Science.gov

Sample records for total annual sediment

  1. Sediment data sources and estimated annual suspended-sediment loads of rivers and streams in Colorado

    USGS Publications Warehouse

    Elliott, J.G.; DeFeyter, K.L.

    1986-01-01

    Sources of sediment data collected by several government agencies through water year 1984 are summarized for Colorado. The U.S. Geological Survey has collected suspended-sediment data at 243 sites; these data are stored in the U.S. Geological Survey 's water data storage and retrieval system. The U.S. Forest Service has collected suspended-sediment and bedload data at an additional 225 sites, and most of these data are stored in the U.S. Environmental Protection Agency 's water-quality-control information system. Additional unpublished sediment data are in the possession of the collecting entities. Annual suspended-sediment loads were computed for 133 U.S. Geological Survey sediment-data-collection sites using the daily mean water-discharge/sediment-transport-curve method. Sediment-transport curves were derived for each site by one of three techniques: (1) Least-squares linear regression of all pairs of suspended-sediment and corresponding water-discharge data, (2) least-squares linear regression of data sets subdivided on the basis of hydrograph season; and (3) graphical fit to a logarithm-logarithm plot of data. The curve-fitting technique used for each site depended on site-specific characteristics. Sediment-data sources and estimates of annual loads of suspended, bed, and total sediment from several other reports also are summarized. (USGS)

  2. Computations of total sediment discharge, Niobrara River near Cody, Nebraska

    USGS Publications Warehouse

    Colby, Bruce R.; Hembree, C.H.

    1955-01-01

    A natural chute in the Niobrara River near Cody, Nebr., constricts the flow of the river except at high stages to a narrow channel in which the turbulence is sufficient to suspend nearly the total sediment discharge. Because much of the flow originates in the sandhills area of Nebraska, the water discharge and sediment discharge are relatively uniform. Sediment discharges based on depth-integrated samples at a contracted section in the chute and on streamflow records at a recording gage about 1,900 feet upstream are available for the period from April 1948 to September 1953 but are not given directly as continuous records in this report. Sediment measurements have been made periodically near the gage and at other nearby relatively unconfined sections of the stream for comparison with measurements at the contracted section. Sediment discharge at these relatively unconfined sections was computed from formulas for comparison with measured sediment discharges at the contracted section. A form of the Du Boys formula gave computed tonnages of sediment that were unsatisfactory. Sediment discharges as computed from the Schoklitsch formula agreed well with measured sediment discharges that were low, but they were much too low at measured sediment discharges that were higher. The Straub formula gave computed discharges, presumably of bed material, that were several times larger than measured discharges of sediment coarser than 0.125 millimeter. All three of these formulas gave computed sediment discharges that increased with water discharges much less rapidly than the measured discharges of sediment coarser than 0.125 millimeter. The Einstein procedure when applied to a reach that included 10 defined cross sections gave much better agreement between computed sediment discharge and measured sediment discharge than did anyone of the three other formulas that were used. This procedure does not compute the discharge of sediment that is too small to be found in the stream bed in

  3. SEDIMENT TOTAL ORGANIC CARBON: IS THIS A USEFUL INDICATOR OF SEDIMENT CONDITION FOR PACIFIC NORTHWEST ESTUARIES?

    EPA Science Inventory

    Total organic carbon (TOC) content of sediments has been used as an indicator of benthic community condition during multiple cycles of the EPA National Coastal Assessment (NCA). Because percent TOC is generally positively correlated with sediment percent fines, previous analyses...

  4. TOTAL AND BIOAVAILABLE METALS AT MARINA SEDIMENTS IN LAKE TEXOMA

    EPA Science Inventory

    Total and bioavailable metals in sediments were measured at marina areas in Lake Texoma during the fall of 2001. The metals most often found in the highest concentrations in sediments were Ca (56811 mg/kg) and Al (31095 mg/kg), followed by Fe (19393 mg/kg), K (6089 mg/kg), and Mg...

  5. Sediment and Total Phosphorous Contributors in Rock River Watershed

    EPA Science Inventory

    Total phosphorous (TP) and total suspended sediment (TSS) pollution is a problem in the US Midwest and is of particular concern in the Great Lakes region where many water bodies are already eutrophic. Increases in monoculture corn planting to feed ethanol based biofuel productio...

  6. Evidence for abrupt climate changes in annually laminated marine sediments.

    PubMed

    Kemp, Alan E S

    2003-09-15

    Annually laminated sediments from marine or lacustrine settings represent valuable high-resolution archives of climate change that record variation due to changing precipitation and run-off from land or variation in biological productivity and flux in the water column. Because of their annual resolution such sediments may capture abrupt changes of interannual to decadal scales rivaling corals and ice cores in resolution. Laminated sediments often occur intermittently in the sediment column, and the onset and cessation of laminae commonly record the abrupt crossing of thresholds related to climate change, for example, in the degree of oxygenation of bottom waters. Such records from marginal basins and continental margins have been pivotal in demonstrating that abrupt changes hitherto documented only in high-latitude ice cores are synchronous with climatic change at low latitudes. These insights into global teleconnections have improved our understanding of the mechanisms of rapid climate change. In deep-sea settings, the discovery of the episodic occurrence of laminated diatom-rich sediments in the Equatorial Pacific and Southern Ocean provides evidence for massive climate-related biogeochemical excursions tied to abrupt changes in the input, distribution and availability of nutrients in the oceans.

  7. Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13

    USGS Publications Warehouse

    Buck, Stephanie D.

    2014-01-01

    The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base

  8. Relationship between sediment clay minerals and total mercury.

    PubMed

    Kongchum, Manoch; Hudnall, Wayne H; DeLaune, R D

    2011-01-01

    A group of 262 sediment samples were collected from various lakes, rivers, reservoirs, and bayous of Louisiana. All samples were analyzed for total mercury. Twenty nine of the samples with total mercury content ranging from 11 to 401 ppb (μg/kg) were analyzed for clay minerals and other sediment physical and chemical properties. Clay content in sediments varied from 3 to 72%. Clay minerals were determined by X-ray diffraction (XRD) technique. Identification of clay minerals was determined by MacDiff software and quantification of clay minerals was obtained by Peak Height Percentage (PHP) calculation. The dominant clay mineral was Hydrated Interlayer Vermiculite (HIV), which represented 51-83% of the total clay mineral. Significant linear correlations were observed between Hg and total clay content (r=0.538**). However Smectite was the only individual clay type correlated (r=0.465**) with mercury in sediment. Cation exchange capacity (r=0.404*), organic matter (r=0.577**), and sulfur (r=0.676**) were also correlated significantly with mercury level in sediment.

  9. The measurement of total sediment load in alluvial streams

    USGS Publications Warehouse

    Benedict, P.C.; Matejka, D.Q.; McNown, John S.; Boyer, M.C.

    1953-01-01

    The measurement of the total sediment load transported by streams that flow in alluvial channels has been a perplexing problem to engineers and geologists for over a century. Until the last decade the development of equipment to measure bed load and suspended load was carried on almost independently, and without primary consideration of the fundamental laws governing the transportation of fluvial sediments. French investigators during the nineteenth century described methods of measurement and a mathematical approach for computing the rate of bed-load movement. The comprehensive laboratory investigations by Gilbert early in this century provided data that are still being used for studies of sediment transport. Detailed laboratory investigations of bed-load movement conducted during the last two decades by a number of investigators have resulted in the development of additional mathematical formulas for computing rates of bed-load movement. Likewise, studies of turbulent flow have provided the turbulence suspension theory for suspended sediment as it is known today.

  10. A comparison of load estimates using total suspended solids and suspended-sediment concentration data

    USGS Publications Warehouse

    Glysson, G.D.; Gray, J.R.; Schwarz, G.E.

    2001-01-01

    This paper presents the results to-date from a continuing investigation into the differences between total suspended solids (TSS) and suspended-sediment concentration (SSC) data and the ramifications of using each type of data to estimate sediment loads. It compares estimates of annual suspended-sediment loads that were made using regression equations developed from paired TSS and SSC data, to annual loads computed by the U.S. Geological Survey (USGS) using traditional techniques and SSC data. Load estimates were compared for 10 stations where sufficient TSS and SSC paired data were available to develop sediment-transport curves for the same time period that daily suspended-sediment records were available. Results of these analyses indicate that as the time frame over which the estimates were made increases, the overall errors associated with the estimates decreases with respect to loads computed using traditional USGS techniques. Using SSC data to compute loads tends to produce estimates closer to those computed by traditional techniques than those computed from TSS data. Loads computed from TSS data tend to be negatively biased with respect to those computed by traditional USGS techniques.

  11. 24 CFR 886.308 - Maximum total annual contract commitment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 100 percent of the units in the project. (b) Maximum assistance. The maximum total annual housing... family composition, or decreases in family incomes: (1) A project account shall be established and... commitment, causing the amount in the project account to be less than an amount equal to 40 percent of...

  12. 24 CFR 886.308 - Maximum total annual contract commitment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 100 percent of the units in the project. (b) Maximum assistance. The maximum total annual housing... family composition, or decreases in family incomes: (1) A project account shall be established and... commitment, causing the amount in the project account to be less than an amount equal to 40 percent of...

  13. Control factors and scale analysis of annual river water, sediments and carbon transport in China

    PubMed Central

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-01-01

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m−2·a−1) to medium spatial scale basins (258 g·m−2·a−1), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales. PMID:27166177

  14. Control factors and scale analysis of annual river water, sediments and carbon transport in China

    NASA Astrophysics Data System (ADS)

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-05-01

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m‑2·a‑1) to medium spatial scale basins (258 g·m‑2·a‑1), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.

  15. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    USGS Publications Warehouse

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources

  16. Abundant iron and sulfur oxidizers in the stratified sediment of a eutrophic freshwater reservoir with annual cyanobacterial blooms

    PubMed Central

    Jin, Long; Lee, Chang Soo; Ahn, Chi-Yong; Lee, Hyung-Gwan; Lee, Sanghyup; Shin, Hyeon Ho; Lim, Dhongil; Oh, Hee-Mock

    2017-01-01

    The microbial community in eutrophic freshwater sediment was investigated from a 67-cm-deep sediment core collected from the Daechung Reservoir in South Korea, where cyanobacterial blooms have occurred annually for the past 30 years. The majority of core sediments were characterized by dark-grayish, fine-grained mud with abundant gas-escaped and thinly laminated layers. Intervals of summer and winter seasons were represented by periodic peaks of geochemical profiles of parameters such as grain size and relative carbon mass ratios to various nutrients such as nitrogen, sulfur, and phosphorus. In bacteria, Proteobacteria (66.6%) was the most prevalent phylum, followed by Chloroflexi (8.9%), Bacteroidetes (5.1%), and Spirochaetes (2.6%). Archaea were also abundant, representing approximately half of the total prokaryotes in the sediments. Notably, three Bacteria (Sulfuricurvum, Sideroxydans, and Gallionella) and one Archaea (Thermoplasmata) accounted for 43.4% and 38.4% of the total bacteria and archaea, respectively, implying that iron and sulfur oxidizing microorganisms dominate in this eutrophic freshwater sediment. These results indicate that 1) eutrophic freshwater lakes in monsoon climates undergo a stratified sedimentary process with seasonal and annual variations in geochemical and microbial profiles, and 2) the microbial oxidative metabolism of iron and sulfur is notably active in sediments from a eutrophic lake. PMID:28266642

  17. Abundant iron and sulfur oxidizers in the stratified sediment of a eutrophic freshwater reservoir with annual cyanobacterial blooms.

    PubMed

    Jin, Long; Lee, Chang Soo; Ahn, Chi-Yong; Lee, Hyung-Gwan; Lee, Sanghyup; Shin, Hyeon Ho; Lim, Dhongil; Oh, Hee-Mock

    2017-03-07

    The microbial community in eutrophic freshwater sediment was investigated from a 67-cm-deep sediment core collected from the Daechung Reservoir in South Korea, where cyanobacterial blooms have occurred annually for the past 30 years. The majority of core sediments were characterized by dark-grayish, fine-grained mud with abundant gas-escaped and thinly laminated layers. Intervals of summer and winter seasons were represented by periodic peaks of geochemical profiles of parameters such as grain size and relative carbon mass ratios to various nutrients such as nitrogen, sulfur, and phosphorus. In bacteria, Proteobacteria (66.6%) was the most prevalent phylum, followed by Chloroflexi (8.9%), Bacteroidetes (5.1%), and Spirochaetes (2.6%). Archaea were also abundant, representing approximately half of the total prokaryotes in the sediments. Notably, three Bacteria (Sulfuricurvum, Sideroxydans, and Gallionella) and one Archaea (Thermoplasmata) accounted for 43.4% and 38.4% of the total bacteria and archaea, respectively, implying that iron and sulfur oxidizing microorganisms dominate in this eutrophic freshwater sediment. These results indicate that 1) eutrophic freshwater lakes in monsoon climates undergo a stratified sedimentary process with seasonal and annual variations in geochemical and microbial profiles, and 2) the microbial oxidative metabolism of iron and sulfur is notably active in sediments from a eutrophic lake.

  18. Abundant iron and sulfur oxidizers in the stratified sediment of a eutrophic freshwater reservoir with annual cyanobacterial blooms

    NASA Astrophysics Data System (ADS)

    Jin, Long; Lee, Chang Soo; Ahn, Chi-Yong; Lee, Hyung-Gwan; Lee, Sanghyup; Shin, Hyeon Ho; Lim, Dhongil; Oh, Hee-Mock

    2017-03-01

    The microbial community in eutrophic freshwater sediment was investigated from a 67-cm-deep sediment core collected from the Daechung Reservoir in South Korea, where cyanobacterial blooms have occurred annually for the past 30 years. The majority of core sediments were characterized by dark-grayish, fine-grained mud with abundant gas-escaped and thinly laminated layers. Intervals of summer and winter seasons were represented by periodic peaks of geochemical profiles of parameters such as grain size and relative carbon mass ratios to various nutrients such as nitrogen, sulfur, and phosphorus. In bacteria, Proteobacteria (66.6%) was the most prevalent phylum, followed by Chloroflexi (8.9%), Bacteroidetes (5.1%), and Spirochaetes (2.6%). Archaea were also abundant, representing approximately half of the total prokaryotes in the sediments. Notably, three Bacteria (Sulfuricurvum, Sideroxydans, and Gallionella) and one Archaea (Thermoplasmata) accounted for 43.4% and 38.4% of the total bacteria and archaea, respectively, implying that iron and sulfur oxidizing microorganisms dominate in this eutrophic freshwater sediment. These results indicate that 1) eutrophic freshwater lakes in monsoon climates undergo a stratified sedimentary process with seasonal and annual variations in geochemical and microbial profiles, and 2) the microbial oxidative metabolism of iron and sulfur is notably active in sediments from a eutrophic lake.

  19. River methane hot-spots: Continuous methane ebullition measurements over an annual cycle linked to river sediment production

    NASA Astrophysics Data System (ADS)

    Wilkinson, Jeremy; Maeck, Andreas; Ashboul, Zeyad; Lorke, Andreas

    2015-04-01

    Hot spot methane ebullition from impounded river reaches matches high rates observed around the globe. Ebullition dominates total methane flux in the Saar River (Germany) and is largely determined by sediment deposition rate. Using automated bubble traps developed in-house, and deployed over a year at four sites, we collected high resolution data showing that hydrodynamic disturbances from shipping, lock operations and hydrograph events trigger ebullition episodes. Reverse smoothing was used to integrate the observed ebullition back in time, and helped in visualizing the data, and provides a time-series closer to methane accumulation in the sediments, whereas ebullition shows the triggering and release of the accumulated gas. One major hydrological disturbance of shallow-water sediment released around 13% of the total annual ebullition at that site, and ebullition generally followed the seasonal sediment temperature variations. The same event damped ebullition from deeper water sites. Total annual ebullition values ranged from 200 to 500 gCH4 m-2 yr-1. Ebullition from shallow water sediments in winter ceased for extended periods, but continued un-broken from deeper sites. With on-going measurements we believe these findings will help to improve estimates and the modelling of methane emissions from impounded river systems.

  20. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    USGS Publications Warehouse

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total

  1. EVALUATION OF A FLUOROMETRIC SCREENING METHOD FOR PREDICTING TOTAL PAH CONCENTRATIONS IN CONTAMINATED SEDIMENTS

    EPA Science Inventory

    A flurorometric screening method was used to estimate total polycyclic aromatic hydrocarbon concentrations in sediments collected from the St. Louis River Area of Concern in northeastern Minnesota. Sediments were collected as part of a Regional Environmental Monitoring and Asses...

  2. Suspended-sediment concentrations, bedload, particle sizes, surrogate measurements, and annual sediment loads for selected sites in the lower Minnesota River Basin, water years 2011 through 2016

    USGS Publications Warehouse

    Groten, Joel T.; Ellison, Christopher A.; Hendrickson, Jon S.

    2016-12-20

    Accurate measurements of fluvial sediment are important for assessing stream ecological health, calculating flood levels, computing sediment budgets, and managing and protecting water resources. Sediment-enriched rivers in Minnesota are a concern among Federal, State, and local governments because turbidity and sediment-laden waters are the leading impairments and affect more than 6,000 miles of rivers in Minnesota. The suspended sediment in the lower Minnesota River is deleterious, contributing about 75 to 90 percent of the suspended sediment being deposited into Lake Pepin. The Saint Paul District of the U.S. Army Corps of Engineers and the Lower Minnesota River Watershed District collaborate to maintain a navigation channel on the lower 14.7 miles of the Minnesota River through scheduled dredging operations. The Minnesota Pollution Control Agency has adopted a sediment-reduction strategy to reduce sediment in the Minnesota River by 90 percent by 2040.The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, the Minnesota Pollution Control Agency, and the Lower Minnesota River Watershed District, collected suspended-sediment, bedload, and particle-size samples at five sites in the lower Minnesota River Basin during water years 2011 through 2014 and surrogate measurements of acoustic backscatter at one of these sites on the lower Minnesota River during water years 2012 through 2016 to quantify sediment loads and improve understanding of sediment-transport relations. Annual sediment loads were computed for calendar years 2011 through 2014.Data collected from water years 2011 through 2014 indicated that two tributaries, Le Sueur River and High Island Creek, had the highest sediment yield and concentrations of suspended sediment. These tributaries also had greater stream gradients than the sites on the Minnesota River. Suspended fines were greater than suspended sand at all sites in the study area. The range of median particle sizes matched

  3. Event-based total suspended sediment particle size distribution model

    NASA Astrophysics Data System (ADS)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  4. Characteristics of sediment data and annual suspended-sediment loads and yields for selected lower Missouri River mainstem and tributary stations, 1976-2008

    USGS Publications Warehouse

    Heimann, David C.; Rasmussen, Patrick P.; Cline, Teri L.; Pigue, Lori M.; Wagner, Holly R.

    2010-01-01

    Suspended-sediment data from 18 selected surface-water monitoring stations in the lower Missouri River Basin downstream from Gavins Point Dam were used in the computation of annual suspended-sediment and suspended-sand loads for 1976 through 2008. Three methods of suspended-sediment load determination were utilized and these included the subdivision method, regression of instantaneous turbidity with suspended-sediment concentrations at selected stations, and regression techniques using the Load Estimator (LOADEST) software. Characteristics of the suspended-sediment and streamflow data collected at the 18 monitoring stations and the tabulated annual suspended-sediment and suspended-sand loads and yields are presented.

  5. Simplified methods for computing total sediment discharge with the modified Einstein procedure

    USGS Publications Warehouse

    Colby, Bruce R.; Hubbell, David Wellington

    1961-01-01

    A procedure was presented in 1950 by H. A. Einstein for computing the total discharge of sediment particles of sizes that are in appreciable quantities in the stream bed. This procedure was modified by the U.S. Geological Survey and adapted to computing the total sediment discharge of a stream on the basis of samples of bed sediment, depth-integrated samples of suspended sediment, streamflow measurements, and water temperature. This paper gives simplified methods for computing total sediment discharge by the modified Einstein procedure. Each of four homographs appreciably simplifies a major step in the computations. Within the stated limitations, use of the homographs introduces much less error than is present in either the basic data or the theories on which the computations of total sediment discharge are based. The results are nearly as accurate mathematically as those that could be obtained from the longer and more complex arithmetic and algebraic computations of the Einstein procedure.

  6. Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2002-01-01

    Singular spectrum analysis for time series with missing data (SSAM) was used to reconstruct components of a 6-yr time series of suspended-sediment concentration (SSC) from San Francisco Bay. Data were collected every 15 min and the time series contained missing values that primarily were due to sensor fouling. SSAM was applied in a sequential manner to calculate reconstructed components with time scales of variability that ranged from tidal to annual. Physical processes that controlled SSC and their contribution to the total variance of SSC were (1) diurnal, semidiurnal, and other higher frequency tidal constituents (24%), (2) semimonthly tidal cycles (21%), (3) monthly tidal cycles (19%), (4) semiannual tidal cycles (12%), and (5) annual pulses of sediment caused by freshwater inflow, deposition, and subsequent wind-wave resuspension (13%). Of the total variance 89% was explained and subtidal variability (65%) was greater than tidal variability (24%). Processes at subtidal time scales accounted for more variance of SSC than processes at tidal time scales because sediment accumulated in the water column and the supply of easily erodible bed sediment increased during periods of increased subtidal energy. This large range of time scales that each contained significant variability of SSC and associated contaminants can confound design of sampling programs and interpretation of resulting data.

  7. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes

    USGS Publications Warehouse

    Powers, Steve M.; Robertson, Dale M.; Stanley, Emily H.

    2014-01-01

    Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.

  8. Annual replenishment of bed material by sediment transport in the Wind River near Riverton, Wyoming

    USGS Publications Warehouse

    Smalley, M.L.; Emmett, W.W.; Wacker, A.M.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Transportation, conducted a study during 1985-87 to determine the annual replenishment of sand and gravel along a point bar in the Wind River near Riverton, Wyoming. Hydraulic- geometry relations determined from streamflow measurements; streamflow characteristics determined from 45 years of record at the study site; and analyses of suspended-sediment, bedload, and bed- material samples were used to describe river transport characteristics and to estimate the annual replenishment of sand and gravel. The Wind River is a perennial, snowmelt-fed stream. Average daily discharge at the study site is about 734 cubic feet per second, and bankfull discharge (recurrence interval about 1.5 years) is about 5,000 cubic feet per second. At bankfull discharge, the river is about 136 feet wide and has an average depth of about 5.5 feet and average velocity of about 6.7 feet per second. Streams slope is about 0.0010 foot per foot. Bed material sampled on the point bar before the 1986 high flows ranged from sand to cobbles, with a median diameter of about 22 millimeters. Data for sediment samples collected during water year 1986 were used to develop regression equations between suspended-sediment load and water discharge and between bedload and water discharge. Average annual suspended-sediment load was computed to be about 561,000 tons per year using the regression equation in combination with flow-duration data. The regression equation for estimating bedload was not used; instead, average annual bedload was computed as 1.5 percent of average annual suspended load about 8,410 tons per year. This amount of bedload material is estimated to be in temporary storage along a reach containing seven riffles--a length of approximately 1 river mile. On the basis of bedload material sampled during the 1986 high flows, about 75 percent (by weight) is sand (2 millimeters in diameter or finer); median particle size is

  9. 29 CFR 779.253 - What is included in computing the total annual inflow volume.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false What is included in computing the total annual inflow... computing the total annual inflow volume. The goods which the establishment purchases or receives for resale..., delivery, storage and any other will be included in computing the $250,000. The dollar volume of the...

  10. Estimating annual suspended-sediment loads in the northern and central Appalachian Coal region

    USGS Publications Warehouse

    Koltun, G.F.

    1985-01-01

    Multiple-regression equations were developed for estimating the annual suspended-sediment load, for a given year, from small to medium-sized basins in the northern and central parts of the Appalachian coal region. The regression analysis was performed with data for land use, basin characteristics, streamflow, rainfall, and suspended-sediment load for 15 sites in the region. Two variables, the maximum mean-daily discharge occurring within the year and the annual peak discharge, explained much of the variation in the annual suspended-sediment load. Separate equations were developed employing each of these discharge variables. Standard errors for both equations are relatively large, which suggests that future predictions will probably have a low level of precision. This level of precision, however, may be acceptable for certain purposes. It is therefore left to the user to asses whether the level of precision provided by these equations is acceptable for the intended application.

  11. Annual sediment flux estimates in a tidal strait using surrogate measurements

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2006-01-01

    Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights

  12. Effective Discharge and Annual Sediment Yield on Brazos River

    NASA Astrophysics Data System (ADS)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  13. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  14. Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes

    USGS Publications Warehouse

    Horowitz, A.J.

    2008-01-01

    Suspended sediment is a major factor in the biological and geochemical cycling of trace elements and nutrients in aquatic systems. The design of effective studies involving the collection, processing, and subsequent chemical analysis of suspended sediment requires a clear understanding of the problems associated with using this sample medium. This review summarizes the current state of knowledge relative to the various issues/problems associated with the collection of representative suspended sediment samples in fluvial systems. It also addresses issues associated with accurately determining the concentrations and fluxes of sediment-associated trace elements and nutrients.

  15. PCB congeners and hexachlorobenzene biota sediment accumulation factors for Macoma nasuta exposed to sediments with different total organic carbon contents

    SciTech Connect

    Boese, B.L.; Lee, H. II; Randall, R. . Pacific Ecosystems Branch); Winsor, M.; Echols, S.; Pelletier, J. . Hatfield Marine Science Center)

    1995-02-01

    Deposit-feeding marine clams (Macoma nasuta) were exposed for 119 d to three sediment types that varied in total organic carbon (TOC) from 0.8 to 2.5%. Sediments were spiked with equal concentrations of 13 polychlorinated biphenyl congeners and hexachlorobenzene. Tissue residues were measured, and steady-state bioaccumulation factors (BAFs), the corresponding lipid, and TOC-normalized biota sediment accumulation factors (BSAFs) were determined. The BSAFs were less variable than were the BAFs with the exception of compounds with log K[sub ow] > 7. Many of the BSAFs exceeded 1.7, which is a calculated maximum value based on partitioning alone. Although BSAFs varied with sediment type and compound, the use of a BSAF of 4 as a screening level for neutral organic compounds in assessing dredge materials is supported by the present study.

  16. Total nutrient and sediment loads, trends, yields, and nontidal water-quality indicators for selected nontidal stations, Chesapeake Bay Watershed, 1985–2011

    USGS Publications Warehouse

    Langland, Michael J.; Blomquist, Joel D.; Moyer, Douglas; Hyer, Kenneth; Chanat, Jeffrey G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Chesapeake Bay Program (CBP) partners, routinely reports long-term concentration trends and monthly and annual constituent loads for stream water-quality monitoring stations across the Chesapeake Bay watershed. This report documents flow-adjusted trends in sediment and total nitrogen and phosphorus concentrations for 31 stations in the years 1985–2011 and for 32 stations in the years 2002–2011. Sediment and total nitrogen and phosphorus yields for 65 stations are presented for the years 2006–2011. A combined nontidal water-quality indicator (based on both trends and yields) indicates there are more stations classified as “improving water-quality trend and a low yield” than “degrading water-quality trend and a high yield” for total nitrogen. The same type of 2-way classification for total phosphorus and sediment results in equal numbers of stations in each indicator class.

  17. Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries

    USGS Publications Warehouse

    Kannan, K.; Smith, R.G.; Lee, R.F.; Windom, H.L.; Heitmuller, P.T.; Macauley, J.M.; Summers, J.K.

    1998-01-01

    Concentrations of total mercury and methyl mercury were determined in sediment and fish collected from estuarine waters of Florida to understand their distribution and partitioning. Total mercury concentrations in sediments ranged from 1 to 219 ng/g dry wt. Methyl mercury accounted for, on average, 0.77% of total mercury in sediment. Methyl mercury concentrations were not correlated with total mercury or organic carbon content in sediments. The concentrations of total mercury in fish muscle were between 0.03 and 2.22 (mean: 0.31) ??g/g, wet wt, with methyl mercury contributing 83% of total mercury. Methyl mercury concentrations in fish muscle were directly proportional to total mercury concentrations. The relationship of total and methyl mercury concentrations in fish to those of sediments from corresponding locations was fish-species dependent, in addition to several abiotic factors. Among fish species analyzed, hardhead catfish, gafftopsail catfish, and sand seatrout contained the highest concentrations of mercury. Filtered water samples from canals and creeks that discharge into the Florida Bay showed mercury concentrations of 3-7.4 ng/L, with methyl mercury accounting for <0.03-52% of the total mercury. Consumption of fish containing 0.31 ??g mercury/g wet wt, the mean concentration found in this study, at rates greater than 70 g/day, was estimated to be hazardous to human health.

  18. 16 CFR 801.11 - Annual net sales and total assets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Annual net sales and total assets. 801.11 Section 801.11 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.11 Annual...

  19. 16 CFR 801.11 - Annual net sales and total assets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Annual net sales and total assets. 801.11 Section 801.11 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.11 Annual...

  20. 16 CFR 801.11 - Annual net sales and total assets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Annual net sales and total assets. 801.11 Section 801.11 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.11 Annual...

  1. 16 CFR 801.11 - Annual net sales and total assets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Annual net sales and total assets. 801.11 Section 801.11 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.11 Annual...

  2. 16 CFR 801.11 - Annual net sales and total assets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Annual net sales and total assets. 801.11 Section 801.11 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.11 Annual...

  3. The effects of sample scheduling and sample numbers on estimates of the annual fluxes of suspended sediment in fluvial systems

    USGS Publications Warehouse

    Horowitz, Arthur J.; Clarke, Robin T.; Merten, Gustavo Henrique

    2015-01-01

    Since the 1970s, there has been both continuing and growing interest in developing accurate estimates of the annual fluvial transport (fluxes and loads) of suspended sediment and sediment-associated chemical constituents. This study provides an evaluation of the effects of manual sample numbers (from 4 to 12 year−1) and sample scheduling (random-based, calendar-based and hydrology-based) on the precision, bias and accuracy of annual suspended sediment flux estimates. The evaluation is based on data from selected US Geological Survey daily suspended sediment stations in the USA and covers basins ranging in area from just over 900 km2 to nearly 2 million km2 and annual suspended sediment fluxes ranging from about 4 Kt year−1 to about 200 Mt year−1. The results appear to indicate that there is a scale effect for random-based and calendar-based sampling schemes, with larger sample numbers required as basin size decreases. All the sampling schemes evaluated display some level of positive (overestimates) or negative (underestimates) bias. The study further indicates that hydrology-based sampling schemes are likely to generate the most accurate annual suspended sediment flux estimates with the fewest number of samples, regardless of basin size. This type of scheme seems most appropriate when the determination of suspended sediment concentrations, sediment-associated chemical concentrations, annual suspended sediment and annual suspended sediment-associated chemical fluxes only represent a few of the parameters of interest in multidisciplinary, multiparameter monitoring programmes. The results are just as applicable to the calibration of autosamplers/suspended sediment surrogates currently used to measure/estimate suspended sediment concentrations and ultimately, annual suspended sediment fluxes, because manual samples are required to adjust the sample data/measurements generated by these techniques so that they provide depth-integrated and cross

  4. Application of dimensionless sediment rating curves to predict suspended-sediment concentrations, bedload, and annual sediment loads for rivers in Minnesota

    USGS Publications Warehouse

    Ellison, Christopher A.; Groten, Joel T.; Lorenz, David L.; Koller, Karl S.

    2016-10-27

    Consistent and reliable sediment data are needed by Federal, State, and local government agencies responsible for monitoring water quality, planning river restoration, quantifying sediment budgets, and evaluating the effectiveness of sediment reduction strategies. Heightened concerns about excessive sediment in rivers and the challenge to reduce costs and eliminate data gaps has guided Federal and State interests in pursuing alternative methods for measuring suspended and bedload sediment. Simple and dependable data collection and estimation techniques are needed to generate hydraulic and water-quality information for areas where data are unavailable or difficult to collect.The U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency and the Minnesota Department of Natural Resources, completed a study to evaluate the use of dimensionless sediment rating curves (DSRCs) to accurately predict suspended-sediment concentrations (SSCs), bedload, and annual sediment loads for selected rivers and streams in Minnesota based on data collected during 2007 through 2013. This study included the application of DSRC models developed for a small group of streams located in the San Juan River Basin near Pagosa Springs in southwestern Colorado to rivers in Minnesota. Regionally based DSRC models for Minnesota also were developed and compared to DSRC models from Pagosa Springs, Colorado, to evaluate which model provided more accurate predictions of SSCs and bedload in Minnesota.Multiple measures of goodness-of-fit were developed to assess the effectiveness of DSRC models in predicting SSC and bedload for rivers in Minnesota. More than 600 dimensionless ratio values of SSC, bedload, and streamflow were evaluated and delineated according to Pfankuch stream stability categories of “good/fair” and “poor” to develop four Minnesota-based DSRC models. The basis for Pagosa Springs and Minnesota DSRC model effectiveness was founded on measures of goodness

  5. Investigation of Total and Methyl Mercury in Fish and Sediment of Lake Michigan

    EPA Science Inventory

    Sediment cores and fish collected between 1994 and 1996 as part of the Lake Michigan Mass Balance Project were analyzed for total and methyl mercury. Results of the fish analyses are being used to describe total and methyl mercury concentrations in forage fish and lake trout, re...

  6. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    USGS Publications Warehouse

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  7. Distribution of total and methyl mercury in sediments along Steamboat Creek (Nevada, USA)

    USGS Publications Warehouse

    Stamenkovic, J.; Gustin, M.S.; Marvin-DiPasquale, M. C.; Thomas, B.A.; Agee, J.L.

    2004-01-01

    In the late 1800s, mills in the Washoe Lake area, Nevada, used elemental mercury to remove gold and silver from the ores of the Comstock deposit. Since that time, mercury contaminated waste has been distributed from Washoe Lake, down Steamboat Creek, and to the Truckee River. The creek has high mercury concentrations in both water and sediments, and continues to be a constant source of mercury to the Truckee River. The objective of this study was to determine concentrations of total and methyl mercury (MeHg) in surface sediments and characterize their spatial distribution in the Steamboat Creek watershed. Total mercury concentrations measured in channel and bank sediments did not decrease downstream, indicating that mercury contamination has been distributed along the creek's length. Total mercury concentrations in sediments (0.01-21.43 ??g/g) were one to two orders of magnitude higher than those in pristine systems. At 14 out of 17 sites, MeHg concentrations in streambank sediments were higher than the concentrations in the channel, suggesting that low banks with wet sediments might be important sites of mercury methylation in this system. Both pond/wetland and channel sites exhibited high potential for mercury methylation (6.4-30.0 ng g-1 day-1). Potential methylation rates were positively correlated with sulfate reduction rates, and decreased as a function of reduced sulfur and MeHg concentration in the sediments. Potential demethylation rate appeared not to be influenced by MeHg concentration, sulfur chemistry, DOC, sediment grain size or other parameters, and showed little variation across the sites (3.7-7.4 ng g-1 day-1). ?? 2003 Elsevier B.V. All rights reserved.

  8. Distribution of surficial sediment in Long Island Sound and adjacent waters: Texture and total organic carbon

    USGS Publications Warehouse

    Poppe, L.J.; Knebel, H. J.; Mlodzinska, Z.J.; Hastings, M.E.; Seekins, B.A.

    2000-01-01

    The surficial sediment distribution within Long Island Sound has been mapped and described using bottom samples, photography, and sidescan sonar, combined with information from the geologic literature. The distributions of sediment type and total organic carbon (TOC) reveal several broad trends that are largely related to the sea-floor geology, the bathymetry, and the effects of modern tidal- and wind-driven currents. Sediment types are most heterogeneous in bathymetrically complex and shallow nearshore areas; the heterogeneity diminishes and the texture fines with decreasing bottom-current energy. Lag deposits of gravel and gravelly sand dominate the surficial sediment texture in areas where bottom currents are the strongest (such as where tidal flow is constricted) and where glacial till crops out at the sea floor. Sand is the dominant sediment type in areas characterized by active sediment transport and in shallow areas affected by fine-grained winnowing. Silty sand and sand-silt-clay mark transitions within the basin from higher- to lower-energy environments, suggesting a diminished hydraulic ability to sort and transport sediment. Clayey silt and silty clay are the dominant sediment types accumulating in the central and western basins and in other areas characterized by long-term depositional environments. The amount of TOC in the sediments of Long Island Sound varies inversely with sediment grain size. Concentrations average more than 1.9% (dry weight) in clayey silt, but are less than 0.4% in sand. Generally, values for TOC increase both toward the west in the Sound and from the shallow margins to the deeper parts of the basin floor. Our data also suggest that TOC concentrations can vary seasonally.

  9. Pluri-annual sediment budget in a navigated river system: the Seine River (France).

    PubMed

    Vilmin, Lauriane; Flipo, Nicolas; de Fouquet, Chantal; Poulin, Michel

    2015-01-01

    This study aims at quantifying pluri-annual Total Suspended Matter (TSM) budgets, and notably the share of river navigation in total re-suspension at a long-term scale, in the Seine River along a 225 km stretch including the Paris area. Erosion is calculated based on the transport capacity concept with an additional term for the energy dissipated by river navigation. Erosion processes are fitted for the 2007-2011 period based on i) a hydrological typology of sedimentary processes and ii) a simultaneous calibration and retrospective validation procedure. The correlation between observed and simulated TSM concentrations is higher than 0.91 at all monitoring stations. A variographic analysis points out the possible sources of discrepancies between the variabilities of observed and simulated TSM concentrations at three time scales: sub-weekly, monthly and seasonally. Most of the error on the variability of simulated concentrations concerns sub-weekly variations and may be caused by boundary condition estimates rather than modeling of in-river processes. Once fitted, the model permits to quantify that only a small fraction of the TSM flux sediments onto the river bed (<0.3‰). The river navigation contributes significantly to TSM re-suspension in average (about 20%) and during low flow periods (over 50%). Given the significant impact that sedimentary processes can have on the water quality of rivers, these results highlight the importance of taking into account river navigation as a source of re-suspension, especially during low flow periods when biogeochemical processes are the most intense.

  10. Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82

    USGS Publications Warehouse

    Thompson, K.R.

    1985-01-01

    The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)

  11. Temporal and vertical distribution of total ammonia nitrogen and un-ionized ammonia nitrogen in sediment pore water from the upper Mississippi River

    USGS Publications Warehouse

    Frazier, Bradley E.; Naimo, Teresa J.; Sandheinrich, Mark B.

    1996-01-01

    We examined the temporal and vertical distribution of total ammonia nitrogen (TAN) and un-ionized ammonia nitrogen (NH3-N) in sediment pore water and compared the temporal patterns of TAN and NH3-N concentrations in overlying surface water with those in pore water. Pore water was obtained by core extraction and subsequent centrifugation. We measured TAN concentrations and calculated NH3-N concentrations from February through October 1993 at four sites in Pool 8, upper Mississippi River, at depths of 0 to 4, 4 to 8, and 8 to 12 cm below the sediment-water interface. Total ammonia nitrogen and NH3-N concentrations were significantly different among sampling dates (p = 0.0001) and sediment depths (p = 0.0001). Concentrations of TAN and NH3-N in surface water were significantly less than those in pore water from all sediment depths (p < 0.05). Concentrations in pore water ranged from 0.07 to 4.0 mg TAN/L and less than 1 to 20 I?g NH3-N/L in winter, and from 0.07 to 10.0 mg TAN/L and 1 to 175 I?g NH3-N/L in summer; greatest concentrations were usually found in sediments 8 to 12 cm deep. Annual mean TAN concentrations were positively correlated with silt and volatile solids content and were negatively correlated with sand content. Because of the high variability of TAN and NH3-N concentrations in pore water, sediment toxicity studies should take into account the season and the depth at which sediments are obtained. The annual mean NH3-N concentration in pore water at one site (55 I?g/L) exceeded the concentration (30 I?g/L) demonstrated to inhibit growth of fingernail clams in laboratory studies. However, these concentrations apparently were not lethal, as evidenced by the presence of fingernail clams at this site.

  12. Unified classical formula for non-cohesive total-load sediment transport in marine coastal zones

    NASA Astrophysics Data System (ADS)

    Khorram, Saeed; Ergil, Mustafa

    2016-11-01

    This paper proposes the concept of a significant transport rate, in coastal environments that contains different spatial and temporal scales and multiple interacting forces (e.g., waves, tides, wave-current, and wind density currents) as well as, the complex physical processes of total-load sediment which is not easy to calculate for practical needs due to restricted range of applicability. The present study develops a unified classical formula for non-cohesive total-load sediment transport in marine coastal zones by using dimensional analysis and self-similarity concepts where a set of independent variables considered. A dataset of total-load collected at both field observation stations and from the laboratory flume conditions and the six well-known relevant formulas were used to evaluate the predictive capability of the proposed formula. Since the results show that, the new formula is in good agreement with both field and flume data sets measures, the authors are suggesting the use of it for the sediment-carrying capacity predictions of total-load sediment transport in marine coastal zones.

  13. Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China.

    PubMed

    Rong, Nan; Shan, Baoqing

    2016-07-01

    Sediment oxygen demand (SOD) is a critical dissolved oxygen (DO) sink in many rivers. Understanding the relative contributions of the biological and chemical components of SOD would improve our knowledge of the potential environmental harm SOD could cause and allow appropriate management systems to be developed. A various inhibitors addition technique was conducted to measure the total, chemical, and biological SOD of sediment samples from 13 sites in the Ziya River watershed, a severely polluted and anoxic river system in the north of China. The results showed that the major component of SOD was chemical SOD due to iron predominate. The ferrous SOD accounted for 21.6-78.9 % of the total SOD and 33.26-96.79 % of the chemical SOD. Biological SOD represented 41.13 % of the overall SOD averagely. Sulfide SOD accounted for 1.78-45.71 % of the total SOD and it was the secondary predominate of the chemical SOD. Manganous SOD accounted for 1.2-16.6 % of the total SOD and it was insignificant at many sites. Only four kinds of benthos were collected in the Ziya River watershed, resulting from the low DO concentration in the sediment surface due to SOD. This study would be helpful for understanding and preventing the potential sediment oxygen depletion during river restoration.

  14. Partitioning of Total Dissolved Salts, Boron and Selenium in Pariette Wetland Water, Sediments and Benthic Organisms

    NASA Astrophysics Data System (ADS)

    Jacobson, A. R.; Jones, C. P.; Vasudeva, P.; Powelson, D.; Grossl, P.

    2014-12-01

    The Pariette Wetlands located in the Uinta Basin, UT, were developed by the BLM in part to mitigate salinity associated with irrigation drainage and runoff from flowing to the Green River, a tributary of the Colorado River. The wetlands are fed by runoff from upstream agricultural irrigation, and natural subsurface and overland flow through the Uintah formation, which is seleniferous, and saline. Concentrations of Total Dissolved Salts (TDS), boron (B) and selenium (Se) in the wetlands exceed the total maximum daily loads developed to meet the US EPA's water quality planning and management regulations (40CFR 130). This is of concern because the wetlands are home to populations of migratory birds, waterfowl, raptors, and numerous small mammals. A mass balance of the Se concentrations of water flowing into and out of the wetlands indicates that 80% of the Se is stored or lost within the system. Additional data suggest that the majority of the Se is associated with the sediments. Little information is available regarding the TDS and B. Therefore we will determine the whether B and other salts are accumulating in the wetland systems, and if so where. We sampled water, sediment, benthic organisms, and wetland plants, in 4 of the 23 ponds from the flood control inlet to water flowing out to the Green River. Sediments were collected at 3 depths (0-2 cm, 2-7 cm, and 7+ cm) at 3-4 locations within each pond including the inlet, outlet and at least one site near a major wetland plant community. Benthic organisms were sampled from the 0-2 cm and 2-7 cm sediment layers. Sediment and organism samples were digested with HNO3 and HClO4 prior to analysis of total Se by HGAAS. Hot water extractable B and DPTA extractable B were analyzed by ICP-AES. TDS was estimated from EC in the sediment and organisms extracts and direct analysis in the water. Preliminary results found that Se in the sediments decreases with depth. Se concentrations in the benthic organisms is approximately 4

  15. Impregnation method for detecting annual laminations in sediment cores: An overview

    NASA Astrophysics Data System (ADS)

    Boës, Xavier; Fagel, Nathalie

    2005-08-01

    Annually laminated sediments can provide an absolute time scale (by varve counting) and a high-resolution palaeoclimate information (from varve thickness). Both types of information may be directly measured from sediment core surfaces. In this paper, we stress that varve counting and varve thickness measurements derived from fresh core surfaces could not systematically reveal the internal sedimentary structure, even if assisted by high resolution image analysis. We present an example of a homogeneous sediment core for which the varves were only observable after core impregnation and polishing steps. Because the impregnation methods are not yet standardized, the aim of this paper is to give an updated review of the methodology. In this review, we present the major critical points during impregnation steps. In particular, we focus on all of the post-treatment sediment disturbances that can alter the laminated micro-structure and, consequently, varve measurements. Finally, we propose a modified impregnation protocol, especially adapted for tracking varved intervals in long cores.

  16. Sediment-porewater partitioning, total sulfur, and methylmercury production in estuaries.

    PubMed

    Schartup, Amina T; Balcom, Prentiss H; Mason, Robert P

    2014-01-21

    Mercury (Hg) speciation and the activity of Hg(II)-methylating bacteria are responsible for the rate of methylmercury production and thus bioaccumulation in marine foodwebs. Factors affecting porewater partitioning (Kd) and methylation of Hg(II) were examined at 11 sites in sediment of 4 biogeochemically diverse estuaries in the Northeast U.S. In Long Island Sound, 88% of total mercury (HgT) log Kd variability was described by porewater dissolved organic carbon concentration and sediment total sulfur (S) content. Whereas across all estuaries, regression analyses showed that S alone drives about 70% of Kd variability and 50% of changes in methylation rates; and the inclusion of DOC and sulfides did not improve the prediction. Thus, we demonstrated that S is a better predictor of HgT log Kd than the sediment organic matter across multiple estuaries, and while organic matter and S are interchangeable in small-scale studies, on a larger scale, sediment S content is the simplest and most effective variable to measure.

  17. Computer program for the computation of total sediment discharge by the modified Einstein procedure

    USGS Publications Warehouse

    Stevens, H.H.

    1985-01-01

    Two versions of a computer program to compute total sediment discharge by the modified Einstein procedure are presented. The FORTRAN 77 language version is for use on the PRIME computer, and the BASIC language version is for use on most microcomputers. The program contains built-in limitations and input-output options that closely follow the original modified Einstein procedure. Program documentation and listings of both versions of the program are included. (USGS)

  18. Total metal levels in crayfish Astacus leptodactylus (Eschscholtz, 1823), and surface sediments in Lake Terkos, Turkey.

    PubMed

    Kurun, Aysegül; Balkis, Nuray; Erkan, Melike; Balkis, Hüsamettin; Aksu, Abdullah; Erşan, Mahmut Selim

    2010-10-01

    The aim of this study was to determine the total metal accumulation (aluminium, copper, manganese, lead, cadmium and iron) in different organs and eggs of Astacus leptodactylus (Eschscholtz, 1823) and sediments total metal contents (aluminium, copper, manganese, lead, cadmium, iron, zinc, chromium, nickel) in Lake Terkos. Water and sediment samples were collected from two stations at two different depths (1 and 2 m) of Lake Terkos in May 2008. Crayfish samples were collected by trammel net at the same region. Primary hydrographic conditions, such as temperature (13.6-19.4 degrees C), salinity (0.27-0.34 per thousand), dissolved oxygen (7.04-12.30 mg l(-1)) and pH (7.42-8.51), were recorded for each sampling point. Moreover, the total organic carbon (1.65-5.44%) and the total calcium carbonate contents (19.44-41.16%) of sediment samples were determined. According to the Turkish Food Codex (J Zool 26:283-288, 2002), the maximum allowable Pb and Cd levels in crayfish are 0.5 mg/kg wet weight. Accordingly, the Pb and Cd levels determined in A. leptodactylus samples are below this limit. However, when compared with the acceptable metal limits defined by WHO, Australian National Health and Medical Research Council and Ministry of Agriculture in United Kingdom (UK), it is clear that the Cu level is at the limit and the Cd results exceed the limit. When the metal contents in sediment samples from Lake Terkos are examined, it is seen that the Al, Fe, Mn, Ni and Cu contents are lower while Zn, Cr, Cd and Pb contents are higher than the crustal average values. The high values draw attention to the land-based domestic and industrial inputs. Lake Terkos sediments have high enrichment factors (EF) of Zn, Cr, Cd and Pb metals which corroborate this result. The low EFs of Fe, Ni and Cu are due to the natural (terrigeneous) inputs. Additionally, there is no Al, Fe, Ni and Cu metal enrichment in these lake sediments because of the low contamination factor (CF) values. However, it is

  19. STANDARD-REFERENCE WATER-SUSPENDED SEDIMENT SAMPLE FOR TOTAL RECOVERABLE METALS.

    USGS Publications Warehouse

    Fishman, Marvin J.; Malo, Bernard A.; Boyle, Delora K.

    1984-01-01

    The U. S. Geological Survey has been preparing and maintaining a library of standard-reference water samples for dissolved inorganic constituents for 19 years. Recently, the reference-sample program was expanded to include a water-suspended sediment mixture for the determination of total recoverable metals. An interlaboratory round-robin study was conducted. Digestion procedures used by the U. S. Geological Survey and the U. S. Environmental Protection Agency were used to solubilize the metals before their measurement. The data indicate that both digestion procedures for total recoverable metals are essentially equivalent. Precision data are comparable to those data obtained in standard-reference water samples for dissolved metals.

  20. Total and Methyl Mercury Distribution in Water, Sediment, and Fish tissue in New England Streams

    NASA Astrophysics Data System (ADS)

    Chalmers, A. T.; Krabbenhoft, D. P.

    2001-05-01

    Conditions that are conducive to the methylation of mercury are of particular concern because methyl mercury (MeHg) is the most toxic mercury species and is rapidly bioaccumulated and biomagnified in wildlife and man. The New England Coastal Basins study unit, as part of the U.S. Geological Survey's National Water Quality Assessment program, has evaluated relations between concentrations of total mercury (HgT) and MeHg in stream water and bed sediment, and HgT in fish tissue at sites with a variety of watershed characteristics. Fifty-five stream sites from Rhode Island to Maine were sampled for water and bed sediment during 1998 - 2000. A subset of 27 sites was sampled for fish tissue. Sediment, water, and fish tissue samples were collected during summer low flow conditions within a week of each other to show patterns of MeHg accumulation and partitioning relative to site and watershed conditions. Concentrations of HgT in water and bed sediment ranged from 1 to 13 nanograms per liter (ng/L) and from 7 to 3,100 nanograms per gram (ng/g) dry weight, respectively. Concentrations of MeHg in water and sediment ranged from 0.04 to 1.8 ng/L and from 1 to 38 ng/g dry weight, respectively, and were positively correlated with concentrations of organic carbon. Methylation efficiency, as estimated by MeHg/HgT, ranged from 0.003 to 0.282 for sediment and water samples, with a median value of 0.071. Methylation efficiency was highest at sampling sites with low urbanization and high organic carbon concentrations. HgT concentrations in fish tissue (mixed sunfish species) ranged from 42 to 349 ng/g wet weight and were positively correlated with concentrations of MeHg in water and bed sediment. A positive relation was not observed between HgT concentrations in fish tissue and HgT concentrations in water and bed sediment. These preliminary results indicate a high potential for mercury bioaccumulation in aquatic organisms in New England streams.

  1. Evidence of annual variations in sediment supply to the Illinois Basin in Lower Pennsylvanian estuarine tidalites

    SciTech Connect

    Kvale, E.P.; Fraser, G.S. ); Zawistoski, A. ); Archer, A.W. )

    1992-01-01

    The intertidal to subtidal estuarine deposits in the early Pennsylvanian (Morrowan) Hindostan whetstone beds of Indiana consist of finely laminated siltstones with very thin intercalated claystone drapes. The laminae are grouped into millimeter-scale tidal bundles that thicken and thin in a vertical sequence that reflect a hierarchy of semidaily, daily, fortnightly, and monthly tidal cycles that are superposed on yearly cycles. The yearly pattern is recognized as a progressive thickening and thinning of neap-neap (semi-monthly) intervals. This yearly cyclicity provides a finite, short-term time element against which rates, duration, and timing of other geologic processes may be determined. Tidal theory predicts two equivalent neap-neap maxima per year, but all of the nine yearly cycles preserved in the whetstone beds contain one dominant maximum and one subordinant maximum. The Illinois Basin lay at 5[degree] south latitude during the Early Pennsylvanian, but presently, such equatorial zones are characterized by a uniform annual rainfall regime. The annual change in sedimentation patterns interpreted for the whetstone beds could be explained in several ways: (1) shifts in the intertropical convergence Zone may have resulted from substantial seasonal changes in latitudinal pressure variations brought about by the extreme concentration of land mass (Gondwanaland) in south arctic latitudes during the early Pennsylvanian; (2) shifts in westerly wind flow off the Tethys Ocean, across the Appalachian mountains and into the Illinois Basin, may also have produced seasonal rainfall patterns; or (3) the bulk of the sediment yield to the Illinois Basin came from relatively less vegetated source areas in higher latitudes and/or elevations that experienced strong seasonal variations in precipitation, and that relatively little sediment was contributed by the heavily vegetated parts of the drainage basin in the lower latitudes.

  2. 12 CFR Appendix L to Part 226 - Assumed Loan Periods for Computations of Total Annual Loan Cost Rates

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Assumed Loan Periods for Computations of Total Annual Loan Cost Rates L Appendix L to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED..., App. L Appendix L to Part 226—Assumed Loan Periods for Computations of Total Annual Loan Cost Rates...

  3. 12 CFR Appendix L to Part 226 - Assumed Loan Periods for Computations of Total Annual Loan Cost Rates

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Assumed Loan Periods for Computations of Total Annual Loan Cost Rates L Appendix L to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED..., App. L Appendix L to Part 226—Assumed Loan Periods for Computations of Total Annual Loan Cost Rates...

  4. Suspended-sediment concentrations, yields, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    USGS Publications Warehouse

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2015-01-01

    Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, as well as transporting harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentration (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples were collected from 14 sites from 2007 through 2011. Analyses of these data indicated that the Zumbro River at Kellogg in southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. The single highest SSC of 1,250 mg/L was measured at the Zumbro River during the 2011 spring runoff. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis-St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been known to underrepresent the amount of suspended sediment. For this study, comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. Regression analysis indicated that 7 out of 14 sites had poor or no relation between SSC and streamflow. Only two sites, the Knife River and the Wild Rice River at Twin Valley, had strong correlations between SSC and streamflow, with coefficient of determination (R2) values of 0.82 and 0.80, respectively. In contrast, turbidity had moderate to strong

  5. Statistic analysis of annual total ozone extremes for the period 1964-1988

    NASA Technical Reports Server (NTRS)

    Krzyscin, Janusz W.

    1994-01-01

    Annual extremes of total column amount of ozone (in the period 1964-1988) from a network of 29 Dobson stations have been examined using the extreme value analysis. The extremes have been calculated as the highest deviation of daily mean total ozone from its long-term monthly mean, normalized by the monthly standard deviations. The extremes have been selected from the direct-Sun total ozone observations only. The extremes resulting from abrupt changes in ozone (day to day changes greater than 20 percent) have not been considered. The ordered extremes (maxima in ascending way, minima in descending way) have been fitted to one of three forms of the Fisher-Tippet extreme value distribution by the nonlinear least square method (Levenberg-Marguard method). We have found that the ordered extremes from a majority of Dobson stations lie close to Fisher-Tippet type III. The extreme value analysis of the composite annual extremes (combined from averages of the annual extremes selected at individual stations) has shown that the composite maxima are fitted by the Fisher-Tippet type III and the composite minima by the Fisher-Tippet type I. The difference between the Fisher-Tippet types of the composite extremes seems to be related to the ozone downward trend. Extreme value prognoses for the period 1964-2014 (derived from the data taken at: all analyzed stations, the North American, and the European stations) have revealed that the prognostic extremes are close to the largest annual extremes in the period 1964-1988 and there are only small regional differences in the prognoses.

  6. Total petroleum hydrocarbons in sediments from the coastline and mangroves of the northern Persian Gulf.

    PubMed

    Mohebbi-Nozar, Seyedeh Laili; Zakaria, Mohamad Pauzi; Ismail, Wan Ruslan; Mortazawi, Mohammad Seddiq; Salimizadeh, Maryam; Momeni, Mohammad; Akbarzadeh, Gholamali

    2015-06-15

    To provide baseline information for the marine ecosystem of Hormozgan province, the distribution of petroleum hydrocarbons was evaluated in 52 stations involved in the mangrove and coastline ecosystem. Coastline sampling sites included areas facing harbor, river, domestic and industrial discharge. Sediment samples were analyzed based on ultraviolet fluorescence spectroscopy. Petroleum hydrocarbons showed narrow variations ranging from non-detectable (ND) to 1.71 and from 0.2 to 0.63μg/g dry weight for coastline and mangrove sediments, respectively. The detected concentrations for total petroleum hydrocarbons were lower than guideline values for ecological risk. Furthermore, the minimum environmental risk was confirmed by background levels for the Persian Gulf, the Sea of Oman, and detected values for reference areas. The results were regarded as background data in the studied area, and, considering the rapid expansion of activities related to the petroleum industry in Hormozgan province, the continuous monitoring of pollutants is recommended.

  7. Total, methyl and organic mercury in sediments of the Southern Baltic Sea.

    PubMed

    Bełdowski, J; Miotk, M; Bełdowska, M; Pempkowiak, J

    2014-10-15

    Distribution of sedimentary mercury in the Southern Baltic was investigated. Sediment samples were collected from the Southern Baltic in the period from 2009 to 2011, and concentrations of sedimentary total mercury (average 102 ng/g, range 5.8-225 ng/g) and methyl mercury (average 261 pg/g, range 61-940 pg/g) were measured in the manner that the influence of both patchiness and seasonal changes were assessed. Moreover, sedimentary mercury extracted with organic solvent- the so-called organic mercury was also analyzed (average 425 pg/g, range 100-1440 pg/g). There is a statistically significant dependence between organic mercury and both methyl mercury and total mercury concentrations in the sediments. Methyl mercury contribution to total mercury varied from 0.12% to 1.05%, while organic mercury contributed to 2% of total concentration on average. The area studied, although mercury concentrations exceed threefold the geochemical background, can be regarded as moderately contaminated with mercury, and methylmercury.

  8. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    NASA Astrophysics Data System (ADS)

    Drott, A.; Skyllberg, U.

    2007-12-01

    , the relationship was not significant. For sub-sets of brackish waters (p<0.001, n=23), southern, high-productivity freshwaters (p<0.001, n=20) as well as northern, low-productivity freshwater (p=0.048, n=6), the sum of neutral Hg-sulfides [Hg(SH)20 (aq)] and [HgS0 (aq)] in the sediment pore water was significantly, positively correlated with both the potential methylation rate constant (Km) and total MeHg concentrations (2). This indicates that methylating sulphate reducing bacteria passively take up neutral Hg-sulfides, which are transformed to MeHg. Differences in slopes of the relationships were explained by differences in primary productivity and availability of energy-rich organic matter to methylating bacteria. High primary productivity at southern freshwater sites, reflected by a low C/N ratio (large contribution from free living algae and bacteria) in the sediment and a high annual temperature sum, resulted in high methylation rates. In conclusion, concentrations of neutral Hg-sulfides and availability of energy rich organic matter, but also total Hg concentrations in sediments are important factors behind net production and accumulation of MeHg . References: (1) Drott et. al. submitted, (2) Drott, A.; Lambertsson, L.; Björn, E.; Skyllberg, U. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology 2007, 41, 2270-2276.

  9. Estimation of total annual mercury emissions from cement manufacturing facilities in Korea

    NASA Astrophysics Data System (ADS)

    Won, Jong Hyun; Lee, Tai Gyu

    2012-12-01

    This study examined mercury (Hg) emissions from cement manufacturing facilities in Korea. Hg concentrations in stack gases from a kiln at the largest cement manufacturing facility (CMF) in Korea were measured using three different methods: a wet-chemical method and on-line measurements with two different types of conversion systems (SnCl2 and thermal) attached in front of each analyzer. The Hg concentrations of the feedstocks and fuels were then analyzed to determine the total amount of Hg input into CMFs and how much each material contributed to the Hg input. The total annual Hg input into all CMFs in Korea was estimated to be 1.71 tons, while the total annual Hg emissions estimated from the stack-gas measurement was 1.17-1.53 tons, indicating that 68-89% of total Hg input is released into the atmosphere. Therefore, more stringent regulation and effective control technologies should be applied to the CMFs to reduce Hg emissions.

  10. Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments

    NASA Astrophysics Data System (ADS)

    Sawicka, Joanna E.; Brüchert, Volker

    2017-01-01

    Marine methane emissions originate largely from near-shore coastal systems, but emission estimates are often not based on temporally well-resolved data or sufficient understanding of the variability of methane consumption and production processes in the underlying sediment. The objectives of our investigation were to explore the effects of seasonal temperature, changes in benthic oxygen concentration, and historical eutrophication on sediment methane concentrations and benthic fluxes at two type localities for open-water coastal versus eutrophic, estuarine sediment in the Baltic Sea. Benthic fluxes of methane and oxygen and sediment pore-water concentrations of dissolved sulfate, methane, and 35S-sulfate reduction rates were obtained over a 12-month period from April 2012 to April 2013. Benthic methane fluxes varied by factors of 5 and 12 at the offshore coastal site and the eutrophic estuarine station, respectively, ranging from 0.1 mmol m-2 d-1 in winter at an open coastal site to 2.6 mmol m-2 d-1 in late summer in the inner eutrophic estuary. Total oxygen uptake (TOU) and 35S-sulfate reduction rates (SRRs) correlated with methane fluxes showing low rates in the winter and high rates in the summer. The highest pore-water methane concentrations also varied by factors of 6 and 10 over the sampling period with the lowest values in the winter and highest values in late summer-early autumn. The highest pore-water methane concentrations were 5.7 mM a few centimeters below the sediment surface, but they never exceeded the in situ saturation concentration. Of the total sulfate reduction, 21-24 % was coupled to anaerobic methane oxidation, lowering methane concentrations below the sediment surface far below the saturation concentration. The data imply that bubble emission likely plays no or only a minor role in methane emissions in these sediments. The changes in pore-water methane concentrations over the observation period were too large to be explained by temporal

  11. Reconstructing Quaternary precipitation periodicities with Santa Barbara Basin sediment cores: application of the siliciclastic detrital element proxy at annual resolution

    NASA Astrophysics Data System (ADS)

    Napier, T.; Hendy, I. L.; Hinnov, L.; Brown, E. T.

    2015-12-01

    Precipitation patterns in Southern California directly affect water availability, and extreme weather exacerbates water stress and subsequent societal impacts in this highly populated and vital agricultural region. In the future, mean annual precipitation is predicted to decrease in California, although frequency of heavy precipitation events may increase. To reconstruct annual precipitation history in Southern California, including both the magnitude and recurrence intervals, we analyze sediment from two Late Holocene (past ~150 years and past ~2 ka) and five Pleistocene (~400-450 ka [MIS 11 and 12] and ~735 ka [MIS 18]) cores collected in Santa Barbara Basin using data from XRF core scans for elements associated with the terrigenous siliciclastic detrital fraction of core sediment (Al, Fe, K, Rb, Si, Ti, Zr). We develop a floating annual age model for each core through identification of the annual signal in the siliciclastic detrital fraction. Siliciclastic detrital element concentrations increase in sediment associated with precipitation events and floods, and decrease in sediment associated with droughts. Variability in the concentrations of these elements can thus be used as a precipitation and river runoff proxy. We investigate changes in annual detrital sediment input during glacial, deglacial, and interglacial climate states, and changes due to rapid climate change (centennial to millennial time scales). Power spectral analysis of our annually tuned time series reveals precipitation periodicities associated with the Pacific Decadal Oscillation (15-25, 50-70 years) and El Niño-Southern Oscillation (2-7 years) that are dissimilar to common tidal perigee and nodal periods. These results provide information on the nature and response of precipitation patterns due to past changes in climate forcing, which will improve climate predictions for this region, especially interannual and decadal variability that impact climate on human timescales (i.e. <100 years).

  12. Sediment-bound total organic carbon and total organic nitrogen losses from conventional and strip tillage cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion and sediment loss with runoff are closely linked to global carbon and nitrogen cycles. Reducing tillage has been shown to reduce erosion and runoff sediment-bound carbon (C) and nitrogen (N) losses. However, published studies represent only a few soil types and regions and rarely direct...

  13. Degradation and total mineralization of monohalogenated biphenyls in natural sediment and mixed bacterial culture.

    PubMed Central

    Kong, H L; Sayler, G S

    1983-01-01

    Mixed bacterial cultures obtained from polychlorinated biphenyl-contaminated river sediments are capable of degrading monohalogenated biphenyls under simulated natural conditions. Culture conditions include river water as supportive medium and mixed bacterial cultures obtained from river sediments. Degradation occurs when the substrates are supplied as the sole carbon source or when added together with glucose. The degradation rates of 2-, 3-, and 4-chlorobiphenyl, at 30 micrograms ml-1, were 1.1, 1.6, and 2.0 micrograms ml-1 day-1, respectively. Monobrominated biphenyls, including 2-, 3-, and 4-bromobiphenyl, were degraded at rates of 2.3, 4.2, and 1.4 micrograms ml-1 day-1, respectively. Metabolites, including halogenated benzoates, were detected by high-performance liquid chromatography and mass spectrometry. By using chlorophenyl ring-labeled monochlorobiphenyls as substrates, total mineralization (defined as CO2 production from the chlorophenyl ring) was observed for 4-chlorobiphenyl but not for 2-chlorobiphenyl. Rates of total mineralization of 4-chlorobiphenyl (at 39 to 385 micrograms ml-1 levels) were dependent on substrate concentration, whereas variation of cell number in the range of 10(5) to 10(7) cells ml-1 had no significant effects. Simulated sunlight enhanced the rate of mineralization by ca. 400%. PMID:6639021

  14. Evaluating long-term annual sediment yield estimating potential of GIS interfaced MUSLE model on two micro-watersheds.

    PubMed

    Arekhi, Saleh

    2008-01-15

    Use of an event scale MUSLE model for obtaining accurate long-term annual sediment yield estimates from micro-watersheds was evaluated. Such estimates are extremely important for designing appropriate soil/water conserving measures. For easy extraction and inputting of model input parameters, the proposed model was interfaced to an Arc-View/Spatial Analyst geographic information system. Application of this GIS interfaced MUSLE model on two gauged (pine and oak forest) hilly micro-watersheds viz., Salla Rautella (0.47 km2) and Naula (0.42 km2), in Almora district of Uttaranchal, India showed that it could estimate annual sediment yields with absolute mean relative errors ranging between 12-14%. Even long-term average sediment yields for Salla Rautella (observed: 9.58 tons and estimated: 10.92 tons) and Naula: (Observed: 23.89 tons and estimated: 26.61 tons) micro-watersheds could be quite realistically simulated by the proposed model.

  15. Influence of different temporal sampling strategies on estimating total phosphorus and suspended sediment concentration and transport in small streams

    USGS Publications Warehouse

    Robertson, Dale M.

    2003-01-01

    Various temporal sampling strategies are used to monitor water quality in small streams. To determine how various strategies influence the estimated water quality, frequently collected water quality data from eight small streams (14 to 110 km2) in Wisconsin were systematically subsampled to simulate typically used strategies. These subsets of data were then used to estimate mean, median, and maximum concentrations, and with continuous daily flows used to estimate annual loads (using the regression method) and volumetrically weighted mean concentrations. For each strategy, accuracy and precision in each summary statistic were evaluated by comparison with concentrations and loads of total phosphorus and suspended sediment estimated from all available data. The most effective sampling strategy depends on the statistic of interest and study duration. For mean and median concentrations, the most frequent fixed period sampling economically feasible is best. For maximum concentrations, any strategy with samples at or prior to peak flow is best. The best sampling strategy to estimate loads depends on the study duration. For one-year studies, fixed period monthly sampling supplemented with storm chasing was best, even though loads were overestimated by 25 to 50 percent. For two to three-year load studies and estimating volumetrically weighted mean concentrations, fixed period semimonthly sampling was best.

  16. 12 CFR Appendix L to Part 226 - Assumed Loan Periods for Computations of Total Annual Loan Cost Rates

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Annual Loan Cost Rates L Appendix L to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Pt. 226, App. L Appendix L to Part 226—Assumed Loan Periods for Computations of Total Annual Loan Cost Rates (a)...

  17. 12 CFR Appendix L to Part 226 - Assumed Loan Periods for Computations of Total Annual Loan Cost Rates

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Annual Loan Cost Rates L Appendix L to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Pt. 226, App. L Appendix L to Part 226—Assumed Loan Periods for Computations of Total Annual Loan Cost Rates (a)...

  18. 50 CFR 648.231 - Spiny dogfish Annual Catch Target (ACT) and Total Allowable Level of Landings (TAL).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Spiny dogfish Annual Catch Target (ACT... OF THE NORTHEASTERN UNITED STATES Management Measures for the Spiny Dogfish Fishery § 648.231 Spiny dogfish Annual Catch Target (ACT) and Total Allowable Level of Landings (TAL). (a) The Spiny...

  19. 50 CFR 648.231 - Spiny dogfish Annual Catch Target (ACT) and Total Allowable Level of Landings (TAL).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Spiny dogfish Annual Catch Target (ACT... OF THE NORTHEASTERN UNITED STATES Management Measures for the Spiny Dogfish Fishery § 648.231 Spiny dogfish Annual Catch Target (ACT) and Total Allowable Level of Landings (TAL). (a) The Spiny...

  20. 50 CFR 648.231 - Spiny dogfish Annual Catch Target (ACT) and Total Allowable Level of Landings (TAL).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Spiny dogfish Annual Catch Target (ACT... OF THE NORTHEASTERN UNITED STATES Management Measures for the Spiny Dogfish Fishery § 648.231 Spiny dogfish Annual Catch Target (ACT) and Total Allowable Level of Landings (TAL). (a) The Spiny...

  1. Distribution of total mercury in surface sediments of the western Jade Bay, Lower Saxonian Wadden Sea, southern North Sea.

    PubMed

    Jin, Huafang; Liebezeit, Gerd; Ziehe, Daniel

    2012-04-01

    A total of 114 surface sediment samples was equidistantly collected in the western part of the Jade Bay, southern North Sea, to analyse total mercury contents as well as grain size distribution and total organic carbon (TOC) contents. Total mercury was determined by oxygen combustion-gold amalgamation. Validation, precision and accuracy of the method were evaluated and controlled with two certified reference materials (HISS-1 and MESS-3). Total mercury contents varied between 8 and 243 ng/g dry sediment with a mean value of 103 ng/g dw. The mercury levels in surface sediments showed an inhomogeneous spatial distribution with higher contents in near-dike areas. The values are mostly in the range of natural background values (50–100 ng/g dw) and positively related to TOC and clay/silt contents (<63 μm). The present total mercury contents are compared to those of previous studies, in order to estimate possible temporal trends of mercury contents in the study area over the last decades. Moreover, the comparison to sediment quality guidelines indicated that the surface sediments of the Jade Bay are not mercury contaminated. These results also suggested that the current mercury contents of Jade Bay surficial sediments are mostly affected by atmospheric deposition and re-emission.

  2. 7th Annual NASA/Contractors Conference on Quality and Productivity: "Total Quality Leadership"

    NASA Technical Reports Server (NTRS)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity on October 12-13, 1990, in Grenelefe, Florida. The panel presentations and keynote speeches revolving around the theme of 'Total Quality Leadership' provided a solid base of understanding of the importance, benefits, and principles of total quality management. The implementation of these strategies is critical if we are to effectively pursue our mission of continuous quality improvement and reliability in our products, processess, and services. The annual NASA/contractors conferences serve as catalysts for achieving success in this mission. The conference was highlighted by the announcement of the first recipients of the George M. Low Trophy: NASA's Quality and Excellence Award. My congratulations go out to all nine finalist organizations and to the two recipients of this prestigious honor: Rockwell Space Systems Division and Marotta Scientific Controls, Inc. (the first small business to achieve this honor). These organizations have demonstrated a commitment to quality that is unsurpassed in the aerospace industry. This report summarizes the presentations and is not intended to be a verbatim proceedings document. You are encouraged to contact the speakers with any requests for further information.

  3. Total mercury concentration in sediment from the continental shelf of central California

    NASA Astrophysics Data System (ADS)

    Acosta, R. M.; Weiss-Penzias, P. S.; Bauer, V.; Ryan, J. P.; Flegal, A. R.

    2012-12-01

    In order to understand the biogeochemical distribution of mercury (Hg) and locate specific Hg hot spots in the coastal region of central California, total mercury (HgT) concentration were measured in 43 archived sediment cores collected between Año Nuevo and the southern end of Monterey Bay. The samples were taken from USGS in Menlo Park, California on May 4th 2012. The cores were collected through the Environmental Management Assessment Program (EMAP), with ID sites: M-1-95-MB, P-2-95-MB and P-1-97-MB. For the purpose of this study we assumed that there has been negligible diagenesis on trace metal Hg since samples were taken. Total Hg concentrations were measured on the top five cm of the cores and yielded a mean of 0.037 μg g-1, and ranged from 0.013 to 0.113 μg g-1. In addition, the 43 samples were split into nine transects, and transects found near the mouth of Monterey Bay submarine canyon (MBSC) contained the highest concentration of HgT, with a mean concentration of 0.043 μg g-1, and ranged from 0.038 to 0.113 μg g-1. This substantial increase in HgT concentration near MBSC might be a product of the bathymetry acting as a sink or interaction between internal waves and the canyon's rim. This allows reactivation of surface sediment, which can separate fine grained sand, mud and clay content near the mid-shelf region and the canyon rim. Three depth profiles with 0-30 cm intervals were measured for HgT concentrations. Cores averaged mean HgT concentrations of 0.032, 0.040, and 0.037 μg g-1, while each profile ranged from 0.025-0.043, 0.028-0.065 and 0.022-0.051 μg g-1. Each depth profile had slight variations in HgT concentrations. One core located between Daven Port and Santa Cruz displayed decreasing HgT concentration with increasing depth. The inconsistency seen in the depth profiles might be products of external factors such as textural changes as depth increases, changes in Hg fluxes, bio mixing, and diagenesis such as redox reactions. Furthermore

  4. Ratios of total suspended solids to suspended sediment concentrations by particle size

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.T.

    2011-01-01

    Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.

  5. Determination of total chromium in Marine Sediment Reference Material BCSS-1.

    PubMed

    Liu>, J.; Sturgeon, R. E.; Boyko, V. J.; Willie, S. N.

    1996-12-01

    The determination of Cr in National Research Council of Canada Marine Sediment Reference Material BCSS-1 is addressed. Mixed acid digestions utilizing HF, HClO(4) and HNO(3) were investigated. Single microwave assisted digestions in closed vessels at medium pressures (8 bar) were inappropriate (80% recovery). Double digestion at moderate pressure and digestions at high pressure (70 bar) or lengthy open-beaker hot plate dissolutions resulted in 93+/-5% recovery of certified Cr content. Flame atomic absorption and inductively coupled plasma atomic emission spectrometry were used for quantitation. In all cases, the method of standard additions was necessary to eliminate the approximately 10% enhancement in re- sponce relative to unmatched standards. Compared to a certified content of 123+/-7 microg/g (mean and standard deviation), values of 116+/-6 were obtained using an open beaker digestion; 114+/-5 using a double microwave digestion at 8 bar; 113+/-2 for microwave digestion at high pressure and 111+/-4 at high pressure (81 bar) with triple microwave digestion in a Parr bomb. No acid dissolution procedure is adequate for Cr in this sample although recovery of total Cr is complete from National Institute of Standards and Technology Buffalo River Sediment (SRM 2704).

  6. Longitudinal dependence of annual cycle of total ozone in the Northern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Milinevsky, Gennadi; Evtushevsky, Oleksandr; Grytsai, Asen

    2015-04-01

    In the Northern mid-latitudes, annual change of the total ozone content (TOC) in terms of zonal means is mainly determined by stratospheric ozone accumulation in winter and spring due to the Brewer-Dobson circulation (BDC) and following photochemical relaxation continuing to autumn. It is known from previous studies that annual TOC cycle in some regions could be close to or differ from the zonal mean one. For example, annual TOC minimum over Eastern Asia is observed two months earlier (August) than over Europe (October). In this work, a consecutive analysis of the TOC seasonality along the latitudinal belt 50-55°N in 36 segments (10°-step in longitude) is analyzed. The latitude range includes northern Ukraine and Kyiv-Goloseyev Dobson station. Analysis is based on the Merged Ozone Data Set (MOD) reanalysis 1979-2011 (http://acd-ext.gsfc.nasa.gov/Data_services/merged/). We use also the NCEP-NCAR reanalysis data (http://www.esrl.noaa.gov/psd/cgi-bin/data/composites/printpage.pl) to estimate seasonal changes in geopotential heights and tropopause heights. It is shown that the seasonal TOC cycle over the cyclonic anomalies (high mean TOC level) is shifted to the beginning of year in comparison with that over the anticyclonic anomalies (low mean TOC level). The largest TOC values over the Aleutian low (around 150°E) are characterized by the earliest seasonal maximum (February-March) and minimum (August). Here, the tropospheric dynamics (winter/summer extremes in the planetary wave activity and stationary pressure anomaly formation/disappearance) and related tropopause effects seem to have dominant influence on the earliest development of the annual TOC cycle. Zonal asymmetry in stratospheric ozone accumulation influences rather the maximum TOC levels in this region than timing of the TOC extremes. In the opposite longitude range (zonal TOC minimum in region of the Azores high influence, 20-30°W), the annual TOC cycle lags by 2-3 months reaching a TOC maximum in May

  7. Comparison of different methods to calculate total runoff and sediment yield based on aliquot sampling from rainfall simulations

    NASA Astrophysics Data System (ADS)

    Tresch, Simon; Fister, Wolfgang; Marzen, Miriam; Kuhn, Nikolaus J.

    2015-04-01

    The quality of data obtained by rainfall experiments depends mainly on the quality of the rainfall simulation itself. However, the best rainfall simulation cannot deliver valuable data, if runoff and sediment discharge from the plot are not sampled at a proper interval or if poor interpolation methods are being used. The safest way to get good results would be to collect all runoff and sediment amounts that come off the plot in the shortest possible intervals. Unfortunately, high rainfall amounts often coincide with limited transport and analysis capacities. Therefore, it is in most cases necessary to find a good compromise between sampling frequency, interpolation method, and available analysis capacities. The aim of this study was to compare different methods to calculate total sediment yield based on aliquot sampling intervals. The methods tested were (1) simple extrapolation of one sample until next sample was collected; (2) averaging between two successive samples; (3) extrapolation of the sediment concentration; (4) extrapolation using a regression function. The results indicate that all methods could, theoretically, be used to calculate total sediment yields, but errors between 10-25% would have to be taken into account for interpretation of the gained data. Highest deviations were always found for the first measurement interval, which shows that it is very important to capture the initial flush of sediment from the plot to be able to calculate reliable total values.

  8. Temporal changes in TBT pollution in water, sediment, and oyster from Jinhae Bay after the total ban in South Korea.

    PubMed

    Kim, Nam Sook; Hong, Sang Hee; Yim, Un Hyuk; Shin, Kyung-Hoon; Shim, Won Joon

    2014-09-15

    Temporal change in tributyltin (TBT) levels in Jinhae Bay, which has various TBT sources, was investigated in water, sediments, and oysters from 2003 to 2013 after its total ban in South Korea. The seawater TBT levels decreased over 500-fold from 1995/97 to 2008/09. The oyster TBT levels were about fourfold lower in 2012/13 than in 1995/97. However, the sediment TBT levels did not significantly change, even 10 years after the partial TBT ban on small ships and 7 years after the total TBT ban on all oceangoing vessels in Korea. The total ban of TBT use effectively reduced water and oyster TBT levels in Jinhae Bay, but TBT levels in water, oysters, and sediment remained above the global environmental quality standards established to protect marine organisms.

  9. Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: annual, decadal, centennial scales

    USGS Publications Warehouse

    Hupp, Cliff R.; Schenk, Edward R.; Kroes, Daniel; Willard, Debra A.; Townsend, Phil A.; Peet, Robert K.

    2015-01-01

    The lower Roanoke River on the Coastal Plain of North Carolina is not embayed and maintains a floodplain that is among the largest on the mid-Atlantic Coast. This floodplain has been impacted by substantial aggradation in response to upstream colonial and post-colonial agriculture between the mid-eighteenth and mid-nineteenth centuries. Additionally, since the mid-twentieth century stream flow has been regulated by a series of high dams. We used artificial markers (clay pads), tree-ring (dendrogeomorphic) techniques, and pollen analyses to document sedimentation rates/amounts over short-, intermediate-, and long-term temporal scales, respectively. These analyses occurred along 58 transects at 378 stations throughout the lower river floodplain from near the Fall Line to the Albemarle Sound. Present sediment deposition rates ranged from 0.5 to 3.4 mm/y and 0.3 to 5.9 mm/y from clay pad and dendrogeomorphic analyses, respectively. Deposition rates systematically increased from upstream (high banks and floodplain) to downstream (low banks) reaches, except the lowest reaches. Conversely, legacy sediment deposition (A.D. 1725 to 1850) ranged from 5 to about 40 mm/y, downstream to upstream, respectively, and is apparently responsible for high banks upstream and large/wide levees along some of the middle stream reaches. Dam operations have selectively reduced levee deposition while facilitating continued backswamp deposition. A GIS-based model predicts 453,000 Mg of sediment is trapped annually on the floodplain and that little watershed-derived sediment reaches the Albemarle Sound. Nearly all sediment in transport and deposited is derived from the channel bed and banks. Legacy deposits (sources) and regulated discharges affect most aspects of present fluvial sedimentation dynamics. The lower river reflects complex relaxation conditions following both major human alterations, yet continues to provide the ecosystem service of sediment trapping.

  10. Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: Annual, decadal, centennial scales

    NASA Astrophysics Data System (ADS)

    Hupp, C. R.; Schenk, E. R.; Kroes, D. E.; Willard, D. A.; Townsend, P. A.; Peet, R. K.

    2015-01-01

    The lower Roanoke River on the Coastal Plain of North Carolina is not embayed and maintains a floodplain that is among the largest on the mid-Atlantic Coast. This floodplain has been impacted by substantial aggradation in response to upstream colonial and post-colonial agriculture between the mid-eighteenth and mid-nineteenth centuries. Additionally, since the mid-twentieth century stream flow has been regulated by a series of high dams. We used artificial markers (clay pads), tree-ring (dendrogeomorphic) techniques, and pollen analyses to document sedimentation rates/amounts over short-, intermediate-, and long-term temporal scales, respectively. These analyses occurred along 58 transects at 378 stations throughout the lower river floodplain from near the Fall Line to the Albemarle Sound. Present sediment deposition rates ranged from 0.5 to 3.4 mm/y and 0.3 to 5.9 mm/y from clay pad and dendrogeomorphic analyses, respectively. Deposition rates systematically increased from upstream (high banks and floodplain) to downstream (low banks) reaches, except the lowest reaches. Conversely, legacy sediment deposition (A.D. 1725 to 1850) ranged from 5 to about 40 mm/y, downstream to upstream, respectively, and is apparently responsible for high banks upstream and large/wide levees along some of the middle stream reaches. Dam operations have selectively reduced levee deposition while facilitating continued backswamp deposition. A GIS-based model predicts 453,000 Mg of sediment is trapped annually on the floodplain and that little watershed-derived sediment reaches the Albemarle Sound. Nearly all sediment in transport and deposited is derived from the channel bed and banks. Legacy deposits (sources) and regulated discharges affect most aspects of present fluvial sedimentation dynamics. The lower river reflects complex relaxation conditions following both major human alterations, yet continues to provide the ecosystem service of sediment trapping.

  11. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 1999 Annual Report.

    SciTech Connect

    Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D.

    2000-01-01

    This project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Folk John Day and Grande Ronde Rivers, for five years.

  12. Spatial and Seasonal Variations of Total Petroleum Hydrocarbon in Surface Water and Sediment in Pearl River Delta.

    PubMed

    Zhao, Jiandi; Yin, Pinghe; Zhao, Ling; Yu, Qiming; Lu, Gang

    2015-09-01

    A field study in the Pearl River Delta of China was conducted in order to describe to the spatial and seasonal variation of occurrence and concentrations of total petroleum hydrocarbon (TPH) in surface water and sediments. Petroleum hydrocarbons and isoprenoid alkanes were quantified by UV spectroscopy and gas chromatography with a mass selective detector. The concentrations of TPH ranged from 4.3 to 68.7 µg L(-1) in surface water, and from 66.6 to 1445 µg g(-1) in surface sediments. The ratios of pristine to phytane suggested that the main sources of TPH in the sediment were petroleum importation. The highest concentrations of TPH were present in the spring season. When compared with results from previous studies, it can be concluded that the Pearl River Delta was moderately polluted by TPH. No statistically significant correlations were observed between the concentrations of TPH in surface water and sediments.

  13. Comparisons between thorium isotopes in seawater and marine sediments for reconstructing dissolved and total detrital inputs to the ocean

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.; Henderson, G. M.; Williams, R. H.; McGee, D.

    2012-12-01

    Thorium-232, the most abundant Th isotope in the continental crust, has been widely used in seawater and marine sediments to evaluate continental inputs to the ocean. Seawater 232Th concentrations combined with estimates of Th residence time in the surface ocean derived from measurements of 230Th (or 234Th or 228Th) have been used to assess the dissolved 232Th removal flux. Assuming a constant 232Th concentration in detritus and dust Th solubility in seawater, 232Th removal flux can be converted to atmospheric dust input to the ocean. In marine sediments, 232Th concentrations have been normalized by 230Th to estimate total 232Th sinking flux to the seafloor. Similarly, this flux can also be used to estimate dust input to the ocean. Comparisons between dissolved 232Th removal flux in seawater and total 232Th sinking flux in sediments are crucial, because the discrepancy between these two fluxes could provide insights into several important issues, including uncertain dust Th solubility, potential advective Th inputs, inaccurate 230Th-derived sediment accumulation rates, and unknown lateral sediment transport. However, comparisons between these two fluxes have rarely been made in the same core-top sediments and water columns above. In this study, we compile several seawater and marine sediment Th data from different regions of the ocean, with a focus on the tropical North Atlantic Ocean. The data are used to estimate 232Th removal and sinking fluxes, and hence the dissolved and total detrital inputs to the ocean. The results are also compared with other dust tracers (e.g. Al and Ti) and modeled dust deposition to improve our understanding of Th and dust in the ocean. This work offers an important test for the use of Th isotopes in reconstructing paleo dust input to the ocean and the impacts of dust flux changes on marine productivity and climate change in the past.

  14. Summary Report of the Seventh Annual NASA/Contractors Conference on Quality and Productivity: "Total Quality Leadership"

    NASA Technical Reports Server (NTRS)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity on October 12-13, 1990, in Grenelefe, Florida. The panel presentations and keynote speeches revolving around the theme of 'Total Quality Leadership" provided a solid base of understanding of the importance, benefits, and principles of total quality management. The implementation of these strategies is critical if we are to effectively pursue our mission of continuous quality improvement and reliability in our products, processes, and services. The annual NASA/contractors conferences serve as catalysts for achieving success in this mission.

  15. METHODS FOR THE DETERMINATION OF TOTAL ORGANIC CARBON (TOC) IN SOILS AND SEDIMENTS

    EPA Science Inventory

    Organic matter in soils and sediments is widely distributed over the earth's surface occurring in almost all terrestrial and aquatic environments (Schnitzer, 1978). Soils and sediments contain a large variety of organic materials ranging from simple sugars and carbohydrates to th...

  16. Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis.

    PubMed

    Cicero-Fernández, Diego; Peña-Fernández, Manuel; Expósito-Camargo, Jose A; Antizar-Ladislao, Blanca

    2016-07-20

    The long-term (i.e., two consecutive annual cycles) ability of Phragmites australis to remediate estuarine sediments contaminated with heavy metals (Co, Ni, Mo, Cd, Pb, Cr, Cu, Fe, Mn, Zn and Hg) and trace elements of concern (As, Se, Ba) was investigated using an experimental approach on a pilot plant scale. The accumulation of these elements on belowground and aboveground tissues was monitored during vegetative and senescence periods for two populations of P. australis, originally from contaminated (MIC) and non-contaminated (GAL) estuaries, respectively. The initial concentration of the elements in the contaminated estuarine sediment decreased in the following order: Fe>Mn>Zn>Pb>Ba>Cr>As>Cu>Ni>Co>Mo>Cd>Se>Hg. A similar trend was recorded in the belowground biomass following remediation, suggesting the potential role of P. australis as an effective biomonitoring tool. Hg was not detected in any plant tissue. An overall annual increase of concentration levels in belowground tissue was observed. Overall, this study suggested that P. australis populations from GAL were substantially more efficient in taking up Ni, Mo and Cr during the second annual cycle in both belowground and aboveground tissue than P. australis populations from MIC. Calculated bio-concentration factors (BCF) suggested a clear metal excluder strategy for Co, Cd, Pb, Cu and Fe, with accumulation and stabilisation belowground, with limited translocation into aerial tissues observed during the length of this study. An excluder behaviour for Zn, Ba and Mn was detected during the second annual cycle, coinciding with a substantial increase of concentration levels belowground. This study demonstrated for the first time the long term efficacy of P. australis for phytoremediation of heavy metal contaminated estuarine sediments.

  17. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 2000 Annual Report.

    SciTech Connect

    Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D.

    2001-01-01

    Fine sediment in spawning substrate has a major effect on salmon survival from egg to smolt. Basin-wide restoration plans have established targets for fine sediment levels in spawning habitat. The project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Fork John Day (NFJDR) and Grande Ronde Rivers, for five years. The project is also investigating the potential relationship between surface fine levels and overwinter sedimentation. It will provide data to assess trends in substrate conditions in monitored reaches and whether trends are consistent with efforts to improve salmon habitat conditions. The data on the magnitude of overwinter sedimentation will also be used to estimate salmon survival from egg to emergence. In Sept. 1998, 1999, and Aug. 2000, sites for monitoring overwinter sedimentation were established in salmon spawning habitat in the upper Grande Ronde River, Catherine Creek (a Grande Ronde tributary), the North Fork John Day River (NFJDR), and Granite Creek (a NFJDR tributary). Surface fine sediment levels were measured in these reaches via the grid method and visually estimated to test the relative accuracy of these two methods. In 1999 and 2000, surface fine sediment was also estimated via pebble counts at selected reaches to allow comparison of results among the methods. Overwintering substrate samples were collected in April 1999 and April-May 2000 to estimate the amount of overwinter sedimentation in clean gravels in spawning habitat. Monitoring methods and locations are described.

  18. Sediment-adsorbed total mercury flux through Yolo Bypass, the primary floodway and wetland in the Sacramento Valley, California.

    PubMed

    Springborn, Michael; Singer, Michael Bliss; Dunne, Thomas

    2011-12-15

    The fate and transport of mercury are of critical concern in lowland floodplains and wetlands worldwide, especially those with a history of upstream mining that increases the mobility of both dissolved and sediment-bound Hg in watersheds. A mass budget of total mercury (THg) quantifies sources and storage for particular areas - knowledge that is required for understanding of management options in lowland floodplains. In order to assess contaminant risk in the largest flood-control bypass, prime wetland, and restoration target in the Sacramento River basin, we estimated empirical relationships between THg, suspended sediment concentration (SSC), and streamflow (Q) for each of the major inputs and outputs using data from various publicly available sources. These relationships were improved by incorporating statistical representations of the dynamics of seasonal and intra-flood exhaustion (hysteresis) of sediment and mercury. Using continuous records of Q to estimate SSC suspended sediment flux and SSC to estimate THg flux, we computed the net transfer of sediment-adsorbed mercury through the Yolo Bypass over a decade, 1993-2003. Flood control weirs spilling Sacramento River floodwaters into the bypass deliver ~75% of the water and ~50% of the river's suspended sediment load, while one Coast Range tributary of the bypass, Cache Creek, contributes twice the THg load of the mainstem Sacramento. Although estimated sediment flux entering Yolo Bypass is balanced by efflux to the Sacramento/San Francisco Bay-Delta, there is much evidence of deposition and remobilization of sediment in Yolo Bypass during flooding. These factors point to the importance of the bypass as sedimentary reservoir and as an evolving substrate for biogeochemical processing of heavy metals. The estimates of mercury flux suggest net deposition of ~500 kg in the 24,000 ha floodway over a decade, dominated by two large floods, representing a storage reservoir for this important contaminant.

  19. Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River

    NASA Astrophysics Data System (ADS)

    Coynel, Alexandra; Seyler, Patrick; Etcheber, Henri; Meybeck, Michel; Orange, Didier

    2005-12-01

    The Congo (Zaire) River, the world's second largest river in terms both of water discharges and of drainage area after the Amazon River, has remained to date in a near-pristine state. For a period between 2 and 6 years, the mainstream near the river mouth (Brazzaville/Kinshasa station) and some of the major and minor tributaries (the Oubangui, Mpoko, and Ngoko-Sangha) were monitored every month for total suspended sediment (TSS), particulate organic carbon (POC), and dissolved organic carbon (DOC). In this large but relatively flat equatorial basin, TSS levels are very low and organic carbon is essentially exported as DOC: from 74% of TOC for the tributaries flowing in savannah regions and 86% for those flowing in the rain forest. The seasonal patterns of TSS, POC, and DOC show clockwise hysteresis in relation to river discharges, with maximum levels recorded 2 to 4 months before peak flows. At the Kinshasa/Brazzaville station, the DOC distribution is largely influenced by the input from the tributaries draining the large marshy forest area located in the center of the basin. There is a marked difference between specific fluxes, threefold higher in the forest basins than in the savannah basins. The computation of inputs to the Atlantic Ocean demonstrates that the Congo is responsible for 14.4 × 106 t/yr of TOC of which 12.4 × 106 t/yr is DOC and 2 × 106 t/yr is POC. The three biggest tropical rivers (the Amazon, the Congo, and the Orinoco), with only 10% of the exoreic world area drained to world oceans, contribute ˜4% of its TSS inputs but 15-18% of its organic carbon inputs. These proportions may double when considering only world rivers discharging into the open ocean.

  20. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 1998 Annual Report.

    SciTech Connect

    Purser, Michael D.; Rhodes, Jonathan J.

    1999-01-01

    Fine sediment levels in spawning substrate have a major effect on salmon survival from egg to smolt. Assessments have consistently concluded that fine sediment is a major problem for salmon in the Grande Ronde and, to a lesser extent, the John Day rivers. It is likely that fine sediment levels in these rivers must be reduced if salmon survival from egg to smolt is to be increased.

  1. 12 CFR Appendix L to Part 1026 - Assumed Loan Periods for Computations of Total Annual Loan Cost Rates

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Assumed Loan Periods for Computations of Total Annual Loan Cost Rates L Appendix L to Part 1026 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION TRUTH IN LENDING (REGULATION Z) Pt. 1026, App. L Appendix L to Part 1026—Assumed Loan Periods...

  2. 12 CFR Appendix L to Part 1026 - Assumed Loan Periods for Computations of Total Annual Loan Cost Rates

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Assumed Loan Periods for Computations of Total Annual Loan Cost Rates L Appendix L to Part 1026 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION TRUTH IN LENDING (REGULATION Z) Pt. 1026, App. L Appendix L to Part 1026—Assumed Loan Periods...

  3. 12 CFR Appendix K to Part 1026 - Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PROTECTION TRUTH IN LENDING (REGULATION Z) Pt. 1026, App. K Appendix K to Part 1026—Total Annual Loan Cost... Terms Age of youngest borrower: Appraised property value: Interest rate: Monthly advance: Initial draw... Appraised property value: $100,000 Interest rate: 9% Monthly advance: $301.80 Initial draw: $1,000 Line...

  4. 12 CFR Appendix K to Part 226 - Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., App. K Appendix K to Part 226—Total Annual Loan Cost Rate Computations for Reverse Mortgage... property value: Interest rate: Monthly advance: Initial draw: Line of credit: Initial Loan Charges Closing...: $301.80 Initial draw: $1,000 Line of credit: $4,000 Initial Loan Charges Closing costs: $5,000...

  5. DIATOM INDICATORS OF TOTAL PHOSPHORUS, SEDIMENTS, AND WATERSHED FOREST COVER IN LAKE MICHIGAN COASTAL, RIVERINE WETLANDS

    EPA Science Inventory

    Diatom assemblages are being investigated as response and diagnostic indicators as part of our Great Lakes coastal wetlands research designed to support the development of nutrient, habitat, and sediment criteria and to develop community- and landscape-level diagnostic indicator ...

  6. Estimating annual generation rates of total P and total N for different land uses in Tasmania, Australia.

    PubMed

    Broad, S T; Corkrey, R

    2011-06-01

    Water quality issues have become increasingly important to Australian catchment stakeholders. As extensive nutrient sampling and modelling expertise are often absent or unattainable, simple unit-area models like Catchment Management Support System (CMSS) remain an attractive option for informing water quality management decisions. The selection of nutrient generation rates for use in CMSS is often an arbitrary assignment based on limited literature sources or expert opinion. Using a Bayesian model to estimate nutrient generation rates for the region of Tasmania, Australia, improved the rigor of CMSS modelling and in the process highlighted that dairy pastures were the most significant contributor of total phosphorus and total nitrogen loads to Tasmanian rivers.

  7. 12 CFR Appendix K to Part 226 - Total Annual Loan Cost Rate Computations for Reverse Mortgage Transactions

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cost rate 2-year loan term -year loan term] -year loan term -year loan term 0% 4% 8% The cost of any... different rates: 0%, 4% and 8%. The total annual loan cost rates in this table are based on the total... loan term 0% 39.00% 9.86% 3.87% 4% 39.00% 11.03% 10.14% 8% 39.00% 11.03% 10.20% The cost of any...

  8. Annual fluxes of sediment-associated trace/major elements, carbon, nutrients and sulfur from US coastal rivers

    USGS Publications Warehouse

    Horowitz, Arthur J.; Stephens, Verlon C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    About 260–270 Mt of suspended sediment are discharged annually from the conterminous USA; approximately 69% derives from Gulf rivers (n = 36), 24% from Pacific rivers (n = 42), and 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges: Atlantic rivers (49%) > Pacific rivers (40%) > Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Zn) tend to occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated nutrient concentrations occur along both the Atlantic and Gulf coasts, but are dominated by rivers in the urban northeast and by southeastern and Gulf coast “blackwater” streams. Elevated Ca, Mg, K and Na levels appear to reflect local petrology whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have both natural and anthropogenic sources. Almost all the elevated sediment-associated chemical concentrations/fluxes are lower than worldwide averages.

  9. Episodic Fan Dissection: Insights from Total Mercury Concentrations on Transport and Storage of Legacy Gold Mining Sediments in California

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; James, L.; Aalto, R.

    2008-12-01

    Nineteenth century hydraulic mining in the Sierra Nevada foothills of California displaced ~ 1.0 x 109 m3 of sediment, much of which constructed large tailings fans that linked up into valley-scale fans (e.g. Yuba fan) and graded into the Central Valley more than 50 km downstream. Additionally, ~4.0 x 106 kg of mercury used in gold separation was lost, leading to widespread contamination of mined sediments and the potential for tracing the evolution of the tailings fans over the last century. We conducted total mercury analysis on sediments from a range of geomorphic units spanning the region from the gold mining districts to the Central Valley to investigate aspects of the basin-scale adjustment to this extreme sediment loading. Samples were primarily extracted from bank exposures along vertical sections and from floodplain sediment cores, enabling determination of various phases of deposition and erosion. They were subsequently sieved to 63 microns to normalize samples from different geomorphic units containing a wide range of grain sizes and analyzed for total mercury on a Tekran cold vapor atomic fluorescence spectrophotometry detector. The resulting data show good discrimination in total mercury between the various sedimentary units ranging over two orders of magnitude, wherein prehistoric soils have values ~50 ppb and primary mining tailings contain concentrations up to ~7000 ppb. The data from the Yuba fan, which are corroborated by radionuclides and other geochemistry, support a conceptual model of transport and storage that resembles glacial outwash analogues, wherein successive phases of fan development and dissection can be identified. More importantly, the data suggest ongoing, episodic transport of hydraulic mining sediment from the Sierra piedmont to the lowland valley areas and delta, where conditions are favorable for mercury methylation (conversion of mercury from inorganic to organic forms). This sediment remobilization occurs largely during major

  10. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects.

    PubMed

    Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L

    2015-06-01

    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (<63 μm) from clean and contaminated field sites to create 4 treatments of increasing metal concentrations. Sydney rock oysters were then exposed to sediment treatments at different TSS concentrations for 4 d, and cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms.

  11. Estimation of annual suspended-sediment fluxes, 1931-95, and evaluation of geomorphic changes, 1950-2010, in the Arkansas River near Tulsa, Oklahoma

    USGS Publications Warehouse

    Lewis, Jason M.; Smith, S. Jerrod; Buck, Stephanie D.; Strong, Scott A.

    2011-01-01

    An understanding of fluvial sediment transport and changing channel morphology can assist planners in making responsible decisions with future riverine development or restoration projects. Sediment rating curves can serve as simple models and can provide predictive tools to estimate annual sediment fluxes. Sediment flux models can aid in the design of river projects by providing insight to past and potential future sediment fluxes. Historical U.S. Geological Survey suspended-sediment and discharge data were evaluated to estimate annual suspended-sediment fluxes for two stations on the Arkansas River located downstream from Keystone Dam in Tulsa County. Annual suspended-sediment fluxes were estimated from 1931-95 for the Arkansas River at Tulsa streamflow-gaging station (07164500) and from 1973-82 for the Arkansas River near Haskell streamflow-gaging station (07165570). The annual flow-weighted suspended-sediment concentration decreased from 1,970 milligrams per liter to 350 milligrams per liter after the completion of Keystone Dam at the Tulsa station. The streambed elevation at the Arkansas River at Tulsa station has changed less than 1 foot from 1970 to 2005, but the thalweg has shifted from a location near the right bank to a position near the left bank. There was little change in the position of most of the banks of the Arkansas River channel from 1950 to 2009. The most substantial change evident from visual inspection of aerial photographs was an apparent decrease in sediment storage in the form of mid-channel and meander bars. The Arkansas River channel between Keystone Dam and the Tulsa-Wagoner County line showed a narrowing and lengthening (increase in sinuosity) over the transition period 1950-77 followed by a steady widening and shortening of the river channel (decrease in sinuosity) during the post-dam (Keystone) periods 1977-85, 1985-2003, and 2003-10.

  12. Data on annual total nitrogen loads and watershed characteristics used to develop a method to estimate the total nitrogen loads in small streams

    USGS Publications Warehouse

    Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia

    2016-01-01

    This USGS Data Release represents the data used to develop multiple linear regression models for estimating the loads of total nitrogen in small streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (less than 585 square kilometers) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. These data support the following publication: Kronholm, S.C., Capel, P.D., and Terziotti, Silvia, 2016, Statistically extracted fundamental watershed variables for estimating the loads of total nitrogen in small streams: Environmental Modeling and Assessment, 10 p., http://dx.doi.org/10.1007/s10666-016-9525-3.

  13. Semiquantitative determination of total mercury in Pygocentrus nattereri Kner, 1858 and sediment at the plateau of Upper Paraguai River, Brazil.

    PubMed

    de Almeida Ferreira, Clautenes Maria; Egler, Silvia Gonçalves; Yallouz, Allegra Viviane; Ignácio, Áurea Regina Alves

    2017-05-01

    In this study an environmental assessment of contamination by total mercury (THg) was carried out at the Plateau of the Upper Paraguai River. Total mercury was evaluated in sediment and muscle of the red piranha Pygocentrus nattereri Kner, 1858, a piscivorous species at the top of the food chain consumed for subsistence and commercially. THg concentrations were below national guidelines established by WHO for sediments (100 ng g(-1)) and fish (100-600 ng g(-1)) for most of the sampled sites. Two sites located downstream of artisanal diamond and gold mines had THg concentrations in fish equal or greater than 600 ng g(-1).

  14. Total mercury loadings in sediment from gold mining and conservation areas in Guyana.

    PubMed

    Howard, Joniqua; Trotz, Maya A; Thomas, Ken; Omisca, Erlande; Chiu, Hong Ting; Halfhide, Trina; Akiwumi, Fenda; Michael, Ryan; Stuart, Amy L

    2011-08-01

    The Low Carbon Development Strategy proposed in June 2009 by the government of Guyana in response to the Reducing Emissions from Deforestation and Forest Degradation in Developing Countries program has triggered evaluation of forest-related activities, thereby acting as a catalyst for improvements in Guyana's small- to medium-scale gold mining industry. This has also shed light on areas committed to conservation, something that has also been handled by Non Governmental Organizations. This paper compares water quality and mercury concentrations in sediment from four main areas in Guyana, two that are heavily mined for gold using mercury amalgamation methods (Arakaka and Mahdia) and two that are considered conservation areas (Iwokrama and Konashen). Fifty-three sediment and soil mercury loadings ranged from 29 to 1,200 ng/g and averaged 215 ± 187 ng/g for all sites with similar averages in conservation and mining areas. Sediment loadings are within the range seen in French Guiana and Suriname, but conservation area samples had higher loadings than the corresponding uncontaminated baselines. Type of ore and location in the mining process seemed to influence mercury loadings. Mercury sediment loadings were slightly positively correlated with pH (correlation coefficient = 0.2; p value < 0.001) whereas no significant correlations were found with dissolved oxygen or turbidity.

  15. Comparability of suspended-sediment concentration and total suspended-solids data for two sites on the L'Anguille River, Arkansas, 2001 to 2003

    USGS Publications Warehouse

    Galloway, Joel M.; Evans, Dennis A.; Green, W. Reed

    2005-01-01

    Suspended-sediment concentration and total suspended solids data collected with automatic pumping samplers at the L'Anguille River near Colt and the L'Anguille River at Palestine, Arkansas, August 2001 to October 2003 were compared using ordinary least squares regression analyses to determine the relation between the two datasets for each of the two sites. The purpose of this report is to describe the suspended-sediment concentration and total suspended-solids data and examine the comparability of the two datasets for each site. Suspended-sediment concentration and total suspended solids data for the L'Anguille River varied spatially and temporally from August 2001 to October 2003. The site at the L'Anguille River at Palestine represents a larger portion of the L'Anguille River Basin than the site near Colt, and generally had higher median suspended-sediment concentration and total suspended solids and greater ranges in values. The differences between suspended-sediment concentration and total suspended solids data for the L'Anguille River near Colt appeared inversely related to streamflow and not related to time. The relation between suspended-sediment concentration and total suspended solids at the L'Anguille River at Palestine was more variable than at Colt and did not appear to have a relation with flow or time. The relation between suspended-sediment concentration and total suspended solids for the L'Anguille River near Colt shows that total suspended solids increased proportionally as suspended-sediment concentration increased. However, the relation between suspended-sediment concentration and total suspended solids for the L'Anguille River at Palestine showed total suspended solids increased less proportionally as suspended-sediment concentration increased compared to the L'Anguille River near Colt. Differences between the two analytical methods may partially explain differences between the suspended-sediment concentration and total suspended solids data at

  16. Annual cycle and long-term trend of the methane total column in the atmosphere over the St. Petersburg region

    NASA Astrophysics Data System (ADS)

    Makarova, M. V.; Kirner, O.; Timofeev, Yu. M.; Poberovskii, A. V.; Imkhasin, Kh. Kh.; Osipov, S. I.; Makarov, B. K.

    2015-07-01

    The annual cycle and long-term trend of the methane total column in the atmosphere over the Petergof station (St. Petersburg State University) are analyzed on the basis of data obtained from Fourier-transform infrared spectrometry and EMAC-model calculations. The amplitude of the annual cycle of the total column of CH4 amounts to 2.1 and 1.5% according to experimental and model data, respectively. For the atmospheric column-averaged mole fraction of CH4, the amplitude of its annual cycle is smaller than that for its total column and amounts to 1.1 and 0.6% according to experimental and model data, respectively. The results of local continuous measurements of surface CH4 concentrations showed that, in 2013, the atmospheric column-averaged mole fractions of CH4 and the amplitudes of diurnal variations in its local concentration were characterized by the same dynamics of seasonal variations. An analysis made on the basis of simulation results showed that atmospheric conditions (under which Fourier-transform IR measurements were performed) could increase the amplitude of the annual cycle of the total column of CH4 2.5 times when compared to the true one. The results of Fourier-transform IR measurements and EMAC-model calculations showed that, during 2009-2012, the atmospheric concentration of CH4 increased at a rate of ~0.2% per year. If measurement data obtained in 2013 are added, this rate decreases to ~0.13% per year.

  17. The influence of the annual invasive plant, Impatiens glandulifera, on the sediment dynamics of inland watercourses in temperate regions

    NASA Astrophysics Data System (ADS)

    Dalvi, Shrutika; Greenwood, Philip

    2016-04-01

    Impatiens glandulifera (Common English Name - Himalayan Balsam) is a non native annual and highly invasive plant that was introduced into parts of Europe from the Himalaya during the nineteenth century as a colourful adornment to parks and gardens. This Plant colonises areas along the river banks, preferably wet, depositional sites, and displaces natural vegetation. The plant is killed by cold weather. The leaves area of riverbank previously occupied by the plant extremely vulnerable to soil erosion until new plant germinates in the following spring. Research work undertaken in the northwest Switzerland and the soutwestern United Kingdom established s link between accelerated soil erosion caused by Impatiens glandulifera and its detrimental impact on native biodiversity of riparian zone of river catchment area. This study focueses on the potential impact of such erosion on sediment quality. A priory reasoning suggests that the preference of Impatiens glandulifera on young depsotional sites near watercourses affects sediment quality. In this study, the results of a soil quality analysis along Impatiens glandulifera-contaminated river banks is presented. Soil physical and chemical properties are compared to non-affected sites to assess the potential impact of preferential erosion on water quality. In addtiion, soil surface profile (SSP) measuring based on by erosion pins, a micro profile bridge and a digital calliper at different selected locations along the riparian zone of river catchment area is used to determine erosion rates and determine sediment transfer from the riparian zone into the rivers.

  18. Estimation of suspended-sediment concentration from total suspended solids and turbidity data for Kentucky, 1978-1995

    USGS Publications Warehouse

    Williamson, Tanja N.; Crawford, Charles G.

    2011-01-01

    Suspended sediment is a constituent of water quality that is monitored because of concerns about accelerated erosion, nonpoint contamination of water resources, and degradation of aquatic environments. In order to quantify the relationship among different sediment parameters for Kentucky streams, long-term records were obtained from the National Water Information System of the U.S. Geological Survey. Suspended-sediment concentration (SSC), the parameter traditionally measured and reported by the U.S. Geological Survey, was statistically compared to turbidity and total suspended solids (TSS), two parameters that are considered surrogate data. A linear regression of log-transformed observations was used to estimate SSC from TSS; 72% of TSS observations were less than coincident SSC observations; however, the estimated SSC values were almost as likely to be overestimated as underestimated. The SSC-turbidity relationship also used log-transformed observations, but required a nonlinear, breakpoint regression that separated turbidity observations ???6nephelometric turbidity units. The slope for these low turbidity values was not significantly different than zero, indicating that low turbidity observations provide no real information about SSC; in the case of the Kentucky sediment record, this accounts for 30% of the turbidity observations. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  19. Temporal Variability and Annual Fluxes of Water, Sediment and Particulate Phosphorus from a Headwater River in the Tropical Andes: Results from a High-frequency Monitoring Program

    NASA Astrophysics Data System (ADS)

    Wemple, B. C.; Schloegel, C.

    2015-12-01

    The Mazar River Project, a high-frequency hydrological monitoring program, aims to generate ecohydrological information to inform watershed management in high-mountain areas of southern Ecuador. Rapid development of hydropower, accompanied by new and improved road networks, has resulted in swift changes in land-use and land cover in Ecuador's tropical Andes, all of which underscore the need for detailed information on flow and sediment production from these river systems. National and regional payment for the protection of ecosystem services (PES) programs seek to target critical areas, such as these, for watershed conservation, but are often informed by minimal information on sustainable flows and impacts of land use activities. As part of a program to inform conservation and sustainable water management in the region, we established a hydrological monitoring station in southern Ecuador on the Mazar River, a tributary of the Paute River Basin, situated on the eastern Andean cordillera. The station is equipped with sensors to continuously monitor stream stage and turbidity and an automated sampler for event-based collection of stream water samples, providing high frequency data that reduces the uncertainty of observations. Here, we report observations of continuous runoff and turbidity over the first year of observation, present relationships between turbidity and concentrations of total suspended solids (TSS) and total particulate phosphorus (TP), and provide estimates of annual loads of TSS and TP. Runoff was highly variable over the monitoring period with flows ranging from less than 3 m3/s during baseflow to nearly 80 m3/s during the flood of record. During measured storm events, TSS exceeded 1000 mg/l with maximum measured concentrations exceeding 13 g/l during storm peaks. Turbidity was highly correlated with TSS, which was in turn highly correlated with TP, providing a robust data set for load estimation. We compare our results to other montane rivers in the

  20. Fast and Inexpensive Detection of Total and Extractable Element Concentrations in Aquatic Sediments Using Near-Infrared Reflectance Spectroscopy (NIRS)

    PubMed Central

    Kleinebecker, Till; Poelen, Moni D. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.; Hölzel, Norbert

    2013-01-01

    Adequate biogeochemical characterization and monitoring of aquatic ecosystems, both for scientific purposes and for water management, pose high demands on spatial and temporal replication of chemical analyses. Near-infrared reflectance spectroscopy (NIRS) may offer a rapid, low-cost and reproducible alternative to standard analytical sample processing (digestion or extraction) and measuring techniques used for the chemical characterization of aquatic sediments. We analyzed a total of 191 sediment samples for total and NaCl-extractable concentrations of Al, Ca, Fe, K, Mg, Mn, N, Na, P, S, Si, and Zn as well as oxalate- extractable concentrations of Al, Fe, Mn and P. Based on the NIR spectral data and the reference values, calibration models for the prediction of element concentrations in unknown samples were developed and tested with an external validation procedure. Except Mn, all prediction models of total element concentrations were found to be acceptable to excellent (ratio of performance deviation: RPD 1.8–3.1). For extractable element fractions, viable model precision could be achieved for NaCl-extractable Ca, K, Mg, NH4+-N, S and Si (RPD 1.7–2.2) and oxalate-extractable Al, Fe and P (RPD 1.9–2.3). For those elements that showed maximum total values below 3 g kg−1 prediction models were found to become increasingly critical (RPD <2.0). Low concentrations also limited the performance of NIRS calibrations for extracted elements, with critical concentration thresholds <0.1 g kg−1 and 3.3 g kg−1 for NaCl and oxalate extractions, respectively. Thus, reliable NIRS measurements of trace metals are restricted to sediments with high metal content. Nevertheless, we demonstrated the suitability of NIRS measurements to determine a large array of chemical properties of aquatic sediments. The results indicate great potential of this fast technique as an analytical tool to better understand the large spatial and temporal variation of sediment characteristics in

  1. Estimating concentrations of fine-grained and total suspended sediment from close-range remote sensing imagery

    USGS Publications Warehouse

    Mosbrucker, Adam; Spicer, Kurt R.; Christianson, Tami; Uhrich, Mark A.

    2015-01-01

    data range among sensors. Of greatest interest to many programs is a hysteresis in the relationship between turbidity and SSC, attributed to temporal variation of particle size distribution (Landers and Sturm, 2013; Uhrich et al., 2014). This phenomenon causes increased uncertainty in regression-estimated values of SSC, due to changes in nephelometric reflectance off the varying grain sizes in suspension (Uhrich et al., 2014). Here, we assess the feasibility and application of close-range remote sensing to quantify SSC and particle size distribution of a disturbed, and highly-turbid, river system. We use a consumer-grade digital camera to acquire imagery of the river surface and a depth-integrating sampler to collect concurrent suspended-sediment samples. We then develop two empirical linear regression models to relate image spectral information to concentrations of fine sediment (clay to silt) and total suspended sediment. Before presenting our regression model development, we briefly summarize each data-acquisition method.

  2. Mapping mean total annual precipitation in Belgium, by investigating the scale of topographic control at the regional scale

    NASA Astrophysics Data System (ADS)

    Meersmans, J.; Van Weverberg, K.; De Baets, S.; De Ridder, F.; Palmer, S. J.; van Wesemael, B.; Quine, T. A.

    2016-09-01

    Accurate precipitation maps are essential for ecological, environmental, element cycle and hydrological models that have a spatial output component. It is well known that topography has a major influence on the spatial distribution of precipitation and that increasing topographical complexity is associated with increased spatial heterogeneity in precipitation. This means that when mapping precipitation using classical interpolation techniques (e.g. regression, kriging, spline, inverse distance weighting, etc.), a climate measuring network with higher spatial density is needed in mountainous areas in order to obtain the same level of accuracy as compared to flatter regions. In this study, we present a mean total annual precipitation mapping technique that combines topographical information (i.e. elevation and slope orientation) with average total annual rain gauge data in order to overcome this problem. A unique feature of this paper is the identification of the scale at which topography influences the precipitation pattern as well as the direction of the dominant weather circulation. This method was applied for Belgium and surroundings and shows that the identification of the appropriate scale at which topographical obstacles impact precipitation is crucial in order to obtain reliable mean total annual precipitation maps. The dominant weather circulation is determined at 260°. Hence, this approach allows accurate mapping of mean annual precipitation patterns in regions characterized by rather high topographical complexity using a climate data network with a relatively low density and/or when more advanced precipitation measurement techniques, such as radar, aren't available, for example in the case of historical data.

  3. Have precipitation extremes and annual totals been increasing in the world's dry regions over the last 60 years?

    NASA Astrophysics Data System (ADS)

    Sippel, Sebastian; Zscheischler, Jakob; Heimann, Martin; Lange, Holger; Mahecha, Miguel D.; van Oldenborgh, Geert Jan; Otto, Friederike E. L.; Reichstein, Markus

    2017-01-01

    Daily precipitation extremes and annual totals have increased in large parts of the global land area over the past decades. These observations are consistent with theoretical considerations of a warming climate. However, until recently these trends have not been shown to consistently affect dry regions over land. A recent study, published by Donat et al. (2016), now identified significant increases in annual-maximum daily extreme precipitation (Rx1d) and annual precipitation totals (PRCPTOT) in dry regions. Here, we revisit the applied methods and explore the sensitivity of changes in precipitation extremes and annual totals to alternative choices of defining a dry region (i.e. in terms of aridity as opposed to precipitation characteristics alone). We find that (a) statistical artifacts introduced by data pre-processing based on a time-invariant reference period lead to an overestimation of the reported trends by up to 40 %, and that (b) the reported trends of globally aggregated extremes and annual totals are highly sensitive to the definition of a dry region of the globe. For example, using the same observational dataset, accounting for the statistical artifacts, and based on different aridity-based dryness definitions, we find a reduction in the positive trend of Rx1d from the originally reported +1.6 % decade-1 to +0.2 to +0.9 % decade-1 (period changes for 1981-2010 averages relative to 1951-1980 are reduced to -1.32 to +0.97 % as opposed to +4.85 % in the original study). If we include additional but less homogenized data to cover larger regions, the global trend increases slightly (Rx1d: +0.4 to +1.1 % decade-1), and in this case we can indeed confirm (partly) significant increases in Rx1d. However, these globally aggregated estimates remain uncertain as considerable gaps in long-term observations in the Earth's arid and semi-arid regions remain. In summary, adequate data pre-processing and accounting for uncertainties regarding the definition of

  4. Suspended-sediment and suspended-sand concentrations and loads for selected streams in the Mississippi River Basin, 1940-2009

    USGS Publications Warehouse

    Heimann, David C.; Cline, Teri L.; Glaspie, Lori M.

    2011-01-01

    This report presents suspended-sediment concentration and streamflow data, describes load-estimation techniques used in the computation of annual suspended-sediment loads, and presents annual suspended-sediment loads for 48 streamgaging stations within the Mississippi River Basin. Available published, unpublished, and computed annual total suspended-sediment and suspended-sand loads are presented for water years 1940 through 2009. When previously published annual loads were not available, total suspended-sediment and sand loads were computed using available data for water years 1949 through 2009. A table of suspended-sediment concentration and daily mean streamflow data used in the computation of annual loads is presented along with a table of compiled and computed annual suspended-sediment and suspended-sand loads, annual streamflows, and flow-weighted concentrations for the 48 stations.

  5. The surface energy budget and interannual variation of the annual total evaporation over a highland lake in Southwest China

    NASA Astrophysics Data System (ADS)

    Feng, Jian Wu; Liu, Hui Zhi; Sun, Ji Hua; Wang, Lei

    2016-10-01

    The turbulence spectra and energy budget were investigated based on eddy covariance method over an open-water highland lake (Erhai Lake) in Southwest China. We estimated the annual total evaporation and CO2 emission from the lake, and the evaporation trend in the past few decades was also discussed. Due to the large thermal inertia of lake water, the surface water temperature lagged behind the air temperature. Maximum lake-air temperature difference of about 4 °C had been observed in November. Water temperature profile measurements revealed that the stratification of lake water was not evident throughout the year. The spectra and cospectra of wind speed and temperature roughly satisfied the -2/3 and -4/3 rule in inertial subrange, respectively. The w spectra were observed to have a larger contribution from higher frequencies than other variables. Obvious shifts of spectra and cospectra peaks toward higher frequencies were observed as the atmospheric stratification became more stable. The lake acted as a heat sink from March through June and quickly released heat into the atmosphere from September through December. Average energy balance closure for the lake was about 80 % in 2012. The lake majorly acted as a source of CO2 to the atmosphere, but weak sinks of CO2 were observed in the summer and early fall. The total annual emission of CO2 was estimated to be 333.28 g C m-2 year-1. The annual evaporation over the lake decreased due to the increased amount of low cloud and precipitation, with the lower annual evaporation in the 1990s compared to that in the 1980s.

  6. Paleoenvironmental changes during the last 8,500 years recorded in annually laminated sediments from Lake Szurpiły, NE Poland

    NASA Astrophysics Data System (ADS)

    Kinder, Małgorzata; Tylmann, Wojciech; Bubak, Iwona; Enters, Dirk; Kupryjanowicz, Mirosława; Mayr, Christoph; Ohlendorf, Christian; Piotrowska, Natalia; Zolitschka, Bernd

    2014-05-01

    Annually laminated (varved) lake sediments provide a precise time scale for high-resolution paleoenvironmental reconstructions of climatic change and human impact. We reconstructed the environmental changes from Lake Szurpiły (NE Poland) using varve chronology and multi-proxy interdisciplinary approach. Our reconstruction is one of the few for NE Poland and extends the geographical network of laminated lacustrine sediments. This research was supported by the Polish Ministry of Science and Higher Education grants (N N306 275635, N N306 009337, N N306 291639). It is a contribution to the bilateral scientific program "Northern Polish Lake Research" (NORPOLAR). Parallel overlapping sediment cores with total length of 12.38 m and extending back to the Late Glacial were retrieved in 2007. The geochemical (X-ray Fluorescence, CNS, stable isotopes), microscopic (varve thickness and structure), biological (diatoms, pollen) and statistical analyses were applied and combined in an annual scale based on the varve chronology, which was verified by independent radiometric dating (Pb-210, Cs-137 and AMS radiocarbon dating). Due to the large slump, this study focuses on the almost continuously varved uppermost 7.58-m long section of the profile, covering the last 8,500 years. The climate fluctuations were the main cause of the environmental changes during the first 6,000 years. The geochemical record is mainly driven by the lake productivity, oxic conditions and minerogenic input. Although the first evidence of the anthropogenic impact is documented in pollen record at 8,000 BP, the environmental conditions were relatively stable until 2,500 BP, when the human activity increased significantly. Since that time the climatic and human influence are combined and more difficult to disentangle. Three settlement phases separated by natural regeneration of the environment occurred between 2,500-400 BP. The variation of geochemical and pollen data at 400-100 BP reflects climate

  7. Annually resolved environmental reconstruction in two arctic varved lake sediment records using image analysis of thin-sections

    NASA Astrophysics Data System (ADS)

    Francus, P.; Patridge, W.; Bradley, R. S.; Abbott, M. B.; Keimig, F.; Stoner, J.

    2003-04-01

    We obtained quantitative multivariate data from each varve in two minerogenic lacustrine sequences from the Canadian High Arctic, using an image analysis technique applied to thin-sections. In Sawtooth Lake (79° 20 N, 83° 51 W), the information on each varve from the uppermost core section was compared with a 35 yr meteorological dataset. Snowmelt intensity, which is an index reflecting the energy available for sediment transport, correlates well with the median grain-size measured for each varve, as well as with the weight of the 10-20 and 20-60 microns fractions. The proportion of fine silt also correlates with low intensity summer precipitation. In Murray Lake (81°20 N, 69°30 W), annual median grain-size is believed to be a proxy for summer temperature. The chronologies of both records, based on independent varve counts, have been confirmed using environemental magnetic parameters. We present the spectral properties of the varve records, and the paleoenvironmental history of the region, for the last 1000 years. Image analysis of thin-sections allows us to decipher the climatic control on sedimentary processes, and yields a new perspective for constructing models that link climate to sediments containing few biological remains.

  8. 15 CFR 303.3 - Determination of the total annual duty-exemption.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS WATCHES, WATCH MOVEMENTS AND JEWELRY PROGRAM Watches and Watch Movements § 303.3 Determination of the total... the territorial watch industry and the economic interests of the territories, the...

  9. 15 CFR 303.3 - Determination of the total annual duty-exemption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS WATCHES, WATCH MOVEMENTS AND JEWELRY PROGRAM Watches and Watch Movements § 303.3 Determination of the total... the territorial watch industry and the economic interests of the territories, the...

  10. 15 CFR 303.3 - Determination of the total annual duty-exemption.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS WATCHES, WATCH MOVEMENTS AND JEWELRY PROGRAM Watches and Watch Movements § 303.3 Determination of the total... the territorial watch industry and the economic interests of the territories, the...

  11. 15 CFR 303.3 - Determination of the total annual duty-exemption.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS WATCHES, WATCH MOVEMENTS AND JEWELRY PROGRAM Watches and Watch Movements § 303.3 Determination of the total... the territorial watch industry and the economic interests of the territories, the...

  12. 15 CFR 303.3 - Determination of the total annual duty-exemption.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS WATCHES, WATCH MOVEMENTS AND JEWELRY PROGRAM Watches and Watch Movements § 303.3 Determination of the total... the territorial watch industry and the economic interests of the territories, the...

  13. High-resolution past environmental reconstruction in East Asia using annually laminated lake sediments of Lake Megata in northeastern Japan

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Gotanda, K.; Yonenobu, H.; Shinozuka, Y.; Kitagawa, J.; Makohonienko, M.; Schwab, M.; Haraguchi, T.; Yasuda, Y.

    2007-12-01

    37 m-long non-glacial varved sequences were taken from Ichi-no-Megata maar in Oga Peninsula, Akita, northern part of Japan. Ichi-no-Megata maar occupies 0.25 km2 with a maximum water depth of ca. 45.1 m. The shape of lake is a kettle-type basin and the deepest bottom basin is very flat. We took core samples (named IMG06 core) at the center of the lake in November to December in 2006. In order to take completely continuous maar sediment, we drilled three holes and take every sample from each hole which apart only few meters. In this drilling campaign, we can 37 m-long continuous maar sediment except thick volcanic deposits from 26.5 to 31.7m in core. The sedimentological feature of IMG06 core is dominated by thin lamination clay/silt from most top part up to 37 m with turbidites characterized upward fining structure. The SEM image observation of lamination reveals that sponge-like lamina consists of diatom assemblage against dark colored lamina consists of mixture of detritus minerals, clay minerals, and diatom. It means sponge-like lamina deposits during spring season, and later one deposits during another three seasons, and then these thin lamination of IMG06 core could be identified as annual lamination (varves). This interpretation is supported by the correlation of historic event as earthquake and tunnel construction. In this IMG06 core, six volcanic ashes are found and we have also analyzed radiocarbon dating from 38 horizons of the core to use leaf and seeds inter-bedded varves. As the results, the IMG06 core covers from 25,000 to 4,000 14C yr BP with stable sedimentation rates (0.71mm/year).

  14. Inter- and intra-annual variability of fluvial sediment transport in the proglacial river Riffler Bach (Weißseeferner, Ötztal Alps, Tyrol)

    NASA Astrophysics Data System (ADS)

    Baewert, Henning; Weber, Martin; Morche, David

    2015-04-01

    The hydrology of a proglacial river is strongly affected by glacier melting. Due to glacier retreat the effects of snow melt and rain storms will become more important in future decades. Additionally, the development of periglacial landscapes will play a more important role in the hydrology of proglacial rivers. The importance of paraglacial sediment sources in sediment budgets of glacier forefields is increasing, while the role of glacial erosion is declining. In two consecutive ablation seasons the fluvial sediment transport of the river Riffler Bach in the Kaunertal (Tyrol/Austria) was quantified. The catchment area of this station is 20 km² with an altitudinal range from 1929 m to 3518 m above msl. The "Weißseeferner" glacier (2.34 km² in 2012) is the greatest of the remaining glaciers. An automatic water sampler (AWS 2002) and a probe for water level were installed were installed at the outlet of the catchment. In order to calculate annual stage-discharge-relations, discharge (Q) was repeatedly measured with current meters. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load (BL) samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In 2012, 154 water samples were sampled during 7 periods and subsequently filtered to quantify suspended sediment concentrations (SSC). A Q-SSC-relation was calculated for every period due to the high variability in suspended sediment transport. In addition, the grain size distribution of the filtered material was determined by laser diffraction analysis. In 2013, the same procedure was performed for 232 water samples which were collected during 9 periods. Meteorological data were logged at the climate station "Weißsee", which is located in the centre of the study area. First results show a high variability of discharge and solid sediment transport both at the inter-annual as well as at the intra-annual

  15. Sediment Transport in the Lower Yampa River, Northwestern Colorado

    USGS Publications Warehouse

    Elliott, John G.; Kircher, James E.; Von Guerard, Paul

    1984-01-01

    Discharge measurements and sediment samples were taken at streamflow-gaging station 09260050 Yampa River at Deerlodge Park in 1982 and 1983 to determine the annual sediment supply to the Yampa Canyon in Dinosaur National Monument. Forty-three years of discharge records at two tributary sites were combined to determine the historic discharge of the Yampa River at Deerlodge Park. A mean annual hydrograph and flow-duration curve were derived from these data. Sediment-transport equations were derived for total sediment discharge, suspended-sediment discharge, bedload dischagre, and the discharge of sediment in several particle-sizes. Annual sediment discharge were determined by the flow-duration, sediment-rating-curve method and indicated annual total sediment discharge was approximately 2.0 million tons per year of which 0.8 million tons per year was sand-sized material. Bedload was almost entirely sand, and annual bedload discharge was 0.1 million tons per year. Development of water resources in the Yampa River basin could effect the geomorphic character of the Yampa River at Deerlodge Park and the Yampa Canyon. Several scenarios of altered streamflow frequency distribution, reduced streamflow volume, and reduced sediment supply are examined to estimate the effect on the sediment budget at Deerlodge Park. (USGS)

  16. Total Quality Management: Statistics and Graphics II-Control Charts. AIR 1992 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Cherland, Ryan M.

    An examination was conducted of the control chart as a quality improvement statistical method often used by Total Quality Management (TQM) practitioners in higher education. The examination used an example based on actual requests for information gathered for the Director of Human Resources at a medical center at a midwestern university. The…

  17. Distribution and transport of total mercury and methylmercury in mercury-contaminated sediments in reservoirs and wetlands of the Sudbury River, east-central Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Waldron, Marcus C.; Breault, Robert F.; Lent, Robert M.

    1999-01-01

    Total mercury and methylmercury were measured in 4 reservoir cores and 12 wetland cores from Sudbury River. The distribution of total mercury and methylmercury in these cores was evaluated to determine the potential for total mercury and methylmercury transport from reservoir and wetlands sediments to the water column. Concentrations of methylmercury were corrected for an analytical artifact introduced during the separation distillation used in the analysis procedure. Corrected methylmercury concentrations correlated with total mercury concentrations in bulk sediment from below the top layers of reservoir and wetland cores; methylmercury concentrations at the top layers of cores were relatively high, however, and were not correlated with total mercury concentrations. Concentrations of methylmercury in pore water were positively correlated with methylmercury concentrations in the bulk sediment. High concentrations of total mercury and methylmercury in sediment (73 and 0.047 micrograms per gram dry-weight basis, respectively) contributed less to the water column in the reservoir than in the wetlands probably because of burial by low concentration sediment and differences in the processes available to transport mercury from the sediments to the water in the reservoirs, as compared to the wetlands .

  18. Polluted harbor sediment and the annual reproductive cycle of the female flounder, Platichthys fiesus (L.)

    SciTech Connect

    Janssen, P.A.H.; Lambert, J.G.D.; Goos, H.J.T.; Wezel, A.P. van; Opperhuizen, A.

    1995-12-31

    Compounds such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs),and pesticides are metabolized by enzyme systems, which are also involved in steroid metabolism. Disturbances of reproduction may therefore occur through the interference of these compounds with the endocrine system. Several aspects of reproduction were studied in the flounder, Platichthys fiesus (L.), an euryhaline flatfish which inhabits coastal waters and is therefore a suitable biomonitor for the effects of chemical pollutants. Fish were kept during three years in mesocosm systems of which the first provided a control, while the second one contained polluted sediment, derived from the Rotterdam harbor. In November, all ovaries from both mesocosms contained vitellogenic oocytes. In May, all the control fish were previtellogenic, while the ovaries of fish from the polluted mesocosm contained, besides previtellogenic oocytes, a large number of vitellogenic oocytes, indicating that an estrogenic induction had occurred. The in vitro tissue incubations with androstenedione as precursor revealed that the ovarian capacity to synthesize testosterone (T), estrone (E{sub 2}) and 17{beta}-estradiol (E{sub 2}) didn`t differ between both mesocosms. In May, however, the levels of T and E{sub 2} as well as the level of the yolk-precursor vitellogenin were significantly higher in the polluted mesocosm. The conclusion from this study was that polluted harbor sediment contains compounds that effect normal reproductive development, i.e. the induction of premature vitellogenesis.

  19. ESCHERICHIA COLI AND TOTAL COLIFORMS IN WATER AND SEDIMENTS AT LAKE MARINAS

    EPA Science Inventory

    Escherichia coli, a fecal coliform, and total coliforms were monitored between September 1999 to October 2001 in five marinas on Lake Texoma, located on the Oklahoma and Texas border. General trend was that densities of E. coli were lower in the summer season due to the lower ...

  20. Total and partial digestion of sediments for the evaluation of trace element environmental pollution.

    PubMed

    Perez-Santana, S; Pomares Alfonso, M; Villanueva Tagle, M; Peña Icart, M; Brunori, C; Morabito, R

    2007-01-01

    Four different sample treatment methods for the determination of trace elements have been compared: a total digestion with HNO3-H2O2-HF using microwave, and three different standardized methods of fractionation: BCR three-steps sequential extraction, USEPA standard 3050B and ISO standard 11466. The four treatment methods were applied to the determination of Cu and Ni in four samples collected in different areas of Cienfuegos Bay (Cuba). The location of samples and the analytes were selected on the basis of results obtained by previous studies. Analyses following total digestion and BCR three-steps procedure were performed by inductively coupled plasma mass spectroscopy whereas analyses following EPA and ISO procedures were performed by flame atomic absorption spectroscopy. The results obtained have been compared with an estimated anthropic fraction evaluated in each sampling point as the difference between the total concentration and an estimated background concentration level. The BCR three-steps provided the best approximation of the estimated anthropic fraction and was therefore applied also in the determination of Pb and Cd for further consideration.

  1. A re-appraisal of the total biomass and annual production of Antarctic krill

    NASA Astrophysics Data System (ADS)

    Atkinson, A.; Siegel, V.; Pakhomov, E. A.; Jessopp, M. J.; Loeb, V.

    2009-05-01

    Despite much research on Euphausia superba, estimates of their total biomass and production are still very uncertain. Recently, circumpolar krill databases, combined with growth models and revisions in acoustics have made it possible to refine previous estimates. Net-based databases of density and length frequency (KRILLBASE) yield a summer distributional range of ˜19×10 6 km 2 and a mean total abundance of 8×10 14 post-larvae with biomass of 379 million tonnes (Mt). These values are based on a standardised net sampling method but they average over the period 1926-2004, during which krill abundance has fluctuated. To estimate krill biomass at the end of last century we combined the KRILLBASE map of relative krill density around Antarctica with an acoustics-derived biomass estimate of 37.3 Mt derived for the Scotia Sea area in 2000 by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Thus the CCAMLR 2000 survey area contains 28% of the total stock, with total biomass of ˜133 Mt in January-February 2000. Gross postlarval production is estimated conservatively at 342-536 Mt yr -1, based on three independent methods. These are high values, within the upper range of recent estimates, but consistent with the concept of high energy throughput for a species of this size. The similarity between the three production estimates reflects a broad agreement between the three growth models used, plus the fact that, for a given population size, production is relatively insensitive to the size distribution of krill at the start of the growth season. These production values lie within the envelope of what can be supported from the Southern Ocean primary production system and what is required to support an estimated predator consumption of 128-470 Mt yr -1. Given the range of recent acoustics estimates, plus the need for precautionary management of the developing krill fishery, our net-based data provide an alternative estimate of total krill

  2. Sediment deposition in the White River Reservoir, northwestern Wisconsin

    USGS Publications Warehouse

    Batten, W.G.; Hindall, S.M.

    1979-01-01

    Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerplant was about 50 tons per square mile. Analysis of the drainage-basin characteristics indicates that most of this sediment was derived from less than 10 percent of the total drainage area and from steep unvegetated streambanks.

  3. Levels of total mercury in different fish species and sediments from the Upper Volta Basin at Yeji in Ghana.

    PubMed

    Kwaansa-Ansah, E E; Agorku, S E; Nriagu, J O

    2011-04-01

    In this study, total mercury concentrations were determined in sediments and seven different fish species from the Upper Volta Basin area of Yeji in Ghana. Mercury concentrations found ranged from 44.17 to 85.88 ng/g wet weight for Synodontis gambiesis, from 11.25 to 79.73 ng/g wet weight for Synodontis membranaceus, from 13.11 to 38.64 ng/g wet weight for Synodontis ocellifer, from 16.39 to 25.82 ng/g wet weight for Distishodus rotratus, from 40.80 to 90.30 ng/g wet weight for Bagrus docmac, from 10.48 to 61.90 ng/g wet weight for Chrysichthys nigrodigitatus and from 12.33 to 24.18 ng/g wet weight for Gnathoneus senegalensis. These values are below the 500 ng/g guideline recommended by the WHO/FAO, implying that fish from the Upper Volta Basin area of Yeji are safe for human consumption. Good correlation was observed between mercury concentration and fresh weight (R(2) = 0.6067) and total length (R(2) = 0.8754) for Gnathonemus senegalensis. However, poor correlations were observed between mercury concentration and fresh weight and total length for the other six species. Mercury in sediments ranged from 11.87 to 70.25 ng/g dry weights with a mean of 41.60 ng/g dry weight being below the IAEA threshold of 810 ng/g.. These values show that sections of the Upper Volta River remain relatively clean in spite of substantial loadings of mercury into the river's basin from gold mining activities.

  4. Measurement of the seasonal and annual variability of total column aerosol in a northeastern U.S. network

    SciTech Connect

    Michalsky, J.J.; Schlemmer, J.A.; Harrison, L.C.; Berkheiser, W.E. III; Larson, N.R.; Laulainen, N.S.

    1994-09-01

    A network of multi-filter rotating shadowband radiometers has operated since late 1991 in the northeastern US. The data acquired are simultaneous measurements of total and diffuse horizontal irradiances in six narrowband filtered detectors and one broadband shortwave detector. The direct normal irradiances are calculated from these measurements. These direct data are corrected for cosine response and used to calculate extraterrestrial irradiance (I{sub o}) using the Langley method of regressing the natural logarithm of direct irradiance versus air mass. With frequent determinations of I{sub o}, changes in I{sub o} caused by soiling and filter degradation, for example, can be tracked. Using these I{sub o}`s, total optical depth is calculated for every clear 30-minute period in the record. Consequently, total optical depth may be obtained on a fair number of days throughout the year. Using daily average total optical depth the authors have calculated aerosol optical depths for five wavelengths by subtracting Rayleigh scattering optical depths and Chappuis ozone absorption optical depths at each wavelength. The aerosol pattern at nearly every site is an annual cycle superimposed on a decaying stratospheric loading associated with the Mount Pinatubo volcanic eruption. An attempt is made to remove the volcanic signal using data from another site.

  5. Sulfur cycling in freshwater sediments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.

    1985-01-01

    Organic sulfur containing compounds represent greater than 80% of the total sulfur in sediments of eutrophic freshwater lakes. Although sedimentary sulfur is predominantly in the form of organic compounds, more sulfur is transformed by sulfate reduction than by any other process. Rates of sulfate reduction in these sediments average 7 mmol/sq m/day. This rate is 19 times greater than the net rate of production of inorganic sulfur from organic compounds on an annual basis.

  6. TOTAL MERCURY AND METHYLMERCURY RESPONSE IN WATER, SEDIMENT, AND BIOTA TO DESTRATIFICATION OF THE GREAT SALT LAKE, UTAH, USA.

    PubMed

    Valdes, Carla; Black, Frank J; Stringham, Blair; Collins, Jeffrey N; Goodman, James R; Saxton, Heidi J; Mansfield, Christopher R; Schmidt, Joshua N; Yang, Shu; Johnson, William P

    2017-04-12

    Measurements of chemical and physical parameters made before and after sealing of culverts in the railroad causeway spanning Great Salt Lake in late 2013 documented dramatic alterations in the system in response to the elimination of flow between the Great Salt Lake's north and south arms. The flow of denser, more saline water through the culverts from the north arm (Gunnison Bay) to the south arm (Gilbert Bay) previously drove the perennial stratification of the south arm and the existence of oxic shallow brine and anoxic deep brine layers. Closure of the causeway culverts occurred concurrently with a multiyear drought that resulted in a decrease in the lake elevation and a concomitant increase in top-down erosion of the upper surface of the deep brine layer by wind-forced mixing. The combination of these events resulted in replacement of the formerly stratified water column in the south arm with one that is vertically homogeneous and oxic. Total mercury concentrations in the deep waters of the south arm decreased by approximately 81%, and methylmercury concentrations in deep waters decreased by roughly 86%, due to destratification. Methylmercury concentrations decreased by 77% in underlying surficial sediment whereas there no change was observed in total mercury. The dramatic mercury loss from deep waters and methylmercury loss from underlying sediment in response to causeway sealing provides new understanding of the potential role of the deep brine layer in the accumulation and persistence of methylmercury in the Great Salt Lake. Additional mercury measurements in biota appear to contradict the previously implied connection between elevated methylmercury concentrations in the deep brine layer and elevated mercury in avian species reported prior to causeway sealing.

  7. Total and methyl mercury in the water, sediment, and fishes of Vembanad, a tropical backwater system in India.

    PubMed

    Ramasamy, E V; Jayasooryan, K K; Chandran, M S Shylesh; Mohan, Mahesh

    2017-03-01

    Mercury contamination in the water bodies of developing countries is a serious concern due to its toxicity, persistence, and bioaccumulation. Vembanad, a tropical backwater lake situated at the southwest coast of India, is the largest Ramsar site in southern India. The lake supports thousands of people directly and indirectly through its resources and ecosystem services. It is highly polluted with toxic pollutants such as heavy metals, as it receives effluent discharges from Kerala's major industrial zone. In the present study, water, pore water, sediment, and fish samples collected from Vembanad Lake were analysed for total mercury (THg) and methyl mercury (MHg) contents. The maximum concentrations of THg and MHg in surface water samples were31.8 and 0.21 ng/L, respectively, and those in bottom water samples were 206 and 1.22 ng/L, respectively. Maximum concentration of THg in surface sediment was observed during monsoon season (2850 ng/g) followed by that in the pre-monsoon season (2730 ng/g) and the post-monsoon season (2140 ng/g). The highest sediment concentration of MHg (202.02 ng/g) was obtained during monsoon season. The spatial variation in the mercury contamination clearly indicates that the industrial discharge into the Periyar River is a major reason for pollution in the lake. The mercury pollution was found to be much higher in Vembanad Lake than in other wetlands in India. The bioaccumulation was high in carnivorous fishes, followed by benthic carnivores. The THg limit in fish for human consumption (0.5 mg/kg dry wt.) was exceeded for all fish species, except for Glossogobius guiris and Synaptura orientalis. The concentration of THg was five times higher in Megalops cyprinoides and four times higher in Gazza minuta. Significant variation was observed among species with different habits and habitats. Overall, risk assessment factors showed that the mercury levels in the edible fishes of Vembanad Lake can pose serious health impacts to the human

  8. Toxicity profiling of marine surface sediments: A case study using rapid screening bioassays of exhaustive total extracts, elutriates and passive sampler extracts.

    PubMed

    Vethaak, A Dick; Hamers, Timo; Martínez-Gómez, Concepción; Kamstra, Jorke H; de Weert, Jasperien; Leonards, Pim E G; Smedes, Foppe

    2017-03-01

    This study was carried out in the framework of the ICON project (Integrated Assessment of Contaminant Impacts on the North Sea) (Hylland et al., 2015) and aimed (1) to evaluate the toxicity of marine sediments using a battery of rapid toxicity bioassays, and; (2) to explore the applicability and data interpretation of in vitro toxicity profiling of sediment extracts obtained from ex situ passive sampling. Sediment samples were collected at 12 selected (estuarine, coastal, offshore) sites in the North Sea, Icelandic waters (as reference sites), south-western Baltic Sea and western Mediterranean during autumn 2008. Organic extracts using a mild non-destructive clean-up procedure were prepared from total sediment and silicone passive samplers and tested with five in vitro bioassays: DR-Luc bioassay, ER-Luc bioassay, AR-EcoScreen bioassay, transthyretin (TTR) binding assay, and Vibrio fischeri bioluminescence bioassay. In vitro toxicity profiling of total sediment and silicone passive sampler extracts showed the presence of multiple organic contaminations by arylhydrocarbon receptor agonists (e.g. polycyclic aromatic hydrocarbons) and endocrine-active compounds, as well as non-specific toxicity caused by organic contaminants, at virtually all sampling sites. In vitro responses to total sediment extracts from coastal/estuarine sites were significantly different from those in offshore sites (p < 0.05). Several bioassays of passive sampler extracts showed highest activity in some offshore sediment samples. Impact on embryogenesis success and larval growth in undiluted sediment elutriates was shown at some sites using the in vivo sea urchin embryo test. The observed toxicity profiles could only partially be explained by the chemical target analysis, indicating the presence of unknown or unanalysed biologically-active compounds in the sediments. In vitro bioassay testing with silicone passive sampler extracts of sediments is a promising tool to assess the toxic

  9. A comparative study of metal pollution and potential eco-risk in the sediment of Chaohu Lake (China) based on total concentration and chemical speciation.

    PubMed

    Liu, Enfeng; Shen, Ji

    2014-06-01

    Total and extractable concentrations of Cu, Pb, and Zn were determined in surface sediments of west Chaohu Lake (China) by HCl-HNO3-HF-HClO4 digestion and an optimized BCR sequential extraction procedure, respectively. The metal pollution was evaluated by the enrichment factor approach, and the potential eco-risk was evaluated by the sediment quality guideline (SQG) and risk assessment code (RAC) assessments. The results indicated that both total and extractable metal concentrations were highly variable and were affected by sediment properties, even though the sediments were predominantly composed of <63-μm particles (>89%). Enrichment factors of the metals based on the total and extractable concentrations all showed higher values in the northern lake area and decreasing values towards the south. This distribution indicated an input of anthropogenic metals via the Nanfei River. Anthropogenic Cu, Pb, and Zn in surface sediments showed comparable values for each metal based on the total and extractable concentrations, suggesting that anthropogenic Cu, Pb, and Zn resided predominantly in the extractable fractions. Sediment Cu had low eco-risk, and Pb and Zn had medium eco-risk by the SQG assessment, whereas the eco-risk rankings of Cu, Pb, and Zn were medium, low, and low-high, respectively, by the RAC assessment. Referencing to the labile (dilute acid soluble) metal concentrations, we deduced that the eco-risk of Cu may be largely overestimated by the RAC assessment, and the eco-risk of Pb may be largely overestimated by the SQG assessment. Overall, sediments Cu and Pb may pose low eco-risk, and Zn may pose low-high eco-risk.

  10. Linkage between speciation of Cd in mangrove sediment and its bioaccumulation in total soft tissue of oyster from the west coast of India.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Gadi, Subhadra Devi; Bardhan, Pratirupa

    2016-05-15

    This study established a mechanistic linkage between Cd speciation and bioavailability in mangrove system from the west coast of India. High bioaccumulation of Cd was found in the oyster (Crassostrea sp.) even at low Cd loading in the bottom sediment. Bioaccumulation of Cd in the oyster gradually increased with the increasing concentrations of water soluble, exchangeable and carbonate/bicarbonate forms of Cd in the sediments. Fe/Mn oxyhydroxide phase was found to control Cd bioavailability in the sediment system. Cd-associated with sedimentary organic matter was bioavailable and organic ligands in the sediments were poor chelating agents for Cd. This study suggests that bioaccumulation of Cd in oyster (Crassostrea sp.) depends not on the total Cd concentration but on the speciation of Cd in the system.

  11. Spatial distribution and concentration assessment of total petroleum hydrocarbons in the intertidal zone surface sediment of Todos os Santos Bay, Brazil.

    PubMed

    Silva, Carine S; Moreira, Icaro T A; de Oliveira, Olivia M C; Queiroz, Antonio F S; Garcia, Karina S; Falcão, Brunno A; Escobar, Narayana F C; Rios, Mariana Cruz

    2014-02-01

    The primary objective of this study was to investigate the concentrations and spatial distribution of the total petroleum hydrocarbons (TPHs) in the intertidal zone surface sediment of Todos os Santos Bay, Brazil, to assess the distribution and degree of contamination by TPHs, measure the level of TPH degradation in the surface sediment, and identify the organic matter sources. The surface sediment used in this study was collected in 50 stations, and TPHs, isoprenoid alkanes (pristane and phytane), and unresolved complex mixture (UCM) were analyzed by gas chromatography with a flame ionization detector. The total concentrations ranged from 0.22 to 40,101 μg g(-1) dry weight and showed a strong correlation with the total organic carbon (TOC) content. The highest TPH concentrations were observed in samples from the mangrove sediments of a river located near a petroleum refinery. Compared with other studies in the world, the TPH concentrations in the intertidal surface sediment of Todos os Santos Bay were below average in certain stations and above average in others. An analysis of the magnitude of UCM (0.11 to 17,323 μg g(-1) dry weight) and the ratios nC17/Pr and nC18/Ph suggest that an advanced state of oil weathering, which indicates previous contamination. The molar C/N ratios varied between 5 and 43, which indicate organic matter with a mixed origin comprising marine and continental contributions.

  12. The role of midlatitude mixing barriers in creating the annual variation of total ozone in high northern latitudes

    NASA Astrophysics Data System (ADS)

    Gille, John; Karol, Svetlana; Kinnison, Douglas; Lamarque, Jean-Francois; Yudin, Valery

    2014-08-01

    Data from the HIgh Resolution Dynamics Limb Sounder (HIRDLS), the Microwave Limb Sounder (MLS), and the Whole Atmosphere Community Climate Model (WACCM) are used to investigate the annual variation of total column ozone in high northern latitudes. Downward transport of ozone-rich air by the residual mean circulation during autumn and winter bends ozone isopleths down and increases the high-latitude ozone amounts, leading to an ozone maximum at the end of the winter. During the summer months eddy mixing acts to restore pre-fall distributions of ozone. In this study the large-scale mixing in the lower stratosphere is analyzed using Nakamura's (1996) equivalent length formulation with observed and simulated ozone. The analysis of ozone mixing is performed in the tracer equivalent latitude-potential temperature coordinate system. Steep latitudinal gradients of ozone isopleths below about 500 K occur during the winter, where there are minima in the equivalent length, indicating barriers to mixing at 30°N-40°N. This transport barrier allows large ozone maxima to develop poleward of it. The barrier disappears over the summer, permitting latitudinal mixing of the high ozone air. Above 500 K mixing is more effective during the winter, so a large winter maximum does not occur. In both midlatitude and high latitude the lower stratospheric layer from 330 to 500 K doubles its ozone content from autumn to spring, compared with much smaller changes in the layer from 500 to 650 K. Our results confirm that the presence of the winter transport barrier in the lower stratosphere controls the seasonal variation of total ozone.

  13. Effect of pH, sulphate concentration and total organic carbon on mercury accumulation in sediments in the Volta Lake at Yeji, Ghana.

    PubMed

    Kwaansa-Ansah, E E; Voegborlo, R B; Adimado, A A; Ephraim, J H; Nriagu, J O

    2012-03-01

    In this study, pH, total organic carbon, sulphate concentration and mercury concentrations of sediment samples from the Volta Lake at Yeji in the northern part of Ghana were determined. The results indicate that pH ranged from 6.32 to 8.21, total organic carbon ranged from 0.17 to 3.02 g/kg and sulphate concentration from 10.00 to 57.51 mg/kg. Total mercury concentrations ranged from 32.61 to 700 ng/g which is below the International Atomic Energy Agency recommended value of 810 ng/g. Humic substance-bound mercury ranged from 81.15 to 481.31 mg/kg in sediments and its two fractions existed as humic acid-bound mercury > fulvic acid-bound mercury with the ratio of humic substance-bound mercury to fulvic acid-bound mercury as 1.62 on the average. Humic substance-bound mercury and the two fractions fulvic acid-bound mercury and humic substance-bound mercury in sediments were favorably determined and found to correlate significantly positive with total organic carbon (r = 0.538) and total mercury (r = 0.574). However, there were poor correlations between SO(4) (2-) concentrations and humic substance-bound mercury (r = -0.391) as well as the two fractions; fulvic acid (r = -0.406) and humic acid (r = -0.381). By assuming that methyl mercury is mostly formed in sediments, these significant relations suggest that the efficiency of mercury being methylated from a given inorganic form depends on the amount, and most likely biochemical composition of total organic carbon in the lake sediment but not the SO(4) (2-) concentration.

  14. Dioxin Chronology and Fluxes in Sediments of the Houston Ship Channel, Texas: Influences of Non-steady State Sediment Transport and Total Organic Carbon

    NASA Astrophysics Data System (ADS)

    Yeager, K.; Santschi, P.; Raifai, H.; Suarez, M.; Brinkmeyer, R.; Hung, C.; Schindler, K.; Andres, M.; Weaver, E.

    2007-05-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (dioxins) are persistent contaminants that bio-accumulate and pose serious risks to biota and humans. The primary objective of this study was to determine the history and mechanisms of dioxin accumulation in sediments of the Houston Ship Channel (HSC) using analytical data on natural and anthropogenic radionuclides (7Be, 137Cs and 210Pb) and dioxins. Results showed that present-day sedimentary dioxin accumulation rates are orders of magnitude higher than atmospheric inputs to the HSC, as determined from a wetland sediment core (FW1) and direct measurements. Most stations showed dioxin peaks in the near surface, indicating continuing inputs despite federal regulations. Stations with high dioxin inventories (11270 > 11193 > 16499 > 15979 > 11261) reflect accentuated accumulation in the HSC as one moves west towards Buffalo Bayou (11270, 15979), at the confluence of the HSC and the San Jacinto River (11261) and upstream in the San Jacinto River (11193). While station 11270 had the highest dioxin inventory, and nearby station 11261 had the highest sediment accumulation rates and dioxin fluxes, present-day dioxin fluxes at 11270 are less than average fluxes and inventories for station 11261 are less than average inventories, for all sites. These results support the interpretation that the HSC is influenced by episodic sediment resuspension, erosion and lateral transport processes driven by tides, wind, shipping and dredging, which can cause intermittently high accumulations of dioxins.

  15. Effect of policy-induced measures on suspended sediments and total phosphorus concentrations from three Norwegian agricultural catchments.

    PubMed

    Bechmann, Marianne; Stålnacke, Per

    2005-05-15

    In Norway, agricultural subsidies have, since the late 1980s, been targeted to reduce soil erosion, transfer of soil particles and phosphorus (P) losses. The subsidies led to, e.g., a fourfold increase in the area not ploughed from 1991 to 2001 and a reduced P fertiliser consumption by 60%, especially in areas with high livestock density. Moreover, in the late 1980s agricultural point sources of P from storage facilities of manure and fodder were reduced. In this paper, we evaluate the effect of these policy-induced measures and changed agricultural practices on suspended sediment (SS) and total P (TP) concentrations in three agricultural catchments (1, 3 and 87 km2). Results from the statistical trend analyses for the study period (14-17 years) showed weak, but statistically significant (p<0.05), downward trends in concentrations of TP and SS in the two streams with a high initial TP or SS concentration. In the stream with low initial concentrations of TP and SS, however, no statistically significant trends were shown. The stream with the highest initial concentration of SS showed a statistically significant downward trend in both TP and SS concentrations. The catchment with low initial concentration of SS and medium livestock density showed no detectable trends, while the catchment with high livestock density and low concentrations of SS in the stream showed a statistically significant downward trend in TP concentrations. The results from this study suggest that subsidies and mitigation measures can reduce concentrations of TP and SS in streamwater in highly polluted catchments, although the reduction is small compared to the variations between catchments.

  16. 24 CFR 884.104 - Maximum total annual contract commitment and project account (private-owner or PHA-owner projects).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Maximum total annual contract... Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF THE ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN...

  17. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment.

    PubMed

    Desrosiers, Mélanie; Gagnon, Christian; Masson, Stéphane; Martel, Louis; Babut, Marc P

    2008-01-15

    The availability and bioaccumulation of metals and metalloids, and the geochemical interactions among them, are essential to developing an ecological risk assessment (ERA) framework and determining threshold concentrations for these elements. The purpose of this study was to explore the relationships among total recoverable and reactive metals and metalloid in sediment and their bioaccumulation by chironomids. In the fall of 2004 and 2005, 58 stations located in the three fluvial lakes of the St. Lawrence River and its largest harbour area in Montreal, Canada, were sampled. Nine total recoverable and reactive metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and one metalloid (As) were measured in whole sediment using two extraction methods: HCl/HNO(3) and HCl 1N, respectively. The bioaccumulation of six metals (Cd, Cr, Cu, Ni, Pb and Zn) and As by chironomids was evaluated in a subset of 22 stations. Strong collinearities were observed between some total recoverable or reactive metal concentrations in sediment; two principal clusters, including collinear metals, were obtained. The first one included metals of mainly geological origin (Al, Cr, Fe, Mn, Ni), while the second one included As, Cd, Cu, Pb and Zn, which likely derive mainly from point sources of anthropogenic contamination. Each element also showed strong collinearity between their total recoverable and reactive forms (0.65< or =r < or =0.97). We can conclude that both chemical forms are equivalent for use in statistical models needed to explain biological responses and also in screening risk assessment. However, these relationships are not always proportional. Lower availability percentages were observed for Cd, Cu and Zn in the highly mixed-contaminated area of the Montreal Harbour, even though concentrations in sediment were higher. We observed a significant correlation (0.50< or =r < or =0.56) between concentrations in chironomids and concentrations of both total recoverable and reactive Cr and Pb in

  18. Recruitment of Total Phytoplankton, Chlorophytes and Cyanobacteria from Lake Sediments Recorded by Photosynthetic Pigments in a Large, Shallow Lake (Lake Taihu, China)

    NASA Astrophysics Data System (ADS)

    Cao, Huan-Sheng; Kong, Fan-Xiang; Tan, Jian-Kang; Zhang, Xiao-Feng; Tao, Yi; Yang, Zhou

    2005-08-01

    Recruitment of total phytoplankton, chlorophytes and cyanobacteria from lake sediments to the water column was studied using photosynthetic pigments at one site (1.5 m) in Lake Taihu, a large shallow lake in China. Samples were taken weekly from the migration traps installed on the bottom from March to May 2004. Abundance of total phytoplankton, chlorophytes and cyanobacteria were represented by Chlorophyll (Chl) a, b, and phycocyanin (PC), respectively. Over the three months, total phytoplankton, chlorophytes, and cyanobacteria corresponding to 48.9%, 68.9% and 316.2% of their initial concentrations in surface sediments were recruited in Lake Taihu. However, compared with their increase in pelagic abundance over the same period, the recruitment accounted for a rather small inoculum. Accompanying the recruitment, total phytoplankton and chlorophytes declined and cyanobacteria increased in the upper 0-2 cm sediments; colonies of Microcystis aeruginosa in the water column enlarged from small size with several cells to large colonies with hundreds of cells. Thus, overwintering and subsequent growth renewal of pelagic phytoplankton merits further study and comparison with benthic survival and recruitment.

  19. A Doubling of Microphytobenthos Biomass Coincides with a Tenfold Increase in Denitrifier and Total Bacterial Abundances in Intertidal Sediments of a Temperate Estuary

    PubMed Central

    Decleyre, Helen; Heylen, Kim; Sabbe, Koen; Tytgat, Bjorn; Deforce, Dieter; Van Nieuwerburgh, Filip; Van Colen, Carl; Willems, Anne

    2015-01-01

    Surface sediments are important systems for the removal of anthropogenically derived inorganic nitrogen in estuaries. They are often characterized by the presence of a microphytobenthos (MPB) biofilm, which can impact bacterial communities in underlying sediments for example by secretion of extracellular polymeric substances (EPS) and competition for nutrients (including nitrogen). Pyrosequencing and qPCR was performed on two intertidal surface sediments of the Westerschelde estuary characterized by a two-fold difference in MPB biomass but no difference in MPB composition. Doubling of MPB biomass was accompanied by a disproportionately (ten-fold) increase in total bacterial abundances while, unexpectedly, no difference in general community structure was observed, despite significantly lower bacterial richness and distinct community membership, mostly for non-abundant taxa. Denitrifier abundances corresponded likewise while community structure, both for nirS and nirK denitrifiers, remained unchanged, suggesting that competition with diatoms for nitrate is negligible at concentrations in the investigated sediments (appr. 1 mg/l NO3-). This study indicates that MPB biomass increase has a general, significantly positive effect on total bacterial and denitrifier abundances, with stimulation or inhibition of specific bacterial groups that however do not result in a re-structured community. PMID:25961719

  20. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    SciTech Connect

    Sisman, S. Lara

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  1. Potential effects of forest fire and storm flow on total mercury and methylmercury in sediments of an arid-lands reservoir.

    PubMed

    Caldwell, C A; Canavan, C M; Bloom, N S

    2000-10-09

    A study was conducted from July 1995 to June 1996 to examine the spatial and temporal changes of mercury concentrations in sediments of an arid-lands reservoir. Prior to the first sample collection in July, a forest fire burned 2930 ha of mixed conifer and ponderosa pine in the watershed of Caballo Reservoir in south-central New Mexico. The fire was eventually extinguished by summer rains and storm runoff resulting in the mobilization and transport of charred vegetative material into an intermittent tributary (Palomas Creek) that drains the watershed into Caballo Reservoir. Concentrations of total mercury (THg), monomethlymercury (MMHg), and total organic carbon (TOC) in surficial sediments revealed fire, followed by storm runoff, enhanced the transport of mercury and organic matter to the reservoir. Concentrations of THg in sediments increased from 7.5 etag/g in July to 46.1 etag/g by November 1995 at one site (Palomas) nearest the outflow of Palomas Creek. No other spatial or temporal trends were observed for THg at other sites throughout the remainder of the study. Concentrations of MMHg in sediments at the Palomas site increased from 0.428 etag/g in July to 12.46 etag/g by October 1995 compared to concentrations in sediments at the remaining sites which ranged from 0.11 to 1.50 etag/g throughout the study. The ratio of MMHg to THg (a gross index of methylation activity) was greatest in sediments from the Palomas site (5.4-33.8%) compared to the remaining sites (0.01-3.60%). The ratio was mirrored by elevated TOC in sediments at the Palomas site (2.5-11.8%) that remained elevated throughout the study. Fire and subsequent late-summer rains may have had a twofold effect on mercury concentrations in Caballo Reservoir. The storm-driven runoff following the forest fire carried mercury complexed to organic matter which resulted in elevated levels of mercury as well as providing a carbon source for microbial methylation processes in sediment.

  2. Dioxin chronology and fluxes in sediments of the Houston Ship Channel, Texas: influences of non-steady-state sediment transport and total organic carbon.

    PubMed

    Yeager, Kevin M; Santschi, Peter H; Rifai, Hanadi S; Suarez, Monica P; Brinkmeyer, Robin; Hung, Chin-Chang; Schindler, Kimberly J; Andres, Michael J; Weaver, Erin A

    2007-08-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (dioxins) are persistent contaminants that bioaccumulate and pose serious risks to humans. The primary objective of this study was to determine the history and mechanisms of dioxin accumulation in sediments of the Houston Ship Channel (HSC) using analytical data on natural and anthropogenic radionuclides (7Be, 137Cs, and 210Pb) and dioxins. Results showed that present-day sedimentary dioxin accumulation rates are orders of magnitude higher than atmospheric inputs to the HSC. Most stations showed dioxin peaks in the near surface, indicating continuing inputs despite federal regulations. Stations with high dioxin inventories reflect accentuated accumulation in the HSC as one moves west toward Houston, at the confluence of the HSC and the San Jacinto River and upstream in the San Jacinto River. These results indicate that a significant quantity of dioxins continues to be released into the environment here or that sedimentary storage and release of previously supplied dioxins is significant, or both. The results support the interpretation that the HSC is influenced by episodic sediment resuspension, erosion and lateral transport processes driven by tides, wind, shipping, and dredging, which can cause intermittently high accumulations of dioxins, and underscores the need for additional research on the roles of sedimentary processes in organic contaminant bioavailability.

  3. Bioprospecting from marine sediments of New Brunswick, Canada: exploring the relationship between total bacterial diversity and actinobacteria diversity.

    PubMed

    Duncan, Katherine; Haltli, Bradley; Gill, Krista A; Kerr, Russell G

    2014-02-13

    Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H' = 5.4 to 6.7). Furthermore, statistical analysis of species level bacterial communities (D = 0.03) indicated community composition varied according to site and was strongly influenced by sediment physiochemical composition. In contrast, cultured actinomycetes (n = 466, 98.3% Streptomyces) were ubiquitously distributed among all sites and distribution was not influenced by sediment composition, suggesting that the biogeography of culturable actinomycetes does not correlate with overall bacterial diversity in the samples examined. These actinomycetes provide a resource for future secondary metabolite discovery, as exemplified by the antimicrobial activity observed from preliminary investigation.

  4. Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship between Total Bacterial Diversity and Actinobacteria Diversity

    PubMed Central

    Duncan, Katherine; Haltli, Bradley; Gill, Krista A.; Kerr, Russell G.

    2014-01-01

    Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H’ = 5.4 to 6.7). Furthermore, statistical analysis of species level bacterial communities (D = 0.03) indicated community composition varied according to site and was strongly influenced by sediment physiochemical composition. In contrast, cultured actinomycetes (n = 466, 98.3% Streptomyces) were ubiquitously distributed among all sites and distribution was not influenced by sediment composition, suggesting that the biogeography of culturable actinomycetes does not correlate with overall bacterial diversity in the samples examined. These actinomycetes provide a resource for future secondary metabolite discovery, as exemplified by the antimicrobial activity observed from preliminary investigation. PMID:24531187

  5. Fluorine in the rocks and sediments of volcanic areas in central Italy: total content, enrichment and leaching processes and a hypothesis on the vulnerability of the related aquifers.

    PubMed

    De Rita, Donatella; Cremisini, Carlo; Cinnirella, Alessandro; Spaziani, Fabio

    2012-09-01

    Rock, sediment and water samples from areas characterised by hydrothermal alterations in the Sabatini and Vico Volcanic Districts, near Rome and the large city of Viterbo, respectively, were collected and analysed to determine the total fluorine (F) content and to understand the F geochemical background level in the volcanic districts of central Italy. Leaching and alteration processes controlling the high concentration of F in water were also investigated. Fluorine concentrations were directly determined (potentiometrically) by an F selective electrode in water samples, while the procedure for rock samples included preliminary F dissolution through alkaline fusion. F concentrations higher than 800 mg kg(-1) were commonly found in the analysed rocks and sediments; the concentration depended on the lithology and on the distance from the alteration areas. A specific successive sampling campaign was conducted in three areas where the F content in sediments was particularly high; in the same areas, measurements of CO(2) flux were also performed to investigate the possible deep origin of F. To verify the relationships among the high F contents in rocks and sediments, the leaching processes involved and the presence of F in the aquifer, we also collected water samples in the western sector of the Sabatini Volcanic District, where hydrothermal manifestations and mineral springs are common. The data were processed using a GIS system in which the F distribution was combined with morphological and geological observations. The main results of our study are that (1) F concentrations are higher in volcanic and recently formed travertine (especially in hydrothermally altered sediments) than in sedimentary rocks and decrease with distance from hydrothermal alteration areas, (2) F is more easily leached from hydrothermally altered rocks and from travertine and (3) sediments enriched with F may indicate the presence of deep regional fractures that represent direct pathways of

  6. Sedimentation and occurrence and trends of selected chemical constituents in bottom sediment of 10 small reservoirs, Eastern Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2004-01-01

    Many municipalities in Kansas rely on small reservoirs as a source of drinking water and for recreational activities. Because of their significance to the community, management of the reservoirs and the associated basins is important to protect the reservoirs from degradation. Effective reservoir management requires information about water quality, sedimentation, and sediment quality. A combination of bathymetric surveying and bottom-sediment coring during 2002 and 2003 was used to investigate sediment deposition and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 26 trace elements, 15 organochlorine compounds, and 1 radionuclide in the bottom sediment of 10 small reservoirs in eastern Kansas. Original reservoir water-storage capacities ranged from 23 to 5,845 acre-feet. The mostly agricultural reservoir basins range in area from 0.6 to 14 square miles. The mean annual net volume of deposited sediment, estimated separately for several of the reservoirs, ranged from about 43,600 to about 531,000 cubic feet. The estimated mean annual net mass of deposited sediment ranged from about 1,360,000 to about 23,300,000 pounds. The estimated mean annual net sediment yields from the reservoir basins ranged from about 964,000 to about 2,710,000 pounds per square mile. Compared to sediment yield estimates provided by a statewide study published in 1965, the estimates determined in this study differed substantially and were typically smaller. A statistically significant positive correlation was determined for the relation between sediment yield and mean annual precipitation. Nutrient concentrations in the bottom sediment varied substantially among the 10 reservoirs. Median total nitrogen concentrations ranged from 1,400 to 3,700 milligrams per kilogram. Median total phosphorus concentrations ranged from 550 to 1,300 milligrams per kilogram. A statistically significant positive trend (that is, nutrient concentration increased

  7. Total petroleum hydrocarbons and heavy metals in the surface sediments of Bohai Bay, China: long-term variations in pollution status and adverse biological risk.

    PubMed

    Zhou, Ran; Qin, Xuebo; Peng, Shitao; Deng, Shihuai

    2014-06-15

    Surface sediments collected from 2001 to 2011 were analyzed for total petroleum hydrocarbons (TPH) and five heavy metals. The sediment concentration ranges of TPH, Zn, Cu, Pb, Cd and Hg were 6.3-535 μg/g, 58-332 μg/g, 7.2-63 μg/g, 4.3-138 μg/g, 0-0.98μg/g, and 0.10-0.68 μg/g, respectively. These results met the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. However, based on the effects range-median (ERM) quotient method, the calculated values for all of the sampling sites were higher than 0.10, suggesting that there was a potential adverse biological risk in Bohai Bay. According to the calculated results, the biological risk decreased from 2001 to 2007 and increased afterwards. High-risk sites were mainly distributed along the coast. This study suggests that anthropogenic influences might be responsible for the potential risk of adverse biological effects from TPH and heavy metals in Bohai Bay.

  8. Wind erosion from a sagebrush steppe burned by wildfire: Measurements of PM10 and total horizontal sediment flux

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, Natalie S.; Germino, Matthew J.; Lamb, Brian K.; Robichaud, Peter R.; Foltz, Randy B.

    2013-09-01

    Wind erosion and aeolian transport processes are under studied compared to rainfall-induced erosion and sediment transport on burned landscapes. Post-fire wind erosion studies have predominantly focused on near-surface sediment transport and associated impacts such as on-site soil loss and site fertility. Downwind impacts, including air quality degradation and deposition of dust or contaminants, are also likely post-fire effects; however, quantitative field measurements of post-fire dust emissions are needed for assessment of these downwind risks. A wind erosion monitoring system was installed immediately following a desert sagebrush and grass wildfire in southeastern Idaho, USA to measure wind erosion from the burned landscape. This paper presents measurements of horizontal sediment flux and PM10 vertical flux from the burned area. We determined threshold wind speeds and corresponding threshold friction velocities to be 6.0 and 0.20 m s-1, respectively, for the 4 months immediately following the fire and 10 and 0.55 m s-1 for the following spring months. Several major wind erosion events were measured in the months following the July 2010 Jefferson Fire. The largest wind erosion event occurred in early September 2010 and produced 1495 kg m-1 of horizontal sediment transport within the first 2 m above the soil surface, had a maximum PM10 vertical flux of 100 mg m-2 s-1, and generated a large dust plume that was visible in satellite imagery. The peak PM10 concentration measured on-site at a height of 2 m in the downwind portion of the burned area was 690 mg m-3. Our results indicate that wildfire can convert a relatively stable landscape into one that is a major dust source.

  9. Annual layers in river-bed sediment of a stagnant river-mouth area of the Kitagawa Brook, Central Japan

    NASA Astrophysics Data System (ADS)

    Kurashige, Y.; Nakano, T.; Kasubuchi, E.; Maruo, M.; Domitsu, H.

    2015-03-01

    The river mouth of Kitagawa Brook is normally stagnant because it is easily closed by sand and gravel transported by littoral currents of Biwa Lake, Japan. A new urban area exists in the basin and sewerage works were constructed in the early 1990s, so contaminated water with a bad odour had flowed into the brook before the sewerage works. To reduce the smell, the river mouth was excavated to narrow the channel in the early 1980s. Thus, river-bed sediment after this excavation only occurs at the river mouth. From the upper 24 cm of a sediment core, we found 19 strata of leaves which were supplied from deciduous trees in autumn. We also found several gravel layers which were supplied from the lake during severe storms. The combination of veins and gravel layers were reconstructed for about 20 years of sediment records with an error of two to three years.

  10. Simultaneous determination of arsenic, cadmium, copper, chromium, nickel, lead and thallium in total digested sediment samples and available fractions by electrothermal atomization atomic absorption spectroscopy (ET AAS).

    PubMed

    Álvarez, María Á; Carrillo, Génesis

    2012-08-15

    This study describes the optimization and validation of a quick and simple method for the simultaneous determination of total content and available fractions of As, Cr, Cu, Ni, Pb and Tl in sediments by ET AAS, which has been proved to be useful for environmental research. The optimization was carried out using a 3(3) Box-Behnken factorial design which was applied to matrices of total digestion and to stages 1 and 2 of the modified BCR sequential extraction scheme for sediments in order to determine the appropriate atomization temperatures and masses for the chemical modifiers: Pd(NO(3))(2) and Mg(NO(3))(2). The simultaneous determination of the elements in all matrices considered was performed, without the use of chemical modifiers at atomization temperatures of 1700 °C for Cd and Tl, and 2100 °C for As, Cu, Cr, Ni and Pb, using a standard calibration curve for calibration purposes. The characteristic masses and limits of detection obtained were 36.5, 1.8, 6.5, 28, 34, 46.5 and 48 ρg and 0.11, 0.001, 0.022, 0.04, 0.2, 0.03 and 0.003 μg g(-1) for As, Cd, Cr, Cu, Ni, Pb and Tl, respectively. The analytical procedure was validated by analyzing three sediment certified reference materials (CRM NCS DC 73315 and LKSD-4 for total content and BCR 701 for available fractions). Good accuracy was obtained (tested statistically, P=0.05, and shown by the high recovery for each element in each matrix), except for total As in the matrix of total digestion, where losses of the analyte could be attributed to sample treatment with HNO(3). The precision of the procedure was between 0.6% and 6%.

  11. Sediment calibration strategies of Phase 5 Chesapeake Bay watershed model

    USGS Publications Warehouse

    Wu, J.; Shenk, G.W.; Raffensperger, J.; Moyer, D.; Linker, L.C.; ,

    2005-01-01

    Sediment is a primary constituent of concern for Chesapeake Bay due to its effect on water clarity. Accurate representation of sediment processes and behavior in Chesapeake Bay watershed model is critical for developing sound load reduction strategies. Sediment calibration remains one of the most difficult components of watershed-scale assessment. This is especially true for Chesapeake Bay watershed model given the size of the watershed being modeled and complexity involved in land and stream simulation processes. To obtain the best calibration, the Chesapeake Bay program has developed four different strategies for sediment calibration of Phase 5 watershed model, including 1) comparing observed and simulated sediment rating curves for different parts of the hydrograph; 2) analyzing change of bed depth over time; 3) relating deposition/scour to total annual sediment loads; and 4) calculating "goodness-of-fit' statistics. These strategies allow a more accurate sediment calibration, and also provide some insightful information on sediment processes and behavior in Chesapeake Bay watershed.

  12. Stable isotope record in annually laminated lake sediments from Lake Żabińskie (NE Poland) for the last millennium.

    NASA Astrophysics Data System (ADS)

    Gabryś, Alicja; Piotrowska, Natalia; Tylmann, Wojciech; Bonk, Alicja; Filipiak, Janusz; Wacnik, Agnieszka; Hernandez-Almeida, Ivan; Grosjean, Martin

    2015-04-01

    Stable isotope record of carbon (13C) and oxygen (18O) has been analysed from an annually laminated sediment from Lake Zabinskie (Mazurian Lakeland, NE Poland) with high resolution (1-3 yrs). The sediment layers which were formed in each year during the last millennium contain information about environmental changes in the past. The calcite layers are formed in lake sediment in warm months of the year, therefore the reconstruction of summer climate variables in the past is potentially possible. The investigation of correlation between isotope dataset and instrumental climate data for years 1897-2008 AD confirmed that theory. The record of temperature, precipitation and SPEI (Standardised Precipitation Evaporation Index) coefficient, which is a combination of both temperature and precipitation, was tested. The strongest linear correlations were found for most samples for June, July, August (JJA) months but in some cases the correlation coefficient was stronger when also May was taken into account. For the whole 120-yrs series the correlation between δ18O and average JJA temperature is 0.007, average JJA precipitation is 0.16 and average JJA SPEI is 0.20. Analyzing the results for 1897-2008 we can distinguish period 1960-2008 with relevantly stronger correlations: R(temperature) = 0.19, R(precipitation) = 0.20 and R(SPEI) = 0.45. This period is connected with cessation of human activity close to Lake Zabinskie. Reconstruction of climate variables for the last millennium was made using transfer function obtained for calibration period (1897-2008). Reconstructions showed that known climate extremes like Medieval Warm Period, Little Ice Age with Sporer (1420-1570), Maunder (1645-1715) and Dalton (1790-1820) Minimum was recorded in sediment from Lake Zabinskie. The presented study is a part of the project "Climate of northern Poland during the last 1000 years: Constraining the future with the past (CLIMPOL)", funded within Polish-Swiss Research Programme. http://www.climpol.ug.edu.pl

  13. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    PubMed Central

    Jensen, Anna M.; Warren, Jeffrey M.; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.

    2015-01-01

    Background and Aims The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significance of maintaining multiple foliar cohorts for Picea mariana trees within an ombrotrophic bog ecosystem in Minnesota, USA. Methods Measurements were taken on multiple cohorts of needles for photosynthetic capacity, foliar respiration (Rd) and leaf biochemistry and morphology of mature trees from April to October over 4 years. The results were applied to a simple model of canopy photosynthesis in order to simulate annual C uptake by cohort age under ambient and elevated temperature scenarios. Key Results Temperature responses of key photosynthetic parameters [i.e. light-saturated rate of CO2 assimilation (Asat), rate of Rubisco carboxylation (Vcmax) and electron transport rate (Jmax)] were dependent on season and generally less responsive in the developing current-year (Y0) needles compared with 1-year-old (Y1) or 2-year-old (Y2) foliage. Temperature optimums ranged from 18·7 to 23·7, 31·3 to 38·3 and 28·7 to 36·7 °C for Asat, Vcmax and Jmax, respectively. Foliar cohorts differed in their morphology and photosynthetic capacity, which resulted in 64 % of modelled annual stand C uptake from Y1&2 cohorts (LAI 0·67 m2 m−2) and just 36 % from Y0 cohorts (LAI 0·52 m2 m−2). Under warmer climate change scenarios, the contribution of Y0 cohorts was even less; e.g. 31 % of annual C uptake for a modelled 9 °C rise in mean summer temperatures. Results suggest that net annual C uptake by P. mariana could increase under elevated temperature, and become more dependent on older foliar cohorts. Conclusions Collectively, this study illustrates the physiological and

  14. Timber Harvest Effects on Sediment and Water Yields and Analysis of Sediment Load Calculation Methods in the Interior Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Elverson, C.; Karwan, D. L.

    2015-12-01

    Timber harvest practices have a long-standing association with changes in water and sediment yields. We quantify the trends in water and sediment yields in the Mica Creek Experimental Watershed (MCEW) in relation to management practices with linear regression and analysis of covariance (ANCOVA). From 1991 to 2013, an increase in water yield resulted from both clearcutting and thinning treatments, with monthly water yield rate increases of 13-57% and annual water yield increases up to 210 mm (40%) in the clearcut watershed. Following treatment, annual sediment yields increased in the clearcut watershed by 40-131% and the thinned watershed by 33-163%, both relative to the control watershed, with statistically-significant monthly load increases in the year immediately following treatment. Water and sediment yield changes do not follow the same post-treatment patterns. Water yields increased immediately following treatment and, over time, gradually dropped towards pre-harvest levels. Annual sediment yields increased in some years after the harvest, but in some cases the increase was years after treatment. Monthly sediment yields increased in the first year following the clearcut harvest, but elevated monthly loads following the partial cut harvest came years later. Hence, we investigate the changes in sediment yield through an examination of water yield and sediment concentration and in response to events. We test the sensitivity of our results to different methods for computing sediment yields based on total suspended solids concentration and continuous discharge measurements. Flow-weighted sediment yield averaged 24% higher than sediment yield computed from linear-interpolated total suspended solids concentration values. During typical summer and fall conditions, flow-weighting was found to overweight storm measurements and produce large sediment yield estimates. Further work is suggested to test methods of calculating monthly sediment yields with irregularly

  15. Annual and seasonal temperature variance along an inter-tidal sediment transect in Yaquina bay, Oregon, 1999 - 2006

    EPA Science Inventory

    Sediment temperature was measured using submersible Onset TidbiT® recording thermistor thermometers at eelgrass (Zostera marina, Z. japonica) mid-rhizome root depth (~5 cm) at 6 stations on a transect from ~MLLW (mean lower low water) at the channel edge to near MHHW (mean higher...

  16. Estimation of historic flows and sediment loads to San Francisco Bay,1849–2011

    USGS Publications Warehouse

    Moftakhari, H.R.; Jay, D.A.; Talke, S.A.; Schoellhamer, David H.

    2016-01-01

    River flow and sediment transport in estuaries influence morphological development over decadal and century time scales, but hydrological and sedimentological records are typically too short to adequately characterize long-term trends. In this study, we recover archival records and apply a rating curve approach to develop the first instrumental estimates of daily delta inflow and sediment loads to San Francisco Bay (1849–1929). The total sediment load is constrained using sedimentation/erosion estimated from bathymetric survey data to produce continuous daily sediment transport estimates from 1849 to 1955, the time period prior to sediment load measurements. We estimate that ∼55% (45–75%) of the ∼1500 ± 400 million tons (Mt) of sediment delivered to the estuary between 1849 and 2011 was the result of anthropogenic alteration in the watershed that increased sediment supply. Also, the seasonal timing of sediment flux events has shifted because significant spring-melt floods have decreased, causing estimated springtime transport (April 1st to June 30th) to decrease from ∼25% to ∼15% of the annual total. By contrast, wintertime sediment loads (December 1st to March 31st) have increased from ∼70% to ∼80%. A ∼35% reduction of annual flow since the 19th century along with decreased sediment supply has resulted in a ∼50% reduction in annual sediment delivery. The methods developed in this study can be applied to other systems for which unanalyzed historic data exist.

  17. The pollen season dynamics and the relationship among some season parameters (start, end, annual total, season phases) in Kraków, Poland, 1991-2008.

    PubMed

    Myszkowska, D; Jenner, B; Stępalska, D; Czarnobilska, E

    2011-09-01

    The dynamics of 15 taxa pollen seasons in Kraków, in 1991-2008 was monitored using a Burkard volumetric spore trap of the Hirst design. The highest daily pollen concentrations were achieved in the first half of May, and they were caused mainly by Betula and Pinus pollen. The second period of the high concentrations took place from the middle of July to the end of August (mainly Urtica pollen). Tree pollen seasons were shorter (18-24 days) in comparison with the most herbaceous pollen seasons (73-89 days), except at Artemisia and Ambrosia seasons (30 and 24 days, respectively). The season phases (percentyles) of the spring and late-summer taxa were the most variable in the consecutive years. The highest annual sums were noted for Urtica, Poaceae (herbaceous pollen seasons) and for Betula, Pinus, Alnus (tree pollen seasons), and the highest variability of annual totals was stated for Urtica, Populus, Fraxinus and the lowest for Ambrosia, Corylus, Poaceae. For the plants that pollinate in the middle of the pollen season (Quercus, Pinus and Rumex), the date of the season start seems not to be related to the season end, while for late pollen seasons, especially for Ambrosia and Artemisia, the statistically negative correlation between the start and the end season dates was found. Additionally, for the most studied taxa, the increase in annual pollen totals was observed. The presented results could be useful for the allergological practice and general botanical knowledge.

  18. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    SciTech Connect

    Jensen, Anna M.; Warren, Jeffrey; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.

    2015-01-01

    Using seasonal- and cohort-specific photosynthetic temperature response functions, we quantified the physiological significance of maintaining multiple foliar cohorts in mature (~40-45 year old) Picea mariana trees in an ombrotrophic Sphagnum-bog, northern Minnesota, USA. We measured photosynthetic capacity, foliar respiration (Rd), biochemistry and morphology to estimate annual carbon (C) uptake by cohort, season and canopy position. Temperature response of key photosynthetic parameters at 25 C (i.e., light-saturated rate of CO2 assimilation (Asat), light-saturated rate of Rubisco carboxylation (Vcmax), light-saturated electron transport rate (Jmax)) were clearly dependent on season and were generally less responsive in younger needles. Temperature optimums range between 18.7-23.7, 31.3-38.3 and 28.7-36.7 C for Asat, Vcmax and Jmax respectively. Current-year (Y0) foliage had lower photosynthetic capacities compared to one-year-old (Y1) and two-year-old (Y2) foliage. As Y0 needles matured, values of Asat, Vcmax, Jmax, foliar LMA and nitrogen increased. Values of Vcmax, Jmax and Rd were related to foliar nitrogen but only in the youngest (Y0) cohort. Foliar ontogeny affected photosynthetic capacity more than growth temperature. Morphological and physiological cohort differences were reflected by their annual contribution to modeled C uptake, with a ~36% lower estimated annual C uptake by Y0 needles (LAI 0.52 m2m-2) compared to Y1&2 cohorts (LAI 0.67 m2m-2). Collectively, these results illustrate the physiological and ecological significance of characterizing multiple foliar cohorts during bud break and throughout the growth season, and for cumulative C uptake model estimates.

  19. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    DOE PAGES

    Jensen, Anna M.; Warren, Jeffrey; Hanson, Paul J.; ...

    2015-01-01

    Using seasonal- and cohort-specific photosynthetic temperature response functions, we quantified the physiological significance of maintaining multiple foliar cohorts in mature (~40-45 year old) Picea mariana trees in an ombrotrophic Sphagnum-bog, northern Minnesota, USA. We measured photosynthetic capacity, foliar respiration (Rd), biochemistry and morphology to estimate annual carbon (C) uptake by cohort, season and canopy position. Temperature response of key photosynthetic parameters at 25 C (i.e., light-saturated rate of CO2 assimilation (Asat), light-saturated rate of Rubisco carboxylation (Vcmax), light-saturated electron transport rate (Jmax)) were clearly dependent on season and were generally less responsive in younger needles. Temperature optimums range between 18.7-23.7,more » 31.3-38.3 and 28.7-36.7 C for Asat, Vcmax and Jmax respectively. Current-year (Y0) foliage had lower photosynthetic capacities compared to one-year-old (Y1) and two-year-old (Y2) foliage. As Y0 needles matured, values of Asat, Vcmax, Jmax, foliar LMA and nitrogen increased. Values of Vcmax, Jmax and Rd were related to foliar nitrogen but only in the youngest (Y0) cohort. Foliar ontogeny affected photosynthetic capacity more than growth temperature. Morphological and physiological cohort differences were reflected by their annual contribution to modeled C uptake, with a ~36% lower estimated annual C uptake by Y0 needles (LAI 0.52 m2m-2) compared to Y1&2 cohorts (LAI 0.67 m2m-2). Collectively, these results illustrate the physiological and ecological significance of characterizing multiple foliar cohorts during bud break and throughout the growth season, and for cumulative C uptake model estimates.« less

  20. Challenges in Measuring and Predicting Medium Term (Weeks to Annual) Aeolian Sediment Transport in Beach-Dune Systems

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, I.

    2009-05-01

    Coastal dune budgets depend on sediment input by wind from the beach. Calculation of aeolian transport is thus a primary factor to understand coastal dune evolution and beach-dune coupled dynamics. However, measuring aeolian sediment transport in coastal areas presents fundamental technical and conceptual limitations that make numerical modeling difficult. Wind tunnel experiments isolate and reduce the number of variables to study, which is a necessary procedure to clearly manifest mechanistic relationships between cause and effect. But even with refinement and inclusion of new variables, traditional sediment transport formulas derived from wind tunnel experiments do not usually work well in natural areas. Short-term experiments may include precise instrumentation to obtain high frequency, detail time series of variables involved in aeolian transport, but inferring information at larger scales is problematic without knowledge of the timing and magnitude of particular transport events. There are two primary problems in attempting to predict sediment inputs to coastal dunes over periods of weeks, months or years: 1) to determine an appropriate set of predictive equations that incorporate complexities such as surface moisture content, beach width and the presence of vegetation; and 2) to provide quantitative data on these variables for input into the model at this time scale. Remote sensing techniques and the use of GIS software open the possibility to monitor key parameters regulating sediment transport dynamics at high spatial and temporal resolution over time scales beyond short-term experiments. These were applied at Greenwich Dunes, Prince Edward Island National Park (Canada), in an attempt to measure factors affecting aeolian sediment input to the foredune at a medium scale. Three digital cameras covering different sections of the beach and foredune provide time series on shoreline position, fetch distances, vegetation cover, ice/snow presence, or superficial

  1. A wood-strand material for wind erosion control: effects on total sediment loss, PM10 vertical flux, and PM10 loss.

    PubMed

    Copeland, N S; Sharratt, B S; Wu, J Q; Foltz, R B; Dooley, J H

    2009-01-01

    Fugitive dust from eroding land poses risks to environmental quality and human health, and thus, is regulated nationally based on ambient air quality standards for particulate matter with mean aerodynamic diameter < or = 10 microm (PM10) established in the Clean Air Act. Agricultural straw has been widely used for rainfall-induced erosion control; however, its performance for wind erosion mitigation has been less studied, in part because straw is mobile at moderate wind velocities. A wood-based long-strand material has been developed for rainfall-induced erosion control and has shown operational promise for control of wind-induced erosion and dust emissions from disturbed sites. The purpose of this study was to evaluate the efficacy of both agricultural straw and wood-strand materials in controlling wind erosion and fugitive dust emissions under laboratory conditions. Wind tunnel tests were conducted to compare wood strands of several geometries to agricultural wheat straw and bare soil in terms of total sediment loss, PM10 vertical flux, and PM10 loss. Results indicate that the types of wood strands tested are stable at wind speeds of up to 18 m s(-1), while wheat straw is only stable at speeds of up to 6.5 m s(-1). Wood strands reduced total sediment loss and PM10 emissions by 90% as compared to bare soil across the range of wind speeds tested. Wheat straw did not reduce total sediment loss for the range of speeds tested, but did reduce PM10 emissions by 75% compared to a bare soil at wind speeds of up to 11 m s(-1).

  2. Nutrient, suspended-sediment, and total suspended-solids data for surface water in the Great Salt Lake basins study unit, Utah, Idaho, and Wyoming, 1980-95

    USGS Publications Warehouse

    Hadley, Heidi K.

    2000-01-01

    Selected nitrogen and phosphorus (nutrient), suspended-sediment and total suspended-solids surface-water data were compiled from January 1980 through December 1995 within the Great Salt Lake Basins National Water-Quality Assessment study unit, which extends from southeastern Idaho to west-central Utah and from Great Salt Lake to the Wasatch and western Uinta Mountains. The data were retrieved from the U.S. Geological Survey National Water Information System and the State of Utah, Department of Environmental Quality, Division of Water Quality database. The Division of Water Quality database includes data that are submitted to the U.S. Environmental Protection Agency STOrage and RETrieval system. Water-quality data included in this report were selected for surface-water sites (rivers, streams, and canals) that had three or more nutrient, suspended-sediment, or total suspended-solids analyses. Also, 33 percent or more of the measurements at a site had to include discharge, and, for non-U.S. Geological Survey sites, there had to be 2 or more years of data. Ancillary data for parameters such as water temperature, pH, specific conductance, streamflow (discharge), dissolved oxygen, biochemical oxygen demand, alkalinity, and turbidity also were compiled, as available. The compiled nutrient database contains 13,511 samples from 191 selected sites. The compiled suspended-sediment and total suspended-solids database contains 11,642 samples from 142 selected sites. For the nutrient database, the median (50th percentile) sample period for individual sites is 6 years, and the 75th percentile is 14 years. The median number of samples per site is 52 and the 75th percentile is 110 samples. For the suspended-sediment and total suspended-solids database, the median sample period for individual sites is 9 years, and the 75th percentile is 14 years. The median number of samples per site is 76 and the 75th percentile is 120 samples. The compiled historical data are being used in the

  3. Mixing it Up: A Record of Holocene Climate Change in Non-Annually Laminated Sediment of Seneca Lake, NY

    NASA Astrophysics Data System (ADS)

    Rogers, C. E.; Curtin, T. M.

    2005-12-01

    The mid to late Holocene climate record was examined in two cores that represent distal sedimentation in Seneca Lake, one of 11 Finger Lakes in western New York. Laminated sediments, ~5 m thick, were collected from the middle of the lake at 131-137 m water depths. These sites were selected because they preserve a continuous record of changes in the hydrologic balance and sedimentary processes. Variations in grain size and fabric at 50-100-cm intervals were observed and represent time periods of hundreds to thousands of years. The combination of magnetic susceptibility, loss-on-ignition, grain size analysis by laser diffraction, and grain fabric analysis using thin sections allow us to reconstruct the evolution of the lake since deglaciation and to compare and contrast paleoclimate indicator data. Variations in the type of sedimentary fabrics preserved are coincident with variations in geochemical and sedimentological indicators of environmental conditions that may have occurred in response to fluctuations in the hydrologic balance and circulation and/or overturn. Laterally continuous, thin, black laminae rich in organic matter and possibly minute grains of iron sulfides accumulated during the mid Holocene Hypsithermal (~9-7 ka). Presence of black laminae may signify a steady supply of organic matter and an absence of oxygen, at least below the sediment-water interface if not in the lower part of the water column. Coincident with finely laminated sediment are the coarsest mean grain sizes. Three 2-6 cm thick sand beds occur in one core, suggesting that an influx of water and sediment occurred during intense storms. A combination of warmer surface water and influx of freshwater from storms during the Hypsithermal may have influenced the turnover history of the lake by stabilizing the water column. Absence of overturn would result in depletion of nutrients in surface waters, a decrease in primary productivity, and a decrease in oxygen at the bottom of the lake as a

  4. 77 FR 14366 - Notice of Annual Adjustment of the Cap on Average Total Assets That Defines Community Financial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Federal Deposit Insurance Corporation and that has average total assets below a statutory cap.\\2\\ The Bank... that governing the CFI asset cap, because the factors that are used to seasonally adjust the data...

  5. Status report and FY95 plans -- Re-evaluation of NOAA Dobson spectrophotometer total ozone data. 1994 annual report

    SciTech Connect

    1994-12-31

    The goal of this project was to re-evaluate NOAA/CMDL Dobson spectrophotometer total ozone data during FY94 from the stations Haute Provence, France; Lauder, New Zealand; Perth, Australia; and Poker Flat, Alaska and the Umkehr data from Boulder, Colorado and Mauna Loa, Hawaii. During the second year the authors planned to re-evaluate total ozone data from Byrd, Hallett and South Pole, Antarctica; Fairbanks, Alaska; Puerto Montt, Chile; Huancayo, Peru and Umkehr data from Huancayo.

  6. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    USGS Publications Warehouse

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of

  7. Estimating sediment discharge: Appendix D

    USGS Publications Warehouse

    Gray, John R.; Simões, Francisco J. M.

    2008-01-01

    Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bed-load, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment- discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment- discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment dis- charges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common. Reliable estimation of sediment discharges presupposes that the data on which the estimates are based are comparable and reliable. Unfortunately, data describing a selected characteristic of sediment were not necessarily derived—collected, processed, analyzed, or interpreted—in a consistent manner. For example, bed-load data collected with

  8. Effects of Alder Mine on the Water, Sediments, and Benthic Macroinvertebrates of Alder Creek, 1998 Annual Report.

    SciTech Connect

    Peplow, Dan

    1999-05-28

    The Alder Mine, an abandoned gold, silver, copper, and zinc mine in Okanogan County, Washington, produces heavy metal-laden effluent that affects the quality of water in a tributary of the Methow River. The annual mass loading of heavy metals from two audits at the Alder Mine was estimated to exceed 11,000 kg per year. In this study, water samples from stations along Alder Creek were assayed for heavy metals by ICP-AES and were found to exceed Washington State's acute freshwater criteria for cadmium (Cd), copper (Cu), selenium (Se), and zinc (Zn).

  9. Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, (207/206)Pb, total petroleum hydrocarbon, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records.

    PubMed

    Vane, C H; Chenery, S R; Harrison, I; Kim, A W; Moss-Hayes, V; Jones, D G

    2011-03-13

    The sediment concentrations of total petroleum hydrocarbons (TPHs), polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), Pb and (207/206)Pb isotope ratios were measured in seven cores from the middle Clyde estuary (Scotland, UK) with an aim of tracking the late Anthropocene. Concentrations of TPHs ranged from 34 to 4386 mg kg(-1), total PAHs from 19 to 16,163 μg kg(-1) and total PCBs between less than 4.3 to 1217 μg kg(-1). Inventories, distributions and isomeric ratios of the organic pollutants were used to reconstruct pollutant histories. Pre-Industrial Revolution and modern non-polluted sediments were characterized by low TPH and PAH values as well as high relative abundance of biogenic-sourced phenanthrene and naphthalene. The increasing industrialization of the Clyde gave rise to elevated PAH concentrations and PAH isomeric ratios characteristic of both grass/wood/coal and petroleum and combustion (specifically petroleum combustion). Overall, PAHs had the longest history of any of the organic contaminants. Increasing TPH concentrations and a concomitant decline in PAHs mirrored the lessening of coal use and increasing reliance on petroleum fuels from about the 1950s. Thereafter, declining hydrocarbon pollution was followed by the onset (1950s), peak (1965-1977) and decline (post-1980s) in total PCB concentrations. Lead concentrations ranged from 6 to 631 mg kg(-1), while (207/206)Pb isotope ratios spanned 0.838-0.876, indicative of various proportions of 'background', British ore/coal and Broken Hill type petrol/industrial lead. A chronology was established using published Pb isotope data for aerosol-derived Pb and applied to the cores.

  10. Total Quality Management: Statistics and Graphics III - Experimental Design and Taguchi Methods. AIR 1993 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Schwabe, Robert A.

    Interest in Total Quality Management (TQM) at institutions of higher education has been stressed in recent years as an important area of activity for institutional researchers. Two previous AIR Forum papers have presented some of the statistical and graphical methods used for TQM. This paper, the third in the series, first discusses some of the…

  11. Total mercury and methylmercury in fish fillets, water, and bed sediments from selected streams in the Delaware River basin, New Jersery, New York, and Pennsylvania, 1998-2001

    USGS Publications Warehouse

    Brightbill, Robin A.; Riva-Murray, Karen; Bilger, Michael D.; Byrnes, John D.

    2004-01-01

    Within the Delaware River Basin, fish-tissue samples were analyzed for total mercury (tHg). Water and bed-sediment samples were analyzed for tHg and methylmercury (MeHg), and methylation efficiencies were calculated. This study was part of a National Mercury Pilot Program conducted by the U.S. Geological Survey (USGS). The Delaware River Basin was chosen because it is part of the USGS National Water-Quality Assessment Program that integrates physical, chemical, and biological sampling efforts to determine status and trends in surface-water and ground-water resources. Of the 35 sites in the study, 31 were sampled for fish. The species sampled at these sites include smallmouth bass (Micropterus dolomieu), the target species, and where smallmouth bass could not be collected, brown trout (Salmo trutta), chain pickerel (Esox niger), largemouth bass (Micropterus salmoides), and rock bass (Ambloplites rupestris). There were a total of 32 fish samples; 7 of these exceeded the 0.3 ?g/g (micrograms per gram) wet-weight mercury (Hg) concentration set for human health by the U.S. Environmental Protection Agency and 27 of these exceeded the U.S. Fish and Wildlife Service criteria of 0.1 ?g/g wet weight for the protection of fish-eating birds and wildlife. Basinwide analysis of Hg in fish, water, and bed sediment showed tHg concentration in fillets correlated positively with population density, urban land cover, and impervious land surface. Negative correlations included wetland land cover, septic density, elevation, and latitude. Smallmouth bass from the urban sites had a higher median concentration of tHg than fish from agricultural, low intensity-agricultural, or forested sites. Concentrations of tHg and MeHg in water were higher in samples from the more urbanized areas of the basin and were positively correlated with urbanization and negatively correlated with forested land cover. Methylation efficiency of water was negatively correlated with urbanization. Bed-sediment

  12. Estimating the Contributions of Surface Wash-off and Channel Erosion to Total Sediment and Solute Loads in a Small Mixed Land Use Watershed

    NASA Astrophysics Data System (ADS)

    Nipper, J.; Bowden, W. B.

    2009-12-01

    Watershed sediment and solute loads originate from many different sources. These can include point sources, soil erosion, impervious surface wash-off, channel bank and bed erosion, and other sources depending on the land use activities within the watershed. However, the difficulties encountered in quantifying the contributions of specific nonpoint sources to watershed loads magnifies the uncertainty in watershed management efforts aimed at mitigating the pollutants. The goal of this research is to quantify the contribution of wash-off from residentially developed land and stream channel erosion to total watershed sediment and solute loadings within a 103 ha tributary watershed of Potash Brook, in Chittenden County, Vermont. To do so we deployed autosamplers at two stream cross sections and within two representative storm drain outfalls to sample TSS, TN, NO3-, TKN, TP, and Cl-. Samples were collected during storm events on a flow weighted composite basis, and by periodic base flow sampling. In stream sampling was conducted over a total 5 years and storm drain sampling covered a total of 2 years. Preliminary analysis of these data suggests that surface wash-off from developed portions of the watershed can generate greater than 90% of the TSS and greater than 50% of the Cl- loads measured at the watershed outlet sampling location. Currently, these data are being incorporated into an EPA-SWMM model of the watershed coupled with an evolutionary strategies parameter search algorithm. The model generated and measured wash-off data will be used with the measured load data at the watershed outlet to estimate the contribution of the stream channel by difference over all sampled events.

  13. Biotic drivers of fluvial sediment transport: Aggregate effects of sediment mobilisation by crayfish on catchment-scale sediment yield

    NASA Astrophysics Data System (ADS)

    Rice, Stephen; Mathers, Kate; Reeds, Jake; Extence, Chris

    2015-04-01

    Small but prolific organisms may be significant zoogeomorphic agents that make cumulative contributions to the large-scale terrestrial sediment cascade in, as yet, unknown and unquantified ways. One such organism is the signal crayfish (Pacifastacus leniusculus), which has invaded many European rivers. The geographical extent and abundance of this animal ensure innumerable local, small-scale interactions with the fluvial sediment system that have the potential to yield a substantial effect when aggregated across larger spatial and temporal scales. Here we estimate, for the first time, the proportion of the total annual sediment yield associated with crayfish activity in an infested river and examine the variability in crayfish-driven sediment flux integrated across daily, monthly and seasonal time scales. We focused on one of several mechanisms by which crayfish activities affect sediment dynamics: the mobilisation of fine sediments by foraging, fighting and burrowing under hydraulic conditions that are otherwise insufficient to entrain sediment. On the Brampton Branch of the River Nene, UK, a 12-month record of suspended sediment concentration (derived from a calibration of turbidity data against measured SSC) allowed calculation of sediment fluxes and integrated sediment loads at ten-minute intervals. Concurrent measurements of water depth and crayfish movements (using PIT tagging) confirmed that night-time crayfish activity was often associated with increased sediment fluxes in the absence of any change in hydraulic conditions. Sediment loads calculated for these periods of crayfish activity were compared with total loads to estimate the contribution made to sediment mobilisation by crayfish. Crayfish-induced fluxes were most significant during summer low-flows, becoming less important during winter when the crayfish were inactive and competent high flows dominated sediment transport. Nevertheless, the seasonal cumulative effect of crayfish was substantial and

  14. Diversity of Total Bacterial Communities and Chemoautotrophic Populations in Sulfur-Rich Sediments of Shallow-Water Hydrothermal Vents off Kueishan Island, Taiwan.

    PubMed

    Wang, Li; Cheung, Man Kit; Liu, Rulong; Wong, Chong Kim; Kwan, Hoi Shan; Hwang, Jiang-Shiou

    2017-04-01

    Shallow-water hydrothermal vents (HTVs) are an ecologically important habitat with a geographic origin similar to that of deep-sea HTVs. Studies on shallow-water HTVs have not only facilitated understanding of the influences of vents on local ecosystems but also helped to extend the knowledge on deep-sea vents. In this study, the diversity of bacterial communities in the sediments of shallow-water HTVs off Kueishan Island, Taiwan, was investigated by examining the 16S ribosomal RNA gene as well as key functional genes involved in chemoautotrophic carbon fixation (aclB, cbbL and cbbM). In the vent area, Sulfurovum and Sulfurimonas of Epsilonproteobacteria appeared to dominate the benthic bacterial community. Results of aclB gene analysis also suggested involvement of these bacteria in carbon fixation using the reductive tricarboxylic acid (rTCA) cycle. Analysis of the cbbM gene showed that Alphaproteobacterial members such as the purple non-sulfur bacteria were the major chemoautotrophic bacteria involving in carbon fixation via the Calvin-Benson-Bassham (CBB) cycle. However, they only accounted for <2% of the total bacterial community in the vent area. These findings suggest that the rTCA cycle is the major chemoautotrophic carbon fixation pathway in sediments of the shallow-water HTVs off Kueishan Island.

  15. Managing Fine Sediment in Regulated Rivers

    NASA Astrophysics Data System (ADS)

    Schmidt, J. C.

    2015-12-01

    A paradigm useful in managing dams and diversions is that the combined effects of changing flow regime and sediment supply perturb regulated rivers into sediment deficit or sediment surplus. In the U.S. Southwest, large dams constructed on interregional rivers typically create sediment deficit segments >100 km long. Further downstream, sediment surplus may occur if desert tributaries deliver sufficient amounts of fine sediment, such as parts of the Rio Grande, lower Green River, and Colorado River delta. Sediment surplus also occurs on most smaller regional rivers. The protocols for managing rivers perturbed into sediment deficit have been refined for the Colorado River downstream from Glen Canyon Dam but are nonetheless challenged by externally determined water-supply agreements that require annual water deliveries that sometimes occur when there has been little tributary resupply. Virtually all of the naturally supplied sand to the depleted, 100-km long Marble Canyon comes from the Paria River. The sand delivery rate since 2012 was sufficiently large to trigger short-duration controlled floods under the High Flow Experiment (HFE) Protocol. The sand mass balance of Marble Canyon since 2012 when the HFE Protocol was adopted was positive due to the combination of relatively large sand delivery from the Paria River and average total annual flows. Large total annual flows have the potential to export large amounts of sand and create a negative sand mass balance. Despite the challenge of managing a scarce and highly variable sand supply and occasional years of large reservoir releases, the long-term (2006-2015) sand mass balance for the upstream half of Marble Canyon is indeterminant and is positive for the downstream half of Marble Canyon. The apparent success of managing sand in Grand Canyon under deficit conditions suggests that fine sediment management protocols might be developed for other regulated rivers. Implementation would require establishment of networks of

  16. Physical and chemical characteristics including total and geochemical forms of phosphorus in sediment from the top 30 centimeters of cores collected in October 2006 at 26 sites in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Simon, Nancy S.; Ingle, Sarah N.

    2011-01-01

    μThis study of phosphorus (P) cycling in eutrophic Upper Klamath Lake (UKL), Oregon, was conducted by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation. Lakebed sediments from the upper 30 centimeters (cm) of cores collected from 26 sites were characterized. Cores were sampled at 0.5, 1.5, 2.5, 3.5, 4.5, 10, 15, 20, 25, and 30 cm. Prior to freezing, water content and sediment pH were determined. After being freeze-dried, all samples were separated into greater than 63-micron (μm) particle-size (coarse) and less than 63-μm particle-size (fine) fractions. In the surface samples (0.5 to 4.5 cm below the sediment water interface), approximately three-fourths of the particles were larger than 63-μm. The ratios of the coarse particle-size fraction (>63 μm) and the fine particle-size fraction (<63 μm) were approximately equal in samples at depths greater than 10 cm below the sediment water interface. Chemical analyses included both size fractions of freeze-dried samples. Chemical analyses included determination of total concentrations of aluminum (Al), calcium (Ca), carbon (C), iron (Fe), poorly crystalline Fe, nitrogen (N), P, and titanium (Ti). Total Fe concentrations were the largest in sediment from the northern portion of UKL, Howard Bay, and the southern portion of the lake. Concentrations of total Al, Ca, and Ti were largest in sediment from the northern, central, and southernmost portions of the lake and in sediment from Howard Bay. Concentrations of total C and N were largest in sediment from the embayments and in sediment from the northern arm and southern portion of the lake in the general region of Buck Island. Concentrations of total C were larger in the greater than 63-μm particle-size fraction than in the less than 63-μm particle-size fraction. Sediments were sequentially extracted to determine concentrations of inorganic forms of P, including loosely sorbed P, P associated with poorly crystalline Fe oxides, and P

  17. The Eighth Annual NASA/Contractors Conference and 1991 National Symposium on Quality and Productivity: Extending the boundaries of total quality management

    NASA Technical Reports Server (NTRS)

    Templeton, Geoffrey B. (Editor); Stewart, Lynne M. (Editor); Still, William T. (Editor)

    1992-01-01

    The Eighth Annual NASA/Contractors Conference and 1991 National Symposium on Quality and Productivity provided a forum to exchange knowledge and experiences in these areas of continuous improvement. The more than 1,100 attendees from government, industry, academia, community groups, and the international arena had a chance to learn about methods, tools, and strategies for excellence and to discuss continuous improvement strategies, successes, and failures. This event, linked via satellite to concurrent conferences hosted by the NASA Goddard Space Flight Center in Greenbelt, Maryland, and Martin Marietta Astronautics Group in Denver, Colorado, also explored extending the boundaries of Total Quality Management to include partnerships for quality within communities and encouraged examination, evaluation, and change to incorporate the principles of continuous improvement.

  18. Discharge, suspended sediment, bedload, and water quality in Clear Creek, western Nevada, water years 2010-12

    USGS Publications Warehouse

    Huntington, Jena M.; Savard, Charles S.

    2015-09-30

    During this study, total annual sediment loads ranged from 355 tons per year in 2010 to 1,768 tons per year in 2011 and were significantly lower than the previous study (water years 2004–07). Bedload represented between 29 and 38 percent of total sediment load in water years 2010–12, and between 72 and 90 percent of the total sediment load in water years 2004–07, which indicates a decrease in bedload between study periods. Annual suspended-sediment loads in water years 2010–12 indicated no significant change from water years 2004–07. Mean daily discharge was significantly lower in water years 2010–12 than in waters years 2004–07 and may be the reason for the decrease in bedload that resulted in a lower total sediment load.

  19. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    PubMed Central

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-01-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30–40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period. PMID:26879008

  20. Local Algorithm for Monitoring Total Suspended Sediments in Micro-Watersheds Usin Drones and Remote Sensing Applications. Case Study: TEUSACÁ River, la Calera, Colombia

    NASA Astrophysics Data System (ADS)

    Sáenz, N. A.; Paez, D. E.; Arango, C.

    2015-08-01

    An empirical relationship of Total Suspended Sediments (TSS) concentrations and reflectance values obtained with Drones' aerial photos and processed using remote sensing tools was set up as the main objective of this research. A local mathematic algorithm for the micro-watershed of the Teusacá River at La Calera, Colombia, was developed based on the computing of four component of bands from consumed-grade cameras obtaining from each their corresponding reflectance values from procedures for correcting digital camera imagery and using statistical analysis for study the fit and RMSE of 25 regressions. The assessment was characterized by the comparison of reflectance values and 34 in-situ data measurements concentrations between 1.6 and 33 mg L-1 taken from the superficial layer of the river in two campaigns. A large data set of empirical and referenced algorithm from literature were used to evaluate the accuracy and precision of the relationship. For estimation of TSS, a higher accuracy was achieved using the Tassan's algorithm with the BAND X/ BANDX ratio. The correlation coefficient with R2 = X demonstrate the feasibility of use remote sensed data with consumed-grade cameras as an effective tool for a frequent monitoring and controlling of water quality parameters such as Total Suspended Solids of watersheds, these being the most vulnerable and less compliance with environmental regulations.

  1. Concentration of lead, cadmium, and iron in sediment dust and total suspended particles before and after initialisation of integral production in iron and steel work plant Zenica.

    PubMed

    Prcanović, Halim; Duraković, Mirnes; Beganović, Sanela

    2012-06-01

    Poor air quality is a common fact for all areas with base industry. The city of Zenica was once the metallurgical centre of Ex-Yugoslavia and is therefore highly polluted at present. Air pollution peaked in 1987 when average concentration of pollutants was extremely high (daily average concentration of SO(2) was 1800 μg m(-3)). With the beginning of the war in 1992, integral production in the steel work plant was shut down, to be re-launched in 2008. Limit values for iron do not exist, but iron has been monitored in Zenica for the past 28 years because of the presence of steel works. Concentrations of cadmium and lead have also been measured because they are very much present in polluted areas with steel works. The concentration of mentioned elements in air deposit and total suspended particles before and after integral production in the steel work plant was re-launched is the subject of this paper. Total suspended particles were measured in two locations using German standard VDI 2463 Blatt 4. Sediment dust was measured in nine locations using Bergerhoff method. The concentration of iron, lead, and cadmium was performed in the chemical laboratory of the Metallurgical Institute "Kemal Kapetanović" Zenica using standard methods. Higher concentrations of these parameters during the period of integral production clearly point to the impact of steel works on Zenica valley.

  2. Some rainfall-related thresholds for erosion and sediment yield in the upper Yangtze River basin

    NASA Astrophysics Data System (ADS)

    Xu, Jiongxin

    2009-01-01

    This study examines rainfall thresholds for erosion and sediment yield in the upper Yangtze River basin. Sediment reduction effects of soil conservation measures depend on the magnitudes of rainstorm. When the latter is less than a critical threshold, sediment reduction effects of soil conservation measures are positive; when this magnitude is exceeded, the effect is negative. An analysis based on data from the Jialingjiang River shows that the sediment reduction by soil conservation measures increased with annual precipitation to a peak, and then decreased to a negative value. The annual precipitation at the peak and zero values of sediment reduction are 970 and 1,180 mm, respectively, which can be regarded as two thresholds. Annual precipitation at the zero-value of sediment reduction has a return period of 25 years. In general, the design standard of soil conservation works in China is related with rainstorms with return periods of 10-20 years. When the magnitude of rainstorm exceeds this, the soil conservation works may be partly or totally destroyed by rainstorms, and the previously trapped sediment may be released, resulting in a sharp increase in sediment yield. It was also found in the lower Jinshajiang River that when annual precipitation exceeds 1,050 mm or high-flow season precipitation exceeds 850 mm, the annual sediment yield increased sharply. These can also be regarded as key rainfall thresholds for erosion and sediment yields. When precipitation is less than the two thresholds, dominant erosion types are sheet, rill and gully erosions. When precipitation crosses the two thresholds, debris flows may occur more frequently. As a result, the previously stored loose sediment is released and sediment yield increases sharply.

  3. Sediment loads in the Ventura River Basin, Ventura County, California, 1969-81

    USGS Publications Warehouse

    Hill, B.R.; McConaughy, C.E.

    1988-01-01

    To estimate the replenishment of beach sands by fluvial transport from the Ventura River, California sediment data collected during a 12-year period (1969-81) were used to develop relations between bedload and coarse-suspended-sediment loads and streamflow. These relations were used to calculate coarse-sediment and total-sediment loads from the Ventura River, and to assess the effects of major storms on sediment transport. Sediment data collected on an unregulated tributary over a 12-year period were used to assess effects of dam construction on sediment loads and to identify major sediment source areas in the Ventura basin. Total-sediment load from the Ventura River for the 12 years of data collection was 12,800,000 tons, of which 5,100,000 tons, or 40%, consisted of coarse material potentially available for replenishment of beach sands. Suspended-sediment transport was the dominant process supplying sediment to the coast, accounting for more than 98% of the coarse-sediment load. Higher streamflows carried proportionately more coarse-suspended sediment than low flows. Major storm events transported more than 96% of both total-sediment and course-sediment annual loads during three high-flow years. The sequence of storm events may influence storm-period sediment transport, as sediment removed rapidly during high flows is gradually replenished by hillslope processes. The sediment yield of the unregulated part of the basin was higher than that of the regulated part. Consideration of the trap efficiencies of reservoirs in the basin, however, indicates that actual yields may be highest in areas affected by impoundments. (USGS)

  4. The importance of biotic entrainment for base flow fluvial sediment transport

    NASA Astrophysics Data System (ADS)

    Rice, Stephen P.; Johnson, Matthew F.; Mathers, Kate; Reeds, Jake; Extence, Chris

    2016-05-01

    Sediment transport is regarded as an abiotic process driven by geophysical energy, but zoogeomorphological activity indicates that biological energy can also fuel sediment movements. It is therefore prudent to measure the contribution that biota make to sediment transport, but comparisons of abiotic and biotic sediment fluxes are rare. For a stream in the UK, the contribution of crayfish bioturbation to suspended sediment flux was compared with the amount of sediment moved by hydraulic forcing. During base flow periods, biotic fluxes can be isolated because nocturnal crayfish activity drives diel turbidity cycles, such that nighttime increases above daytime lows are attributable to sediment suspension by crayfish. On average, crayfish bioturbation contributed at least 32% (474 kg) to monthly base flow suspended sediment loads; this biotic surcharge added between 5.1 and 16.1 t (0.21 to 0.66 t km-2 yr-1) to the annual sediment yield. As anticipated, most sediment was moved by hydraulic forcing during floods and the biotic contribution from baseflow periods represented between 0.46 and 1.46% of the annual load. Crayfish activity is nonetheless an important impact during baseflow periods and the measured annual contribution may be a conservative estimate because of unusually prolonged flooding during the measurement period. In addition to direct sediment entrainment by bioturbation, crayfish burrowing supplies sediment to the channel for mobilization during floods so that the total biotic effect of crayfish is potentially greater than documented in this study. These results suggest that in rivers, during base flow periods, bioturbation can entrain significant quantities of fine sediment into suspension with implications for the aquatic ecosystem and base flow sediment fluxes. Energy from life rather than from elevation can make significant contributions to sediment fluxes.

  5. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    PubMed

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  6. Modelling the contribution of individual radionuclides to the total gamma air kerma rate for the sediments of the Ribble Estuary, NW England.

    PubMed

    Brown, J E; McDonald, P; Williams, M; Parker, A; Rae, J E

    1999-12-01

    The aim of this study was to test the performance of a published dose-rate model, investigate the contribution of individual radionuclides to the total gamma air kerma rate (GAKR) and derive external doses to man in the Ribble Estuary, NW England. GAKRs were measured and sediment cores were collected in order to determine radionuclide specific activities with depth. The latter values were used as input data for the external dose-rate model. The model has a slight tendency to over-predict the GAKR, but, on average, the model predictions fall within +/-26% of the measured value. Improvements, in the present case, might be made by accounting for core shortening and variations in soil density in the input data. The model predicted that, for exposed intertidal mud sites, a range of GAKRs between 0.011 and 0.022 microGy h(-1) was attributable to Springfields discharges alone. The contribution due to 234mPa and 234Th ranged between 20 and 60%. An excess GAKR (GAKR arising from anthropogenic emissions alone) of 0.139-0.150 microGy h(-1), used in conjunction with relevant habit-survey data (for a potential critical group) and conversion factors, yielded a dose to man of 0.029-0.031 mSv year(-1).

  7. Measurement of sediment loads during flash flood events: 14 years of results from a six stream monitoring network on the southern Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Griffiths, R. E.; Topping, D. J.

    2015-12-01

    In in arid and semi-arid environments, short-duration, high-intensity rainfall events—flash floods—are the primary driver of sediment transport in ephemeral streams. The spatial and temporal variability of these rainfall events results in episodic and irregular stream flow and resultant sediment transport. As a result of limited-flow durations, measuring discharge and collecting suspended-sediment samples on ephemeral streams in arid regions is difficult and time-consuming. Because of these limitations, few sediment-monitoring programs on ephemeral streams have been developed; some examples of sediment-monitoring gages and gaging networks constructed on arid ephemeral streams include Walnut Gulch, United States, Nahal Yael, Israel, and the Luni River Basin, India. The difficulty in making measurements of discharge and suspended-sediment concentration on arid ephemeral streams has led many researchers to use methods such as regional sediment-yield equations, sediment-rating curves, and peak discharge to total-sediment load relations. These methods can provide a cost-effective estimation of sediment yield from ungaged tributaries. However, these approaches are limited by, among other factors, time averaging, hysteresis, and differences in local and regional geology, rainfall, and vegetation. A monitoring network was established in 2000 on six ephemeral tributaries of the Colorado River in lower Glen and upper Marble canyons. Results from this monitoring network show that annual suspended-sediment loads for individual streams can vary by 5 orders of magnitude while the annual suspended-sediment load for the entire network may vary annually by 2 orders of magnitude, suspended-sediment loads during an individual flood event do not typically correlate with discharge, and local geology has a strong control on the sediment yield of a drainage basin. Comparing our results to previous estimates of sediment load from these drainages found that previous, indirect, methods

  8. Elephant trail runoff and sediment dynamics in northern Thailand.

    PubMed

    Sidle, Roy C; Ziegler, Alan D

    2010-01-01

    Although elephants may exert various impacts on the environment, no data are available on the effects of elephant trails on runoff, soil erosion, and sediment transport to streams during storms. We monitored water and sediment fluxes from an elephant trail in northern Thailand during seven monsoon storms representing a wide range of rainfall energies. Runoff varied from trivial amounts to 353 mm and increased rapidly in tandem with expanding contributing areas once a threshold of wetting occurred. Runoff coefficients during the two largest storms were much higher than could be generated from the trail itself, implying a 4.5- to 7.9-fold increase in the drainage areas contributing to storm runoff. Clockwise hysteresis patterns of suspended sediment observed during most storms was amplified by a "first flush" of sediment early on the hydrograph in which easily entrained sediment was transported. As runoff areas expanded during the latter part of large storms, discharge increased but sediment concentrations declined. Thus, sediment flux was better correlated to kinetic energy of rainfall on the falling limbs of most storm hydrographs compared to rising limbs. Based on a power function relationship between sediment flux and storm kinetic energy, the estimated annual sediment yield from the trail for 135 storms in 2005 was 308 to 375 Mg ha(-1) yr(-1), higher than from most disturbed land surfaces in the tropics. The eight largest storms (30% of total storm energy) in 2005 transported half of the total annual sediment. These measurements together with site investigations reveal that highly interconnected elephant trails, together with other source areas, directly link runoff and sediment to streams.

  9. Sedimentation and Occurrence and Trends of Selected Nutrients, Other Chemical Constituents, and Diatoms in Bottom Sediment, Fall River Lake, Southeast Kansas, 1948-2006

    USGS Publications Warehouse

    Juracek, Kyle E.

    2008-01-01

    A combination of available bathymetric-survey information and bottom-sediment coring was used to investigate sedimentation and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, diatoms, and the radionuclide cesium-137 in the bottom sediment of Fall River Lake, southeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1948 through 2006 in the original conservation pool of the reservoir was 470 million cubic feet and 18.8 billion pounds, respectively. The estimated sediment volume occupied about 36 percent of the original conservation-pool, water-storage capacity of the reservoir. Mean annual net sediment deposition since 1948 in the original conservation pool of the reservoir was estimated to be 324 million pounds per year. Mean annual net sediment yield from the Fall River Lake Basin was estimated to be 585,000 pounds per square mile per year. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of Fall River Lake were estimated to be 648,000 pounds per year and 267,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the Fall River Lake Basin were 1,170 pounds per square mile per year and 480 pounds per square mile per year, respectively. Throughout the history of Fall River Lake, total nitrogen and total phosphorus concentrations in the deposited sediment were relatively uniform. Trace element concentrations in the bottom sediment of Fall River Lake generally were uniform over time. Arsenic, chromium, nickel, and zinc concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Trace element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects

  10. Sedimentation, sediment quality, and upstream channel stability, John Redmond Reservoir, east-central Kansas, 1964-2009

    USGS Publications Warehouse

    Juracek, Kyle E.

    2010-01-01

    A combination of available bathymetric-survey information, bottom-sediment coring, and historical streamgage information was used to investigate sedimentation, sediment quality, and upstream channel stability for John Redmond Reservoir, east-central Kansas. Ongoing sedimentation is reducing the ability of the reservoir to serve several purposes including flood control, water supply, and recreation. The total estimated volume and mass of bottom sediment deposited between 1964 and 2009 in the conservation pool of the reservoir was 1.46 billion cubic feet and 55.8 billion pounds, respectively. The estimated sediment volume occupied about 41 percent of the conservation-pool, water-storage capacity of the reservoir. Water-storage capacity in the conservation pool has been lost to sedimentation at a rate of about 1 percent annually. Mean annual net sediment deposition since 1964 in the conservation pool of the reservoir was estimated to be 1.24 billion pounds per year. Mean annual net sediment yield from the reservoir basin was estimated to be 411,000 pounds per square mile per year Information from sediment cores shows that throughout the history of John Redmond Reservoir, total nitrogen concentrations in the deposited sediment generally were uniform indicating consistent nitrogen inputs to the reservoir. Total phosphorus concentrations in the deposited sediment were more variable than total nitrogen indicating the possibility of changing phosphorus inputs to the reservoir. As the principal limiting factor for primary production in most freshwater environments, phosphorus is of particular importance because increased inputs can contribute to accelerated reservoir eutrophication and the production of algal toxins and taste-and-odor compounds. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of the reservoir were estimated to be 2,350,000 pounds per year and 1,030,000 pounds per year, respectively. The estimated mean annual

  11. Suspended sediment in Minnesota streams

    USGS Publications Warehouse

    Tornes, L.H.

    1986-01-01

    Analysis showed that more than 90 percent of the annual sediment load was carried during 3 to 9 months of the year. On the average, almost 25 percent of the annual sediment load was transported during April. Generally, it was found that less than 4 percent of the average annual load was transported during December, January, and February, which indicates that sampling frequency could be reduced during winter.

  12. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: combining equilibrium passive sampling of sediment and water with total concentration measurements of biota.

    PubMed

    Mäenpää, Kimmo; Leppänen, Matti T; Figueiredo, Kaisa; Mayer, Philipp; Gilbert, Dorothea; Jahnke, Annika; Gil-Allué, Carmen; Akkanen, Jarkko; Nybom, Inna; Herve, Sirpa

    2015-11-01

    Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota. The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities in model lipids. Overall, the studied ecosystem appeared to be in disequilibrium for the studied phases: sediment, water, and biota. Chemical activities of PCBs were higher in sediment than in water, which implies that the sediment functioned as a partitioning source of PCBs and that net diffusion occurred from the sediment to the water column. Measured lipid-normalized PCB concentrations in biota were generally below equilibrium lipid concentrations relative to the sediment (CLip ⇌Sed ) or water (CLip ⇌W ), indicating that PCB levels in the organisms were below the maximum partitioning levels. The present study shows the application versatility of equilibrium sampling devices in the field and facilitates a thermodynamic understanding of exposure and fate of PCBs in a contaminated lake and its discharge course.

  13. Suspended sediment transport in the freshwater reach of the Hudson river estuary in eastern New York

    USGS Publications Warehouse

    Wall, G.R.; Nystrom, E.A.; Litten, S.

    2008-01-01

    Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment-discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30-40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the "flushing season" (October through April). Previous estimates of annual or seasonal sediment delivery

  14. Evaluation of spatial and temporal variations in marine sediments quality using multivariate statistical techniques.

    PubMed

    Alvarez, Odalys Quevedo; Tagle, Margarita Edelia Villanueva; Pascual, Jorge L Gómez; Marín, Ma Teresa Larrea; Clemente, Ana Catalina Nuñez; Medina, Miriam Odette Cora; Palau, Raiza Rey; Alfonso, Mario Simeón Pomares

    2014-10-01

    Spatial and temporal variations of sediment quality in Matanzas Bay (Cuba) were studied by determining a total of 12 variables (Zn, Cu, Pb, As, Ni, Co, Al, Fe, Mn, V, CO₃²⁻, and total hydrocarbons (THC). Surface sediments were collected, annually, at eight stations during 2005-2008. Multivariate statistical techniques, such as principal component (PCA), cluster (CA), and lineal discriminant (LDA) analyses were applied for identification of the most significant variables influencing the environmental quality of sediments. Heavy metals (Zn, Cu, Pb, V, and As) and THC were the most significant species contributing to sediment quality variations during the sampling period. Concentrations of V and As were determined in sediments of this ecosystem for the first time. The variation of sediment environmental quality with the sampling period and the differentiation of samples in three groups along the bay were obtained. The usefulness of the multivariate statistical techniques employed for the environmental interpretation of a limited dataset was confirmed.

  15. Determination of total arsenic using a novel Zn-ferrite binding gel for DGT techniques: Application to the redox speciation of arsenic in river sediments.

    PubMed

    Gorny, Josselin; Lesven, Ludovic; Billon, Gabriel; Dumoulin, David; Noiriel, Catherine; Pirovano, Caroline; Madé, Benoît

    2015-11-01

    A new laboratory-made Zn-ferrite (ZnFe2O4) binding gel is fully tested using Diffusive Gradient in Thin films (DGT) probes to measure total As [including inorganic As(III) and As(V), as well as MonoMethyl Arsenic Acid (MMAA(V)) and DiMethyl Arsenic Acid (DMAA(V))] in river waters and sediment pore waters. The synthesis of the binding gel is easy, cheap and its insertion into the acrylamide gel is not problematic. An important series of triplicate tests have been carried out to validate the use of the Zn-ferrite binding gel in routine for several environmental matrixes studies, in order to test: (i) the effect of pH on the accumulation efficiency of inorganic As species; (ii) the reproducibility of the results; (iii) the accumulation efficiency of As species; (iv) the effects of the ionic strength and possible competitive anions; and (v) the uptake and the elution efficiency of As species after accumulation in the binding gel. All experimental conditions have been reproduced using two other existing binding gels for comparison: ferrihydrite and Metsorb® HMRP 50. We clearly demonstrate that the Zn-ferrite binding gel is at least as good as the two other binding gels, especially for pH values higher than 8. In addition, by taking into consideration the diffusion rates of As(III) and As(V) in the gel, combining the 3-mercaptopropyl [accumulating only As(III)] with the Zn-ferrite binding gels allows for performing speciation studies. An environmental study along the Marque River finally illustrates the ability of the new binding gel to be used for field studies.

  16. Erosion, sediment discharge, and channel morphology in the Upper Chattahoochee River basin, Georgia

    USGS Publications Warehouse

    Faye, Robert E.; Carey, W.R.; Stamer, J.K.; Kleckner, R.L.

    1978-01-01

    Average annual rates of sheet erosion and sediment discharge were computed for several watersheds in the Upper Chattahoochee River basin in Georgia. Erosion yields ranged from about 900 to 6,000 tons per year per square mile in nine watersheds and were greatest where land use is largely agricultural or transitional. Suspended sediment yields from the same watershed ranged from about 300 to 800 tons per year per square mile and were greatest from urban areas and least from mostly forested watersheds. The impact of suspended sediment on stream quality was evaluated for 14 watersheds. In general, 60 percent or more of the total annual discharge of trace metals and phosphorus was contributed by suspended sediment. Yields of trace metals and nutrients in suspension were consistently greater in urban watersheds. Turbidity in basin streams increased geometrically with increasing concentrations of suspended sediment. (Woodard-USGS)

  17. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    USGS Publications Warehouse

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  18. Allometric relations of total volumes of prolactin cells and corticotropic cells to body length in the annual cyprinodont Cynolebias whitei: effects of environmental salinity, stress and ageing.

    PubMed

    Ruijter, J M; Wendelaar Bonga, S E

    1987-09-01

    An analysis of the allometric relations of the total volumes occupied by prolactin (PRL) and corticotropic (ACTH) cells (PRL volume and ACTH volume, respectively) to body length and a study of the immunocytochemical staining intensity of PRL and ACTH cells were used to determine the differences in activity of PRL and ACTH cells in freshwater-reared and in saltwater-reared Cynolebias whitei during the entire lifespan of this annual cyprinodont fish. An inflection in the allometric relation of PRL volume to body length was observed in fish of one-week old. The relatively large PRL volume in younger fish may be related to PRL cell activity before hatching. No inflections were observed in the allometric relations of PRL volume and ACTH volume to body length at the onset of maturation and the onset of ageing, indicating that the increased pituitary growth in maturing and ageing C. whitei is not the result of changes in PRL or ACTH cells. The slope of the allometric relation of PRL volume to body length in freshwater-reared fish was significantly steeper than the slope in saltwater-reared fish. The PRL volume in adult freshwater-reared fish was eight times larger than that in saltwater-reared fish of the same length. The intensity of immunocytochemical staining of saltwater PRL cells was significantly reduced. These volumetric and staining differences correspond to the low functional demand put upon PRL cells in saltwater-adapted fish. In contrast, the slope of the allometric relation of ACTH volume to body length and the intensity of immunocytochemical staining of ACTH cells were similar in freshwater-reared and in saltwater-reared fish.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Annual dissolved nitrite plus nitrate and total phosphorous loads for the Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia River basins, 1968-2004

    USGS Publications Warehouse

    Aulenbach, Brent T.

    2006-01-01

    Annual stream-water loads were calculated near the outlet of four of the larger river basins (Susquehanna, St. Lawrence, Mississippi-Atchafalaya, and Columbia) in the United States for dissolved nitrite plus nitrate (NO2 + NO3) and total phosphorus using LOADEST load estimation software. Loads were estimated for the period 1968-2004; although loads estimated for individual river basins and chemical constituent combinations typically were for shorter time periods due to limitations in data availability. Stream discharge and water-quality data for load estimates were obtained from the U.S. Geological Survey (USGS) with additional stream discharge data for the Mississippi-Atchafalaya River Basin from the U.S. Army Corps of Engineers. The loads were estimated to support national assessments of changes in stream nutrient loads that are periodically conducted by Federal agencies (for example, U.S. Environmental Protection Agency) and other water- and land-resource organizations. Data, methods, and results of load estimates are summarized herein; including World Wide Web links to electronic ASCII text files containing the raw data. The load estimates are compared to dissolved NO2 + NO3 loads for three of the large river basins from 1971 to 1998 that the USGS provided during 2001 to The H. John Heinz III Center for Science, Economics and the Environment (The Heinz Center) for a report The Heinz Center published during 2002. Differences in the load estimates are the result of using the most up-to-date monitoring data since the 2001 analysis, differences in how concentrations less than the reporting limit were handled by the load estimation models, and some errors and exclusions in the 2001 analysis datasets (which resulted in some inaccurate load estimates).

  20. Sediment discharge in the Upper Arroyo Grande and Santa Rita Creek basins, San Luis Obispo County, California

    USGS Publications Warehouse

    Knott, J.M.

    1976-01-01

    Sediment data collected in the upper Arroyo Grande and Santa Rita Creek basins, San Luis Obispo County, California, during the 1968-73 water years were analyzed to determine total sediment discharge at four stations in the basins. Water discharge and total sediment discharge at these stations, representative of the 1943-72 period, were estimated from long-term flow data for nearby gaging stations and water-sediment discharge relations determined for the 1968-73 water years. Most of the total annual sediment discharge at each station occurs during a few days each year. The quantity of sediment transported in a single day often accounts for more than 40 percent of the total annual sediment discharge. Estimated sediment discharge for the upper Arroyo Grande and Santa Rita Creek basins during the 1943-72 water years averaged 53,000 tons and 23,000 tons per year. Long-term sediment deposition in Lopez Reservoir, which is in the southern part of the upper Arroyo Grande basin, was estimated to be 35 acre-feet per year. (Woodard-USGS)

  1. Fate of metals in coastal sediments of a Mediterranean flood-dominated system: An approach based on total and labile fractions

    NASA Astrophysics Data System (ADS)

    Roussiez, Vincent; Ludwig, Wolfgang; Radakovitch, Olivier; Probst, Jean-Luc; Monaco, André; Charrière, Bruno; Buscail, Roselyne

    2011-05-01

    The dynamics of sediment-bound metals (Cs, Cu, Ni, Pb, Ti and Zn) were studied off the Têt River (western Gulf of Lion), a typical Mediterranean coastal river punctuated by short and violent flash-floods. Spatial and temporal sampling strategies were combined to elucidate the fate of these elements in response to both the riverine sediment input and the offshore transport of these sediments through hydrodynamics. Our results show the temporal entrapment of riverborne particles and associated metals, consecutively to a major flood event, in the nearshore sedimentary unit called prodelta. Here, deposition and resuspension mechanisms define a sedimentological cycle that could be followed completely in this study. In terms of speciation between reactive (labile) and residual fractions along the fluvio-deltaic continuum, our results show that Cu, Pb and Zn are the most labile (potentially mobile) metals in the river, in accordance with their contributions from anthropogenic sources. But in the marine surficial sediments, two main behaviours can be discriminated when compared to the riverine suspended particulate matter. While Pb and Zn depict rather a constant labile fraction, Cu is characterized by decreasing levels (up to 50% difference). In terms of environmental impact, these contrasting trends have direct repercussions for the contaminant dispersal in the coastal area. Whereas Pb and Zn conserve their enhanced levels because of their stronger affinity with fine sediments, Cu is marked by the entire loss of its anthropogenic component that is progressively transferred to the dissolved phase, likely mediated by organic ligands. We ascribe these behaviours to different post-depositional partition mechanisms with respect to oxidation of the particulate organic phase at the bottom sediment/water interface. Also, analysis of one sediment core from the prodelta indicates that these early diagenetic processes govern the chemical forms of land-derived contaminants

  2. Suspended-sediment loads from major tributaries to the Missouri River between Garrison Dam and Lake Oahe, North Dakota, 1954-98

    USGS Publications Warehouse

    Macek-Rowland, Kathleen M.

    2000-01-01

    Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak. The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek. Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin. Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998. Therefore, data from nearby streamflow-gaging stations were assumed for the calculations.The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98. Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River. Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River. Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River. The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries. The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile. The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area.

  3. Sedimentation and occurrence and trends of selected nutrients, other chemical constituents, and cyanobacteria in bottom sediment, Clinton Lake, northeast Kansas, 1977-2009

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    A combination of available bathymetric-survey information and bottom-sediment coring was used to investigate sedimentation and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, cyanobacterial akinetes, and the radionuclide cesium-137 in the bottom sediment of Clinton Lake, northeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1977 through 2009 in the conservation (multi-purpose) pool of the reservoir was 438 million cubic feet and 18 billion pounds, respectively. The estimated sediment volume occupied about 8 percent of the conservation-pool, water-storage capacity of the reservoir. Sedimentation in the conservation pool has occurred about 70 percent faster than originally projected at the time the reservoir was completed. Water-storage capacity in the conservation pool has been lost to sedimentation at a rate of about 0.25 percent annually. Mean annual net sediment deposition since 1977 in the conservation pool of the reservoir was estimated to be 563 million pounds per year. Mean annual net sediment yield from the Clinton Lake Basin was estimated to be 1.5 million pounds per square mile per year. Typically, the bottom sediment sampled in Clinton Lake was at least 99 percent silt and clay. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of Clinton Lake were estimated to be 1.29 million pounds per year and 556,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the Clinton Lake Basin were 3,510 pounds per square mile per year and 1,510 pounds per square mile per year, respectively. Throughout the history of Clinton Lake, total nitrogen concentrations in the deposited sediment generally were uniform and indicated consistent inputs to the reservoir over time. Likewise, total phosphorus concentrations in the deposited sediment generally were uniform

  4. Sediment Budget and Sediment Fingerprinting as Management Strategies to Understand Sediment Contributions to Receiving Waters

    NASA Astrophysics Data System (ADS)

    Gellis, A.; Fitzpatrick, F.; Gorman-Sanisaca, L.

    2015-12-01

    A sound understanding of the sediment sources contributing to the sediment flux and the overall sediment budget of a watershed is key to total maximum daily load (TMDL) management strategies that focus on reducing sediment and sediment-related nutrient loadings to streams. This understanding can be provided by performing complementary sediment-source fingerprinting and sediment-budgeting investigations. The sediment fingerprinting approach quantifies the relative proportion of the potential sediment sources and the delivery of sediment from these sources. Sediment budget approaches provide information on the magnitude and location of the fluxes and the links between sources, sinks, and sediment output. Sediment budget approaches can include field based, photogrammetric, GIS, and modeling approaches to identify the important sources, erosion, and storage areas of sediment within a watershed. Combining sediment budget and sediment fingerprinting approaches provides resource managers with information on where to target mitigation measures that reduce erosion, and sediment delivery. Many watersheds across the U.S. have or are soon implementing TMDL allocations to reduce sediment and nutrient loadings. Streambank erosion is typically not accounted for in statistical, empirical, and process-based models, yet it is a major source of sediment in many watersheds. We present several examples of sediment budget and sediment fingerprinting studies from the Chesapeake Bay watershed and the Driftless Area, Wisconsin where information on loading of streambank sediment has been used (successfully) to shape upland and stream corridor management practices.

  5. Evaluation of the effects of agricultural conservation practices on sediment yield in the Colusa Basin, California

    NASA Astrophysics Data System (ADS)

    Gatzke, S. E.; Zhang, M.

    2009-12-01

    The Soil and Water Assessment Tool (SWAT) was used to assess the impact of agricultural best management practices (BMPs) on sediment runoff from almond orchards in the lower Colusa Basin Drain watershed in the Sacramento Valley, California. This study used modeling techniques that include varying hydrologic parameters for both upland areas and small channels to quantify the effects of BMPs water quality. The BMPs simulated in this study are commonly used in almond orchards and include strip cropping, cover cropping, vegetative filter strips, grassed waterways and channel stabilization. The effectiveness of each BMP was simulated for an above average, below average and average rainfall year. Comparison of annual total watershed sediment loads for each BMP simulation showed that overall, channel stabilization and grassed waterways, which target in stream sediment erosion and transport, are the most effective BMPs with an estimated respective reduction in sediment load of 18% and 35% for a below average precipitation year, 13% and 26% for an above average precipitation year, and 17% and 30% for an average precipitation year. Simulations of BMPs designed to reduce sediment transport in upland areas, which include strip cropping and vegetative filter strips, estimated a reduction in total annual sediment load of less than 1% at the watershed outlet. These results indicated that in-stream sediment transport is the dominant sediment transport process in this watershed. Implementation of channel stabilization measures or grassed waterways on almond orchards is estimated to result in an annual reduction of total sediment load of 41,874 kg or 72,753 kg of sediment per square kilometer of almond orchard for an above average precipitation year.

  6. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Reporting and statistical evaluation of the subsequent year (sixth) data

    SciTech Connect

    McMahon, L.W.; Mercier, T.M.

    1992-02-01

    This annual report has historically been prepared to meet the annual reporting requirements of the Tennessee Department of and Environment and Conservation (TDEC), Hazardous Waste Management Regulation 1200-1-11-.05 (6)(e), for detection monitoring data collected on Resource Conservation and Recovery Act (RCRA) wells in place around facilities which are accorded interim status. The regulatory authority for these units at the Y-12 Plant is currently in transition. A Federal Facility Agreement (FFA) with an effective date of January 1, 1992, has been negotiated with the Department of Energy (DOE) for the Oak Ridge Reservation. This agreement provides a framework for remediation of the Oak Ridge Reservation so that both RCRA and CERCLA requirements are integrated into the remediation process and provides for State, EPA, and DOE to proceed with CERCLA as the lead regulatory requirement and RCRA as an applicable or relevant and appropriate requirement. This report is presented for the RCRA certified wells for two interim status units at the Y-12 Plant. These units are Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin. Kerr Hollow is currently undergoing clean closure under RCRA. The Chestnut Ridge Sediment Disposal Basin (CRSDB) was closed in 1989 under a TDEC approved RCRA closure plan. The relevance of a RCRA Post-Closure Permit to either of these units is a matter of contention between DOE and TDEC since the FFA does not contemplate post-closure permits.

  7. The time compression in sediment transport: A review

    NASA Astrophysics Data System (ADS)

    Nadal Romero, Estela; González Hidalgo, Carlos

    2014-05-01

    A large amount of geomorphic work is caused by a small number of events that are mainly responsible for the time compression of geomorphic processes. This study reviews and discuses about time compression in sediment transport through bibliographic analyses. Data from studies conducted worldwide were collected from different sources, and many of the studies suggest that a large amount of total sediment transport is often associated with a very few limited number of days. Furthermore, the results demonstrate the importance of few events, not necessary extremes in the total sediment yield. The bibliographic analyses indicated that time compression occurs in plot and catchment databases. Moreover, time compression occurs in all climate conditions: (i) in arid and semiarid areas, time compression is due to the irregularities of precipitation and high rainfall intensities; (ii) in Mediterranean areas, it is due to the marked rainfall seasonality and strong interannual variation; (iii) in monsoon areas, time compression is conditioned by the rainfalls of the monsoon period; and (iv) in cold areas (mountain and cold areas) it is main due to the snowmelt processes period. Our review demonstrate that the interpretation of annual average erosion rates or sediment yield should be viewed with caution, because each year the largest events (not necessary extreme events) could represent a high percentage of the total annual sediment yield or soil loss value.

  8. Simultaneously Extracted Metals/Acid-Volatile Sulfide and Total Metals in Surface Sediment from the Hanford Reach of the Columbia RIver and the Lower Snake River

    SciTech Connect

    Patton, Gregory W.; Crecelius, Eric A.

    2001-01-24

    Metals have been identified as contaminants of concern for the Hanford Reach because of upriver mining, industrial activities, and past nuclear material production at the US Department of Energy's Hanford Site. This study was undertaken to better understand the occurrence and fate of metals in sediment disposition areas in the Columbia and Snake Rivers.

  9. Sediment source identification and load prediction in a mixed-use Piedmont watershed, South Carolina.

    PubMed

    McCarney-Castle, Kerry; Childress, Tristan M; Heaton, Christian R

    2016-10-28

    Many streams in the Piedmont region of the southeastern United States transport a disproportionately large amount of suspended sediment in response to moderately increased streamflows. Transport and deposition of excess sediment affect the stability of the channel and the health of the biological community; therefore, identifying the main source(s) of sediment and assessing the relationships between source, transport, and streamflow are critical to aquatic life and habitat management, dynamic equilibrium preservation, and development of feasible mitigation scenarios. The objectives of this study were to: (1) predict the annual suspended sediment yield and (2) identify significant contributing upland sources of sediment in the Lawsons Fork Creek basin, a 217 km(2) mixed-use watershed in the South Carolina Piedmont. A regularly monitored cross-section located in the downstream reach was equipped with a passive sediment sampler, gage-height recorder, and sediment tiles. Streamflow and sediment concentration were measured over a 24-month period under variable hydrologic regimes. Results indicated that the average annual sediment yield (168 t/km(2)/yr) is significantly higher than yields documented in Piedmont watersheds of comparable size. To identify and prioritize sources of sediment contribution, stable isotopes of nitrogen (δ(15)N) and carbon (δ(13)C) were used as tracers. Source material was compared with suspended sediment near the watershed outlet (target material) and SIAR, a Bayesian Inference model, was used to estimate source apportionment. Results of this source study indicate that approximately 60% of the total sediment load in the water column during high flow events is derived from stream bank erosion. Findings are consistent with observed unstable stream bank conditions in the watershed. This study supports the use of a dual-isotopic fingerprinting approach in tandem with traditional sediment monitoring as a cost-effective method to identify and

  10. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    USGS Publications Warehouse

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on

  11. 17 CFR 270.30b1-2 - Semi-annual report for totally-owned registered management investment company subsidiary of...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-owned registered management investment company subsidiary of registered management investment company...-owned registered management investment company subsidiary of registered management investment company... subsidiary of a registered management investment company need not file a semi-annual report on Form N-SAR...

  12. 17 CFR 270.30b1-2 - Semi-annual report for totally-owned registered management investment company subsidiary of...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-owned registered management investment company subsidiary of registered management investment company...-owned registered management investment company subsidiary of registered management investment company... subsidiary of a registered management investment company need not file a semi-annual report on Form N-SAR...

  13. Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed-Sediment and Pore-Water Data for Selected Streams in Oregon, Wisconsin, and Florida, 2003-04

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark C.; Lutz, Michelle A.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.; DeWild, John F.; Brigham, Mark E.

    2008-01-01

    Mercury contamination of aquatic ecosystems is an issue of national concern, affecting both wildlife and human health. Detailed information on mercury cycling and food-web bioaccumulation in stream settings and the factors that control these processes is currently limited. In response, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) conducted detailed studies from 2002 to 2006 on various media to enhance process-level understanding of mercury contamination, biogeochemical cycling, and trophic transfer. Eight streams were sampled for this study: two streams in Oregon, and three streams each in Wisconsin and Florida. Streambed-sediment and pore-water samples were collected between February 2003 and September 2004. This report summarizes the suite of geochemical and microbial constituents measured, the analytical methods used, and provides the raw data in electronic form for both bed-sediment and pore-water media associated with this study.

  14. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    NASA Astrophysics Data System (ADS)

    Ismail, W. R.; Hashim, M.

    2015-03-01

    The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  15. Analysis of sediment retention in western riverine wetlands: the Yampa River watershed, Colorado, USA.

    PubMed

    Arp, Christopher D; Cooper, David J

    2004-03-01

    We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m(2) along a first-order subalpine stream to 21.8 kg/m(2) at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6(th)-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R(2) = 0.86, p < 0.01) and bank erosion (R(2) = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.

  16. Identification of Diurnal, Seasonal and Inter-Annual Variability Across SE Asian Field Observations of key Water Cycle Variables: Rainfall, net Radiation, Total Evaporation and River Discharge

    NASA Astrophysics Data System (ADS)

    Solera García, M. A.; Tych, W.; Chappell, N.

    2007-12-01

    The identification of periodic patterns in water cycle variables is critical to the understanding of land-atmosphere interactions, climate change and the evaluation of General Circulation Model (GCM) output. SE Asia in particular plays a very important role on the global climate because it is a large source of energy and water fluxes into the upper atmosphere. Cycle identification is carried out following the Data Based Mechanistic (DBM) philosophy, which focuses on the use of parsimonious, rigorous models which are characterised by lack of a priori assumptions, built in uncertainty analysis and final model acceptance dependent on the physical interpretation of the results. The DBM tool used here is the Unobserved Component - Dynamic Harmonic Regression (UC-DHR) model, which is a statistical method that allows the identification of variability in time series by introducing Time Variable Parameter (TVP) estimation of harmonic components. UC-DHR is not scale dependent and was thus applied to both hourly (to investigate diurnal variation) and fortnightly datasets (for intra- and inter-annual variability). The data used in the analysis has been gathered from existing catchment datasets for three regions of tropical SE Asia, namely Northern Thailand, Central Peninsular Malaysia and Northeast Borneo. These regions were chosen because they represent the hydro-climatic gradient (seasonal to equatorial) present within the tropics and because SE Asia has the most extensive set of catchment/plot studies within the humid tropics. Results show modeling tools were able to quantify the main patterns present in the observations throughout different time scales (diurnal, intra-annual and inter-annual) and the strength of the correlation pattern between the four hydro-climatic variables. The subsequent discussion focuses on the physical processes behind those patterns (e.g. diurnal variability caused by local convection due to solar heating; impact of El Niño Southern Oscillation

  17. Environmental controls, sediment sources and spatiotemporal variability of suspended sediment yields in partly glacierized catchment systems in western Norway

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.

    2016-04-01

    This work focuses on environmental controls, sediment sources and the spatiotemporal variability of suspended sediment yields in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) catchment systems in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was carried out since 2004 in Erdalen and since 2008 in Bødalen. Fluvial suspended sediment transport in the inner Nordfjord is altogether supply-limited and larger thermally and/or pluvially generated runoff events occurring mostly during the period April-November are needed to mobilize and transport significant amounts of suspended sediments. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (>70 mm/d) in autumn can trigger relevant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The share of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls of the detected spatial variability of suspended sediment yields. The contemporary sediment delivery from glacierized surface areas through different outlet glaciers shows a high spatial variability which is mostly explained by a spatially variable availability

  18. Interim report on streamflow, sediment discharge, and water quality in the Calabazas Creek Basin, Santa Clara County, California

    USGS Publications Warehouse

    Knott, J.M.; Pederson, G.L.; Middelburg, Robert F.

    1978-01-01

    Streamflow, sediment-discharge, and water-quality data are being collected in the Calabazas Creek basin, Santa Clara County, Calif., to determine annual water and sediment discharge at base-line conditions that are representative of a basin prior to urbanization. Results of the first 3 years of the study (1973-75) are given in this report. Climatic conditions during this period were representative of a very wet year (1973) and 2 years of above-average rainfall (1974 and 1975). Daily water and sediment discharge were monitored at three primary stations, and periodic measurements were made at five secondary stations during selected storms. Most of the total annual sediment discharge at each station was transported during a few days each year. Maximum daily sediment discharge in a given year ranged from 23 to 62 percent of the annual total. Daily water discharge at the gaging station Calabazas Creek at Rainbow Drive, near Cupertino, ranged from no flow to 3.31 cubic meters per second. Streamflow at this location was significantly augmented during low flow by diversion of water from the South Bay Aqueduct. Annual sediment discharge at Calabazas Creek at Rainbow Drive was 4,900 t in 1974 and 9,570 t in 1975. A large quantity of sediment was trapped in a debris basin at Comer Drive upstream from this station during both years. If this sediment had not been trapped, sediment discharge at the station would have been about 35 percent greater in 1974 and 30 percent greater in 1975. Most of the trapped sediment consists of sand and gravel that would probably have been deposited in the Calabazas Creek channel downstream from the station. (Woodard-USGS)

  19. Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.

    2009-01-01

    Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging

  20. Isolation and characterization of a hydrocarbonoclastic bacterial enrichment from total petroleum hydrocarbon contaminated sediments: potential candidates for bioaugmentation in bio-based processes.

    PubMed

    Di Gregorio, Simona; Siracusa, Giovanna; Becarelli, Simone; Mariotti, Lorenzo; Gentini, Alessandro; Lorenzi, Roberto

    2016-06-01

    Seven hydrocarbonoclastic new bacterial isolates were isolated from dredged sediments of a river estuary in Italy. The sediments were contaminated by shipyard activities since decades, mainly ascribable to the exploitation of diesel oil as the fuel for recreational and commercial navigation of watercrafts. The bacterial isolates were able to utilize diesel oil as sole carbon source. Their metabolic capacities were evaluated by GC-MS analysis, with reference to the depletion of both the normal and branched alkanes, the nC18 fatty acid methyl ester and the unresolved complex mixture of organic compounds. They were taxonomically identified as different species of Stenotrophomonas and Pseudomonas spp. by the combination of amplified ribosomal DNA restriction analysis (ARDRA) and repetitive sequence-based PCR (REP-PCR) analysis. The metabolic activities of interest were analyzed both in relation to the single bacterial strains and to the combination of the latter as a multibacterial species system. After 6 days of incubation in mineral medium with diesel oil as sole carbon source, the Stenotrophomonas sp. M1 strain depleted 43-46 % of Cn-alkane from C28 up to C30, 70 % of the nC18 fatty acid methyl ester and the 46 % of the unresolved complex mixture of organic compounds. On the other hand, the Pseudomonas sp. NM1 strain depleted the 76 % of the nC18 fatty acid methyl ester, the 50 % of the unresolved complex mixture of organic compounds. The bacterial multispecies system was able to completely deplete Cn-alkane from C28 up to C30 and to deplete the 95 % of the unresolved complex mixture of organic compounds. The isolates, either as single strains and as a bacterial multispecies system, were proposed as candidates for bioaugmentation in bio-based processes for the decontamination of dredged sediments.

  1. Sediment transport and evaluation of sediment surrogate ratings in the Kootenai River near Bonners Ferry, Idaho, Water Years 2011–14

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Etheridge, Alexandra B.

    2015-12-14

    Acoustic surrogate ratings were developed between backscatter data collected using acoustic Doppler velocity meters (ADVMs) and results of suspended-sediment samples. Ratings were successfully fit to various sediment size classes (total, fines, and sands) using ADVMs of different frequencies (1.5 and 3 megahertz). Surrogate ratings also were developed using variations of streamflow and seasonal explanatory variables. The streamflow surrogate ratings produced average annual sediment load estimates that were 8–32 percent higher, depending on site and sediment type, than estimates produced using the acoustic surrogate ratings. The streamflow surrogate ratings tended to overestimate suspended-sediment concentrations and loads during periods of elevated releases from Libby Dam as well as on the falling limb of the streamflow hydrograph. Estimates from the acoustic surrogate ratings more closely matched suspended-sediment sample results than did estimates from the streamflow surrogate ratings during these periods as well as for rating validation samples collected in water year 2014. Acoustic surrogate technologies are an effective means to obtain continuous, accurate estimates of suspended-sediment concentrations and loads for general monitoring and sediment-transport modeling. In the Kootenai River, continued operation of the acoustic surrogate sites and use of the acoustic surrogate ratings to calculate continuous suspended-sediment concentrations and loads will allow for tracking changes in sediment transport over time.

  2. Sediment transport and effective discharge of the North Platte, South Platte, and Platte Rivers in Nebraska

    USGS Publications Warehouse

    Kircher, J.E.

    1981-01-01

    Sediment discharge was computed for four locations along the North Platte, South Platte, and the Platte Rivers between North Platte and Grand Island, Nebraska in order to determine the effective discharge. The total-sediment discharge was computed by the Colby method and modified Einstein method so that comparisons could be made with the measured total-sediment discharge. The results agreed closely. The Colby method is the simplest and most convenient to use. The mean annual total-sediment discharge for the four sites investigated ranged from 150 tons per day for the South Platte River at North Platte to 1,260 tons per day for the Platte River near Grand Island. The effective discharge at the sites ranged from 41 to 158 cubic meters per second. The probability of the effective discharge being equaled or exceeded ranged from 1 to 30 percent for the four sites. (USGS)

  3. Determination of total selenium content in sediments and natural water by graphite furnace-atomic absorption spectroscopy after collection as a selenium(IV) complex on activated carbon.

    PubMed

    Kubota, T; Suzuki, K; Okutani, T

    1995-07-01

    A trace level of Se was collected on activated carbon (AC) as the Se(IV)-3-phenyl-5-mercapto-1,3,4-thiadiazole-2(3H)-thione (Bismuthiol II) complex. The AC was directly introduced as an AC-suspension into the graphite tube atomizer and the Se concentration was determined by atomic absorption spectroscopy (T. Okutani, T. Kubota, N. Sugiyama and Y. Turuta, Nippon Kagaku Kaishi, (1991) 375). The amount of Se in heavily contaminated samples including sediment, lake water and seawater was determined using this method. The sediments were digested with HNO(3)HClO(4)HF and the interference from AlF(3) was removed using H(3)BO(3)HClO(4). Lake water and seawater were acidified with H(2)SO(4) and digested with KMnO(4). The Se concentrations of these samples were determined by this method with satisfactory results. The above method is simple, rapid and applicable to heavily contaminated samples.

  4. Capturing sediment and nutrients in irrigated terraced landscapes

    NASA Astrophysics Data System (ADS)

    Slaets, Johanna; Schmitter, Petra; Hilger, Thomas; Piepho, Hans-Peter; Dercon, Gerd; Cadisch, Georg

    2016-04-01

    Terraces are often promoted as green filters in landscapes, buffering discharge and constituent peaks. For irrigated rice terraces, however, this mitigating potential has not been assessed at the landscape level. Additionally, sediment and nutrient inputs potentially affect soil fertility in agricultural terraces and therefore yield - the extent of the impact depending on the quality and quantity of the captured material. Quantifying such upland-lowland linkages is particularly important in intensely cultivated landscapes, as declining upland soil fertility could alter beneficial hydrological connectivity between terraces and surrounding landscapes. In this study, we therefore quantified the sediment, sediment-associated organic carbon and nitrogen inputs and losses for a 13 ha paddy rice area, surrounded by upland maize cultivation in Northwest Vietnam in 2010 and 2011. Turbidity sensors were used in combination with a linear mixed model in order to obtain continuous predictions of the constituent concentrations. Sediment texture was determined using mid-infrared spectroscopy. Uncertainty on annual load estimates was quantified by calculating 95% confidence intervals with a bootstrap approach. Sediment inputs from irrigation water to the rice area amounted to 48 Mg ha-1 a-1 and runoff during rainfall events contributed an additional 16 Mg ha-1 a-1. Export from the rice terraces equalled 63 Mg ha-1 a-1 of sediments, resulting in a net balance of 28 Mg ha-1 a-1 or a trapping of almost half of the annual sediment inputs. Runoff contributed one third of the sand inputs, while irrigated sediments were predominantly silty. As paddy outflow contained almost exclusively silt- and clay-sized material, 24 Mg ha-1 a-1 of captured sediments consisted of sand. The sediment-associated organic carbon resulted in a deposit of 1.09 Mg ha-1 a-1. For sediment-associated nitrogen, 0.68 Mg ha-1 a-1 was trapped in the terraces. Combining both sediment-associated and dissolved nitrogen

  5. Summary of Optical-Backscatter and Suspended-Sediment Data, Tomales Bay Watershed, California, Water Years 2004, 2005, and 2006

    USGS Publications Warehouse

    Curtis, Jennifer A.

    2007-01-01

    The U.S. Geological Survey, in cooperation with Point Reyes National Seashore, is studying suspended-sediment transport dynamics in the two primary tributaries to Tomales Bay, Lagunitas Creek and Walker Creek. Suspended-sediment samples and continuous optical backscatter (turbidity) data were collected at three locations during water years 2004?06 (October 1, 2003?September 30, 2006): at two sites in the Lagunitas Creek watershed and at one site in the Walker Creek watershed. Sediment samples were analyzed for suspended-sediment concentration, grain size, and turbidity. Data were used to estimate mean daily and annual seasonal suspended-sediment discharge, which were published in U.S. Geological Survey Annual Water-Data Reports. Data were utilized further in this report to develop field-based optical-backscatter calibration equations, which then were used to derive a continuous time series (15-minute interval) of suspended-sediment concentrations. Sensor fouling and aggradation of the channel bed occurred periodically throughout the project period, resulting in data loss. Although periods of data loss occurred, collection of optical sensor data improved our understanding of suspended-sediment dynamics in the Lagunitas Creek and Walker Creek watersheds by providing continuous time-series storm event data that were analyzed to determine durations of elevated sediment concentrations (periods of time when suspended-sediment concentration was greater than 100 mg/L). Data derived from this project contributed baseline suspended-sediment transport information that will be used to develop and implement sediment total maximum daily loads for Tomales Bay and its tributary watersheds, and provides supporting information for additional total maximum daily loads (pathogens, nutrients, and mercury) and restoration efforts for four federally listed aquatic species that are affected directly by sediment loading in the Tomales Bay watershed. In addition, this project provided an

  6. Spatial variation of sediment deposition in the Hudson River - a detailed inventory and potential causes (Invited)

    NASA Astrophysics Data System (ADS)

    Nitsche, F. O.; Kenna, T. C.

    2010-12-01

    Sediment deposition in urban estuaries is controlled by the interaction of human modifications and natural factors that include tides, fresh water inputs, bed morphology, sediment supply, and hydrodynamics. A key element of managing these estuaries is detailed understanding of sediment deposition and its driving processes. Using a combination of geophysical and geochemical analysis we establish a detailed inventory of 20 century deposition for most of the mud-dominated sections of the Hudson River. These data show variations between different segments of the Hudson River as well as strong local variations within each section, with depositional settings ranging from erosional to those accumulating at ~10 mm/year. Our work indicates that 170,000 - 250,000 metric tons of sediment are deposited annually in the areas studied, which is a significant portion of the estimated total annual sediment load of ~700,000 - 800,000 metric tons. This also suggests that some of the accumulated sediments are re-mobilized, e.g. during major storms. The observed patterns of deposition/erosion are primarily caused by natural conditions, but, in some parts, they are strongly influenced by human modifications of the estuary, such as dredging. In addition to improving our understanding of the sediment dynamic of the Hudson River, the observed distribution of sediment deposition is also an indicator for the occurrence of contaminants including heavy metals and PCB’s and thus a valuable tool for management decisions.

  7. Evaluation of water and sediment of the Graminha and Águas da Serra streams in the city of Limeira (Sp-Brazil) by Synchrotron Radiation Total Reflection X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Moreira, Silvana; Fazza, Elizete Vieira

    2008-12-01

    The city of Limeira is located in the state of São Paulo, Brazil and has the second largest economy and demographic growth of the state. It comprises an expressive economy with industries in several productive sectors. The source of the Graminha and Águas da Serra streams is located within the Limeira urban zone. The streams cross part of the rural zone and unite by draining into the Piracicaba River. It is possible that these basins suffer or have already suffered the impacts of environmental pollution caused by anthropogenic factors. Since the city has galvanization industries for the production of precious and semi-precious jewels as well as imitation jewelry, the concentration descriptions and interpretations of heavy metals in waters and sediments indicate anthropogenic influence and the dumping of these compounds into the Piracicaba River. The Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) was used for determining the metals. All measurements were performed using a white beam of synchrotron radiation for excitation and a Ge hyperpure detector. Detection limits for water samples were 0.04 μg L - 1 and in sediment samples 0.03 μg g - 1 for Cu and Zn elements. In the water samples, concentrations higher than permissible as established by the Brazilian legislation (CONAMA) for Al, Fe, Zn, Cr, Ni, Cu and Pb, were observed. For sediment samples, values higher than quality reference values defined by the Brazilian legislation (CETESB) were verified for Cr, Zn, Cu, Ni and Pb.

  8. Recent status of total mercury and methyl mercury in the coastal waters of the northern Gulf of Mexico using oysters and sediments from NOAA's mussel watch program.

    PubMed

    Apeti, D A; Lauenstein, G G; Evans, D W

    2012-11-01

    The current status of mercury concentrations in the Gulf of Mexico (GOM) were assessed using the Mussel Watch Program (MWP) contaminant monitoring data, which is based on the analysis of oyster tissue and sediment samples. In both matrices, tHg and MeHg concentrations varied broadly. Significant concentration differences (p<0.05) between the sub-regions of the eastern, central and western Gulf were observed with maximum concentrations (hotspots) found at specific sites all across the Gulf. Compared to the Food and Drug Administration's action level in seafood, maximum mercury values were low. Based on the long-term MWP data, tHg in tissues show fairly static temporal trends along the central and western Gulf coast, while strong decreasing trends were observed in the eastern Gulf. However, the presence of mercury hotspots indicates that mercury is still a concern in the GOM. The results complement existing information to further the understanding of mercury distributions in the GOM.

  9. Sediment deposition in the White River Reservoir, northwestern Wisconsin

    USGS Publications Warehouse

    Batten, W.G.; Hindall, S.M.

    1980-01-01

    The history of deposition in the White River Reservoir was reconstructed from a study of sediment in the reservoir. Suspended-sediment concentrations, particle size, and streamflow characteristics were measured at gaging stations upstream and downstream from the reservoir from November 1975 through September 1977. Characteristics of the sediments were determined from borings and samples taken while the reservoir was drained in September 1976. The sediment surface and the pre-reservoir topography were mapped. Sediment thickness ranged from less than 1 foot near the shore to more than 20 feet in the old stream channel. The original reservoir capacity and the volume of deposited sediment were calculated to be 815 acre-feet and 487 acre-feet, respectively. Sediment size ranged from clay and silt in the pool area to large cobbles and boulders at the upstream end of the reservoir. Analyses of all samples averaged 43 percent sand, 40 percent silt, and 17 percent clay, and particle size typically increased upstream. Cobbles, boulders, and gravel deposits were not sampled. The average density of the deposited sediment was about 80 pounds per cubic foot for the entire reservoir. The reservoir was able to trap about 80 percent of the sediment entering from upstream, early in its history. This trap efficiency has declined as the reservoir filled with sediment. Today (1976), it traps only sand and silt-sized sediment, or only about 20 percent of the sediment entering from upstream. Data collected during this study indicate that essentially all of the clay-sized sediment (<0.062 mm) passes through the reservoir. The gross rate of deposition was 7.0 acre-feet per year over the reservoir history, 1907-76. Rates during 1907-63 and 1963-76 were 7.4 and 5.7 acre-feet per year, respectively, determined by the cesium-137 method. Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerhouse was about 50 tons

  10. Suspended sediment delivery to Puget Sound from the lower Nisqually River, western Washington, July 2010–November 2011

    USGS Publications Warehouse

    Curran, Christopher A.; Grossman, Eric E.; Magirl, Christopher S.; Foreman, James R.

    2016-05-26

    On average, the Nisqually River delivers about 100,000 metric tons per year (t/yr) of suspended sediment to Puget Sound, western Washington, a small proportion of the estimated 1,200,000 metric tons (t) of sediment reported to flow in the upper Nisqually River that drains the glaciated, recurrently active Mount Rainier stratovolcano. Most of the upper Nisqually River sediment load is trapped in Alder Lake, a reservoir completed in 1945. For water year 2011 (October 1, 2010‒September 30, 2011), daily sediment and continuous turbidity data were used to determine that 106,000 t of suspended sediment were delivered to Puget Sound, and 36 percent of this load occurred in 2 days during a typical winter storm. Of the total suspended-sediment load delivered to Puget Sound in the water year 2011, 47 percent was sand (particle size >0.063 millimeters), and the remainder (53 percent) was silt and clay. A sediment-transport curve developed from suspended-sediment samples collected from July 2010 to November 2011 agreed closely with a curve derived in 1973 using similar data-collection methods, indicating that similar sediment-transport conditions exist. The median annual suspended-sediment load of 73,000 t (water years 1980–2014) is substantially less than the average load, and the correlation (Pearson’s r = 0.80, p = 8.1E-9, n=35) between annual maximum 2-day sediment loads and normalized peak discharges for the period indicates the importance of wet years and associated peak discharges of the lower Nisqually River for sediment delivery to Puget Sound. The magnitude of peak discharges in the lower Nisqually River generally is suppressed by flow regulation, and relative to other free-flowing, glacier-influenced rivers entering Puget Sound, the Nisqually River delivers proportionally less sediment because of upstream sediment trapping from dams.

  11. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and

  12. Sediment discharge in the Santa Clara River Basin, Ventura and Los Angeles Counties, California

    USGS Publications Warehouse

    Williams, Rhea P.

    1979-01-01

    Sediment data collected in the Santa Clara River in California basin, during the 1967-75 water years were analyzed to determine the particle size and quantity of sediment transported past three gaging stations. The total sediment discharge of the basin , computed from records of Santa Clara River at Montalvo for water years 1968-75, was 63.5 million tons, of which 59.5 million tons was carried in suspension and an estimated 4 million tons was transported as unsampled sediment discharge. About 17.7 million tons, or 28 percent of the total sediment discharge, was coarse sediment (particles larger than 0.062 millimeter). Most of the sediment was transported during only a few days of floodflow each year. During the 1968-75 water years, approximately 55 percent of the total sediment was transported in 2 days and 92 percent was transported in 53 days. The long-term (1928-75) average annual sediment discharge of the Santa Clara River at Montalvo is estimated at 3.67 million tons. Of that quantity, 2.58 million tons consisted of fine sediment and 1.09 million tons consisted of coarse sediment. A sediment budget for the Santa Clara River basin was estimated for sediment discharges under both natural and actual conditions. The major difference between natural and actual sediment discharges of the Santa Clara River basin is the sediment intercepted upstream from Lake Piru. The combined trap efficiency of Lake Piru and Pyramid Lake approaches 100 percent. Sediment deposited in these reservoirs resulted in about a 6-percent reduction of sediment to the Santa Clara River basin during the historical period (1928-75) and a 12-percent reduction during the period most affected by dams (1953-75). Sediment losses to the basin by gravel mining, diversion of flows, and interception of sediment in the Castaic Creek basin resulted in additional reductions of 2 percent during the period 1928-75 and 4 percent during the period 1953-75. (Kosco-USGS)

  13. QUANTIFICATION AND INTERPRETATION OF TOTAL PETROLEUM HYDROCARBONS IN SEDIMENT SAMPLES BY A GC/MS METHOD AND COMPARISON WITH EPA 418.1 AND A RAPID FIELD METHOD

    EPA Science Inventory

    ABSTRACT: Total Petroleum hydrocarbons (TPH) as a lumped parameter can be easily and rapidly measured or monitored. Despite interpretational problems, it has become an accepted regulatory benchmark used widely to evaluate the extent of petroleum product contamination. Three cu...

  14. Sediment fluxes from California Coastal Rivers: the influences of climate, geology, and topography

    USGS Publications Warehouse

    Andrews, E.D.; Antweiler, Ronald C.

    2012-01-01

    The influences of geologic and climatic factors on erosion and sedimentation processes in rivers draining the western flank of the California Coast Range are assessed. Annual suspended, bedload, and total sediment fluxes were determined for 16 river basins that have hydrologic records covering all or most of the period from 1950 to 2006 and have been relatively unaffected by flow storage, regulation, and depletion, which alter the downstream movement of water and sediment. The occurrence of relatively large annual sediment fluxes are strongly influenced by the El Nino–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). The frequency of relatively large annual sediment fluxes decreases from north to south during La Nina phases and increases from north to south during El Nino phases. The influence of ENSO is modulated over a period of decades by the PDO, such that relatively large annual sediment fluxes are more frequent during a La Nina phase in conjunction with a cool PDO and during an El Nino phase in conjunction with a warm PDO. Values of mean annual sediment flux, , were regressed against basin and climatic characteristics. Basin area, bedrock erodibility, basin relief, and precipitation explain 87% of the variation in from the 16 river basins. Bedrock erodibility is the most significant characteristic influencing . Basin relief is a superior predictor of compared with basin slope. is nearly proportional to basin area and increases with increasing precipitation. For a given percentage change, basin relief has a 2.3-fold greater effect on than a similar change in precipitation. The estimated natural from all California coastal rivers for the period 1950–2006 would have been approximately 85 million tons without flow storage, regulation, and depletion; the actual has been approximately 50 million tons, because of the effects of flow storage, regulation, and depletion.

  15. Sediment and Fecal Indicator Bacterial Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    NASA Astrophysics Data System (ADS)

    Bradshaw, J. K.; Molina, M.; Sullivan, K.; Sidle, R. C.

    2014-12-01

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen loadings during high flows that produce bed load transport. Water (containing suspended sediment) and bed load samples (n = 145 & n = 28, respectively) were collected in a 122 km2 watershed located in N.E. Georgia, USA during the 2013 water year. Continuous discharge was calculated from level data using USGS rating curves. This study quantifies total sediment and fecal indicator bacteria loads (FIB) in an alluvial stream in a mixed land use watershed and provides valuable data for parameterization of watershed models that simulate sediment and bacteria transport. Annual loads for sediment and FIB were determined using linear relationships between the following: turbidity and total suspended solids (R2 = 0.96); turbidity and suspended Escherichia coli and enterococci (R2 = 0.54 and 0.67, respectively); discharge and bed load (R2 = 0.60), and discharge and sediment associated E. coli and enterococci (R2 = 0.55 and 0.50, respectively). The annual sediment load was 3660 t with approximately 95% attributed to suspended sediment load and 5% attributed to bed load. The annual E. coli load was 3.7 x 1014 colonies with approximately 99.5% attributed to suspended transport and 0.50% attributed to bed load sediment-associated transport. The annual enterococci load was 1.1 x 1015 colonies with approximately 100% attributed to suspended transport. Bed load sediment transport ranged from 2% to 8% of the total storm sediment load in several high flow events (Q = 5 to 40 m3 s-1). Bed sediment-associated E. coli load was 0.4% to 0.5% of the total storm E. coli load. Suspended transport is the predominant mechanism describing contaminant loading in this stream and load estimates can be determined using simple

  16. Streambank-Derived Sediment Delivery to the Great Barrier Reef from the Burnett River over Multiple Time Scales: Implications for Sediment Management

    NASA Astrophysics Data System (ADS)

    Simon, A.; Bankhead, N.; Wilson, P.

    2014-12-01

    Degradation of the Great Barrier Reef (GBR) is in part, the result of the delivery of fine-grained, terrestrial sediment from catchments draining to the Coral Sea. The Burnett River, draining the GBR experienced severe flooding in 2011 and 2013 with the latter flood breaking all historical records. Huge quantities of sediment were transported to the Coral Sea. The purpose of this study was to quantify the magnitude of sediment eroded from the channel banks during the floods, long term bank-erosion rates, and cost-effective protection measures. System-wide analysis combined with numerical modeling using the Bank-Stability and Toe-Erosion Model (BSTEM) was used to determine annual bank-erosion rates over periods ranging from 4.5 to 100 years. Analysis of 2009 and 2013 aerial imagery revealed that 47.3 Mt (10.4 MT/y) of sediment was eroded from the banks of the lower 300 km of the Burnett River. Erosion of these bank materials does not equate to an equal volume exported to the Coral Sea, as an unknown proportion is deposited. It can be assumed, however, that the majority of the fine-grained materials (54%) were transported out to sea. Long-term simulations (42 years) were conducted using BSTEM, to compare longer term averages with those determined by the catchment model SedNet. Over this longer time period, annual bank-erosion rates were about 3.1 Mt/y, about 18 times greater than the value predicted by SedNet. Assuming 100 years of simulation and using an empirical relation between the length of BSTEM simulations and calculated erosion rates, a conservative value for the annual rate of bank erosion is 2.0 Mt/y. The BSTEM results and analysis of aerial imagery are within 10%. Bank erosion, instead of being a minor source of sediment representing 8% of the total, was found to be the single largest contributor, representing between 44 and 73% of the total annual sediment budget. In absolute terms, this is an increase in the reported average, annual rate of bank erosion

  17. Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments

    USGS Publications Warehouse

    Kalnejais, Linda H.; Martin, William R.; Signell, Richard P.; Bothner, Michael H.

    2007-01-01

    The release of particulate-phase trace metals due to sediment resuspension has been investigated by combining erosion chamber experiments that apply a range of shear stresses typically encountered in coastal environments with a shear stress record simulated by a hydrodynamic model. Two sites with contrasting sediment chemistry were investigated. Sediment particles enriched in silver, copper, and lead, 4−50 times greater than the bulk surface-sediment content, were the first particles to be eroded. As the shear-stress level was increased in the chamber, the total mass eroded increased, but the enrichment of these trace metals fell, approaching the bulk-sediment content. From the temporal distribution of shear stress generated by the hydrodynamic model for a site in Boston Harbor, resuspension fluxes were estimated. The erosion threshold of this site is exceeded during spring tides, releasing the particles enriched in trace metals into the water column. Due to the higher trace metal content and the regularity of resuspension, low-energy resuspension events (up to a shear stress of 0.2 N/m2) contribute up to 60% of the resuspension metal flux in an average year. The estimated annual quantity of copper and lead resuspended into the water column is higher than estimates of the total riverine flux for these metals. These results indicate that sediment resuspension is a very important mechanism for releasing metals into the water column and provide new insight into the chemical and physical processes controlling the long-term fate of trace metals in contaminated sediments.

  18. Sediments deposition due to soil erosion in the watershed region of Mangla dam.

    PubMed

    Butt, Mohsin Jamil; Mahmood, Rashed; Waqas, Ahmad

    2011-10-01

    Soil erosion is the most important reason of sedimentation load of water reservoirs in the world. In Pakistan, Mangla dam is one of the most important water reservoirs used for the production of electricity and for the supply of water for irrigation purposes. However, the capacity of Mangla dam reservoir has reduced by more than 20% since its construction. This study highlights the impact of rainfall on soil erosion and consequently on sedimentation deposition in Mangla dam reservoir. Sedimentation, annual rainfall, and normal rainfall data of 39 years were used in this study. Shuttle Radar Topographic Mission data were used to calculate the total drainage area of the Mangla watershed region. The sedimentation data of Mangla reservoir from 1967 to 2005 were retrieved from Water and Power Development Authority in Pakistan. The meteorological observatories in the Mangla watershed region are identified. Annual rainfall data from 1967 to 2005 for the meteorological observatories in the Mangla watershed regions were retrieved from Pakistan Meteorological Department (PMD). In addition, normal rainfall data for the years 1949 to 1978 and for the years 1979 to 2008 were also retrieved from PMD. The impact of annual rainfall is observed on sedimentation load in Mangla dam. The correlation coefficient between annual rainfall and sedimentation load is 0.94. This study shows that with an increase in rainfall, the soil erosion of the area increases which subsequently is responsible for the increase in the rate of sedimentation load in Mangla dam. This study further demonstrates that better soil management can reduce the sedimentation load in the Mangla reservoir.

  19. Monitoring urban impacts on suspended sediment, trace element, and nutrient fluxes within the City of Atlanta, Georgia, USA: Program design, methodological considerations, and initial results

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2008-01-01

    Atlanta, Georgia (City of Atlanta, COA), is one of the most rapidly growing urban areas in the US. Beginning in 2003, the US Geological Survey established a long-term water-quantity/quality monitoring network for the COA. The results obtained during the first 2 years have provided insights into the requirements needed to determine the extent of urban impacts on water quality, especially in terms of estimating the annual fluxes of suspended sediment, trace/major elements, and nutrients. During 2004/2005, suspended sediment fluxes from the City of Atlanta (COA) amounted to about 150 000 t year-1; ??? 94% of the transport occurred in conjunction with storm-flow, which also accounted for ??? 65% of the annual discharge. Typically, storm-flow averaged ??? 20% of theyear. Normally, annual suspended sediment fluxes are determined by summing daily loads based on a single calculation step using mean-daily discharge and a single rating curve-derived suspended sediment concentration. Due to the small and 'flashy' nature of the COAs streams, this approach could produce underestimates ranging from 25% to 64%. Accurate estimates (?? 15%) require calculation time-steps as short as every 2-3 h. Based on annual median base-flow/storm-flow chemical concentrations, the annual fluxes of ??? 75% of trace elements (e.g. Cu, Pb, Zn), major elements (e.g. Fe, Al), and total P occur in association with suspended sediment; in turn, ??? 90% of the transport of these constituents occur in conjunction with storm-flow. As such, base-flow sediment-associated and dissolved contributions represent relatively insignificant portions of the total annual load. An exception is total N, whose sediment-associated fluxes range from 50% to 60%; even so, storm-related transport typically exceeds 80%. Hence, in urban environments, non-point-source appear to be the dominant contributors to the fluxes of these constituents.

  20. Nitrogen dynamics in sediment during water level manipulation on the Upper Mississippi River

    USGS Publications Warehouse

    Cavanaugh, Jennifer C.; Richardson, William B.; Strauss, Eric A.; Bartsch, Lynn

    2006-01-01

    Nitrogen (N) has been linked to increasing eutrophication in the Gulf of Mexico and as a result there is increased interest in managing and improving water quality in the Mississippi River system. Water level reductions, or 'drawdowns', are being used more frequently in large river impoundments to improve vegetation growth and sediment compaction. We selected two areas of the Upper Mississippi River system (Navigation Pool 8 and Swan Lake) to examine the effects of water level drawdown on N dynamics. Navigation Pool 8 experienced summer drawdowns in 2001 and 2002. Certain areas of Swan Lake have been drawn down annually since the early 1970s where as other areas have remained inundated. In the 2002 Pool 8 study we determined the effects of sediment drying and rewetting resulting from water level drawdown on (1) patterns of sediment nitrification and denitrification and (2) concentrations of sediment and surface water total N (TN), nitrate, and ammonium (NH4+). In 2001, we only examined sediment NH4+ and TN. In the Swan Lake study, we determined the long-term effects of water level drawdowns on concentrations of sediment NH4+ and TN in sediments that dried annually and those that remained inundated. Sediment NH4+ decreased significantly in the Pool 8 studies during periods of desiccation, although there were no consistent trends in nitrification and denitrification or a reduction in total sediment N. Ammonium in sediments that have dried annually in Swan Lake appeared lower but was not significantly different from sediments that remain wet. The reduction in sediment NH4+ in parts of Pool 8 was likely a result of increased plant growth and N assimilation, which is then redeposited back to the sediment surface upon plant senescence. Similarly, the Swan Lake study suggested that drawdowns do not result in long term reduction in sediment N. Water level drawdowns may actually reduce water retention time and river-floodplain connectivity, while promoting significant

  1. Relationship of sediment discharge to streamflow

    USGS Publications Warehouse

    Colby, B.R.

    1956-01-01

    theoretically should vary considerably with differences in the size composition of the suspended sands. Scatter from the sediment rating curves for sediments finer than 0.082 millimeter seemed to be caused by changes in supply of these sediments. Some of the scatter could be explained by seasonal variations, by a pattern of change in concentration of fine sediment following a rise, or by source of the runoff as indicated by the measured relative flows of certain tributaries. Daily or instantaneous sediment rating curves adjusted for factors that account for some of the scatter from an average curve often can be used to compute approximate daily, monthly, and annual sediment discharges. Accuracy of the computed sediment discharges should be better than average for streams that transport mostly sands rather than fine sediments and for some ephemeral or intermittent streams, such as Rio Puerco, in semiarid regions. Accuracy of computed sediment discharges can be much improved for many streams by shifting the sediment rating curve on the basis of 2 or 4 measurements of sediment discharge per month. Of 26 annual sediment discharges that were computed by shifting sediment rating curves to either 2 or 4 measured sediment discharges per month, 18 were within I0 percent of the annual-sediment discharges that were computed on the basis of a daily sampling program. Monthly and daily sediment discharges computed from daily or instantaneous sediment rating curves, either shifted or unshifted, were less accurate than similarly computed annual sediment discharges. Even so, the difference in cost between occasional sediment samples and daily samples is so great that the added accuracy from daily sampling may not Justify the added cost. Monthly and annual sediment-rating curves can be applied simply, with adjustments if required, to compute monthly and annual sediment discharges with reasonably good accuracy for gaging stations like the Rio Puerco near Bernardo,

  2. Estimates of suspended sediment entering San Francisco Bay from the Sacramento and San Joaquin Delta, San Francisco Bay, California

    USGS Publications Warehouse

    McKee, L.J.; Ganju, N.K.; Schoellhamer, D.H.

    2006-01-01

    This study demonstrates the use of suspended-sediment concentration (SSC) data collected at Mallard Island as a means of determining suspended-sediment load entering San Francisco Bay from the Sacramento and San Joaquin River watersheds. Optical backscatter (OBS) data were collected every 15 min during water years (WYs) 1995-2003 and converted to SSC. Daily fluvial advective sediment load was estimated by combining estimated Delta outflow with daily averaged SSC. On days when no data were available, SSC was estimated using linear interpolation. A model was developed to estimate the landward dispersive load using velocity and SSC data collected during WYs 1994 and 1996. The advective and dispersive loads were summed to estimate the total load. Annual suspended-sediment load at Mallard Island averaged 1.2??0.4 Mt (million metric tonnes). Given that the average water discharge for the 1995-2003 period was greater than the long -term average discharge, it seems likely that the average suspended-sediment load may be less than 1.2??0.4 Mt. Average landward dispersive load was 0.24 Mt/yr, 20% of the total. On average during the wet season, 88% of the annual suspended-sediment load was discharged through the Delta and 43% occurred during the wettest 30-day period. The January 1997 flood transported 1.2 Mt of suspended sediment or about 11% of the total 9-year load (10.9 Mt). Previous estimates of sediment load at Mallard Island are about a factor of 3 greater because they lacked data downstream from riverine gages and sediment load has decreased. Decreasing suspended-sediment loads may increase erosion in the Bay, help to cause remobilization of buried contaminants, and reduce the supply of sediment for restoration projects. ?? 2005 Elsevier B.V. All rights reserved.

  3. Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large river over decadal timescales

    USGS Publications Warehouse

    Singer, M.B.; Dunne, T.

    2006-01-01

    A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first-order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30-year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ???60 km reach-scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high-magnitude low-frequency transport events do not affect long-term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns. Copyright 2006 by the American Geophysical Union.

  4. Sediment transport and deposition, Walnut and Pacheco Creeks, Contra Costa County, California, August 1965-April 1970

    USGS Publications Warehouse

    Porterfield, George

    1972-01-01

    Average annual sediment discharge in Pacheco Creek basin, Contra Costa County, Calif., was larger during August 1965-April 1970 than the historical annual sediment discharge (1909-62) by a factor of about 1.3. This increas in sediment discharge is attributed primarily to an increased frequency of peak streamflows and to a larger average annual streamflow during the 1965-70 period.

  5. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Ground water surface elevations

    SciTech Connect

    Shevenell, L.; Switek, J.

    1992-02-01

    The purpose of this document is to provide a summary and interpretation of hydraulic head measurements obtained from wells surrounding the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin sites at the US Department of Energy Y-12 Plant in Oak Ridge, Tennessee. Periodic water level observations are presented using hydrographs and water table contour maps based on data obtained from quarterly sampling during calendar year 1991. Generalized, preliminary interpretation of results are presented. The two sites covered by this report have interim status under the provisions of the Resource Conservation and Recovery Act (RCRA). A subset of the wells at each rate are used for groundwater monitoring purposes under the requirements of RCRA. A discussion of the up-gradient and down-gradient directions for each of the sites is included.

  6. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    USGS Publications Warehouse

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  7. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil

    USGS Publications Warehouse

    Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.

    1998-01-01

    Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.

  8. Sediment deposition and occurrence of selected nutrients, other chemical constituents, and diatoms in bottom sediment, Perry Lake, northeast Kansas, 1969-2001

    USGS Publications Warehouse

    Juracek, Kyle E.

    2003-01-01

    A combination of bathymetric surveying and bottom-sediment coring was used to investigate sediment deposition and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 26 metals and trace elements, 15 organochlorine compounds, 1 radionuclide, and diatoms in bottom sediment of Perry Lake, northeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1969 through 2001 in the original conservation-pool area of the lake was 2,470 million cubic feet (56,700 acre-feet) and 97,200 million pounds (44,100 million kilograms), respectively. The estimated sediment volume occupied about 23 percent of the original conservation-pool, water-storage capacity of the lake. Mean annual net sediment deposition since 1969 was estimated to be 3,040 million pounds (1,379 million kilograms). Mean annual sediment yield from the Perry Lake Basin was estimated to be 2,740,000 pounds per square mile (4,798 kilograms per hectare). The estimated mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of Perry Lake were 7,610,000 pounds per year (3,450,000 kilograms per year) and 3,350,000 pounds per year (1,520,000 kilograms per year), respectively. The estimated mean annual yields of total nitrogen and total phosphorus from the Perry Lake Basin were 6,850 pounds per square mile per year (12.0 kilograms per hectare per year) and 3,020 pounds per square mile per year (5.29 kilograms per hectare per year), respectively. A statistically significant positive trend for total nitrogen deposition in the bottom sediment of Perry Lake was indicated. However, the trend may be due solely to analytical variance. No statistically significant trend for total phosphorus deposition was indicated. Overall, the transport and deposition of these constituents have been relatively uniform throughout the history of Perry Lake. On the basis of nonenforceable sediment-quality guidelines established by the U

  9. Annual Energy Review, 2008

    SciTech Connect

    2009-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  10. Polycyclic aromatic hydrocarbons increase in Athabasca River Delta sediment: temporal trends and environmental correlates.

    PubMed

    Timoney, Kevin P; Lee, Peter

    2011-05-15

    The Athabasca River in Alberta, Canada, flows north through an area undergoing extensive bitumen resource extraction and processing before discharging its water and sediments into the Athabasca Delta and Lake Athabasca. Polycyclic aromatic hydrocarbons (PAHs) have been identified as an environmental concern in the region. We analyzed environmental data collected by the Regional Aquatics Monitoring Program and government agencies to determine whether temporal trends exist in the concentration of sediment PAHs in the Athabasca River Delta. We then determined what environmental factors related to the trends in sediment PAH concentrations. Total PAH concentrations in the sediment of the Athabasca River Delta increased between 1999 and 2009 at a rate of 0.05 mg/kg/yr ± 0.02 s.e. Annual bitumen production and mined sand volume, extent of landscape disturbance, and particulate emissions were correlated with sediment PAH concentrations as were total organic carbon in sediment and discharge of the Clearwater River, a major tributary of the Athabasca River. Within four tributaries of the Athabasca River, only the Clearwater River showed a significant correlation between discharge and sediment PAH concentration at their river mouths. Carefully designed studies are required to further investigate which factors best explain variability in sediment PAH concentrations.

  11. Sediment deposition and occurrence of selected nutrients and other chemical constituents in bottom sediment, Tuttle Creek Lake, Northeast Kansas, 1962-99

    USGS Publications Warehouse

    Juracek, K.E.; Mau, D.P.

    2002-01-01

    A combination of bathymetric surveying and bottom-sediment coring was used to investigate sediment deposition and the occurrence of selected nutrients (total ammonia plus organic nitrogen and total phosphorus), 44 metals and trace elements, 15 organochlorine compounds, and 1 radionuclide in bottom sediment of Tuttle Creek Lake, northeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1962 through 1999 in the original conservation-pool area of the lake was 6,170 million cubic feet (142,000 acre-feet) and 292,400 million pounds (133,000 million kilograms), respectively. The volume of sediment occupies about 33 percent of the original conservation-pool, water-storage capacity of the lake. Mean annual net sediment deposition since 1962 was estimated to be 7,900 million pounds (3,600 million kilograms). Mean annual net sediment yield from the Tuttle Creek Lake Basin was estimated to be 821,000 pounds per square mile (1,440 kilograms per hectare). The estimated mean annual net loads of total ammonia plus organic nitrogen and total phosphorus deposited in the bottom sediment of Tuttle Creek Lake were 6,350,000 pounds per year (2,880,000 kilograms per year) and 3,330,000 pounds per year (1,510,000 kilograms per year), respectively. The estimated mean annual net yields of total ammonia plus organic nitrogen and total phosphorus from the Tuttle Creek Lake Basin were 657 pounds per square mile per year (1.15 kilograms per hectare per year) and 348 pounds per square mile per year (0.61 kilograms per hectare per year), respectively. No statistically significant trend for total phosphorus deposition in the bottom sediment of Tuttle Creek Lake was indicated (trend analysis for total ammonia plus organic nitrogen was not performed). On the basis of available sediment-quality guidelines, the concentrations of arsenic, chromium, copper, nickel, silver, and zinc in the bottom sediment of Tuttle Creek Lake frequently or typically exceeded the threshold

  12. Large-scale dam removal on the Elwha River, Washington, USA: Fluvial sediment load

    NASA Astrophysics Data System (ADS)

    Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian; Foreman, James R.

    2015-10-01

    The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload-surrogate instruments

  13. Mechanisms of flow through compressible porous beds in sedimentation, filtration, centrifugation, deliquoring, and ceramic processing. [Annual report], February 1, 1991--January 31, 1992

    SciTech Connect

    Tiller, F.M.

    1992-06-01

    The University of Houston research program is aimed at the specific area of solid/liquid separation including sedimentation, thickening, cake filtration, centrifugation, expression, washing, deep-bed filtration, screening, and membrane separation. Unification of the theoretical approaches to the various solid/liquid separation operations is the principle objective of the research. Exploring new aspects of basic separation mechanisms, verification of theory with experiment, development of laboratory procedures for obtaining data for design, optimizing operational methods, and transferring the results to industry are a part of the Houston program. New methodology developed in our program now permits an engineer or scientist to handle thickening, cake filtration, centrigual filtration, and expression in a unified manner. The same fundamental equations are simply adapted to the differing parameters and conditions related to the various modes of separation. As the system is flexible and adaptable to computational software, new developments can continually be added. Discussions of the various research projects in this report have been kept to a minimum and are principally qualitative. The length of the report would be excessive if each topic were covered in depth. Although the number of research topics may appear larger than one would expect, many are closely interconnected and reflect our philosophy of working in apparently diverse fields such as ceramics, mining, wastewater, food, chemical processing, and oil well operations.

  14. Sediment deposition and trends and transport of phosphorus and other chemical constituents, Cheney Reservoir watershed, south-central Kansas

    USGS Publications Warehouse

    Mau, D.P.

    2001-01-01

    Sediment deposition, water-quality trends, and mass transport of phosphorus, nitrogen, selected trace elements, and selected pesticides within the Cheney Reservoir watershed in south-central Kansas were investigated using bathymetric survey data and reservoir bottom-sediment cores. Sediment loads in the reservoir were investigated by comparing 1964 topographic data to 1998 bathymetric survey data. Approximately 7,100 acre-feet of sediment deposition occurred in Cheney Reservoir from 1965 through 1998. As of 1998, sediment had filled 27 percent of the reservoir's inactive conservation storage pool, which is less than the design estimate of 34 percent. Mean annual sediment deposition was 209 acre-feet per year, or 0.22 acre-feet per year per square mile, and the mean annual sediment load was 453 million pounds per year. During the 3-year period from 1997 through 1999, 23 sediment cores were collected from the reservoir, and subsamples were analyzed for nutrients (phosphorus and nitrogen species), selected trace elements, and selected organic pesticides. Mean concentrations of total phosphorus in reservoir bottom sediment ranged from 94 milligrams per kilogram at the upstream end of the reservoir to 710 milligrams per kilogram farther downstream near the reservoir dam. The mean concentration for all sites was 480 milligrams per kilogram. Total phosphorus concentrations were greatest when more silt- and clay-sized particles were present. The implications are that if anoxic conditions (inadequate oxygen) occur near the dam, phosphorus could be released from the sediment and affect the drinking-water supply. Analysis of selected cores also indicates that total phosphorus concentrations in the reservoir sediment increased over time and were probably the result of nonpoint-source activities in the watershed, such as increased fertilizer use and livestock production. Mean annual phosphorus loading to Cheney Reservoir was estimated to be 226,000 pounds per year on the basis

  15. Coastal sedimentation

    NASA Technical Reports Server (NTRS)

    Schubel, J. R.

    1980-01-01

    Several important coastal sedimentation problems are identified. Application of existing or anticipated remote sensing techniques to examine these problems is considered. Specifically, coastal fine particle sediment systems, floods and hy hurricanes and sedimentation f of coastal systems, routes and rates of sediment transport on continental shelves, and dredging and dredged material disposal are discussed.

  16. Sediment source fingerprinting to quantify fine sediment sources in forested catchments, Chile.

    NASA Astrophysics Data System (ADS)

    Schuller, P.; Walling, D. E.; Iroume, A.; Castillo, A.; Quilodran, C.

    2012-04-01

    A study to improve the understanding of the primary sediment sources and transfer pathways in catchments disturbed following forest plantation harvesting is being undertaken in South-Central Chile. The study focuses on two sets of paired experimental catchments (treatment and control), located about 400 km apart, with similar soil type but contrasting mean annual rainfall: Nacimiento (1,200 mm year-1) and Los Ulmos (2,500 mm year-1). Sediment source fingerprinting techniques are being used to document the primary fine sediment sources. In each catchment, three potential sediment sources were defined: clearcut slopes (Z1), forest roads (Z2) and the stream channel (Z3). In each catchment, multiple representative composite samples of the different potential source materials were collected before harvest operations from the upper 1 cm layer in Z1, Z2, and from the channel bank and bed for Z3. A time-integrating trap sampler installed in the discharge monitoring station constructed at the outlet of each catchment has been used to collect samples of the suspended sediment and these have been supplemented by sediment collected from the weir pools. Total suspended sediment load is been quantified in the monitoring stations using discharge records and integrated water sampling. Caesium-137 (137Cs), excess lead-210 (210Pbex) and other sediment properties are being used as fingerprints. After air-drying, oven-drying at 40°C and disaggregation, both the source material samples and the sediment samples collected in the discharge monitoring stations were sieved through a 63-μm sieve and the <63-μm fractions were used for subsequent analyses. For radionuclide assay, the samples were sealed in Petri dishes and after 4 weeks the mass activity density (activity concentration) of 137Cs and 210Pbex was determined by gamma analysis, using an ORTEC extended range Ge detector of 53% relative efficiency. The 137Cs and 210Pbex activity and organic carbon (Corg) concentration associated

  17. Keeping agricultural soil out of rivers: evidence of sediment and nutrient accumulation within field wetlands in the UK.

    PubMed

    Ockenden, Mary C; Deasy, Clare; Quinton, John N; Surridge, Ben; Stoate, Chris

    2014-03-15

    Intensification of agriculture has resulted in increased soil degradation and erosion, with associated pollution of surface waters. Small field wetlands, constructed along runoff pathways, offer one option for slowing down and storing runoff in order to allow more time for sedimentation and for nutrients to be taken up by plants or micro-organisms. This paper describes research to provide quantitative evidence for the effectiveness of small field wetlands in the UK landscape. Ten wetlands were built on four farms in Cumbria and Leicestershire, UK. Annual surveys of sediment and nutrient accumulation in 2010, 2011 and 2012 indicated that most sediment was trapped at a sandy site (70 tonnes over 3 years), compared to a silty site (40 tonnes over 3 years) and a clay site (2 tonnes over 3 years). The timing of rainfall was more important than total annual rainfall for sediment accumulation, with most sediment transported in a few intense rainfall events, especially when these coincided with bare soil or poor crop cover. Nutrient concentration within sediments was inversely related to median particle size, but the total mass of nutrients trapped was dependent on the total mass of sediment trapped. Ratios of nutrient elements in the wetland sediments were consistent between sites, despite different catchment characteristics across the individual wetlands. The nutrient value of sediment collected from the wetlands was similar to that of soil in the surrounding fields; dredged sediment was considered to have value as soil replacement but not as fertiliser. Overall, small field wetlands can make a valuable contribution to keeping soil out of rivers.

  18. Sources, dispersal, and fate of fine sediment supplied to coastal California

    USGS Publications Warehouse

    Farnsworth, Katherine L.; Warrick, Jonathan A.

    2007-01-01

    We have investigated the sources, dispersal, and fate of fine sediment supplied to California coastal waters in a partnership between the U.S. Geological Survey (USGS) and the California Sediment Management Workgroup (CSMW). The purpose of this study was to document the rates and characteristics of these processes so that the State can better manage its coastal resources, including sediment. In this study, we made the following observations: - Rivers dominate the supply of fine sediment to the California coastal waters, with an average annual flux of 34 megatonnes (Mt). - Cliff and bluff erosion in central and southern California is a source of fine sediment, with a delivery rate of approximately 10 percent of river loads. In the southern most part of the State, however, where river-sediment loads are low, cliff and bluff erosion represent approximately 40 percent of the total fine-sediment flux. - Temporal variation in the sources of fine sediment is high. River floods and bluff erosion are episodic and dominated by winter storms, which supply most sediment flux to the coast. The magnitude of winter storms is generally related to the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate cycles. - The three rivers that dominate fine-sediment flux to the California coast are the Eel, Salinas, and Santa Clara Rivers. Because the sediment delivery from these and all other California coastal watersheds is episodic, individual rivers discharge most of their annual loads over the course of only a few days per year. - Spatial variation in river-sediment discharge is high and generally related to such watershed characteristics as geology, precipitation, and drainage area. For example, the Transverse Range of southern California represents only 9 percent of the watershed-drainage area but 18 percent of the fine-sediment flux, a function of the young sedimentary bedrock and active tectonics of this region. The urban rivers of southern California

  19. A comparison of the relative efficiency of total and cold-extractable stream sediment chemistry in exploration geochemical surveys in a semi-arid climate, Collo area, north-eastern Algeria

    NASA Astrophysics Data System (ADS)

    Bounessah, Mustapha; Atkin, Brian P.

    1994-08-01

    A stream sediment survey was conducted in a semi-arid area in north-eastern Algeria. The survey includes a comparative study between results obtained from total analysis (XRF) and cold-extraction analysis (AAS), and assesses the relative success of the two data sets in delineating known mineralization and bedrock types. Samples were collected from ephemeral streams and water-bearing rivers and a sampling density of 1 sample km -2 has been found to be effective in delineating most of the known mineralization and serpentinite bedrock. Anomalies occur mainly in the ephemeral streams but decay downstream after 1000 m, whereas in rivers values only rarely reach concentration levels above the regional background. Known lead, zinc and copper bearing veins, as well as the serpentinites, were well delineated by both analytical techniques. However, the iron mineralization could only be confirmed by the total analysis data set. In addition, new anomalies, similar to those of the sulphide mineralization, were discovered in the SW of the study area. Finally, it is suggested that the cold-extraction technique may offer an acceptable and cheaper alternative to total analysis for outlining serpentinites (cxCo and cxNi) and base-metal mineralization (cxCu, cxPb and cxZn).

  20. Sediment Loading from Crab Creek and Other Sources to Moses Lake, Washington, 2007 and 2008

    USGS Publications Warehouse

    Magirl, Christopher S.; Cox, Stephen E.; Mastin, Mark C.; Huffman, Raegan L.

    2010-01-01

    The average sediment-accumulation rate on the bed of Moses Lake since 1980, based on the identification of Mount St. Helens ash in lakebed cores, was 0.24 inches per year. Summed over the lake surface area, the average sediment-accumulation rate on the lakebed is 190,000 tons per year. Based on USGS stream-gaging station data, the average annual sediment load to Moses Lake from Crab Creek was 32,000 tons per year between 1943 and 2008; the post Mount St. Helens eruption annual load from Crab Creek was calculated to be 13,000 tons per year. The total mass input from Crab Creek and other fluvially derived sediment sources since 1980 has been about 20,000 tons per year. Eolian sediment loading to Moses Lake was about 50,000 tons per year before irrigation and land-use development largely stabilized the Moses Lake dune field. Currently, eolian input to the lake is less than 2,000 tons per year. Considering all sediment sources to the lake, most (from 80 to 90 percent) of post-1980 lakebed-sediment accumulation is from autochthonous, or locally formed, mineral matter, including diatom frustuals and carbonate shells, derived from biogenic production in phytoplankton and zooplankton. Suspended-sediment samples collected from Crab Creek and similar nearby waterways in 2007 and 2008 combined with other USGS data from the region indicated that a proposed Bureau of Reclamation supplemental feed of as much as 650 cubic feet per second through Crab Creek might initially contain a sediment load of as much as 1,500 tons per day. With time, however, this sediment load would decrease to about 10 tons per day in the sediment-supply-limited creek as available sediment in the channel is depleted. Sediment loads in the supplemental feed ultimately would be similar to loads in other bypass canals near Moses Lake. Considering the hydrology and geomorphology of the creek over multiple years, there is little evidence that the proposed supplemental feed would substantially increase the

  1. Sediment transport of streams tributary to San Francisco, San Pablo, and Suisun Bays, California, 1909-66

    USGS Publications Warehouse

    Porterfield, George

    1980-01-01

    A review of historical sedimentation data is presented, results of sediment-data collection for water years 1957-59 are summarized, and long-term sediment-discharge estimates from a preliminary report are updated. Comparison of results based on 3 years of data to those for the 10 water years, 1957-66, provides an indication of the adequacy of the data obtained during the short period to define the long-term relation between sediment transport and streamflow. During 1909-66, sediment was transported to the entire San Francisco Bay system at an average rate of 8.6 million cubic yards per year. The Sacramento and San Joaquin River basins provided about 83% of the sediment inflow to the system annually during 1957-66 and 86% during 1909-66. About 98% of this inflow was measured or estimated at sediment measuring sites. Measured sediment inflow directly to the bays comprised only about 40% of the total discharged by basins directly tributary to the bays. About 90% of the total sediment discharge to the delta and the bays in the San Francisco Bay system thus was determined on the basis of systematic measurements. (USGS)

  2. Total Quality Leadership

    NASA Technical Reports Server (NTRS)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity. The panel presentations and Keynote speeches revolving around the theme of total quality leadership provided a solid base of understanding of the importance, benefits, and principles of total quality management (TQM). The presentations from the conference are summarized.

  3. Sedimentation-related meetings

    NASA Astrophysics Data System (ADS)

    The sedimentation committee would like to provide information on several meetings that took place in October 1983.The second annual meeting of the American Geomorphological Field Group was organized by S. Wells and T. Gardner and held in Chaco Canyon, N. Mex., October 7-10. Field excursions included visits to instrumented watersheds in badland areas, examination of the Quaternary history of Chaco Canyon, and investigation of fluvial problems associated with uranium mine tailings disposal and coal reclamation.

  4. Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary

    NASA Astrophysics Data System (ADS)

    Shellenbarger, Gregory G.; Downing-Kunz, Maureen A.; Schoellhamer, David H.

    2015-11-01

    To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously measuring temperature, salinity, depth, turbidity, and velocity sensors in 2010 at a near-bottom location in Alviso Slough (Alviso, California, USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows (˜90 m3 s-1) correlated to episodic winter storms and low base flow (˜0.85 m3 s-1) during the summer. Storms and associated runoff have a large influence on sediment flux for brief periods, but the annual peak sediment concentrations in the slough, which occur in April and May, are similar to the rest of this part of the bay and are not directly related to peak discharge events. Strong spring tides promote a large upstream sediment flux as a front associated with the passage of a salt wedge during flood tide. Neap tides do not have flood-directed fronts, but a front seen sometimes during ebb tide appears to be associated with the breakdown of stratification in the slough. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides. The slough is flood dominant during spring tides, and ebb dominant during neap tides. Extreme events in landward (salt wedge) and bayward (rainfall events) suspended-sediment flux account for 5.0 % of the total sediment flux in the slough and only 0.55 % of the samples. The remaining 95 % of the total sediment flux is due to tidal transport, with an imbalance in the daily tidal transport producing net landward flux. Overall, net sediment transport during this study was landward indicating that sediment in the sloughs may not be flushed to the bay and are available for sedimentation in the adjacent marshes and ponds.

  5. Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary

    USGS Publications Warehouse

    Shellenbarger, Gregory; Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously measuring temperature, salinity, depth, turbidity, and velocity sensors in 2010 at a near-bottom location in Alviso Slough (Alviso, California, USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows (∼90 m3 s−1) correlated to episodic winter storms and low base flow (∼0.85 m3 s−1) during the summer. Storms and associated runoff have a large influence on sediment flux for brief periods, but the annual peak sediment concentrations in the slough, which occur in April and May, are similar to the rest of this part of the bay and are not directly related to peak discharge events. Strong spring tides promote a large upstream sediment flux as a front associated with the passage of a salt wedge during flood tide. Neap tides do not have flood-directed fronts, but a front seen sometimes during ebb tide appears to be associated with the breakdown of stratification in the slough. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides. The slough is flood dominant during spring tides, and ebb dominant during neap tides. Extreme events in landward (salt wedge) and bayward (rainfall events) suspended-sediment flux account for 5.0 % of the total sediment flux in the slough and only 0.55 % of the samples. The remaining 95 % of the total sediment flux is due to tidal transport, with an imbalance in the daily tidal transport producing net landward flux. Overall, net sediment transport during this study was landward indicating that sediment in the sloughs may not be flushed to the bay and are available for sedimentation in the adjacent marshes and ponds.

  6. Sediment yield from the tectonically active semiarid Western Transverse Ranges of California

    USGS Publications Warehouse

    Warrick, J.A.; Mertes, L.A.K.

    2009-01-01

    Sediment yields from the world's rivers are generally highest from steep drainage basins with weak lithology, active tectonics, or severe land-use impacts. Here, we evaluate sediment yields from the Western Transverse Ranges of California in an attempt to explain why they are two- to tenfold greater than the surrounding areas of California. We found that suspended-sediment yields across the gauged basins of the Western Transverse Range during 1969-1999 varied by approximately an order of magnitude (740-5300 t/km2/yr). Similarly, fine-sediment concentrations for normalized discharge rates varied by almost two orders of magnitude (e.g., 1.3-110 g/L for the mean annual flood) for 11 previously unmonitored drainages of the Santa Ynez Mountains. Areas with high sediment yields consistently have weakly consolidated bedrock (Quaternary-Pliocene marine formations) and are associated with the highest rates of tectonic uplift of the region (>5 mm/yr). These regions are important to the sediment discharge budgets, because ???50% of the total suspended-sediment discharge from the Western Transverse Range is estimated to be generated within these regions, even though they represent only ???10% of the total watershed area. Previous estimates of suspended-sediment discharge from the Ventura River have likely been underestimated by ???50% because the gauging station is located immediately upstream of a high sediment yield region. We also found a significant and positive correlation between sediment yield and the percentage of a watershed with grassland and agricultural land use. These results suggest that there is adequate variation within the lithology, tectonics, and land use of the broader Western Transverse Range geologic province to induce large variations in sediment yield at the local scale. ?? 2009 Geological Society of America.

  7. Quantifying stream channel sediment contributions for the Paradise Creek Watershed in northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Squires, A.; Boll, J.; Brooks, E. S.

    2012-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies around the world, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. Little is known about in-stream contributions, a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to identify where and when sediment is delivered to the stream and the spatial and temporal stream channel contributions to the overall watershed scale sediment load. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was made up predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 50% of the total annual sediment load for the basin, with a 19 year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term data in the watershed will be presented to indicate if the main source of the sediment is from either rural and urban non-point sources or the channel system.

  8. [Suspension-sedimentation of sediment and release amount of internal load in Lake Taihu affected by wind].

    PubMed

    Pang, Yong; Yan, Run-run; Yu, Zhong-bo; Li, Yi-ping; Li, Rui-ling

    2008-09-01

    The water quality in Meiliang Bay of the Taihu Lake was totally tested five times in the four seasons. The suspension samples were obtained by using a sediment trap. The sediment settling flux and resuspended flux were calculated according to the observation data by using Gansith formula, and the relationships between these fluxes and wind speeds were established. Seven experiments were conducted in Laboratory for hydrostatic settling behavior of suspended matter affected by different wind speeds in Lake Taihu. The hydrostatic settling fluxes of suspended matter were calculated and the relationships between the fluxes and suspended matter concentrations were established. Base on these works, the suspension-sedimentation process was decomposed and generalized according to the critical wind speed of 3.7 m/s. Daily sediment resuspended amount and settling amount of the year 2005 was calculated and annual average release amount of internal load in Lake Taihu was estimated using the wind data of nearly 10 years. The results indicate that daily release amount of internal load in Lake Taihu significantly influenced by wind and have the same trend of change with wind, while the release amount of different nutrients in the same condition are different. The Lake Taihu has an annual average release amount of internal load with COD 49,600 t, TN 7773.0 t and TP 275.5 t, of which summer has the markedly highest release amount than other seasons.

  9. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean

  10. Biogeochemical characteristics of sedimenting particles in Dona Paula Bay, India

    NASA Astrophysics Data System (ADS)

    D'souza, Fraddry; Garg, Anita; Bhosle, Narayan B.

    2003-10-01

    Sedimenting particles were collected at weekly intervals from October to May during 1995-1997 at a station in the coastal waters of Dona Paula Bay on the west coast of India. Sedimenting particles were analysed for concentration and composition of total sedimented particulate matter (TPM), biogenic silica (BSi) and total neutral carbohydrates (TCHO). TPM, BSi and TCHO fluxes showed seasonal and annual variations. Fluxes of BSi showed significant correlations with the fluxes of TCHO and fucose indicating that at the study site diatoms were associated with the production of carbohydrates. However, a high content of arabinose plus xylose (˜56% of TCHO without glucose) in some samples and their negative correlations with fucose may suggest terrestrial inputs. Sedimenting particles depleted in glucose content were enriched in rhamnose, fucose, xylose, mannose and galactose. A principal component analysis based on log-normalized wt% of monosaccharides established three factors that contributed 78% of total variance. The first factor was mostly controlled by the abundance of arabinose and xylose while the second and third factors were dependent on fucose, galactose, mannose and rhamnose. Carbohydrate composition data suggest that the nature and sources of organic matter at the study site varied over the period of study.

  11. Changes in bottom-surface elevations in three reservoirs on the lower Susquehanna River, Pennsylvania and Maryland, following the January 1996 flood; implications for nutrient and sediment loads to Chesapeake Bay

    USGS Publications Warehouse

    Langland, Michael J.; Hainly, Robert A.

    1997-01-01

    The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads. In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period. Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3

  12. Suspended-sediment rating curve response to urbanization and wildfire, Santa Ana River, California

    USGS Publications Warehouse

    Warrick, J.A.; Rubin, D.M.

    2007-01-01

    River suspended-sediment concentrations provide insights to the erosion and transport of materials from a landscape, and changes in concentrations with time may result from landscape processes or human disturbance. Here we show that suspended-sediment concentrations in the Santa Ana River, California, decreased 20-fold with respect to discharge during a 34-year period (1968−2001). These decreases cannot be attributed to changes in sampling technique or timing, nor to event or seasonal hysteresis. Annual peak and total discharge, however, reveal sixfold increases over the 34-year record, which largely explain the decreases in sediment concentration by a nonlinear dilution process. The hydrological changes were related to the widespread urbanization of the watershed, which resulted in increases in storm water discharge without detectable alteration of sediment discharge, thus reducing suspended-sediment concentrations. Periodic upland wildfire significantly increased water discharge, sediment discharge, and suspended-sediment concentrations and thus further altered the rating curve with time. Our results suggest that previous inventories of southern California sediment flux, which assume time-constant rating curves and extend these curves beyond the sampling history, may have substantially overestimated loads during the most recent decades.

  13. Sediment inflow, outflow and deposition for Lakes Marion and Moultrie, South Carolina, October 1983-March 1985

    USGS Publications Warehouse

    Cooney, T.W.

    1988-01-01

    In 1941 a Coastal Plain reach of the Santee River was impounded to form Lake Marion and diverted into a diked-off part of the Cooper River basin to form Lake Moultrie. Rates of sediment inflow and outflow of the lakes were determined by the U.S. Geological Survey for the periods July 1966 - June 1968 and October 1983 - March 1985. Total sediment discharge was estimated for two inflow stations and continuous streamflow monitors and automatic suspended-sediment samplers were used for computation of suspended-sediment discharge. Bedload discharge was computed by the modified Einstein procedure. Suspended-sediment discharge was monitored at three outflow stations, with the suspended-sediment concentration measured on a weekly basis. During the 1983-1985 study, mean annual suspended-sediment inflow to Lakes Marion and Moultrie was estimated to be 722,000 tons, and the outflow was estimated at 175,000 tons, for a trap efficiency of 76% and a deposition rate of about 547,000 tons/year. This is about 33% less than the deposition rate determined during the 1966-68 study. The deposition rate for suspended and bedload sediment during the 1983 - 1985 study was about 650,000 tons/year. (USGS)

  14. From agricultural intensification to conservation: Sediment transport in the Raccoon River, Iowa, 1916-2009

    USGS Publications Warehouse

    Jones, C.S.; Schilling, K.E.

    2011-01-01

    Fluvial sediment is a ubiquitous pollutant that negatively aff ects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate longterm TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that eff orts to reduce sediment load from the watershed appear to be working. ?? 2011 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  15. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    SciTech Connect

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analyte levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.

  16. Contaminated Sediment

    EPA Pesticide Factsheets

    Contaminated sediments are a significant problem in the Great Lakes basin. Persistent high concentrations of contaminants in the bottom sediments of rivers and harbors pose risks to aquatic organisms, wildlife, and humans.

  17. Synthesis of nutrient and sediment data for watersheds within the Chesapaeake Bay drainage basin

    USGS Publications Warehouse

    Langland, M.J.; Lietman, P.L.; Hoffman, S.A.

    1995-01-01

    Nutrient and sediment data collected by Federal and state agencies from 1972 through 1992 at 1,058 surface-water sites in nontidal parts of the Chesapeake Bay Basin were compiled into a large database. Adequate nutrient, sediment, and streamflow data were not available to compute annual loads for all sites because water-quality monitoring at many of the sites was either short term or noncontinuous or because stream-flow was not measured. Annual nutrient and sediment loads were calculated at a total of 127 sites. Annual loads of dissolved nitrate were calculated for 108 sites, but total nitrogen loads could be calculated for only 48 of these sites because ammonia plus organic nitrogen data were not available for many of these 108 sites. Annual loads of total phosphorus were calculated for 99 sites, and annual loads of suspended sediment were calculated for 33 sites. Loads could be calculated for only a very few sites in the Juniata River Basin (a tributary to the Susquehanna River), the York River Basin, the middle and lower reaches of the James River, and the nontidal parts of the eastern shore of the Bay. Geographic Information System (GIS) spatial data sets of land use, physiographic province, rock type, and watershed delineation were compiled for the entire Chesapeake Bay Basin (approximately 64,000 square miles). The nutrient- and sediment-yield were evaluated with respect to land use, physiographic province, rock type, and hydrologic characteristics. During years that the mean streamflow was about equal to the long-term mean streamflow, the Susquehanna River contributed about 50 percent of the freshwater, 66 percent of the total nitrogen, and 40 percent of the total phosphorus transported by tributaries to the Bay. Nutrient and sediment data were available for less than 18 percent of the predominantly agricultural areas underlain by siliciclastic rock and for less than 35 percent of the predominantly agricultural areas underlain by either carbonate rock or

  18. Aquatic Sediments.

    ERIC Educational Resources Information Center

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  19. Suspended sediment in Trail Creek at Michigan City, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Jacques, David V.

    1992-01-01

    Trail Creek is a small (54.1-square-mile drainage area) tributary of Lake Michigan located in northwestern Indiana. A harbor at the mouth of the stream has experienced excessive sediment deposition. A study was done to investigate the suspended-sediment characteristics of Trail Creek. The study included analysis of suspended-sediment concentration and particle-size data, and estimates of annual suspended-sediment load. Suspended-sediment concentrations ranged from only a few milligrams per liter at low flows to about 300 milligrams per liter at high flows. At low flows, the suspended sediment was mostly silt- and clay-sized material (less than 0.062 millimeter). The percentage of silt- and clay-sized material gradually decreased to about 50 percent of the suspended sediment at high flows. Estimates of the annual suspended-sediment load for the 1981-90 water years were calculated by the flow-duration, rating-curve method. Annual loads ranged from 3,690 to 8,250 tons. The average annual load for the 10-year period was 6,180 tons. Annual suspended-sediment yield (load per unit drainage area) averaged 114 tons per square mile; this value is within the range of values from 14 other previously investigated streams in northern Indiana. Average annual yields of these 14 streams ranged from 11 to 152 tons per square mile; the median annual yield was 56 tons per square mile.

  20. Sediment toxicity test results for the Urban Waters Study 2010, Bellingham Bay, Washington

    USGS Publications Warehouse

    Biedenbach, James M.

    2011-01-01

    The Washington Department of Ecology annually determines the quality of recently deposited sediments in Puget Sound as a part of Ecology's Urban Waters Initiative. The annual sediment quality studies use the Sediment Quality Triad (SQT) approach, thus relying on measures of chemical contamination, toxicity, and benthic in-faunal effects (Chapman, 1990). Since 2002, the studies followed a rotating sampling scheme, each year sampling a different region of the greater Puget Sound Basin. During the annual studies, samples are collected in locations selected with a stratified-random design, patterned after the designs previously used in baseline surveys completed during 1997-1999 (Long and others, 2003; Wilson and Partridge, 2007). Sediment samples were collected by personnel from the Washington Department of Ecology, in June of 2010 and shipped to the U. S. Geological Survey (USGS) laboratory in Corpus Christi, Texas (not shown), where the tests were performed. Sediment pore water was extracted with a pneumatic apparatus and was stored frozen. Just before testing, water-quality measurements were made and salinity adjusted, if necessary. Tests were performed on a dilution series of each sample consisting of 100-, 50-, and 25-percent pore-water concentrations. The specific objectives of this study were to: * Extract sediment pore water from a total of 30 sediment samples from the Bellingham Bay, Washington area within a day of receipt of the samples. * Measure water-quality parameters (salinity, dissolved oxygen, pH, sulfide, and ammonia) of thawed pore-water samples before testing and adjust salinity, temperature and dissolved oxygen, if necessary, to obtain optimal ranges for the test species. * Conduct the fertilization toxicity test with pore water using sea urchin (Stronylocentrotus purpuratus) (S. purpuratus) gametes. * Perform quality control assays with reference pore water, dilution blanks and a positive control dilution series with sodium dodecyl sulfate (SDS

  1. 77 FR 64463 - Annual Retail Trade Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ..., the Census Bureau will collect data covering annual sales, annual e- commerce sales, year-end..., accounts receivables, and, for selected industries, merchandise line sales, and percent of e-commerce sales..., annual sales, annual e-commerce sales, purchases, total and detailed operating expenses,...

  2. 75 FR 63804 - Annual Retail Trade Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... survey, the Census Bureau will collect data covering annual sales, annual e-commerce sales, year-end... percent of e-commerce sales to customers located outside the United States. These data are collected to... classification basis, annual sales, annual e-commerce sales, purchases, total operating expenses,...

  3. Sediment transport by streams in the Palouse River basin, Washington and Idaho, July 1961-June 1965

    USGS Publications Warehouse

    Boucher, P.R.

    1970-01-01

    The Palouse River basin covers about 3,300 square miles in southeastern Washington and northwestern Idaho. The eastern part of the basin is composed of steptoes and foothills which are generally above an altitude of 2,600 feet; the central part is of moderate local relief and is mantled chiefly by thick loess deposits; and the western part is characterized by low relief and scabland topography and is underlain mostly by basalt. Precipitation increases eastward across the study area. It ranges annually from 12 to 18 inches in the western part and from 14 to 23 inches in the central part, and it exceeds 40 inches in the eastern part. Surface runoff from the basin for the 4-year period of study (July 1961-June 1965) averaged 408,000 acre-feet per year, compared with 445,200 acre-feet per year for the 27-year period of record. The eastern part of the basin contributed about 55 percent of the total, whereas the central and western parts contributed 37 percent and 8 percent, respectively. Most sediment transport from the Palouse River basin and the highest sediment concentrations in streams occurred in the winter. Of the several storms during the study period, those of February 3-9, 1963, December 22-27, 1964, and January 27-February 4, 1965, accounted for 81 percent of the total 4-year suspended-sediment load; the storm of February 3-9, 1963, accounted for nearly one-half the total load. The discharge-weighted mean concentration of suspended sediment carried in the Palouse River past Hooper during the study period was 2,970 milligrams per liter. The average annual sediment discharge of the Palouse River at its mouth was about 1,580,000 tons per year, and the estimated average annual sediment yield was 480 tons per square mile. The yield ranged from 5 tons per square mile from the western part of the basin to 2,100 tons per square mile from the central part. The high yield from the central part is attributed to a scarcity of vegetal cover, to the fine-grained loess soils

  4. MODELING FRAMEWORK FOR EVALUATING SEDIMENTATION IN STREAM NETWORKS: FOR USE IN SEDIMENT TMDL ANALYSIS

    EPA Science Inventory

    A modeling framework that can be used to evaluate sedimentation in stream networks is described. This methodology can be used to determine sediment Total Maximum Daily Loads (TMDLs) in sediment impaired waters, and provide the necessary hydrodynamic and sediment-related data t...

  5. Relation of sediment and nutrient loads to watershed characteristics and land use in the Otisco Lake basin, Onondaga County, New York

    USGS Publications Warehouse

    Paschal, J.E.; Sherwood, D.A.

    1987-01-01

    Otisco Lake, the smallest and easternmost of New York State 's Finger Lakes, is the source of water supply for several villages in Onondaga County. In recent years, turbidity and algal blooms have periodically impaired the lake 's use for both water supply and recreation. Principal land uses within the Otisco Lake basin are woodland (39%) and cropland (49%). Conservation practices such as contour farming, strip cropping, and diversion ditches are applied to about 47% of the cropland in the basin. Runoff and concentrations of sediment and nutrients in the five major tributaries, which together drain about 70% of the lake 's watershed, were monitored from November 1981 through September 1983, and sediment and nutrient loads from the ungaged areas of the watershed were estimated. Otisco Lake received 10,600 tons of sediment, 20,600 lbs of phosphorus asp, 199,000 lbs of total kjeldahl nitrogen as N, and 236,000 lbs of nitrite plus nitrate as N from the five tributaries and the ungaged area during the 23-month study. Spafford Creek basin (12.0 sq mi) contributed about 72% of the annual sediment load and 46% of the annual nutrient load; the other four subbasins, which range from 2.6 to 3.7 sq mi in area, each contributed 3 to 5% of the annual sediment load and 6 to 16% of the annual nutrient load. The ungaged part of the watershed contributed 12% of the annual sediment load and 28% of the annual nutrient load. Concentrations of ammonia as N were relatively uniform through the year, although some extremely high concentrations occurred during the summer. Total Kjeldahl nitrogen concentrations were highest in the summer and lowest in the fall. Concentrations of nitrite plus nitrate were significantly lower in winter than in the rest of the year. Total phosphorus concentrations were slightly higher in the spring than at other times, and concentrations of dissolved phosphorus were slightly higher in the summer. Storms and snowmelt accounted for 70 to 90% of the runoff, 90 to

  6. Suspended sediment and bedload in the First Broad River Basin in Cleveland County, North Carolina, 2008-2009

    USGS Publications Warehouse

    Hazell, William F.; Huffman, Brad A.

    2011-01-01

    A study was conducted to characterize sediment transport upstream and downstream from a proposed dam on the First Broad River near the town of Lawndale in Cleveland County, North Carolina. Streamflow was measured continuously, and 381 suspended-sediment samples were collected between late March 2008 and September 2009 at two monitoring stations on the First Broad River to determine the suspended-sediment load at each site for the period April 2008-September 2009. In addition, 22 bedload samples were collected at the two sites to describe the relative contribution of bedload to total sediment load during selected events. Instantaneous streamflow, suspended-sediment, and bedload samples were collected at Knob Creek near Lawndale, North Carolina, to describe general suspended-sediment and bedload characteristics at this tributary to the First Broad River. Suspended- and bedload-sediment samples were collected at all three sites during a variety of flow conditions. Streamflow and suspended-sediment measurements were compared with historical data from a long-term (1959-2009) streamflow station located upstream from Lawndale. The mean streamflow at the long-term streamflow station was approximately 60 percent less during the study period than the long-term annual mean streamflow for the site. Suspended-sediment concentrations and continuous records of streamflow were used to estimate suspended-sediment loads and yields at the two monitoring stations on the First Broad River for the period April 2008-September 2009 and for a complete annual cycle (October 2008-September 2009), also known as a water year. Total suspended-sediment loads during water year 2009 were 18,700 and 36,500 tons at the two sites. High-flow events accounted for a large percentage of the total load, suggesting that the bulk of the total suspended-sediment load was transported during these events. Suspended-sediment yields during water year 2009 were 145 and 192 tons per square mile at the two

  7. ALAWAT: A spatially allocated watershed model for approximating stream, sediment, and pollutant flows in Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Freeman, William; Fox, Jefferson

    1995-07-01

    The Ala Wai Canal Watershed Model (ALAWAT) is a planning-level watershed model for approximating direct runoff, streamflow, sediment loads, and loads for up to five pollutants. ALAWAT uses raster GIS data layers including land use, SCS soil hydrologic groups, annual rainfall, and subwatershed delineations as direct model parameter inputs and can use daily total rainfall from up to ten rain gauges and streamflow from up to ten stream gauges. ALAWAT uses a daily time step and can simulate flows for up to ten-year periods and for up to 50 subwatersheds. Pollutant loads are approximated using a user-defined combination of rating curve relationships, mean event concentrations, and loading/washoff parameters for specific subwatersheds, land uses, and times of year. Using ALAWAT, annual average streamflow and baseflow relationships and urban suspended sediment loads were approximated for the Ala Wai Canal watershed (about 10,400 acres) on the island of Oahu, Hawaii. Annual average urban suspended sediments were approximated using two methods: mean event concentrations and pollutant loading and washoff. Parameters for the pollutant loading and washoff method were then modified to simulate the effect of various street sweeping intervals on sediment loads.

  8. Sediment Loads and Yield, and Selected Water-Quality Parameters in Clear Creek, Carson City and Douglas County, Nevada, Water Years 2004-07

    USGS Publications Warehouse

    Seiler, Ralph L.; Wood, James L.

    2009-01-01

    Some reaches of Clear Creek above U.S. Highway 395 have experienced severe erosion as a result of fires, extreme precipitation events, and past and current human activities in the basin. Previous evaluations of erosion in the basin have concluded that most of the sediment produced and transported in the basin was associated with U.S. Highway 50, a four-lane highway that roughly parallels Clear Creek through much of the basin. During this study (water years 2004-07), construction of roads and a large residential area and golf course in the area began and are likely to affect water quality and sediment transport in the basin. Sediment data were collected between October 2003 and September 2007 (water years 2004-07) from three sites along Clear Creek. Annual suspended-sediment load was estimated to range from 1,456 tons in water year 2006 to only 100 tons in water year 2004, which corresponds to suspended-sediment yields of 93.9 tons per square mile per year in 2006 to 6.4 tons per square mile per year in 2004. In water year 2006, the suspended-sediment load on December 31, 2005, alone exceeded the combined annual load for water years 2004, 2005, and 2007. Bedload sediment was estimated to comprise 73 percent of total sediment load in the creek. Mean annual suspended-sediment yield in Clear Creek basin was much greater than yields in the Logan House, Edgewood, and Glenbrook Creek basins in the adjacent Lake Tahoe basin. Comparison of data collected during this study with data collected by university researchers in the 1970s is inconclusive as to whether fundamental changes in basin sediment characteristics have occurred during the 30-year period because different methods and sampling locations were used in the earlier studies.

  9. 2008 annual merit review

    SciTech Connect

    None, None

    2009-01-18

    The 2008 DOE Vehicle Technologies Program Annual Merit Review was held February 25-28, 2008 in Bethesda, Maryland. The review encompassed all of the work done by the Vehicle Technologies Program: a total of 280 individual activities were reviewed, by a total of just over 100 reviewers. A total of 1,908 individual review responses were received for the technical reviews, and an additional 29 individual review responses were received for the plenary session review.

  10. Effects of urbanization on streamflow and sediment transport in the Rock Creek and Anacostia River basins, Montgomery County, Maryland, 1962-74

    USGS Publications Warehouse

    Yorke, Thomas H.; Herb, William J.

    1978-01-01

    Land use, precipitation, streamflow, and sediment discharge data were collected from nine small drainage basins in Montgomery County, Maryland, to evaluate runoff and sediment response to sediment-control practices in areas undergoing urban development. Drainage basins ranged in size from 0.35 to 21.1 sq mi and land use ranged from rural to 60 percent urban. Urbanization did not affect low and medium flows, but it did result in increased storm runoff and peak flows. Suspended sediment transported from one of the basins that underwent urban development, the 21.1 sq mi Anacostia River basin, averaged 15 ,400 tons/yr between 1962 and 1974. Bedload was estimated as 5 to 11 percent of the total load. Cropland, urban land, and construction sites were the major sources of sediment. Average annual sediment yields ranged from 065 to 4.3 tons/acre for cropland, 3.7 tons/acre for urban land, and 7 to 100 tons/acre for urban construction sites. The magnitude of the yields from construction sites was significantly affected by (1) the slope of the sites, (2) the proximity of stream channels, (3) buffer zones of natural vegetation, and (4) sediment-control measures. Sediment controls, particularly those enforced under a 1971 sediment-control ordinance, apparently decreased construction-site sediment yields by 60 to 80 percent. (Woodard-USGS)

  11. Terrestrial Sediment and Nutrient Discharge, and Their Potential Influence on Coral Reefs, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.; Webb, R. M.; Warne, A. G.

    2004-12-01

    Sediment and nutrient discharge to the insular shelf of Puerto Rico (18 degrees latitude), augmented by anthropogenic activity, is believed to have contributed to widespread degradation of coral reefs of Puerto Rico during the 20th century. Sediment deposition degrades coral reefs because it reduces the area of sea floor suitable for growth of new coral, diminishes the amount of light available for photosynthesis by symbiotic algae that live within individual coral animals, and in extreme cases, buries coral colonies. Land-use history and data from 30 water-discharge, 9 daily and 15 intermittent sediment-concentration, and 24 water-quality gaging stations were analyzed to investigate the timing and intensity of terrestrial sediment and nutrient discharge into coastal waters. Watersheds in Puerto Rico generally are small (10's to 100's of square km), channel gradients are steep, and stream valleys are deeply incised and narrow. Major storms are usually brief (<24 h) but intense such that the majority of the annual sediment discharge occurs in a few days. From 1960 through 2000 the highest mean daily discharge for a water year (October - September) accounted for 20 to 60 percent of the total annual sediment discharge. Major storms, with a return frequency of approximately a decade, were capable of discharging up to 30 times the median annual sediment-discharge volume. Prior to agricultural and industrial development, coastal waters are believed to have been relatively transparent, with strong currents and seasonal high-energy swells assisting corals in the removal of minor amounts of sediment deposited after storms. Land clearing and modification, first for agriculture and later for urban development, have increased sediment and nutrient influx to the coast during the 19th and 20th centuries. Although forest cover has increased to approximately 30 percent of the surface of Puerto Rico during the past 60 years, sediment eroded from hillslopes during the agricultural

  12. Simulation of contaminated sediment transport in White Oak Creek basin

    SciTech Connect

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-12-31

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

  13. A sediment budget for the southern reach in San Francisco Bay, CA: implications for habitat restoration

    USGS Publications Warehouse

    Shellenbarger, Gregory; Wright, Scott A.; Schoellhamer, David H.

    2013-01-01

    The South Bay Salt Pond Restoration Project is overseeing the restoration of about 6000 ha of former commercial salt-evaporation ponds to tidal marsh and managed wetlands in the southern reach of San Francisco Bay (SFB). As a result of regional groundwater overdrafts prior to the 1970s, parts of the project area have subsided below sea-level and will require between 29 and 45 million m3 of sediment to raise the surface of the subsided areas to elevations appropriate for tidal marsh colonization and development. Therefore, a sufficient sediment supply to the far south SFB subembayment is a critical variable for achieving restoration goals. Although both major tributaries to far south SFB have been seasonally gaged for sediment since 2004, the sediment flux at the Dumbarton Narrows, the bayward boundary of far south SFB, has not been quantified until recently. Using daily suspended-sediment flux data from the gages on Guadalupe River and Coyote Creek, combined with continuous suspended-sediment flux data at Dumbarton Narrows, we computed a sediment budget for far south SFB during Water Years 2009–2011. A Monte Carlo approach was used to quantify the uncertainty of the flux estimates. The sediment flux past Dumbarton Narrows from the north dominates the input to the subembayment. However, environmental conditions in the spring can dramatically influence the direction of springtime flux, which appears to be a dominant influence on the net annual flux. It is estimated that up to several millennia may be required for natural tributary sediments to fill the accommodation space of the subsided former salt ponds, whereas supply from the rest of the bay could fill the space in several centuries. Uncertainty in the measurement of sediment flux is large, in part because small suspended-sediment concentration differences between flood and ebb tides can lead to large differences in total mass exchange. Using Monte Carlo simulations to estimate the random error associated with

  14. Three decades of TBT contamination in sediments around a large scale shipyard.

    PubMed

    Kim, Nam Sook; Shim, Won Joon; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Shin, Kyung Hoon

    2011-08-30

    Tributyltin (TBT) contamination in sediments was investigated in the vicinity of a large-scale shipyard in the years after the implementation of a total ban on the use of TBT based antifouling paints in Korea. Extremely high level of TBT (36,292ng Sn/g) in surface sediment was found at a station in front of a drydock and near surface runoff outfall of the shipyard. TBT concentration in surface sediments of Gohyeon Bay, where the shipyard is located, showed an apparent decreased TBT concentration gradient from the shipyard towards the outer bay. The vertical distribution of TBT contamination derived from a sediment core analysis demonstrated a significant positive correlation (r(2)=0.88; p<0.001) with the annual tonnage of ship-construction in the shipyard within the past three decades. TBT concentrations at six stations surveyed before (2003) and seven years after (2010) the total ban showed no significant differences (p>0.05). Despite the ban on the use of TBT, including ocean going vessels, surface sediments are still being heavily contaminated with TBT, and its levels well exceeded the sediment quality guideline or screening values.

  15. Generalized sediment budgets of the Lower Missouri River, 1968–2014

    USGS Publications Warehouse

    Heimann, David C.

    2016-09-13

    determine a suspended-sediment budget for selected annual, monthly, and daily time increments. The temporal changes in the cumulative annual budget residuals were poorly correlated with the comparatively steady 1968–2011 annual stage trends at the Missouri River at Nebraska City, Nebr., station. An accurate total sediment budget is developed by having concurrent data available for all primary suspended and bedload components for a reach of interest throughout a period. Such a complete budget, with concurrent record for suspended-sediment load and bedload components, is unavailable for any reach and period in the Lower Missouri River. The primary data gaps are in bedload data, and also in suspended-sediment gains and losses including ungaged tributary inputs and sediment storage. Bedload data gaps in the Missouri River Basin are much more prevalent than suspended-sediment data gaps, and the first step in the development of reach bedload budgets is the establishment of a standardized bedload monitoring program at main-stem stations.The temporal changes in flow-adjusted suspended-sediment concentrations analyzed at main-stem Missouri River stations indicated an overall downward change in concentrations between 1968 and 2014. Temporary declines in flow-adjusted suspended-sediment concentrations during and following large floods were evident but generally returned to near pre-flood values within about 6 months.Data uncertainties associated with the development of a sediment budget include uncertainties associated with the collection of suspended-sediment and bedload data and the computation of suspended-sediment loads. These uncertainties vary depending on the frequency of data collection, the variability of conditions being represented by the discrete samples, and the statistical approach to suspended-sediment load computations. The coefficients of variation of suspended-sediment loads of Missouri River tributary stations for 1968–2014 were greater, 75.0 percent, than the

  16. Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of southwest China

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Xu, Xianli; Yu, Bofu; Xu, Chaohao; Liu, Meixian; Wang, Kelin

    2016-11-01

    Quantifying the impacts of climate and human activities on water and sediment discharge has become a central topic in climate and hydrologic research. This issue, however, has so far received little attention in karst regions around the world. Seven karst catchments located in southwest China were chosen to explore water and sediment discharge responses to different driving factors during the period from the 1950s to 2011. The non-parametric Mann-Kendall test was used to detect both the trends and abrupt changes in water and sediment discharge. The double mass curve method was used to quantify the effects of climate and human activities on water and sediment discharge. Results indicated that the annual water discharge showed a decreasing trend in all catchments (-0.21 to -3.68 × 108 m3 yr-1), and the sediment discharge exhibited a significant decreasing trend (-7 to -101 × 104 t yr-1) for six out of the seven catchments. A rapid decline (abrupt change) in sediment discharge occurred since 2000 for all except Liujiang catchment where the sediment discharge has a slight increase since 1983 as no large dams were constructed in this catchment. Specifically, the magnitude of reduction in sediment discharge (%) significantly increases with the extent of flow regulation as measured by the ratio of the area upstream the dam to the total catchment area for the seven catchments (R2 = 0.98, P < 0.01). This study demonstrated that water discharge was mainly influenced by precipitation, while sediment discharge was mainly influenced by human activities (relative contribution 70-111%, regardless of whether the effect is negative or positive). Ecological restoration played somehow important roles in the decrease in sediment discharge (negative relationships of sediment discharge with the Normalized Differential Vegetation Index (NDVI)), but dam construction was likely to be the principal cause of the significant decrease in sediment discharge. This study is of use for better

  17. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay

    USGS Publications Warehouse

    Yates, K.K.; Halley, R.B.

    2006-01-01

    Water quality and circulation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate density Thalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to -0.410 g CaCO3 m-2 d-1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to -1.900 g CaCO3 m -2 night-1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average

  18. Contributions of human activities to suspended sediment yield during storm events from a small, steep, tropical watershed

    NASA Astrophysics Data System (ADS)

    Messina, A. M.; Biggs, T. W.

    2016-07-01

    Suspended sediment concentrations (SSC) and yields (SSY) were measured during storm and non-storm periods from undisturbed and human-disturbed portions of a small (1.8 km2), mountainous watershed that drains to a sediment-stressed coral reef. Event-wise SSY (SSYEV) was calculated for 142 storms from measurements of water discharge (Q), turbidity (T), and SSC measured downstream of three key sediment sources: undisturbed forest, an aggregate quarry, and a village. SSC and SSYEV were significantly higher downstream of the quarry during both storm- and non-storm periods. The human-disturbed subwatershed (10.1% disturbed) accounted for an average of 87% of SSYEV from the watershed. Observed sediment yield (mass) to the coast, including human disturbed subwatersheds, was 3.9× the natural background. Specific SSY (mass/area) from the disturbed quarry area was 49× higher than from natural forest compared with 8× higher from the village area. Similar to mountainous watersheds in semi-arid and temperate climates, SSYEV from both the undisturbed and disturbed watersheds correlated closely with maximum event discharge (Qmax), event total precipitation and event total Q, but not with the Erosivity Index. Best estimates of annual SSY varied by method, from 45 to 143 tons/km2/yr from the undisturbed subwatershed, 441-598 tons/km2/yr from the human-disturbed subwatershed, and 241-368 tons/km2/yr from the total watershed. Sediment yield was very sensitive to disturbance; the quarry covers 1.1% of the total watershed area, but contributed 36% of SSYEV. Given the limited access to gravel for infrastructure development, sediment disturbance from local aggregate mining may be a critical sediment source on remote islands in the Pacific and elsewhere. Identification of erosion hotspots like the quarry using rapid, event-wise measures of suspended sediment yield will help efforts to mitigate sediment stress and restore coral reefs.

  19. Laboratory-determined phosphorus flux from lake sediments as a measure of internal phosphorus loading.

    PubMed

    Ogdahl, Mary E; Steinman, Alan D; Weinert, Maggie E

    2014-03-06

    Eutrophication is a water quality issue in lakes worldwide, and there is a critical need to identify and control nutrient sources. Internal phosphorus (P) loading from lake sediments can account for a substantial portion of the total P load in eutrophic, and some mesotrophic, lakes. Laboratory determination of P release rates from sediment cores is one approach for determining the role of internal P loading and guiding management decisions. Two principal alternatives to experimental determination of sediment P release exist for estimating internal load: in situ measurements of changes in hypolimnetic P over time and P mass balance. The experimental approach using laboratory-based sediment incubations to quantify internal P load is a direct method, making it a valuable tool for lake management and restoration. Laboratory incubations of sediment cores can help determine the relative importance of internal vs. external P loads, as well as be used to answer a variety of lake management and research questions. We illustrate the use of sediment core incubations to assess the effectiveness of an aluminum sulfate (alum) treatment for reducing sediment P release. Other research questions that can be investigated using this approach include the effects of sediment resuspension and bioturbation on P release. The approach also has limitations. Assumptions must be made with respect to: extrapolating results from sediment cores to the entire lake; deciding over what time periods to measure nutrient release; and addressing possible core tube artifacts. A comprehensive dissolved oxygen monitoring strategy to assess temporal and spatial redox status in the lake provides greater confidence in annual P loads estimated from sediment core incubations.

  20. Assessing Suspended-Sediment Transport Rates at the Regional Scale: Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Heins, A.; Simon, A.

    2003-12-01

    In recent years, suspended-sediment transport has received increased attention due to a greater emphasis being placed on water quality issues. Secchi-disk data has shown a trend of decreasing water clarity in Lake Tahoe over the past 35 years that can be partly attributed to delivery of fine sediment from channel and upland sources. In an effort to quantify the magnitude and sources of suspended sediment into Lake Tahoe, the USDA-ARS National Sedimentation Laboratory with support from the U.S. Army Corps of Engineers initiated a study to examine these issues. Historical flow and sediment-transport data from more than 30 gages were used to determine bulk suspended-sediment loads and yields for sites around the lake. Eighteen index stations were used to make comparisons between sediment production and delivery from individual watersheds and between different sides of the lake. Fine-grained sediment transport was determined for 20 sites based on relations derived from particle-size distributions across the range of measured flows. Suspended-sediment loads and yields vary over orders of magnitude from year to year, from west to east and north to south across the basin. Median annual suspended-sediment loads for index stations range from about 2200 tonnes/yr (T/y) from the Upper Truckee River to 3 T/y from Logan House Creek. Based on the historical data, the largest annual contributors of sediment are in decreasing order, Upper Truckee River (2200 T/y), Blackwood Creek (1930 T/y), Second Creek (1410 T/y), Trout Creek (1190 T/y), Third Creek (880 T/y) and Ward Creek (855 T/y). Data from Second and Third Creeks may be somewhat misleading though because of a short period of data collection in the case of the former, and the fact that data collection occurred during major construction activities and following storm-induced debris flows in these basins. Analysis of suspended-sediment transport ratings with longer periods of record show that sediment loads from northeastern

  1. Dynamic sediment discharge in the Hekou-Longmen region of Yellow River and soil and water conservation implications.

    PubMed

    Gao, Peng; Deng, Jingcheng; Chai, Xueke; Mu, Xingmin; Zhao, Guangju; Shao, Hongbo; Sun, Wenyi

    2017-02-01

    The middle reaches of the Yellow River Basin transport the vast majority of sediment (>85% of the basin's total available sediment load), which has had profound effects on the characteristics of the middle and lower reaches of the Yellow River. Since the late 1950s, soil and water conservation measures have been extensively implemented in the Loess Plateau, China, especially since the 1970s. This has resulted in sediment discharge changing significantly. In this study, data from 22 catchments in the region of the Loess Plateau from Hekou to Longmen in the middle reaches of the Yellow River were analyzed to investigate the responses of the sediment regime to climate change and human activities. The non-parametric Mann-Kendall test and the Pettitt test were used to identify trends and shifts in sediment discharge. All 22 catchments had a significantly decreasing trend (P<0.01) in annual sediment discharge. Change point years were detected between 1971 and 1994, and were concentrated between 1978 and 1984 in 17 catchments. Moreover, erosive rainfall exhibited a tendency to decrease, but this was not a significant trend. Compared to rainfall, human activities, primarily soil and water conservation and environmental rehabilitation campaigns, have played a more prominent role in the changes in sediment regimes. In order to reduce soil erosion and sediment yield, more attention should be paid to proper and rational soil and water conservation and eco-restoration in this region.

  2. Runoff and Sediment Delivery from Bare and Graveled Forest Road Approaches to Stream Crossings

    NASA Astrophysics Data System (ADS)

    Brown, K. R.; McGuire, K. J.; Aust, W. M.

    2012-12-01

    Forested watersheds are typically associated with high quality water yield, yet forest roads and trails can adversely impact water quality draining forested watersheds. Increased stream sedimentation from forest road stream crossings often represents the most significant water quality threat associated with forestry operations. Quantification of sediment delivery rates is essential for the prescription of Best Management Practices (BMPs) that adequately address forest road stormwater runoff. Two different field experiments were implemented in the Virginia Piedmont to achieve the objectives of quantifying sediment delivery from forest roads where the road meets the stream (the road approach) and evaluating the sediment reduction efficacy of partially graveling road approaches. A forest operational experiment that included sediment traps and differential leveling was used to measure sediment delivery from five bare and four fully graveled road approaches for one year (August 2011 through July 2012). Rainfall simulation experiments were performed on six additional approaches to measure stormwater runoff volume, infiltration, and sediment delivery for 10 to 50-minute rain events with rainfall recurrence intervals of < 1 to 5-year return periods. Rainfall simulations were performed on newly-reopened bare approaches, with subsequent simulations on partially graveled approaches. The sediment trap study provides annual sediment delivery rates for bare and fully graveled road approaches. The rainfall simulation experiments characterize sediment delivery during storm events and provide an evaluation of different levels of Best Management Practice (BMP) implementation (i.e. ¼ to full gravel coverage) to minimize sediment inputs from road approaches. Sediment delivery from both experiments was related to rainfall amount, timing, and intensity, as well as road approach characteristics such as length, slope, and percentage of bare soil through stepwise multiple regression

  3. Estimating suspended sediment and trace element fluxes in large river basins: Methodological considerations as applied to the NASQAN programme

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    In 1994, the NASQAN (National Stream Quality Accounting Network) programme was redesigned as a flux-based water-quality monitoring network for the Mississippi, Columbia, Colorado, and Rio Grande Basins. As the new programme represented a departure from the original, new sampling, processing, analytical, and data handling procedures had to be selected/developed to provide data on discharge, suspended sediment concentration, and the concentrations of suspended sediment and dissolved trace elements. Annual suspended sediment fluxes were estimated by summing daily instantaneous fluxes based on predicted suspended sediment concentrations derived from discharge-based log-log regression (rating-curve) models. The models were developed using both historical and current site-specific discharge and suspended sediment concentrations. Errors using this approach typically are less than ?? 10% for the 3-year reporting period; however, the magnitude of the errors increases substantially for temporal spans shorter than 1 year. Total, rather than total-recoverable, suspended sediment-associated trace element concentrations were determined by direct analysis of material dewatered from large-volume whole-water samples. Site-specific intra- and inter-annual suspended sediment-associated chemical variations were less (typically by no more than a factor of two) than those for either discharge or suspended sediment concentrations (usually more than 10-fold). The concentrations, hence the annual fluxes, for suspended sediment-associated phosphorus and organic carbon, determined by direct analyses, were higher than those determined using a more traditional paired, whole-water/filtered-water approach (by factors ranging from 1.5- to 10-fold). This may be important for such issues as eutrophication and coastal productivity. Filtered water-associated (dissolved) trace element concentrations were markedly lower than those determined during the historical NASQAN programme; many were below their

  4. The contribution of ice cover to sediment resuspension in a shallow temperate lake: possible effects of climate change on internal nutrient loading.

    PubMed

    Niemistö, Juha P; Horppila, Jukka

    2007-01-01

    The effect of ice cover on sediment resuspension and internal total P (Tot-P) loading was studied in the northern temperate Kirkkojärvi basin in Finland. The gross sedimentation and resuspension rates were estimated with sediment traps during ice-cover and ice-free periods. After ice break, the average gross sedimentation rate increased from 1.4 to 30.0 g dw m(-2) d(-1). Resuspension calculations showed clearly higher values after ice break as well. Under ice cover, resuspension ranged from 50 to 78% of the gross sedimentation while during the ice-free period it constituted from 87 to 97% of the gross sedimentation. Consequently, the average resuspension rate increased from 1.0 g dw m(-2) d(-1) under ice-cover to 27.0 g dw m(-2) d(-1) after thaw, indicating the strong effect of ice cover on sediment resuspension. To estimate the potential effect of climate change on internal P loading caused by resuspension we compared the Tot-P loading calculations between the present climate and the climate with doubled atmospheric CO2 concentration relative to the present day values (ice cover reduced from current 165 to 105 d). The annual load increased from 7.4 to 9.4 g m(-2). In conclusion, the annual internal Tot-P loading caused by resuspension will increase by 28% in the Kirkkojärvi basin if the 2xCO2 climate scenario comes true.

  5. Nutrient and suspended-sediment concentrations, trends, loads, and yields from the nontidal part of the Susquehanna, Potomac, Patuxent, and Choptank rivers, 1985-96

    USGS Publications Warehouse

    Darrell, Linda C.; Majedi, Brenda F.; Lizarraga, Joy S.; Blomquist, Joel D.

    1999-01-01

    The Chesapeake Bay River-Input Monitoring Program was established to characterize the water quality of four major rivers in Maryland, and to quantify the load and the long-term trends in concentrations of nutrients (nitrogen and phosphorus) and suspended sediment transported from the nontidal part of each river to the Chesapeake Bay. As part of the River-Input Monitoring Program, nutrient and suspended-sediment data and streamflow data were collected from 1985 through 1996 at the Susquehanna, Potomac, Patuxent, and Choptank Rivers above the points of tidal influence. The data were used to determine the effectiveness of strategies aimed at reducing nutrients entering Chesapeake Bay from its tributaries. Of the four rivers studied, the Patuxent River had the highest median concentrations of total nitrogen (2.6 milligrams per liter), total phosphorus (0.17 milligrams per liter), and suspended sediment (45 milligrams per liter) during the 12-year period. From 1985?96, flow-adjusted concentrations of total nitrogen decreased in all but the Potomac River, flow-adjusted concentrations of total phosphorus decreased in all four rivers, and flow-adjusted concentrations of suspended sediment decreased in all but the Susquehanna River. The rivers that contributed the greatest amount of streamflow to Chesapeake Bay, the Susquehanna and Potomac, also contributed the greatest nutrient loads and suspended-sediment loads to the Bay. The Susquehanna River transported the highest average-annual loads of total phosphorus (4.7 million pounds per year) and total nitrogen (146 million pounds per year), while the Potomac River transported the highest average-annual load of suspended sediment (4.1 billion pounds per year) to the Bay. Annual loads and annual mean streamflow were normalized by basin drainage area to account for some of the hydrologic differences among the river basins. An increase in precipitation from south to north is still apparent, however, when comparing the water

  6. Using sediment 'fingerprints' to assess sediment-budget errors, north Halawa Valley, Oahu, Hawaii, 1991-92

    USGS Publications Warehouse

    Hill, B.R.; DeCarlo, E.H.; Fuller, C.C.; Wong, M.F.

    1998-01-01

    Reliable estimates of sediment-budget errors are important for interpreting sediment-budget results. Sediment-budget errors are commonly considered equal to sediment-budget imbalances, which may underestimate actual sediment-budget errors if they include compensating positive and negative errors. We modified the sediment 'fingerprinting' approach to qualitatively evaluate compensating errors in an annual (1991) fine (<63 ??m) sediment budget for the North Halawa Valley, a mountainous, forested drainage basin on the island of Oahu, Hawaii, during construction of a major highway. We measured concentrations of aeolian quartz and 137Cs in sediment sources and fluvial sediments, and combined concentrations of these aerosols with the sediment budget to construct aerosol budgets. Aerosol concentrations were independent of the sediment budget, hence aerosol budgets were less likely than sediment budgets to include compensating errors. Differences between sediment-budget and aerosol-budget imbalances therefore provide a measure of compensating errors in the sediment budget. The sediment-budget imbalance equalled 25% of the fluvial fine-sediment load. Aerosol-budget imbalances were equal to 19% of the fluvial 137Cs load and 34% of the fluval quartz load. The reasonably close agreement between sediment- and aerosol-budget imbalances indicates that compensating errors in the sediment budget were not large and that the sediment-budget imbalance as a reliable measure of sediment-budget error. We attribute at least one-third of the 1991 fluvial fine-sediment load to highway construction. Continued monitoring indicated that highway construction produced 90% of the fluvial fine-sediment load during 1992. Erosion of channel margins and attrition of coarse particles provided most of the fine sediment produced by natural processes. Hillslope processes contributed relatively minor amounts of sediment.

  7. Effects of low-level dams on the distribution of sediment, trace metals, and organic substances in the lower Schuylkill River basin, Pennsylvania

    USGS Publications Warehouse

    Yorke, Thomas H.; Stamer, John K.; Pederson, Gary L.

    1985-01-01

    Agnes in 1972; however, total sediment accumulation returned to the 1970 level within 2 years. Analyses of water samples showed that some trace substances are associated closely with particulate material transported by the river. The concentration of suspended and total cadmium, chromium, copper, lead, nickel, and zinc correlated well with the concentration of suspended sediment and suspended organic carbon. The average annual discharge of metals in suspension as a percentage of total average annual discharge ranged from 46 percent for nickel to 94 percent for lead for the Schuylkill River at Manayunk. The average annual discharge of each metal remained about the same or decreased between Pottstown and Philadelphia. Synoptic sampling of the inflow and outflow of several pools during storm runoff showed that the pools limit the transport of trace metals. More than 50 percent of the suspended copper transported by the river at Pottstown was deposited in Vincent Pool during the storm of May 12-15, 1980. Similar reductions were observed between Port Kennedy and Manayunk as the storm runoff passed through Norristown, Plymouth, and Flat Rock Pools. Analyses of riverbed sediments showed that concentrations of trace substances were higher in sediments that included all particles finer than 0.062 millimeter than in sediments that included only particles finer than 0.016 millimeter. This suggests that medium and coarse silt particles or conglomerates of finer particles sorb as much or more trace constituents as the individual fine silts and clay particles. Concentrations of trace metals were as much as 90 percent higher in the sediments that included coarse silt. Concentrations of trace organic substances were several times higher in the sediments that included coarse silt than in sediments consisting of only fine silt or clay. Surficial and core samples of riverbed sediments were used to define the present and historical distribution of trace substances in

  8. Shelf sediment transport during hurricanes Katrina and Rita

    NASA Astrophysics Data System (ADS)

    Xu, Kehui; Mickey, Rangley C.; Chen, Qin; Harris, Courtney K.; Hetland, Robert D.; Hu, Kelin; Wang, Jiaze

    2016-05-01

    Hurricanes can greatly modify the sedimentary record, but our coastal scientific community has rather limited capability to predict hurricane-induced sediment deposition. A three-dimensional sediment transport model was developed in the Regional Ocean Modeling System (ROMS) to study seabed erosion and deposition on the Louisiana shelf in response to Hurricanes Katrina and Rita in the year 2005. Sensitivity tests were performed on both erosional and depositional processes for a wide range of erosional rates and settling velocities, and uncertainty analysis was done on critical shear stresses using the polynomial chaos approximation method. A total of 22 model runs were performed in sensitivity and uncertainty tests. Estimated maximum erosional depths were sensitive to the inputs, but horizontal erosional patterns seemed to be controlled mainly by hurricane tracks, wave-current combined shear stresses, seabed grain sizes, and shelf bathymetry. During the passage of two hurricanes, local resuspension and deposition dominated the sediment transport mechanisms. Hurricane Katrina followed a shelf-perpendicular track before making landfall and its energy dissipated rapidly within about 48 h along the eastern Louisiana coast. In contrast, Hurricane Rita followed a more shelf-oblique track and disturbed the seabed extensively during its 84-h passage from the Alabama-Mississippi border to the Louisiana-Texas border. Conditions to either side of Hurricane Rita's storm track differed substantially, with the region to the east having stronger winds, taller waves and thus deeper erosions. This study indicated that major hurricanes can disturb the shelf at centimeter to meter levels. Each of these two hurricanes suspended seabed sediment mass that far exceeded the annual sediment inputs from the Mississippi and Atchafalaya Rivers, but the net transport from shelves to estuaries is yet to be determined. Future studies should focus on the modeling of sediment exchange between

  9. Magnitudes and Sources of Catchment Sediment: When A + B Doesn't Equal C

    NASA Astrophysics Data System (ADS)

    Simon, A.

    2015-12-01

    The export of land-based sediments to receiving waters can cause degradation of water quality and habitat, loss of reservoir capacity and damage to reef ecosystems. Predictions of sources and magnitudes generally come from simulations using catchment models that focus on overland flow processes at the expense of gully and channel processes. This is not appropriate for many catchments where recent research has shown that the dominant erosion sources have shifted from the uplands and fields following European Settlement, to the alluvial valleys today. Still, catchment models which fail to adequately address channel and bank processes are still the overwhelming choice by resource agencies to help manage sediment export. These models often utilize measured values of sediment load at the river mouth to "calibrate" the magnitude of loads emanating from uplands and fields. The difference between the sediment load at the mouth and the simulated upland loading is then proportioned to channel sources.Bank erosion from the Burnett River (a "Reef Catchment" in eastern Queensland) was quantified by comparisons of bank-top locations and by numerical modeling using BSTEM. Results show that bank-derived sediment contributes between 44 and 73% of the sediment load being exported to the Coral Sea. In comparison reported results from a catchment model showed bank contributions of 8%. In absolute terms, this is an increase in the reported average, annual rate of bank erosion from 0.175 Mt/y to 2.0 Mt/y.In the Hoteo River, New Zealand, a rural North Island catchment characterized by resistant cohesive sediments, bank erosion was found to contribute at least 48% of the total specific yield of sediment. Combining the bank-derived, fine-grained loads from some of the major tributaries gives a total, average annual loading rate for fine material of about 10,900 t/y for the studied reaches in the Hoteo River System. If the study was extended to include the lower reaches of the main stem

  10. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    USGS Publications Warehouse

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  11. Arctic deltaic lake sediments as recorders of fluvial organic matter deposition

    NASA Astrophysics Data System (ADS)

    Vonk, Jorien; Dickens, Angela; Giosan, Liviu; Zipper, Samuel; Galy, Valier; Holmes, Robert; Montlucon, Daniel; Kim, Bokyung; Hussain, Zainab; Eglinton, Timothy

    2016-08-01

    Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, 13C, 14C) and molecular organic geochemistry (lignin, leaf waxes). High-resolution age models (137Cs, 210Pb) of downcore lake sediment records (n=11) along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels). Comparison with earlier published Mackenzie River depth profiles shows that (i) lake sediments reflect the riverine surface suspended load, and (ii) hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale) riverine fluxes and may prove instrumental in shedding light on past behaviour of arctic rivers, as well as how they respond to a changing climate.

  12. Comparison between Measured and Calculated Sediment Transport Rates in North Fork Caspar Creek, California

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Yarnell, S. M.; Yager, E.; Leidman, S. Z.

    2015-12-01

    Caspar Creek is a gravel-bedded stream located in the Jackson Demonstration State Forest in the coast range of California. The Caspar Creek Experimental Watershed has been actively monitored and studied by the Pacific Southwest Research Station and California Department of Forestry and Fire Protection for over five decades. Although total annual sediment yield has been monitored through time, sediment transport during individual storm events is less certain. At a study site on North Fork Caspar Creek, cross-section averaged sediment flux was collected throughout two storm events in December 2014 and February 2015 to determine if two commonly used sediment transport equations—Meyer-Peter-Müller and Wilcock—approximated observed bedload transport. Cross-section averaged bedload samples were collected approximately every hour during each storm event using a Helley-Smith bedload sampler. Five-minute composite samples were collected at five equally spaced locations along a cross-section and then sieved to half-phi sizes to determine the grain size distribution. The measured sediment flux values varied widely throughout the storm hydrographs and were consistently less than two orders of magnitude in value in comparison to the calculated values. Armored bed conditions, changing hydraulic conditions during each storm and variable sediment supply may have contributed to the observed differences.

  13. Temporal and spatial trends in nutrient and sediment loading to Lake Tahoe, California-Nevada, USA

    USGS Publications Warehouse

    Coats, Robert; Lewis, Jack; Alvarez, Nancy L.; Arneson, Patricia

    2016-01-01

    Since 1980, the Lake Tahoe Interagency Monitoring Program (LTIMP) has provided stream-discharge and water quality data—nitrogen (N), phosphorus (P), and suspended sediment—at more than 20 stations in Lake Tahoe Basin streams. To characterize the temporal and spatial patterns in nutrient and sediment loading to the lake, and improve the usefulness of the program and the existing database, we have (1) identified and corrected for sources of bias in the water quality database; (2) generated synthetic datasets for sediments and nutrients, and resampled to compare the accuracy and precision of different load calculation models; (3) using the best models, recalculated total annual loads over the period of record; (4) regressed total loads against total annual and annual maximum daily discharge, and tested for time trends in the residuals; (5) compared loads for different forms of N and P; and (6) tested constituent loads against land use-land cover (LULC) variables using multiple regression. The results show (1) N and P loads are dominated by organic N and particulate P; (2) there are significant long-term downward trends in some constituent loads of some streams; and (3) anthropogenic impervious surface is the most important LULC variable influencing water quality in basin streams. Many of our recommendations for changes in water quality monitoring and load calculation methods have been adopted by the LTIMP.

  14. Comparison of sediment supply to San Francisco Bay from watersheds draining the Bay Area and the Central Valley of California

    USGS Publications Warehouse

    McKee, L.J.; Lewicki, M.; Schoellhamer, D.H.; Ganju, N.K.

    2013-01-01

    Quantifying suspended sediment loads is important for managing the world's estuaries in the context of navigation, pollutant transport, wetland restoration, and coastal erosion. To address these needs, a comprehensive analysis was completed on sediment supply to San Francisco Bay from fluvial sources. Suspended sediment, optical backscatter, velocity data near the head of the estuary, and discharge data obtained from the output of a water balance model were used to generate continuous suspended sediment concentration records and compute loads to the Bay from the large Central Valley watershed. Sediment loads from small tributary watersheds around the Bay were determined using 235 station-years of suspended sediment data from 38 watershed locations, regression analysis, and simple modeling. Over 16 years, net annual suspended sediment load to the head of the estuary from its 154,000 km2 Central Valley watershed varied from 0.13 to 2.58 (mean = 0.89) million metric t of suspended sediment, or an average yield of 11 metric t/km2/yr. Small tributaries, totaling 8145 km2, in the nine-county Bay Area discharged between 0.081 and 4.27 (mean = 1.39) million metric t with a mean yield of 212 metric t/km2/yr. The results indicate that the hundreds of urbanized and tectonically active tributaries adjacent to the Bay, which together account for just 5% of the total watershed area draining to the Bay and provide just 7% of the annual average fluvial flow, supply 61% of the suspended sediment. The small tributary loads are more variable (53-fold between years compared to 21-fold for the inland Central Valley rivers) and dominated fluvial sediment supply to the Bay during 10 out of 16 yr. If San Francisco Bay is typical of other estuaries in active tectonic or climatically variable coastal regimes, managers responsible for water quality, dredging and reusing sediment accumulating in shipping channels, or restoring wetlands in the world's estuaries may need to more carefully

  15. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE) ...

    EPA Pesticide Factsheets

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites have demonstrated acute and/or chronic toxicity to a variety of test species, as well as adverse ecological effects such as population declines and changes in community structure. However, simply knowing that a sediment is toxic has limited use. This document provides guidance on the performance of sediment Toxicity Identification and Evaluation (TIE). TIE methods allow for the identification of toxic chemicals or chemical classes causing observed toxicity. The identification of pollutants responsible for toxicity of contaminated sediments has broad application in a number of EPA programs as the methods can be used within the total maximum daily load (TMDL) framework, to link sediment toxicity to specific dischargers, to design cost-effective remediation programs, and to identify environmentally protective options for dredged material disposal. In addition, the identification of specific problem contaminants in sediments could prove to be very useful to EPA programs involved in the development of water or sediment quality guidelines, and the registration of new products such as pesticides. Finally, knowledge of the causes of toxicity that influence ecological changes such as community struc

  16. Suspended sediment load and mechanical erosion in the Senegal Basin — Estimation of the surface runoff concentration and relative contributions of channel and slope erosion

    NASA Astrophysics Data System (ADS)

    Kattan, Z.; Gac, J. Y.; Probst, J. L.

    1987-06-01

    The main purpose of this paper is to propose a method to better understand the suspended sediment dynamics in the Senegal Basin, and the behaviour of the river particulate load at Bakel gauging station (218,000 km 2) during the period 1979-1984. The method is based on the estimation of surface discharge using a simple hydrological model which allows separation of the different flow components of the annual hydrograph. Then the suspended sediment loads can be correlated with the surface discharge. During the study period, the mean annual flow (330 m 3s -1) represented only 46% of the mean long-term flow (1903-1984), and the mean yearly particulate load carried by the Senegal River was about 1.9 million tons. Two approaches are used to estimate the different contributions to the river's suspended sediment transport. The main contribution originates from slope erosion, which supplies 50-80% of the total sediment transport and the second originates from channel erosion. The suspended sediment concentration in the surface runoff, primarily calculated by a global annual method, ranges from 0.9 to 1.6 gl -1 and averages 1.3 gl -1. After correction for channel erosion input, this concentration is reduced to 1.1 gl -1.

  17. 76 FR 69239 - Annual Retail Trade Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... survey, the Census Bureau will collect data covering annual sales, annual e-commerce sales, year-end... receivables, and, for selected industries, merchandise line sales, and percent of e-commerce sales to..., annual e-commerce sales, purchases, total operating expenses, accounts receivables, and...

  18. 77 FR 16484 - Annual Stress Test

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... Office of the Comptroller of the Currency 12 CFR Part 46 RIN 1557-AD58 Annual Stress Test AGENCY: Office... with total consolidated assets of more than $10 billion to conduct an annual stress test and comply... consolidated assets in excess of $10 billion to conduct annual stress tests pursuant to regulations...

  19. 77 FR 16484 - Annual Stress Test

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... CORPORATION 12 CFR Part 325 RIN 3064-AD91 Annual Stress Test AGENCY: Federal Deposit Insurance Corporation... Corporation with total consolidated assets of more than $10 billion to conduct annual stress tests. \\1\\ Dodd... consolidated assets of more than $10 billion (``covered banks'') to conduct annual stress tests...

  20. Sediment storage and yield in an urbanized karst watershed

    NASA Astrophysics Data System (ADS)

    Hart, Evan A.; Schurger, Stephen G.

    2005-08-01

    In karst watersheds, sinkholes and other drainage features control the temporal and spatial pattern of sediment storage across the landscape. However, studies dealing with sedimentation in karst watersheds are scarce and the sediment storage function of sinkholes and caves has not been investigated using a sediment budget approach. In this study, we use estimates of channel erosion, sinkhole sedimentation, and suspended sediment yield to examine changes in sediment storage in the 9 km 2 Upper Pigeon Roost Creek fluviokarst watershed near Cookeville, TN. The study watershed has undergone urbanization over the last ˜ 50 years, and sinkholes and caves in the area show signs of recent sedimentation (buried tree roots, buried cultural artifacts, etc.). While sinkholes are generally considered to be sediment sinks, sinkholes examined in this study are shown to cycle between periods of net sediment storage and net sediment loss. Using copyright dates on trash items buried in sinkhole deposits, we estimated the residence time of sinkhole-stored sediment to range from 6 to 10 years. However, other evidence indicates that some sinkholes may store sediment for several centuries. We propose that sediment storage within sinkholes is controlled by several factors including sinkhole drainage area, sinkhole morphology, and basin sediment yield. In addition, changes in sediment storage in karst watersheds are contingent upon random events such as sinkhole collapses. Annual sediment yield was estimated to be 111 Mg km - 2 year - 1 for the entire study watershed and ranged from 11 to 128 Mg km - 2 year - 1 for 3 sub-watersheds. Sediment eroded from the watershed, perhaps during historic settlement of the area, is stored within a large cave system underlying the city. However, the results of a partial sediment budget indicate that the cave is presently a net sediment source. Overall, the findings indicate that the sediment storage function of caves and sinkholes varies spatially and

  1. Sediment yield from gullies, riparian mass wasting and bank erosion in the Upper Konto catchment, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Rijsdijk, Anton; Bruijnzeel, L. A. (Sampurno); Prins, Th. M.

    2007-06-01

    Upland watershed rehabilitation programmes in Indonesia have faced increased scrutiny for not delivering the desired reductions in downstream sedimentation rates. Partly this reflects the fact that conservation measures have not been widely adopted or maintained by upland farmers, mainly for socio-economic reasons. Another potential explanation is that sediment contributions by gullying, (riparian) mass wasting and bank erosion have been seriously underestimated or even ignored. This paper presents estimates of sediment contributions by gullies, riparian mass wasting and bank erosion in the upland volcanic Konto catchment, East Java. Runoff and sediment yield from gullies were studied in two areas with contrasting soils and land use. Gullies in the Maron area (few gullies, Andic Cambisols, maize and rice cultivation on stable broad-based terraces) were related to improper drainage of trails, roads and yards. In the Binangsri area (more widespread gullying, Eutric Cambisols, onion cultivation on forward-sloping terraces), gullying was further enhanced by the practice of downslope furrowing to promote field drainage. Estimated annual sediment yields from the two areas were strikingly different at 22-26 and 50-87 Mg ha - 1 , respectively. Riparian mass wasting was estimated to contribute ca. 4% of total sediment yield at Maron and 8-19% in the main gully system at Binangsri, with the higher value in the latter case representing the effect of extreme rainfall in the latter half of the rainy season. Short-term wet season rates of gully wall retreat at Binangsri suggested a contribution by bank erosion of ca. 3% (8% including extreme events). As such, 11-27% of the annual sediment yield at Binangsri was estimated to have come from sources other than surface erosion. Substantial volumes of sediment (29-107 Mg km - 1 of river length) were also added to streams bordered by irrigated rice fields ( sawah) in non-gullied areas, mainly through the collapse of the lowermost

  2. Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods.

    PubMed

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart; Abermann, Jakob; Skov, Kirstine; Elberling, Bo

    2017-02-15

    Quantifying fluxes of water, sediment and dissolved compounds through Arctic rivers is important for linking the glacial, terrestrial and marine ecosystems and to quantify the impact of a warming climate. The quantification of fluxes is not trivial. This study uses a 8-years data set (2005-2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m(3)y(-1). The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty(-1) and 61,000±16,000ty(-1). Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty(-1), which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi-daily sampling together with a sampling frequency of 2h during extreme events. The most consistent estimation method was an uncorrected rating curve of bi-daily measurements (M2), combined with a linear interpolation of extreme event fluxes. Sampling can be reduced to every fourth day, with both method-agreements and accuracies <±10%, using 7year averages. The specific annual method-agreements were <±10% for all years and the specific annual accuracies <±20% for 6years out of 7. The rating curves were less sensitive to day-to-day variations in the measured suspended sediment concentrations. The discharge weighted mean was not recommended in the high-Arctic Zackenberg River, unless sampling was done bi-daily, every day and events sampled high-frequently.

  3. Yaquina Bay, Oregon, Intertidal Sediment Temperature Database, 1998 - 2006.

    EPA Science Inventory

    Detailed, long term sediment temperature records were obtained and compiled in a database to determine the influence of daily, monthly, seasonal and annual temperature variation on eelgrass distribution across the intertidal habitat in Yaquina Bay, Oregon. Both currently and hi...

  4. A comprehensive study on water balance, sedimentation and physico-chemical characteristics of Sagar Lake in India.

    PubMed

    Singh, Surjeet; Kumar, Bhishm; Thakural, L N; Galkate, Ravi

    2009-01-01

    In this study, an attempt has been made to work out water balance, determine rate of sedimentation and physico-chemical analysis of the lake water. The water balance is carried out using the mass balance equation to account for various input and output components. Sedimentation rates and pattern are estimated using (137)Cs and (210)Pb radiometric dating techniques. The physico-chemical analysis of the lake water is done by collecting samples from twelve locations of the lake at three different depths. The major inflow to the lake is catchment runoff, which accounts for nearly 56% of the total annual inflow and about 98% inflow takes place during monsoon period. The major outflow from the lake is weir overflow, which occurs in monsoon season only and accounts for about 85% of the total annual outflow. The estimated mean sedimentation rate in the lake is 0.58 +/- 0.028 cm/year. The estimated useful life of the lake based on post-1964 (appearance of the major peak of (137)Cs due to weapon fallout record pattern) average sedimentation rate is around 467 +/- 23 years. The lake has attained the hyper-eutrophic state due to high nitrogen and phosphorous contents in the lake water. Based on the trophic state index (TSI), the lake has become unsuitable for drinking, bathing and even for fish culture.

  5. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    USGS Publications Warehouse

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    from the Clearwater River at Spalding indicates that the concentrations of total suspended sediment collected during 1972–79 were not significantly different from the concentrations measured during this study. However, the suspended-sand concentrations in the Clearwater River were significantly smaller during 1972–79 than during 2008–11. The increase in suspended-sand concentrations in the Snake and Clearwater Rivers are probably attributable to numerous severe forest fires that burned large areas of central Idaho from 1980–2010. Acoustic backscatter from an acoustic Doppler velocity meter proved to be an effective method of estimating suspended-sediment concentration and load for most streamflow conditions in the Snake and Clearwater Rivers. Models based on acoustic backscatter were able to simulate most of the variability in suspended-sediment concentrations in the Clearwater River at Spalding (coefficient of determination [R2]=0.93) and the Snake River near Anatone (R2=0.92). Acoustic backscatter seems to be especially effective for estimating suspended-sediment concentration and load over short (monthly and single storm event) and long (annual) time scales when sediment load is highly variable. However, during high streamflow events acoustic surrogate tools may be unable to capture the contribution of suspended sand moving near the bottom of the water column and thus, underestimate the total load of suspended sediment. At the stations where bedload was collected, the particle-size distribution at low streamflows typically was unimodal with sand comprising the dominant particle size. At higher streamflows and during peak bedload discharge, the particle size typically was bimodal and was comprised primarily of sand and coarse gravel. About 55,000 tons of bedload was discharged from the Snake River to Lower Granite Reservoir during water years 2009–11, about 0.62 percent of the total sediment load delivered by the Snake River. About 9,500 tons of bedload was

  6. Large-scale suspended sediment transport and sediment deposition in the Mekong Delta

    NASA Astrophysics Data System (ADS)

    Manh, N. V.; Dung, N. V.; Hung, N. N.; Merz, B.; Apel, H.

    2014-08-01

    Sediment dynamics play a major role in the agricultural and fishery productivity of the Mekong Delta. However, the understanding of sediment dynamics in the delta, one of the most complex river deltas in the world, is very limited. This is a consequence of its large extent, the intricate system of rivers, channels and floodplains, and the scarcity of observations. This study quantifies, for the first time, the suspended sediment transport and sediment deposition in the whole Mekong Delta. To this end, a quasi-2D hydrodynamic model is combined with a cohesive sediment transport model. The combined model is calibrated using six objective functions to represent the different aspects of the hydraulic and sediment transport components. The model is calibrated for the extreme flood season in 2011 and shows good performance for 2 validation years with very different flood characteristics. It is shown how sediment transport and sediment deposition is differentiated from Kratie at the entrance of the delta on its way to the coast. The main factors influencing the spatial sediment dynamics are the river and channel system, dike rings, sluice gate operations, the magnitude of the floods, and tidal influences. The superposition of these factors leads to high spatial variability of sediment transport, in particular in the Vietnamese floodplains. Depending on the flood magnitude, annual sediment loads reaching the coast vary from 48 to 60% of the sediment load at Kratie. Deposited sediment varies from 19 to 23% of the annual load at Kratie in Cambodian floodplains, and from 1 to 6% in the compartmented and diked floodplains in Vietnam. Annual deposited nutrients (N, P, K), which are associated with the sediment deposition, provide on average more than 50% of mineral fertilizers typically applied for rice crops in non-flooded ring dike floodplains in Vietnam. Through the quantification of sediment and related nutrient input, the presented study provides a quantitative basis for

  7. Weldon Spring, Missouri: Annual environmental monitoring report, calendar year 1987

    SciTech Connect

    Not Available

    1987-01-01

    Radiological monitoring at the WSS during 1987 measured uranium, Radium-226, and Thorium-230 concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; all long-lived natural series isotopes in air particulates; and external gamma radiation exposure rates. Potential radiation doses to the public were calculated based on assumed exposure periods and the above measurements. Radon concentrations, external gamma exposure rates, and radionuclide concentrations in groundwater and surface water at the site were generally equivalent to previous years' levels. The maximum calculated annual radiation dose to a hypothetically exposed individual at the WSRP and WSCP area was 1 mrem, or 1 percent of the DOE radiation protection standard of 100 mrem. The maximum calculated annual radiation dose to a hypothetically exposed individual at the WSQ was 14 mrem, or about 14 percent of the standard. Thus the WSS currently complies with DOE Off-site Dose Standards. Chemical contamination monitoring at the WSS during 1987 measured nitroaromatics, total organic carbon and the inorganic anions chloride, nitrate, fluoride and sulfate in surface water, groundwater and sediment. 22 refs., 26 figs., 21 tabs.

  8. Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Nakaegawa, T.; Kitoh, A.; Murakami, H.; Kusunoki, S.

    2014-04-01

    We simulated changes in annual maximum 5-day rainfall (RX5D) and annual maximum number of consecutive dry days (CDD) in Central America, Mexico, and the Caribbean with three different horizontal resolution atmospheric global general circulation models (AGCMs) and quantified the uncertainty of the projections. The RX5Ds and CDDs were projected to increase in most areas in response to global warming. However, consistent changes were confined to small areas: for RX5D, both coastal zones of northern Mexico and the Yucatan Peninsula; for CDD, the Pacific coastal zone of Mexico, the Yucatan Peninsula, and Guatemala. All three AGCMs projected that RX5Ds and CDDs averaged over only the land area and over the entire area (land and ocean) would increase. The dependence of RX5D probability density functions on the horizontal resolutions was complex. Precipitation unrelated to tropical cyclones was primarily responsible for the projected increases in the frequency of RX5Ds greater than 300 mm.

  9. Sedimentation survey of Lago Cerrillos, Ponce, Puerto Rico, April-May 2008

    USGS Publications Warehouse

    Soler-López, Luis R.

    2011-01-01

    Lago Cerrillos dam, located in the municipality of Ponce in southern Puerto Rico, was constructed in 1991 as part of the multipurpose Rio Portugues and Bucana Project. This project provides flood protection, water supply, and recreation facilities for the municipio of Ponce. The reservoir had an original storage capacity of 38.03 million cubic meters at maximum conservation pool elevation of 174.65 meters above mean sea level and a drainage area of 45.32 square kilometers. Sedimentation in Lago Cerrillos reservoir has reduced the storage capacity from 38.03 million cubic meters in 1991 to 37.26 million cubic meters in 2008, which represents a total storage loss of about 2 percent. During July 29 to August 23, 2002, 8,492 cubic meters of sediment were removed from the Rio Cerrillos mouth of the reservoir. Taking into account this removed material, the total water-storage loss as of 2008 is 778,492 cubic meters, and the long-term annual water-storage capacity loss rate is about 45,794 cubic meters per year or about 0.12 percent per year. The Lago Cerrillos net sediment-contributing drainage area has an average sediment yield of about 1,069 cubic meters per square kilometer per year. Sediment accumulation in Lago Cerrillos is not uniformly distributed and averages about 3 meters in thickness. This represents a sediment deposition rate of about 18 centimeters per year. On the basis of the 2008 reservoir storage capacity of 37.26 million cubic meters per year and a long-term sedimentation rate of 45,794 cubic meters per year, Lago Cerrillos is estimated to have a useful life of about 814 years or until the year 2822.

  10. Sediment Toxicity Testing

    EPA Science Inventory

    Sediment toxicity testing has become a fundamental component of regulatory frameworks for assessing the risks posed by contaminated sediments and for development of chemical sediment quality guidelines. Over the past two decades, sediment toxicity testing methods have advanced co...

  11. Sediment load and distribution in the lower Skagit River, Skagit County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Grossman, Eric E.; Mastin, Mark C.; Huffman, Raegan L.

    2016-08-17

    The Skagit River delivers about 40 percent of all fluvial sediment that enters Puget Sound, influencing flood hazards in the Skagit lowlands, critically important estuarine habitat in the delta, and some of the most diverse and productive agriculture in western Washington. A total of 175 measurements of suspended-sediment load, made routinely from 1974 to 1993, and sporadically from 2006 to 2009, were used to develop and evaluate regression models of sediment transport (also known as “sediment-rating curves”) for estimating suspended-sediment load as a function of river discharge. Using a flow-range model and 75 years of daily discharge record (acquired from 1941 to 2015), the mean annual suspended-sediment load for the Skagit River near Mount Vernon, Washington, was estimated to be 2.5 teragrams (Tg, where 1 Tg = 1 million metric tons). The seasonal model indicates that 74 percent of the total annual suspended‑sediment load is delivered to Puget Sound during the winter storm season (from October through March), but also indicates that discharge is a poor surrogate for suspended‑sediment concentration (SSC) during the summer low-flow season. Sediment-rating curves developed for different time periods revealed that the regression model slope of the SSC-discharge relation increased 66 percent between the periods of 1974–76 and 2006–09 when suspended-sediment samples were collected, implying that changes in sediment supply, channel hydraulics, and (or) basin hydrology occurred between the two time intervals. In the relatively wet water year 2007 (October 1, 2006, through September 30, 2007), an automated sampler was used to collect daily samples of suspended sediment from which an annual load of 4.5 Tg was calculated, dominated by a single large flood event that contributed 1.8 Tg, or 40 percent of the total. In comparison, the annual load calculated for water year 2007 using the preferred flow-range model was 4.8 Tg (+6.7 percent), in close agreement with

  12. Concentrations, loads, and yields of nutrients and suspended sediment in the South Pacolet, North Pacolet, and Pacolet Rivers, northern South Carolina and southwestern North Carolina, October 2005 to September 2009

    USGS Publications Warehouse

    Journey, Celeste; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year

  13. Notes on sedimentation activities calendar year 1990

    USGS Publications Warehouse

    ,

    1991-01-01

    This report is a digest of information furnished by Federal agencies conducting sedimentation investigations. The decision to publish the report was made in 1946, from a proposal by the Chairman of the Federal Interagency River Basin Committee, Subcommittee on Sedimentation. The subcommittee approved the proposal and agreed to issue this report as a means of effecting better coordination of the work of various Federal agencies in the field of sedimentation. The report was issued on a quarterly basis in 1946 and 1947, from 1948 to 1953 reports were issued every 6 months, and from 1954 to the present, the report has been issued annually.

  14. Notes on sedimentation activities calendar year 1992

    USGS Publications Warehouse

    ,

    1994-01-01

    This report is a digest of information furnished by Federal agencies conducting sedimentation investigations. The decision to publish the report was made in 1946, from a proposal by the Chairman of the Federal Interagency River Basin Committee, Subcommittee on Sedimentation. The subcommittee approved the proposal and agreed to issue this report as a means of effecting better coordination of the work of various Federal agencies in the field of sedimentation. The report was issued on a quarterly basis in 1946 and 1947, from 1948 to 1953 reports were issued every 6 months, and from 1954 to present, the report has been issued annually.

  15. Notes on sedimentation activities calendar year 1991

    USGS Publications Warehouse

    ,

    1992-01-01

    This report is a digest of information furnished by Federal agencies conducting sedimentation investigations. The decision to publish the report was made in 1946, from a proposal by the Chairman of the Federal Interagency River Basin Committee, Subcommittee on Sedimentation. The subcommittee approved the proposal and agreed to issue this report as a means of effecting better coordination of the work of various Federal agencies in the field of sedimentation. The report was issued on a quarterly basis in 1946 and 1947, from 1948 to 1953 reports were issued every 6 months, and from 1954 to the present, the report has been issued annually.

  16. Sediment Transport in Streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Onions, C. A.

    1969-01-01

    This report presents tables of suspended-sediment data collected from 1956 to 1967 at 10 sites in the Umpqua River basin. Computations based on these data indicate that average annual suspended-sediment yields at these sites range from 137 to 822 tons per square mile. Because available data for the Umpqua River basin are generally inadequate for accurate determinations of sediment yield and for the definition of characteristics of fluvial sediments, recommendations are made for the collection and analysis of additional sediment data.

  17. Sediment generation by Halimeda on atoll interior coral reefs of the southern Maldives: A census-based approach for estimating carbonate production by calcareous green algae

    NASA Astrophysics Data System (ADS)

    Perry, Chris T.; Morgan, Kyle M.; Salter, Michael A.

    2016-12-01

    Methods for quantifying rates and size fractions of carbonate sand production on reefs remain limited, despite the urgent need for such data to support assessments of reef island and tropical beach-dominated shoreline resilience. Here we present a census-based approach that supports estimates of sediment generation by the calcareous green alga Halimeda spp., which is an often conspicuous reef and lagoon substrate coloniser. Based on data from Kandahalagala (South Huvadhoo atoll, southern Maldives), we present carbonate sediment production data for the two dominant Halimeda spp. (Halimeda macrophysa and Halimeda micronesica) that occur on the reef flat and reef slope habitats. Whilst total mean production rates by Halimeda spp. are similar in both habitats (reef flat average, 67.49 g CaCO3 m- 2 yr- 1; reef slope, 70.89 g), individual species contributions differ markedly. H. micronesica dominates on the reef flat (annual mean 41.91 g CaCO3 m- 2 yr- 1, compared to 25.08 g by H. macrophysa), whilst production is dominated by H. macrophysa on the reef slope (H. macrophysa 40.49 g, H. micronesica 29.01 g CaCO3 m- 2 yr- 1,). In terms of sediment generation we show that these species also contribute very differently to the sediment reservoir. Whilst the sedimentary breakdown products from H. micronesica are somewhat bimodal ( 17% is in the medium to very coarse sand fraction, and 76% in the silt and clay fraction), almost all (> 90%) of the segments produced by H. macrophysa rapidly degrade to silt and clay sized sediment. Based on our census data this suggests that Halimeda spp. will contribute only between 7 and 9 g m- 2 yr- 1 of sand grade sediment on the reef flat and shallow slope habitats, but 55-60 g m- 2 yr- 1 of mud grade sediment. Scaled to the total area of combined reef habitat around Kandahalagala ( 130,583 m2) this equates to Halimeda spp. producing 2192 kg of sand-grade sediment, but 15,181 kg of mud-grade sediment per year. However, sediment compositional

  18. Effects of Sediment Composition on Growth of Submersed Aquatic Vegetation

    DTIC Science & Technology

    1986-01-01

    weight loss on ignition. Total sediment carbon and Inorganic carbon were determined directly using a Leco carbon analyzer. Humus fractions (fulvic...and huinic acids) were quantified spectrophotometrically following a series of acid-base extractions of wet sediment ( Stevenson 1982). Sediment... Humus fractions (fulvic and humic acids), non- humic organic matter, and total Kjeldahl nitrogen (TKN) were all positively and significantly

  19. Large-scale dam removal on the Elwha River, Washington, USA: fluvial sediment load

    USGS Publications Warehouse

    Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian M.; Foreman, James R.

    2015-01-01

    The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload

  20. Calibration of biological lake sediment records: Tracing diatom assemblages through the water column into the sediment

    NASA Astrophysics Data System (ADS)

    Maier, Dominique; Gälman, Veronika; Bigler, Christian; Renberg, Ingemar

    2013-04-01

    Paleolimnological studies rely on sediment cores taken from the deepest point of a lake. The deposited sediment and its embedded biological record are expected to be chronological and to display the lakes ecological past. Therefore many studies use micropalaeontological approaches, since, e. g., unicellular organisms like diatoms are directly dependent on habitat changes and thus mirror the prevailing weather conditions. In this study we combine a set of diatom samples from freeze cores of a varved sediment, a sediment trap and bi-weekly plankton survey data with environmental data to calibrate the biological sediment record of a lake. The annually laminated sediment of the boreal forest lake Nylandssjön in northern Sweden provides a very high temporal resolution, which allows us, even on a seasonal scale, a gapless comparison between in situ production and the sediment deposition. Analysis of the diatom assemblages through the water column into the sediment is expected to reveal quantitative and qualitative miss match in deposition, resuspension, seasonal and interannual delays caused by physical events or autochtonous interactions such as grazing in the water column. The overall comparison of the ten year plankton net record and the corresponding sediment trap samples reveals large shifts from season to season but also from year to year. The sediment trap diatom record indicates comparable abundance patterns for the main taxa (Asterionella formosa and Tabellaria flocculosa). Peaks and seasonal shifts are less pronounced in the sediment trap compared to the plankton data. An overall difficulty lies in the comparison of volumes of water and sediment, concentrations and fluxes, which needs to be solved. However, subsequent comparison with the sediment diatom assemblage is expected to lead us to understand interannual taphonomic processes affecting diatom records within ten years in the naturally formed sediment layers. More importantly we will be able to discover

  1. Linking suspended sediment transport metrics with fish functional traits in the Northwestern Great Plains (Invited)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. S.; Simon, A.; Klimetz, L.

    2009-12-01

    Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the United States. Although 32 states have developed numeric criteria for turbidity or suspended solids, or both according to the USEPA (2006), criteria is typically written as a percent exceedance above background and what constitutes background is not well defined. Defining a background level is problematic considering suspended sediments and related turbidity levels change with flow stage and season, and limited scientific data exists on relationships between sediment exposure and biotic response. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally-variable sediment transport rates with specific losses of ecological functions as loads increase. This study, within the in Northwestern Great Plains Ecoregion, co-located 58 USGS gauging stations with existing flow and suspended sediment data, and fish data from federal and state agencies. Suspended sediment concentration (SSC) transport metrics were quantified into exceedance frequencies of a given magnitude, duration as the number of consecutive days a given concentration was equaled or exceeded, dosage as concentration x duration, and mean annual suspended sediment yields. A functional traits-based approach was used to correlate SSC transport metrics with site occurrences of 20 fish traits organized into four main groups: preferred rearing mesohabitat, trophic structure, feeding habits, and spawning behavior. Negative correlations between SSC metrics and trait occurrences were assumed to represent potential conditions for impairment, specifically identifying an ecological loss by functional trait. Potential impairment conditions were linked with presence of the following traits: habitat preferences for stream pool and river shallow waters; feeding generalists, omnivores, piscivores; and several spawning

  2. A water and sediment budget for a Mediterranean mountainous catchment (Southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Tuset, Jordi; Vericat, Damià; Batalla, Ramon J.

    2016-04-01

    Sediment transport in Mediterranean mountainous catchments is highly variable influenced principally by sediment availability, which in turn is controlled by the temporal and spatial variability of rainfall, runoff and land uses. In this paper we present the water and sediment budget of the Ribera Salada, a Mediterranean forest catchment located in the Catalan Pre-Pyrenees (NE Iberian Peninsula). The river drains an area of 224 km2. The data acquisition design is composed by five nested experimental sub-catchments. Each monitoring station registers discharge and suspended sediment transport continuously. Here we present the data obtained between 2012 and 2013, two contrasted hydrological years. These data allows to analyse the contribution of each sub-catchment to the total water and suspended sediment yield of the catchment at multiple temporal scales. Annual water yield in the catchment outlet varied between 15 and 31 hm3 y-1. Maximum peak flow in the outlet of the basin was 60.9 m3 s-1; equivalent to a specific discharge of 0.28 m3 s-1 km2. Results indicate that, hydrologically, the catchment can divided in two areas with contrasted regimes. The upper part of catchment is the wettest zone, where the water yield of each sub-catchment is in directly and positive correlated to its area. In contrast, the bottom of the valley has an ephemeral hydrological regime that only supplies water during important rainfall events. Annual suspended sediment load at the catchment outlet oscillated between 615 and 3415 t y-1, with an average value of 2015 t y-1 (i.e. 9.3 t km-2 y-1). In contrast to the water yield, most of the suspended sediment load (i.e. 80%) is supplied from the driest part of the catchment where sediment availability is greater and there is a greater connectivity between sediment sources and the channel network. The humid part of the catchment only yielded the 20% of the sediment load, where, as in the case of the water yield, sediment yield is directly and

  3. Suspended sediment yield in Texas watersheds

    NASA Astrophysics Data System (ADS)

    Coonrod, Julia Ellen Allred

    The Texas Water Development Board collected suspended sediment samples across the state of Texas for approximately 60 years. Until this research, no comprehensive analysis of the data had been conducted. This study compiles the suspended sediment data along with corresponding streamflow and rainfall. GIS programs are developed which characterize watersheds corresponding to the sediment gauging stations. The watersheds are characterized according to topography, climate, soils, and land use. All of the data is combined to form several SAS data sets which can subsequently be analyzed using regression. Annual data for all of the stations across the state are classified temporally and spatially to determine trends in the sediment yield. In general, the suspended sediment load increases with increasing runoff but no correlation exists with rainfall. However, the annual average rainfall can be used to classify the watersheds according to climate, which improves the correlation between sediment load and runoff. The watersheds with no dams have higher sediment loads than watersheds with dams. Dams in the drier parts of Texas reduce the sediment load more than dams in the wetter part of the state. Sediment rating curves are developed separately for each basin in Texas. All but one of the curves fall into a band which varies by about two orders of magnitude. The study analyzes daily time series data for the Lavaca River near Edna station. USGS data are used to improve the sediment rating curve by the addition of physically related variables and interaction terms. The model can explain an additional 41% of the variability in sediment concentration compared to a simple bivariate regression of sediment load and flow. The TWDB daily data for the Lavaca River near Edna station are used to quantify temporal trends. There is a high correlation between sediment load and flowrate for the Lavaca River. The correlation can be improved by considering a flow-squared term and by

  4. Use of turbidometry to characterize suspended sediment and phosphorus fluxes in the Lake Tahoe basin, California, USA

    NASA Astrophysics Data System (ADS)

    Stubblefield, Andrew P.; Reuter, John E.; Dahlgren, Randy A.; Goldman, Charles R.

    2007-01-01

    The efficacy of in-stream nephelometric turbidometry as a surrogate for total suspended solids (TSS) and total phosphorus (TP) concentrations was evaluated for use in low turbidity (<50 NTU) subalpine watersheds at Lake Tahoe, California-Nevada, USA. Continuous turbidity records for the 1999, 2000 and 2001 snowmelt seasons and data from water quality samples (1982-2000) were examined to determine watershed sediment delivery dynamics. Strong correlations were found between turbidity and both TSS and TP concentration. The strong correlation indicates that turbidity can serve as a good surrogate for direct measurement in these watersheds. The watersheds displayed clockwise hysteresis: sediment flushing and depletion, on daily, seasonal and decadal time-scales. The hysteresis curves had strong concave shapes, indicating a sensitive response to peak flow. A pronounced seasonal trend was observed for the ratio of suspended sediment concentration (SSC)/discharge over time, indicating early season flushing of available sediment. Significant linear relationships (p < 0.05) were found for 12 of 17 years. Comparison of annual sediment rating curve coefficients indicated smaller coefficients during high sediment loading years and in the years following. The smaller coefficients are evidence of sediment depletion during high flow years. The effect of hysteresis on monitoring methods was illustrated by comparing turbidity estimates of TSS load with sediment rating curve estimates of SSC. After accounting for differences in SSC/TSS methods of analysis, daily loads calculated with turbidity methods were 58-98% of rating curve estimates for the spring snowmelt seasons of 1999-2001. Copyright

  5. Sediment discharge from highway construction near Port Carbon, Pennsylvania

    USGS Publications Warehouse

    Helm, Robert E.

    1978-01-01

    About 16,000 tons of suspended-sediment was discharged from the basin during the construction. The highway construction produced about 8,000 tons or 50 percent of the total sediment discharge. Steep slopes, the availability of fine coal wastes, coal-washing operations, and other land uses in the basin were responsible for most of the remaining sediment discharge. Seventy percent of the total suspended-sediment discharge occurred during eight storms.

  6. From deposition to erosion: spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed

    USGS Publications Warehouse

    Florsheim, J.L.; Pellerin, B.A.; Oh, N.H.; Ohara, N.; Bachand, P.A.M.; Bachand, Sandra M.; Bergamaschi, B.A.; Hernes, P.J.; Kavvas, M.L.

    2011-01-01

    The spatial and temporal variability of sediment sources, storage, and transport were investigated in a small agricultural watershed draining the Coast Ranges and Sacramento Valley in central California. Results of field, laboratory, and historical data analysis in the Willow Slough fluvial system document changes that transformed a transport-limited depositional system to an effective erosion and transport system, despite a large sediment supply. These changes were caused by a combination of factors: (i) an increase in transport capacity, and (ii) hydrologic alteration. Alteration of the riparian zone and drainage network pattern during the past ~ 150 years included a twofold increase in straightened channel segments along with a baselevel change from excavation that increased slope, and increased sediment transport capacity by ~ 7%. Hydrologic alteration from irrigation water contributions also increased transport capacity, by extending the period with potential for sediment transport and erosion by ~ 6 months/year. Field measurements document Quaternary Alluvium as a modern source of fine sediment with grain size distributions characterized by 5 to 40% fine material. About 60% of an upland and 30% of a lowland study reach incised into this deposit exhibit bank erosion. During this study, the wet 2006 and relatively dry 2007 water years exhibited a range of total annual suspended sediment load spanning two orders of magnitude: ~ 108,500 kg/km2/year during 2006 and 5,950 kg/km2/year during 2007, only 5% of that during the previous year. Regional implications of this work are illustrated by the potential for a small tributary such as Willow Slough to contribute sediment – whereas large dams limit sediment supply from larger tributaries – to the Sacramento River and San Francisco Bay Delta and Estuary. This work is relevant to lowland agricultural river–floodplain systems globally in efforts to restore aquatic and riparian functions and where water quality

  7. Assessing benthic oxygen fluxes in oligotrophic deep sea sediments (HAUSGARTEN observatory)

    NASA Astrophysics Data System (ADS)

    Donis, Daphne; McGinnis, Daniel F.; Holtappels, Moritz; Felden, Janine; Wenzhoefer, Frank

    2016-05-01

    Benthic oxygen fluxes, an established proxy for total organic carbon mineralization, were investigated in oligotrophic deep sea sediments. We used three different in situ technologies to estimate the benthic oxygen fluxes at an Arctic deep sea site (2500 m depth, HAUSGARTEN observatory) with limiting conditions of low oxygen gradients and fluxes, low turbulence and low particle content in the benthic boundary layer. The resolved eddy covariance turbulent oxygen flux (-0.9±0.2 (SD) mmol O2 m-2 d-1) compared well with simultaneous dissolved oxygen flux measurements carried out with a microprofiler (-1.02±0.3 (SD) mmol O2 m-2 d-1) and total oxygen uptake obtained by benthic chamber incubations (-1.1±0.1 (SD) mmol O2 m-2 d-1). The agreement between these different techniques revealed that microbial-mediated oxygen consumption was dominant at this site. The average benthic flux equals a carbon mineralization rate of 4.3 g C m-2 yr-1, which exceeds the annual sedimentation of particulate organic matter measured by sediment traps. The present study represents a detailed comparison of different in situ technologies for benthic flux measurements at different spatial scales in oligotrophic deep sea sediments. The use of eddy covariance, so far rarely used for deep sea investigations, is presented in detail.

  8. Nutrient and sediment concentrations and corresponding loads during the historic June 2008 flooding in eastern Iowa.

    PubMed

    Hubbard, L; Kolpin, D W; Kalkhoff, S J; Robertson, D M

    2011-01-01

    A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.

  9. Nutrient and sediment concentrations and corresponding loads during the historic June 2008 flooding in eastern Iowa

    USGS Publications Warehouse

    Hubbard, L.; Kolpin, D.W.; Kalkhoff, S.J.; Robertson, D.M.

    2011-01-01

    A combination of above-normal precipitation during the winter and spring of 2007-2008 and extensive rainfall during June 2008 led to severe flooding in many parts of the midwestern United States. This resulted in transport of substantial amounts of nutrients and sediment from Iowa basins into the Mississippi River. Water samples were collected from 31 sites on six large Iowa tributaries to the Mississippi River to characterize water quality and to quantify nutrient and sediment loads during this extreme discharge event. Each sample was analyzed for total nitrogen, dissolved nitrate plus nitrite nitrogen, dissolved ammonia as nitrogen, total phosphorus, orthophosphate, and suspended sediment. Concentrations measured near peak flow in June 2008 were compared with the corresponding mean concentrations from June 1979 to 2007 using a paired t test. While there was no consistent pattern in concentrations between historical samples and those from the 2008 flood, increased flow during the flood resulted in near-peak June 2008 flood daily loads that were statistically greater (p < 0.05) than the median June 1979 to 2007 daily loads for all constituents. Estimates of loads for the 16-d period during the flood were calculated for four major tributaries and totaled 4.95 x 10(7) kg of nitrogen (N) and 2.9 x 10(6) kg of phosphorus (P) leaving Iowa, which accounted for about 22 and 46% of the total average annual nutrient yield, respectively. This study demonstrates the importance of large flood events to the total annual nutrient load in both small streams and large rivers.

  10. Calculation of longshore sediment transport

    NASA Astrophysics Data System (ADS)

    Leont'yev, I. O.

    2014-03-01

    Calculation approaches to longshore transport of sandy sediments are discussed. The estimation of the total sediment transport rate is shown to be possibly based on the so-called CERC formula, where the proportionality factor K should be calculated from relationships of Bayram et al. [8] or Leont'yev [4]. In both cases, the results are very close to each other if the author's determination of the wave breaking depth is used. Under the condition of contrasting variations in the sediment grain size over the coastal profile or in the case of fragmentary sand distribution on the surface of the bed, the local approach implying process-based modeling is more effective. A model is suggested to compute the local longshore sediment transport rates.

  11. Sedimentation in Santa Margarita Lake, San Luis Obispo County, California

    USGS Publications Warehouse

    Glysson, G. Douglas

    1977-01-01

    The 1975 storage capacity of Santa Margarita Lake in San Luis Obispo County, Calif., was 41,400 acre-feet, a decrease of 3,400 acre-feet since 1941. Usable capacity decreased from 25,800 to 23,000 acre-feet. Long-term sediment yield for the Salinas River basin upstream from the lake was estimated at 1,150 tons per square mile per year. A correlation between the annual water discharge of the Salinas River near Pozo and the annual quantity of sediment deposited in the lake was developed that can be used to stimate future sediment deposition. (Woodard-USGS)

  12. Nitrate and sediment fluxes from a California rangeland watershed.

    PubMed

    Lewis, David J; Singer, Michael J; Dahlgren, Randy A; Tate, Kenneth W

    2006-01-01

    Long-term water quality records for assessing natural variability, impact of management, and that guide regulatory processes to safeguard water resources are rare for California oak woodland rangelands. This study presents a 20-yr record (1981-2000) of nitrate-nitrogen (NO(3)-N) and suspended sediment export from a typical, grazed oak woodland watershed (103 ha) in the northern Sierra Nevada foothills of California. Mean annual precipitation over the 20-yr period was 734 mm yr(-1) (range 366-1205 mm yr(-1)). Mean annual stream flow was 353 mm y(-1) (range 87-848 mm yr(-1)). Average annual stream flow was 48.1 +/- 16% of precipitation. Mean annual NO(3)-N export was 1.6 kg ha(-1) yr(-1) (range 0.18-3.6 kg ha(-1) yr(-1)). Annual NO(3)-N export significantly (P < 0.05) increased with increasing annual stream flow and precipitation. Mean daily NO(3)-N export was 0.004 kg ha(-1) d(-1) (range 10(-5) to 0.55 kg ha(-1) d(-1)). Mean annual suspended sediment export was 198 kg ha(-1) yr(-1) (range 23-479 kg ha(-1) yr(-1)). There was a positive relationship (P < 0.05) between annual suspended sediment export, annual stream flow and precipitation. Mean daily suspended sediment export was 0.54 kg ha(-1) d(-1) (range 10(-4) to 155 kg ha(-1) d(-1)). Virtually no sediment was exported during the dry season. The large variation in daily and annual fluxes highlights the necessity of using long-term records to establish quantitative water quality targets for rangelands and demonstrates the difficulty of designing a water quality monitoring program for these ecosystems.

  13. Challenges of ecosystem restoration in Louisiana - availability of sediment and its management

    NASA Astrophysics Data System (ADS)

    Khalil, S. M.; Freeman, A. M.

    2015-03-01

    Human intervention has impaired the Mississippi River's ability to deliver sediment to its delta wetlands, and as a consequence acute land loss in coastal Louisiana has resulted in an unprecedented ecocatastrophe. To mitigate this degradation, an unparalleled restoration effort is underway. For this effort to be successful and sustainable, various sediment input mechanisms must be integrated, including: building appropriate sediment-diversions; beneficially using the millions of cubic metres of sediment dredged annually from navigational channels; harvesting deposits of sand and suitable sediment from the river and offshore; and related sediment management activities that are compatible with other uses of the river. A comprehensive sediment management plan has been developed to identify and delineate potential sediment sources for restoration, and to provide a framework for managing sediment resources wisely, cost effectively, and in a systematic manner. The Louisiana Sediment Management Plan provides regional strategies for improved comprehensive management of Louisiana's limited sediment resources.

  14. Mercury distribution in sediment profiles of six Louisiana Lakes.

    PubMed

    Gambrell, R P; DeLaune, R D; Patrick, W H; Jugsujinda, A

    2001-05-01

    A study was conducted of six Louisiana Lakes to examine the relationship between sediment properties including mercury content and health advisories associated with mercury levels in fish. Comparison was made between three lakes with health advisories (Black Lake, Chicot Lake, and Henderson Lake) and three lakes where the levels of mercury in fish are below health advisory levels (False River, Lake St. John, and Miller Lake). Three sediment core samples were collected from each lake and sectioned into 2-cm increments to a depth of 20 cm. Sediment properties measured in each depth increment of the sediment profile included total mercury, 137Cs activity (for sedimentation rate), and sediment organic matter content. Of the lakes studied, those lakes that have health advisories for mercury tended to have higher total mercury contents, usually higher sediment organic matter contents, and higher sedimentation rates than sediments in lakes where health advisories for mercury are not issued.

  15. Colorado River sediment transport 1. Natural sediment supply limitation and the influence of Glen Canyon Dam

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Vierra, L.E.

    2000-01-01

    Analyses of flow, sediment-transport, bed-topographic, and sedimentologic data suggest that before the closure of Glen Canyon Dam in 1963, the Colorado River in Marble and Grand Canyons was annually supply-limited with respect to fine sediment (i.e., sand and finer material). Furthermore, these analyses suggest that the predam river in Glen Canyon was not supply-limited to the same degree and that the degree of annual supply limitation increased near the head of Marble Canyon. The predam Colorado River in Grand Canyon displays evidence of four effects of supply limitation: (1) seasonal hysteresis in sediment concentration, (2) seasonal hysteresis in sediment grain size coupled to the seasonal hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Analyses of sediment budgets provide additional support for the interpretation that the predam river was annually supply-limited with respect to fine sediment, but it was not supply-limited with respect to fine sediment during all seasons. In the average predam year, sand would accumulate and be stored in Marble Canyon and upper Grand Canyon for 9 months of the year (from July through March) when flows were dominantly below 200-300 m3/s; this stored sand was then eroded during April through June when flows were typically higher. After closure of Glen Canyon Dam, because of the large magnitudes of the uncertainties in the sediment budget, no season of substantial sand accumulation is evident. Because most flows in the postdam river exceed 200-300 m3/s, substantial sand accumulation in the postdam river is unlikely.

  16. Sediment transport to and from small impoundments in northeast Kansas, March 2009 through September 2011

    USGS Publications Warehouse

    Foster, Guy M.; Lee, Casey J.; Ziegler, Andrew C.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, investigated sediment transport to and from three small impoundments (average surface area of 0.1 to 0.8 square miles) in northeast Kansas during March 2009 through September 2011. Streamgages and continuous turbidity sensors were operated upstream and downstream from Atchison County, Banner Creek, and Centralia Lakes to study the effect of varied watershed characteristics and agricultural practices on sediment transport in small watersheds in northeast Kansas. Atchison County Lake is located in a predominantly agricultural basin of row crops, with wide riparian buffers along streams, a substantial amount of tile drainage, and numerous small impoundments (less than 0.05 square miles; hereafter referred to as “ponds”). Banner Creek Lake is a predominantly grassland basin with numerous small ponds located in the watershed, and wide riparian buffers along streams. Centralia Lake is a predominantly agricultural basin of row crops with few ponds, few riparian buffers along streams, and minimal tile drainage. Upstream from Atchison County, Banner Creek, and Centralia Lakes 24, 38, and 32 percent, respectively, of the total load was transported during less than 0.1 percent (approximately 0.9 days) of the time. Despite less streamflow in 2011, larger sediment loads during that year indicate that not all storm events transport the same amount of sediment; larger, extreme storms during the spring may transport much larger sediment loads in small Kansas watersheds. Annual sediment yields were 360, 400, and 970 tons per square mile per year at Atchison County, Banner, and Centralia Lake watersheds, respectively, which were less than estimated yields for this area of Kansas (between 2,000 and 5,000 tons per square mile per year). Although Centralia and Atchison County Lakes had similar percentages of agricultural land use, mean annual sediment yields upstream from Centralia Lake were about 2.7 times

  17. Snake and Columbia Rivers Sediment Sampling Project

    SciTech Connect

    Pinza, M. R.; Word, J. Q.; Barrows, E. S.; Mayhew, H. L.; Clark, D. R.

    1992-12-01

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  18. Floodplain Sedimentation in Vegetated Areas of the Elwha River Floodplain, 2012-2014

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.; Polka, J.

    2014-12-01

    The removal of the Elwha and Glines Canyon Dams from the Elwha River, near Port Angeles, Washington, has released a large pulse of sediment into the middle and lower reaches of the Elwha River. This sediment has important geomorphic, hydraulic, and ecological implications. Our project focuses on the deposition of fine sediment on vegetated parts of the Elwha floodplain using field observations of sediment accumulation in combination with a simplified physics numerical model, CAESAR-Lisflood. The floodplain of the Elwha is densely vegetated and in places is characterized by large amounts of local topographic variation. This makes measuring centimeter-scale overbank sedimentation difficult using traditional approaches such as lidar and total-station based cross-section surveys. To address this problem and to provide ground truth for more traditional surveying methods, we set up over 50 short (10-20 m long) cross-sections between sets of flagged trees and surveyed, at 1-meter intervals, ground elevation with respect to a spike set in each section. Nails in the trees ensure that the horizontal position of our measurements do not shift by more than a few centimeters from year to year. This approach allows sediment accumulation to be measured repeatedly with a precision we estimate to be on the order of a few centimeters, allowing us to estimate annual rates of local sedimentation. At a given point on the floodplain, sedimentation should depend significantly on the frequency of inundation. We simulate this for the 2012-2014 period using a CAESAR-Lisflood 2-D numerical model calibrated using a set of continuously recording staff gages. CAESAR-Lisflood uses simplified-physics hydraulic routines to efficiently simulate flow depth and velocity and to drive size-specific sediment transport and morphodynamic change. This allows the model to simulate changes in flood inundation probability for the post- removal period. CAESAR-based hydraulic results are used to interpret our

  19. Erosion, storage, and transport of sediment in two subbasins of the Rio Puerco, New Mexico

    USGS Publications Warehouse

    Gellis, A.C.; Pavich, M.J.; Ellwein, A.L.; Aby, S.; Clark, I.; Wieczorek, M.E.; Viger, R.

    2012-01-01

    Arroyos in the American Southwest proceed through cut-and-fill cycles that operate at centennial to millennial time scales. The geomorphic community has put much effort into understanding the causes of arroyo cutting in the late Quaternary and in the modern record (late 1800s), while little effort has gone into understanding how arroyos fill and the sources of this fill. Here, we successfully develop a geographic information system (GIS)-modeled sediment budget that is based on detailed field measurements of hillslope and channel erosion and deposition. Field measurements were made in two arroyo basins draining different lithologies and undergoing different land disturbance (Volcano Hill Wash, 9.30 km2; Arroyo Chavez, 2.11 km2) over a 3 yr period. Both basins have incised channels that formed in response to the late nineteenth-century incision of the Rio Puerco. Large volumes of sediment were generated during arroyo incision, equal to more than 100 yr of the current annual total sediment load (bed load + suspended load) in each basin. Downstream reaches in both arroyos are presently aggrading, and the main source of the sediment is from channel erosion in upstream reaches and first- and second-order tributaries. The sediment budget shows that channel erosion is the largest source of sediment in the current stage of the arroyo cycle: 98% and 80% of the sediment exported out of Volcano Hill Wash and Arroyo Chavez, respectively. The geomorphic surface most affected by arroyo incision and one of the most important sediment sources is the valley alluvium, where channel erosion, gullying, soil piping, and grazing all occur. Erosion rates calculated for the entire Volcano Hill Wash (-0.26 mm/yr) and Arroyo Chavez (-0.53 mm/yr) basins are higher than the modeled upland erosion rates in each basin, reflecting the large contributions from channel erosion. Erosion rates in each basin are affected by a combination of land disturbance (grazing) and lithology

  20. The Impact of Rainstorm Stochasticity on Hillslope Sediment Supply to River Channels in Dryland Basins

    NASA Astrophysics Data System (ADS)

    Michaelides, K.; Singer, M. B.

    2011-12-01

    Climate interacts with hillslopes supplying sediment to river channels, and impacting drainage basin functioning and evolution. In particular, coarse sediment supply from hillslopes exerts a strong control on channel bed material grain-size distributions (GSD) which feeds back on bedload flux and consequently affects long-term rates of valley incision/aggradation. However, process-based understanding of sediment supply from hillslopes is poorly constrained because it is spatially and temporally variable as a result of interactions between rainstorm attributes (frequency, intensity, duration, size) and hillslope characteristics within a basin (length, gradient, infiltration rates, GSD). Drylands are particularly sensitive to climatic forcing because they are subjected to infrequent, short-lived, but high intensity rainfall events, which are spatially-variable and often smaller than the basin area. These climatic factors coupled with thin, stony soils typical of drylands, produce dynamic and variable sediment supply to channels, with a high proportion of coarse material that remains in channel beds over long timescales. Currently there is limited understanding of how variability and nonstationarity in regional climate affect hillslope sediment supply to valley floors in dryland basins. In these landscapes, the discrete and spatially variable nature of convective rainstorms and other catchment characteristics create challenges for deterministic modelling of the interaction between climate and sediment transport. Here we represent climate as a stochastic process characterized by probability density functions of storm properties (total annual rainfall, location, size, duration, peak rainfall intensity). This stochastic driver is coupled to a physics-based hillslope sediment transport model in order to investigate the decadal impact of climatic variability on longitudinal hillslope coarse (> 2 mm) sediment supply (flux and GSD) to a mainstem channel within a 170 km2

  1. Coal industry annual 1997

    SciTech Connect

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  2. Annual Energy Review 2007

    SciTech Connect

    Seiferlein, Katherine E.

    2008-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....”

  3. Hydroclimatic Controls on Laminated Sediment Formation in Linnévatnet, Svalbard

    NASA Astrophysics Data System (ADS)

    Retelle, M.; Roof, S.; Werner, A.; McCabe, C.; Walther, T.

    2015-12-01

    Monitoring environmental processes in a glaciated watershed in Svalbard over a 12 year period provides insights into the controls on annually laminated sediment deposition in Linnévatnet, west Spitsbergen. This proglacial lake has a major inflow from nival and glacier meltwater and minor inflows from alluvial fans along the east and west shores of the lake. A synthesis of meteorological, hydrological and limnological measurements coupled with a composite stack of sediment grain size profiles from multiple traps and time lapse photography from 2004 to 2015 provides a detailed and complex record of inlet stream flow events and consequently the timing and amount of sediment deposited annually on the lake floor. Data is presented from temperature loggers, CTD's and sediment traps spanning a 3 km proximal to distal transect across the central axis of the basin from the main inlet. Process studies and observations reveal that the annual nival melt is generally the high discharge event that delivers the greatest annual sediment flux to the lake (e.g. 2005, 2006, 2008 2009), however in several years (e.g. 2011, 2013), intense late summer and early fall rainfall events occurred when thawed active layer sediments were mobilized and residual sediment in stream channels, produced heavy sediment loads that exceeded the nival melt sediment delivery. Sediment cores recovered adjacent to mooring sites across the basin are annually laminated. The structure of laminae in proximal sediment traps mimics proximal varves seen in thin sections with multiple coarser grained events ( median up to 35 μm) overlain by fine-grained (median ~5 μm) "winter" layers. Annual couplets in distal traps are proportionally thinner and finer grained and their grain size profile records the major events seen in proximal sectors of the lake. Mineralogical and ITRAX scanning XRF analyses of trap sediments shows that late season events also activate sedimentation from alluvial fan sources that otherwise

  4. Urban rivers as conveyors of hydrocarbons to sediments of estuarine areas: source characterization, flow rates and mass accumulation.

    PubMed

    Mauad, Cristiane R; Wagener, Angela de L R; Massone, Carlos G; Aniceto, Mayara da S; Lazzari, Letícia; Carreira, Renato S; Farias, Cássia de O

    2015-02-15

    Aliphatic (n-C12-n-C40, unresolved complex mixture, resolved peaks) and aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) sampled over eleven months in six of the major rivers and two channels of the Guanabara Bay Basin. PAH flow rates of the most contaminated rivers, the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. PAH (38) ranged from 28 ng L(-1) to 11,514 ng L(-1). Hydrocarbon typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers amounts to 3 t year(-1) and responds for 30% of the total PAH annual input into the northern area of the Guanabara Bay. For the first time PAH mass deposited in the bay sediments has been estimated and shall serve as base for decision making and source abatement.

  5. Geomorphic response to large-dam removal: Impacts of a massive sediment release to the Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Ritchie, A.; Bountry, J.; Randle, T. J.; East, A. E.; Hilldale, R. C.; Curran, C. A.; Pess, G. R.

    2015-12-01

    The 2011-2014 staged removals of two nearly century-old dams on the Elwha River in northwest Washington State, the largest dam-removal project in the United States, exposed 21 million m3 of reservoir-trapped sand and gravel to potential fluvial transport. The river downstream from the dams is gravel bedded with a pool-riffle morphology. The river flows 20 km to the marine environment through a riparian corridor lined with large wood and having relatively few anthropogenic alterations. This moderately natural pre-dam-removal condition afforded an unprecedented opportunity to study river response to an anticipated massive sediment release. Four years into the project, 12 million m3 of sediment eroded from the former reservoirs with about 90% of the total load transported to the marine environment. Annualized sediment discharge was as great as 20 times the background natural load. Initial river response to the arrival of the first large sediment pulse was the nearly complete filling of the river's previously sediment-starved pools, widespread filling of side channels, and increased braiding index. In year 2, during maximum aggradation, the river graded to a plane-bedded system, efficiently conveying sediment to the marine environment. Modest peak flows (<2-yr return period) in year 2 promoted sediment transport but caused little large-scale geomorphic disturbance by channel migration or avulsions. As the river processed the sediment pulse, pools returned and the braiding index decreased in years 3-4. Higher peak flows in year 4 caused localized channel widening and migration but no major avulsions. Gauging indicated sand dominated the first stages of sediment release, but fluvial loads coarsened through time with progressive arrival of larger material. The literature suggests the Elwha River sediment wave should have evolved through dispersion with little translation. However, morphologic measurements and data from a stage-gauge network indicated patterns of

  6. A re-evaluation of sediment and solute transfers in Karkevagge Swedish Lapland

    NASA Astrophysics Data System (ADS)

    Dixon, John

    2014-05-01

    Karkevagge, Swedish Lapland, has been the site of detailed geomorphic investigations for over sixty years. The classic study by Rapp (1960) not only identified the dominant processes operating on slope evolution in the valley, but also their magnitudes. Since that landmark study, there has been on-going research focused on better understanding magnitudes and frequencies of the dominant processes, but there has been no comprehensive reassessment of the overall sediment and solute fluxes in the valley. This paper compiles data from numerous recent studies in an effort to obtain an understanding of contemporary sediment fluxes in the valley. . Kärkevagge is a 5km long glacial valley located in northern Swedish Lapland at approximately 68o26' N latitude and 18o18'E longitude. The 30 year mean annual air temperature from the nearby Katterjakk climate station is -1.7oC and mean annual precipitation is 844mm. Some 50% of the precipitation comes in the form of snow. Mean total sediment output from the catchment is 0.2-11.2tkm-2d-1 (Rehn et al., 1982). There is however considerable spatial variability in sediment transfer within the valley. Solifluction accounts for the greatest sediment mass transfer in the valley at 1176 t/km2/yr. Mean mass transfer is in the vicinity of 20,000t/yr. (Ridefelt et al., 2009). Annual movement is on average 4cm/ yr. but displays considerable spatial variability depending on moisture availability Slush avalanches and slush torrents represent significant contributors to sediment transfer in the valley, with mean mass/area transfers of 128t/km2/yr. They display considerable variability in their magnitude, varying from as little as 0.5m3 to >300m3. Slush torrents may contribute between 10,000 and 20,000m3 of mass flow (Gude et al., 2000). Solute transfer amounts to 46t/km2/yr. for the valley as a whole but there is considerable spatial variability. Total solute flux is greatest at the valley outlet, but within the valley solute flux is greatest

  7. Fluvial sediments a summary of source, transportation, deposition, and measurement of sediment discharge

    USGS Publications Warehouse

    Colby, B.R.

    1963-01-01

    continuously at about the velocity of the flow, and even low flows can transport large amounts of fine sediment. Hence, the discharge of fine sediments, being largely dependent on the availability of fine sediment upstream rather than on the properties of the sediment and of the flow at a cross section, can seldom be computed from properties, other than concentrations based directly on samples, that can be observed at the cross section. Sediment particles continually change their positions in the flow; some fall to the streambed, and others are removed from the bed. Sediment deposits form locally or over large areas if the volume rate at which particles settle to the bed exceeds the volume rate at which particles are removed from the bed. In general, large particles are deposited more readily than small particles, whether the point of deposition is behind a rock, on a flood plain, within a stream channel, or at the entrance to a reservoir, a lake, or the ocean. Most samplers used for sediment observations collect a water-sediment mixture from the water surface to within a few tenths of a foot of the streambed. They thus sample most of the suspended sediment, especially if the flow is deep or if the sediment is mostly fine; but they exclude the bedload and some of the suspended sediment in a layer near the streambed where the suspended-sediment concentrations are highest. Measured sediment discharges are usually based on concentrations that are averages of several individual sediment samples for a cross section. If enough average concentrations for a cross section have been determined, the measured sediment discharge can be computed by interpolating sediment concentrations between sampling times. If only occasional samples were collected, an average relation between sediment discharge and flow can be used with a flow-duration curve to compute roughly the average or the total sediment discharges for any periods of time for which the flow-duration c

  8. Pollutants' Release, Redistribution and Remediation of Black Smelly River Sediment Based on Re-Suspension and Deep Aeration of Sediment.

    PubMed

    Zhu, Lin; Li, Xun; Zhang, Chen; Duan, Zengqiang

    2017-04-01

    Heavily polluted sediment is becoming an important part of water pollution, and this situation is particularly acute in developing countries. Sediment has gradually changed from being the pollution adsorbent to the release source and has influenced the water environment and public health. In this study, we evaluated the pollutant distribution in sediment in a heavily polluted river and agitated the sediment in a heavily polluted river to re-suspend it and re-release pollutants. We found that the levels of chemical oxygen demand (COD), NH₄⁺-N, total nitrogen (TN), and total phosphorus (TP) in overlying water were significantly increased 60 min after agitation. The distribution of the pollutants in the sediment present high concentrations of pollutants congregated on top of the sediment after re-settling, and their distribution decreased with depth. Before agitation, the pollutants were randomly distributed throughout the sediment. Secondly, deep sediment aeration equipment (a micro-porous air diffuser) was installed during the process of sedimentation to study the remediation of the sediment by continuous aeration. The results revealed that deep sediment aeration after re-suspension significantly promoted the degradation of the pollutants both in overlying water and sediment, which also reduced the thickness of the sediment from 0.9 m to 0.6 m. Therefore, sediment aeration after suspension was efficient, and is a promising method for sediment remediation applications.

  9. 21 CFR 1315.11 - Assessment of annual needs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Assessment of Annual Needs § 1315.11 Assessment of annual needs. (a) The Administrator shall determine the total quantity of ephedrine, pseudoephedrine, and phenylpropanolamine, including drug products containing ephedrine, pseudoephedrine,...

  10. 21 CFR 1315.11 - Assessment of annual needs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Assessment of Annual Needs § 1315.11 Assessment of annual needs. (a) The Administrator shall determine the total quantity of ephedrine, pseudoephedrine, and phenylpropanolamine, including drug products containing ephedrine, pseudoephedrine,...

  11. 21 CFR 1315.11 - Assessment of annual needs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... QUOTAS FOR EPHEDRINE, PSEUDOEPHEDRINE, AND PHENYLPROPANOLAMINE Assessment of Annual Needs § 1315.11 Assessment of annual needs. (a) The Administrator shall determine the total quantity of ephedrine, pseudoephedrine, and phenylpropanolamine, including drug products containing ephedrine, pseudoephedrine,...

  12. Sediment Dynamics in the Upper McKenzie River Basin, Central Oregon Cascade Range

    NASA Astrophysics Data System (ADS)

    Stallman, J. D.; Bowers, R. J.; Cabrera, N. C.; Real de Asua, R.; Wooster, J. K.

    2005-12-01

    management are most apparent in the McKenzie River at Deer Creek, where current yield from Deer Creek (29% higher than reference yield) may largely compensate for sediment trapping in Smith and Trail Bridge reservoirs. The extent to which accelerated yield from Deer Creek moderates the geomorphic effects of trapping in upstream reservoirs is, in part, a function of storage changes in the alluvial reach of lower Deer Creek. Mass balance between average annual bedload transport capacity (22,000 t y-1 and 13,000 t y-1 at the upper and lower ends of the reach, respectively) and estimated coarse sediment supply (4,500 t y-1) suggests that sediment input from Deer Creek to the McKenzie River is relatively insensitive to storage changes. Since hydroelectric dams and forest management likely decrease the coarse:total sediment ratio, the geomorphic effects of reservoir sediment trapping and accelerated tributary sediment yields depend on the current grain size distribution of the sediment supply relative to that stored in upstream reservoirs.

  13. Estimating selenium removal by sedimentation from the Great Salt Lake, Utah

    USGS Publications Warehouse

    Oliver, W.; Fuller, C.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The mass of Se deposited annually to sediment in the Great Salt Lake (GSL) was estimated to determine the significance of sedimentation as a permanent Se removal mechanism. Lake sediment cores were used to qualitatively delineate sedimentation regions (very high to very low), estimate mass accumulation rates (MARs) and determine sediment Se concentrations. Sedimentation regions were defined by comparison of isopach contours of Holocene sediment thicknesses to linear sedimentation rates determined via analysis of 210Pb, 226Ra, 7Be and 137Cs activity in 20 short cores (<5 cm), yielding quantifiable results in 13 cores. MARs were developed via analysis of the same radioisotopes in eight long cores (>10 cm). These MARs in the upper 1-2 cm of each long core ranged from 0.019 to 0.105 gsed/cm2/a. Surface sediment Se concentrations in the upper 1 or 2 cm of each long core ranged from 0.79 to 2.47 mg/kg. Representative MARs and Se concentrations were used to develop mean annual Se removal by sedimentation in the corresponding sedimentation region. The spatially integrated Se sedimentation rate was estimated to be 624 kg/a within a range of uncertainty between 285 and 960 kg/a. Comparison to annual Se loading and other potential removal processes suggests burial by sedimentation is not the primary removal process for Se from the GSL. ?? 2009 Elsevier Ltd.

  14. Patterns and contributions of floodplain and legacy sediments remobilized from Piedmont streams of the mid-Atlantic U.S.

    NASA Astrophysics Data System (ADS)

    Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen

    2015-04-01

    these downstream valleys, a majority of remobilized sediment (62%) is coming from first- and second-order tributaries because they represent the largest fraction of cumulative channel length in the drainage network. Floodplain segments are discontinuous along low-order tributaries but sediment contributions reported here are adjusted to account for the percent valley length bordered by floodplain sediments. Average annual lateral migration rates ranged from 0.04-0.19 m/y with higher rates along larger streams; however, when scaled by channel width, we find that on average streams are migrating 2.5% of channel width across all drainage areas. Direct measurements reported here account for in-channel deposition, but not floodplain deposition. Other studies in the region have demonstrated that redeposition on floodplains is an important component of the sediment budget and are necessary to avoid overestimating streambank erosion contributions to watershed sediment yield. We therefore adjust our measured sediment contributions by estimating the mass of sediment redeposited on floodplains within our study area. With this adjustment, extrapolated net stream bank sediment yields (72 Mg/km2/yr) are equivalent to 70% of the estimated average Piedmont watershed yield (104 Mg/km2/yr) cited by previous authors. Furthermore, our results demonstrate that measurements over adequate spatial and temporal scales- rather than short-term, localized observations- are required to accurately capture and measure patterns of streambank erosion across the drainage network. It is important to note that upland erosion rates- not measured here- have been reported with equivalent and greater magnitude for forested and cropland areas within the Maryland Piedmont and therefore should not be assumed to contribute only 30% of the total.

  15. Elwha River Restoration: Sediment Management

    NASA Astrophysics Data System (ADS)

    Kimbrel, S.; Bountry, J.; Randle, T. J.; Ritchie, A.; Huginin, H.; Torrance, A.

    2013-12-01

    The removal of Elwha and Glines Canyon Dams on the Elwha River relies on controlled reservoir drawdown increments and natural river flows to erode and redistribute the reservoir sediment, estimated to be a total of 23 (× 3) million m3. To mitigate for the predicted sediment effects, facilities have been constructed for water quality and flood protection. A sediment monitoring program is being implemented by an interdisciplinary team from Reclamation and National Park Service to integrate real-time measurements with continually updated numerical model predictions. The most recent numerical reservoir modeling and monitoring results indicate about 20 to 25 percent of the reservoir sediment has been released since the start of dam removal. Monitoring results in 2012 and early 2013 confirmed that controlled reservoir drawdown increments have induced sufficient vertical and lateral erosion of delta surfaces behind both dams. Predam channel and floodplain surface has been exposed in numerous portions of Lake Aldwell, with the release of coarse and fine sediment in the first few pools below Elwha Dam. The material released from Lake Aldwell has included organic material. With the removal of about three quarters of Glines Canyon Dam and the disappearance of Lake Mills, coarse bedload sediment has been continually released into the downstream river since late fall 2012. Field measurements and numerical modeling are being used to track the progression of the sediment wave downstream to the Elwha River mouth. Initial findings are that the aggradation was greatest immediately downstream of Glines Canyon Dam, and filled pools and transformed river planform from step-pool to glide for most of the 7 mile reach between Lake Mills and Lake Aldwell. Although there has not been a major flood, winter flows and spring snowmelt have significantly reworked the released sediment and remnants of the pre-sediment release pools and rapids have re-emerged. Large wood and organics have also

  16. Potential microbial bioinvasions via ships' ballast water, sediment, and biofilm.

    PubMed

    Drake, Lisa A; Doblin, Martina A; Dobbs, Fred C

    2007-01-01

    A prominent vector of aquatic invasive species to coastal regions is the discharge of water, sediments, and biofilm from ships' ballast-water tanks. During eight years of studying ships arriving to the lower Chesapeake Bay, we developed an understanding of the mechanisms by which invasive microorganisms might arrive to the region via ships. Within a given ship, habitats included ballast water, unpumpable water and sediment (collectively known as residuals), and biofilms formed on internal surfaces of ballast-water tanks. We sampled 69 vessels arriving from foreign and domestic ports, largely from Western Europe, the Mediterranean region, and the US East and Gulf coasts. All habitats contained bacteria and viruses. By extrapolating the measured concentration of a microbial metric to the estimated volume of ballast water, biofilm, or residual sediment and water within an average vessel, we calculated the potential total number of microorganisms contained by each habitat, thus creating a hierarchy of risk of delivery. The estimated concentration of microorganisms was greatest in ballast water>sediment and water residuals>biofilms. From these results, it is clear microorganisms may be transported within ships in a variety of ways. Using temperature tolerance as a measure of survivability and the temperature difference between ballast-water samples and the water into which the ballast water was discharged, we estimated 56% of microorganisms could survive in the lower Bay. Extrapolated delivery and survival of microorganisms to the Port of Hampton Roads in lower Chesapeake Bay shows on the order of 10(20) microorganisms (6.8 x 10(19) viruses and 3.9 x 10(18) bacteria cells) are discharged annually to the region.

  17. Remineralization of organic carbon in eastern Canadian continental margin sediments

    NASA Astrophysics Data System (ADS)

    Silverberg, Norman; Sundby, Bjørn; Mucci, Alfonso; Zhong, Shaojun; Arakaki, Takeshi; Hall, Per; Landén, Angela; Tengberg, Anders

    2000-04-01

    .6 - 4.2 mmol/m 2/d) was estimated as the sum of the sediment oxygen and nitrate uptake rates. The contribution of other electron-acceptors to the mineralization of organic carbon is assumed to be accounted for by the oxidation of most of their reduced by-products by O 2 and NO 3-. The return fluxes of dissolved inorganic carbon (∑CO 2 efflux corrected for carbonate dissolution) were generally comparable to the carbon oxidation rates. A detailed carbon budget was established at one of the sampled stations for which a complete set of measurements is available. The vertical flux of total particulate carbon through the water column (measured with a sediment trap at 150 m depth) accounts for approximately 9% of the annual primary production (PP). In the sediment, about 6% of the PP is remineralized and total carbon equivalent to 4.5% PP is buried. The self-consistency of the flux data at this station is used to justify similar budget calculations at the other stations where a limited data set was gathered. Sequestration of organic carbon via burial with the accumulating sediments (on average 0.5 mol/m 2/yr) is partially offset by the release of CO 2 associated with carbonate precipitation and burial (about 0.2 mol/m 2/yr).

  18. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design.

    PubMed

    Zeiger, Sean; Hubbart, Jason A

    2016-01-15

    Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds.

  19. Managment oriented analysis of sediment yield time compression

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed

    2016-04-01

    The understanding of inter- and intra-annual variability of sediment yield is important for the land use planning and management decisions for sustainable landscapes. It is of particular importance in the regions where the annual sediment yield is often highly dependent on the occurrence of few large events which produce the majority of sediments, such as in the Mediterranean. This phenomenon is referred as time compression, and relevance of its consideration growths with the increase in magnitude and frequency of extreme events due to climate change in many other regions. So far, time compression has ben studied mainly on events datasets, providing high resolution, but (in terms of data amount, required data precision and methods), demanding analysis. In order to provide an alternative simplified approach, the monthly and yearly time compressions were evaluated in eight Mediterranean catchments (of the R-OSMed network), representing a wide range of Mediterranean landscapes. The annual sediment yield varied between 0 to ~27100 Mg•km-2•a-1, and the monthly sediment yield between 0 to ~11600 Mg•km-2•month-1. The catchment's sediment yield was un-equally distributed at inter- and intra-annual scale, and large differences were observed between the catchments. Two types of time compression were distinguished - (i) the inter-annual (based on annual values) and intra- annual (based on monthly values). Four different rainfall-runoff-sediment yield time compression patterns were observed: (i) no time-compression of rainfall, runoff, nor sediment yield, (ii) low time compression of rainfall and runoff, but high compression of sediment yield, (iii) low compression of rainfall and high of runoff and sediment yield, and (iv) low, medium and high compression of rainfall, runoff and sediment yield. All four patterns were present at inter-annual scale, while at intra-annual scale only the two latter were present. This implies that high sediment yields occurred in

  20. Sediment transport patterns and climate change: the downstream Tuul River case study, Northern Mongolia.

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2014-05-01

    spatially and temporally. Peak flow events during the warm period contribute largely to the total annual transport of sediments and also to the erosion of stored bed material. These results suggest that if the number of peak flow events will increase further due to climate change, there will be a significant increase in the annual sediment load and consequently in the load of contaminants that are attached to the sediments, in particular downstream of mining sites. The present results are furthermore consistent with parallel studies on sediment transport and climate change showing that increased water discharges and frequencies of rainfall/flow events can lead to enhanced erosion processes. Furthermore, in addition to climate change effects, human activates can change sediment loads in rivers to even greater extent, as pointed out in several studies. Thus, several different challenges can be expected to face the management of Central Asian rivers such as Tuul and their ecosystems in the future.

  1. Lake sediment records of industrialization in the Sudbury area of Ontario, Canada

    SciTech Connect

    Huhn, F.J.

    1985-01-01

    The smelting of nickel and copper sulfide ores has drastically modified the original landscape around Sudbury, Ontario. A record of this impact exists in the sediments of local lakes. Changes in the annual fallout of heavy metals, identifiable smoke particulates, and pollen grains reflect the changes that occurred in the sedimentation rate and the vegetation. A year by year chronology for the last 300 years was provided by meromictic lake sediments containing countable seasonal laminations, obtained by a freezing technique that kept the sediments and sediment/water interface undisturbed. Results indicate that: correspondences of vegetation changes, and sedimentation rates with metal residues and smoke particulates in the sediments, and with published smelter records are good; annual laminations in meromictic lakes provided an excellent chronology, as checked against known dates for settlement and the onset of smelting; identifiable smoke particulates provided a good record of smelter activity, and were also a check on metal residue mobility in the sediments.

  2. Identifying trends in sediment discharge from alterations in upstream land use

    USGS Publications Warehouse

    Parker, R.S.; Osterkamp, W.R.

    1995-01-01

    Environmental monitoring is a primary reason for collecting sediment data. One emphasis of this monitoring is identification of trends in suspended sediment discharge. A stochastic equation was used to generate time series of annual suspended sediment discharges using statistics from gaging stations with drainage areas between 1606 and 1 805 230 km2. Annual sediment discharge was increased linearly to yield a given increase at the end of a fixed period and trend statistics were computed for each simulation series using Kendal's tau (at 0.05 significance level). A parameter was calculated from two factors that control trend detection time: (a) the magnitude of change in sediment discharge, and (b) the natural variability of sediment discharge. In this analysis the detection of a trend at most stations is well over 100 years for a 20% increase in sediment discharge. Further research is needed to assess the sensitivity of detecting trends at sediment stations.

  3. Water and sediment transport modeling of a large temporary river basin in Greece.

    PubMed

    Gamvroudis, C; Nikolaidis, N P; Tzoraki, O; Papadoulakis, V; Karalemas, N

    2015-03-01

    The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the

  4. Impact of river regulation on potential sediment mobilization and transport in an Alpine catchment

    NASA Astrophysics Data System (ADS)

    Costa, Anna; Molnar, Peter; Lane, Stuart N.; Bakker, Maarten

    2015-04-01

    The upper Rhône basin (upstream of Lake Geneva) has been heavily affected by human activities during the last century. The most evident impacts are related to river regulation, specifically flow impoundement, flow abstraction and channelization. In the last century and mainly since 1960, several large dams have been built along the main tributaries of the Rhône River, resulting in the water storage of a volume equal to 20% of the total annual river flow. The dams are part of hydropower systems which abstract water from streams and transfer it through complex networks (intakes, tunnels and pumping stations) to the reservoirs. Hydropower production leads to regulated flow in the Rhône: mostly an increase of winter flows, a reduction of summer flows, and a decrease of flood peaks. The sediment supply into Lake Geneva has decreased following dam construction (Loizeau & Dominik, 2000) due to the storage of sediment in upstream reservoirs, in rivers with reduced sediment transport capacity due to flow abstraction, and due to the development of sediment mining. Our hypothesis is that streamflow regulation itself has dramatically impacted the sediment transport dynamics of the system. We investigate the impacts of flow regulation on the sediment transport regime, by analysing the effects on potential sediment transport capacity (bedload). By the use of different bedload transport formulae (Meyer-Peter Müller, Wilcock and Crowe), the potential sediment transport capacity is computed at different cross sections within the basin. Potential sediment mobility occurs when the applied bed shear stress exceeds a critical value, τ>τc. The applied bed shear stress is computed as τ=ρghS, with water depth (h) measured from rating curves. We obtain an estimate of the energy slope (S) from the analysis of the river cross section, assuming uniform flow. The critical value of bed shear stress τc is computed using empirical formulae as a function of the grain diameter (ds). To

  5. Sediment loads in the Red River of the North and selected tributaries near Fargo, North Dakota, 2010--2011

    USGS Publications Warehouse

    Galloway, Joel M.; Nustad, Rochelle A.

    2012-01-01

    2010. In 2010, annual loads ranged from 68,650 tons per year at the Maple River (site 5) to 249,040 tons per year at the Sheyenne River (site 3). In 2011, when all nine sites were sampled, annual loads ranged from 8,716 tons per year at the Lower Branch Rush River (site 8) to 552,832 tons per year at the Sheyenne River (site 3). With the exception of the Sheyenne River (site 4), the greatest monthly loads occurred in March for 2010, with as little as 27 percent (site 1) and as much as 42 percent (site 3) of the annual load occurring in March. For 2011, the greatest monthly loads occurred in April, ranging from 33 percent (site 1) to 63 percent (site 7) of the 2011 annual load. A relatively small amount of sediment was transported past the nine sites as bedload in 2010 and 2011. For most of the samples collected at the nine sites, the bedload composed less than 1 percent of the calculated daily total sediment load.

  6. RAPID Assessment of Extreme Reservoir Sedimentation Resulting from the September 2013 Flood, North St. Vrain Creek, CO

    NASA Astrophysics Data System (ADS)

    Rathburn, S. L.; McElroy, B. J.; Wohl, E.; Sutfin, N. A.; Huson, K.

    2014-12-01

    During mid-September 2013, approximately 360 mm of precipitation fell in the headwaters of the North St. Vrain drainage basin, Front Range, CO. Debris flows on steep hillslopes and extensive flooding along North St. Vrain Creek resulted in extreme sedimentation within Ralph Price Reservoir, municipal water supply for the City of Longmont. The event allows comparison of historical sedimentation with that of an unusually large flood because 1) no reservoir flushing has been conducted since dam construction, 2) reservoir stratigraphy chronicles uninterrupted delta deposition, and 3) this is the only on-channel reservoir with unimpeded, natural sediment flux from the Continental Divide to the mountain front in a basin with no significant historic flow modifications and land use impacts. Assessing the flood-related sedimentation prior to any dredging activities included coring the reservoir delta, a bathymetric survey of the delta, resistivity and ground penetrating radar surveys of the subaerial inlet deposit, and surveying tributary deposits. Over the 44-year life of the reservoir, two-thirds of the delta sedimentation is attributed to extreme discharges from the September 2013 storm. Total storm-derived reservoir sedimentation is approximately 275,000 m3, with 81% of that within the gravel-dominated inlet and 17% in the delta. Volumes of deposition within reservoir tributary inlets is negatively correlated with contributing area, possibly due to a lack of storage in these small basins (1-5 km2). Flood-related reservoir sedimentation will be compared to other research quantifying volumes from slope failures evident on post-storm lidar. Analysis of delta core samples will quantify organic carbon flux associated with the extreme discharge and develop a chronology of flood and fire disturbances for North St. Vrain basin. Applications of similar techniques are planned for two older Front Range reservoirs affected by the September flooding to fill knowledge gaps about

  7. Macrophytes and suspension-feeding invertebrates modify flows and fine sediments in the Frome and Piddle catchments, Dorset (UK)

    NASA Astrophysics Data System (ADS)

    Wharton, Geraldene; Cotton, Jacqueline A.; Wotton, Roger S.; Bass, Jon A. B.; Heppell, Catherine M.; Trimmer, Mark; Sanders, Ian A.; Warren, Luke L.

    2006-10-01

    SummaryThis research investigated the ecosystem engineering by in-stream macrophytes, dominated by Ranunculus spp., and associated suspension-feeding blackfly larvae (Diptera: Simuliidae) for five reaches in the Frome and Piddle catchments, Dorset (UK) over one annual growth cycle (2003). This paper focuses on the modification of flow velocities and the trapping of fine sediment (particles <2 mm in diameter) by in-stream macrophytes and the processing of dissolved organic matter (DOM), fine particulate organic matter (FPOM) and fine inorganic particles into faecal pellets by blackfly larvae attached to the leaves of Ranunculus plants. In-stream macrophyte growth was extensive, with maximum percentage cover of 80% recorded in September and October 2003. The macrophyte cover significantly altered flow patterns and flow velocities within and between the macrophyte stands. The reduced flow velocities within the plants promoted sediment trapping, reaching volumes of 0.085 m 3 of fine sediment trapped per metre square of vegetation at one site. The effective particle sizes of the sediments trapped within Ranunculus stands were dominated by the 250-500 μm fraction from March to July 2003 whereas a higher proportion of smaller fractions occurred from October to December. Faecal pellets were highly abundant in the sediments trapped within Ranunculus stands (up to 2.2 × 10 8 faecal pellets per m 2) and their dimensions (total size range 25-400 μm) fall within the dominant size fraction of the trapped sediments. Our findings demonstrate the need to consider the biogenic component of the fine sediments in chalk streams in future studies of sediment and nutrient dynamics.

  8. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wei, Xiaoyan; Jinhai, Zheng; Yuliang, Zhu; Zhang, Yanjing

    2012-04-01

    In this study, sediment rating curves are employed to study the variations in relationships between water discharge and suspended sediment concentration based on the recent 50 years of monthly data set in the three major rivers of the Pearl River Delta. Results show that sediment rating parameters vary with time. The lowest rating coefficient, ln(a), and the highest rating exponent, b, mostly occur in the 1980s, indicating that sediment transport reached its peak in this decade at the same level as water discharge. This upward shift of sediment load is probably caused by exacerbated karst rocky desertification in the upper reaches of the Pearl River. However, since the beginning of the 1990s sediment loads from the Pearl River to its estuary began to show a dramatically decreasing trend, which is attributed mainly to deposition in the reservoirs, leading to an increase of ln(a) and a decrease of b. Furthermore, the sediment rating curve in 1957 to1970 is applied to estimate potential sediment load (1971 to 2006) in the absence of human influences. It is also estimated quantitatively by the sediment rating curves that in the 1980s, the annual sediment load decreased by 7.59×106 t/yr because of natural factors, while sediment increase induced by human activities was 20.07×106 t/yr, which resulted in an actual increased sediment load of 12.47×106 t/yr compared with the reference level in 1957 to 1970. In the last two decades, the difference between measured and estimated sediment loads became considerable, and the annual deficit sharply increased to 26.80×106 t/yr in the 1990s, and 50.46×106 t/yr in the 2000s, indicating that human activities, mainly referring to dam and reservoir construction, play a dominant role in the decrease of sediment load. The decrease in sediment supply from the Pearl River should be paid special attention because it may cause serious impacts on the river delta and the coastal ocean.

  9. South Florida Coastal Sediment Ecological Risk Assessment.

    PubMed

    Julian, Paul

    2015-08-01

    This study evaluated the degree of sediment contamination in several South Florida estuaries. During the 2010 National Condition Assessment, Florida Fish and Wildlife Research Institute collected water column, sediment and biotic data from estuaries across the entire state of Florida. Sediments were analyzed for arsenic, cadmium, chromium, lead, mercury, zinc and total polychlorinated biphenyls and were compared relative to empirically derived sediment quality guidelines. As a result of this data collection and assessment effort, it was determined that the degree of contamination with respect to sediment was low for all southern Florida estuaries assessed, except the Miami River which was determined to be considerably contaminated. However only one monitoring location was used to assess the Miami River, and as such should be viewed with caution. A low degree of contamination was determined for Biscayne Bay sediments, possibly indicating a recovery from its previously reported higher contaminant level.

  10. Sediment deposition and selected water-quality characteristics in Cedar Lake and Lake Olathe, Northeast Kansas, 2000

    USGS Publications Warehouse

    Mau, D.P.

    2002-01-01

    The Lake Olathe watershed, located in northeast Kansas, was investigated using bathymetric survey data and reservoir bottom-sediment cores to determine sediment deposition, water-quality trends, and transport of nutrients (phosphorus and nitrogen species), selected trace elements, selected pesticides, and diatoms as indicators of eutrophic (organic-enriched and depleted oxygen supply) conditions. To determine sediment deposition and loads, bathymetric data from Cedar Lake and Lake Olathe, both located in the Lake Olathe watershed, were collected in 2000 and compared to historical topographic data collected when the lakes were built. Approximately 338 acre-feet of sediment deposition has occurred in Cedar Lake since dam closure in 1938, and 317 acre-feet has occurred at Lake Olathe since 1956. Mean annual sediment deposition was 5.45 acre-feet per year (0.89 acre-feet per year per square mile) for Cedar Lake and 7.0 acre-feet per year (0.42 acre-feet per year per square mile) for Lake Olathe. Mean annual sediment loads for the two reservoirs were 9.6 million pounds per year for Cedar Lake and 12.6 million pounds per year for Lake Olathe. Mean concentrations of total phosphorus in bottom-sediment samples from Cedar Lake ranged from 1,370 to 1,810 milligrams per kilogram, and concentrations in bottom-sediment samples from Lake Olathe ranged from 588 to 1,030 milligrams per kilogram. The implication of large total phosphorus concentrations in the bottom sediment of Cedar Lake is that inflow into Cedar Lake is rich in phosphorus and that adverse water-quality conditions could affect water quality in downstream Lake Olathe through discharge of water from Cedar Lake to Lake Olathe via Cedar Creek. Mean annual phosphorus loads transported from the Lake Olathe watershed were estimated to be 14,700 pounds per year for Cedar Lake and 9,720 pounds per year for Lake Olathe. The mean annual phosphorus yields were estimated to be 3.74 pounds per acre per year for Cedar Lake and 0

  11. Effects of an urban wetland on sediment and nutrient loads in runoff

    USGS Publications Warehouse

    Brown, R.G.

    1984-01-01

    Retention of sediment and nutrient loads in the wetland was associated with sedimentation processes. Dissolved nutrients generally were not retained in the wetland because the residence time of water passing through was not long enough for removal by biological processes. Effectiveness of the wetland in retaining sediment and nutrient loads in runoff varies annually. Long-term and short-term impacts of the retention of sediment and nutrients in the wetland on wetland flora and fauna are unknown.

  12. Importance of elemental mercury in lake sediments.

    PubMed

    Bouffard, Ariane; Amyot, Marc

    2009-02-01

    Mercury (Hg) redox changes in sediments are poorly studied and understood, even though they potentially control Hg availability for methylation and can alter sediment-water Hg exchange. Elemental Hg (Hg(0)) concentrations in sediments of two Canadian Shield lakes were assessed by thermodesorption. Hg(0) concentrations in sediments varied between 6.3 and 60.3 pg g(-1) (wet weight) which represented 7.4-28.4% of total mercury (HgT) concentration. Hg(0) concentrations were similar in both lakes. Hg(0) was rapidly adsorbed on sediments in controlled adsorption experiments and surface sediments sampled in summer had a stronger affinity for Hg(0) than deeper sediments and sediments sampled in fall. This adsorption was positively correlated to organic matter content and negatively related to particle grain size, pH and oxygen concentration in overlying water. This study demonstrates that Hg(0) is a prevalent species in sediments, but not in porewater, because of the high sorptive capacity of sediments towards Hg(0). Its potential availability towards Hg methylating bacteria remains to be determined.

  13. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  14. Sediment bioaccumulation test with Lumbriculus variegatus: Effects of feeding

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  15. Influence of sediment cohesion on deltaic shoreline dynamics and bulk sediment retention: A laboratory study

    NASA Astrophysics Data System (ADS)

    Straub, Kyle M.; Li, Qi; Benson, W. Matthew

    2015-11-01

    While boundary and forcing conditions influence the average location of a shoreline in deltaic systems, internal morphodynamics can drive high-magnitude deviations from the long-term trend. Here we explore the role of sediment cohesion on these morphodynamics using physical experiments. Specifically, we explore the role of sediment cohesion on the scales of autogenic shoreline transgressions and regressions. Results indicate that sediment cohesion enhances the time and space scales associated with autogenic cycles of channel formation, elongation, and abandonment. In systems with high sediment cohesion, this cycle can drive shoreline transgressions that produce flooding surfaces in the resulting stratigraphy which could be confused with surfaces produced by increases in sea level rise or subsidence rates. Enhanced channelization resulting from sediment cohesion also increases the pumping of fine-grained sediment into the marine realm, where it can bypass the delta foreset, thus decreasing total delta sediment retention rate.

  16. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    0.1 mg/L. Concentrations of suspended sediment were highest in the spring during runoff and lowest in the fall. The highest concentration of suspended sediment (1,020 mg/L) was observed at the Sinking Fork near Cadiz site. The median concentration of suspended sediment for all sites sampled was 12 mg/L. A nonparameteric statistical test (Wilcoxson rank-sum) showed that the median concentrations of suspended sediment were not different among any of the fixed-network sites. The Little River near Cadiz site contributed larger estimated mean annual loads of nitrite plus nitrate (2,500,000 pounds per year (lb/yr)) and total phosphorus (160,000 lb/yr) than the other three fixed-network sites. Of the two main upstream tributaries from the Little River near Cadiz site, the North Fork Little River was the greatest contributor of total phosphorus to the study area with an estimated mean annual load of 107,000 lb/yr or about 64 percent of the total estimated mean annual load at the Little River near Cadiz site. The other main upstream tributary, South Fork Little River, had an estimated mean annual load of total phosphorus that was about 20 percent of the mean annual load at the Little River near Cadiz site. Estimated loads of suspended sediment were largest at the Little River near Cadiz site, where the estimated mean annual load for 2003-04 was about 84,000,000 lb/yr. The North Fork Little River contributed an estimated 36 percent of the mean annual load of suspended sediment at the Little River near Cadiz site, while the South Fork Little River contributed an estimated 18 percent of the mean annual load at the Little River near Cadiz site. The North Fork Little River site had the largest estimated mean annual yield of total phosphorus (1,600 pounds per year per square mile (lb/yr/mi2)) and orthophosphate (1,100 lb/yr/mi2). A principal source of phosphorus for the North Fork Little River is discharge from wastewater-treatment facilities. The largest estimated mean annual

  17. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    USGS Publications Warehouse

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to

  18. Determination of radioactivity levels and heavy metal concentrations in seawater, sediment and anchovy (Engraulis encrasicolus) from the Black Sea in Rize, Turkey.

    PubMed

    Baltas, Hasan; Kiris, Erkan; Sirin, Murat

    2017-01-09

    Seawater, sediment and fish (anchovy) samples consumed in the Rize province of the Eastern Black Sea region of Turkey were collected from five different stations. The radioactivity levels ((226)Ra, (232)Th, (40)K and (137)Cs) were determined in all the samples using a high-purity germanium detector. While (226)Ra, (232)Th and (40)K radionuclides were detected in all samples, the radionuclide concentration of (137)Cs, except for the sediment samples (mean activity is 9±1.4Bqkg(-1)), was not detected for the seawater and fish samples. The total annual effective dose rates from the ingestion of these radionuclides for fish were calculated using the measured activity concentrations in radionuclides and their ingested dose conversion factor. Also, the concentrations of some heavy metals in all the samples were determined. The activity and heavy metal concentration values that were determined for the seawater, sediment and fish samples were compared among the locations themselves and with literature values.

  19. 76 FR 64894 - Annual Wholesale Trade Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... collect data covering annual sales, e-commerce sales, purchases, total operating expenses, year-end..., e- commerce sales, year-end inventories held inside and outside the United States, purchases, and... data covering annual sales, e-commerce sales, year-end inventories held inside and outside the...

  20. 75 FR 63805 - Annual Wholesale Trade Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Census Bureau will collect data on annual sales, e-commerce sales, purchases, total operating expenses... wholesale distributors, the Census Bureau will collect data covering sales, e-commerce sales, year-end... manufacturers' sales branches and offices, the Census Bureau will collect data covering annual sales,...

  1. 78 FR 68023 - Annual Wholesale Trade Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... collect data covering annual sales, e- commerce sales, purchases, total operating expenses, year-end... Census Bureau will collect data covering sales, e-commerce sales, year-end inventories held inside and... offices, the Census Bureau will collect data covering annual sales, e-commerce sales, year-end...

  2. 35th Annual Official Education Construction Report

    ERIC Educational Resources Information Center

    Agron, Joe

    2009-01-01

    Spending on construction by the nation's education institutions increased in 2008, reversing four years of declines in total annual expenditures, according to "American School & University"'s 35th annual Official Education Construction Report. One of the reasons for the increase in spending was the fact that the majority of the construction…

  3. Relationship of Bacterial Richness to Organic Degradation Rate and Sediment Age in Subseafloor Sediment

    PubMed Central

    Walsh, Emily A.; Kirkpatrick, John B.; Pockalny, Robert; Sauvage, Justine; Spivack, Arthur J.; Murray, Richard W.; Sogin, Mitchell L.

    2016-01-01

    ABSTRACT Subseafloor sediment hosts a large, taxonomically rich, and metabolically diverse microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here, we show that bacterial richness varies with organic degradation rate and sediment age. At three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), richness decreases exponentially with increasing sediment depth. The rate of decrease in richness with increasing depth varies from site to site. The vertical succession of predominant terminal electron acceptors correlates with abundance-weighted community composition but does not drive the vertical decrease in richness. Vertical patterns of richness at the open-ocean sites closely match organic degradation rates; both properties are highest near the seafloor and decline together as sediment depth increases. This relationship suggests that (i) total catabolic activity and/or electron donor diversity exerts a primary influence on bacterial richness in marine sediment and (ii) many bacterial taxa that are poorly adapted for subseafloor sedimentary conditions are degraded in the geologically young sediment, where respiration rates are high. Richness consistently takes a few hundred thousand years to decline from near-seafloor values to much lower values in deep anoxic subseafloor sediment, regardless of sedimentation rate, predominant terminal electron acceptor, or oceanographic context. IMPORTANCE Subseafloor sediment provides a wonderful opportunity to investigate the drivers of microbial diversity in communities that may have been isolated for millions of years. Our paper shows the impact of in situ conditions on bacterial community structure in subseafloor sediment. Specifically, it shows that bacterial richness in subseafloor sediment declines exponentially with sediment age, and in parallel with organic-fueled oxidation rate. This result

  4. Multivariate analysis of potentially toxic metals in sediments of a tropical coastal lagoon.

    PubMed

    Oyeyiola, A O; Davidson, C M; Olayinka, K O; Oluseyi, T O; Alo, B I

    2013-03-01

    Surface sediments collected from the Lagos Lagoon, Nigeria, and three adjoining rivers were analysed for their physicochemical properties and pseudo-total concentration of the potentially toxic metals (PTM) Cd, Cr, Cu, Pb and Zn. The concentration of the PTM varied seasonally and spatially. Odo-Iyaalaro was observed to be the most polluted river, with highest concentrations of 42.1 mg kg(-1), 102 mg kg(-1), 185 mg kg(-1), 154 mg kg(-1) and 1040 mg kg(-1) of Cd, Cr, Cu, Pb and Zn, respectively, while Ibeshe River was the least contaminated, apart from a site affected by Cu from the textile industry. Some of the sediments were found to be above the consensus-based probable effect concentrations and Dutch sediment guideline for metals. Overall metal concentrations were similar to those reported for other tropical lagoon and estuarine systems affected by anthropogenic inputs as a result of rapid urbanisation. Due to the large number of samples, principal component analysis was used to examine relationships within the data set. Generally, sediments collected during the dry season were observed to have higher concentration of PTM than those collected during the rainy season. This means that PTM could accumulate over a prolonged period and then be released relatively rapidly, on an annual basis, into tropical lagoon systems.

  5. Heavy metal pollution status in surface sediments of the coastal Bohai Bay.

    PubMed

    Gao, Xuelu; Chen, Chen-Tung Arthur

    2012-04-15

    Bohai Bay, the second largest bay of Bohai Sea, largely due to the huge amount of pollutants discharged into it annually and its geohydrologic condition, is considered to be one of the most polluted marine areas in China. To slow down, halt and finally reverse the environmental deterioration of Bohai Sea, some researchers have proposed to connect it with Jiaozhou Bay in the western coast of Southern Yellow Sea by digging an interbasin canal through Shandong Peninsula. In order to assess the heavy metal pollution and provide background information for such a large geoengineering scheme, surface sediments from 42 stations covering both riverine and marine regions of the northwestern coast of Bohai Bay were analyzed for heavy metal content and fractionation (Cd, Cr, Cu, Ni, Pb and Zn). Three empirically derived sediment quality guidelines were used to assess the pollution extent of these metals. The studied metals had low mobility except for Cd at all stations and Zn at some riverine stations. Although a high mobility of Cd was observed, it could hardly cause a bad effect on the environment owing to its low total concentrations. Anthropogenic influence on the accumulation of studied heavy metals in sediments of Bohai Bay was obvious, but their contents were relatively lower to date comparing with some other marine coastal areas that receive important anthropogenic inputs. Taking as a whole, surface sediments of northwestern Bohai Bay had a 21% probability of toxicity based on the mean effects range-median quotient.

  6. Nearshore sediment thickness, Fire Island, New York

    USGS Publications Warehouse

    Locker, Stanley D.; Miselis, Jennifer L.; Buster, Noreen A.; Hapke, Cheryl J.; Wadman, Heidi M.; McNinch, Jesse E.; Forde, Arnell S.; Stalk, Chelsea A.

    2017-04-03

    Investigations of coastal change at Fire Island, New York (N.Y.), sought to characterize sediment budgets and determine geologic framework controls on coastal processes. Nearshore sediment thickness is critical for assessing coastal system sediment availability, but it is largely unquantified due to the difficulty of conducting geological or geophysical surveys across the nearshore. This study used an amphibious vessel to acquire chirp subbottom profiles. These profiles were used to characterize nearshore geology and provide an assessment of nearshore sediment volume. Two resulting sediment-thickness maps are provided: total Holocene sediment thickness and the thickness of the active shoreface. The Holocene sediment section represents deposition above the maximum flooding surface that is related to the most recent marine transgression. The active shoreface section is the uppermost Holocene sediment, which is interpreted to represent the portion of the shoreface thought to contribute to present and future coastal behavior. The sediment distribution patterns correspond to previously defined zones of erosion, accretion, and stability along the island, demonstrating the importance of sediment availability in the coastal response to storms and seasonal variability. The eastern zone has a thin nearshore sediment thickness, except for an ebb-tidal deposit at the wilderness breach caused by Hurricane Sandy. Thicker sediment is found along a central zone that includes shoreface-attached sand ridges, which is consistent with a stable or accretional coastline in this area. The thickest overall Holocene section is found in the western zone of the study, where a thicker lower section of Holocene sediment appears related to the westward migration of Fire Island Inlet over several hundred years.

  7. Occurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regime.

    PubMed

    Sun, Jianqiang; Huang, Jing; Zhang, Anping; Liu, Weiping; Cheng, Wenwei

    2013-03-15

    Phthalate esters (PAEs), a group of emerging organic contaminants, have become a serious issue arousing much attention for their ubiquitous presence and hazardous impact on the environment. This study provides the first data on distribution of PAEs in the sediments in the Qiantang River, Zhejiang Province, China, and the inference with urbanization and river flow regime. PAEs were detected in all 23 sediment samples analyzed, and the total concentrations of their 16 congeners in sediments ranged from 0.59 to 6.74μg/g dry weight (dw), with the geometric mean value of 2.03μg/g dw. Of the 16 PAE congeners, di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), and di(2-ethylhexyl) phthalate (DEHP) were present in all sediment samples. The PAEs concentrations in urban regions were higher than those in rural regions because of higher discharge of PAEs from plastic materials in urbanized areas. Concentrations of PAEs were positively correlated with sediment organic matter (fOM) and negatively correlated with logistic value of annual average flow volume at sample sites. River flow regime modified by man-made dams significantly affected the distribution of PAEs. Analysis of congener composition of PAEs indicated that the DEHP was predominant congener in the Qiantang River. The normalized concentration of DEHP exceeded recommended environmental risk limit (ERL).

  8. Spatial variations in archaeal lipids of surface water and core-top sediments in the South china sea and their implications for paleoclimate studies.

    PubMed

    Wei, Yuli; Wang, Jinxiang; Liu, Jie; Dong, Liang; Li, Li; Wang, Hui; Wang, Peng; Zhao, Meixun; Zhang, Chuanlun L

    2011-11-01

    The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean, yet little is known about archaeal distributions and TEX₈₆-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX₈₆-derived temperatures were also calculated for these samples. The surface water had extremely low abundances of CL (average of 0.05 ± 0.13 ng/liter; n = 75), with higher values present in regions where upwelling is known to occur. The core-top sediments had CL values of 0.1 to 0.9 μg/g, which are on the low end of CL concentrations reported for other marine sediments and may reflect the oligotrophic nature of the open SCS. The IPL of Archaea accounted for 6 to 36.4% of total lipids (CL plus IPL), indicating that the majority of archaeal lipids in core-top sediments were derived from nonliving cells. The TEX₈₆-based temperatures of surface water were overall lower than satellite-based sea surface temperatures or CTD-measured in situ temperatures. The core-top sediment samples, however, had TEX₈₆ temperatures very close to the mean annual sea surface temperatures, except for samples with water depths of less than 100 m. Our results demonstrated low and heterogeneous distributions of archaeal lipids in surface water and core-top sediments of the SCS, which may reflect local or regional differences in productivity of Archaea. While TEX₈₆-based temperatures for core-top marine sediments at deep water depths (>100 m) generally reflected mean annual sea surface temperatures, TEX₈₆ temperatures in surface water varied basin wide and underestimated sea surface temperatures in most locations for the season when surface water samples were collected.

  9. Spatial Variations in Archaeal Lipids of Surface Water and Core-Top Sediments in the South China Sea and Their Implications for Paleoclimate Studies▿†

    PubMed Central

    Wei, Yuli; Wang, Jinxiang; Liu, Jie; Dong, Liang; Li, Li; Wang, Hui; Wang, Peng; Zhao, Meixun; Zhang, Chuanlun L.

    2011-01-01

    The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean, yet little is known about archaeal distributions and TEX86-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX86-derived temperatures were also calculated for these samples. The surface water had extremely low abundances of CL (average of 0.05 ± 0.13 ng/liter; n = 75), with higher values present in regions where upwelling is known to occur. The core-top sediments had CL values of 0.1 to 0.9 μg/g, which are on the low end of CL concentrations reported for other marine sediments and may reflect the oligotrophic nature of the open SCS. The IPL of Archaea accounted for 6 to 36.4% of total lipids (CL plus IPL), indicating that the majority of archaeal lipids in core-top sediments were derived from nonliving cells. The TEX86-based temperatures of surface water were overall lower than satellite-based sea surface temperatures or CTD-measured in situ temperatures. The core-top sediment samples, however, had TEX86 temperatures very close to the mean annual sea surface temperatures, except for samples with water depths of less than 100 m. Our results demonstrated low and heterogeneous distributions of archaeal lipids in surface water and core-top sediments of the SCS, which may reflect local or regional differences in productivity of Archaea. While TEX86-based temperatures for core-top marine sediments at deep water depths (>100 m) generally reflected mean annual sea surface temperatures, TEX86 temperatures in surface water varied basin wide and underestimated sea surface temperatures in most locations for the season when surface water samples were collected. PMID:21890672

  10. Notes on sedimentation activities calendar year 1988

    USGS Publications Warehouse

    ,

    1989-01-01

    This report is a digest of information furnished by Federal agencies conducting sedimentation investigations. The decision to publish the report was made in 1946, from a proposal by the Chairman of the Federal Interagency River Basin Committee, Subcommittee on Ground Water. The subcommittee approved the proposal and agreed to issue this report as a means of effecting better coordination of the work of various Federal agencies in the field of sedimentation. The report was issued on a quarterly basis in 1946 and 1947, from 1948 to 1953 reports were issued every 6 months, and from 1954 to the present, the report has been issued annually.

  11. Notes on sedimentation activities calendar year 1984

    USGS Publications Warehouse

    ,

    1985-01-01

    This report is a digest of information furnished by Federal agencies conducting sedimentation investigations. The decision to publish the report was made in 1946, from a proposal by the Chairman of the Federal Interagency River Basin Committee, Subcommittee on Ground Water. The Subcommittee approved the proposal and agreed to issue this report as a means of effecting better coordination of the work of various Federal agencies in the field of sedimentation. From 1946 to 1947 the report was issued on a quarterly basis, from 1948 to 1953 reports were issued every 6 months, and from 1954 to the present the report has been issued annually.

  12. Notes on sedimentation activities calendar year 1989

    USGS Publications Warehouse

    ,

    1990-01-01

    This report is a digest of information furnished by Federal agencies conducting sedimentation investigations. The decision to publish the report was made in 1946, from a proposal by the Chairman of the Federal Interagency River Basin Committee, Subcommittee on Ground Water. The subcommittee approved the proposal and agreed to issue this report as a means of effecting better coordination of the work of various Federal agencies in the field of sedimentation. The report was issued on a quarterly basis in 1946 and 1947, from 1948 to 1953 reports were issued every 6 months, and from 1954 to the present, the report has been issued annually.

  13. Notes on sedimentation activities calendar year 1985

    USGS Publications Warehouse

    ,

    1986-01-01

    This report is a digest of information furnished by Federal agencies conducting sedimentation investigations. The decision to publish the report was made in 1946, from a proposal by the Chairman of the Federal Interagercy River Basin Committee, Subcommittee on Ground Water. The subcommittee approved the proposal and agreed to issue this report as a means of effecting better coordination of the work of various Federal agencies in the field of sedimentation. From 1946 to 1947, the report was issued on a quarterly basis; from 1948 to 1953, reports were issued every 6 months; and from 1954 to the present, the report has been issued annually.

  14. Notes on sedimentation activities calendar year 1987

    USGS Publications Warehouse

    ,

    1988-01-01

    This report is a digest of information furnished by Federal agencies conducting sedimentation investigations. The decision to publish the report was made in 1946, from a proposal by the Chairman of the Federal Interagency River Basin Committee, Subcommittee on Ground Water. The subcommittee approved the proposal and agreed to issue this report as a means of effecting better coordination of the work of various Federal agencies in the field of sedimentation. The report was issued on a quarterly basis in 1946 and 1947, from 1948 to 1953 reports were issued every 6 months, and from 1954 to the present, the report has been issued annually.

  15. River sediment and flow characteristics near a bank filtration water supply: Implications for riverbed clogging

    NASA Astrophysics Data System (ADS)

    Goldschneider, Alexandra A.; Haralampides, Katy A.; MacQuarrie, Kerry T. B.

    2007-09-01

    SummaryRiverbed clogging is an important issue related to the sustainable exploitation of riverbank filtration well fields. In this research, several complementary field techniques are employed to assess the current state and possible evolution of riverbed clogging at a site in the Saint John River, New Brunswick. The study is conducted in regions of the riverbed that have previously been identified as allowing recharge to the semi-confined aquifer that has been used since 1955 to supply water to the City of Fredericton. Flow velocity measurements, video imaging, and suspended sediment and bed sediment analyses conducted during the low flow (summer) period indicate that part of the recharge area closest to the well field, about 20% of the total area, is affected by bed armoring with cobbles and boulders. Consistent with previous studies, with increasing distance from the riverbank the sediment size decreases and the armor layer disappears. Previous research indicates that turbulent impacti