madsen, Helge; Natarajan, Anand; Rathmann, Ole; Sathe, Ameya; Nørkær Sørensen, Jens; Nørkær Sørensen, Niels
2014-06-01
The 186 papers in this volume constitute the proceedings of the fifth Science of Making Torque from Wind conference, which is organized by the European Academy of Wind Energy (EAWE, www.eawe.eu). The conference, also called Torque 2014, is held at the Technical University of Denmark (DTU) 17-20 June 2014. The EAWE conference series started in 2004 in Delft, the Netherlands. In 2007 it was held in Copenhagen, in 2010 in Heraklion, Greece, and then in 2012 in Oldenburg, Germany. The global yearly production of electrical energy by wind turbines has grown approximately by 25% annually over the last couple of decades and covers now 2-3% of the global electrical power consumption. In order to make a significant impact on one of the large challenges of our time, namely global warming, the growth has to continue for a decade or two yet. This in turn requires research and education in wind turbine aerodynamics and wind resources, the two topics which are the main subjects of this conference. Similar to the growth in electrical power production by wind is the growth in scientific papers about wind energy. Over the last decade the number of papers has also grown by about 25% annually, and many research based companies all over the world are founded. Hence, the wind energy research community is rapidly expanding and the Torque conference series offers a good opportunity to meet and exchange ideas. We hope that the Torque 2014 will heighten the quality of the wind energy research, while the participants will enjoy each others company in Copenhagen. Many people have been involved in producing the Torque 2014 proceedings. The work by more than two hundred reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of sixteen ''section editors'' all from DTU Wind Energy: Christian Bak, Andreas Bechmann, Ferhat Bingöl, Ebba Dellwik, Nikolay Dimitrov, Gregor Giebel, Martin O L Hansen, Dorte Juul Jensen, Gunner Larsen, Helge Aagaard Madsen, Jakob Mann, Anand Natarajan, Ole Rathmann, Ameya Sathe, Jens Nørkær Sørensen and Niels Nørkær Sørensen, who are all co-editors of these proceedings. The resources provided by the Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence funded by the Danish Council for Strategic Research grant no. 09-067216 and the Danish Ministry of Science, Innovation and Higher Education Technology and Production, grant no. 11- 117018 are gratefully acknowledged. We are also immensely indebted to the very responsive help and support from the editorial team at IoP, especially Sarah Toms and Anete Ashton, during the reviewing process of these proceedings. We are looking forward to meeting you in Copenhagen and also to Torque 2016, which will take place at the Technical University of Munich, Germany. Roskilde, Denmark, June 2014 Ebba Dellwik, Ameya Sathe and Jakob Mann Technical University of Denmark EAWE DTU
Fail safe controllable output improved version of the Electromechanical battery
Post, Richard F.
1999-01-01
Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition.
Fail safe controllable output improved version of the electromechanical battery
Post, R.F.
1999-01-19
Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition. 4 figs.
Conceptual Design and Optimal Power Control Strategy for AN Eco-Friendly Hybrid Vehicle
NASA Astrophysics Data System (ADS)
Nasiri, N. Mir; Chieng, Frederick T. A.
2011-06-01
This paper presents a new concept for a hybrid vehicle using a torque and speed splitting technique. It is implemented by the newly developed controller in combination with a two degree of freedom epicyclic gear transmission. This approach enables optimization of the power split between the less powerful electrical motor and more powerful engine while driving a car load. The power split is fundamentally a dual-energy integration mechanism as it is implemented by using the epicyclic gear transmission that has two inputs and one output for a proper power distribution. The developed power split control system manages the operation of both the inputs to have a known output with the condition of maintaining optimum operating efficiency of the internal combustion engine and electrical motor. This system has a huge potential as it is possible to integrate all the features of hybrid vehicle known to-date such as the regenerative braking system, series hybrid, parallel hybrid, series/parallel hybrid, and even complex hybrid (bidirectional). By using the new power split system it is possible to further reduce fuel consumption and increase overall efficiency.
Methodology for Determining Limit Torques for Threaded Fasteners
NASA Technical Reports Server (NTRS)
Hissam, Andy
2011-01-01
In aerospace design, where minimizing weight is always a priority, achieving the full capacity from fasteners is essential. To do so, the initial bolt preload must be maximized. The benefits of high preload are well documented and include improved fatigue resistance, a stiffer joint, and resistance to loosening. But many factors like elastic interactions and embedment tend to lower the initial preload placed on the bolt. These factors provide additional motivation to maximize the initial preload. But, to maximize bolt preload, you must determine what torque to apply. Determining this torque is greatly complicated by the large preload scatter generally seen with torque control. This paper presents a detailed methodology for generating limit torques for threaded fasteners. This methodology accounts for the large scatter in preload found with torque control, and therefore, addresses the statistical nature of the problem. It also addresses prevailing torque, a feature common in aerospace fasteners. Although prevailing torque provides a desired locking feature, it can also increase preload scatter. In addition, it can limit the amount of preload that can be generated due to the torsion it creates in the bolt. This paper discusses the complications of prevailing torque and how best to handle it. A wide range of torque-tension bolt testing was conducted in support of this research. The results from this research will benefit the design engineer as well as analyst involved in the design of bolted joints, leading to better, more optimized structural designs.
Investigation of mechanical field weakening of axial flux permanent magnet motor
NASA Astrophysics Data System (ADS)
Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.
2015-12-01
An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.
Ultrafast magnetization reversal by picosecond electrical pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Wilson, Richard B.; Gorchon, Jon
The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less
NASA Astrophysics Data System (ADS)
Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong
2018-02-01
Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.
Ultrafast magnetization reversal by picosecond electrical pulses
Yang, Yang; Wilson, Richard B.; Gorchon, Jon; ...
2017-11-03
The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less
Attitude maneuvers of a solar-powered electric orbital transfer vehicle
NASA Astrophysics Data System (ADS)
Jenkin, Alan B.
1992-08-01
Attitude maneuver requirements of a solar-powered electric orbital transfer vehicle have been studied in detail. This involved evaluation of the yaw, pitch, and roll profiles and associated angular accelerations needed to simultaneously steer the vehicle thrust vector and maintain the solar array pointed toward the sun. Maintaining the solar array pointed exactly at the sun leads to snap roll maneuvers which have very high (theoretically unbounded) accelerations, thereby imposing large torque requirements. The problem is exacerbated by the large solar arrays which are needed to generate the high levels of power needed by electric propulsion devices. A method of eliminating the snap roll maneuvers is presented. The method involves the determination of relaxed roll profiles which approximate a forced transition between alternate exact roll profiles and incur only small errors in solar array pointing. The method makes it feasible to perform the required maneuvers using currently available attitude control technology such as reaction wheels, hot gas jets, or gimballed main engines.
Workspace Safe Operation of a Force- or Impedance-Controlled Robot
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Strawser, Philip A. (Inventor); Yamokoski, John D. (Inventor)
2013-01-01
A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.
Implementation of object-oriented programming in study of electrical race car
NASA Astrophysics Data System (ADS)
Nowak, M.; Baier, M.
2016-08-01
The paper covers issue of conducting advanced research of electrical race car participating in international competition called Sileverline Corporate Challenge. Process of designing race cars in Silesian Greenpower team is aided by a professional engine test stand built particularly in purpose of this research. Phase of testing and simulation is an important part of the implementation of new technologies. Properly developed solutions and test procedures are able to significantly shorten development time and reduce design costs. Testing process must be controlled by a modular and flexible application, easy to modify and ensuring safety. This paper describes the concept of object-oriented programming in LabVIEW and exemplary architecture of object-oriented control application designed to control engine test stand of the electrical race car. Eventually, the task of application will be to steer the electromagnetic brake and the engine load torque to perform according to data from the actual race track. During the designing process of the car, minimizing energy losses and maximizing powertrain efficiency are the main aspects taken into consideration. One of the crucial issues to accomplish these goals is to maintain optimal performance of the motor by applying effective cooling. The paper covers the research verifying the effectiveness of the cooling system.
NASA Astrophysics Data System (ADS)
Ercan, Ziya; Carvalho, Ashwin; Tseng, H. Eric; Gökaşan, Metin; Borrelli, Francesco
2018-05-01
Haptic shared control framework opens up new perspectives on the design and implementation of the driver steering assistance systems which provide torque feedback to the driver in order to improve safety. While designing such a system, it is important to account for the human-machine interactions since the driver feels the feedback torque through the hand wheel. The controller should consider the driver's impact on the steering dynamics to achieve a better performance in terms of driver's acceptance and comfort. In this paper we present a predictive control framework which uses a model of driver-in-the-loop steering dynamics to optimise the torque intervention with respect to the driver's neuromuscular response. We first validate the system in simulations to compare the performance of the controller in nominal and model mismatch cases. Then we implement the controller in a test vehicle and perform experiments with a human driver. The results show the effectiveness of the proposed system in avoiding hazardous situations under different driver behaviours.
Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M.; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A.; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto
2013-01-01
Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple. PMID:23519345
NASA Astrophysics Data System (ADS)
Mansuripur, Masud
2015-01-01
The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density 𝜌𝜌free, electric current-density 𝑱𝑱free, polarization 𝑷𝑷, and magnetization 𝑴𝑴. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media—the seat of the sources of the EM field—thereby exerting force and torque on these media. In the Lorentz formulation of classical electrodynamics, the electric and magnetic fields, 𝑬𝑬 and 𝑩𝑩, exert forces and torques on electric charge and current distributions. An electric dipole is then modeled as a pair of electric charges on a stick (or spring), and a magnetic dipole is modeled as an Amperian current loop, so that the Lorentz force law can be applied to the corresponding (bound) charges and (bound) currents of these dipoles. In contrast, the Einstein-Laub formulation circumvents the need for specific models of the dipoles by simply providing a recipe for calculating the force- and torque-densities exerted by the 𝑬𝑬 and 𝑯𝑯 fields on charge, current, polarization and magnetization. The two formulations, while similar in many respects, have significant differences. For example, in the Lorentz approach, the Poynting vector is 𝑺𝑺𝐿𝐿 = 𝜇𝜇0 -1𝑬𝑬 × 𝑩𝑩, and the linear and angular momentum densities of the EM field are 𝓹𝓹𝐿𝐿 = 𝜀𝜀0𝑬𝑬 × 𝑩𝑩 and 𝓛𝓛𝐿𝐿 = 𝒓𝒓 × 𝓹𝓹𝐿𝐿, whereas in the Einstein-Laub formulation the corresponding entities are 𝑺𝑺𝐸𝐸𝐸𝐸= 𝑬𝑬 × 𝑯𝑯, 𝓹𝓹𝐸𝐸𝐸𝐸= 𝑬𝑬 × 𝑯𝑯⁄𝑐𝑐2, and 𝓛𝓛𝐸𝐸𝐸𝐸= 𝒓𝒓 × 𝓹𝓹𝐸𝐸𝐸𝐸. (Here 𝜇𝜇0 and 𝜀𝜀0 are the permeability and permittivity of free space, 𝑐𝑐 is the speed of light in vacuum, 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴, and 𝒓𝒓 is the position vector.) Such differences can be reconciled by recognizing the need for the so-called hidden energy and hidden momentum associated with Amperian current loops of the Lorentz formalism. (Hidden entities of the sort do not arise in the Einstein-Laub treatment of magnetic dipoles.) Other differences arise from over-simplistic assumptions concerning the equivalence between free charges and currents on the one hand, and their bound counterparts on the other. A more nuanced treatment of EM force and torque densities exerted on polarization and magnetization in the Lorentz approach would help bridge the gap that superficially separates the two formulations. Atoms and molecules may collide with each other and, in general, material constituents can exchange energy, momentum, and angular momentum via direct mechanical interactions. In the case of continuous media, elastic and hydrodynamic stresses, phenomenological forces such as those related to exchange coupling in ferromagnets, etc., subject small volumes of materials to external forces and torques. Such matter-matter interactions, although fundamentally EM in nature, are distinct from field-matter interactions in classical physics. Beyond the classical regime, however, the dichotomy that distinguishes the EM field from EM sources gets blurred. An electron's wavefunction may overlap that of an atomic nucleus, thereby initiating a contact interaction between the magnetic dipole moments of the two particles. Or a neutron passing through a ferromagnetic material may give rise to scattering events involving overlaps between the wave-functions of the neutron and magnetic electrons. Such matter-matter interactions exert equal and opposite forces and/or torques on the colliding particles, and their observable effects often shed light on the nature of the particles involved. It is through such observations that the Amperian model of a magnetic dipole has come to gain prominence over the Gilbertian model. In situations involving overlapping particle wave-functions, it is imperative to take account of the particle-particle interaction energy when computing the scattering amplitudes. As far as total force and total torque on a given volume of material are concerned, such particle-particle interactions do not affect the outcome of calculations, since the mutual actions of the two (overlapping) particles cancel each other out. Both Lorentz and Einstein-Laub formalisms thus yield the same total force and total torque on a given volume—provided that hidden entities are properly removed. The Lorentz formalism, with its roots in the Amperian current-loop model, correctly predicts the interaction energy between two overlapping magnetic dipoles 𝒎𝒎1 and 𝒎𝒎2 as being proportional to -𝒎𝒎1 • 𝒎𝒎2. In contrast, the Einstein-Laub formalism, which is ignorant of such particle-particle interactions, needs to account for them separately.
Atypical Brain Torque in Boys With Developmental Stuttering
Mock, Jeffrey Ryan; Zadina, Janet N.; Corey, David M.; Cohen, Jeremy D.; Lemen, Lisa C.; Foundas, Anne L.
2017-01-01
The counterclockwise brain torque, defined as a larger right prefrontal and left parietal-occipital lobe, is a consistent brain asymmetry. Reduced or reversed lobar asymmetries are markers of atypical cerebral laterality and have been found in adults who stutter. It was hypothesized that atypical brain torque would be more common in children who stutter. MRI-based morphology measures were completed in boys who stutter (n=14) and controls (n=14), ages 8–13. The controls had the expected brain torque configurations whereas the boys who stutter were atypical. These results support the hypothesis that developmental stuttering is associated with atypical prefrontal and parietal-occipital lobe asymmetries. PMID:22799762
Weight-Handling Equipment. Design Manual 38.1.
1982-06-01
Contact Rails ....... ................... 38.1-153 B-1. Torque-Speed Curves of Wound- Rotor Motor with Single-Phase Dynamic Braking Control...38.1-B-4 B-2. Torque-Speed Curves for Wound- Rotor Motor with DC Dynamic -Braking Lowering Control ... ........... . 38.1-B-6 B-3. Torque-Speed Curves...AC hoist and DC dynamic -braking lowering). (b) Wound- rotor motors. (i) Heavy-duty cranes using AC motors should have motors of the wound- rotor (slip
Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang
2017-11-01
Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive strength gains in dystrophic muscle exposed to repeated bouts of eccentric contraction
Call, Jarrod A.; Eckhoff, Michael D.; Baltgalvis, Kristen A.; Warren, Gordon L.
2011-01-01
The objective of this study was to determine the functional recovery and adaptation of dystrophic muscle to multiple bouts of contraction-induced injury. Because lengthening (i.e., eccentric) contractions are extremely injurious for dystrophic muscle, it was considered that repeated bouts of such contractions would exacerbate the disease phenotype in mdx mice. Anterior crural muscles (tibialis anterior and extensor digitorum longus) and posterior crural muscles (gastrocnemius, soleus, and plantaris) from mdx mice performed one or five repeated bouts of 100 electrically stimulated eccentric contractions in vivo, and each bout was separated by 10–18 days. Functional recovery from one bout was achieved 7 days after injury, which was in contrast to a group of wild-type mice, which still showed a 25% decrement in electrically stimulated isometric torque at that time point. Across bouts there was no difference in the immediate loss of strength after repeated bouts of eccentric contractions for mdx mice (−70%, P = 0.68). However, after recovery from each bout, dystrophic muscle had greater torque-generating capacity such that isometric torque was increased ∼38% for both anterior and posterior crural muscles at bout 5 compared with bout 1 (P < 0.001). Moreover, isolated extensor digitorum longus muscles excised from in vivo-tested hindlimbs 14–18 days after bout 5 had greater specific force than contralateral control muscles (12.2 vs. 10.4 N/cm2, P = 0.005) and a 20% greater maximal relaxation rate (P = 0.049). Additional adaptations due to the multiple bouts of eccentric contractions included rapid recovery and/or sparing of contractile proteins, enhanced parvalbumin expression, and a decrease in fiber size variability. In conclusion, eccentric contractions are injurious to dystrophic skeletal muscle; however, the muscle recovers function rapidly and adapts to repeated bouts of eccentric contractions by improving strength. PMID:21960659
Torque Control of Underactuated Tendon-driven Robotic Fingers
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Wampler, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor); Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor)
2013-01-01
A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.
Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.
Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J
2017-09-01
Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Enhanced spin Hall ratios by Al and Hf impurities in Pt thin films
NASA Astrophysics Data System (ADS)
Nguyen, Minh-Hai; Zhao, Mengnan; Ralph, Daniel C.; Buhrman, Robert A.
The spin Hall effect (SHE) in Pt has been reported to be strong and hence promising for spintronic applications. In the intrinsic SHE mechanism, which has been shown to be dominant in Pt, the spin Hall conductivity σSH is constant, dependent only on the band structure of the spin Hall material. The spin Hall ratio θSH =σSH . ρ , on the other hand, should be proportional to the electrical resistivity ρ of the spin Hall layer. This suggests the possibility of enhancing the spin Hall ratio by introducing additional diffusive scattering to increase the electrical resistivity of the spin Hall layer. Our previous work has shown that this could be done by increasing the surface scattering by growing thinner Pt films in contact with higher resistivity materials such as Ta. In this talk, we discuss another approach: to introduce impurities of metals with negligible spin orbit torque into the Pt film. Our PtAl and PtHf alloy samples exhibit strong enhancement of the spin Hall torque efficiency with impurity concentration due to increased electrical resistivity. Supported in part by Samsung Electronics.
Fast response of mechatronics module for robotic
NASA Astrophysics Data System (ADS)
Bukhanov, S. S.; Gryzlov, A. A.; Tsirkunenko, A. T.
2018-05-01
The synthesis technique, the mathematical model and results of experimental investigation of the control system of the robotic complex mechatronic module are presented in the article. It is shown that in most cases the dynamic system can be approximated by the serial connection of two first-order aperiodic links, while the speed in the torque control loop can reach 200-300 rad/s. The specified speed of the system was achieved due to improved specific weight and dimensions parameters of the electric drive (element of the mechatronic system) made on the basis of a contactless motor. The obtained results indicate the possibility of successful application of the proposed mechatronic module for objects of robotized systems in which the reference signal changes at a frequency not exceeding 50 Hz.
Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand
2014-01-01
In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Aguirre-Ollinger, Gabriel
2015-01-01
In this article, we analyze a novel strategy for assisting the lower extremities based on adaptive frequency oscillators. Our aim is to use the control algorithm presented here as a building block for the control of powered lower-limb exoskeletons. The algorithm assists cyclic movements of the human extremities by synchronizing actuator torques with the estimated net torque exerted by the muscles. Synchronization is produced by a nonlinear dynamical system combining an adaptive frequency oscillator with a form of adaptive Fourier analysis. The system extracts, in real time, the fundamental frequency component of the net muscle torque acting on a specific joint. Said component, nearly sinusoidal in shape, is the basis for the assistive torque waveform delivered by the exoskeleton. The action of the exoskeleton can be interpreted as a virtual reduction in the mechanical impedance of the leg. We studied the ability of human subjects to adapt their muscle activation to the assistive torque. Ten subjects swung their extended leg while coupled to a stationary hip joint exoskeleton. The experiment yielded a significant decrease, with respect to unassisted movement, of the activation levels of an agonist/antagonist pair of muscles controlling the hip joint's motion, which suggests the exoskeleton control has potential for assisting human gait. A moderate increase in swing frequency was observed as well. We theorize that the increase in frequency can be explained by the impedance model of the assisted leg. Per this model, subjects adjust their swing frequency in order to control the amount of reduction in net muscle torque. © IMechE 2015.
Spin angular momentum induced by optical quasi-phonons activated in birefringent uniaxial crystals
NASA Astrophysics Data System (ADS)
Mohamadou, B.; Maïmounatou, B.; Erasmus, R. M.
2017-09-01
The present report formally establishes the expression of the angular momentum of the quasi-phonons induced by linearly polarized light. The transferred mechanical torque due to phonons is then determined from the spin angular momentum and is shown to be measurable from Raman scattering experiments. To investigate this, the electric field due the excited dipoles and the associated macroscopic dielectric polarization vectors were first calculated using a lattice dynamical model in order to derive in a second step the analytical expression of the angular momentum density arising from the inelastic light scattering by quasi-phonons. The numerical results of the calculated angle dependent mode electric fields and the induced spin angular moments as well as the transferred torques were analyzed with regard to some typical behaviors of the interacting modes and it is shown that the fluctuations of the effective charges is their main origin.
Characterization of the powertrain components for a hybrid quadricycle
NASA Astrophysics Data System (ADS)
De Santis, M.; Agnelli, S.; Silvestri, L.; Di Ilio, G.; Giannini, O.
2016-06-01
This paper presents the experimental characterization of a prototyping hybrid electric quadricycle, which is equipped with two independently actuated hub (in-wheel) motors and powered by a 51 V 132 Ah LiFeYPO4 battery pack. Such a vehicle employs two hub motors located in the rear axles in order to independently drive/brake the rear wheels; such architecture allows to implement a torque vectoring system to improve the vehicle dynamics. Due to its actuation flexibility, energy efficiency and performance potentials, this architecture is one of the promising powertrain design for electric quadricycle. Experimental data obtained from measurements on the vehicle powertrain components going from the battery pack to the inverter and to the in-wheel motor were employed to generate the hub motor torque response and power efficiency maps in both driving and regenerative braking modes. Furthermore, the vehicle is equipped with a gasoline internal combustion engine as range extender whose efficiency was also characterized.
Energy consumption of ProTaper Next X1 after glide path with PathFiles and ProGlider.
Berutti, Elio; Alovisi, Mario; Pastorelli, Michele Angelo; Chiandussi, Giorgio; Scotti, Nicola; Pasqualini, Damiano
2014-12-01
Instrument failure caused by excessive torsional stress can be controlled by creating a manual or mechanical glide path. The ProGlider single-file system (Dentsply Maillefer, Ballaigues, Switzerland) was recently introduced to perform a mechanical glide path. This study was designed to compare the effect of a glide path performed with PathFiles (Dentsply Maillefer) and ProGlider on torque, time, and pecking motion required for ProTaper Next X1 (Dentsply Maillefer) to reach the full working length in simulated root canals. Forty Endo Training Blocks (Dentsply Maillefer) were used. Twenty were prepared with a mechanical glide path using PathFiles 1 and 2 (the PathFile group), and 20 were prepared with a mechanical glide path using a ProGlider single file (the ProGlider group). All samples were shaped with ProTaper Next X1 driven by an endodontic motor connected to a digital wattmeter. The required torque for root canal instrumentation was analyzed by evaluating the electrical power consumption of the endodontic engine. Electric power consumption (mW/h), elapsed time (seconds), and number of pecking motions required to reach the full working length with ProTaper Next X1 were calculated. Differences among groups were analyzed with the parametric Student t test for independent data (P < .05). Elapsed time and electric power consumption were significantly different between groups (P = .0001 for both). ProGlider appears to perform more efficiently than PathFiles in decreasing electric power consumption of ProTaper Next X1 to reach the full working length. This study confirmed the ability of ProGlider to reduce stress in ProTaper Next X1 during shaping through a glide path and preliminary middle and coronal preflaring. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)
NASA Technical Reports Server (NTRS)
Headrick, R. D.; Rowe, J. N.
1996-01-01
This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Guoqiang; Upadhyaya, Pramey; Li, Xiang
2016-03-09
Magnetic skyrmions, which are topologically protected spin textures, are promising candidates for ultralow-energy and ultrahigh-density magnetic data storage and computing applications. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of available materials is limited, and there is a lack of electrical means to control skyrmions in devices. In this work, we demonstrate a new method for creating a stable skyrmion bubble phase in the CoFeB–MgO material system at room temperature, by engineering the interfacial perpendicular magnetic anisotropy of the ferromagnetic layer. Importantly, we also demonstrate that artificially engineered symmetry breaking gives rise tomore » a force acting on the skyrmions, in addition to the current-induced spin–orbit torque, which can be used to drive their motion. This room-temperature creation and manipulation of skyrmions offers new possibilities to engineer skyrmionic devices. The results bring skyrmionic memory and logic concepts closer to realization in industrially relevant and manufacturable thin film material systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Guoqiang; Upadhyaya, Pramey; Li, Xiang
2016-02-10
Magnetic skyrmions, which are topologically protected spin textures, are promising candidates for ultralow-energy and ultrahigh-density magnetic data storage and computing applications. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of available materials is limited, and there is a lack of electrical means to control skyrmions in devices. In this work, we demonstrate a new method for creating a stable skyrmion bubble phase in the CoFeB–MgO material system at room temperature, by engineering the interfacial perpendicular magnetic anisotropy of the ferromagnetic layer. Importantly, we also demonstrate that artificially engineered symmetry breaking gives rise tomore » a force acting on the skyrmions, in addition to the current-induced spin–orbit torque, which can be used to drive their motion. This room-temperature creation and manipulation of skyrmions offers new possibilities to engineer skyrmionic devices. The results bring skyrmionic memory and logic concepts closer to realization in industrially relevant and manufacturable thin film material systems.« less
Evaluation of telerobotic systems using an instrumented task board
NASA Technical Reports Server (NTRS)
Carroll, John D.; Gierow, Paul A.; Bryan, Thomas C.
1991-01-01
An instrumented task board was developed at NASA Marshall Space Flight Center (MSFC). An overview of the task board design, and current development status is presented. The task board was originally developed to evaluate operator performance using the Protoflight Manipulator Arm (PFMA) at MSFC. The task board evaluates tasks for Orbital Replacement Unit (ORU), fluid connect and transfers, electrical connect/disconnect, bolt running, and other basic tasks. The instrumented task board measures the 3-D forces and torques placed on the board, determines the robot arm's 3-D position relative to the task board using IR optics, and provides the information in real-time. The PFMA joint input signals can also be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to real-time force/torque data presentation. The instrumented task board's most promising use is developing benchmarks for NASA centers for comparison and evaluation of telerobotic performance.
Pimkumwong, Narongrit; Wang, Ming-Shyan
2018-02-01
This paper presents another control method for the three-phase induction motor that is direct torque control based on constant voltage per frequency control technique. This method uses the magnitude of stator flux and torque errors to generate the stator voltage and phase angle references for controlling the induction motor by using constant voltage per frequency control method. Instead of hysteresis comparators and optimum switching table, the PI controllers and space vector modulation technique are used to reduce torque and stator-flux ripples and achieve constant switching frequency. Moreover, the coordinate transformations are not required. To implement this control method, a full-order observer is used to estimate stator flux and overcome the problems from drift and saturation in using pure integrator. The feedback gains are designed by simple manner to improve the convergence of stator flux estimation, especially in low speed range. Furthermore, the necessary conditions to maintain the stability for feedback gain design are introduced. The simulation and experimental results show accurate and stable operation of the introduced estimator and good dynamic response of the proposed control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor
Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo
2016-01-01
Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508
Displaceable Spur Gear Torque Controlled Driver and Method
NASA Technical Reports Server (NTRS)
Cook, Joseph S., Jr. (Inventor)
1996-01-01
Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driven members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.