7 CFR 51.1586 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of more than 10 percent of the total weight of the potato including peel covering defective area. Any... percent of the total weight of the potato including peel covering defective area. (b) Shriveling, when the... percent of the total weight of the potato including peel covering defective area. (e) Wireworm, grass root...
7 CFR 51.1586 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of more than 10 percent of the total weight of the potato including peel covering defective area. Any... percent of the total weight of the potato including peel covering defective area. (b) Shriveling, when the... percent of the total weight of the potato including peel covering defective area. (e) Wireworm, grass root...
NASA Astrophysics Data System (ADS)
Li, G. M.; Li, S.; Ying, G. W.; Wu, X. P.
2018-04-01
According to the function, land space types are divided into key development areas, restricted development areas and forbidden development areas in Sichuan Province. This paper monitors and analyses the changes of land cover in different typical functional areas from 2010 to 2017, which based on ZY-3 high-score images data and combined with statistical yearbook and thematic data of Sichuan Province. The results show that: The land cover types of typical key development zones are mainly composed of cultivated land, forest land, garden land, and housing construction land, which accounts for the total area of land cover 87 %. The land cover types of typical restricted development zone mainly consists of forest land and grassland, which occupy 97.71 % of the total area of the surface coverage. The land cover types of the typical prohibition development zone mainly consist of forest land, grassland, desert and bared earth, which accounts for the total area of land cover 99.31 %.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of the total weight of the potato including peel covering defective area. Loss of outer skin... percent of the total weight of the potato including peel covering defective area. (g) Rhizoctonia, when...
Characterizing the fabric of the urban environment: A case study of Salt Lake City, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Rose, L. Shea
2001-02-28
Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective implementation programs. In this report, we discuss the result of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Salt Lake City covered a total of about 34 km2 (13 mi2). At 0.50-m resolution, there were approximately 1.4 x 108 pixels of data. Four majormore » land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the areas studied, vegetation covers about 46 percent of the area (ranging 44-51 percent), roofs cover about 21 percent (ranging 15-24 percent), and paved surfaces about 26 percent (ranging 21-28 percent). For the most part, trees shade streets, parking lots, grass, and sidewalks. In most non-residential areas, paved surfaces cover 46-66 percent of the area. In residential areas, on average, paved surfaces cover about 32 percent of the area. Land-use/land-cover (LU/LC) data from the United States Geological Survey were used to extrapolate these results from neighborhood scales to metropolitan Salt Lake City. In an area of roughly 560 km2, defining most of metropolitan Salt Lake City, over 60 percent is residential. The total roof area is about 110 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 170 km2. The total vegetated area covers about 230 km2.« less
Ecological security pattern construction based on ecological protection redlines in China
NASA Astrophysics Data System (ADS)
Zou, Changxin
2017-04-01
China is facing huge environmental problems with its current rapid rate of urbanization and industrialization, thus causing biodiversity loss, ecosystem service degradation on a major scale. Against this background, three previous examples (the nature reserve policy, the afforestation policy, and the zoning policy) are implemented in China. These all play important roles in protecting natural ecosystems, although they can sometimes cause new problems and lack rigorous targets for environmental outcomes. To overcome current management conflicts, China has proposed a new "ecological protection redlines" policy (EPR). EPR can be defined as the ecological baseline area needed to provide ecosystem services to guarantee and maintain ecological safety. This study analyzed the scope, objectives and technical methods of delineating EPR in China, and put forward the proposed scheme for the ecological security pattern based on EPR. We constructed three kinds of redlines in China, including key ecological function area redlines, ecological sensitive or fragile areas redlines, and forbidden development areas redlines. For the key ecological function area redlines, a total of 38 water conservation functional zones have been designated, covering a total area of 3.23 million km2; 14 soil conservation zones have been designated, covering a total area of 881700 km2; wind-prevention and sand-fixation zones across the country cover a total area of about 1.73 million km2, accounting for 57.13% of the total land area of the whole country. With respect to the ecologically vulnerable redlines, 18 ecologically vulnerable zones has been designated across the country, covering 2.19 million km2, accounting for 22.86% of the total land area of the whole country. Forbidden development areas redlines covered a total area of 3.29 million km2, accounting for 34.3% of the total land area of the whole country. We also suggest to form a complete ecological security pattern including patterns of protecting ecological function, residential environment safety, and biodiversity maintenance. Further emphasis should be put in supporting management and control measures in order to promote ecological protection in China.
NASA Astrophysics Data System (ADS)
Chinnadurai, Gunasekaran; Fernando, Olivia Jegaletchmi
2007-03-01
The spatial variations of meiofauna population density and the assemblage of free-living marine nematodes in areas with Avicennia marina and Rhizophora apiculata cover of Pichavaram and Parangipettai (southeast coast of India) are described. Seven meiofauna taxa were recorded, with maximum density of meiofauna (890 ind. 10 cm -2) being recorded in an area with A. marina cover. Nematodes accounted for up to 93.1% of the total densities; other common taxa were foraminifera and polychaeta. A total of 44 species of nematodes belonging to 36 genera and 20 families were recorded. Of these, 37 species belonging to 30 genera and 17 families were recorded from Pichavaram mangrove and 14 species belonging to 10 families from a nearby artificial mangrove environment. While 16 species were common to both A. marina and R. apiculata cover, 15 species were restricted to areas with A. marina cover and 13 to areas with R. apiculata cover. Dorylaimopsis sp. was the abundant genera in areas with A. marina cover and Daptonema sp. in areas with R. apiculata cover. Only three species were common in all the five stations. Epistrate-feeders were the most abundant nematodes in areas with A. marina cover and deposit-feeders/ciliate feeders in areas with R. apiculata cover.
Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014
NASA Astrophysics Data System (ADS)
Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.
2017-10-01
A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.
Stonewall, Adam; Granato, Gregory E.; Haluska, Tana L.
2018-01-01
The Oregon Department of Transportation (ODOT) and other state departments of transportation need quantitative information about the percentages of different land cover categories above any given stream crossing in the state to assess and address roadway contributions to water-quality impairments and resulting total maximum daily loads. The U.S. Geological Survey, in cooperation with ODOT and the FHWA, added roadway and land cover information to the online StreamStats application to facilitate analysis of stormwater runoff contributions from different land covers. Analysis of 25 delineated basins with drainage areas of about 100 mi2 indicates the diversity of land covers in the Willamette Valley, Oregon. On average, agricultural, developed, and undeveloped land covers comprise 15%, 2.3%, and 82% of these basin areas. On average, these basins contained about 10 mi of state highways and 222 mi of non-state roads. The Stochastic Empirical Loading and Dilution Model was used with available water-quality data to simulate long-term yields of total phosphorus from highways, non-highway roadways, and agricultural, developed, and undeveloped areas. These yields were applied to land cover areas obtained from StreamStats for the Willamette River above Wilsonville, Oregon. This analysis indicated that highway yields were larger than yields from other land covers because highway runoff concentrations were higher than other land covers and the highway is fully impervious. However, the total highway area was a fraction of the other land covers. Accordingly, highway runoff mitigation measures can be effective for managing water quality locally, they may have limited effect on achieving basin-wide stormwater reduction goals.
77 FR 52265 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-29
... total area of corrosion or thread damage, or both, covers less than 25 percent of the length of the... paragraph (d)(3) of this AD. (B) If the total area of corrosion or thread damage, or both, covers 25 percent... to require inspections for corrosion or thread damage to each tail rotor balance weight (weight) and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Rose, Leanna Shea
2001-10-30
Urban fabric data are needed in order to estimate the impactof light-colored surfaces (roofs and pavements) and urban vegetation(trees, grass, shrubs) on the meteorology and air quality of a city, andto design effective implementation programs. In this report, we discussthe result of a semi-automatic Monte-Carlo statistical approach used todevelop data on surface-type distribution and city-fabric makeup(percentage of various surface-types) using aerial colororthophotography. The digital aerial photographs for metropolitan Chicagocovered a total of about 36 km2 (14 mi2). At 0.3m resolution, there wereapproximately 3.9 x 108 pixels of data. Four major land-use types wereexamined: commercial, industrial, residential, andtransportation/communication. On average, formore » the areas studied, atground level vegetation covers about 29 percent of the area (ranging 4 80percent); roofs cover about 25 percent (ranging 8 41 percent), and pavedsurfaces about 33 percent (ranging 12 59 percent). For the most part,trees shade streets, parking lots, grass, and side-walks. In commercialareas, paved surfaces cover 50 60 percent of the area. In residentialareas, on average, paved surfaces cover about 27percent of the area.Land-use/land-cover (LULC) data from the United States Geological Surveywas used to extrapolate these results from neighborhood scales tometropolitan Chicago. In an area of roughly 2500 km2, defining most ofmetropolitan Chicago, over 53 percent is residential. The total roof areais about 680 km2, and the total paved surfaces (roads, parking areas,sidewalks) are about 880 km2. The total vegetated area is about 680km2.« less
Characterizing the fabric of the urban environment: A case study of Greater Houston, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Leanna Shea; Akbari, Hashem; Taha, Haider
2003-01-15
In this report, the materials and various surface types that comprise a city are referred to as the ''urban fabric.'' Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective urban environmental implementation programs. We discuss the results of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Houston covered a total of about 52more » km2 (20 mi2). At 0.30-m resolution, there were approximately 5.8 x 108 pixels of data. Four major land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the regions studied, vegetation covers about 39 percent of the area, roofs cover about 21 percent, and paved surfaces cover about 29 percent. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the vegetation canopies, paved surfaces cover about 32 percent of the study area. GLOBEIS model data from University of Texas and land-use/land-cover (LULC) information from the United States Geological Survey (USGS) were used to extrapolate these results from neighborhood scales to Greater Houston. It was found that in an area of roughly 3,430 km2, defining most of Greater Houston, over 56 percent is residential. The total roof area is about 740 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 1000 km2. Vegetation covers about 1,320 km2.« less
Sprague, Lori A.; Nowell, Lisa H.
2008-01-01
To examine the effect of urban development on pesticide concentrations in streams under low-flow conditions, water samples were collected at stream sites along an urban land use gradient in six environmentally heterogeneous metropolitan areas of the United States. In all six metropolitan areas, total insecticide concentrations generally increased significantly as urban land cover in the basin increased, regardless of whether the background land cover in the basins was agricultural, forested, or shrub land. In contrast, the response of total herbicide concentrations to urbanization varied with the environmental setting. In the three metropolitan areas with predominantly forested background land cover (Raleigh-Durham, NC, USA; Atlanta, GA, USA; Portland, OR, USA), total herbicide concentrations increased significantly with increasing urban land cover. In contrast, total herbicide concentrations were not significantly related to urban land cover in the three remaining metropolitan areas, where total herbicide concentrations appeared to be strongly influenced by agricultural as well as urban sources (Milwaukee-Green Bay, WI, USA; Dallas-Fort Worth, TX, USA), or by factors not measured in the present study, such as water management (Denver, CO, USA). Pesticide concentrations rarely exceeded benchmarks for protection of aquatic life, although these low-flow concentrations are likely to be lower than at other times, such as during peak pesticide-use periods, storm events, or irrigation discharge. Normalization of pesticide concentrations by the pesticide toxicity index - an index of relative potential toxicity - for fish and cladocerans indicated that the pesticides detected at the highest concentrations (herbicides in five of the six metropolitan areas) were not necessarily the pesticides with the greatest potential to adversely affect aquatic life (typically insecticides such as carbaryl, chlorpyrifos, diazinon, and fipronil). ?? 2008 SETAC.
Quantification of prairie restoration for phytostability at a remediated defense plant.
Franson, Raymond L; Scholes, Chad M
2011-01-01
In June 2008 and 2009, cover, density, and species diversity were measured on two areas of the prairie at the U. S. Department of Energy Weldon Spring Site to begin quantification of the prairie establishment and the effects of a prairie burn. Sampling began by testing for the most appropriate transect length (cover) and quadrat size (density) for quantification of vegetation. Total cover increased in the first growing season after burning. Conversely, total cover decreased in the unburned area in one year. The trend in litter cover is the opposite with litter decreasing after burning, but increasing in one year in the unburned area. Bare ground decreased in one year in the unburned area, but was unchanged after burning. Species diversity tripled after fire, but was unchanged in one year in the unburned area. The results show that litter and fire both affect plant cover. If land reclamation activities are to be an integral part of hazardous waste remediation at contaminated sites, then the success of reclamation efforts needs to be quantified along with success criteria for waste remediation of the sites. The results show that plant cover can be easily quantified, but that density measures are more biased which makes it more difficult to achieve adequate sample size for plant density.
Gould, William A.; Martinuzzi, Sebastián; Pares-Ramos, Isabel K.; Murphy, Sheila F.; Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.
2012-01-01
We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land in Puerto Rico. Closed forests occupy about 37 percent of the area, woodlands and shrublands 7 percent, nonforest vegetation 43 percent, urban development 10 percent, and water and natural barrens total less than 2 percent. The area has been classified into three main land-use categories by integrating recent census information (population density per barrio in the year 2000) with satellite image analyses (degree of developed area versus natural land cover). Urban land use (in this analysis, land with more than 20 percent developed cover within a 1-square-kilometer area and population density greater than 500 people per square kilometer) covered 16 percent of eastern Puerto Rico. Suburban land use (more than 80 percent natural land cover, more than 500 people per square kilometer, and primarily residential) covers 50 percent of the area. Rural land use (more than 80 percent natural land cover, less than 500 people per square kilometer, and primarily active or abandoned agricultural, wetland, steep slope, or protected conservation areas) covered 34 percent of the area. Our analysis of land-cover change indicates that in the 1990s, forest cover increased at the expense of woodlands and grasslands. Urban development increased by 16 percent during that time. The most pronounced change in the last seven decades has been the shift from a nonforested to a forested landscape and the intensification of the ring of urbanization that surrounds the long-protected Luquillo Experimental Forest.
[Characteristics of chemical pollution of snow cover in Aktobe areas].
Iskakov, A Zh
2010-01-01
The paper gives data on the nature of snow cover pollution in the urbanized areas in relation to the remoteness from the basic sources of ambient air pollution. The total snow content of carcinogens has been estimated.
Forest cover change and fragmentation using Landsat data in Maçka State Forest Enterprise in Turkey.
Cakir, Günay; Sivrikaya, Fatih; Keleş, Sedat
2008-02-01
Monitoring forest cover change and understanding the dynamic of forest cover is increasingly important in sustainable development and management of forest ecosystems. This paper uses remote sensing (RS) techniques to monitor forest cover change in Maçka State Forest Enterprise (MSFE) located in NE of Turkey through 1975 to 2000 and then analyses spatial and temporal changes in forest cover by Geographical Information Systems (GIS) and FRAGSTATStrade mark. Forest cover changes were detected from a time series of satellite images of Landsat MSS in 1975, Landsat TM in 1987, and Landsat ETM+ in 2000 using RS and GIS. The results showed that total forest area, productive forest area and degraded forest area increased while broadleaf forest area and non forest area decreased. Mixed forest and degraded forest increased during the first (1975-1987) period, but decreased during the second (1987-2000) period. During the whole study period, the annual forestation rate was 152 ha year(-1), equivalent to 0.27% year(-1) using the compound-interest-rate formula. The total number of patches increased from 36,204 to 48,092 (33%), and mean size of forest patch (MPS) decreased from 2.8 ha to 2.1 ha during a 25 year period. Number of smaller patches (patches in 0-100 ha size class) increased, indicating more fragmented landscape over time that might create a risk for the maintenance of biodiversity of the area. While total population increased from 1975 to 2000 (3.7%), rural population constantly decreased. The increase of forest areas may well be explained by the fact that demographic movement of rural areas concentrated into Maçka City Center. These figures also indicated that decrease in the rural population might likely lead to the release of human pressure to forest areas, probably resulting in a positive development of forest areas.
NASA Astrophysics Data System (ADS)
Janke, Jason R.; Ng, Sam; Bellisario, Antonio
2017-11-01
An inventory of firn fields, glaciers, debris-covered glaciers, and rock glaciers was conducted in the Aconcagua River Basin of the semiarid Andes of central Chile. A total of 916 landforms were identified, of which rock glaciers were the most abundant (669) and occupied the most total area. Glaciers and debris-covered glaciers were less numerous, but were about five times larger in comparison. The total area occupied by glaciers and debris-covered glaciers was roughly equivalent to the total area of rock glaciers. Debris-covered glaciers and rock glaciers were subcategorized into six ice-content classes based on interpretation of surface morphology with high-resolution satellite imagery. Over 50% of rock glaciers fell within a transitional stage; 85% of debris-covered glaciers were either fully covered or buried. Most landforms occupied elevations between 3500 and 4500 m. Glaciers and firn occurred at higher elevations compared to rock glaciers and debris-covered glaciers. Rock glaciers had a greater frequency in the northern part of the study area where arid climate conditions exist. Firn and glaciers were oriented south, debris-covered glaciers west, and rock glaciers southwest. An analysis of water contribution of each landform in the upper Andes of the Aconcagua River Basin was conducted using formulas that associate the size of the landforms to estimates of water stored. Minimum and maximum water storage was calculated based on a range of debris to ice content ratios for debris-covered glaciers and rock glaciers. In the Aconcagua River Basin, rock glaciers accounted for 48 to 64% of the water stored within the landforms analyzed; glaciers accounted for 15 to 25%; debris-covered glaciers were estimated at 15 to 19%; firn fields contained only about 5 to 8% of the water stored. Expansion of agriculture, prolonged drought, and removal of ice-rich landforms for mining have put additional pressure on already scarce water resources. To develop long-term, sustainable solutions, the importance of the water stored in rock glaciers or other alpine permafrost landforms, such as talus slopes, must be weighed against the economic value of mineral resources.
Development of deforestation and land cover database for Bhutan (1930-2014).
Reddy, C Sudhakar; Satish, K V; Jha, C S; Diwakar, P G; Murthy, Y V N Krishna; Dadhwal, V K
2016-12-01
Bhutan is a mountainous country located in the Himalayan biodiversity hotspot. This study has quantified the total area under land cover types, estimated the rate of forest cover change, analyzed the changes across forest types, and modeled forest cover change hotpots in Bhutan. The topographical maps and satellite remote sensing images were analyzed to get the spatial patterns of forest and associated land cover changes over the past eight decades (1930-1977-1987-1995-2005-2014). Forest is the largest land cover in Bhutan and constitutes 68.3% of the total geographical area in 2014. Subtropical broad leaved hill forest is predominant type occupies 34.1% of forest area in Bhutan, followed by montane dry temperate (20.9%), montane wet temperate (18.9%), Himalayan moist temperate (10%), and tropical moist sal (8.1%) in 2014. The major forest cover loss is observed in subtropical broad leaved hill forest (64.5 km 2 ) and moist sal forest (9.9 km 2 ) from 1977 to 2014. The deforested areas have mainly been converted into agriculture and contributed for 60.9% of forest loss from 1930 to 2014. In spite of major decline of forest cover in time interval of 1930-1977, there is no net rate of deforestation is recorded in Bhutan since 1995. Forest cover change analysis has been carried out to evaluate the conservation effectiveness in "Protected Areas" of Bhutan. Hotspots that have undergone high transformation in forest cover for afforestation and deforestation were highlighted in the study for conservation prioritisation. Forest conservation policies in Bhutan are highly effective in controlling deforestation as compared to neighboring Asian countries and such service would help in mitigating climate change.
Assessing the US Urban Forest Resources
David J. Nowak; Mary H. Noble; Susan M. Sisinni; John F. Dwyer
2001-01-01
Urban areas in the conterminous United States doubled in size between 1969 and 1994, and currently cover 3.5 percent of the total land area and contain more than 75 percent of the US population. Urban areas contain approximately 3.8 billion trees with an average tree canopy cover of 27 percent. The extent and variation of urban forests across the 48 states are explored...
NASA Astrophysics Data System (ADS)
Turubanova, S.; Potapov, P.; Krylov, A.; Tyukavina, A.; McCarty, J. L.; Radeloff, V. C.; Hansen, M. C.
2015-04-01
Dramatic political and economic changes in Eastern European countries following the dissolution of the "Eastern Bloc" and the collapse of the Soviet Union greatly affected land-cover and land-use trends. In particular, changes in forest cover dynamics may be attributed to the collapse of the planned economy, agricultural land abandonment, economy liberalization, and market conditions. However, changes in forest cover are hard to quantify given inconsistent forest statistics collected by different countries over the last 30 years. The objective of our research was to consistently quantify forest cover change across Eastern Europe from 1985 until 2012 using the complete Landsat data archive. We developed an algorithm for processing imagery from different Landsat platforms and sensors (TM and ETM+), aggregating these images into a common set of multi-temporal metrics, and mapping annual gross forest cover loss and decadal gross forest cover gain. Our results show that forest cover area increased from 1985 to 2012 by 4.7% across the region. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Most forest disturbance recovered fast, with only 12% of the areas of forest loss prior to 1995 not being recovered by 2012. Timber harvesting was the main cause of forest loss. Logging area declined after the collapse of socialism in the late 1980s, increased in the early 2000s, and decreased in most countries after 2007 due to the global economic crisis. By 2012, Central and Baltic Eastern European countries showed higher logging rates compared to their Western neighbours. Comparing our results with official forest cover and change estimates showed agreement in total forest area for year 2010, but with substantial disagreement between Landsat-based and official net forest cover area change. Landsat-based logging areas exhibit strong relationship with reported roundwood production at national scale. Our results allow national and sub-national level analysis of forest cover extent, change, and logging intensity and are available on-line as a baseline for further analyses of forest dynamics and its drivers.
Riparian zones as havens for exotic plant species in the central grasslands
Stohlgren, T.J.; Bull, K.A.; Otsuki, Yuka; Villa, C.A.; Lee, M.
1998-01-01
In the Central Grasslands of the United States, we hypothesized that riparian zones high in soil fertility would contain more exotic plant species than upland areas of low soil fertility. Our alternate hypothesis was that riparian zones high in native plant species richness and cover would monopolize available resources and resist invasion by exotic species. We gathered nested-scale vegetation data from 40 1 m2subplots (nested in four 1000 m2 plots) in both riparian and upland sites at four study areas in Colorado, Wyoming, and South Dakota (a total of 320 1 m2subplots and 32 1000 m2 plots). At the 1 m2 scale, mean foliar cover of native species was significantly greater (P < 0.001) in riparian zones (36.6% ?? 1.7%) compared to upland sites (28.7% ?? 1.5%), but at this small scale there were no consistent patterns of native and exotic species richness among the four management areas. Mean exotic species cover was slightly higher in upland sites compared to riparian sites (9.0% ?? 3.8% versus 8.2% ?? 3.0% cover). However, mean exotic species richness and cover were greater in the riparian zones than upland sites in three of four management areas. At the 1000 m2 scale, mean exotic species richness was also significantly greater (P < 0.05) in riparian zones (7.8 ?? 1.0 species) compared to upland sites (4.8 ?? 1.0 species) despite the heavy invasion of one upland site. For all 32 plots combined, 21% of the variance in exotic species richness was explained by positive relationships with soil % silt (t = 1.7, P = 0.09) and total foliar cover (t = 2.4, P = 0.02). Likewise, 26% of the variance in exotic species cover (log10 cover) was explained by positive relationships with soil % silt (t = 2.3, P = 0.03) and total plant species richness (t = 2.4, P = 0.02). At landscape scales (four 1000 m2 plots per type combined), total foliar cover was significantly and positively correlated with exotic species richness (r = 0.73, P < 0.05) and cover (r = 0.74, P < 0.05). Exotic species cover (log10 cover) was positively correlated with log10% N in the soil (r = 0.61, P = 0.11) at landscape scales. On average, we found that 85% (??5%) of the total number of exotic species in the sampling plots of a given management area could be found in riparian zones, while only 50% (??8%) were found in upland plots. We conclude that: (1 species-rich and productive riparian zones are particularly invasible in grassland ecosystems; and (2) riparian zones may act as havens, corridors, and sources of exotic plant invasions for upland sites and pose a significant challenge to land managers and conservation biologists.
Facilitating the exploitation of ERTS imagery using snow enhancement techniques
NASA Technical Reports Server (NTRS)
Wobber, F. J.; Martin, K. (Principal Investigator); Amato, R. V.; Leshendok, T.
1973-01-01
The author has identified the following significant results. Comparative analysis of snow-free and snow-covered imagery of the New England Test Area has resulted in a larger number of lineaments mapped from snow-covered imagery in three out of four sets of comparative imagery. Analysts unfamiliar with the New England Test Area were utilized; the quality of imagery was independently judged to be uniform. In all image sets, a greater total length of lineaments was mapped with the snow-covered imagery. The value of this technique for fracture mapping in areas with thick soil cover is suggested. A number of potentially useful environmental applications of snow enhancement related to such areas as mining, land use, and hydrology have been identified.
Changes in vegetation cover and composition in the Swedish mountain region.
Hedenås, Henrik; Christensen, Pernilla; Svensson, Johan
2016-08-01
Climate change, higher levels of natural resource demands, and changing land use will likely lead to changes in vegetation configuration in the mountain regions. The aim of this study was to determine if the vegetation cover and composition have changed in the Swedish region of the Scandinavian Mountain Range, based on data from the long-term landscape biodiversity monitoring program NILS (National Inventory of Landscapes in Sweden). Habitat type and vegetation cover were assessed in 1740 systematically distributed permanent field plots grouped into 145 sample units across the mountain range. Horvitz-Thompson estimations were used to estimate the present areal extension of the alpine and the mountain birch forest areas of the mountain range, the cover of trees, shrubs, and plants, and the composition of the bottom layer vegetation. We employed the data from two subsequent 5-year monitoring periods, 2003-2007 and 2008-2012, to determine if there have been any changes in these characteristics. We found that the extension of the alpine and the mountain birch forest areas has not changed between the inventory phases. However, the total tree canopy cover increased in the alpine area, the cover of graminoids and dwarf shrubs and the total cover of field vegetation increased in both the alpine area and the mountain birch forest, the bryophytes decreased in the alpine area, and the foliose lichens decreased in the mountain birch forest. The observed changes in vegetation cover and composition, as assessed by systematic data in a national and regional monitoring scheme, can validate the results of local studies, experimental studies, and models. Through benchmark assessments, monitoring data also contributes to governmental policies and land-management strategies as well as to directed cause and effect analyses.
Jamison, B.E.; Robel, R.J.; Pontius, J.S.; Applegate, R.D.
2002-01-01
Invertebrates are important food sources for lesser prairie-chicken (Tympanuchus pallidicinctus) adults and broods. We compared invertebrate biomass in areas used and not used by lesser prairie-chicken adults and broods. We used radiotelemetry to determine use and non-use areas in sand sagebrush (Artemisia filifolia) prairie in southwestern Kansas and sampled invertebrate populations during summer 1998 and 1999. Sweepnet-collected biomass of short-horned grasshoppers (Acrididae) and total invertebrate biomass generally were greater in habitats used by lesser prairie-chickens than in paired non-use areas. We detected no differences in pitfall-collected biomass of Acrididae (P=0.81) or total invertebrate biomass (P=0.93) among sampling areas with sand sagebrush canopy cover of 0 to 10%, 11 to 30%, and >30%. Results of multivariate analysis and regression model selection suggested that forbs were more strongly associated with invertebrate biomass than shrubs, grasses, or bare ground. We could not separate lesser prairie-chicken selection for areas of forb cover from selection of areas with greater invertebrate biomass associated with forb cover. Regardless of whether the effects of forbs were direct or indirect, their importance in sand sagebrush habitat has management implications. Practices that maintain or increase forb cover likely will increase invertebrate biomass and habitat quality in southwestern Kansas.
Jamison, B.; Robel, R.J.; Pontius, J.S.; Applegate, R.D.
2002-01-01
Invertebrates are important food sources for lesser prairie-chicken (Tympanuchus pallidicinctus) adults and broods. We compared invertebrate biomass in areas used and not used by lesser prairie-chicken adults and broods. We used radiotelemetry to determine use and non-use areas in sand sagebrush (Artemisia filifolia) prairie in southwestern Kansas and sampled invertebrate populations during summer 1998 and 1999. Sweepnet-collected biomass of short-horned grasshoppers (Acrididae) and total invertebrate biomass generally were greater in habitats used by lesser prairie-chickens than in paired non-use areas. We detected no differences in pitfall-collected biomass of Acrididae (P=0.81) or total invertebrate biomass (P=0.93) among sampling areas with sand sagebrush canopy cover of 0 to 10%, 11 to 30%, and >30%. Results of multivariate analysis and regression model selection suggested that forbs were more strongly associated with invertebrate biomass than shrubs, grasses, or bare ground. We could not separate lesser prairie-chicken selection for areas of forb cover from selection of areas with greater invertebrate biomass associated with forb cover. Regardless of whether the effects of forbs were direct or indirect, their importance in sand sagebrush habitat has management implications. Practices that maintain or increase forb cover likely will increase invertebrate biomass and habitat quality in southwestern Kansas.
Updating the New Zealand Glacier Inventory
NASA Astrophysics Data System (ADS)
Baumann, S. C.; Anderson, B.; Mackintosh, A.; Lorrey, A.; Chinn, T.; Collier, C.; Rack, W.; Purdie, H.
2017-12-01
The last complete glacier inventory of New Zealand dates from the year 1978 (North Island 1988) and was manually constructed from oblique aerial photographs and geodetic maps (Chinn 2001). The inventory has been partly updated by Gjermundsen et al. (2011) for the year 2002 (40% of total area) and by Sirguey & More (2010) for the year 2009 (32% of total area), both using ASTER satellite imagery. We used Landsat 8 OLI/TIRS satellite data from February/March 2016 to map the total glaciated area. Clean and debris-covered ice were mapped semi-automatically. The band ratio approach was used for clean ice (ratio: red/SWIR). We mapped debris-covered ice using a supervised classification (maximum likelihood). Manual post processing was necessary due to misclassifications (e.g. lakes, clouds) or mapping in shadowed areas. It was also necessary to manually combine the clean and debris-covered parts into single glaciers. Additional input data for the post processing were Sentinel 2 images from the same time period, orthophotos from Land Information New Zealand (resolution: 0.75 m, date: Nov 2014), and the 1978/88 outlines from the GLIMS database (http://www.glims.org/). As the Sentinel 2 data were more heavily cloud covered compared to the Landsat 8 images, they were only used for post processing and not for the classification itself. Initial results show that New Zealand glaciers covered an area of about 1050 km² in 2016, a reduction of 16% since 1978. Approximately 17% of glacier area was covered in surface debris. The glaciers in the central Southern Alps around Mt Cook reduced in area by 24%. Glaciers in the North Island of New Zealand reduced by 71% since 1988, and only 2 km² of ice cover remained in 2016. Chinn, TJH (2001). "Distribution of the glacial water resources of New Zealand." Journal of Hydrology (NZ) 40(2): 139-187 Gjermundsen, EF, Mathieu, R, Kääb, A, Chinn, TJH, Fitzharris, B & Hagen, JO (2011). "Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978-2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data." Journal of Glaciology 57(204): 667-683 Sirguey, P & More, B (2010). GLIMS Glacier Database. Boulder, NSIDC
Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data
NASA Astrophysics Data System (ADS)
Churches, Christopher E.; Wampler, Peter J.; Sun, Wanxiao; Smith, Andrew J.
2014-08-01
This study uses 2010-2011 Landsat Thematic Mapper (TM) imagery to estimate total forested area in Haiti. The thematic map was generated using radiometric normalization of digital numbers by a modified normalization method utilizing pseudo-invariant polygons (PIPs), followed by supervised classification of the mosaicked image using the Food and Agriculture Organization (FAO) of the United Nations Land Cover Classification System. Classification results were compared to other sources of land-cover data produced for similar years, with an emphasis on the statistics presented by the FAO. Three global land cover datasets (GLC2000, Globcover, 2009, and MODIS MCD12Q1), and a national-scale dataset (a land cover analysis by Haitian National Centre for Geospatial Information (CNIGS)) were reclassified and compared. According to our classification, approximately 32.3% of Haiti's total land area was tree covered in 2010-2011. This result was confirmed using an error-adjusted area estimator, which predicted a tree covered area of 32.4%. Standardization to the FAO's forest cover class definition reduces the amount of tree cover of our supervised classification to 29.4%. This result was greater than the reported FAO value of 4% and the value for the recoded GLC2000 dataset of 7.0%, but is comparable to values for three other recoded datasets: MCD12Q1 (21.1%), Globcover (2009) (26.9%), and CNIGS (19.5%). We propose that at coarse resolutions, the segmented and patchy nature of Haiti's forests resulted in a systematic underestimation of the extent of forest cover. It appears the best explanation for the significant difference between our results, FAO statistics, and compared datasets is the accuracy of the data sources and the resolution of the imagery used for land cover analyses. Analysis of recoded global datasets and results from this study suggest a strong linear relationship (R2 = 0.996 for tree cover) between spatial resolution and land cover estimates.
Canopy Effects on Macroscale Snow Sublimation
NASA Astrophysics Data System (ADS)
Svoma, B. M.
2015-12-01
Sublimation of snow cover directly affects snow accumulation, impacting ecosystem processes, soil moisture, soil porosity, biogeochemical processes, wildfire, and water resources. Available energy, the exposed surface area of a snow cover, and exposure time with the atmosphere vary greatly in complex terrain (e.g., aspect, elevation, forest cover), with latitude, and with continentality. It is therefore difficult to scale up results from site specific short term studies. Using the 32-km NARR, the 4-km PRISM, with 30-m terrain and forest cover data, meteorological variables are downscaled to simulate sublimation from canopy intercepted snow and from the snowpack over the Salt River Basin in Arizona for a wet and dry year. Simulations indicate that: (1) total sublimation is highly variable in response to variability in both sublimation rate and snow cover duration; (2) total canopy sublimation is similar for both years while ground sublimation is considerably greater during the wet year; (3) sublimation is a relatively greater contribution to the snow water budget during the dry year (28% vs. 20% of total snowfall); (4) at high elevations, ground sublimation is less in open areas than forested areas during the dry year, while the reverse is evident during the wet year as snowpack lasted longer into spring. While a reduction in leaf area index leads to a reduction of total sublimation due to less interception in both years, ground sublimation increases during the dry year, possibly due to less sheltering from solar radiation and wind. This reduction in sheltering results in a large decrease in snowpack duration (i.e., ten days in spring) at mid-elevations for the wet year, leading to a decrease in ground sublimation. This results in a 500 meter difference in the elevation of maximum sublimation reduction upon reduced leaf area index between the two years. Forest cover properties can vary considerably on short and long time scales through natural (wildfire, bark beetle infestation, drought) and anthropogenic (land management practices) processes. Therefore, understanding how small scale changes impact snow sublimation at larger spatial scales, and how this varies temporally, is critical from ecosystem function and water resources perspectives.
Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss
Potapov, P.; Hansen, Matthew C.; Stehman, S.V.; Loveland, Thomas R.; Pittman, K.
2008-01-01
Estimation of forest cover change is important for boreal forests, one of the most extensive forested biomes, due to its unique role in global timber stock, carbon sequestration and deposition, and high vulnerability to the effects of global climate change. We used time-series data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to produce annual forest cover loss hotspot maps. These maps were used to assign all blocks (18.5 by 18.5 km) partitioning the boreal biome into strata of high, medium and low likelihood of forest cover loss. A stratified random sample of 118 blocks was interpreted for forest cover and forest cover loss using high spatial resolution Landsat imagery from 2000 and 2005. Area of forest cover gross loss from 2000 to 2005 within the boreal biome is estimated to be 1.63% (standard error 0.10%) of the total biome area, and represents a 4.02% reduction in year 2000 forest cover. The proportion of identified forest cover loss relative to regional forest area is much higher in North America than in Eurasia (5.63% to 3.00%). Of the total forest cover loss identified, 58.9% is attributable to wildfires. The MODIS pan-boreal change hotspot estimates reveal significant increases in forest cover loss due to wildfires in 2002 and 2003, with 2003 being the peak year of loss within the 5-year study period. Overall, the precision of the aggregate forest cover loss estimates derived from the Landsat data and the value of the MODIS-derived map displaying the spatial and temporal patterns of forest loss demonstrate the efficacy of this protocol for operational, cost-effective, and timely biome-wide monitoring of gross forest cover loss.
NASA Astrophysics Data System (ADS)
MacDonald, I. R.; Garcia-Pineda, O. G.; Solow, A.; Daneshgar, S.; Beet, A.
2013-12-01
Oil discharged as a result of the Deepwater Horizon disaster was detected on the surface of the Gulf of Mexico by synthetic aperture radar satellites from 25 April 2010 until 4 August 2010. SAR images were not restricted by daylight or cloud-cover. Distribution of this material is a tracer for potential environmental impacts and an indicator of impact mitigation due to response efforts and physical forcing factors. We used a texture classifying neural network algorithm for semi-supervised processing of 176 SAR images from the ENVISAT, RADARSAT I, and COSMO-SKYMED satellites. This yielded an estimate the proportion of oil-covered water within the region sampled by each image with a nominal resolution of 10,000 sq m (100m pixels), which was compiled as a 5-km equal area grid covering the northern Gulf of Mexico. Few images covered the entire impact area, so analysis was required to compile a regular time-series of the oil cover. A Gaussian kernel using a bandwidth of 2 d was used to estimate oil cover percent in each grid at noon and midnight throughout the interval. Variance and confidence intervals were calculated for each grid and for the global 12-h totals. Results animated across the impact region show the spread of oil under the influence of physical factors. Oil cover reached an early peak of 17032.26 sq km (sd 460.077) on 18 May, decreasing to 27% of this total on 4 June, following by sharp increase to an overall maximum of 18424.56 sq km (sd 424.726) on 19 June. There was a significant negative correlation between average wind stress and the total area of oil cover throughout the time-series. Correlation between response efforts including aerial and subsurface application of dispersants and burning of gathered oil was negative, positive, or indeterminate at different time segments during the event. Daily totals for oil-covered surface waters of the Gulf of Mexico during 25 April - 9 August 2010 with upper and lower 0.95 confidence limits on estimate. (No oil visible after 4 August.)
Seasonal snow cover regime and historical change in Central Asia from 1986 to 2008
NASA Astrophysics Data System (ADS)
Zhou, Hang; Aizen, Elena; Aizen, Vladimir
2017-01-01
A series of statistics describing seasonal Snow Cover Extent and timing in Central Asia (CA) have been derived from AVHRR satellite images for the time period from 1986 to 2008. Analysis of long term mean snow cover statistics shows that the area weighted mean of long term Snow Covering Days (SCD) for the whole CA is 95.2 ± 65.7 days. High elevation mountainous areas above 3000 m in Altai, Tien Shan and Pamir, which account for about 2.8% of total area in CA, have SCD > 240 days. Deserts (Karakorum Desert, Taklamakan Desert, Kumtag Desert) and rain shadow areas of major mountains, accounting for 27.0% of total area in CA, have SCD in the range of 0-30 days. Factors affecting snow cover distribution have been analyzed using simple linear regression and segmented regression. For plain regions and windward regions, the SCD rate is + 5.9 days/100 m, while for leeward regions, the rate jumps from + 0.7 days/100 m to + 10.0 days/100 m at about 2335 m. Latitude affects the SCD, especially in plain regions with insignificant change of elevation, with rates of 9-10 days/degree from south to north. The Mann-Kendal test and the Theil-Sen regression methods have been applied to analyze the spatial heterogeneous trends of change of SCD, Snow Cover Onset Date (SCOD), and Snow Cover Melt Date (SCMD). Area weighed mean SCD in the whole CA does not exhibit significant trend of change from 1986 to 2008. Increase of SCD was observed in the northeastern Kazakh Steppe. Low elevation areas below 2000 m in Central Tien Shan and Eastern Tien Shan, as well as mid-elevation areas from 1000 m to 3000 m in Western Tien Shan, Pamiro-Alai and Western Pamir, also experienced increase of SCD, associated with both earlier SCOD and later SCMD. Decrease of SCD was observed in mountainous areas of Altai, Tien Shan and Pamir, and vast areas in plains surrounding the Aral Sea.
Continental-scale Sensitivity of Water Yield to Changes in Impervious Cover
NASA Astrophysics Data System (ADS)
Caldwell, P.; Sun, G.; McNulty, S.; Cohen, E.; Moore Myers, J.
2012-12-01
Projected land conversion from native forest, grassland, and shrubland to urban impervious cover will alter watershed water balances by reducing groundwater recharge and evapotranspiration, increasing surface runoff, and potentially altering regional weather patterns. These hydrologic changes have important ecohydrological implications to local watersheds, including stream channel habitat degradation and the loss of aquatic biodiversity. Many observational studies have evaluated the impact of urbanization on water yield in small catchments downstream of specific urban areas. However it is often difficult to separate the impact of impervious cover from other impacts of urbanization such as leaking water infrastructure, irrigation runoff, water supply withdrawals, and effluent discharge. In addition, the impact of impervious cover has not been evaluated at scales large enough to assess spatial differences in water yield sensitivity to changes in impervious cover. The objective of this study was to assess the sensitivity of water yield to impervious cover across the conterminous U.S., and to identify locations where water yield will be most impacted by future urbanization. We used the Water Supply Stress Index (WaSSI) model to simulate monthly water yield as impacted by impervious cover for the approximately 82,000 12-digit HUC watersheds across the conterminous U.S. WaSSI computed infiltration, surface runoff, soil moisture, and baseflow processes explicitly for ten vegetative land cover classes and impervious cover in each watershed using the 2006 National Land Cover Dataset estimates of impervious cover. Our results indicate that impervious cover has increased total water yield in urban areas (relative to native vegetation), and that the increase was most significant during the growing season. The proportion of stream flow that occurred as baseflow decreased, even though total water yield increased as a result of impervious cover. Water yield was most sensitive to changes in impervious cover in areas where annual evapotranspiration is high relative to precipitation (e.g. the Southwestern States, Texas, and Florida). Water yield was less sensitive in areas with low evapotranspiration relative to precipitation (e.g. Pacific Northwest and Northeastern States). Additionally, water yield was most impacted when high evapotranspiration land cover types (e.g. forests) were converted to impervious cover than when lower evapotranspiration land cover types (e.g. grassland) were converted. Using projections of future impervious cover provided by the U.S. EPA Integrated Climate and Land Use Scenarios project, water yield in urban areas of the Southwest, Texas, and Florida will be the most impacted by 2050, in part because these areas are projected to have significant increases in impervious cover, but also because they are in areas where evapotranspiration is high relative to precipitation. Our study suggests that watershed management should consider the climate-driven sensitivity of water yield to increases in impervious cover and the type of land cover being converted in addition to the magnitude of projected increases in impervious cover when evaluating impacts of urbanization on water resources.
Entisol land characteristics with and without cover crop (Mucuna bracteata) on rubber plantation
NASA Astrophysics Data System (ADS)
Sakiah; Sembiring, M.; Hasibuan, J.
2018-02-01
Optimal nutrient delivery is one way to improve the quality and quantity of crop production. This is because the crops needs for nutrient is quite high, while the soil capacity in providing nutrients is limited. In addition to fertilization, nutrients can be given in the form of added organic material or planted as cover crop. The research took place from April to August 2016 in Bandar Pinang, Bandar Sumatera Indonesia Ltd. (SIPEF Group) plantation, with survey method. Soil samples were taken based on: Topography (flat and slope 15-30%), cover crop (with or without Mucuna bracteata) and plant age (seedling periods 1, 2 and 3). The soil sample is taken composite by zig zag method. The observed parameters were organic matter, N total, soil texture, bulk density and infiltration rate. Mucuna bracteata planting increased the contain of soil organic matter by 30.43% in flat area and 53.33% in hilly area, amount of N total soil by 27.27% in flat area and 7.69% at hilly area, bulk density 3.73 % In flat area and 0.41% in hilly area, soil infiltration by 48.88% with sandy clay dominant soil texture.
The managed clearing: An overlooked land-cover type in urbanizing regions?
Singh, Kunwar K; Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K
2018-01-01
Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type-semi-natural, vegetated land surfaces with varying degrees of management practices-for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area- 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems.
NASA Astrophysics Data System (ADS)
Lucas, M.; Trauernicht, C.; Carlson, K. M.; Miura, T.; Giambelluca, T. W.; Chen, Q.
2017-12-01
The past decades in Hawaii have seen large scale land use change and land cover shifts. However, much these dynamics are only described anecdotally or studied at a single locale, with little information on the extent, rate, or direction of change. This lack of data hinders any effort to assess, plan, and prioritize land management. To improve assessments of statewide vegetation and land cover change, this project developed high resolution, sub-pixel, percent cover maps of forest, grassland and bare earth at annual time steps from 1999 to 2016. Vegetation cover was quantified using archived LANDSAT imagery and a custom remote-sensing algorithm developed in the Google Earth Engine platform. A statistical trend analysis of annual maps of the these three proportional land covers were then used to detect land cover transitions across the archipelago. The aim of this work focused on quantifying the total area of change, annual rates of change and final vegetation cover outcomes statewide. Additionally these findings were attributed to past and current land uses and management history by compiling spatial datasets of development, agriculture, forest restoration sites and burned areas statewide. Results indicated that nearly 10% of the state's land surfaces are suspected to have transitioned between the three cover classes during the study period. Total statewide net change resulted in a gain in forest cover with largest areas of change occurring in unmanaged areas, current and past pastoral land, commercial forestry and abandoned cultivated land. The fastest annual rates of change were forest increases that occurred in restoration areas and commercial forestry. These findings indicate that Hawaii is going through a forest transition, primarily driven by agricultural abandonment with likely feedbacks from invasive species, but also influenced by the establishment of forestry production on former agricultural lands that show potential for native forest restoration. These results directly link land management history to land cover outcomes using an innovative approach to quantify change. It is also the first study to quantify forest transition dynamics in Hawaii and points to the need for similar assessments in post-agricultural landscapes on other oceanic islands.
NASA Technical Reports Server (NTRS)
Ramaty, Reuven (Editor); Cline, Thomas L. (Editor); Ormes, Jonathan F. (Editor)
1987-01-01
The papers presented cover a broad segment of space research and are an acknowledgement of the personal involvement of Frank McDonald in many of these efforts. The totality of the papers were chosen so as to sample the scientific areas influenced by him in a significant manner. Three broad areas are covered: particles and fields of the solar system; cosmic ray astrophysics; and gamma ray, X-ray, and infrared astronomics.
Land use, population dynamics, and land-cover change in Eastern Puerto Rico
W.A. Gould; S. Martinuzzi; I.K. Páres-Ramos
2012-01-01
We assessed current and historic land use and land cover in the Luquillo Mountains and surrounding area in eastern Puerto Rico, including four small subwatersheds that are study watersheds of the U.S. Geological Surveyâs Water, Energy, and Biogeochemical Budgets (WEBB) program. This region occupies an area of 1,616 square kilometers, about 18 percent of the total land...
Assessment of Post Forest Fire Landslides in Uttarakhand Himalaya, India
NASA Astrophysics Data System (ADS)
Sharma, N.; Singh, R. B.
2017-12-01
According to Forest Survey of India-State Forest Report (2015), the total geographical area of Uttarakhand is 53, 483 covers km2 out of which 24,402 km2 area covers under total forest covers. As noticed during last week of April, 2016 forest of Uttarakhand mountains was gutted down due to major incidences of fire. This incident caused huge damage to different species of flora-fauna, human being, livestock, property and destruction of mountain ecosystem. As per media reports, six people were lost their lives and recorded several charred carcasses of livestock's due to this incident. The forest fire was affected the eleven out of total thirteen districts which roughly covers the 0.2% (approx.) of total vegetation covers.The direct impact of losses are easy to be estimated but indirect impacts of this forest fire are yet to be occurred. The threat of post Forest fire induced landslides during rainfall is themain concern. Since, after forest fire top soil and rocks are loose due to loss of vegetation as binding and protecting agent against rainfall. Therefore, the pore water pressure and weathering will be very high during rainy season which can cause many landslides in regions affected by forest fire. The demarcation of areas worse affected by forest fire is necessary for issuing alerts to habitations and important infrastructures. These alerts will be based upon region specific probable rainfall forecasting through Indian Meteorological Department (IMD). The main objective is to develop a tool for detecting early forest fire and to create awareness amongst mountain community, researchers and concerned government agencies to take an appropriate measures to minimize the incidences of Forest fire and impact of post forest fire landslides in future through implementation of sustainable mountain strategy.
NASA Astrophysics Data System (ADS)
Huo, L. Z.; Boschetti, L.
2016-12-01
Remote sensing has been successfully used for global mapping of changes in forest cover, but further analysis is needed to characterize those changes - and in particular to classify the total loss of forest loss (Gross Forest Cover Loss, GFCL) based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non-forest) (Kurtz et al., 2010). While natural forest disturbances (fires, insect outbreaks) and timber harvest generally involve a temporary change of land cover (vegetated to non-vegetated), they generally do not involve a change in land use, and it is expected that the forest cover loss is followed by recovery. Change of land use, such as the conversion of forest to agricultural or urban areas, is instead generally irreversible. The proper classification of forest cover loss is therefore necessary to properly model the long term effects of the disturbances on the carbon budget. The present study presents a spatial and temporal analysis of the forest cover loss due to urban expansion in the Conterminous United States. The Landsat-derived University of Maryland Global Forest Change product (Hansen et al, 2013) is used to identify all the areas of gross forest cover loss, which are subsequently classified into disturbance type (deforestation, stand-replacing natural disturbances, industrial forest clearcuts) using an object-oriented time series analysis (Huo and Boschetti, 2015). A further refinement of the classification is conducted to identify the areas of transition from forest land use to urban land use based on ancillary datasets such as the National Land Cover Database (Homer et al., 2015) and contextual image analysis techniques (analysis of object proximity, and detection of shapes). Results showed that over 4000 km2of forest were lost to urban area expansion in CONUS over the 2001 to 2010 period (1.8% of the gross forest cover loss). Most of the urban growth was concentrated in large urban areas: Atlanta, GA ranked first, followed by Houston, TX; Charlotte, NC; Jacksonville, FL; and Raleigh, NC. At the state level, the top 10 states with urban growth due to forest loss were GA, FL, TX, NC, SC, AL, LA, MS, VA and WA, which cumulatively accounted for 76 % of the total forest cover loss due to urban growth.
Onamuti, Olapeju Y; Okogbue, Emmanuel C; Orimoloye, Israel R
2017-11-01
Lake Chad commonly serves as a major hub of fertile economic activities for the border communities and contributes immensely to the national growth of all the countries that form its boundaries. However, incessant and multi-decadal drying via climate change pose greater threats to this transnational water resource, and adverse effects on ecological sustainability and socio-economic status of the catchment area. Therefore, this study assessed the extent of shrinkage of Lake Chad using remote sensing. Landsat imageries of the lake and its surroundings between 1987 and 2005 were retrieved from Global Land Cover Facility website and analysed using Integrated Land and Water Information System version 3.3 (ILWIS 3.3). Supervised classification of area around the lake was performed into various land use/land cover classes, and the shrunk part of its environs was assessed based on the land cover changes. The shrinkage trend within the study period was also analysed. The lake water size reduced from 1339.018 to 130.686 km 2 (4.08-3.39%) in 1987-2005. The supervised classification of the Landsat imageries revealed an increase in portion of the lake covered by bare ground and sandy soil within the reference years (13 490.8-17 503.10 km 2 ) with 4.98% total range of increase. The lake portion intersected with vegetated ground and soil also reduced within the period (11 046.44-10 078.82 km 2 ) with 5.40% (967.62 km 2 ) total decrease. The shrunk part of the lake covered singly with vegetation increased by 2.74% from 1987 to 2005. The shrunk part of the lake reduced to sand and turbid water showed 5.62% total decrease from 1987 to 2005 and a total decrease of 1805.942 km 2 in area. The study disclosed an appalling rate of shrinkage and damaging influences on the hydrologic potential, eco-sustainability and socio-economics of the drainage area as revealed using ILWIS 3.3.
Khormi, Hassan M; Kumar, Lalit
2012-05-01
An important option in preventing the spread of dengue fever (DF) is to control and monitor its vector (Aedes aegypti) as well as to locate and destroy suitable mosquito breeding environments. The aim of the present study was to use a combination of environmental and socioeconomic variables to model areas at risk of DF. These variables include clinically confirmed DF cases, mosquito counts, population density in inhabited areas, total populations per district, water access, neighbourhood quality and the spatio-temporal risk of DF based on the average, weekly frequency of DF incidence. Out of 111 districts investigated, 17 (15%), covering a total area of 121 km2, were identified as of high risk, 25 (22%), covering 133 km2, were identified as of medium risk, 18 (16%), covering 180 km2, were identified as of low risk and 51 (46%), covering 726 km2, were identified as of very low risk. The resultant model shows that most areas at risk of DF were concentrated in the central part of Jeddah county, Saudi Arabia. The methods used can be implemented as routine procedures for control and prevention. A concerted intervention in the medium- and high-risk level districts identified in this study could be highly effective in reducing transmission of DF in the area as a whole.
Franson, Raymond; Scholes, Chad; Krabbe, Stephen
2017-01-02
In June 2005, the Department of Energy (DOE) began establishing the 60-ha Howell Prairie around the disposal cell at the DOE Weldon Spring Site (WSS). Prairies were historically present in the area of the site. Quantitative Cover sampling was used to quantify Total Cover, Native Grass Cover, Non-Native Grass Cover, Native Forb Cover, Non-Native Forb Cover, Warm Season (C 4 Grass), Cool Season (C 3 Grass), Perennial Cover and Annual Cover, Litter, and Bare Ground. Four permanent vegetation sampling plots were established. The first 4 years of vegetation measurements at Howell Prairie were made during above-average rainfall years on burned and unburned plots. The fifth-year (2012) vegetation measurements were made after below-average rainfall. Five years of results not only document the consistency of the restoration effort in three areas, but also demonstrate deficiencies in Grass Cover in a fourth area. The results are not only useful for Howell Prairie, but will be useful for restoration work throughout the region. Restoration work suffers from a lack of success monitoring and in this case from a lack of available reference areas. Floristic Quality Indices are used to make qualitative comparisons of the site to Konza Prairie sites.
NASA Technical Reports Server (NTRS)
Buczkowski, D. L.; Frey, H. V.; McGill, G. E.
2005-01-01
It has been suggested that quasicircular depressions (QCDs) without a structural representation in Viking and MOC visible imagery represent buried impact craters [1,2,3,4]. Topographic depressions will form over impact craters buried by a differentially compacting cover material because total cover thickness, and thus total compaction, is greater over the center of completely buried impact craters than their rims [5]. If this is the process by which QCDs form, then only areas of differentially compacting materials should have QCDs. Previous work has established that there is a relationship of surface relief to diameter for QCDs around the Utopia Basin [6]. The slope of the trend of this relationship varies depending on cover thickness, becoming steeper with decreasing thickness [7]. Comparing trendslopes of QCDs around different lowland basins might give us insight into the relative thickness of the cover material in these areas. We explore the geographic distribution of QCDs around the Utopia, Isidis and Acidalia basins and compare their location to geologic units and materials. We also compare evidence for relative thickness of cover material at the three basins.
DeJager, Nathan R.; Rohweder, Jason J.
2017-01-01
Quantifying changes in the cover of river-floodplain systems can provide important insights into the processes that structure these landscapes as well as the potential consequences to the ecosystem services they provide. We examined net changes in 13 different aquatic and floodplain land cover classes using photo interpreted maps of the navigable portions of the Upper Mississippi River (UMR, above the confluence with the Ohio River) and Illinois River from 1989 to 2000 and from 2000 to 2010. We detected net decreases in vegetated aquatic area in nearly all river reaches from 1989 to 2000. The only river reaches that experienced a subsequent recovery of vegetated aquatic area from 2000 to 2010 were located in the northern portion of the UMR (above navigation pool 14) and two reaches in the Illinois River. Changes on the floodplain were dominated by urban development, which increased in nearly every river reach studied from 1989 to 2000. Agricultural lands declined in most river reaches from 2000 to 2010. The loss of agricultural land cover in the northern UMR was accompanied by increases in forest cover, whereas in the lower UMR and Illinois River, declines in agriculture were accompanied by increases in forest and shallow marsh communities. The changes in aquatic vegetation occupied between 5 and 20% of the total aquatic area and are likely associated with previously reported regional improvements in water clarity, while smaller (1–15% of the total floodplain area) changes in anthropogenic land cover types on the floodplain are likely driven by broad-scale socio-economic conditions.
Land use and land cover mapping: City of Palm Bay, Florida
NASA Technical Reports Server (NTRS)
Barile, D. D.; Pierce, R.
1977-01-01
Two different computer systems were compared for use in making land use and land cover maps. The Honeywell 635 with the LANDSAT signature development program (LSDP) produced a map depicting general patterns, but themes were difficult to classify as specific land use. Urban areas were unclassified. The General Electric Image 100 produced a map depicting eight land cover categories classifying 68 percent of the total area. Ground truth, LSDP, and Image 100 maps were all made to the same scale for comparison. LSDP agreed with the ground truth 60 percent and 64 percent within the two test areas compared and Image 100 was in agreement 70 percent and 80 percent.
Spatial and temporal trends in distribution of forest fires in Central and Eastern Europe
Ryszard Szczygieł; Barbara Ubysz; Tomasz Zawiła-Niedźwiecki
2009-01-01
Forest in Central and Eastern Europe (CEE) covers 56,285,000 ha (5% of European total forested area). Forest cover in CEE makes 30% of land use. Almost 50% of the forest under study is formed by coniferous species and only 30% by deciduous ones. Forest younger than 60 years old grows on 57% of that area. These factors, together with climate conditions cause that on the...
Nigatu Wondrade; Dick, Øystein B; Tveite, Havard
2014-03-01
Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km(2) in 1973 to 95.2 km(2) in 2011, while that of Lake Cheleleka whose area was 11.3 km(2) in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The "change and no change" analysis revealed that more than one third (548.0 km(2)) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.
Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal
NASA Astrophysics Data System (ADS)
Wagnon, Patrick; Vincent, Christian; Shea, Joseph M.; Immerzeel, Walter W.; Kraaijenbrink, Philip; Shrestha, Dibas; Soruco, Alvaro; Arnaud, Yves; Brun, Fanny; Berthier, Etienne; Futi Sherpa, Sonam
2017-04-01
Approximately 25% of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of debris-covered portions of these glaciers has not been measured directly. In this study, ground-based measurements of surface elevation and ice depth are combined with terrestrial photogrammetry, unmanned aerial vehicle (UAV) and satellite elevation models to derive the surface mass balance of the debris-covered tongue of Changri Nup Glacier, located in the Everest region. Over the debris-covered tongue, the mean elevation change between 2011 and 2015 is -0.93 m year-1 or -0.84 m water equivalent per year (w.e. a-1). The mean emergence velocity over this region, estimated from the total ice flux through a cross section immediately above the debris-covered zone, is +0.37mw.e. a-1. The debris-covered portion of the glacier thus has an area averaged mass balance of -1.21+/-0.2mw.e. a-1 between 5240 and 5525 m above sea level (m a.s.l.). Surface mass balances observed on nearby debris-free glaciers suggest that the ablation is strongly reduced (by ca. 1.8mw.e. a-1) by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs. This finding contradicts earlier geodetic studies and should be considered for modelling the future evolution of debris-covered glaciers.
The managed clearing: An overlooked land-cover type in urbanizing regions?
Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.
2018-01-01
Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area– 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems. PMID:29432442
Satish, K V; Saranya, K R L; Reddy, C Sudhakar; Krishna, P Hari; Jha, C S; Rao, P V V Prasada
2014-12-01
Deforestation in the biosphere reserves, which are key Protected Areas has negative impacts on biodiversity, climate, carbon fluxes and livelihoods. Comprehensive study of deforestation in biosphere reserves is required to assess the impact of the management effectiveness. This article assesses the changes in forest cover in various zones and protected areas of Nilgiri Biosphere Reserve, the first declared biosphere reserve in India which forms part of Western Ghats-a global biodiversity hotspot. In this study, we have mapped the forests from earliest available topographical maps and multi-temporal satellite data spanning from 1920's to 2012 period. Mapping of spatial extent of forest cover, vegetation types and land cover was carried out using visual interpretation technique. A grid cell of 1 km × 1 km was generated for time series change analysis to understand the patterns in spatial distribution of forest cover (1920-1973-1989-1999-2006-2012). The total forest area of biosphere reserve was found to be 5,806.5 km(2) (93.8 % of total geographical area) in 1920. Overall loss of forest cover was estimated as 1,423.6 km(2) (24.5 % of the total forest) with reference to 1920. Among the six Protected Areas, annual deforestation rate of >0.5 was found in Wayanad wildlife sanctuary during 1920-1973. The deforestation in Nilgiri Biosphere Reserve is mainly attributed to conversion of forests to plantations and agriculture along with submergence due to construction of dams during 1920 to 1989. Grid wise analysis indicates that 851 grids have undergone large-scale negative changes of >75 ha of forest loss during 1920-1973 while, only 15 grids have shown >75 ha loss during 1973-1989. Annual net rate of deforestation for the period of 1920 to 1973 was calculated as 0.5 followed by 0.1 for 1973 to 1989. Our analysis shows that there was large-scale deforestation before the declaration of area as biosphere reserve in 1986; however, the deforestation has drastically reduced after the declaration due to high degree of protection, thus indicating the secure future of reserve in the long term under the current forest management practices. The present work will stand as the most up-to-date assessment on the forest cover of the Nilgiri Biosphere Reserve with immediate applications in monitoring and management of forest biodiversity.
The status of U.S. Virgin Islands' forests, 2004
Thomas J. Brandeis; Sonja N. Oswalt
2007-01-01
Forest covers 21 237 ha of the U.S. Virgin Islands, 61 percent of the total land area. St. John had the highest percentage of forest cover (92 percent), followed by St. Thomas (74 percent), and St. Croix (50 percent). Forest cover has decreased 7 percent from 1994 to 2004, a loss of 1671 ha of forest. Most notably, St. Croix lost 986 ha (11 percent) of subtropical dry...
Cancer prevalence in Italian cancer registry areas: the ITAPREVAL study. ITAPREVAL Working Group.
Micheli, A; Francisci, S; Krogh, V; Rossi, A G; Crosignani, P
1999-01-01
To present data on cancer prevalence for the areas covered by Italian cancer registries, by using a standardized set of data collection and elaboration criteria, and a single method of data analysis. Data on over 250,000 patients with cancer, diagnosed between 1978 and 1992, from 11 Italian cancer registries covering about 12% of the Italian population were collected, validated and analyzed according to the unified protocol of the ITAPREVAL project. The method implemented in the PREVAL computer program was used to provide prevalence estimates for the period covered by cancer registration. The total prevalence for each registry and for the pool of all registries was then estimated by correcting for incomplete observations due to the period in which the registration was not yet activated. All prevalence estimates were for 1992. Prevalence figures are presented by cancer site, age, sex, years from diagnosis and registry area. For all malignancies combined, total prevalence ranged from 1,350 per 100,000 inhabitants in Ragusa to 3,650 per 100,000 inhabitants in Romagna, the ratio between these two extremes being 2.7. For the pool of the areas covered by registration cancer prevalence was 3,100 per 100,000 females and 2,250 per 100,000 males. About a third of the total female cases and about half the male cases were diagnosed in the previous five years. Among those aged over 75 years, total prevalence was higher for males than for females: 11,300 versus 8,900 per 100,000 respectively. This is the first large-scale estimate of the burden of cancer in Italy. It is also one of the first studies in the world which was aimed to study cancer prevalence in detail. These data are necessary for predicting health service needs and help in the evaluation of differences in health service demand by sex, age and Italian regions.
Georgia, 2011 - forest inventory and analysis factsheet
Richard A. Harper
2012-01-01
Georgia contains the largest area of forest cover in the South with 24.8 million acres, accounting for 67 percent of the Stateâs land area (table 1). The forest area has remained relatively stable over the last 50 years. Commercial timberland area (land available for production of forest products) comprises >98 percent of the total forest land area. The remaining...
[Distribution, surface and protected area of palm-swamps in Costa Rica and Nicaragua].
Serrano-Sandí, Juan; Bonilla-Murillo, Fabian; Sasa, Mahmood
2013-09-01
In Central America, palm swamps are known collectively as yolillales. These wetlands are usually dominated by the raffia palm Raphia taedigera, but also by the royal palm Manicaria saccifera and -in lower extensions- by the American oil palm Elaeis oleifera. The yolillales tend to be poor in woody species and are characteristic of regions with high rainfall and extensive hydroperiods, so they remain flooded most of the year. The dominance of large raffia palm leaves in the canopy, allow these environments to be distinguishable in aerial photographs, which consequently has helped to map them along most of their distribution. However, while maps depicting yolillales are available, the extent of their surface area, perimeter and connectivity remains poorly understood. This is particularly true for yolillales in Costa Rica and Nicaragua, countries that share a good proportion of palm dominated swaps in the Rio San Juan Basin. In addition, it is not known the actual area of these environments that is under any category of protection according to the conservation systems of both countries. As a first step to catalog yolillal wetlands in Costa Rica and Nicaragua, this paper evaluates cartographic maps to delineate yolillales in the region. A subsample of yolillales mapped in this study were visited and we geo-referenced them and evaluate the extent and condition of the swamp. A total of 110 883.2ha are classified as yolillales in Nicaragua, equivalent to 22% of wetland surface area recorded for that country (excluding the Cocibolca and Xolothn Lakes). In Costa Rica, 53 931.3ha are covered by these palm dominated swamps, which represent 16.24% of the total surface area covered by wetlands. About 47% of the area covered by yolillales in Nicaragua is under some category of protection, the largest extensions protected by Cerro Silva, Laguna Tale Sulumas and Indio Maiz Nature Reserves. In Costa Rica, 55.5% of the area covered by yolillal is located within protected areas, mainly the Tortuguero National Park, Barra del Colorado Wildlife Refuge and the Sierpe-Thrraba National Wetland. Therefore, in both countries, about half the area covered by these wetlands is not protected by their systems of protection of wilderness areas.
Deterioration of soil fertility by land use changes in South Sumatra, Indonesia: from 1970 to 1990
NASA Astrophysics Data System (ADS)
Lumbanraja, Jamalam; Syam, Tamaluddin; Nishide, Hiroyo; Kabul Mahi, Ali; Utomo, Muhajir; Sarno; Kimura, Makoto
1998-10-01
We monitored the land use changes in a hilly area of West Lampung, South Sumatra, Indonesia, from 1970 to 1990. The main data sources were the land use maps produced in 1970, 1978, 1984 and 1990 covering the area of 27 km×27 km. Transmigration and the resultant effect of increased population were the major driving forces in land use changes. Fifty-seven per cent of the study area was covered with primary forests in 1970, but only 13% in 1990. Areas under plantations, which were absent in 1970, increased to 60% in 1990. In addition, the change from monoculture plantations (mostly coffee plantation) to mixed plantations was noticeable from 1984 to 1990. Total upland areas including upland areas under shifting cultivation and upland fields with crops and vegetables decreased from 21% in 1970 to 0·1% in 1990. Soil chemical properties (total organic C, total N, available P, total P, exchangeable cations, cation exchangeable capacity (CEC), etc.) were analysed for lands under different land use forms after deforestation in the study area. Soil samples (surface layers, 0-20 cm, and subsurface layers, 20-40 cm) were collected from three different locations, each comprised of four different land use systems: i.e. primary forests, secondary forests, coffee plantations and cultivated lands. The contents of total organic C, total N, available P, total P, exchangeable cations and CEC decreased significantly with land use change from primary forests to the other land use forms. Cultivated lands exhibited the lowest values. Although less remarkable than in the surface layers, the amounts of total organic C, total N, total P, exchangeable cations and CEC were also decreased by forest clearing in the subsurface layers.Based on the land use changes from 1978 in the study area and the deterioration of soil chemical properties by forest clearing, total decreases in the amounts of nutrients in the surface and subsurface layers were estimated. The land use changes were estimated to have decreased the total amounts of total organic C, total N, available P, total P, exchangeable cations and CEC by 2-9% in 1984 and by 2-15% in 1990 in the surface layers, and by 1-6%% in 1984 and by 2-9% in 1990 in the subsurface layers from the levels in 1978, respectively.
NASA Astrophysics Data System (ADS)
Olchev, Alexander; Kuzmina, Ekaterina; Rozinkina, Inna; Nikitin, Mikhail; Rivin, Gdaly S.
2017-04-01
The forests have a significant effect on the climatic system. They capture CO2 from the atmosphere, regulate the surface evaporation and runoff, and influence the radiation and thermal conditions of the land surface. It is obvious, that their influence depends on many different factors including regional climate conditions, land use and vegetation structure, surface topography, etc. The main goal of the study is to assess the possible influence of forest cover changes (under deforestation and/or afforestation) on regional weather conditions in the central part of European Russia using the results of modeling experiments provided by the meso-scale COSMO-CLM model. The need of the study lies in a lack of the experimental and modeling data characterizing the influence of the forest and land-use changes on regional weather conditions in European part of Russia. The forest ecosystems in the study region play a very important biosphere role that is significantly increased in the last decades due to considerable strengthening of anthropogenic activity in the area of European Russia. The area selected for the study is located in the central part of European Russia between 55 and 59N and 28 and 37E. It comprises several geographical zones including dark-coniferous forests of the South-European taiga in the north, the mixed forests in the central part and the broad-leaved forests in the south. The forests within the study area are very heterogeneous. The total area covered by forests according to recent remote sensing data is about 50%. The numerical experiments were provided using the COSMO-CLM model with the spatial resolution 13.2 km. As initial and boundary conditions for the numerical experiments the global reanalysis ERA Interim (with the 6-hour resolution in time and 0.75° × 0.75° in space) were used. The weather conditions were simulated in a continuous cycle for several months for the entire area of European Russia using the results of global reanalysis on external boundaries of the modeling domain. For the modeling experiments the warm period (from May to September) of 2010 was selected. The first modeling experiment assumed total deforestation of the study area. The second experiment suggested complete interruption of economic activity in the region, forest regeneration and total area afforestation. It was assumed that the forest cover increase in the considered scenario was only due to increase of the fraction of pioneer small-leaved tree species (e.g. birch, aspen). Any possible changes in proportion of coniferous species were ignored. The results of the modeling experiments showed considerable influence of forest cover changes on regional weather conditions. The influence of forest cover was manifested in changes of spatial patterns of the air temperature at different levels in the atmosphere, in changes of amount and intensity of precipitation, dew point, cloud cover, relative humidity, wind speed, and in changes of a number of other meteorological parameters. It was shown that the total deforestation of the study region can result in increase of the mean air temperature in summer on 0.3°C and in reduction of precipitation by about 6%. The afforestation processes can lead to opposite effects: in case of modeling scenario imitating the total afforestation of the study area the model predicts the decrease of the mean summer temperatures on 0.1°C and increase of precipitation by 4%. The diurnal changes of meteorological parameters can be significantly higher and more heterogeneous. Whereas the changes of the surface air temperature and humidity, wind speed and some other parameters are mainly appeared within the area with changed forest cover only, the changes of precipitation and cloud cover patterns are manifested within the entire European part of Russia including the areas situated outside the study region. The study is involved in the NEESPI program and it was supported by grant of the Russian Science Foundation (14-14- 00956).
Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health
NASA Astrophysics Data System (ADS)
Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.
2002-12-01
Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.
Sources of variation in nitrous oxide flux from Amazonian ecosystems
NASA Technical Reports Server (NTRS)
Matson, P. A.; Vitousek, P. M.; Livingston, G. P.; Swanberg, N. A.
1990-01-01
Nitrous oxide flux and soil nutrient characteristics were measured in three undisturbed tropical ecosystem types, in cleared and burned areas, and in areas of forest converted to pasture near Manaus, Brazil. Nitrogen mineralization, nitrification, and soil nitrogen pools were high in upland forests on clay soils (terra firme) and low in the sand-type and floodplain (varzea) soils. Nitrous oxide flux followed the same pattern, with an average flux of 1.9 ng/sq cm per hr in terra firme, 0.3 in sand types, and 0.1 in varzea. Flux from recently cleared and burned areas did not differ from terra firme forest, but pastures had significantly elevated fluxes (10.3 ng/sq cm per hr). These data were combined with satellite data-based areal estimates of land cover classes to estimate total N2O-N flux from the intensive study area used by the Amazon Boundary Layer Experiment. Total N2O-N flux from the area was 22.9 kg/h; pastures covered 11 percent of the area but accounted for over 40 percent of the flux.
Sun, Ran-Hao; Chen, Li-Ding; Wang, Wei; Wang, Zhao-Ming
2012-06-01
Understanding the effect of land cover pattern on nutrient losses is of great importance in management of water resources. The extensive application of mechanism models is limited in large-scale watersheds owing to the intensive data and calibration requirements. On the other hand, the traditional landscape indexes only take the areas and types of land cover into account, considering less about their topographic features and spatial patterns. We constructed a location-weighted landscape index (LWLI) based on the Lorenz curve, which plots the cumulative proportion of areas for sink and source landscapes respectively against cumulative proportion of their relative location to the outlet in a watershed, including relative elevation, distance and slope. We assessed the effect of land cover pattern on total nitrogen losses in the Haihe River. Firstly, 26 watersheds were derived from 1: 250 000 digital elevation model (DEM), and their "source" and "sink" landscape types were identified from Landsat TM images in 2007. The source" landscapes referred to the paddy land, dry land and residential area, correspondingly the "sink" landscapes referred to the forest and grassland. Secondly, LWLI was calculated according to the landscape types and spatial patterns for each watershed. Thirdly, we accessed the effect of land cover pattern on total nitrogen (TN) flux according to the value of LWLI, comparing with the area proportion of sink-source landscapes. The correlation coefficients were different in three parts of Haihe River, i. e., 0.86, 0.67 and 0.65 in the Yanshan Mts, Taihang Mts and lower Haihe River. The results showed strong correlations between TN and LWLI in contrast to the weak correlations between TN and area proportion of sink and source landscape types. This study indicates the spatial pattern of land cover is essential for accessing the nutrient losses, and the location-weighted landscape pattern analysis may be an alternate to existing water quality models, especially in large watershed scales. The sink-source index is sufficiently simple that it can be compared across watersheds and be easily interpreted, and potentially be used in landscape pattern optimal designing and planning.
Zheng, Wei; Wen, Meijuan; Zhao, Zhiyuan; Liu, Jie; Wang, Zhaohui; Li, Ziyan
2017-01-01
Water deficit significantly limits dryland rainfed fruit production, so increasing water conservation is crucial for improving fruit productivity in arid and semiarid areas. In this study, we tested two treatments in an apple orchard: 1) PC treatment comprising black plastic mulch (BPM) (in-row) with weed control (inter-row); 2) and PGC treatment comprising BPM (in-row) combined with a summer cover crop (inter-row) of rape (Brassica campestris L.), which was sown in mid-June and was living from July to September. Under PGC, the inter-row soil water storage increased by 17.9% and 11.5% compared with PC after the harvest in 2013 and 2014, respectively, but there was no significant increase in 2015. The evapotranspiration (ET) from the inter-row areas during the cover crop period was lower under PGC than PC in 2013 (19.6%), 2014 (11.3%), and 2015 (13.3%). However, the differences in the total ET from the inter-row areas between the two treatments were not obvious, and the total ET from in-row areas was higher under PGC than PC due to the increased water uptake by apple trees under PGC. The apple yield, water use efficiency during the cover crop period (WUEg) and total water use efficiency (WUE) fluctuated during the experimental years. Compared with PC, the apple yield increased by 14.1%, 18.8%, and 26.7% under PGC in 2013, 2014, and 2015, respectively. In addition, the WUEg was 26.4%, 24.7%, and 32.7% higher under PGC compared with PC in 2013, 2014, and 2015, respectively. Thus, the WUE under PGC was 13.8% and 11.7% higher than that under PC in 2013 and 2014, respectively, but the difference was not significant in 2015 (p = 0.0527). Thus, BPM combined with a summer cover crop is recommended for decreasing the summer ET and promoting apple production in rainfed dryland areas where the rainy season is usually the hot season. PMID:28957428
Descloux, Stéphane; Chanudet, Vincent; Poilvé, Hervé; Grégoire, Alain
2011-02-01
An assessment of the organic carbon stock present in living or dead vegetation and in the soil on the 450 km2 of the future Nam Theun 2 hydroelectric reservoir in Lao People's Democratic Republic was made. Nine land cover types were defined on the studied area: dense, medium, light, degraded, and riparian forests; agricultural soil; swamps; water; and others (roads, construction sites, and so on). Their geographical distribution was assessed by remote sensing using two 2008 SPOT 5 images. The area is mainly covered by dense and light forests (59%), while agricultural soil and swamps account for 11% and 2%, respectively. For each of these cover types, except water, organic carbon density was measured in the five pools defined by the Intergovernmental Panel on Climate Change: aboveground biomass, litter, deadwood, belowground biomass, and soil organic carbon. The area-weighted mean carbon densities for these pools were estimated at 45.4, 2.0, 2.2, 3.4, and 62.2 tC/ha, respectively, i.e., a total of about 115±15 tC/ha for a soil thickness of 30 cm, corresponding to a total flooded organic carbon stock of 5.1±0.7 MtC. This value is much lower than the carbon density for some South American reservoirs for example where total organic carbon stocks range from 251 to 326 tC/ha. It can be mainly explained by (1) the higher biomass density of South American tropical primary rainforest than of forests in this study and (2) the high proportion of areas with low carbon density, such as agricultural or slash-and-burn zones, in the studied area.
NASA Astrophysics Data System (ADS)
Reddy, C. Sudhakar; Padma Alekhya, V. V. L.; Saranya, K. R. L.; Athira, K.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.
2017-02-01
Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.
Global Impacts of Long-Term Land Cover Changes Within China's Densely Populated Rural Regions
NASA Astrophysics Data System (ADS)
Ellis, E. C.
2006-12-01
Long-term changes in land cover are usually investigated in terms of large-scale change processes such as urban expansion, deforestation and land conversion to agriculture. Yet China's densely populated agricultural regions, which cover more than 2 million square kilometers of Monsoon Asia, have been transformed profoundly over the past fifty years by fine-scale changes in land cover caused by unprecedented changes in population, technology and social conditions. Using a regional sampling and upscaling design coupled with high-resolution landscape change measurements at five field sites, we investigated long-term changes in land cover and ecological processes, circa 1945 to 2002, within and across China's densely populated agricultural regions. As expected, the construction of buildings and roads increased impervious surface area over time, but the total net increase was surprising, being similar in magnitude to the total current extent of China's cities. Agricultural land area declined over the same period, while tree cover increased, by about 10%, driven by tree planting and regrowth around new buildings, the introduction of perennial agriculture, improved forestry, and declines in annual crop cultivation. Though changes in impervious surface areas were closely related to changes in population density, long-term changes in agricultural land and tree cover were unrelated to populated density and required explanation by more complex models with strong regional and biophysical components. Moreover, most of these changes occurred primarily at fine spatial scales (< 30 m), under the threshold for conventional global and regional land cover change measurements. Given that these changes in built structures and vegetation cover have the potential to contribute substantially to regional and global changes in biogeochemistry, hydrology, and land-atmosphere interactions, future investigations of these changes and their impacts across Monsoon Asia would benefit from models that incorporate fine-scale landscape structure and its changes over time.
Linking land cover and water quality in New York City's water supply watersheds.
Mehaffey, M H; Nash, M S; Wade, T G; Ebert, D W; Jones, K B; Rager, A
2005-08-01
The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.
Crown cover chart for oak savannas. Forest Service technical brief
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, J.R.; Johnson, P.S.; Houf, G.
1994-07-01
Although oak savannas have been defined in many ways, they are characterized by scattered trees, largely comprised of oaks, and a sparse ground layer rich in grasses and forbs. The crown cover chart can be used to estimate the crown cover of trees as a percent of total area. Potential applications of the chart include monitoring changes in savanna crown cover, determining needed reductions in crown cover, and defining the savanna state. in restoring savannas that have grown into closed canopy stands, one can use the chart to estimate initial crown cover before restoration work is begun and again aftermore » crown cover has been reduced.« less
Li, Xinrong; Zhang, Peng; Chen, Yongle
2018-01-01
Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems. PMID:29624606
Evaluation of ERTS imagery for spectral geological mapping in diverse terranes of New York State
NASA Technical Reports Server (NTRS)
Isachsen, Y. W. (Principal Investigator); Rickard, L. V.
1972-01-01
The author has identified the following significant results. Preliminary visual examination of film positives of thirty ERTS-1 scenes obtained over New York State and adjacent areas indicates the following: (1) sixty percent of the imagery has a cloud cover of 70-100 percent, twenty-five percent has a cloud cover of 0-30 percent, and the remainder has a cover of 40-65 percent; (2) on the useable imagery, the spectral lines which may turn out to be geologically-linked totals as follows: spectral linears, 5200 km; broadly curved lines (spectral curvilinears), 700 km; major forest boundaries, 3100 km; areas with spectral geological fabric, 3100 sgkm. In the central and northwest Adirondacks, known lineaments and faults were subtracted from the spectral linears leaving a residue which totals 160 km in the central Adirondacks and 230 km in the northwest Adirondacks. It must be emphasized that these are spectral linears which have not yet been checked out against any ground truth except geological.
Operational applications of satellite snowcover observations in Rio Grande drainage of Colorado
NASA Technical Reports Server (NTRS)
Washicheck, J. N.; Mikesell, T.
1975-01-01
Various mapping techniques were tried and evaluated. There were many problems encountered such as distinquishing clouds from snow and snow under trees. A partial solution to some of the problems involves ground reconnaissance and low air flights. Snow areas, cloud cover, and total areas were planimetered after transferring imagery by use of zoom transfer scope. These determinations were then compared to areas determined by use of a density slicer. Considerable adjustment is required for these two values to compare. NOAA pictures were also utilized in the evaluation. Forest cover is one of the parameters used in the modeling process. The determination of this percentage is being explored.
NASA Astrophysics Data System (ADS)
Zhang, H.; Fan, J.
2015-12-01
The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 gC·m-2yr-1 in 2000, to 226.30 gC·m-2yr-1 in 2010, with a 3.70% increase; Soil and water conservation capacity has showed an obvious increment. (5) The grassland restoration program implementation evidently improved the structure and stability of the land use/ land cover. The climatic variations (temperature and precipitation) promoted vegetation growth.
MODIS Measures Total U.S. Leaf Area
NASA Technical Reports Server (NTRS)
2002-01-01
This composite image over the continental United States was produced with data acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS) during the period March 24 - April 8, 2000. The image is a map of the density of the plant canopy covering the ground. It is the first in a series of images over the continental U.S. produced by the MODIS Land Discipline Group (refer to this site June 2 and 5 for the next two images in the series). The image is a MODIS data product called 'Leaf Area Index,' which is produced by radiometrically measuring the visible and near infrared energy reflected by vegetation. The Leaf Area Index provides information on the structure of plant canopy, showing how much surface area is covered by green foliage relative to total land surface area. In this image, dark green pixels indicate areas where more than 80 percent of the land surface is covered by green vegetation, light green pixels show where leaves cover about 10 to 50 percent of the land surface, and brown pixels show virtually no leaf coverage. The more leaf area a plant has, the more sunlight it can absorb for photosynthesis. Leaf Area Index is one of a new suite of measurements that scientists use to understand how the Earth's land surfaces are changing over time. Their goal is to use these measurements to refine computer models well enough to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana
An automated approach for mapping persistent ice and snow cover over high latitude regions
Selkowitz, David J.; Forster, Richard R.
2016-01-01
We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly identify areas where substantial changes in glacier area have occurred since the most recent conventional glacier inventories, highlighting areas where updated inventories are most urgently needed. From a longer term perspective, the automated production of PISC maps represents an important step toward fully automated glacier extent monitoring using Landsat or similar sensors.
Effect of Watershed Cover on Overland Flow from a Major Storm in Southwestern Wisconsin
Richard S. Sartz
1969-01-01
A runoff study in the Driftless Area showed that both total flow and peak rate of flow from a 3-hour, 4-inch rain were strongly affected by the watershed cover. Peak flows ranged from 2.42 inches per hour for alfalfa meadow to 0.010 inch per hour for undisturbed forested watersheds was surprisingly similar.
Statistical strategies for global monitoring of tropical forests
Raymond L. Czaplewski
1991-01-01
The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990, and the rate of change in forest cover between 1980 and 1990. This paper describes: (1) the strategic...
Strategies for global monitoring of tropical forests
Raymond L. Czaplewski
1994-01-01
The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990 and the rate of change in forest cover between 1980 and 1990. The following are described here: (1) the...
Mapping evapotranspiration based on remote sensing: An application to Canada's landmass
NASA Astrophysics Data System (ADS)
Liu, J.; Chen, J. M.; Cihlar, J.
2003-07-01
The evapotranspiration (ET) from all Canadian landmass in 1996 is estimated at daily steps and 1 km resolution using a process model named boreal ecosystem productivity simulator (BEPS). The model is driven by remotely sensed leaf area index and land cover maps as well as soil water holding capacity and daily meteorological data. All the major ET components are considered: transpiration from vegetation, evaporation of canopy-intercepted rainfall, evaporation from soil, sublimation of snow in winter and in permafrost and glacier areas, and sublimation of canopy-intercepted snow. In forested areas the transpiration from both the overstory and understory vegetation is modeled separately. The Penman-Monteith method was applied to sunlit and shaded leaf groups individually in modeling the canopy-level transpiration, a methodological improvement necessary for forest canopies with considerable foliage clumping. The modeled ET map displays pronounced east-west and north-south gradients as well as detailed variations with cover types and vegetation density. It is estimated that for a relative wet year of 1996, the total ET from all Canada's landmass (excluding inland waters) was 2037 km3. If compared with the total precipitation of 5351 km3 based on the data from a medium range meteorological forecast model, the ratio of ET to precipitation was 38%. The ET averaged over Canadian land surface was 228 mm/yr in 1996, partitioned into transpiration of 102 mm yr-1 and evaporation and sublimation of 126 mm yr-1. Forested areas contributed the largest fraction of the total national ET at 59%. Averaged for all cover types, transpiration accounted for 45% of the total ET, while in forested areas, transpiration contributed 51% of ET. Modeled results of daily ET are compared with eddy covariance measurements at three forested sites with a r2 value of 0.61 and a root mean square error of 0.7 mm/day.
NASA Astrophysics Data System (ADS)
Liu, J.; Chen, J.; Cihlar, J.
2004-12-01
The evapotranspiration (ET) from all Canadian landmass is estimated at daily steps and 1 km resolution using a process model named Boreal Ecosystem Productivity Simulator (BEPS). The model is driven by remotely sensed leaf area index and land cover maps, as well as soil water holding capacity and daily meteorological data. All the major ET components are considered: transpiration from vegetation, evaporation of canopy-intercepted rainfall, evaporation from soil, sublimation of snow in winter and in permafrost and glacier areas, and sublimation of canopy-intercepted snow. In forested areas, the transpiration from both the overstory and understory vegetation is modelled separately. The Penman-Monteith method was applied to sunlit and shaded leaf groups individually in modelling the canopy-level transpiration, a methodological improvement necessary for forest canopies with considerable foliage clumping. The modelled ET map displays pronounced east-west and north-south gradients as well as detailed variations with cover types and vegetation density. It is estimated that, for a relative wet year of 1996, the total ET from all Canada's landmass (excluding inland waters) was 2037 km3. If compared with the total precipitation of 5351 km3 based on the data from a medium range meteorological forecast model, the ratio of ET to precipitation was 38 %. The ET averaged over Canadian land surface was 228 mm/yr in 1996, partitioned into transpiration of 102 mm/yr and evaporation and sublimation of 126 mm/yr. Forested areas contributed the largest fraction of the total national ET at 59 %. Averaged for all cover types, transpiration accounted for 45 % of the total ET, while in forested areas, transpiration was contributed 51 % of ET. Modelled results of daily ET are compared with eddy covariance measurements at three forested sites with a r2 value of 0.61 and a root mean square error of 0.7 mm/day.
NASA Astrophysics Data System (ADS)
Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.
2017-06-01
This paper focuses on environmental controls, spatiotemporal variability and rates of contemporary fluvial suspended sediment transport in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was conducted since 2004 in Erdalen and since 2008 in Bødalen. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (> 70 mm d- 1) in autumn can trigger significant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The proportion of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls for the detected spatial variability of suspended sediment yields. The contemporary sediment supply from glacierized surface areas and the Jostedalsbreen ice cap through different defined outlet glaciers shows a high spatial variability. The fact that the mean annual suspended sediment yield of Bødalen is with 31.3 t km- 2 yr- 1 almost twice as high as the mean annual suspended sediment yield of Erdalen (16.4 t km- 2 yr- 1) is to a large extent explained by the higher proportion of glacier coverage in Bødalen (38% of the drainage basin surface area) as compared to Erdalen (18% of the drainage basin surface area) and by a significantly higher sediment yield from the glacierized area of the Bødalen drainage basin compared to the glacierized surface area in Erdalen. When looking at the total annual mass of suspended sediments being fluvially exported from both entire drainage basin systems, the total amount of suspended sediments coming from the ice-free drainage basin surface areas altogether dominates over the total amount of suspended sediments coming from the glacierized surface area of both drainage basins. Drainage-basin wide annual suspended sediment yields are rather low when compared with yields of other partly glacierized drainage basin systems in Norway and in other cold climate environments worldwide, which is mainly due to the high resistance of the predominant gneisses towards glacial erosion and weathering, the altogether only small amounts of sediments being available within the entire drainage basin systems, the stable and nearly closed vegetation cover in the ice-free surface areas with sedimentary covers, and the efficiency of proglacial lakes in trapping sediments supplied by defined outlet glaciers. Both contemporary and long-term suspended sediment yields are altogether supply-limited. Contemporary suspended sediment transport accounts for nearly two-thirds of the total fluvial transport and, accordingly, plays an important role within the sedimentary budgets of the entire Erdalen and Bødalen drainage basins.
Hansen, Matthew C; Stehman, Stephen V; Potapov, Peter V; Loveland, Thomas R; Townshend, John R G; DeFries, Ruth S; Pittman, Kyle W; Arunarwati, Belinda; Stolle, Fred; Steininger, Marc K; Carroll, Mark; Dimiceli, Charlene
2008-07-08
Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.
Hansen, Matthew C.; Stehman, S.V.; Potapov, Peter V.; Loveland, Thomas R.; Townshend, J.R.G.; DeFries, R.S.; Pittman, K.W.; Arunarwati, B.; Stolle, F.; Steininger, M.K.; Carroll, M.; DiMiceli, C.
2008-01-01
Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing “hotspots.” Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.
NASA Astrophysics Data System (ADS)
Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.
2014-12-01
Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.
NASA Astrophysics Data System (ADS)
Finger, David
2015-04-01
About 80% of the domestic energy production in Iceland comes from renewable energies. Hydropower accounts for about 20% this production, representing about 75% of the total electricity production in Iceland. In 2008 total electricity production from hydropower was about 12.5 TWh a-1, making Iceland a worldwide leader in hydropower production per capita. Furthermore, the total potential of hydroelectricity in Iceland is estimated to amount up to 220 TWh a-1. In this regard, hydrological modelling is an essential tool to adapt a sustainable management of water resources and estimate the potential of possible new sites for hydropower production. We used the conceptual lumped Hydrologiska Byråns Vattenbalansavdelning model (HBV) to estimate the potential of hydropower production in two remote areas in north-eastern Iceland (Leirdalshraun, a 274 km2 area above 595 m asl and Hafralónsá, a 946 km2 area above 235 m asl). The model parameters were determined by calibrating the model with discharge data from gauged sub catchments. Satellite snow cover images were used to constrain melt parameters of the model and assure adequate modelling of snow melt in the ungauged areas. This was particularly valuable to adequately estimate the contribution of snow melt, rainfall runoff and groundwater intrusion from glaciers outside the topographic boundaries of the selected watersheds. Runoff from the entire area potentially used for hydropower exploitation was estimated using the parameter sets of the gauged sub-catchments. Additionally, snow melt from the ungauged areas was validated with satellite based snow cover images, revealing a robust simulation of snow melt in the entire area. Based on the hydrological modelling the total amount of snow melt and rainfall runoff available in Leirdalshraun and Hafralónsá amounts up to 700 M m3 a-1 and 1000 M m3 a-1, respectively. These results reveal that the total hydropower potential of the two sites amounts up to 1.2 TWh a-1 hydroelectricity, accounting for about 10% of the current production in Iceland. These result are of eminent importance to embed sustainable and resilient based water management in discussions concerning future plans of national energy production.
Brightbill, Robin A.; Riva-Murray, Karen; Bilger, Michael D.; Byrnes, John D.
2004-01-01
Within the Delaware River Basin, fish-tissue samples were analyzed for total mercury (tHg). Water and bed-sediment samples were analyzed for tHg and methylmercury (MeHg), and methylation efficiencies were calculated. This study was part of a National Mercury Pilot Program conducted by the U.S. Geological Survey (USGS). The Delaware River Basin was chosen because it is part of the USGS National Water-Quality Assessment Program that integrates physical, chemical, and biological sampling efforts to determine status and trends in surface-water and ground-water resources. Of the 35 sites in the study, 31 were sampled for fish. The species sampled at these sites include smallmouth bass (Micropterus dolomieu), the target species, and where smallmouth bass could not be collected, brown trout (Salmo trutta), chain pickerel (Esox niger), largemouth bass (Micropterus salmoides), and rock bass (Ambloplites rupestris). There were a total of 32 fish samples; 7 of these exceeded the 0.3 ?g/g (micrograms per gram) wet-weight mercury (Hg) concentration set for human health by the U.S. Environmental Protection Agency and 27 of these exceeded the U.S. Fish and Wildlife Service criteria of 0.1 ?g/g wet weight for the protection of fish-eating birds and wildlife. Basinwide analysis of Hg in fish, water, and bed sediment showed tHg concentration in fillets correlated positively with population density, urban land cover, and impervious land surface. Negative correlations included wetland land cover, septic density, elevation, and latitude. Smallmouth bass from the urban sites had a higher median concentration of tHg than fish from agricultural, low intensity-agricultural, or forested sites. Concentrations of tHg and MeHg in water were higher in samples from the more urbanized areas of the basin and were positively correlated with urbanization and negatively correlated with forested land cover. Methylation efficiency of water was negatively correlated with urbanization. Bed-sediment patterns were similar to those observed in water. Concentrations of tHg were higher in samples from the urbanized areas. In the more forested areas, MeHg concentrations were higher than in other land-use areas. Concentrations of tHg in bed sediment were positively correlated with urbanization factors (population, urban land cover, and impervious land surface) and negatively correlated with forested land cover and elevation. Forested land cover and latitude were positively correlated with concentrations of MeHg. The methylation efficiency was higher in samples from the forested areas and was negatively correlated with urbanization. Analyses within land-use groups showed that tHg concentrations in fish fillets from the urban sites were positively correlated with forested land cover and wetland cover. Urbanization factors within the agricultural group were positively correlated with tHg in fish; concentrations of tHg in fish from sites in the low intensity-agricultural group were negatively correlated with urbanization factors. Within the agricultural land-use group, tHg concentrations in water were negatively correlated with septic density, and MeHg concentrations were negatively correlated with elevation. In the forested and low intensity-agricultural groups, MeHg in water was negatively correlated with forested and agricultural land cover. Methylation efficiency in water also was negatively correlated with forested land cover but positively correlated with agricultural land cover. Bed sediment concentrations of tHg in the forested and low-agricultural groups were positively correlated with agricultural land cover and negatively correlated with forested land cover. Concentrations of MeHg in bed sediment were positively correlated with septic density and drainage area and negatively correlated with forested land cover. Methylation efficiency was negatively correlated with population density, a
Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area.
Leroy, Marie-Charlotte; Portet-Koltalo, Florence; Legras, Marc; Lederf, Franck; Moncond'huy, Vincent; Polaert, Isabelle; Marcotte, Stéphane
2016-10-01
In recent years, due to their economic and ecological advantages, green infrastructures for stormwater management have been widely implemented. The present study focused on vegetated swales and compared two vegetated covers, grassed or planted with macrophytes in order to evaluate their performance in terms of water quality improvement. These swales collected runoff of a moderately busy road (<2500vehday(-1)) in a commercial area. Twelve storm events were analyzed over a two year period with measurement of total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total hydrocarbons (THC), total phosphorous (TP), total Kjeldahl nitrogen (TKN), trace elements and 16 polycyclic aromatic hydrocarbons (PAHs). The grass cover led to poor results due to lower retention of soil particles on which trace elements and PAHs are bounded. The swales planted with macrophytes, with a deeper root system more capable of retaining soil particles, led to reductions of concentrations from 17 to 45% for trace elements such as lead, zinc and copper and 30% for the 16 PAHs in infiltrated waters. In addition, the macrophyte cover showed lower variability of pollutant concentrations in infiltrated waters compared to incoming waters. This buffering capacity is interesting to mitigate the impact of moderate peak pollution on surface water or ground water quality. Copyright © 2016 Elsevier B.V. All rights reserved.
Spatial Conflict of Mining Land in Tolitoli District -Province of Central Sulawesi
NASA Astrophysics Data System (ADS)
Suwarno, Y.; Windiastuti, R.
2018-05-01
Spatial planning is supposed to be applied in the use of space, so there will be no overlapping space utilization. In fact, there are still overlapping uses of land, between the area of mining and plantation, as well as with forest areas. The purpose of this study was to find out the conflicts that occured due to overlapping permits given to mining and plantation companies, and also to forest status. The method used was by overlaying the maps of Mining Business Permit with that of Plantation Business Permit, and also with Forest Area Map. In Tolitoli District there were 23 mining business permit holders with 7 types of mining commodities, covering total areaof 81,503.54 Hectare. In addition, there were 5 companies holding plantation business permits, mostly on palm oil, and only 2 companies with rubber and sengon wood business commodities, with a total area of 80,005.35 Hectare. From the result of spatial analysis, it was found that there was an overlapping area of 22,869.70 Hectare, while the area of 118,072.93 Hectare did not overlap. The Mining Business Permit overlapped with the Plantation Business Permit covering an area of 18,853.32 Hectare, and 4,301.77 Hectare were located in Forest Protected Area and Nature Reserve.
USDA-ARS?s Scientific Manuscript database
About 21 percent of land in the 12 Northeastern States is farmland (6 percent of national total), and 62 percent is classified as timberland (total land area covered by trees is somewhat larger). The northeastern United States is home to about 175,000 farms that collectively produce agricultural com...
Identifying unprotected and potentially at risk plant communities in the western USA
Wright, R.G.; Scott, J.M.; Mann, S.; Murray, M.
2001-01-01
We analyzed the conservation status of 73 vegetation cover types distributed across a 1.76 million km2 region in 10 states of the western USA. We found that 25 vegetation cover types had at least 10% of their area in nature reserves. These were generally plant communities located at higher elevations and thus more commonly associated with national parks and wilderness areas. All but three of the remaining 48 cover types occurred with sufficient area on publically owned lands in the region to imply that transforming land management intent on these lands could also increase their protection. We also analyzed the level of protection afforded each cover type across its entire geographic distribution in the region. Most cover types that were at least minimally protected in total across the region were also at least minimally protected in most areas of their occurrence. Our results show that there is a realistic opportunity to design a system of biodiversity reserves in this region that represent the full range of environmental conditions in which the various plant communities occur. Conducting this type of broad-scale analysis is a necessary first step in that process and provides a database for others to work from. Published by Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Ribeiro Piffer, P.; Reverberi Tambosi, L.; Uriarte, M.
2017-12-01
One of the most pressing challenges faced by modern societies is ensuring a sufficient supply of water considering the ever-growing conflict between environmental conservation and expansion of agricultural and urban frontiers worldwide. Land use cover change have marked effects on natural landscapes, putting key watershed ecosystem services in jeopardy. We investigated the consequences of land use cover change and precipitation regimes on water quality in the state of São Paulo, Brazil, a landscape that underwent major changes in past century. Water quality data collected bi-monthly between 2000 and 2014 from 229 water monitoring stations was analyzed together with 2011 land use cover maps. We focused on six water quality metrics (dissolved oxygen, total nitrogen, total phosphorus, turbidity, total dissolved solids and fecal coliforms) and used generalized linear mixed models to analyze the data. Models were built at two scales, the entire watershed and a 60 meters riparian buffer along the river network. Models accounted for 46-67% of the variance in water quality metrics and, apart from dissolved oxygen, which reflected land cover composition in riparian buffers, all metrics responded to land use at the watershed scale. Highly urbanized areas had low dissolved oxygen and high fecal coliforms, dissolved solids, phosphorus and nitrogen levels in streams. Pasture was associated with increases in turbidity, while sugarcane plantations significantly increased nitrogen concentrations. Watersheds with high forest cover had greater dissolved oxygen and lower turbidity. Silviculture plantations had little impact on water quality. Precipitation decreased dissolved oxygen and was associated with higher levels of turbidity, fecal coliforms and phosphorus. Results indicate that conversion of forest cover to other land uses had negative impacts on water quality in the study area, highlighting the need for landscape restoration to improve watersheds ecosystem services.
NASA Astrophysics Data System (ADS)
Rashid, Barira; Iqbal, Javed
2018-04-01
Forest Cover dynamics and its understanding is essential for a country's social, environmental, and political engagements. This research provides a methodical approach for the assessment of forest cover along Karakoram Highway. It has great ecological and economic significance because it's a part of China-Pakistan Economic Corridor. Landsat 4, 5 TM, Landsat 7 ETM and Landsat 8 OLI imagery for the years 1990, 2000, 2010 and 2016 respectively were subjected to supervised classification in ArcMap 10.5 to identify forest change. The study area was categorized into five major land use land cover classes i.e., Forest, vegetation, urban, open land and snow cover. Results from post classification forest cover change maps illustrated notable decrease of almost 26 % forest cover over the time period of 26 years. The accuracy assessment revealed the kappa coefficients 083, 0.78, 0.77 and 0.85, respectively. Major reason for this change is an observed replacement of native forest cover with urban areas (12.5 %) and vegetation (18.6 %) However, there is no significant change in the reserved forests along the study area that contributes only 2.97 % of the total forest cover. The extensive forest degradation and risk prone topography of the region has increased the environmental risk of landslides. Hence, effective policies and forest management is needed to protect not only the environmental and aesthetic benefits of the forest cover but also to manage the disaster risks. Apart from the forest assessment, this research gives an insight of land cover dynamics, along with causes and consequences, thereby showing the forest degradation hotspots.
How snowmelt changed due to climate change in an ungauged catchment on the Tibetan Plateau?
NASA Astrophysics Data System (ADS)
Wang, Rui; Yao, Zhijun
2017-04-01
Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial-temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from MODIS snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree-day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9 3 d/10a and the end time of snow melt has become later by 0.6 2.3 d/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6 % and 6.8 %, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River.
NASA Technical Reports Server (NTRS)
Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna
2015-01-01
Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.
NASA Astrophysics Data System (ADS)
Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.
2015-12-01
Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.
Sprague, Lori A.; Harned, Douglas A.; Hall, David W.; Nowell, Lisa H.; Bauch, Nancy J.; Richards, Kevin D.
2007-01-01
During 2002-2004, the U.S. Geological Survey's National Water-Quality Assessment Program conducted a study to determine the effects of urbanization on stream water quality and aquatic communities in six environmentally heterogeneous areas of the conterminous United States--Atlanta, Georgia; Raleigh-Durham, North Carolina; Milwaukee-Green Bay, Wisconsin; Dallas-Fort Worth, Texas; Denver, Colorado; and Portland, Oregon. This report compares and contrasts the response of stream chemistry during base flow to urbanization in different environmental settings and examines the relation between the exceedance of water-quality benchmarks and the level of urbanization in these areas. Chemical characteristics studied included concentrations of nutrients, dissolved pesticides, suspended sediment, sulfate, and chloride in base flow. In three study areas where the background land cover in minimally urbanized basins was predominantly forested (Atlanta, Raleigh-Durham, and Portland), urban development was associated with increased concentrations of nitrogen and total herbicides in streams. In Portland, there was evidence of mixed agricultural and urban influences at sites with 20 to 50 percent urban land cover. In two study areas where agriculture was the predominant background land cover (Milwaukee-Green Bay and Dallas-Fort Worth), concentrations of nitrogen and herbicides were flat or decreasing as urbanization increased. In Denver, which had predominantly shrub/grass as background land cover, nitrogen concentrations were only weakly related to urbanization, and total herbicide concentrations did not show any clear pattern relative to land cover - perhaps because of extensive water management in the study area. In contrast, total insecticide concentrations increased with increasing urbanization in all six study areas, likely due to high use of insecticides in urban applications and, for some study areas, the proximity of urban land cover to the sampling sites. Phosphorus concentrations increased with urbanization only in Portland; in Atlanta and Raleigh-Durham, leachate from septic tanks may have increased phosphorus concentrations in basins with minimal urban development. Concentrations of suspended sediment were only weakly associated with urbanization, probably because this study analyzed only base-flow samples, and the bulk of sediment loads to streams is transported in storm runoff rather than base flow. Sulfate and chloride concentrations increased with increasing urbanization in four study areas (Atlanta, Raleigh-Durham, Milwaukee-Green Bay, and Portland), likely due to increasing contributions from urban sources of these constituents. The weak relation between sulfate and chloride concentrations and urbanization in Dallas-Fort Worth and Denver was likely due in part to high sulfate and chloride concentrations in ground-water inflow, which would have obscured any pattern of increasing concentration with urbanization. Pesticides often were detected at multiple sites within a study area, so that the pesticide 'signature' for a given study area - the mixtures of pesticides detected, and their relative concentrations, at streams within the study area - tended to show some pesticides as dominant. The type and concentrations of the dominant pesticides varied markedly among sites within a study area. There were differences between pesticide signatures during high and low base-flow conditions in five of the six study areas. Normalization of absolute pesticide concentrations by the pesticide toxicity index (a relative index indicating potential toxicity to aquatic organisms) dramatically changed the pesticide signatures, indicating that the pesticides with the greatest potential to adversely affect cladocerans or fish were not necessarily the pesticides detected at the highest concentrations. In a screening-level assessment, measured contaminant concentrations in individual base-flow water samples were compared with various water-qual
Gagkas, Z; Heal, K V; Stuart, N; Nisbet, T R
2008-07-01
Streamwater was sampled at high flows from 14 catchments with different (0-78%) percentages of broadleaf woodland cover in acid-sensitive areas in the UK to investigate whether woodland cover affects streamwater acidification. Significant positive correlations were found between broadleaf woodland cover and streamwater NO3 and Al concentrations. Streamwater NO3 concentrations exceeded non-marine SO4 in three catchments with broadleaf woodland cover>or=50% indicating that NO3 was the principal excess acidifying ion in the catchments dominated by woodland. Comparison of calculated streamwater critical loads with acid deposition totals showed that 11 of the study catchments were not subject to acidification by acidic deposition. Critical loads were exceeded in three catchments, two of which were due to high NO3 concentrations in drainage from areas with large proportions of broadleaved woodland. The results suggest that the current risk assessment methodology should protect acid-sensitive catchments from potential acidification associated with broadleaf woodland expansion.
NASA Astrophysics Data System (ADS)
Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.
2015-04-01
The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that the vegetation cover in 2013 was still lower than that mapped just before the 1991 widlfire in most of the burned area after 22-years. This result was also confirmed by other techniques applied. Finally, the kernel density surface let identify and locate the most recovered areas of pine cover as well as those areas that still remain totally or partially uncovered (bare soil.
NASA Astrophysics Data System (ADS)
Mayes, Marc; Mustard, John; Melillo, Jerry; Neill, Christopher; Nyadzi, Gerson
2017-08-01
In sub-Saharan Africa (SSA), tropical dry forests and savannas cover over 2.5 million km2 and support livelihoods for millions in fast-growing nations. Intensifying land use pressures have driven rapid changes in tree cover structure (basal area, biomass) that remain poorly characterized at regional scales. Here, we posed the hypothesis that tree cover structure related strongly to senesced and non-photosynthetic (NPV) vegetation features in a SSA tropical dry forest landscape, offering improved means for satellite remote sensing of tree cover structure compared to vegetation greenness-based methods. Across regrowth miombo woodland sites in Tanzania, we analyzed relationships among field data on tree structure, land cover, and satellite indices of green and NPV features based on spectral mixture analyses and normalized difference vegetation index calculated from Landsat 8 data. From satellite-field data relationships, we mapped regional basal area and biomass using NPV and greenness-based metrics, and compared map performances at landscape scales. Total canopy cover related significantly to stem basal area (r 2 = 0.815, p < 0.01) and biomass (r 2 = 0.635, p < 0.01), and NPV dominated ground cover (> 60%) at all sites. From these two conditions emerged a key inverse relationship: skyward exposure of NPV ground cover was high at sites with low tree basal area and biomass, and decreased with increasing stem basal area and biomass. This pattern scaled to Landsat NPV metrics, which showed strong inverse correlations to basal area (Pearson r = -0.85, p < 0.01) and biomass (r = -0.86, p < 0.01). Biomass estimates from Landsat NPV-based maps matched field data, and significantly differentiated landscape gradients in woody biomass that greenness metrics failed to track. The results suggest senesced vegetation metrics at Landsat scales are a promising means for improved monitoring of tree structure across disturbance and ecological gradients in African and other tropical dry forests.
Crain, Angela S.; Martin, Gary R.
2009-01-01
To evaluate the State's water quality, the Kentucky Division of Water collects data from a statewide network of primary ambient stream water-quality monitoring stations and flexible, rotating watershed-monitoring stations. This ambient stream water-quality monitoring network program is directed to assess the conditions of surface waters throughout Kentucky. Water samples were collected monthly for the majority of the stations from 1979 to 1998, which represented agricultural, undeveloped (mainly forested), and areas of mixed land use/land cover. In 1998, the number of water samples collected was reduced to a collection frequency of six times per year (every 2 months) every 4 of 5 years, because a new monitoring network was implemented involving a 5-year rotating Basin Management Unit scheme of monitoring. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to summarize concentrations of total nitrogen and total phosphorus and provide estimates of total nitrogen and total phosphorus loads and yields in 55 selected streams in Kentucky's ambient stream water-quality monitoring network, which was operated from 1979 through 2004. Streams in predominately agricultural basins had higher concentrations of total nitrogen (TN) and concentrations of total phosphorus (TP) than streams in predominately undeveloped (forested) basins. Streams in basins in intensely developed karst areas characterized by caves, springs, sinkholes, and sinking streams had a higher median concentration of TN (1.5 milligrams per liter [mg/L]) than streams in basins with limited or no karst areas (0.63 mg/L). As with TN, median concentrations of TP also were higher in areas of intense karst (0.05 mg/L) than in areas with limited or no karst (0.02 mg/L). The U.S. Environmental Protection Agency (USEPA) has recommended ecoregional nutrient water-quality criteria as a starting point for States to establish more precise numeric water-quality criteria for nutrients to protect aquatic life and recreational and other uses of rivers and streams. On the basis of the 25th percentile of concentration data from reference stations aggregated by ecoregion, the USEPA established recommended water-quality criteria for TN and TP in the two Aggregated Ecoregions (IX and XI) in Kentucky waters. The 25th percentile median values for TN and TP from this study exceeded the USEPA's recommendations in both aggregated ecoregions in the agricultural and mixed land-use/land-cover basins, and for TN in the undeveloped land-use/land-cover basins in Aggregated Ecoregion XI. However, the 25th percentile median values for TN (Aggregated Ecoregion IX) and TP in both aggregated ecoregions did not exceed the USEPA's recommendations in the undeveloped land-use/land-cover basins. Estimated loads and yields of TN and TP varied substantially among the individual stations. Estimated mean annual yields of TN ranged from 0.10 [tons per year per square mile (ton/yr)/mi2] to 7.2 (ton/yr)/mi2, and estimated mean annual yields of TP ranged from 0.02 (ton/yr)/mi2 to 1.4 (ton/yr)/mi2. Estimated mean annual yields of TN and TP were generally highest at stations in predominately agricultural basins, and lowest at stations in undeveloped land-use/land-cover basins.
Exotic plant species invade hot spots of native plant diversity
Stohlgren, T.J.; Binkley, Dan; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Yuka; Newman, G.; Bashkin, Michael A.; Son, Y.
1999-01-01
Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm.At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon.At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and biodiversity), are invasible in many landscapes; and (2) this pattern may be more closely related to the degree resources are available in native plant communities, independent of species richness. Exotic plant invasions in rare habitats and distinctive plant communities pose a significant challenge to land managers and conservation biologists.
Brightbill, Robin A.; Koerkle, Edward H.
2003-01-01
The Clean Water Action Plan of 1998 provides a blueprint for federal agencies to work with states, tribes, and other stakeholders to protect and restore the Nation's water resources. The plan includes an initiative that addresses the nutrient-enrichment problem of lakes and streams across the United States. The U.S. Environmental Protection Agency (USEPA) is working to set nutrient criteria by nationwide nutrient ecoregions that are an aggregation of the Omernik level III ecoregions. Because low levels of nutrients are necessary for healthy streams and elevated concentrations can cause algal blooms that deplete available oxygen and kill off aquatic organisms, criteria levels are to be set, in part, using the relation between chlorophyll a and concentrations of total nitrogen and total phosphorus.Data from Pennsylvania and West Virginia, collected between 1990 and 1998, were analyzed for relations between chlorophyll a, nutrients, and other explanatory variables. Both phytoplankton and periphyton chlorophyll a concentrations from lakes and streams were analyzed separately within each of the USEPA nutrient ecoregions located within the boundaries of the two states. These four nutrient ecoregions are VII (Mostly Glaciated Dairy), VIII (Nutrient Poor, Largely Glaciated Upper Midwest and Northeast), IX (Southeastern Temperate Forested Plains and Hills), and XI (Central and Eastern Forested Uplands).Phytoplankton chlorophyll a concentrations in lakes were related to total nitrogen, total phosphorus, Secchi depth, concentration of dissolved oxygen, pH, water temperature, and specific conductivity. In nutrient ecoregion VII, nutrients were not significant predictors of chlorophyll a concentrations. Total nitrogen, Secchi depth, and pH were significantly related to phytoplankton chlorophyll a concentrations in nutrient ecoregion IX. Lake periphyton chlorophyll a concentrations from nutrient ecoregion XI were related to total phosphorus rather than total nitrogen, Secchi depth, and pH. In all cases, Secchi depth was inversely related to the chlorophyll a concentrations in a lake. Nutrient ecoregion VIII had too few samples for any type of analysis.Streams within the different nutrient ecoregions had many variables that were significantly related to periphyton chlorophyll a concentrations. These variables consisted of total nitrogen, total phosphorus, drainage area, percent forest cover, several macroinvertebrate indices, pH, basin slope, total residue, total suspended solids, and water temperature. Nutrients were not significantly related to periphyton chlorophyll a in streams within nutrient ecoregions VII or IX but were in nutrient ecoregion XI. Drainage area, percent forest cover, and several invertebrate indices were significant variables in nutrient ecoregion VII. Percent forest cover and several invertebrate indices had a negative relation with chlorophyll a concentrations in these streams. Percent forest cover and basin slope had a negative effect on periphyton in nutrient ecoregion IX streams. Light availability was more critical to periphyton growth in streams than nutrients.Ecoregion XI had enough samples to do seasonal analyses. Summer-season periphyton chlorophyll a concentrations in nutrient ecoregion XI streams were positively related to total phosphorus and drainage area but negatively related to percent forest cover. Summer-season phytoplankton in streams was related to different variables within the same nutrient ecoregion. Both total nitrogen and total phosphorus were positively related with chlorophyll a concentrations as well as basin slope, total residue, and total suspended solids but negatively related to pH. The winter stream phytoplankton chlorophyll a concentrations were related to water temperature only.
The methane sink associated to soils of natural and agricultural ecosystems in Italy.
Castaldi, Simona; Costantini, Massimo; Cenciarelli, Pietro; Ciccioli, Paolo; Valentini, Riccardo
2007-01-01
In the present work, the CH4 sink associated to Italian soils was calculated by using a process-based model controlled by gas diffusivity and microbial activity, which was run by using a raster-based geographical information system. Georeferenced data included land cover CLC2000, soil properties from the European Soil Database, climatic data from the MARS-STAT database, plus several derived soils properties based on published algorithms applied to the above mentioned databases. Overall CH4 consumption from natural and agricultural sources accounted for a total of 43.3 Gg CH4 yr(-1), with 28.1 Gg CH4 yr(-1) removed in natural ecosystems and 15.1 Gg CH4 yr(-1) in agricultural ecosystems. The highest CH4 uptake rates were obtained for natural areas of Southern Apennines and islands of Sardinia and Sicily, and were mainly associated to areas covered by sclerophyllous vegetation (259.7+/-30.2 mg CH4 m(-2) yr(-1)) and broad-leaved forest (237.5 mg CH4 m(-2) yr(-1)). In terms of total sink strength broad-leaved forests were the dominant ecosystem. The overall contribution of each ecosystem type to the whole CH4 sink depended on the total area covered by the specific ecosystem and on its exact geographic distribution. The latter determines the type of climate present in the area and the dominant soil type, both factors which showed to have a strong influence on CH4 uptake rates. The aggregated CH4 sink, calculated for natural ecosystems present in the Italian region, is significantly higher than previously reported estimates, which were extrapolated from fluxes measured in other temperate ecosystems.
Distribution and habitat use of red panda in the Chitwan-Annapurna Landscape of Nepal
Sherpa, Peema; Thapa, Gokarna Jung; Kokh, Manish; Lama, Sonam Tashi; Khanal, Kapil; Thapa, Arjun; Jnawali, Shant Raj
2017-01-01
In Nepal, the red panda (Ailurus fulgens) has been sparsely studied, although its range covers a wide area. The present study was carried out in the previously untapped Chitwan-Annapurna Landscape (CHAL) situated in central Nepal with an aim to explore current distributional status and identify key habitat use. Extensive field surveys conducted in 10 red panda range districts were used to estimate species distribution by presence-absence occupancy modeling and to predict distribution by presence-only modeling. The presence of red pandas was recorded in five districts: Rasuwa, Nuwakot, Myagdi, Baglung and Dhading. The predictive distribution model indicated that 1,904.44 km2 of potential red panda habitat is available in CHAL with the protected area covering nearly 41% of the total habitat. The habitat suitability analysis based on the probability of occurrence showed only 16.58% (A = 315.81 km2) of the total potential habitat is highly suitable. Red Panda occupancy was estimated to be around 0.0667, indicating nearly 7% (218 km2) of the total habitat is occupied with an average detection probability of 0.4482±0.377. Based on the habitat use analysis, altogether eight variables including elevation, slope, aspect, proximity to water sources, bamboo abundance, height, cover, and seasonal precipitation were observed to have significant roles in the distribution of red pandas. In addition, 25 tree species were documented from red panda sign plots out of 165 species recorded in the survey area. Most common was Betula utilis followed by Rhododendron spp. and Abies spectabilis. The extirpation of red pandas in previously reported areas indicates a need for immediate action for the long-term conservation of this species in CHAL. PMID:29020020
Distribution and habitat use of red panda in the Chitwan-Annapurna Landscape of Nepal.
Bista, Damber; Shrestha, Saroj; Sherpa, Peema; Thapa, Gokarna Jung; Kokh, Manish; Lama, Sonam Tashi; Khanal, Kapil; Thapa, Arjun; Jnawali, Shant Raj
2017-01-01
In Nepal, the red panda (Ailurus fulgens) has been sparsely studied, although its range covers a wide area. The present study was carried out in the previously untapped Chitwan-Annapurna Landscape (CHAL) situated in central Nepal with an aim to explore current distributional status and identify key habitat use. Extensive field surveys conducted in 10 red panda range districts were used to estimate species distribution by presence-absence occupancy modeling and to predict distribution by presence-only modeling. The presence of red pandas was recorded in five districts: Rasuwa, Nuwakot, Myagdi, Baglung and Dhading. The predictive distribution model indicated that 1,904.44 km2 of potential red panda habitat is available in CHAL with the protected area covering nearly 41% of the total habitat. The habitat suitability analysis based on the probability of occurrence showed only 16.58% (A = 315.81 km2) of the total potential habitat is highly suitable. Red Panda occupancy was estimated to be around 0.0667, indicating nearly 7% (218 km2) of the total habitat is occupied with an average detection probability of 0.4482±0.377. Based on the habitat use analysis, altogether eight variables including elevation, slope, aspect, proximity to water sources, bamboo abundance, height, cover, and seasonal precipitation were observed to have significant roles in the distribution of red pandas. In addition, 25 tree species were documented from red panda sign plots out of 165 species recorded in the survey area. Most common was Betula utilis followed by Rhododendron spp. and Abies spectabilis. The extirpation of red pandas in previously reported areas indicates a need for immediate action for the long-term conservation of this species in CHAL.
Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe.
Fuchs, Richard; Schulp, Catharina J E; Hengeveld, Geerten M; Verburg, Peter H; Clevers, Jan G P W; Schelhaas, Mart-Jan; Herold, Martin
2016-07-01
Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data. © 2015 John Wiley & Sons Ltd.
Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.
2014-01-01
Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. This highlights the additional information available from fractional SCA products and suggests fractional SCA can provide a major advantage for hydrological and climatological monitoring and modeling, particularly when accurate representation of the spatial distribution of snow cover is critical.
Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea.
Zhao, M X; Yu, K F; Shi, Q; Chen, T R; Zhang, H L; Chen, T G
2013-09-01
During the months of May and June in the year 2007, a survey was conducted regarding coral reef communities in the remote atolls (Zhubi Reef and Meiji Reef) of Nansha Islands, southern South China Sea. The goals of the survey were to: (1) for the first time, compile a scleractinian coral check-list; (2) estimate the total richness, coral cover, and growth forms of the community; and (3) describe preliminary patterns of community structure according to geomorphological units. Findings of this survey revealed a total of 120 species of scleractinia belonging to 40 genera, while the average coral cover was 21 %, ranging from less than 10 % to higher than 50 %. Branching and massive corals were also found to be the most important growth forms of the whole coral community, while Acropora, Montipora, and Porites were the three dominant genera in the overall region, with their contributions to total coral cover measuring 21, 22, and 23 %, respectively. Overall, coral communities of the Nansha Islands were in a relative healthy condition with high species diversity and coral cover. Spatial pattern of coral communities existed among various geomorphological units. Mean coral cover was highest in the patch reef within the lagoon, followed by the fore reef slope, reef flat, and lagoon slope. The greatest contributors to total coral cover were branching Acropora (45 %) in the lagoon slope, branching Montipora (44 %) in the reef flat, and massive Porites (51 %) in the patch reef. Coral cover in the fore reef revealed a greater range of genera than in other habitats. The leeward fore reef slope had higher coral cover (> 50 %) when compared with the windward slope (< 10 %). The coral communities of the inner reef flat were characterized by higher coral cover (27 %) and dominant branching Montipora corals, while lower coral cover (4 %) was dominated by Psammocora with massive growth forms on the outer reef flat. Destructive fishing and coral bleaching were two major threats to coral communities in the study area.
Changing Land Use: The Fens of England. A Case Study in Land Reclamation [And] Student Work Book.
ERIC Educational Resources Information Center
Laws, Kevin
A social studies unit and student workbook explore changes in land use that have occurred in the Fenlands of England since the time it was first inhabited. Fens are lowlying land which is partially or completely covered with water. The English Fens are located on the eastern side of the British Isles and cover a total area of about 2,000 square…
NASA Astrophysics Data System (ADS)
Sarıyılmaz, F. B.; Musaoğlu, N.; Uluğtekin, N.
2017-11-01
The Sazlidere Basin is located on the European side of Istanbul within the borders of Arnavutkoy and Basaksehir districts. The total area of the basin, which is largely located within the province of Arnavutkoy, is approximately 177 km2. The Sazlidere Basin is faced with intense urbanization pressures and land use / cover change due to the Northern Marmara Motorway, 3rd airport and Channel Istanbul Projects, which are planned to be realized in the Arnavutkoy region. Due to the mentioned projects, intense land use /cover changes occur in the basin. In this study, 2000 and 2012 dated LANDSAT images were supervised classified based on CORINE Land Cover first level to determine the land use/cover classes. As a result, four information classes were identified. These classes are water bodies, forest and semi-natural areas, agricultural areas and artificial surfaces. Accuracy analysis of the images were performed following the classification process. The supervised classified images that have the smallest mapping units 0.09 ha and 0.64 ha were generalized to be compatible with the CORINE Land Cover data. The image pixels have been rearranged by using the thematic pixel aggregation method as the smallest mapping unit is 25 ha. These results were compared with CORINE Land Cover 2000 and CORINE Land Cover 2012, which were obtained by digitizing land cover and land use classes on satellite images. It has been determined that the compared results are compatible with each other in terms of quality and quantity.
Managed Clearings: an Unaccounted Land-cover in Urbanizing Regions
NASA Astrophysics Data System (ADS)
Singh, K. K.; Madden, M.; Meentemeyer, R. K.
2016-12-01
Managed clearings (MC), such as lawns, public parks and grassy transportation medians, are a common and ecologically important land cover type in urbanizing regions, especially those characterized by sprawl. We hypothesize that MC is underrepresented in land cover classification schemes and data products such as NLCD (National Land Cover Database) data, which may impact environmental assessments and models of urban ecosystems. We visually interpreted and mapped fine scale land cover with special attention to MC using 2012 NAIP (National Agriculture Imagery Program) images and compared the output with NLCD data. Areas sampled were 50 randomly distributed 1*1km blocks of land in three cities of the Char-lanta mega-region (Atlanta, Charlotte, and Raleigh). We estimated the abundance of MC relative to other land cover types, and the proportion of land-cover types in NLCD data that are similar to MC. We also assessed if the designations of recreation, transportation, and utility in MC inform the problem differently than simply tallying MC as a whole. 610 ground points, collected using the Google Earth, were used to evaluate accuracy of NLCD data and visual interpretation for consistency. Overall accuracy of visual interpretation and NLCD data was 78% and 58%, respectively. NLCD data underestimated forest and MC by 14.4km2 and 6.4km2, respectively, while overestimated impervious surfaces by 10.2km2 compared to visual interpretation. MC was the second most dominant land cover after forest (40.5%) as it covered about 28% of the total area and about 13% higher than impervious surfaces. Results also suggested that recreation in MC constitutes up to 90% of area followed by transportation and utility. Due to the prevalence of MC in urbanizing regions, the addition of MC to the synthesis of land-cover data can help delineate realistic cover types and area proportions that could inform ecologic/hydrologic models, and allow for accurate prediction of ecological phenomena.
Habitat Evaluation Procedures (HEP) Report : Hellsgate Project, 1999-2000 Technical Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Matthew
2000-05-01
A Habitat Evaluation Procedure (HEP) study was conducted on lands acquired and/or managed (4,568 acres total) by the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate project) to mitigate some of the losses associated with the original construction and operation of Grand Coulee Dam and inundation of habitats behind the dams. Three separate properties, totaling 2,224 acres were purchased in 1998. One property composed of two separate parcels, mostly grassland lies southeast of the town of Nespelem in Okanogan County (770 acres) and was formerly called the Hinman property. The former Hinman property lies within an area the Tribesmore » have set aside for the protection and preservation of the sharp-tailed grouse (Agency Butte unit). This special management area minus the Hinman acquisition contains 2,388 acres in a long-term lease with the Tribes. The second property lies just south of the Silver Creek turnoff (Ferry County) and is bisected by the Hellsgate Road (part of the Friedlander unit). This parcel contains 60 acres of riparian and conifer forest cover. The third property (now named the Sand Hills unit) acquired for mitigation (1,394 acres) lies within the Hellsgate Reserve in Ferry County. This new acquisition links two existing mitigation parcels (the old Sand Hills parcels and the Lundstrum Flat parcel, all former Kuehne purchases) together forming one large unit. HEP team members included individuals from the Colville Confederated Tribes Fish and Wildlife Department (CTCR), Washington Department of Fish and Wildlife (WDFW), and Bureau of Land Management (BLM). The HEP team conducted a baseline habitat survey using the following HEP species models: mule deer (Odocoileus hemionus), mink (Mustela vison), downy woodpecker (Picoides pubescens), bobcat (Lynx rufus), yellow warbler (Dendroica petechia), and sharp-tailed grouse (Tympanuchus phasianellus columbianus). HEP analysis and results are discussed within the body of the text. The cover types evaluated for this study were grasslands, shrub-steppe, rock, conifer forest and woodland, and riparian. These same cover types were evaluated for other Hellsgate Project acquisitions within the same geographic area. Mule deer habitat on the Sand Hills unit rated good overall for winter food and cover in the shrub-steppe and conifer woodland cover types. Sharp-tailed grouse habitat on the former Hinman property and special management area rated good for nesting and brood rearing in the grassland cover type. Mink habitat on the Friedlander parcel rated poor due to lack of food and cover in and along the riparian cover type. The Downy woodpecker rated poor for food and cover on the Friedlander parcel in the conifer forest cover type. This species also rated poor on the conifer woodland habitat on the Hinman parcel. Yellow warbler habitat on the Agency Butte Special Management area rated very poor due to lack of shrubs for cover and reproduction around the scattered semi/permanent ponds that occur on the area. Bobcat habitat on this same area rated poor due to lack of cover and food. Fragmentation of existing quality habitat is also a problem for both these species. This report is an analysis of baseline habitat conditions on mitigation and managed lands, and provides estimated habitat units for mitigation crediting purposes. In addition, this information will be used to manage these lands for the benefit of wildlife.« less
Spatial distribution of thermokarst terrain in Arctic Alaska
Farquharson, Louise; Mann, Dan H; Grosse, Guido; Jones, Benjamin M.; Romanovsky, Vladimir
2016-01-01
In landscapes underlain by ice-rich permafrost, the development of thermokarst landforms can have drastic impacts on ecosystem processes and human infrastructure. Here we describe the distribution of thermokarst landforms in the continuous permafrost zone of Arctic Alaska, analyze linkages to the underlying surficial geology, and discuss the vulnerability of different types of landscapes to future thaw. We identified nine major thermokarst landforms and then mapped their distributions in twelve representative study areas totaling 300-km2. These study areas differ in their geologic history, permafrost-ice content, and ground thermal regime. Results show that 63% of the entire study area is occupied by thermokarst landforms and that the distribution of thermokarst landforms and overall landscape complexity varies markedly with surficial geology. Areas underlain by ice-rich marine silt are the most affected by thermokarst (97% of total area), whereas areas underlain by glacial drift are least affected (14%). Drained thermokarst-lake basins are the most widespread thermokarst landforms, covering 33% of the entire study region, with greater prevalence in areas of marine silt (48% coverage), marine sand (47%), and aeolian silt (34%). Thermokarst-lakes are the second most common thermokarst landform, covering 16% of the study region, with highest coverage in areas underlain by marine silt (39% coverage). Thermokarst troughs and pits cover 7% of the study region and are the third most prevalent thermokarst landform. They are most common in areas underlain by deltaic sands and gravels (18% coverage) and marine sand (12%). Alas valleys are widespread in areas of aeolian silt (14%) located in gradually sloping uplands. Areas of marine silt have been particularly vulnerable to thaw in the past because they are ice-rich and have low-gradient topography facilitating the repeated development of thermokarst-lakes. In the future, ice-rich aeolian, upland terrain (yedoma) will be particularly susceptible to thaw because it still contains massive concentrations of ground ice in the form of syngenetic ice-wedges that have remained largely intact since the Pleistocene.
Three regions are identified in the eastern United States that contain substantial land area at high elevations: the Mid Appalachians, eastern New York state, and the New England region. Approximately 75% of the land cover in these areas is forested, with 5.6 to 29% of the total ...
Mizobuchi, Teruaki; Kurihara, Masatoshi; Ebana, Hiroki; Yamanaka, Sumitaka; Kataoka, Hideyuki; Okamoto, Shouichi; Kobayashi, Etsuko; Kumasaka, Toshio; Seyama, Kuniaki
2018-05-15
Birt-Hogg-Dubé syndrome (BHDS) is a recently recognized inherited multiple cystic lung disease causing recurrent pneumothoraces. Similarly to the lesions in patients with lymphangioleiomyomatosis (LAM), the pulmonary cysts are innumerable and widely dispersed and cannot all be removed. We recently described a total pleural covering (TPC) that covers the entire visceral pleura with oxidized regenerated cellulose (ORC) mesh. TPC successfully prevented the recurrence of pneumothorax in LAM patients. The purpose of this study was to evaluate the effect of an ORC pleural covering on pneumothorax recurrence in BHDS patients. This retrospective study enrolled a total of 81 pneumothorax patients with the diagnosis of BHDS who underwent 90 covering surgeries from January 2010 to August 2017 at Tamagawa Hospital. During the first half of the study period, a lower pleural covering (LPC) which covered the affected area with ORC mesh was mainly used to treat 38 pneumothoraces. During the second half of the study period, TPC was primarily performed for 52 pneumothoraces. All the thoracoscopic surgeries were successfully performed without serious complications (≥ Clavien-Dindo grade III). The median follow-up periods after LPC/TPC were 66/34 months, respectively. Pneumothorax recurrence rates after LPC at 2.5/5/7.5 years postoperatively were 5.4/12/42%, respectively; none of the patients who had underwent TPC developed postoperative pneumothorax recurrence (P = 0.032). TPC might be an effective option for surgical treatment of intractable pneumothorax in patients with BHDS.
Quantifying environmental limiting factors on tree cover using geospatial data.
Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L
2015-01-01
Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.
Arctic multiyear ice classification and summer ice cover using passive microwave satellite data
NASA Astrophysics Data System (ADS)
Comiso, J. C.
1990-08-01
The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.
Li, Xiaoyan; Wang, Zongming; Song, Kaishan; Zhang, Bai; Liu, Dianwei; Guo, Zhixing
2007-08-01
Due to human impact under climatic variations, western part of Northeast China has suffered substantial land degradation during past decades. This paper presents an integrated study of expansion process of salinized wasteland in Da'an County, a typical salt-affected area in Northeast China, by using Geographic Information Systems (GIS) and remote sensing. The study explores the temporal and spatial characteristics of salinized wasteland expansion from 1954 to 2004, and land use/cover changes during this period. During the past 50 years, the salinized wasteland in study area have increased by 135,995 ha, and in 2004 covers 32.31% of the total area, in the meantime grassland has decreased by 104,697 ha and in 2004 covers only 13.15% of the study area. Grasslands, croplands and swamplands were found the three main land use types converted into salinized wasteland. Land use/cover changes shows that between 1954 and 2004, 48.6% of grasslands, 42.5% of swamplands, and 14.1% of croplands were transformed into salinized wasteland, respectively. Lastly, the major factors influencing salinized wasteland expansion and land use/cover changes were also explored. In general, climatic factors supplied a potential environment for soil salinization. Human-related factors, such as policy, population, overgrazing, and intensified and unreasonable utilization of land and water resources are the main causes of salinized wasteland expansion.
Canadian snow and sea ice: historical trends and projections
NASA Astrophysics Data System (ADS)
Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross
2018-04-01
The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.
NASA Astrophysics Data System (ADS)
Leite Silva, Alessandra; Márcia Longo, Regina
2017-04-01
ABSTRACT: In most Brazilian municipalities, urban development was not based on adequate planning; one of the consequences was the reduction of the original vegetation, limiting the forest formations to scarce and isolated fragments. In Campinas, São Paulo, Brazil, the vegetation fragmentation was mainly related to the expeditions and to the cycles of sugar cane and coffee. In this way, the present study aims to identify, quantify and evaluate the remaining arboreal vegetation spatial distribution in the Anhumas River Basin - Campinas/SP, Brazil. This study was developed with the aid of GIS software and field visits in order to construct a diagnosis of these areas and subsidize future actions required and to discuss the influence of urbanization on the original vegetation cover. The area was initially occupied by the Atlantic Forest (semi-deciduous forest) and drains one of the oldest urban occupation areas in the municipality; according to researchers, based on the water and geomorphological conditions of the basin, it can be subdivided into high, medium and low course. With a total area of 156,514 km2, only 16.74% are classified as green areas; where just 1.07% and 6.17% of total area represents forests and reforestation areas, respectively. The remaining green areas consists of: wetlands close to water bodies, but with no presence of trees and shrubs (area of 0.12% of the basin); urban green space, including parks and squares (2.19%); and natural field, constituted by natural non-arboreous vegetation (7.18%). In a scenario like this, a characteristic situation is the forest fragmentation; this process results in native vegetation remnants, isolated and more susceptible to external interference, coming from, for example, the proximity to agricultural areas or others land uses. The ecological knowledge of the remnants and their correct management can not only make it possible to diagnose current problems and to estimate future influences, but also to point out the necessary changes to maintain the environmental balance. In the Anhumas River Basin were identified 128 forest fragments, including remnants of natural vegetation and also from successful reforestation. Most of them, 112 fragments, have an area between 1.0 and 20.0 ha; There are only 7 fragments with area lower than 1.0 ha and 9 fragments greather than 20 ha. Furthermore, most of them are located in the lower course, covering an area of 652.23 ha, 4.17% in relation to the total area of the basin; in the middle course are 216.61 ha occupied by fragments, encompassing 1.38% of the total area; and finally in the upper course, the most urbanized region of the basin, there are just 133.26 ha of fragments, representing only 0.85% of area. One may observe that the number of the forest fragments and their areas are getting smaller as they approach the urban perimeter; this fact shows a direct link between urbanization and the significant loss of vegetation cover, resulting in negative effects on the life quality and urban environmental balance, such as the reduction of soil infiltration, the water runoff increased, the urban temperature increase, urban heat island, floods and other associated problems. These analyzes, therefore, contribute to help the environmental management in an appropriate way, considering the demands and potentialities of the region. Key words: River basin, forest remnants, environmental quality.
NASA Astrophysics Data System (ADS)
Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan
2014-05-01
Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom did not change significantly. This is due primarily to the stable vegetation cover conditions between the mid of 1980s and 2000 (average NDVI of 0.34 with std. deviation of 0.07). Vegetation cover and area of upper catchments are important controlling factors of the morphologic characteristics of braided rivers in drylands. Thus, measures geared towards reducing the impacts of braided rivers on agricultural systems and there by the livelihood of the society in plains need to focus on rehabilitation activities (soil and water conservation) in upper catchments.
NASA Astrophysics Data System (ADS)
Winter, Silvia; Labuda, Thomas; Probus, Sandra; Penke, Nicole; Himmelbauer, Margarita; Loiskandl, Willibald; Strauss, Peter; Bauer, Thomas; Popescu, Daniela; Comsa, Maria; Bunea, Claudiu-Ioan; Zaller, Johann G.; Kriechbaum, Monika
2017-04-01
Vineyard management has changed dramatically in the last 50 years. In many wine-growing regions, vineyard inter-rows are kept clean of vegetation by frequent tillage or use of herbicides to establish bare soil systems. In the last thirty years, policy-makers and several winegrowers have realized that temporary or permanent vegetation cover between the vine rows may increase ecosystem services like soil erosion mitigation, soil fertility and biodiversity conservation. The inter-row area of a vineyard can host a diverse flora providing habitat and food resources for pollinating insects and natural enemies of pests. The goal of this study was to analyze the influence of different soil management intensities on plant diversity and root parameters in the vineyard inter-rows. We investigated 15 vineyards in Romania and 14 in Austria to study the effects of three different management intensities on plant diversity, above and below-ground plant biomass, total root length and surface area of roots. Management intensity ranged from bare soil inter-rows to alternative soil tillage every second year to permanent vegetation cover for more than five years. In each vineyard inter-row, six soil samples (7 cm diameter and 10 cm height) of the upper soil layer were extracted for root analyses. Root were separated from the soil, stained and finally scanned and analyzed with the WinRHIZO software. Finally, roots were dried at 70°C to obtain dry matter of the root samples. Vegetation cover and vascular plant diversity was recorded in four 1 m2 plots within each vineyard inter-row two times a year. The most intensive bare soil management regime in Romania significantly reduced root biomass, total root length and surface area in comparison to the alternative and permanent vegetation cover management. Plant biodiversity was also reduced by intensive management, but differences were not significant. While alternative tillage every second year showed the highest values of plant species diversity and functional richness, total root length, surface area and root biomass always showed the highest value in the vineyards with permanent vegetation cover. In Austria, the difference between temporary and permanent vegetation cover was much less pronounced than in Romania. The overall synthesis of these results combined with additional biodiversity datasets and soil parameters gathered within the transdisciplinary BiodivERsA project VineDivers will be used to draft management and policy recommendations for various stakeholder groups engaged in viticulture.
Global burned-land estimation in Latin America using MODIS composite data.
Chuvieco, Emilio; Opazo, Sergio; Sione, Walter; Del Valle, Hector; Anaya, Jesús; Di Bella, Carlos; Cruz, Isabel; Manzo, Lilia; López, Gerardo; Mari, Nicolas; González-Alonso, Federico; Morelli, Fabiano; Setzer, Alberto; Csiszar, Ivan; Kanpandegi, Jon Ander; Bastarrika, Aitor; Libonati, Renata
2008-01-01
This paper presents results of the AQL2004 project, which has been develope within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLatif). The project intended to obtain monthly burned-land maps of the entire region, from Mexico to Patagonia, using MODIS (moderate-resolution imaging spectroradiometer) reflectance data. The project has been organized in three different phases: acquisition and preprocessing of satellite data; discrimination of burned pixels; and validation of results. In the first phase, input data consisting of 32-day composites of MODIS 500-m reflectance data generated by the Global Land Cover Facility (GLCF) of the University of Maryland (College Park, Maryland, U.S.A.) were collected and processed. The discrimination of burned areas was addressed in two steps: searching for "burned core" pixels using postfire spectral indices and multitemporal change detection and mapping of burned scars using contextual techniques. The validation phase was based on visual analysis of Landsat and CBERS (China-Brazil Earth Resources Satellite) images. Validation of the burned-land category showed an agreement ranging from 30% to 60%, depending on the ecosystem and vegetation species present. The total burned area for the entire year was estimated to be 153 215 km2. The most affected countries in relation to their territory were Cuba, Colombia, Bolivia, and Venezuela. Burned areas were found in most land covers; herbaceous vegetation (savannas and grasslands) presented the highest proportions of burned area, while perennial forest had the lowest proportions. The importance of croplands in the total burned area should be taken with reserve, since this cover presented the highest commission errors. The importance of generating systematic products of burned land areas for different ecological processes is emphasized.
George L. McCaskill; Thomas Albright; Charles J. Barnett; Brett J. Butler; Susan J. Crocker; Cassandra M. Kurtz; William H. McWilliams; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Richard H. Widmann; Christopher W. Woodall
2016-01-01
The third 5-year annualized inventory of Maine's forests was completed in 2013 after more than 3170 forested plots were measured. Maine contains more than 17.6 million acres of forest land, an area that has been quite stable since 1960, covering more than 82 percent of the total land area. The number of live trees greater than 1 inch in diameter are approaching 24...
ERIC Educational Resources Information Center
California State Univ., Los Angeles. Center for Mental Retardation.
This curriculum for developmentally disabled adolescents and adults contains assessment conditions and performance criteria for evaluating client acquisition of a total of 646 independent living skills in five areas. While the content of the curriculum is in an area known as independent living, it is also prevocational in as much as it covers a…
2002-12-04
International Space Station (ISS) crew members were able to document a rare occurrence. The dark area near the center of the frame is actually a shadow cast by the moon during the total solar eclipse of December 4, 2002. The shadow obscures an area of cloud cover. The Station, with three Expedition Six crew members aboard, was over the Indian Ocean at the time of the eclipse.
A preview of New Jersey's forest resource
Joseph E. Barnard; Teresa M. Bowers
1973-01-01
The recently completed forest survey of New Jersey indicates that 54 percent of the land area has tree cover on it. Thirty-eight percent of the state is classified as commercial forest land. Total growing-stock volume has increased, although the softwood component of the resource has decreased in both cubic-foot volume and area occupied by the softwood types. Average...
ERIC Educational Resources Information Center
Gerstenlauer, David L.
This study was conducted to develop a list of basic consumable and refundable supplies to be used in a secondary agricultural production mechanics laboratory program in Pennsylvania. A total of 72 surveys were sent to selected teachers: 24 in the area of woodworking, 24 in the area of metal working, and 24 covering all other areas of agricultural…
Far-Ultraviolet Number Counts of Field Galaxies
NASA Technical Reports Server (NTRS)
Voyer, Elysse N.; Gardner, Jonathan P.; Teplitz, Harry I.; Siana, Brian D.; deMello, Duilia F.
2010-01-01
The Number counts of far-ultraviolet (FUV) galaxies as a function of magnitude provide a direct statistical measure of the density and evolution of star-forming galaxies. We report on the results of measurements of the rest-frame FUV number counts computed from data of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and the GOODS-North and -South fields. These data were obtained from the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts cover an AB magnitude range from 20-29 magnitudes, covering a total area of 15.9 arcmin'. We show that the number counts are lower than those in previous studies using smaller areas. The differences in the counts are likely the result of cosmic variance; our new data cover more area and more lines of sight than the previous studies. The slope of our number counts connects well with local FUV counts and they show good agreement with recent semi-analytical models based on dark matter "merger trees".
Tidal freshwater wetland herbivory in Anacostia Park
Krafft, Cairn; Hatfield, Jeff S.; Hammerschlag, Richard S.
2010-01-01
Herbivory has played a major role in dictating vegetation abundance and species composition at Kingman Marsh in Anacostia Park, Washington, D.C., since restoration of this tidal freshwater wetland was initiated in 2000. In June 2009 an herbivory study was established to document the impacts of resident Canada goose (Branta canadensis maxima) herbivory to vegetation at Kingman Marsh. Sixteen modules consisting of paired exclosed plots and unfenced control plots were constructed. Eight of the modules were installed in vegetated portions of the restoration site that had been protected over time by fencing, while the remaining eight modules were placed in portions of the site that had not been protected over time and were basically unvegetated at the start of the experiment. Since the experiment was designed to determine the impacts of herbivory by resident Canada geese as opposed to other herbivores, exclosure fencing was elevated 0.2 m to permit access by herbivores such as fish and turtles while excluding mature Canada geese. Repeated measures analysis of variance (ANOVA) was used to analyze the differences between paired exclosure and control plots for a number of variables including total vegetative cover. Differences in total vegetative cover were not significant for the baseline data collected in June. By contrast, two months after the old protective fencing was removed from the initially-vegetated areas to allow Canada geese access to the control plots, total vegetative cover had declined dramatically in the initially-vegetated control plots, and differences between paired exclosed and control plots were significant (P = 0.0026). No herbivory by Canada geese or other herbivores such as fish or turtles was observed in the exclosures. These results show that Canada goose herbivory has inflicted significant damage to the native wetland vegetation in the portions of Kingman Marsh that had been refenced and replanted. Significant differences in total vegetative cover were limited to the eight modules installed in areas already vegetated by previous restoration efforts and protected until the start of the study, suggesting that areas of Kingman that are essentially devoid of vegetation would take longer than a growing season to show signs of improvement once goose herbivory impacts have been reduced.
Distributed Control of a Swarm of Autonomous Unmanned Aerial Vehicles
2003-03-01
wisdom, and love have provided a firm anchor in rough times, and a light in the darkness . “Come to me, all you who are weary and burdened, and I will...time. The light-gray trails represent the area that has been covered in the past 50 timesteps. The dark -gray areas are overlapping areas calculated...during the current timestep. The dark line encloses the total contigu- ous sensor area for this example. Note that while agent 1’s footprint does not
Tropical Deforestation in the Bolivian Amazon
NASA Technical Reports Server (NTRS)
Tucker, Compton J.; Steininger, Marc K.; Townshend, John R. G.; Killeen, Timothy R.; Desch, Arthur
2000-01-01
Landsat satellite images from the mid-1980s and early 1990s were used to map tropical forest extent and deforestation in approximately 800,000 sq km of Amazonian Bolivia. Forest cover extent, including tropical deciduous forest, totalled 472,000 sq km while the area of natural non-forest formations totalled 298,000 sq km. The area deforested totalled 15,000 sq km in the middle 1980s and 28,800 sq km by the early 1990s. The rate of tropical deforestation in the >1,000 mm/y precipitation forest zone of Bolivia was 2,200 sq km/y from 1985-1986 to 1992-1994. We document a spatially-concentrated "deforestation zone" in Santa Cruz Department where >60% of the Bolivian deforestation is occurring at an accelerating rate in areas of tropical deciduous dry forest.
NASA Astrophysics Data System (ADS)
Chand, Pritam; Sharma, Milap Chand
2015-12-01
A glacier inventory of the Ravi basin, north-western Himalaya has been generated for the year 2002 using Landsat ETM + and ASTER Global DEM (GDEM V2) as the baseline data for the change analysis. The Ravi basin consists of 285 glaciers (> 0.02 km2) covering an area of 164.5 ± 7.5 km2, including 71 debris-covered glaciers with an area of 36.1 ± 2.1 km2 (22% of total glacierized area) in 2002. Change analysis based on Corona KH-4B (1971), Worldview (2010) and Landsat 8 OLI/TRIS (2013) images was restricted to a subset of 157 glaciers (covering an area of 121.4 ± 5.4 km2 in 2002) due to cloud cover. Glacier area decreased from 125.8 ± 1.9 km2 (1971) to 119.9 ± 4.8 km2 (2010/13), a loss of 4.7 ± 4.1% or 0.1 ± 0.1% a- 1. The glacier recession rate has decreased, to a minimum for the recent decades (2002-2010/13). The debris-covered glacier area increased by 19.2 ± 2.2% (0.5 ± 0.05% a- 1) in the Ravi basin. However, there were significant variation in its sub-basins i.e. in Budhil and Upper Ravi sub-basin, where the debris-covered area increased by 28.6 ± 3.1% (0.7 ± 0.1% a- 1) and 14 ± 1.6% (0.3 ± 0.04% a- 1), respectively, between 1971 and 2010/13. Field investigation of selected glaciers (2010-2014) supports glacier recession trend from remote sensing data. Glacier retreat rates in the Ravi basin were lower than previously reported for selected glaciers in the similar basin and other basins (e.g. Chenab, Beas, Parbati, Baspa and Tirungkhad) of the Himachal Himalaya.
NASA Astrophysics Data System (ADS)
Sukojo, B. M.; Alfiansyah, F.
2017-12-01
Based on data of disaster which is defaced by Badan Penanggulangan Bencana Daerah (BPBD) of Sampang that in the period of 2015 - 2017 as many as 25 cases from 31 cases of disaster caused by flood disaster or 80.65% from total disaster. Therefore, the purpose of this research is to create a map of flood vulnerability in Sampang. From the vulnerability map, we can know the area with the impacted flood level in Sampang so that from the map of flood affected areas can be known the extent of the affected area in each class. In this study, two Landsat-8 and SPOT 6 data were used. For Landsat-8 imagery used for land cover on district level disaster level vulnerability maps, while high-resolution SPOT-6 images were used for land cover making maps of flood affected areas Sampang district. With the flood affected areas in this study, it is expected to be used as a determinant of flood affected areas in Sampang district. Based on data processing and analysis it is found that the highest impacted area is located in Sampang district with 12 cases of 17 cases of total flood disaster in Sampang district based on data from BPBD Kabupaten Sampang in 2016. There are 4 classes of flood affected areas in Sampang district i.e. not affected by 9039,540 ha, low impact 46262.881 ha, medium impact 43012.431 ha and high impact of 14009,760 ha.
Tessler, Naama; Wittenberg, Lea; Greenbaum, Noam
2016-12-01
Fire is a common disturbance in Mediterranean ecosystems, and can have a destructive, influential, and even essential, effect on vegetation and wildlife. In recent decades there has been a general increase in the number of fires in the Mediterranean Basin, including in Mount Carmel, Israel. The effects of recurrent forest fires on vegetation cover and species richness were determined in the spring of 2009 and 2010 by field surveys. The results of this study showed that the vegetation cover changes after recurrent forest fires, and can serve as a good indicator of the influence of fire and the resulting ecosystem rehabilitation. The dominant cover in most fire-damaged areas was composed of shrubs and dwarf-shrubs, especially Cistus salviifolius and Calicotome villosa. Tree cover was severely damaged after recurrent fires, and in those areas there was a drastic decrease of the total plant cover. Species richness increased mainly in the first decade after the recurrent fires, and decreased when the forest canopy began to close. Fire recurrence with short intervals (4-6years) between fires may lower the rehabilitated processes of the ecosystem and change its equilibrium. Copyright © 2016 Elsevier B.V. All rights reserved.
AIS Investigation of Agricultural Monocultures
NASA Technical Reports Server (NTRS)
Wood, B. L.; Wrigley, R. C.
1985-01-01
Airborne Imaging Spectrometer (AIS) data were acquired over an agricultural area in eastern San Joaquin County, California in July, 1984. Cover type information was subsequently collected for all fields along this flight line. The lack of detailed ground data on individual fields, however, limited AIS data analysis to a qualitative comparison of the spectral reflectance curves for a total of nine cover types. Based on this analysis, it appears that cover types with a positive slope in the 1550 to 1700 nm region have a higher spectral response in the 1200 to 1300 nm region compared to those cover types with a negative slope in the 1550 to 1700 nm region. Within cover type, spectral variability was also found to be greater than that between cover types. Given the lack of additional field data, the reason for these differences is a matter of speculation.
NASA Astrophysics Data System (ADS)
Sánchez, Antonio; Malak, Dania Abdul; Schröder, Christoph; Martinez-Murillo, Juan F.
2016-04-01
Remote sensing techniques (SRS) are valid tools for wetland monitoring that could support wetland managers in assessing the spatial and temporal changes in wetland ecosystems as well as in understanding their condition and the ecosystem services they provide. This study focuses on the one hand, on drawing hydro-ecological guidelines for the delimitation of wetland ecosystems; and on the other hand, to assess the reliability of widely available satellite images (Landsat) in estimating the land use/ land cover types covering wetlands. This research develops comprehensive guidelines to determine the boundaries of the Fuente de Piedra wetland ecosystem located in Andalusia, Spain and defines the main land use/ land cover classes covering this ecosystem using Landsat 8 images. An accuracy of the SRS results delivered is tested using the regional inventory of land use produced by the regional government of Andalusia in 2011. By using the ecological and hydrological settings of the area, the boundaries of the Fuente de Piedra wetland ecosystem are determined as an alternative to improve the current delimitations methodology (the Ramsar and Natura 2000 delineations), used by the local authorities so far and based mainly on administrative reasoning. In terms of the land use land cover definition in the area, Fuente de Piedra wetland ecosystem shows to cover a total area of 195 km2 composed mainly by agricultural areas (81.46%): olive groves, non-irrigated arable land and pastures, being 54.82%, 25.71% and 0.93% of the surface respectively. Wetland related land covers (water surface, wetland vegetation) represent 6.85% while natural vegetation is distributed in forest, 1.67%, and shrub areas, 4.14%, being 5.81% in total. 4.58% of the area corresponds to urban and other artificial surfaces. The rest, 1.30%, is composed of different areas without vegetation (sands, bare rock, dumps, etc.). The classification of the Landsat images made with the newly developed SWOS toolbox (under the Horizon 2020 SWOS project) provides reliable results (r2= 0.98). The image segmentation corresponds very closely with the plots of land observed in the satellite image, and the allocation of land use coverages corresponds in 82% of the segments. Forest and olive groves are the best identified coverages with an accuracy of 93% in both cases. Wetlands are correctly classified by 87%, where linear features (narrow streams, etc.) are not detected by the methodology used due to the limitations of Landsat resolution. Arable lands are classified with an accuracy of 85.5%; where the methodology seems to confuse this land use with sparse olive grove. In the case of shrubs, accuracy round the 72%, with confusions with this land use are related with arable land, sparse forests in wetland areas. In the case of urban areas, only 60.5% of the segments are correctly classified as the distinction between urban fabric and industrial areas does not seem to be possible and linear features are not detected (highways, secondary roads,…).
John Yarie
1983-01-01
The forest vegetation of 3,600,000 hectares in northeast interior Alaska was classified. A total of 365 plots located in a stratified random design were run through the ordination programs SIMORD and TWINSPAN. A total of 40 forest communities were described vegetatively and, to a limited extent, environmentally. The area covered by each community was similar, ranging...
Sediment in a Michigan trout stream, its source movement, and some effects on fish habitat.
Edward A. Hansen
1971-01-01
A sediment budget was constructed from 3 years of measurements on a pool and riffle stream. Total sediment load increased five times along a 26-mile length of stream; most sediment came from 204 eroding banks. Three-fourths of the total sediment load was sand size. The area of streambed covered with sand decreased downstream, indicating that the transporting...
Selection of nesting habitat by sharp-tailed grouse in the Nebraska sandhills
Prose, Bart L.; Cade, Brian S.; Hein, Dale
2002-01-01
We evaluated nesting habitat selection (disproportionate use compared to availability) by plains sharp-tailed grouse (Tympanuchus phasianellus jamesi) on rangelands grazed by cattle (Bos taurus) relative to height, density, and heterogeneity of residual herbaceous vegetation remaining from previous growing seasons. Residual cover is critical for nesting sharp-tailed grouse and can be lacking on grazed rangelands. Aerial photography and a geographic information system were used to analyze residual cover height classes and several measures of residual cover heterogeneity in nest (n = 38) and random (n = 38) plots. Height classes corresponded to visual obstruction readings (VORs), the height to which total visual obstruction by vegetation occurs. Analyses were conducted for five spatial scales ranging from 1 to 16 ha to test for scale effects on nesting habitat selection. Sharp-tailed grouse selected nesting habitat with more area in tall (greater than or equal to 4 cm VOR) residual cover than at random sites at all scales, less area in short residual cover (less than 2 cm VOR) at the I-ha scale, and less area in short and medium (2 to 3.9 cm YOR) residual cover at the 2- through 16-ha scales. Selection of shrub habitat containing patches of shrubs was evident only at the 16-ha scale. Patches of tall residual cover were larger in nest plots than in random plots at the 8- and 16-ha scales, and patches of short cover were smaller in nest plots at the I-ha scale. Two scales of pattern defined by mean patch size were detected for overall residual cover, but did not relate to nesting habitat selection.
NASA Astrophysics Data System (ADS)
Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia
2012-08-01
In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.
Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk
2018-01-15
Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land-cover map is more appropriate than the others. In conclusion, it is desirable to apply the integration method when generating the ISM with the highest accuracy. However, if time and cost are constrained, it would be effective to primarily use the land-cover map. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McPhee, J. P.; Castillo, Y.; Escobar, M.; Pellicciotti, F.
2014-12-01
In this work we improve and calibrate a hydro-glaciological model based on a simplified energy balance approach using the WEAP modeling platform for two catchments in the headwaters of the Maipo River Basin, in the Andes Mountains of Central Chile. The Morales Creek catchment includes the San Francisco glacier, a clean glacier occupying 7% of the catchment area. The Pirámide catchment holds the debris-covered Pirámide Glacier, which covers 20% of the catchment area. Detailed field measurements have been carried out on both glaciers to characterize their melt and meteorological regimes. We calibrate an Enhanced Temperature Index melt model against ablation stakes and runoff measurements, and obtain clear differences between the optimal parameters for the clean and debris-covered glaciers. Calibrate melt threshold temperatures are 0,25 and 0,5ºC for the clean and debris-covered glaciers, respectively, while the fraction of net shortwave radiation employed for melting is 90 and 83% for clean and debris-covered glaciers, respectively. These results are coherent with an insulating effect of the debris cover at the Pirámide glacier. The hydrologic contribution of ice melt for the clean, San Francisco glacier is equivalent to 32% of total runoff measured at the Morales Creek outlet during the simulation period; on the other hand, ice melt accounts for 83% of total runoff estimated at the outlet of the Pirámide catchment over the same period. These results are part on an ongoing effort aimed at quantifying cryospheric contribution to the hydrology of the Maipo River basin, one of the key river basins in Chile, on the face of accelerated climate change, and is the first documented work to explicitly include debris-covered glaciers in a context of basin-wide hydrological modeling.
NASA Astrophysics Data System (ADS)
Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent
2017-04-01
Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low water flows which are essentially feeded by snowmelt water. Simulations were ran, predicting the snow level between two sampled dates, they provided promising result for national scale extrapolation.
Geospatial monitoring and prioritization of forest fire incidences in Andhra Pradesh, India.
Manaswini, G; Sudhakar Reddy, C
2015-10-01
Forest fire has been identified as one of the key environmental issue for long-term conservation of biodiversity and has impact on global climate. Spatially multiple observations are necessary for monitoring of forest fires in tropics for understanding conservation efficacy and sustaining biodiversity in protected areas. The present work was carried out to estimate the spatial extent of forest burnt areas and fire frequency using Resourcesat Advanced Wide Field Sensor (AWiFS) data (2009, 2010, 2012, 2013 and 2014) in Andhra Pradesh, India. The spatio-temporal analysis shows that an area of 7514.10 km(2) (29.22% of total forest cover) has been affected by forest fires. Six major forest types are distributed in Andhra Pradesh, i.e. semi-evergreen, moist deciduous, dry deciduous, dry evergreen, thorn and mangroves. Of the total forest burnt area, dry deciduous forests account for >75%. District-wise analysis shows that Kurnool, Prakasam and Cuddapah have shown >100 km(2) of burnt area every year. The total forest burnt area estimate covering protected areas ranges between 6.9 and 22.3% during the study period. Spatial burnt area analysis for protected areas in 2014 indicates 37.2% of fire incidences in the Nagarjunasagar Srisailam Tiger Reserve followed by 20.2 % in the Sri Lankamalleswara Wildlife Sanctuary, 20.1% in the Sri Venkateswara Wildlife Sanctuary and 17.4% in the Gundla Brahmeswaram Wildlife Sanctuary. The analysis of cumulative fire occurrences from 2009 to 2014 has helped in delineation of conservation priority hotspots using a spatial grid cell approach. Conservation priority hotspots I and II are distributed in major parts of study area including protected areas of the Nagarjunasagar Srisailam Tiger Reserve and Gundla Brahmeswaram Wildlife Sanctuary. The spatial database generated will be useful in studies related to influence of fires on species adaptability, ecological damage assessment and conservation planning.
Hand burns surface area: A rule of thumb.
Dargan, Dallan; Mandal, Anirban; Shokrollahi, Kayvan
2018-08-01
Rapid estimation of acute hand burns is important for communication, standardisation of assessment, rehabilitation and research. Use of an individual's own thumbprint area as a fraction of their total hand surface area was evaluated to assess potential utility in hand burn evaluation. Ten health professionals used an ink-covered dominant thumb pulp to cover the surfaces of their own non-dominant hand using the contralateral thumb. Thumbprints were assessed on the web spaces, sides of digits and dorsum and palm beyond the distal wrist crease. Hand surface area was estimated using the Banerjee and Sen method, and thumbprint ellipse area calculated to assess correlation. Mean estimated total hand surface area was 390.0cm 2 ±SD 51.5 (328.3-469.0), mean thumbprint ellipse area was 5.5cm 2 ±SD 1.3 (3.7-8.4), and mean estimated print number was 73.5±SD 11.0 (range 53.1-87.8, 95% CI 6.8). The mean observed number of thumbprints on one hand was 80.1±SD 5.9 (range 70.0-88.0, 95% CI 3.7), χ 2 =0.009. The combined mean of digital prints was 42, comprising a mean of two prints each on volar, dorsal, radial and ulnar digit surfaces, except volar middle and ring (3 prints each). Palmar prints were 15 (11-19), dorsal 15 (11-19), ulnar palm border 3, first web space 2, and second, third and fourth web spaces one each. Using the surface of the palm alone, excluding digits, as 0.5% of total body surface area, the area of one thumbprint was approximated as 1/30th of 1%. We have demonstrated how thumbprint area serves as a simple method for evaluating hand burn surface area. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.
Factors influencing IUCN threat levels to orchids across Europe on the basis of national red lists.
Kull, Tiiu; Selgis, Ulvi; Peciña, Miguel Villoslada; Metsare, Mirjam; Ilves, Aigi; Tali, Kadri; Sepp, Kalev; Kull, Kalevi; Shefferson, Richard P
2016-09-01
The red list has become a ubiquitous tool in the conservation of species. We analyzed contemporary trends in the threat levels of European orchids, in total 166 species characterized in 27 national red lists, in relation to their reproductive biology and growth form, distribution area, and land cover where they occur. We found that species in central Europe are more threatened than those in the northern, southern, or Atlantic parts of Europe, while species were least threatened in southern Europe. Nectarless and tuberous species are significantly more threatened than nectariferous and rhizomatous taxa. Land cover (ratios of artificial land cover, area of pastures and grasslands, forests and inland wetlands) also significantly impacted the threat level. A bigger share of artificial land cover increases threat, and a bigger share of pasture and grassland lowers it. Unexpectedly, a bigger share of inland wetland area in a country increased threat level, which we believe may be due to the threatened nature of wetlands themselves relative to other natural land cover types. Finally, species occurring in multiple countries are on average less threatened. We believe that large-scale analysis of current IUCN national red lists as based on their specific categories and criteria may particularly inform the development of coordinated regional or larger-scale management strategies. In this case, we advocate for a coordinated EU protection and restoration strategy particularly aimed at central European orchids and those occurring in wetland area.
One- and two-objective approaches to an area-constrained habitat reserve site selection problem
Stephanie Snyder; Charles ReVelle; Robert Haight
2004-01-01
We compare several ways to model a habitat reserve site selection problem in which an upper bound on the total area of the selected sites is included. The models are cast as optimization coverage models drawn from the location science literature. Classic covering problems typically include a constraint on the number of sites that can be selected. If potential reserve...
Rodriguez, Jose M.
2000-01-01
Stormwater discharges from Las Flores Industrial Park, Rio Grande, Puerto Rico, were characterized from June 1998 to July 1999 by measuring the flow rate at two outfalls, delineating the drainage areas for each outfall, and calculating the volume of the stormwater discharges. Stormwater-discharge samples were collected and analyzed to determine the quality of the discharges. Constituent loads and loads per area were estimated for each drainage area. The studied drainage subareas covered approximately 46 percent of the total area of the Las Flores Industrial Park. Industrial groups represented in the study areas include manufacturers of textile, electronics, paper, fabricated metal, plastic, and chemical products. The concentrations of oil and grease (1 to 6 milligrams per liter), biochemical oxygen demand (4.7 to 16 milligrams per liter), total organic carbon (5.8 to 36 milligrams per liter), total suspended solids (28 to 100 milligrams per liter), and total phosphorous (0.11 to 0.78 milligrams per liter) from all the samples collected were less than the U.S. Environmental Protection Agency stormwater benchmark concentrations. Concentrations of chemical oxygen demand (15.8 to 157 milligrams per liter) and nitrate and nitrite (0.06 to 1.75 milligrams per liter) exceeded benchmark concentrations at one of the studied drainage areas. Total Kjeldahl nitrogen concentrations (1.00 to 3.20 milligrams per liter) exceeded the benchmark concentrations at the two studied drainage areas. Maximum concentrations for oil and grease, biochemical oxygen demand, chemical oxygen demand, total organic carbon, total Kjeldahl nitrogen, nitrate plus nitrite, and total phosphorous were detected in an area where electronics, plastics, and chemical products are currently manufactured. The maximum concentration of total suspended solids was detected at an area where textile, paper, plastic, chemical, and fabricated metal products are manufactured.
Bryant, W.L.; Goodbred, S.L.
2009-01-01
Semipermeable membrane devices (SPMDs) were deployed in streams along a gradient of urban land-use intensity in and around six metropolitan areas: Atlanta, Georgia; Raleigh - Durham, North Carolina; and Denver - Fort Collins, Colorado, in 2003; and Dallas - Fort Worth, Texas; Milwaukee - Green Bay, Wisconsin; and Portland, Oregon, in 2004 to examine relations between percent urban land cover in watersheds and the occurrence, concentrations, and potential toxicity of hydrophobic compounds. Of the 142 endpoints measured in SPMD dialysates, 30 were significantly (alpha = 0.05) related to the percent of urban land cover in the watersheds in at least one metropolitan area. These 30 endpoints included the aggregated measures of the total number of compounds detected and relative toxicity (Microtox?? and P450RGS assays), in addition to the concentrations of 27 individual hydrophobic compounds. The number of compounds detected, P450RGS assay values, and the concentrations of pyrogenic polycyclic aromatic hydrocarbons (PAHs) were significantly related to percent urban land cover in all six metropolitan areas. Pentachloroanisole, the most frequently detected compound, was significantly related to urban land cover in all metropolitan areas except Dallas - Fort Worth. Petrogenic PAHs and dibenzofurans were positively related to percent urban land cover in Atlanta, Raleigh - Durham, Denver, and Milwaukee - Green Bay. Results for other endpoints were much more variable. The number of endpoints significantly related to urban land cover ranged from 6 in Portland to 21 Raleigh-Durham. Based on differences in the number and suite of endpoints related to urban intensity, these results provide evidence of differences in factors governing source strength, transport, and/or fate of hydrophobic compounds in the six metropolitan areas studied. The most consistent and significant results were that bioavailable, aryl hydrocarbon receptor agonists increase in streams as basins become urbanized. Potential toxicity mediated by this metabolic pathway is indicated as an important factor in the response of aquatic biota to urbanization. ?? Springer Science+Business Media B.V. 2008.
Nationwide classification of forest types of India using remote sensing and GIS.
Reddy, C Sudhakar; Jha, C S; Diwakar, P G; Dadhwal, V K
2015-12-01
India, a mega-diverse country, possesses a wide range of climate and vegetation types along with a varied topography. The present study has classified forest types of India based on multi-season IRS Resourcesat-2 Advanced Wide Field Sensor (AWiFS) data. The study has characterized 29 land use/land cover classes including 14 forest types and seven scrub types. Hybrid classification approach has been used for the classification of forest types. The classification of vegetation has been carried out based on the ecological rule bases followed by Champion and Seth's (1968) scheme of forest types in India. The present classification scheme has been compared with the available global and national level land cover products. The natural vegetation cover was estimated to be 29.36% of total geographical area of India. The predominant forest types of India are tropical dry deciduous and tropical moist deciduous. Of the total forest cover, tropical dry deciduous forests occupy an area of 2,17,713 km(2) (34.80%) followed by 2,07,649 km(2) (33.19%) under tropical moist deciduous forests, 48,295 km(2) (7.72%) under tropical semi-evergreen forests and 47,192 km(2) (7.54%) under tropical wet evergreen forests. The study has brought out a comprehensive vegetation cover and forest type maps based on inputs critical in defining the various categories of vegetation and forest types. This spatially explicit database will be highly useful for the studies related to changes in various forest types, carbon stocks, climate-vegetation modeling and biogeochemical cycles.
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Lloyd, D.; Newman, P. A. B. (Principal Investigator)
1980-01-01
The author has identified the following significant results. The total cost associated with satellite snow cover area measurement (SATSCAM) in the Colorado ASVT was $2,050 which equates to 0.22/sq km. When extrapolated to the 2,238,890 km area impacted by snow-survey forecasting in the Western United States, the total yearly cost of employing SATSCAM is approximately $493k. The estimated total benefits to hydroeletric energy production is $10m yearly, with the Pacific Northwest receiving the smallest benefits, and the Rio Grande region the highest. Irrigated agriculture receives a yearly total benefit of $38m, with the Lower Colorado region receiving the largest per acre benefit and the Pacific Northwest receiving the lowest.
Praveen, Mamidipudi R; Shah, Gauri D; Vasavada, Abhay R; Dave, Khyati H
2015-09-01
To evaluate the long-term effect of a single-piece hydrophobic acrylic intraocular lens (IOL), AcrySof SN60AT (Alcon Laboratories, Fort Worth, Texas, USA), on the development of posterior capsule opacification (PCO) 5 years postoperatively. Prospective, observational, consecutive, case series. setting: Iladevi Cataract and IOL Research Center, Ahmedabad, India. Three hundred and ninety eyes with uncomplicated age-related cataract were included. Patients with diabetes mellitus, glaucoma, high myopia, pseudoexfoliation, traumatic cataract, subluxated cataract, previous ocular surgeries, and allergy to dilating drops were excluded. intervention procedures: Digital retroillumination photographic documentation was performed and analyzed for PCO using Evaluation of Posterior Capsule Opacification software. The scores and areas were calculated. PCO development and the influence of the anterior capsule cover (total on and part on) on the IOL optic was studied within the capsulorrhexis margin and the central 3.0 mm optic area. There was a significant increase in PCO up to 3 years. No significant change in PCO was observed between 3 and 5 years within the capsulorrhexis margin and central 3.0 mm optic area. In the total on group, within the capsulorrhexis margin, significantly lower scores and areas were observed when compared with part-on scores and areas. The increase in PCO up to 3 years was significant. Stabilization in PCO was observed between 3 and 5 years with no difference at 5 years. There was a low incidence of PCO in eyes with total anterior capsule cover over the IOL optic. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ganguly, Sangram; Basu, Saikat; Nemani, Ramakrishna R.; Mukhopadhyay, Supratik; Michaelis, Andrew; Votava, Petr
2016-01-01
High resolution tree cover classification maps are needed to increase the accuracy of current land ecosystem and climate model outputs. Limited studies are in place that demonstrates the state-of-the-art in deriving very high resolution (VHR) tree cover products. In addition, most methods heavily rely on commercial softwares that are difficult to scale given the region of study (e.g. continents to globe). Complexities in present approaches relate to (a) scalability of the algorithm, (b) large image data processing (compute and memory intensive), (c) computational cost, (d) massively parallel architecture, and (e) machine learning automation. In addition, VHR satellite datasets are of the order of terabytes and features extracted from these datasets are of the order of petabytes. In our present study, we have acquired the National Agriculture Imagery Program (NAIP) dataset for the Continental United States at a spatial resolution of 1-m. This data comes as image tiles (a total of quarter million image scenes with 60 million pixels) and has a total size of 65 terabytes for a single acquisition. Features extracted from the entire dataset would amount to 8-10 petabytes. In our proposed approach, we have implemented a novel semi-automated machine learning algorithm rooted on the principles of "deep learning" to delineate the percentage of tree cover. Using the NASA Earth Exchange (NEX) initiative, we have developed an end-to-end architecture by integrating a segmentation module based on Statistical Region Merging, a classification algorithm using Deep Belief Network and a structured prediction algorithm using Conditional Random Fields to integrate the results from the segmentation and classification modules to create per-pixel class labels. The training process is scaled up using the power of GPUs and the prediction is scaled to quarter million NAIP tiles spanning the whole of Continental United States using the NEX HPC supercomputing cluster. An initial pilot over the state of California spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles has produced true positive rates of around 88 percent for fragmented forests and 74 percent for urban tree cover areas, with false positive rates lower than 2 percent for both landscapes.
NASA Astrophysics Data System (ADS)
Ganguly, S.; Basu, S.; Nemani, R. R.; Mukhopadhyay, S.; Michaelis, A.; Votava, P.
2016-12-01
High resolution tree cover classification maps are needed to increase the accuracy of current land ecosystem and climate model outputs. Limited studies are in place that demonstrates the state-of-the-art in deriving very high resolution (VHR) tree cover products. In addition, most methods heavily rely on commercial softwares that are difficult to scale given the region of study (e.g. continents to globe). Complexities in present approaches relate to (a) scalability of the algorithm, (b) large image data processing (compute and memory intensive), (c) computational cost, (d) massively parallel architecture, and (e) machine learning automation. In addition, VHR satellite datasets are of the order of terabytes and features extracted from these datasets are of the order of petabytes. In our present study, we have acquired the National Agriculture Imagery Program (NAIP) dataset for the Continental United States at a spatial resolution of 1-m. This data comes as image tiles (a total of quarter million image scenes with 60 million pixels) and has a total size of 65 terabytes for a single acquisition. Features extracted from the entire dataset would amount to 8-10 petabytes. In our proposed approach, we have implemented a novel semi-automated machine learning algorithm rooted on the principles of "deep learning" to delineate the percentage of tree cover. Using the NASA Earth Exchange (NEX) initiative, we have developed an end-to-end architecture by integrating a segmentation module based on Statistical Region Merging, a classification algorithm using Deep Belief Network and a structured prediction algorithm using Conditional Random Fields to integrate the results from the segmentation and classification modules to create per-pixel class labels. The training process is scaled up using the power of GPUs and the prediction is scaled to quarter million NAIP tiles spanning the whole of Continental United States using the NEX HPC supercomputing cluster. An initial pilot over the state of California spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles has produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes.
Comparison of MODIS and VIIRS Snow Cover Products for the 2016 Hydrological Year
NASA Astrophysics Data System (ADS)
Klein, A. G.; Thapa, S.
2017-12-01
The VIIRS (Visible Infrared Imaging Radiometer Suite) instrument on board the Suomi-NPP satellite aims to provide long-term continuity of several environmental data series including snow cover initiated with MODIS. While it is speculated that MODIS and VIIRS snow cover products may differ because of their differing spatial resolutions and spectral coverage quantitative comparisons between their snow products are currently limited. Therefore this study intercompares MODIS and VIIRS snow products for the 2016 Hydrological Year over the Midwestern United States and southern Canada. Two hundred and forty-four swath snow products from MODIS/Aqua (MYD10L2) and the VIIRS EDR (VSCMO/binary) were intercompared using confusion matrices, comparison maps and false color imagery. Thresholding the MODIS NDSI Snow Cover product at a snow cover fraction of 30% generated binary snow maps most comparable to the NOAA VIIRS binary snow product. Overall agreement between MODIS and VIIRS was found to be approximately 98%. This exceeds the VIIRS accuracy requirements of 90% probability of correct typing. Agreement was highest during the winter but lower during late fall and spring. Comparability was lowest over forest. MODIS and VIIRS often mapped snow/no-snow transition zones as cloud. The assessment of total snow and cloud pixels and comparison snow maps of MODIS and VIIRS indicates that VIIRS is mapping more snow cover and less cloud cover compared to MODIS. This is evidenced by the average area of snow in MYD10L2 and VSCMO being 5.72% and 11.43%, no-snow 26.65% and 28.67%, and cloud 65.02% and 59.91%, respectively. Visual comparisons depict good qualitative agreement between snow cover area visible in MODIS and VIIRS false color imagery and mapped in their respective snow cover products. While VIIRS and MODIS have similar capacity to map snow cover, VIIRS has the potential to more accurately map snow cover area for the successive development of climate data records.
Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.
2016-01-01
Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and increases in freeze-thaw cycles. Understanding these effects can help direct land management, guide scientific research, and influence policy.
Development of national database on long-term deforestation (1930-2014) in Bangladesh
NASA Astrophysics Data System (ADS)
Reddy, C. Sudhakar; Pasha, S. Vazeed; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.
2016-04-01
The aim of the present study is to prepare a nation-wide spatial database on forest cover to assess and monitor the land use changes associated with deforestation in Bangladesh. The multi-source data were interpreted to get the forest cover map of 1930, 1975, 1985, 1995, 2006 and 2014. The spatial information generated on total area under forest cover, rate of deforestation and afforestation, changes across forest types, forest canopy density, replacement land use in deforested area and deforestation hotspots. This spatial analysis has indicated that forest cover is undergoing significant negative change in area and quality. We report that forests in Bangladesh covered an area of 23,140 km2 in 1930 which has decreased to 14,086 km2 in 2014, a net loss of 9054 km2 (39.1%) in eight decades. Analysis of annual rate of gross deforestation for the recent period indicates 0.77% during 2006-2014. During the past eight decades, semi-evergreen forests show loss of 56.4% of forest cover followed by moist deciduous forests (51.5%), dry deciduous forests (43.1%) and mangroves (6.5%). The loss of 23.5% of dense forest cover was found from 1975 to 2014. Dense semi-evergreen forests shows more negative change (36.9%) followed by dense moist deciduous forest (32.7%) from 1975 to 2014. Annual rate of deforestation is higher in dense forests compared to open forests from 2006 to 2014 and indicates increased threat due to anthropogenic pressures. The spatial analysis of forest cover change in mangroves has shown a lower rate of deforestation. Most of the forest conversions have led to the degradation of forests to scrub and transition to agriculture and plantation. The study has identified the 'deforestation hotspots' can help in strategic planning for conservation and management of forest resources.
J-GEM follow-up observations of the gravitational wave source GW151226*
NASA Astrophysics Data System (ADS)
Yoshida, Michitoshi; Utsumi, Yousuke; Tominaga, Nozomu; Morokuma, Tomoki; Tanaka, Masaomi; Asakura, Yuichiro; Matsubayashi, Kazuya; Ohta, Kouji; Abe, Fumio; Chimasu, Sho; Furusawa, Hisanori; Itoh, Ryosuke; Itoh, Yoichi; Kanda, Yuka; Kawabata, Koji S.; Kawabata, Miho; Koshida, Shintaro; Koshimoto, Naoki; Kuroda, Daisuke; Moritani, Yuki; Motohara, Kentaro; Murata, Katsuhiro L.; Nagayama, Takahiro; Nakaoka, Tatsuya; Nakata, Fumiaki; Nishioka, Tsubasa; Saito, Yoshihiko; Terai, Tsuyoshi; Tristram, Paul J.; Yanagisawa, Kenshi; Yasuda, Naoki; Doi, Mamoru; Fujisawa, Kenta; Kawachi, Akiko; Kawai, Nobuyuki; Tamura, Yoichi; Uemura, Makoto; Yatsu, Yoichi
2017-02-01
We report the results of optical-infrared follow-up observations of the gravitational wave (GW) event GW151226 detected by the Advanced LIGO in the framework of J-GEM (Japanese collaboration for Gravitational wave ElectroMagnetic follow-up). We performed wide-field optical imaging surveys with the Kiso Wide Field Camera (KWFC), Hyper Suprime-Cam (HSC), and MOA-cam3. The KWFC survey started at 2.26 d after the GW event and covered 778 deg2 centered at the high Galactic region of the skymap of GW151226. We started the HSC follow-up observations from ˜12 d after the event and covered an area of 63.5 deg2 of the highest probability region of the northern sky with limiting magnitudes of 24.6 and 23.8 for the i and z bands, respectively. MOA-cam3 covered 145 deg2 of the skymap with the MOA-red filter ˜2.5 mon after the GW alert. The total area covered by the wide-field surveys was 986.5 deg2. The integrated detection probability for the observed area was ˜29%. We also performed galaxy-targeted observations with six optical and near-infrared telescopes from 1.61 d after the event. A total of 238 nearby (≤100 Mpc) galaxies were observed with a typical I band limiting magnitude of ˜19.5. We detected 13 supernova candidates with the KWFC survey, and 60 extragalactic transients with the HSC survey. Two thirds of the HSC transients were likely supernovae and the remaining one third were possible active galactic nuclei. With our observational campaign, we found no transients that are likely to be associated with GW151226.
Anderson, Liana Oighenstein; Aragão, Luiz E O C; Gloor, Manuel; Arai, Egídio; Adami, Marcos; Saatchi, Sassan S; Malhi, Yadvinder; Shimabukuro, Yosio E; Barlow, Jos; Berenguer, Erika; Duarte, Valdete
2015-10-01
In less than 15 years, the Amazon region experienced three major droughts. Links between droughts and fires have been demonstrated for the 1997/1998, 2005, and 2010 droughts. In 2010, emissions of 510 ± 120 Tg C were associated to fire alone in Amazonia. Existing approaches have, however, not yet disentangled the proportional contribution of multiple land cover sources to this total. We develop a novel integration of multisensor and multitemporal satellite-derived data on land cover, active fires, and burned area and an empirical model of fire-induced biomass loss to quantify the extent of burned areas and resulting biomass loss for multiple land covers in Mato Grosso (MT) state, southern Amazonia-the 2010 drought most impacted region. We show that 10.77% (96,855 km 2 ) of MT burned. We estimated a gross carbon emission of 56.21 ± 22.5 Tg C from direct combustion of biomass, with an additional 29.4 ± 10 Tg C committed to be emitted in the following years due to dead wood decay. It is estimated that old-growth forest fires in the whole Brazilian Legal Amazon (BLA) have contributed to 14.81 Tg of C (11.75 Tg C to 17.87 Tg C) emissions to the atmosphere during the 2010 fire season, with an affected area of 27,555 km 2 . Total C loss from the 2010 fires in MT state and old-growth forest fires in the BLA represent, respectively, 77% (47% to 107%) and 86% (68.2% to 103%) of Brazil's National Plan on Climate Change annual target for Amazonia C emission reductions from deforestation.
NASA Astrophysics Data System (ADS)
Bourrel, Luc; Brodu, Nicolas; Frappart, Frédéric
2016-04-01
Remotely sensed images allow a frequent monitoring of land cover variations at regional and global scale. Recently launched Sentinel-1 satellite offers a global cover of land areas at an unprecedented spatial (20 m) and temporal (6 days at the Equator). We propose here to compare the performances of commonly used supervised classification techniques (i.e., k-nearest neighbors, linear and Gaussian support vector machines, naive Bayes, linear and quadratic discriminant analyzes, adaptative boosting, loggit regression, ridge regression with one-vs-one voting, random forest, extremely randomized trees) for land cover applications in the Guayas Basin, the largest river basin of the Pacific coast of Ecuator (area ~32,000 km²). The reason of this choice is the importance of this region in Ecuatorian economy as its watershed represents 13% of the total area of Ecuador where 40% of the Ecuadorian population lives. It also corresponds to the most productive region of Ecuador for agriculture and aquaculture. Fifty percents of the country shrimp farming production comes from this watershed, and represents with agriculture the largest source of revenue of the country. Similar comparisons are also performed using ENVISAT ASAR images acquired in global mode (1 km of spatial resolution). Accuracy of the results will be achieved using land cover map derived from multi-spectral images.
Changes in land cover and vegetation carbon stocks in Andalusia, Southern Spain (1956-2007).
Muñoz-Rojas, M; De la Rosa, D; Zavala, L M; Jordán, A; Anaya-Romero, M
2011-06-15
Land use has significantly changed during the recent decades at global and local scale, while the importance of ecosystems as sources/sinks of C has been highlighted, emphasizing the global impact of land use changes. Land use changes can increase C loss rates which are extremely difficult to reverse, in the short term, opposite to organic carbon (OC) which accumulates in soil in the long-term. The aim of this research is to improve and test methodologies to assess land cover change (LCC) dynamics and temporal and spatial variability in C stored in vegetation at a wide scale. LCCs between 1956 and 2007 in Andalusia (Southern Spain) were selected for this pilot study, assessed by comparison of spatial data from 1956 to 2007 and were reclassified following land cover flows (LCFs) reported in major areas in Europe. Carbon vegetation densities were related to land cover, and C vegetation stocks for 1956 and 2007 were calculated by multiplying C density for each land cover class with land cover areas. The study area has supported important changes during the studied period with significant consequences for vegetation C stocks, mainly due to afforestation and intensification of agriculture, resulting in a total vegetation C stock of 156.08Tg in 2007, with an increase of 17.24Tg since 1956. This study demonstrates the importance of LCC for C sequestration in vegetation from Mediterranean areas, highlighting possible directions for management policies in order to mitigate climate change as well as promoting land conservation. The methodologies and information generated in this project will be a useful basis for designing land management strategies helpful for decision makers. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Berg, M.; Wilcox, B. P.; Marcantonio, F.; Popescu, S. C.
2014-12-01
Rural lands increasingly are receiving attention for the ecosystem services they provide to growing populations. Among the most important of these is water yield and storage in rangelands. Yet rangelands are dynamic, with large land use/land cover changes over time. Uncertainty remains about the effects of these changes on rangeland function and how they affect potential benefits to populations that depend on them. We investigated rangelands in central Texas, USA to quantify changes in land cover and land use and resulting trends in sediment yield over time. Examining eight watersheds totaling 230 km2, we classified land cover using aerial photos from the late 1930s to 2012, focusing on woody plant cover. In addition, we digitized cultivated areas over time. Finally, we collected sediment cores from reservoirs at the base of each watershed and created a chronosequence of sedimentation trends using cesium-137 and lead-210 tracers. Cropland exhibited major reductions nearing 80% in all areas. Woody plant cover trends varied geographically, from steady decreases to decline followed by rebound to consistent increases in shrub extent. Cesium-137 profiles indicated sedimentation rates generally have decreased by more than 50% since 1963. Since then, rates in all areas have been quite stable. Cesium-137 and lead-210 rate estimates were similar (p = 0.69). At its peak, sedimentation in the smaller, semi-urban watershed occurred 1400% faster per unit area than in rural watersheds. Results indicate changing shrub cover is not a primary driver of sediment dynamics in these watersheds. Rather, it is likely that a combination of severe drought and land use history is responsible for periods of high sediment yield and reservoir storage loss
Bartz, Krista K; Ford, Michael J; Beechie, Timothy J; Fresh, Kurt L; Pess, George R; Kennedy, Robert E; Rowse, Melinda L; Sheer, Mindi
2015-01-01
For widely distributed species at risk, such as Pacific salmon (Oncorhynchus spp.), habitat monitoring is both essential and challenging. Only recently have widespread monitoring programs been implemented for salmon habitat in the Pacific Northwest. Remote sensing data, such as Landsat images, are therefore a useful way to evaluate trends prior to the advent of species-specific habitat monitoring programs. We used annual (1986-2008) land cover maps created from Landsat images via automated algorithms (LandTrendr) to evaluate trends in developed (50-100% impervious) land cover in areas adjacent to five types of habitat utilized by Chinook salmon (O. tshawytscha) in the Puget Sound region of Washington State, U.S.A. For the region as a whole, we found significant increases in developed land cover adjacent to each of the habitat types evaluated (nearshore, estuary, mainstem channel, tributary channel, and floodplain), but the increases were small (<1% total increase from 1986 to 2008). For each habitat type, the increasing trend changed during the time series. In nearshore, mainstem, and floodplain areas, the rate of increase in developed land cover slowed in the latter portion of the time series, while the opposite occurred in estuary and tributary areas. Watersheds that were already highly developed in 1986 tended to have higher rates of development than initially less developed watersheds. Overall, our results suggest that developed land cover in areas adjacent to Puget Sound salmon habitat has increased only slightly since 1986 and that the rate of change has slowed near some key habitat types, although this has occurred within the context of a degraded baseline condition.
Bartz, Krista K.; Ford, Michael J.; Beechie, Timothy J.; Fresh, Kurt L.; Pess, George R.; Kennedy, Robert E.; Rowse, Melinda L.; Sheer, Mindi
2015-01-01
For widely distributed species at risk, such as Pacific salmon (Oncorhynchus spp.), habitat monitoring is both essential and challenging. Only recently have widespread monitoring programs been implemented for salmon habitat in the Pacific Northwest. Remote sensing data, such as Landsat images, are therefore a useful way to evaluate trends prior to the advent of species-specific habitat monitoring programs. We used annual (1986-2008) land cover maps created from Landsat images via automated algorithms (LandTrendr) to evaluate trends in developed (50-100% impervious) land cover in areas adjacent to five types of habitat utilized by Chinook salmon (O. tshawytscha) in the Puget Sound region of Washington State, U.S.A. For the region as a whole, we found significant increases in developed land cover adjacent to each of the habitat types evaluated (nearshore, estuary, mainstem channel, tributary channel, and floodplain), but the increases were small (<1% total increase from 1986 to 2008). For each habitat type, the increasing trend changed during the time series. In nearshore, mainstem, and floodplain areas, the rate of increase in developed land cover slowed in the latter portion of the time series, while the opposite occurred in estuary and tributary areas. Watersheds that were already highly developed in 1986 tended to have higher rates of development than initially less developed watersheds. Overall, our results suggest that developed land cover in areas adjacent to Puget Sound salmon habitat has increased only slightly since 1986 and that the rate of change has slowed near some key habitat types, although this has occurred within the context of a degraded baseline condition. PMID:25923327
NASA Astrophysics Data System (ADS)
Ronquim, Carlos C.; Silva, Ramon F. B.; de Figueiredo, Eduardo B.; Bordonal, Ricardo O.; de C. Teixeira, Antônio H.; Cochasrk, Thomas C. D.; Leivas, Janice F.
2016-10-01
We studied the Paraíba do Sul river watershed, São Paulo state (PSWSP), Southeastern Brazil, in order to assess the land use and cover (LULC) and their implications to the amount of carbon (C) stored in the forest cover between the years 1985 and 2015. The region covers an area of 1,395,975 ha. We used images made by the Operational Land Imager (OLI) sensor (OLI/Landsat-8) to produce mappings, and image segmentation techniques to produce vectors with homogeneous characteristics. The training samples and the samples used for classification and validation were collected from the segmented image. To quantify the C stocked in aboveground live biomass (AGLB), we used an indirect method and applied literature-based reference values. The recovery of 205,690 ha of a secondary Native Forest (NF) after 1985 sequestered 9.7 Tg (Teragram) of C. Considering the whole NF area (455,232 ha), the amount of C accumulated along the whole watershed was 35.5 Tg, and the whole Eucalyptus crop (EU) area (113,600 ha) sequestered 4.4 Tg of C. Thus, the total amount of C sequestered in the whole watershed (NF + EU) was 39.9 Tg of C or 145.6 Tg of CO2, and the NF areas were responsible for the largest C stock at the watershed (89%). Therefore, the increase of the NF cover contributes positively to the reduction of CO2 concentration in the atmosphere, and Reducing Emissions from Deforestation and Forest Degradation (REDD+) may become one of the most promising compensation mechanisms for the farmers who increased forest cover at their farms.
A comparison of NLCD 2011 and LANDFIRE EVT 2010: Regional and national summaries.
McKerrow, Alexa; Dewitz, Jon; Long, Donald G.; Nelson, Kurtis; Connot, Joel A.; Smith, Jim
2016-01-01
In order to provide the land cover user community a summary of the similarity and differences between the 2011 National Land Cover Dataset (NLCD) and the Landscape Fire and Resource Management Planning Tools Program Existing Vegetation 2010 Data (LANDFIRE EVT), the two datasets were compared at a national (conterminous U.S.) and regional (Eastern, Midwestern, and Western) extents (Figure 1). The comparisons were done by generalizing the LANDFIRE data to be consistent with mapped land cover classes in the NLCD (i.e., crosswalked). Summaries of the comparisons were based on areal extent including 1) the total extent of each land cover class, and 2) land cover classes in corresponding 900-m2 areas. The results from the comparisons provide the user community information regarding the utility of both datasets relative to their intended uses.
NASA Astrophysics Data System (ADS)
MacDonald, I. R.; Garcia-Pineda, O. G.; Morey, S. L.; Huffer, F.
2011-12-01
Effervescent hydrocarbons rise naturally from hydrocarbon seeps in the Gulf of Mexico and reach the ocean surface. This oil forms thin (~0.1 μm) layers that enhance specular reflectivity and have been widely used to quantify the abundance and distribution of natural seeps using synthetic aperture radar (SAR). An analogous process occurred at a vastly greater scale for oil and gas discharged from BP's Macondo well blowout. SAR data allow direct comparison of the areas of the ocean surface covered by oil from natural sources and the discharge. We used a texture classifying neural network algorithm to quantify the areas of naturally occurring oil-covered water in 176 SAR image collections from the Gulf of Mexico obtained between May 1997 and November 2007, prior to the blowout. Separately we also analyzed 36 SAR images collections obtained between 26 April and 30 July, 2010 while the discharged oil was visible in the Gulf of Mexico. For the naturally occurring oil, we removed pollution events and transient oceanographic effects by including only the reflectance anomalies that that recurred in the same locality over multiple images. We measured the area of oil layers in a grid of 10x10 km cells covering the entire Gulf of Mexico. Floating oil layers were observed in only a fraction of the total Gulf area amounting to 1.22x10^5 km^2. In a bootstrap sample of 2000 replications, the combined average area of these layers was 7.80x10^2 km^2 (sd 86.03). For a regional comparison, we divided the Gulf of Mexico into four quadrates along 90° W longitude, and 25° N latitude. The NE quadrate, where the BP discharge occurred, received on average 7.0% of the total natural seepage in the Gulf of Mexico (5.24 x10^2 km^2, sd 21.99); the NW quadrate received on average 68.0% of this total (5.30 x10^2 km^2, sd 69.67). The BP blowout occurred in the NE quadrate of the Gulf of Mexico; discharged oil that reached the surface drifted over a large area north of 25° N. Performing a similar estimate using 5x5 km grid cells, we observed discharged oil over an area of 1.20x10^5 km^2; 91% of this area was east of 90° W. The average area oil covered water observed in the SAR images was 4.41x104^ km^2, 98% of which was observed in the eastern Gulf. Numerical oil spill model experiments are used to clarify the distinction between the area impacted by the BP oil spill and the surface slicks due to known natural seeps. Natural oil seepage has been cited as a background source of hydrocarbon contamination in the Gulf of Mexico. Our direct comparison shows that during the blowout, the discharged oil impacted an average area two orders of magnitude greater than the entire Gulf total and three orders of magnitude greater than the usual dose received in the northeastern region. Because the layers of discharged oil were often many times thicker than natural seep oil, additional scale factors are required to show the true difference in doses. These differences should be weighed when evaluating the relative impact of natural and unnatural oil in a large marine ecosystem.
MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN
Riparian meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision, due to natural and anth...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
..., watershed, vegetation, and cultural resources which the BLM Salt Lake Field Office has determined are at... scorching and a total loss of vegetative cover have resulted in a significantly greater risk for water...
A new NASA/MSFC mission analysis global cloud cover data base
NASA Technical Reports Server (NTRS)
Brown, S. C.; Jeffries, W. R., III
1985-01-01
A global cloud cover data set, derived from the USAF 3D NEPH Analysis, was developed for use in climate studies and for Earth viewing applications. This data set contains a single parameter - total sky cover - separated in time by 3 or 6 hr intervals and in space by approximately 50 n.mi. Cloud cover amount is recorded for each grid point (of a square grid) by a single alphanumeric character representing each 5 percent increment of sky cover. The data are arranged in both quarterly and monthly formats. The data base currently provides daily, 3-hr observed total sky cover for the Northern Hemisphere from 1972 through 1977 less 1976. For the Southern Hemisphere, there are data at 6-hr intervals for 1976 through 1978 and at 3-hr intervals for 1979 and 1980. More years of data are being added. To validate the data base, the percent frequency of or = 0.3 and or = 0.8 cloud cover was compared with ground observed cloud amounts at several locations with generally good agreement. Mean or other desired cloud amounts can be calculated for any time period and any size area from a single grid point to a hemisphere. The data base is especially useful in evaluating the consequence of cloud cover on Earth viewing space missions. The temporal and spatial frequency of the data allow simulations that closely approximate any projected viewing mission. No adjustments are required to account for cloud continuity.
Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine
NASA Astrophysics Data System (ADS)
Zurqani, Hamdi A.; Post, Christopher J.; Mikhailova, Elena A.; Schlautman, Mark A.; Sharp, Julia L.
2018-07-01
Climate and land use/cover change are among the most pervasive issues facing the Southeastern United States, including the Savannah River basin in South Carolina and Georgia. Land use directly affects the natural environment across the Savannah River basin and it is important to analyze these impacts. The objectives of this study are to: 1) determine the classes and the distribution of land cover in the Savannah River basin; 2) identify the spatial and the temporal change of the land cover that occurs as a consequence of land use change in the area; and 3) discuss the potential effects of land use change in the Savannah River basin. The land cover maps were produced using random forest supervised classification at four time periods for a total of thirteen common land cover classes with overall accuracy assessments of 79.18% (1999), 79.41% (2005), 76.04% (2009), and 76.11% (2015). The major land use change observed was due to the deforestation and reforestation of forest areas during the entire study period. The change detection results using the normalized difference vegetation index (NDVI) indicated that the proportion areas of the deforestation were 5.93% (1999-2005), 4.63% (2005-2009), and 3.76% (2009-2015), while the proportion areas of the reforestation were 1.57% (1999-2005), 0.44% (2005-2009), and 1.53% (2009-2015). These results not only indicate land use change, but also demonstrate the advantage of utilizing Google Earth Engine and the public archive database in its platform to track and monitor this change over time.
Air quality and human health impacts of grasslands and shrublands in the United States
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Varsha; Hirabayashi, Satoshi; Ziv, Guy; Bakshi, Bhavik R.
2018-06-01
Vegetation including canopy, grasslands, and shrublands can directly sequester pollutants onto the plant surface, resulting in an improvement in air quality. Until now, several studies have estimated the pollution removal capacity of canopy cover at the level of a county, but no such work exists for grasslands and shrublands. This work quantifies the air pollution removal capacity of grasslands and shrublands at the county-level in the United States and estimates the human health benefits associated with pollution removal using the i-Tree Eco model. Sequestration of pollutants is estimated based on the Leaf Area Index (LAI) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) derived dataset estimates of LAI and the percentage land cover obtained from the National Land Cover Database (NLCD) for the year 2010. Calculation of pollution removal capacity using local environmental data indicates that grasslands and shrublands remove a total of 6.42 million tonnes of air pollutants in the United States and the associated monetary benefits total 268 million. Human health impacts and associated monetary value due to pollution removal was observed to be significantly high in urban areas indicating that grasslands and shrublands are equally critical as canopy in improving air quality and human health in urban regions.
Boosted Regression Tree Models to Explain Watershed ...
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed-use and heavily impacted watershed
The effects of changing land cover on streamflow simulation in Puerto Rico
Van Beusekom, Ashley E.; Hay, Lauren E.; Viger, Roland; Gould, William A.; Collazo, Jaime; Henareh Khalyani, Azad
2014-01-01
This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from four land cover scenes for the period 1953-2012. The PRMS simulations based on static land cover illustrated consistent differences in simulated streamflow across the island. It was determined that the scale of the analysis makes a difference: large regions with localized areas that have undergone dramatic land cover change may show negligible difference in total streamflow, but streamflow simulations using dynamic land cover parameters for a highly altered subwatershed clearly demonstrate the effects of changing land cover on simulated streamflow. Incorporating dynamic parameterization in these highly altered watersheds can reduce the predictive uncertainty in simulations of streamflow using PRMS. Hydrologic models that do not consider the projected changes in land cover may be inadequate for water resource management planning for future conditions.
Sun, Xiao-Peng; Wang, Tian-Ming; Wu, Jian-Guo; Ge, Jian-Ping
2012-11-01
The MODIS-NDVI data from 2000 to 2009 were used to analyze the temporal dynamics and spatial distribution of the vegetation cover in the Beijing metropolitan region before and after the 2008 Olympics. During the study period, the proportion of the significantly increased pixels of NDVI occupied 20.7% while that of the significantly decreased pixels only occupied 4.1% of the total, and the decreasing rate of the NDVI was slightly faster than the increasing rate. The significant changes of the NDVI were mainly concentrated in the low altitude and small slope areas with intensive human activities, and two bands were formed in the plain area, i. e., the vegetation increasing band within the 5th Ring Road and the vegetation decreasing band from the 5th Ring Road to the outside areas of the 6th Ring Road. In the areas with significant vegetation change, there was an obvious transition between the high and low NDVI sections but less change in the medium NDVI section, mainly due to the conversion of land cover type. In the Capital function core area and ecological conservation zones, vegetation change represented a positive trend; while in the urban function expansion area and urban development area, vegetation change had the dual characteristics of both positive and negative trends. A series of ecological engineering projects during the preparatory period of the 2008 Olympics was the main cause of the vegetation increase in the study area.
NASA Astrophysics Data System (ADS)
Khan, Asif; Naz, Bibi S.; Bowling, Laura C.
2015-02-01
The Hindukush Karakoram Himalayan mountains contain some of the largest glaciers of the world, and supply melt water from perennial snow and glaciers to the Upper Indus Basin (UIB) upstream of Tarbela dam, which constitutes greater than 80% of the annual flows, and caters to the needs of millions of people in the Indus Basin. It is therefore important to study the response of perennial snow and glaciers in the UIB under changing climatic conditions, using improved hydrological modeling, glacier mass balance, and observations of glacier responses. However, the available glacier inventories and datasets only provide total perennial-snow and glacier cover areas, despite the fact that snow, clean ice and debris covered ice have different melt rates and densities. This distinction is vital for improved hydrological modeling and mass balance studies. This study, therefore, presents a separated perennial snow and glacier inventory (perennial snow-cover on steep slopes, perennial snow-covered ice, clean and debris covered ice) based on a semi-automated method that combines Landsat images and surface slope information in a supervised maximum likelihood classification to map distinct glacier zones, followed by manual post processing. The accuracy of the presented inventory falls well within the accuracy limits of available snow and glacier inventory products. For the entire UIB, estimates of perennial and/or seasonal snow on steep slopes, snow-covered ice, clean and debris covered ice zones are 7238 ± 724, 5226 ± 522, 4695 ± 469 and 2126 ± 212 km2 respectively. Thus total snow and glacier cover is 19,285 ± 1928 km2, out of which 12,075 ± 1207 km2 is glacier cover (excluding steep slope snow-cover). Equilibrium Line Altitude (ELA) estimates based on the Snow Line Elevation (SLE) in various watersheds range between 4800 and 5500 m, while the Accumulation Area Ratio (AAR) ranges between 7% and 80%. 0 °C isotherms during peak ablation months (July and August) range between ∼ 5500 and 6200 m in various watersheds. These outputs can be used as input to hydrological models, to estimate spatially-variable degree day factors for hydrological modeling, to separate glacier and snow-melt contributions in river flows, and to study glacier mass balance, and glacier responses to changing climate.
100 Library Lifesavers: A Survival Guide for School Library Media Specialists.
ERIC Educational Resources Information Center
Bacon, Pamela S.
This book contains tips (author's suggestions), tools (ready-to-use lifesavers), and talk (quotes from practicing media specialists) for school librarians at all grade levels. A total of 100 lifesavers are included, covering areas such as inventory, motivation strategies, disciplinary approaches, library checkout, Internet searching, the traveling…
Marine transportation of liquefied natural gas. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curt, R.P.; Delaney, T.D.
1973-01-01
This report covers in some detail most of the major areas of consideration involved in the marine carriage of LNG. Some of the fields investigated and reviewed are the world's total energy picture and the particular requirements of natural gas in the United States in the near future. (GRA)
Long-term persistence of seeded grass species: an unwanted side effect of ecological restoration.
Rydgren, Knut; Auestad, Inger; Hamre, Liv Norunn; Hagen, Dagmar; Rosef, Line; Skjerdal, Gudrun
2016-07-01
Spoil heaps are the visible footprint of hydropower production, particularly in vulnerable alpine environments. Speeding up vegetation development by seeding commercial grass species has been a common restoration practice for the last 50 years, but we lack information on whether seeded species decline and allow native plant cover to develop. We visually estimated cover of native vascular plants and five seeded grass species (Agrostis capillaris, Festuca ovina, Festuca rubra, Schedonorus pratensis and Phleum pratense) on eight spoil heaps at different elevations (boreal-alpine zone) in western Norway. Spoil heap vegetation was censused twice (9-20 and 24-36 years after spoil heap construction); the undisturbed surrounding vegetation was also censused on the second occasion. Total cover on the spoil heaps showed some increase, but remained far below that in surrounding areas. Cover of seeded grass species in the surroundings was low (but not negligible), indicating suboptimal establishment ability. Seeded species usually covered less than 20 % of the spoil heaps, and only F. rubra, F. ovina and A. capillaris contributed substantially. Proportional cover indicated better initial establishment by seeded species, but their cover decreased between the censuses on all but the highest located spoil heap. The persistence of seeded grass species is problematic, and despite the decrease in proportional cover, they are likely to persist for decades on spoil heaps, posing a risk of invasion of surrounding areas. We therefore recommend replacing the practice of seeding with more appropriate restoration measures.
Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2017-03-01
Native soil amendment has been widely used to stabilize mine tailings and speed up the development of soil biogeochemical functions before revegetation; however, it remains poorly understood about the response of microbial communities to ecological restoration of mine tailings with soil-covered strategy. In this study, microbial communities along a 60-cm profile were investigated in mine tailings during ecological restoration of two revegetation strategies (directly revegetation and native soil covered) with different plant species. The mine tailings were covered by native soils as thick as 40 cm for more than 10 years, and the total nitrogen, total organic carbon, water content, and heavy metal (Fe, Cu, and Zn) contents in the 0-40 cm intervals of profiles were changed. In addition, increased microbial diversity and changed microbial community structure were also found in the 10-40 cm intervals of profiles in soil-covered area. Soil-covered strategy rather than plant species and soil depth was the main factor influencing the bacterial community, which explained the largest portion (29.96%) of the observed variation. Compared directly to revegetation, soil-covered strategy exhibited the higher relative abundance of Acidobacteria and Deltaproteobacteria and the lower relative abundance of Bacteroidetes, Gemmatimonadetes, Betaproteobacteria, and Gammaproteobacteria. PICRUSt analysis further demonstrated that soil-covered caused energy metabolic functional changes in carbon, nitrogen, and sulfur metabolism. Given all these, the soil-covered strategy may be used to fast-track the establishment of native microbial communities and is conducive to the rehabilitation of biogeochemical processes for establishing native plant species.
Rafanoharana, Serge; Boissière, Manuel; Wijaya, Arief; Wardhana, Wahyu
2016-01-01
Remote sensing has been widely used for mapping land cover and is considered key to monitoring changes in forest areas in the REDD+ Measurement, Reporting and Verification (MRV) system. But Remote Sensing as a desk study cannot capture the whole picture; it also requires ground checking. Therefore, complementing remote sensing analysis using participatory mapping can help provide information for an initial forest cover assessment, gain better understanding of how local land use might affect changes, and provide a way to engage local communities in REDD+. Our study looked at the potential of participatory mapping in providing complementary information for remotely sensed maps. The research sites were located in different ecological and socio-economic contexts in the provinces of Papua, West Kalimantan and Central Java, Indonesia. Twenty-one maps of land cover and land use were drawn with local community participation during focus group discussions in seven villages. These maps, covering a total of 270,000ha, were used to add information to maps developed using remote sensing, adding 39 land covers to the eight from our initial desk assessment. They also provided additional information on drivers of land use and land cover change, resource areas, territory claims and land status, which we were able to correlate to understand changes in forest cover. Incorporating participatory mapping in the REDD+ MRV protocol would help with initial remotely sensed land classifications, stratify an area for ground checks and measurement plots, and add other valuable social data not visible at the RS scale. Ultimately, it would provide a forum for local communities to discuss REDD+ activities and develop a better understanding of REDD+. PMID:27977685
Satellite SAR inventory of Gulf of Mexico oil seeps and shallow gas hydrates
NASA Astrophysics Data System (ADS)
Garcia, O.; MacDonald, I. R.; Zimmer, B.; Shedd, W.; Frye, M.
2009-04-01
Satellite synthetic aperture radar (SAR) images from the RADARSAT platform were used to detect and inventory persistent layers of oil released from natural seeps in the Gulf of Mexico. Previously published inventories of natural oil seeps in the Gulf have been limited in scope and have relied on manual interpretation of satellite images (Mitchell et al. 1999; De Beukelaer et al. 2003). We developed a texture classifying neural network algorithm (TCNNA) to rapidly identify floating oil-layers in a semi-supervised operation. Oil layers, known as slicks, were recognized as long (10 km), narrow (100 m), often curvilinear streaks with distinct points of origin where oil reaches the ocean surface. After training the TCNNA over known seep areas and under a range of environmental and viewing conditions, the procedure was applied to 426 separate images that covered ocean areas of 100x100 km (Standard Beam Mode), 102 images that covered ocean areas of 450x450 km(ScanSAR Wide Beam Mode), and 84 images that covered ocean areas of 300x300 km (ScanSAR Narrow Beam Mode). This image data-set was collected between 1994 and 2007. It covered the entire Gulf of Mexico with a repeat rate of 4 to109, with the highest concentration over the continental slope. This effort identified a total of 4957 slicks among all the images. Of these, 287 appeared a single time in isolated locations and may therefore be false targets. The remaining slicks appeared in groups of up to 9 separate features, clustered in areas of 1 to 6.5 km across. When slicks appear within the same area in repeated images, they are judged to have a persistent source—a bubbling vent on the seafloor (MacDonald et al. 2002). Persistent sources represent geologic formations defined by migrating hydrocarbons that may include multiple separate vents. A total of 559 formations were defined by repeated imaging; these comprised a maximum of 1995 and a minimum of 1263 individual vents. This total was distributed between U.S. territorial waters, with 481 formations, and Mexican territorial waters, with 78 formations. The formations were ground-truthed against a comprehensive database of 3D seismic cubes that cover the entire northern Gulf of Mexico (Frye 2008). Formations defined by SAR slick targets were consistently associated with gas hydrate prone regions of high surface amplitude and migration features in the sub-bottom. Many of the isolated slicks also appeared to be associated with migration features in the seismic data. Temporal variation among the slicks includes examples of intermittent individual vents within a single formation and broad-scale off-again, on-again appearance of slicks over entire images covering the same areas. References: De Beukelaer, S. M., MacDonald, I., Guinnasso, N. L. J. and Murray, J. A. (2003). Distinct side-scan sonar, RADARSAT SAR, and acoustic profiler signatures of gas and oil seeps on the Gulf of Mexico slope. Geo-Mar Lett 23: 177-186 Frye, M. (2008). Preliminary Evaluation of In-Place Gas Hydrate Resources: Gulf of Mexico Outer Continental Shelf. OCS Report, MMS U.S. Department of the Interior. Minerals Management Service. Resource Evaluation Division MacDonald, I., Leifer, I., Sassen, R. and Stine, P. (2002). Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids, Blackwell Science Ltd 2(2): 95-107 Mitchell, R., MacDonald, I. R. and Kvenvolden, K. A. (1999). Estimation of total hydrocarbon seepage into the Gulf of Mexico based on satellite remote sensing images. Transactions, American Geophysical Union 80(49): Ocean Sciences Meeting Supplement, OS242
NASA Technical Reports Server (NTRS)
1973-01-01
This view of lower New England, (41.5N, 72.0W) shows a rare cloud-free area stretching from northern Long Island across the states of Connecticut, Rhode Island and Massachusetts. The total area covered by this photo is more than 25,000 square miles and includes all of Rhode Island, most of Massachusetts and Connecticut, part of New York and the coastal waters of the Atlantic Ocean. Cape Cod, Boston and the offshore islands are distinctive features.
The Chena River Watershed Hydrology Model
2012-04-01
Moose Creek Dam Pro- ject and determine the Probable Maximum Flood (PMF) hydrograph. The Chena River water- shed covers 2115 mi2 . It is characterized...Tanana River in Fairbanks, AK (Figure 1). The watershed has a total area of 2115 mi2 , and elevations range from 420 ft at the outlet to 5280 ft at...physical characteristics. Sub- basin Description Area ( mi2 ) Longest flow path (mi) Elevation at divide (ft) Elevation at outlet (ft
Forest disturbances, deforestation and timber harvest patterns in the Conterminous United States
NASA Astrophysics Data System (ADS)
Boschetti, L.; Huo, L. Z.
2016-12-01
Current estimates of carbon-equivalent emissions report the contribution of deforestation as 12% of total anthropogenic carbon emissions (van der Werf et al., 2009), but accurate monitoring of forest carbon balance should discriminate between land use change related to forest natural disturbances, forest management and deforestation. The total change in forest cover (Gross Forest Cover Loss, GFCL) needs to be characterized based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non-forest)(Kurtz et al, 2010). We developed a multitemporal, object-oriented methodology to classify GFCL as either (a) deforestation, (b) fire and insect disturbances (c) forest management practices. The Landsat-derived University of Maryland Global Forest Change product (Hansen, 2013) is used to identify all the areas forest cover loss: those areas are subsequently converted to objects, and used to extract temporal profiles of spectral reflectances and spectral indices from the Landsat WELD dataset. Finally, the temporal profiles and descriptive parameters of shapes, textures, and spatial relationships of the objects are used in a rule-based classifier to identify the type of disturbance. To pathfind a global disturbance type classification, the methods are demonstrated by wall-to-wall classification of the forest cover loss in the conterminous United States for the 2002-2011 period. The results show that deforestation accounts for a small percentage (approximately 2%) of the GFCL in the CONUS, and are in agreement with the known patterns of logging activity, fire and insect damage. The time series of timber harvest clearcut is also in agreement with the national timber extraction statistics, showing reduced harvesting following the 2008 economic crisis. The results also highlight the different management practices on private and public lands: 36% of the US forests are publicly owned (federal, state and local institutions) but account only for 12% of the clearcuts, whereas private lands (64% of the total) account for 88% of the clearcut area. Conversely, stand replacing fire and insect disturbances affect primarily public lands (85% versus 15% on private lands).
Cover of coastal vegetation as an indicator of eutrophication along environmental gradients.
Wikström, Sofia A; Carstensen, Jacob; Blomqvist, Mats; Krause-Jensen, Dorte
2016-01-01
Coastal vegetation communities are important for primary production, biodiversity, coastal protection, carbon and nutrient cycling which, in combination with their sensitivity to eutrophication, render them potential indicators of environmental status for environmental policies like the EU Water and Marine Strategy Framework Directives. We evaluated one potential indicator for coastal vegetation, the cumulative cover at depths where the vegetation is light limited, by investigating its response to eutrophication along gradients in natural conditions. We used a large data set covering the Swedish coastline, spanning broad gradients in nutrient level, water clarity, seabed substrate, physical exposure and climate in addition to a salinity gradient from 0.5 to 30.5. Macroalgal cover increased significantly along gradients of declining nutrient concentration and increasing water clarity when we had accounted for diver effects, spatio-temporal sampling variability, salinity gradients, wave exposure and latitude. The developed empirical model explained 79% of the variation in algal cover across 130 areas. Based on this, we identified macroalgal cover as a promising indicator across the Baltic Sea, Kattegat and Skagerrak. A parallel analysis of soft-substrate macrophytes similarly identified significant increases in cover with decreasing concentrations of total nitrogen and increasing salinity, but the resulting empirical model explained only 52% of the variation in cover, probably due to the spatially more variable nature of soft-substrate vegetation. The identified general responses of vegetation cover to gradients of eutrophication across wide ranges in environmental settings may be useful for monitoring and management of marine vegetation in areas with strong environmental gradients.
[APPROACHES TO URBAN AREA RANKING ACCORDINGLY TO THE LEVEL OF HEAVY METAL POLLUTION].
Stepanova, N V; Valeeva, E R; Fomina, S F
2015-01-01
Urban area ranking was performed according to the level of the heavy metal pollution based on the data of the snow and soil chemical characteristics. With reference to cumulative rates of the snow cover and soil pollution by heavy metals in the territory of the city of Kazan there were selected four areas: I--Derbyshki; II--Teplocontrol; III--Gorki; IV--Kirovsky district. The pollution level of snow cover in the territory of the city was determined by pollution level indices calculated with the application of Maximum Permissible Concentration (MPC) of chemical substances in ambient waters for household and recreational and service facilities use. The assessment of the pollution level in soils in the city showed the total territory of Kazan to be mildly polluted by manganese, concerning other heavy metals the categories of the soil pollution vary on areas. Results of hair biological monitoring in children are an informative auxiliary tool for the evaluation of the present ecological situation concerning heavy metals in certain territories of the city.
Liu, Ya Ru; Wang, Cong; Yan, Li Jiao
2018-05-01
Under the rapid urbanization, quantitatively assessing the impacts of land use and cover change (LUCC) on ecosystem service is of great significance for regional ecological environment construction. Based on the land use maps of Shangqiu City (as the typical agricultural area of North China Plain) in the year of 1990, 2005 and 2015, the spatio-temporal dynamics of land use and ecosystem service were analyzed, and the impacts of LUCC on ecosystem services was quantified with the impact assessment model. The results showed that, from 1990 to 2015, farmland and construction land area, which covered more than 95% of the total area of the research area, changed the most in quantity as -104.38 and 201.59 km 2 respectively, while forestland, grassland and water area changed the most by 79.3%, -73.7% and -24.2%, respectively. The total value of ecosystem service continuously decreased by 1.005 billion yuan, among which the value of hydrolo-gical regulation service suffered the most. The value of ecosystem service (ESV) presented an increasing trend in the west and a decreasing trend in the east. Extending from the center of the city to the outside, the value of ecosystem services was "high-low-high" in the east to west direction. The rate of farmland and water area contributed more than 95% to the total ecosystem service value, which had the greatest impact. The main drivers for the changes of land use and ESV in Shangqiu were population pressure, economic growth, regional policy, and urban planning. In the urban and rural development planning of Shangqiu City, more attention should be paid to the protection of na-tural resources and rational adjustment of the land use structure to realize sustainable development based on the harmony of economy, society and environment.
The First U.S. Naval Observatory Robotic Astrometric Telescope Catalog
2015-10-01
in the “info” folder. URAT1 covers almost the entire northern sky and most of the area δ �−15°, plus the far south area around Pluto . 2.3. Robotic...meeting acceptable quality standards. A total of 14 and 12 exposures of the Pluto field area taken on 2013 September 19 and 2014 September 06...for our project. 2MASS was used for near-IR photometry and as the first epoch of URAT1 proper motions. Bill Gray (Project Pluto ) is thanked for making
Ridgley, Jennie L.
1986-01-01
The Chama River Canyon Wilderness, in Rio Arriba County, north-central New Mexico, covers 50,300 acres (20,364 hectares) within the Coyote and Cuba Ranger Districts of the Santa Fe National Forest and the Canjilon Ranger District of the Carson National Forest. In 1979 the U.S. Forest Service, under the Forest Service Roadless Area Review and Evaluation (RARE II) program, designated three additional areas, contiguous to the wilderness, for further planning to assess wilderness characteristics. These areas, totaling 4,800 acres (1,945 hectares), were collectively designated Roadless area 03098; they have since been dropped from consideration.
Tillage practices in the conterminous United States, 1989-2004-Datasets Aggregated by Watershed
Baker, Nancy T.
2011-01-01
This report documents the methods used to aggregate county-level tillage practices to the 8-digit hydrologic unit (HU) watershed. The original county-level data were collected by the Conservation Technology Information Center (CTIC). The CTIC collects tillage data by conducting surveys about tillage systems for all counties in the United States. Tillage systems include three types of conservation tillage (no-till, ridge-till, and mulch-till), reduced tillage, and intensive tillage. Total planted acreage for each tillage practice for each crop grown is reported to the CTIC. The dataset includes total planted acreage by tillage type for selected crops (corn, cotton, grain sorghum, soybeans, fallow, forage, newly established permanent pasture, spring and fall seeded small grains, and 'other' crops) for 1989-2004. Two tabular datasets, based on the 1992 enhanced and 2001 National Land Cover Data (NLCD), are provided as part of this report and include the land-cover area-weighted interpolation and aggregation of acreage for each tillage practice in each 8-digit HU watershed in the conterminous United States for each crop. Watershed aggregations were done by overlying the 8-digit HU polygons with a raster of county boundaries and a raster of either the enhanced 1992 or the 2001 NLCD for cultivated land to derive a county/land-cover area weighting factor. The weighting factor then was applied to the county-level tillage data for the counties within each 8-digit HU and summed to yield the total acreage of each tillage type within each 8-digit HU watershed.
A comparison of burn season effects on nesting birds in North Dakota mixed-grass prairie
Higgins, K.F.
1986-01-01
During 1982-1985, the effects of single spring and fall burn treatments on ground nesting birds and residual cover were studied on five paired areas of native mixed-grass prairie in northwestern Stutsman County, ND. Annually, visual obstruction readings to index the height-density of residual cover were taken once and nest searches were made four times on each area. Residual nesting cover on fall burn plots averaged taller and denser than on spring burn plots during post-fire growing years 2-4. A total of 259 duck nests and 63 nests of non-passerine birds were found during the four years. Duck nesting success was significantly greater (P < 0.05) in fall burn plots than in spring burn plots for all species and years combined. Too few nests of other bird species were found for valid comparisons. Results suggest that vegetation structure and duck nesting response to spring and fall burns became similar again by the third post-fire growing season.
Can "YouTube" help students in learning surface anatomy?
Azer, Samy A
2012-07-01
In a problem-based learning curriculum, most medical students research the Internet for information for their "learning issues." Internet sites such as "YouTube" have become a useful resource for information. This study aimed at assessing YouTube videos covering surface anatomy. A search of YouTube was conducted from November 8 to 30, 2010 using research terms "surface anatomy," "anatomy body painting," "living anatomy," "bone landmarks," and "dermatomes" for surface anatomy-related videos. Only relevant video clips in the English language were identified and related URL recorded. For each videotape the following information were collected: title, authors, duration, number of viewers, posted comments, and total number of days on YouTube. The data were statistically analyzed and videos were grouped into educationally useful and non-useful videos on the basis of major and minor criteria covering technical, content, authority, and pedagogy parameters. A total of 235 YouTube videos were screened and 57 were found to have relevant information to surface anatomy. Analysis revealed that 15 (27%) of the videos provided useful information on surface anatomy. These videos scored (mean ± SD, 14.0 ± 0.7) and mainly covered surface anatomy of the shoulder, knee, muscles of the back, leg, and ankle, carotid artery, dermatomes, and anatomical positions. The other 42 (73%) videos were not useful educationally, scoring (mean ± SD, 7.4 ± 1.8). The total viewers of all videos were 1,058,634. Useful videos were viewed by 497,925 (47% of total viewers). The total viewership per day was 750 for useful videos and 652 for non-useful videos. No video clips covering surface anatomy of the head and neck, blood vessels and nerves of upper and lower limbs, chest and abdominal organs/structures were found. Currently, YouTube is an inadequate source of information for learning surface anatomy. More work is needed from medical schools and educators to add useful videos on YouTube covering this area.
Baker, Ronald J.; Wieben, Christine M.; Lathrop, Richard G.; Nicholson, Robert S.
2014-01-01
Concentrations, loads, and yields of nutrients (total nitrogen and total phosphorus) were calculated for the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed for 1989–2011 at annual and seasonal (growing and nongrowing) time scales. Concentrations, loads, and yields were calculated at three spatial scales: for each of the 81 subbasins specified by 14-digit hydrologic unit codes (HUC-14s); for each of the three BB-LEH watershed segments, which coincide with segmentation of the BB-LEH estuary; and for the entire BB-LEH watershed. Base-flow and runoff values were calculated separately and were combined to provide total values. Available surface-water-quality data for all streams in the BB-LEH watershed for 1980–2011 were compiled from existing datasets and quality assured. Precipitation and streamflow data were used to distinguish between water-quality samples that were collected during base-flow conditions and those that were collected during runoff conditions. Base-flow separation of hydrographs of six streams in the BB-LEH watershed indicated that base flow accounts for about 72 to 94 percent of total flow in streams in the watershed. Base-flow mean concentrations (BMCs) of total nitrogen (TN) and total phosphorus (TP) for each HUC-14 subbasin were calculated from relations between land use and measured base-flow concentrations. These relations were developed from multiple linear regression models determined from water-quality data collected at sampling stations in the BB-LEH watershed under base-flow conditions and land-use percentages in the contributing drainage basins. The total watershed base-flow volume was estimated for each year and season from continuous streamflow records for 1989–2011 and relations between precipitation and streamflow during base-flow conditions. For each year and season, the base-flow load and yield were then calculated for each HUC-14 subbasin from the BMCs, total base-flow volume, and drainage area. The watershed-loading application PLOAD was used to calculate runoff concentrations, loads, and yields of TN and TP at the HUC-14 scale. Flow-weighted event-mean concentrations (EMCs) for runoff were developed for each major land-use type in the watershed using storm sampling data from four streams in the BB-LEH watershed and three streams outside the watershed. The EMCs were developed separately for the growing and nongrowing seasons, and were typically greater during the growing season. The EMCs, along with annual and seasonal precipitation amounts and percent imperviousness associated with land-use types, were used as inputs to PLOAD to calculate annual and seasonal runoff concentrations, loads, and yields at the HUC-14 scale. Over the period of study (1989–2011), total surface-water loads (base flow plus runoff) for the entire BB-LEH watershed for TN ranged from about 455,000 kilograms (kg) as N (1995) to 857,000 kg as N (2010). For TP, total loads for the watershed ranged from about 17,000 (1995) to 32,000 kg as P (2010). On average, the north segment accounted for about 66 percent of the annual TN load and 63 percent of the annual TP load, and the central and south segments each accounted for less than 20 percent of the nutrient loads. Loads and yields were strongly associated with precipitation patterns, ensuing hydrologic conditions, and land use. HUC-14 subbasins with the highest yields of nutrients are concentrated in the northern part of the watershed, and have the highest percentages of urban or agricultural land use. Subbasins with the lowest TN and TP yields are dominated by forest cover. Percentages of turf (lawn) cover and nonturf cover were estimated for the watershed. Of the developed land in the watershed, nearly one quarter (24.9 percent) was mapped as turf cover. Because there is a strong relation between percent turf and percent developed land, percent turf in the watershed typically increases with percent development, and the amount of development can be considered a reasonable predictor of the amount of turf cover in the watershed. In the BB-LEH watershed, calculated concentrations of TN and TP were greater for developed–turf areas than for developed–nonturf areas, which, in turn, were greater than those for undeveloped areas.
[Land cover classification of Four Lakes Region in Hubei Province based on MODIS and ENVISAT data].
Xue, Lian; Jin, Wei-Bin; Xiong, Qin-Xue; Liu, Zhang-Yong
2010-03-01
Based on the differences of back scattering coefficient in ENVISAT ASAR data, a classification was made on the towns, waters, and vegetation-covered areas in the Four Lakes Region of Hubei Province. According to the local cropping systems and phenological characteristics in the region, and by using the discrepancies of the MODIS-NDVI index from late April to early May, the vegetation-covered areas were classified into croplands and non-croplands. The classification results based on the above-mentioned procedure was verified by the classification results based on the ETM data with high spatial resolution. Based on the DEM data, the non-croplands were categorized into forest land and bottomland; and based on the discrepancies of mean NDVI index per month, the crops were identified as mid rice, late rice, and cotton, and the croplands were identified as paddy field and upland field. The land cover classification based on the MODIS data with low spatial resolution was basically consistent with that based on the ETM data with high spatial resolution, and the total error rate was about 13.15% when the classification results based on ETM data were taken as the standard. The utilization of the above-mentioned procedures for large scale land cover classification and mapping could make the fast tracking of regional land cover classification.
A cursory survey of the forest resource of the east Texas post oak belt
V.B. Davis
1940-01-01
The area covered by this report!! lies in the eastern half of Texas and may be called the East Texas post oak belt. It is irregular in outline, approximately 400 miles long and 20 to 80 miles wide, and contains a total land area of 11,661,700 acres, From Lamar County on the north, it ,extends southwest to Atascosa and Bee Counties (see fig, 1), On the east, it is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGettigan, C.K.; Hunt, D.G.
Colombia, where petroleum development began in 1908, is still yielding giant and supergiant discoveries. Recent successes result from improvements in exploration technology, in infrastructure, and in terms of participation offered by the Colombian government. Colombia has 13 sedimentary basins covering an area of 700,000 sq km out of a total country area of 1,350,000 sq km, including the continental shelf. This article highlights four of the seven basins currently productive in Colombia, providing an overview of geology and recent exploration activity.
Recolonization of laser-ablated bacterial biofilm.
Nandakumar, Kanavillil; Obika, Hideki; Utsumi, Akihiro; Toshihiko, Ooie; Yano, Tetsuo
2004-01-20
The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, P< 0.05). The coupons were observed for biofilm area cover and TVC at different intervals (3, 6, and 9 h) after irradiation. While the biofilm in the control coupon at the end of 9 h of exposure showed 95.6 +/- 4.1% cover, the 5- and 10-min irradiated samples after 9 h showed 60.3 +/- 6.5 and 37.4 +/- 12.1% area cover, respectively. The reduced rate of recolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems. Copyright 2003 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Llamas, R. M.; Colditz, R. R.; Ressl, R.; Jurado Cruz, D. A.; Argumedo, J.; Victoria, A.; Meneses, C.
2017-12-01
The North American Land Change Monitoring System (NALCMS) is a tri-national initiative for mapping land cover across Mexico, United States and Canada, integrating efforts of institutions from the three countries. At the continental scale the group released land cover and change maps derived from MODIS image mosaics at 250m spatial resolution for 2005 and 2010. Current efforts are based on 30m Landsat images for 2010 ± 1 year. Each country uses its own mapping approach and sources for ancillary data, while ensuring that maps are produced in a coherent fashion across the continent. This paper presents the methodology and final land cover map of Mexico for the year 2010 that was later integrated into a continental map. The principal input for Mexico was the Monitoring Activity Data for Mexico (MAD-MEX) land cover map (version 4.3), derived from all available mostly cloud-free images for the year 2010. A total of 35 classes were regrouped to 15 classes of the NALCMS legend present in Mexico. Next, various issues of the automatically generated MAD-MEX land cover mosaic were corrected, such as: filling areas of no data due no cloud-free observation or gaps in Landsat 7 ETM+ images, filling inland water bodies which were left unclassified due to masking issues, relabeling isolated unclassified of falsely classified pixels, structural mislabeling due to data gaps, reclassifying areas of adjacent scenes with significant class disagreements and correcting obvious misclassifications, mostly of water and urban areas. In a second step minor missing areas and rare class snow and ice were digitized and a road network was added. A product such as NALCMS land cover map at 30m for North America is an unprecedented effort and will be without doubt an important source of information for many users around the world who need coherent land cover data over a continental domain as an input for a wide variety of environmental studies. The product release to the general public is expected by late summer of 2017 and will be made available through the Commission for Environmental Cooperation (CEC) at www.cec.org
Plant community variability on a small area in southeastern Montana
James G. MacCracken; Daniel W. Uresk; Richard M. Hansen
1984-01-01
Plant communities are inherently variable due to a number of environmental and biological forces. Canopy cover and aboveground biomass were determined for understory vegetation in plant communities of a prairie grassland-forest ecotone in southeastern Montana. Vegetation units were described using polar ordination and stepwise discriminant analysis. Nine of a total of...
ERIC Educational Resources Information Center
Simpson, Bruce; And Others
These performance tests for the area of allied health occupations/practical nursing consist of a sampling technique (domain referenced tests) which covers all the possible performance situations. When used in total, they may also serve as a comprehensive test. Introductory materials discuss domain referenced testing, determining the domains, and…
Totally Tree-mendous Activities: Projects To Discover the Beauty and Benefits of Trees.
ERIC Educational Resources Information Center
Hollister, Sarah
This teacher's guide supplies information and hands-on activities to teach about trees from several disciplines. Activities are grouped into six areas that cover botany, social studies, arts and literature (aesthetics), and trees as a resource. Sections include: (1) Tree Identification, which defines trees and leaves and presents activities that…
Current Status of Undergraduate, Nonprofessional Pharmacology Courses Taught in Colleges of Pharmacy
ERIC Educational Resources Information Center
Gerald, Michael C.
1976-01-01
Of the 57 colleges of pharmacy surveyed, 33 are currently offering a total of 44 elective, undergraduate, nonprofessional pharmacology courses, and seven contemplate initiating such courses by 1977. The courses generally cover three areas: social and legal aspects of drug usage and nonprescription consumerism; pharmacology of the drugs of abuse;…
What Would Happen If... Numbers 1-12.
ERIC Educational Resources Information Center
Tasmanian Education Dept., Hobart (Australia).
This document presents a set of 12 science activity collections (a total of 144 activities) gathered from periodicals and other sources in Australia. The content areas commonly covered in elementary school science lessons are represented by such activity topics as: what you can do with a leaf; climbing liquids; silkworms; shadows; chemical force;…
Riparian corridor and meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision is a major ...
2017-12-08
This image taken on January 13, 2015 from the Suomi NPP satellite's VIIRS instrument shows the Great Lakes and surrounding areas. The latest Great Lakes Surface Environmental Analysis (GLSEA) from the NOAA Great Lakes Environmental Research Laboratory shows total ice cover of 29.3% as of January 13th. Credit: NOAA/NASA/NPP Via NOAA Environmental Visualization Laboratory
USDA-ARS?s Scientific Manuscript database
In this special issue, we present a total of 20 review articles and original research papers in semiochemical applications from not only insects, also in some vertebrates. We have covered many areas of using chemical ecology tools for practical applications from all four continents, which include ph...
ERIC Educational Resources Information Center
Rice, Linda Maxwell; And Others
These performance tests for the area of cosmetology consist of a sampling technique (domain referenced tests) which covers all the possible performance situations. When used in total, they may also serve as a comprehensive test. Introductory materials discuss domain referenced testing, determining the domains, and developing performance testing…
Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.
Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M
2006-04-01
The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p < 0.001). This suggests that use of ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.
NASA Astrophysics Data System (ADS)
Santos, Gleice S.; Burgos, Douglas C.; Lira, Simone M. A.; Schwamborn, Ralf
2015-10-01
Tropical reefs are used for intensive tourism in various parts of the world. However, few studies have investigated the effect of regular trampling on these fragile ecosystems. The aim of this study was to assess the effect of different conservation strategies (open access, partial protection, and total long-term closure) on intertidal reef tops in Porto de Galinhas and Tamandaré, Pernambuco State, Brazil. Analysis of the macrobenthic community was performed with photo transects and image analysis (CPCe). Twenty-seven transects were surveyed from January to August 2012, in intensively impacted (I) open-access sites, in partially protected (P) sites with occasional, illegal trampling, and in a permanently closed (C) site. In I sites, total live cover was half the cover found in adjacent P sites. The area of bare rock averaged 53.6 and 25.0 % in I and P sites, respectively. In the C site, the area of bare rock was only 19.8 %. In I and P sites, macroalgae ( Palisada perforata) were dominating, while in the C site, the zoanthid Zoanthus sociatus was most abundant. Shell-bearing vermetids ( Petaloconchus varians) and bivalves ( Isognomon bicolor) were more abundant at the C site, being possible bioindicators for areas with zero or little trampling. Twelve years of total closure produced near-pristine communities in the C site, dominated by zoanthids and fragile mollusks. This study showed that trampling has severe and long-lasting consequences for the structure of these ecosystems.
Santos, Gleice S; Burgos, Douglas C; Lira, Simone M A; Schwamborn, Ralf
2015-10-01
Tropical reefs are used for intensive tourism in various parts of the world. However, few studies have investigated the effect of regular trampling on these fragile ecosystems. The aim of this study was to assess the effect of different conservation strategies (open access, partial protection, and total long-term closure) on intertidal reef tops in Porto de Galinhas and Tamandaré, Pernambuco State, Brazil. Analysis of the macrobenthic community was performed with photo transects and image analysis (CPCe). Twenty-seven transects were surveyed from January to August 2012, in intensively impacted (I) open-access sites, in partially protected (P) sites with occasional, illegal trampling, and in a permanently closed (C) site. In I sites, total live cover was half the cover found in adjacent P sites. The area of bare rock averaged 53.6 and 25.0% in I and P sites, respectively. In the C site, the area of bare rock was only 19.8%. In I and P sites, macroalgae (Palisada perforata) were dominating, while in the C site, the zoanthid Zoanthus sociatus was most abundant. Shell-bearing vermetids (Petaloconchus varians) and bivalves (Isognomon bicolor) were more abundant at the C site, being possible bioindicators for areas with zero or little trampling. Twelve years of total closure produced near-pristine communities in the C site, dominated by zoanthids and fragile mollusks. This study showed that trampling has severe and long-lasting consequences for the structure of these ecosystems.
NASA Astrophysics Data System (ADS)
Cigna, Francesca; Jordan, Hannah; Bateson, Luke; McCormack, Harry; Roberts, Claire
2015-11-01
We combine geological data and ground motion estimates from satellite ERS-1/2 and ENVISAT persistent scatterer interferometry (PSI) to delineate areas of observed natural and anthropogenic geohazards in the administrative area of Greater London (United Kingdom). This analysis was performed within the framework of the EC FP7-SPACE PanGeo project, and by conforming to the interpretation and geohazard mapping methodology extensively described in the Production Manual (cf. http://www.pangeoproject.eu). We discuss the results of the generation of the PanGeo digital geohazard mapping product for Greater London, and analyse the potential of PSI, geological data and the PanGeo methodology to identify areas of observed geohazards. Based on the analysis of PSI ground motion data sets for the years 1992-2000 and 2002-2010 and geology field campaigns, we identify 25 geohazard polygons, covering a total of ~650 km2. These include not only natural processes such as compaction of deposits on the River Thames flood plain and slope instability, but also anthropogenic instability due to groundwater management and changes in the Chalk aquifer, recent engineering works such as those for the Jubilee Line Extension project and electricity tunnelling in proximity to the River Thames, and the presence of made ground. In many instances, natural and anthropogenic observed geohazards overlap, therefore indicating interaction of different processes over the same areas. In terms of ground area covered, the dominant geohazard is anthropogenic land subsidence caused by groundwater abstraction for a total of ~300 km2, followed by natural compression of River Thames sediments over ~105 km2. Observed ground motions along the satellite line-of-sight are as high as +29.5 and -25.3 mm/year, and indicate a combination of land surface processes comprising ground subsidence and uplift, as well as downslope movements. Across the areas of observed geohazards, urban land cover types from the Copernicus (formerly GMES) EEA European Urban Atlas, e.g., continuous and discontinuous urban fabric and industrial units, show the highest average velocities away from the satellite sensor, and the smallest standard deviations (~0.7-1.0 mm/year). More rural land cover types such as agricultural, semi-natural and green areas reveal the highest spatial variability (up to ~4.4 mm/year), thus suggesting greater heterogeneity of observed motion rates within these land cover types. Areas of observed motion in the PSI data for which a geological interpretation cannot be found with sufficient degree of certainty are also identified, and their possible causes discussed. Although present in Greater London, some geohazard types such as shrink-swell clays and ground dissolution are not highlighted by the interpretation of PSI annual motion rates. Reasons for absence of evidence of the latter in the PSI data are discussed, together with difficulties related to the identification of good radar scatterers in landsliding areas.
Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia.
Karofeld, Edgar; Müür, Mari; Vellak, Kai
2016-07-01
Increasing human activity continues to threaten peatlands, and as the area of natural mires declines, our obligation is to restore their ecosystem functions. Several restoration strategies have been developed for restoration of extracted peatlands, including "The moss layer transfer method", which was initiated on the Tässi extracted peatland in central Estonia in May 2012. Three-year study shows that despite the fluctuating water table, rainfall events can compensate for the insufficient moisture for mosses. Total plant cover on the restoration area attained 70 %, of which ~60 % is comprised of target species-Sphagnum mosses. From restoration treatments, spreading of plant fragments had a significant positive effect on the cover of bryophyte and vascular plants. Higher water table combined with higher plant fragments spreading density and stripping of oxidised peat layer affected positively the cover of targeted Sphagnum species. The species composition in the restoration area became similar to that in the donor site in a natural bog. Based on results, it was concluded that the method approved for restoration in North America gives good results also in the restoration of extracted peatland towards re-establishment of bog vegetation under northern European conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
The FY DOE budge totals $12.6 billion in budget authority and $11.1 billion in budget outlays. The budget authority being requested consists of $10.3 billion in new authority and a $2.3 billion reappropriation of expiring funds for the Strategic Petroleum Reserve. Areas covered in the Energy budget are: energy conservation; research, development, and applications; regulation and information; direct energy production; strategic energy production; and energy security reserve. Other areas include: general science, defense activities; departmental administration; and legislative proposal - spent fuel. Budget totals are compared for 1980 and 1981. A detailed discussion of the FY 1981 activities to bemore » undertaken to carry out these activities is provided. (MCW)« less
Report B: 1986 projected population, labor force and unemployment - Delaware
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-09-01
Report B, the results of the Population, Labor Force and Unemployment Projections Model, contain current socio-economic indicators. For each geographic area, there is one page of summary/background information followed by three tables. These tables contain the population projections, the labor force projections, and the unemployment projections, respectively. These tables are composed of data for the following racial groups: total population, whites, blacks, and other races. Those who call themselves Hispanics may be covered in any of the last three racial groups. For those geographic areas which have provided more than one labor force and/or unemployment control total, the last twomore » tables will appear more than once.« less
Terrestrial Gamma Radiation Dose Rate of West Sarawak
NASA Astrophysics Data System (ADS)
Izham, A.; Ramli, A. T.; Saridan Wan Hassan, W. M.; Idris, H. N.; Basri, N. A.
2017-10-01
A study of terrestrial gamma radiation (TGR) dose rate was conducted in west of Sarawak, covering Kuching, Samarahan, Serian, Sri Aman, and Betong divisions to construct a baseline TGR dose rate level data of the areas. The total area covered was 20,259.2 km2, where in-situ measurements of TGR dose rate were taken using NaI(Tl) scintillation detector Ludlum 19 micro R meter NaI(Tl) approximately 1 meter above ground level. Twenty-nine soil samples were taken across the 5 divisions covering 26 pairings of 9 geological formations and 7 soil types. A hyperpure Germanium detector was then used to find the samples' 238U, 232Th, and 40K radionuclides concentrations producing a correction factor Cf = 0.544. A total of239 measured data were corrected with Cf resulting in a mean Dm of 47 ± 1 nGy h-1, with a range between 5 nGy h-1 - 103 nGy h-1. A multiple regression analysis was conducted between geological means and soil types means against the corrected TGR dose rate Dm, generating Dg,s= 0.847Dg+ 0.637Ds- 22.313 prediction model with a normalized Beta equation of Dg,s= 0.605Dg+ 0.395Ds. The model has an 84.6% acceptance of Whitney- Mann test null hypothesis when tested against the corrected TGR dose rates.
Multi Satellites Monitoring of Land Use/Cover Change and Its Driving Forces in Kashgar Region, China
NASA Astrophysics Data System (ADS)
Maimaitiaili, Ayisulitan; Aji, xiaokaiti; Kondoh, Akihiko
2016-04-01
Multi Satellites Monitoring of Land Use/Cover Change and Its Driving Forces in Kashgar Region, China Ayisulitan Maimaitiaili1, Xiaokaiti Aji2 Akihiko Kondoh2 1Graduate School of Science, Chiba University, Japan 2Center for Environmental Remote Sensing, Chiba University The spatio-temporal changes of Land Use/Cover (LUCC) and its driving forces in Kashgar region, Xinjiang Province, China, are investigated by using satellite remote sensing and a geographical information system (GIS). Main goal of this paper is to quantify the drivers of LUCC. First, considering lack of the Land Cover (LC) map in whole study area, we produced LC map by using Landsat images. Land use information from Landsat data was collected using maximum likelihood classification method. Land use change was studied based on the change detection method of land use types. Second, because the snow provides a key water resources for stream flow, agricultural production and drinking water for sustaining large population in Kashgar region, snow cover are estimated by Spot Vegetation data. Normalized Difference Snow Index (NDSI) algorithm are applied to make snow cover map, which is used to screen the LUCC and climate change. The best agreement is found with threshold value of NDSI≥0.2 to generate multi-temporal snow cover and snowmelt maps. Third, driving forces are systematically identified by LC maps and statistical data such as climate and socio-economic data, regarding to i) the climate changes and ii) socioeconomic development that the spatial correlation among LUCC, snow cover change, climate and socioeconomic changes are quantified by using liner regression model and negative / positive trend analysis. Our results showed that water bodies, bare land and grass land have decreasing notably. By contrast, crop land and urban area have continually increasing significantly, which are dominated in study area. The area of snow/ice have fluctuated and has strong seasonal trends, total annual snow cover has two peaks in 2005 and 2009. With increasing population from 2,324,375 in 1984 to 4,228,200 in 2014 and crop land reclamation from 6031.4 km2 in 1972 to 16549km2 in 2014 at the study area. Water resources consumption increased with support to large population and irrigate whole crop land area, caused the water shortages that the surface water bodies decreased from 2531.43km2 in the 1972s to 1067.05km2 in the 2014. The grass land with an acreage larger than 6749km2 in 1972 decreased to 922.6 km2 in 2014. The transformations between water bodies, garss land and bare land are remarkbale. The results also suggested high linearity between the LUCC and socioeconomic changes that specific land cover change be cause of the fact that socioeconomic development. In the recent 42 years, average annual temperature have been increasing significantly, although, precipitation have increased but partly weaken effect of the rising temperature, in addition snow cover more sensitive to precipitation than temperature. Results the change of climate showed a nagitive relationship between the NDSI with decrased of the snow cover and climate with increasing of the tempreature. Morover, the relationship between the LUCC and snow cover recorded higher linearity, because the temperature have increased, consequence influence on snow cover that provides melt water for study area which expanding crop land.
Throughfall patterns of a Subtropical Atlantic Forest in Brazil
NASA Astrophysics Data System (ADS)
Macedo Sá, João Henrique; Borges Chaffe, Pedro Luiz; Yuimi de Oliveira, Debora; Nery Giglio, Joana; Kobiyama, Masato
2017-04-01
The interception process is responsible for the spatial and temporal redistribution of the precipitation that reaches the ground. This process is important especially in forested areas since it influences recycling of moisture from the air and also the amount of water that effectively reaches the ground. The contact of the precipitation with the canopy influences on the water quality, increasing the concentration of various nutrients in the throughfall (Tf) and stemflow (Sf). Brazil, only about 8% of the original Atlantic Forest cover remains. That is an important biome and little is known about the characteristics of rainfall interception of this forest. The total interception loss in forested areas is usually formulated as the gross precipitation (P) minus the sum of the throughfall (Tf) and the stemflow (Sf). The stems characteristics influence on Sf, meanwhile, the value of Tf strongly depends on the canopy and leaf structures. Because of the complex structure of the canopy, these characteristics are usually expressed by the simpler Leaf Area Index (LAI) or the Canopy Cover Fraction (CCF). The Araponga river experimental catchment (ARA) with 5.3 ha is on the northern plateau of Santa Catarina State, southern Brazil. It is an area completely covered by secondary subtropical Atlantic Forest, the regional climate is the Köppen Cfb type, i.e., temperate climate without dry season and with warm summer (the mean temperature of the hottest month is always under 22°C). The objectives of the present study were (i) to evaluate the spatial and temporal variation of canopy cover; (ii) to influence of the interception process on the precipitation quality; and (iii) to explore the relation between canopy cover and throughfall. Inside the catchment, 9 Tf gauges were installed 40 cm above the soil surface in order to include the interception by shrub. 28 hand-made gauges were installed on a circular area of 3 m radius to analyze the spatial variability of throughfall. During 3 year in 2012 to 2014, digital images were taken every month with a camera installed horizontally 25 cm above the soil surface at each Tf gage. The total incident rainfall was 4624 mm, the throughfall volume was 3538 mm or 76% of incident rainfall. CCF and LAI ranged from 70 to 90% and from 3 to 5.5 m2/m2, respectively. We could not find any satisfactory relationship between Tf and canopy parameters (CCF and LAI). The analysis shows the significant difference in the water quality of the precipitation that reaches the ground after being intercepted. There was no significant relationship between the physicochemical parameters and the canopy cover fraction. The results indicate that the distribution of throughfall is not homogeneous, its spatial variation is not linked to any of the calculated parameters.
Retrieval of total water vapour in the Arctic using microwave humidity sounders
NASA Astrophysics Data System (ADS)
Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg
2018-04-01
Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.
Mamat, Zulpiya; Halik, Umut; Aji, Rouzi; Nurmemet, Ilyas; Anwar, Mirigul; Keyimu, Maierdang
2015-03-01
In this paper, we used land use/cover ecosystem service value estimation model and ecological economic coordination degree model to analyze the changes of the ecosystem service value by the land use/cover changes during 1985, 1990, 1996, 2000, 2005 and 2011 in Yanqi Basin, Xin-jiang. Then we evaluated the ecology-economy harmony and the regional differences. The results showed that during 1985-2011, there was an increasing trend in the areas of waters, wetland, sand, cultivated land and construction land in Yanqi Basin. In contrast, that of the saline-alkali land, grassland and woodland areas exhibited a decreasing trend. The ecosystem service value in Yanqi Basin during this period presented an increasing trend, among which the waters and cultivated land contributed most to the total value of ecosystem services, while the grassland and the woodland had obviously declined contribution to the total value of ecosystem services. The research showed that the development of ecological economy in the study area was at a low conflict and low coordination level. So, taking reasonable and effective use of the regional waters and soil resources is the key element to maintain the ecosystem service function and sustainable and harmonious development of economy in Yanqi Basin.
Rodrigues-Filho, J L; Degani, R M; Soares, F S; Periotto, N A; Blanco, F P; Abe, D S; Matsumura-Tundisi, T; Tundisi, J E; Tundisi, J G
2015-01-01
The amendments to the Forest Law proposed by the Brazilian government that allow partial substitution of forested areas by agricultural activities raised deep concern about the integrity of aquatic ecosystems. To assess the impacts of this alteration in land uses on the watershed, diffuse loads of total nitrogen (Nt) and total phosphorus (Pt) were estimated in Lobo Stream watershed, southeastern Brazil, based on export coefficients of the Model of Correlation between Land Use and Water Quality (MQUAL). Three scenarios were generated: scenario 1 (present scenario), with 30-meter-wide permanent preservation areas along the shore of water bodies and 50-meter-radius in springs; scenario 2, conservative, with 100-meter-wide permanent preservation areas along water bodies; and scenario 3, with the substitution of 20% of natural forest by agricultural activities. Results indicate that a suppression of 20% of forest cover would cause an increase in nutrient loads as well as in the trophic state of aquatic ecosystems of the watershed. This could result in losses of ecosystem services and compromise the quality of water and its supply for the basin. This study underlines the importance of forest cover for the maintenance of water quality in Lobo Stream watershed.
Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean
NASA Astrophysics Data System (ADS)
Ateweberhan, M.; McClanahan, T. R.; Graham, N. A. J.; Sheppard, C. R. C.
2011-09-01
Long-term changes in coral cover for the Caribbean and the Pacific/Southeast Asia regions (PSEA) have proven extremely useful in assessing the main drivers, magnitude and timescales of change. The one major coral reef region where such assessments have not been made is the Indian Ocean (IO). Here, we compiled coral cover survey data from across the IO into a database of ~2,000 surveys from 366 coral reef sites collected between 1977 and 2005. The compilation shows that the 1998 mass coral bleaching event was the single most important and widespread factor influencing the change in coral cover across the region. The trend in coral cover followed a step-type function driven by the 1998 period, which differs from findings in the Caribbean and the PSEA regions where declines have been more continuous and mostly began in the 1980s. Significant regional variation was observed, with most heterogeneity occurring during and after 1998. There was a significant relationship between cover and longitude for all periods, but the relationship became stronger in the period immediately after 1998. Before 1998, highest coral cover was observed in the central IO region, while this changed to the eastern region after 1998. Coral cover and latitude displayed a significant U-shaped relationship immediately after 1998, due to a large decrease in cover in the northern-central regions. Post-1998 coral cover was directly correlated to the impact of the disturbance; areas with the lowest mortality having the highest cover with India-Sri Lanka being an outlier due to its exceptionally high recovery. In 1998, reefs within Marine Protected Areas (MPAs) were more heavily impacted than unmanaged reefs, losing significantly greater total cover. MPA recovery was greater such that no differences were observed by 2001-2005. This study indicates that the regional patterns in coral cover distribution in the IO are driven mainly by episodic and acute environmental stress.
Yilmaz, Rüya
2010-06-01
The objective of the present study was to assess changes in land use/land cover patterns in the coastal town of Silivri, a part of greater Istanbul administratively. In the assessment, remotely sensed data, in the form of satellite images, and geographic information systems were used. Types of land use/land cover were designated as the percentage of the total area studied. Results calculated from the satellite data for land cover classification were compared successfully with the database Coordination of Information on the Environment (CORINE). This served as a reference to appraise the reliability of the study presented here. The CORINE Program was established by the European Commission to create a harmonized Geographical Information System on the state of the environment in the European Community. Unplanned urbanization is causing land use changes mainly in developing countries such as Turkey. This situation in Turkey is frequently observed in the city of Istanbul. There are only a few studies of land use-land cover changes which provide an integrated assessment of the biophysical and societal causes and consequences of environmental degradation in Istanbul. The research area comprised greater Silivri Town which is situated by the coast of Marmara Sea, and it is located approximately 60 km west of Istanbul. The city of Istanbul is one of the largest metropolises in Europe with ca. 15 million inhabitants. Additionally, greater Silivri is located near the terminal point of the state highway connecting Istanbul with Europe. Measuring of changes occurring in land use would help control future planning of settlements; hence, it is of importance for the Greater Silivri and Silivri Town. Following our evaluations, coastal zone of Silivri was classified into the land use groups of artificial surfaces agricultural areas and forests and seminatural areas with 47.1%, 12.66%, and 22.62%, respectively.
NASA Astrophysics Data System (ADS)
Schellekens, Jaap; van Gils, Jos; Christophe, Christophe; Sperna-Weiland, Frederiek; Winsemius, Hessel
2013-04-01
The ability to quickly link a complete water quality model to any distributed hydrological model can be of great value. It provides the hydrological modeller with more information on the performance of the model by being able to add particle tracing and independent mass balance calculations to an existing distributed hydrological model. It also allows for full catchment water quality calculations forced by emissions to different hydrological compartments, taking into account the relevant processes in the different compartments of the hydrological model. A combined distributed hydrological model and hydrochemical model (Delwaq) have been combined within the modeling framework OpenStreams to model large scale hydrological processes in the Rhine basin upstream of the Dutch border at Lobith. Several models have been setup to evaluate (1) the origin of high and low flows in the Rhine basin based on subcatchment contribution and (2) the contribution of different land covers to the total flow with special reference to urban land cover. In addition (3) the relative share of fast and slow runoff components in the total river discharge has been quantified, as well as the age of these two fractions, both as a function of time. Finally (4) the transmission of a pollutant released in infiltrating water and undergoing sorption has been simulated, as a first test for implementing full water quality modelling. The results of a thirty-five year run using daily time steps for 1975 to 2010 were analysed for monthly average contribution to the total flow of each subcatchment and the different land cover types both for average flow conditions and for the top ten and bottom ten flow percentiles. Furthermore, a number of high and low flow events have been analysed in detail. They reveal the large contribution of the basin area upstream of Basel to the dry season flow, especially during the driest summers. Flood conditions in the basin have a more varied origin with the Moselle being the main contributor. The amount of urban land cover (6.7%) generated a fairly large amount of (quick) runoff. In times up to 21 % of the flow at Lobith is generated in urban areas. The location of urban areas (in general close to the river) in combination with the associated impermeable surfaces most probably cause the relatively large contribution of urban areas. The fast runoff fraction at Lobith has an average age between 5 and 25 days, depending on the hydrology within the year, while the slow runoff fraction shows an average age between 300 and 600 days, again depending on the hydrology within the year. The time needed to flush out 90% of the total volume of water from the basin is about 20 years.
Hua, Ang Kean
2017-01-01
Malacca River water quality is affected due to rapid urbanization development. The present study applied LULC changes towards water quality detection in Malacca River. The method uses LULC, PCA, CCA, HCA, NHCA, and ANOVA. PCA confirmed DS, EC, salinity, turbidity, TSS, DO, BOD, COD, As, Hg, Zn, Fe, E. coli , and total coliform. CCA confirmed 14 variables into two variates; first variate involves residential and industrial activities; and second variate involves agriculture, sewage treatment plant, and animal husbandry. HCA and NHCA emphasize that cluster 1 occurs in urban area with Hg, Fe, total coliform, and DO pollution; cluster 3 occurs in suburban area with salinity, EC, and DS; and cluster 2 occurs in rural area with salinity and EC. ANOVA between LULC and water quality data indicates that built-up area significantly polluted the water quality through E. coli , total coliform, EC, BOD, COD, TSS, Hg, Zn, and Fe, while agriculture activities cause EC, TSS, salinity, E. coli , total coliform, arsenic, and iron pollution; and open space causes contamination of turbidity, salinity, EC, and TSS. Research finding provided useful information in identifying pollution sources and understanding LULC with river water quality as references to policy maker for proper management of Land Use area.
NASA Astrophysics Data System (ADS)
Evgenievna Terentieva, Irina; Vladimirovich Glagolev, Mikhail; Dmitrievna Lapshina, Elena; Faritovich Sabrekov, Alexandr; Maksyutov, Shamil
2016-08-01
High-latitude wetlands are important for understanding climate change risks because these environments sink carbon dioxide and emit methane. However, fine-scale heterogeneity of wetland landscapes poses a serious challenge when generating regional-scale estimates of greenhouse gas fluxes from point observations. In order to reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the taiga zone of The West Siberia Lowland (WSL) on a scene-by-scene basis using a supervised classification of Landsat imagery. Training data consist of high-resolution images and extensive field data collected at 28 test areas. The classification scheme aims at supporting methane inventory applications and includes seven wetland ecosystem types comprising nine wetland complexes distinguishable at the Landsat resolution. To merge typologies, mean relative areas of wetland ecosystems within each wetland complex type were estimated using high-resolution images. Accuracy assessment based on 1082 validation polygons of 10 × 10 pixel size indicated an overall map accuracy of 79 %. The total area of the WSL wetlands and water bodies was estimated to be 52.4 Mha or 4-12 % of the global wetland area. Ridge-hollow complexes prevail in WSL's taiga zone accounting for 33 % of the total wetland area, followed by pine bogs or "ryams" (23 %), ridge-hollow-lake complexes (16 %), open fens (8 %), palsa complexes (7 %), open bogs (5 %), patterned fens (4 %), and swamps (4 %). Various oligotrophic environments are dominant among wetland ecosystems, while poor fens cover only 14 % of the area. Because of the significant change in the wetland ecosystem coverage in comparison to previous studies, a considerable reevaluation of the total CH4 emissions from the entire region is expected. A new Landsat-based map of WSL's taiga wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland data sets in high latitudes.
Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned
NASA Astrophysics Data System (ADS)
Leys, Bérangère; Brewer, Simon C.; McConaghy, Scott; Mueller, Joshua; McLauchlan, Kendra K.
2015-11-01
Fire is one of the most prevalent disturbances in the Earth system, and its past characteristics can be reconstructed using charcoal particles preserved in depositional environments. Although researchers know that fires produce charcoal particles, interpretation of the quantity or composition of charcoal particles in terms of fire source remains poorly understood. In this study, we used a unique four-year dataset of charcoal deposited in traps from a native tallgrass prairie in mid-North America to test which environmental factors were linked to charcoal measurements on three spatial scales. We investigated small and large charcoal particles commonly used as a proxy of fire activity at different spatial scales, and charcoal morphotypes representing different types of fuel. We found that small (125-250 μm) and large (250 μm-1 mm) particles of charcoal are well-correlated (Spearman correlation = 0.88) and likely reflect the same spatial scale of fire activity in a system with both herbaceous and woody fuels. There was no significant relationship between charcoal pieces and fire parameters <500 m from the traps. Moreover, local area burned (<5 km distance radius from traps) explained the total charcoal amount, and regional burning (200 km radius distance from traps) explained the ratio of non arboreal to total charcoal (NA/T ratio). Charcoal variables, including total charcoal count and NA/T ratio, did not correlate with other fire parameters, vegetation cover, landscape, or climate variables. Thus, in long-term studies that involve fire history reconstructions, total charcoal particles, even of a small size (125-250 μm), could be an indicator of local area burned. Further studies may determine relationships among amount of charcoal recorded, fire intensity, vegetation cover, and climatic parameters.
Subpixel Snow Cover Mapping from MODIS Data by Nonparametric Regression Splines
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Kuter, S.; Weber, G. W.
2016-12-01
Spatial extent of snow cover is often considered as one of the key parameters in climatological, hydrological and ecological modeling due to its energy storage, high reflectance in the visible and NIR regions of the electromagnetic spectrum, significant heat capacity and insulating properties. A significant challenge in snow mapping by remote sensing (RS) is the trade-off between the temporal and spatial resolution of satellite imageries. In order to tackle this issue, machine learning-based subpixel snow mapping methods, like Artificial Neural Networks (ANNs), from low or moderate resolution images have been proposed. Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression tool that can build flexible models for high dimensional and complex nonlinear data. Although MARS is not often employed in RS, it has various successful implementations such as estimation of vertical total electron content in ionosphere, atmospheric correction and classification of satellite images. This study is the first attempt in RS to evaluate the applicability of MARS for subpixel snow cover mapping from MODIS data. Total 16 MODIS-Landsat ETM+ image pairs taken over European Alps between March 2000 and April 2003 were used in the study. MODIS top-of-atmospheric reflectance, NDSI, NDVI and land cover classes were used as predictor variables. Cloud-covered, cloud shadow, water and bad-quality pixels were excluded from further analysis by a spatial mask. MARS models were trained and validated by using reference fractional snow cover (FSC) maps generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also developed. The mutual comparison of obtained MARS and ANN models was accomplished on independent test areas. The MARS model performed better than the ANN model with an average RMSE of 0.1288 over the independent test areas; whereas the average RMSE of the ANN model was 0.1500. MARS estimates for low FSC values (i.e., FSC<0.3) were better than that of ANN. Both ANN and MARS tended to overestimate medium FSC values (i.e., 0.30.7).
Mocan, Mehmet C; Ilhan, Hacer; Gurcay, Hasmet; Dikmetas, Ozlem; Karabulut, Erdem; Erdener, Ugur; Irkec, Murat
2014-06-01
To derive a mathematical expression for the healthy upper eyelid (UE) contour and to use this expression to differentiate the normal UE curve from its abnormal configuration in the setting of blepharoptosis. The study was designed as a cross-sectional study. Fifty healthy subjects (26M/24F) and 50 patients with blepharoptosis (28M/22F) with a margin-reflex distance (MRD1) of ≤2.5 mm were recruited. A polynomial interpolation was used to approximate UE curve. The polynomial coefficients were calculated from digital eyelid images of all participants using a set of operator defined points along the UE curve. Coefficients up to the fourth-order polynomial, iris area covered by the UE, iris area covered by the lower eyelid and total iris area covered by both the upper and the lower eyelids were defined using the polynomial function and used in statistical comparisons. The t-test, Mann-Whitney U test and the Spearman's correlation test were used for statistical comparisons. The mathematical expression derived from the data of 50 healthy subjects aged 24.1 ± 2.6 years was defined as y = 22.0915 + (-1.3213)x + 0.0318x(2 )+ (-0.0005x)(3). The fifth and the consecutive coefficients were <0.00001 in all cases and were not included in the polynomial function. None of the first fourth-order coefficients of the equation were found to be significantly different in male versus female subjects. In normal subjects, the percentage of the iris area covered by upper and lower lids was 6.46 ± 5.17% and 0.66% ± 1.62%, respectively. All coefficients and mean iris area covered by the UE were significantly different between healthy and ptotic eyelids. The healthy and abnormal eyelid contour can be defined and differentiated using a polynomial mathematical function.
Magnetic Suspension Technology Workshop
NASA Technical Reports Server (NTRS)
Keckler, Claude R. (Editor); Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1993-01-01
In order to identify the state of magnetic suspension technology in such areas as rotating systems, pointing of experiments or subsystems, payload isolation, and superconducting materials, a workshop on Magnetic Suspension Technology was held at the Langley Research Center in Hampton, Virginia, on 2-4 Feb. 1988. The workshop included five technical sessions in which a total of 24 papers were presented. The technical sessions covered the areas of pointing, isolation, and measurement, rotating systems, modeling and control, and superconductors. A list of attendees is provided.
Roger Featherstone; Sky Jacobs; Sergio Avila-Villegas; Sandra Doumas
2013-01-01
In September 2011, we initiated a 2-year âcamera trapâ mammal survey in the Greater Oak Flat Watershed near Superior, Arizona. Our survey area covers a total of 6,475 ha. The area surveyed is primarily a mixing zone of upper Sonoran Desert and interior chaparral, with influences from the Madrean vegetation community. Elevations range from 1150 to 1450 m. Ten cameras...
Susceptibility and triggering scenarios at a regional scale for shallow landslides
NASA Astrophysics Data System (ADS)
Gullà, G.; Antronico, L.; Iaquinta, P.; Terranova, O.
2008-07-01
The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an ˜ 15,075 km 2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing. Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors. The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps. On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility. Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been utilized to identify the relevant pluviometric triggering scenarios. By using 205 daily rainfall series, different triggering pluviometric scenarios have been identified with reference to CG and FG covers: a value of 365 mm of the total rainfall of the event and/or 170 mm/d of the rainfall maximum intensity and a value of 325 mm of the total rainfall of the event and/or 158 mm/d of the rainfall maximum intensity are able to trigger shallow landsliding events for CG and FG covers, respectively. The results obtained from this study can help administrative authorities to plan future development activities and mitigation measures in shallow landslide-prone areas. In addition, the proposed methodology can be useful in managing emergency situations at a regional scale for shallow landsliding events triggered by intense rainfalls; through this approach, the susceptibility and the pluviometric triggering scenario maps will be improved by means of finer calibration of the involved factors.
Patterns of drugs & poisons in southern area of South Korea in 2014.
Kim, Eunmi; Park, Yonghoon; Ha, Hongil; Chung, Heesun
2016-12-01
The southern area of South Korea consists of three parts; Busan, Ulsan and Gyeongsangnam-do. Busan Institute of National Forensic Service (NFS) performed about 50,000 cases throughout the southern area in 2014, occupying over 15% of total cases covered by NFS. In this study, patterns of drugs and poisons in the southern area of South Korea were investigated. The investigation was carried out by the laboratory information management system of NFS between January and December of 2014. As results, a total of 606 autopsy cases were performed by Busan Institute of NFS in 2014. Among them, 15 cases were determined as drug intoxication or poisons as the cause of death, taking up 2.5% of total cases: 5 cases of intoxication by drugs, 5 by agricultural pesticides, 3 by illicit drugs, and 1 each by detergents and chemical substances. A total of 108 drugs in postmortem bloods were detected from the autopsy cases, and the top 5 drugs were chlorpheniramine, tramadol, diazepam, zolpidem and lidocaine. Meanwhile, a total of 1,728 cases were submitted for illicit drug testing in 2014. Among them, hair was the most common type of specimens, and the rate of positive detection of methamphetamine from the hair, urine, and seized materials in the southern area was over 50% in all cases, indicating that this is the most commonly abused drug in South Korea. A total of 12 types of novel psychoactive substances (NPSs) were detected in the southern area in 2014; 10 were identified as synthetic cannabinoids and 2 as alkyl nitrites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A Froude-scaled model of a bedrock-alluvial channel reach: 2. Sediment cover
NASA Astrophysics Data System (ADS)
Hodge, Rebecca A.; Hoey, Trevor B.
2016-09-01
Previous research into sediment cover in bedrock-alluvial channels has focussed on total sediment cover, rather than the spatial distribution of cover within the channel. The latter is important because it determines the bedrock areas that are protected from erosion and the start and end of sediment transport pathways. We use a 1:10 Froude-scaled model of an 18 by 9 m reach of a bedrock-alluvial channel to study the production and erosion of sediment patches and hence the spatial relationships between flow, bed topography, and sediment dynamics. The hydraulic data from this bed are presented in the companion paper. In these experiments specified volumes of sediment were supplied at the upstream edge of the model reach as single inputs, at each of a range of discharges. This sediment formed patches, and once these stabilized, flow was steadily increased to erode the patches. In summary: (1) patches tend to initiate in the lowest areas of the bed, but areas of topographically induced high flow velocity can inhibit patch development; (2) at low sediment inputs the extent of sediment patches is determined by the bed topography and can be insensitive to the exact volume of sediment supplied; and (3) at higher sediment inputs more extensive patches are produced, stabilized by grain-grain and grain-flow interactions and less influenced by the bed topography. Bedrock topography can therefore be an important constraint on sediment patch dynamics, and topographic metrics are required that incorporate its within-reach variability. The magnitude and timing of sediment input events controls reach-scale sediment cover.
Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition
Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov
1998-01-01
Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...
Research on the ecology and management of Micronesian mangroves
J.A. Allen
1999-01-01
Mangroves are a vitally important natural resource on the high islands of Micronesia. This importance is especially valid in the Federated States of Micronisa (FSM) and the Republic of Palau, where mangroves cover 10-15% of the total land area and are used heavily by islanders as sources of wood, crabs, fish, thatching material, and other products.
Water balance in paired watersheds with eucalyptus and degraded grassland in Pampa biome
USDA-ARS?s Scientific Manuscript database
Rangelands of the Pampa biome, which cover regions of Argentina, Uruguay and Brazil (176,496 km2 – 2.07% of Brazilian territory and 63% of Rio Grande do Sul State territory, southern region of Brazil) in South America (total area of 750,000 km2), are being substituted by crops and commercial eucalyp...
SOIL EMISSIONS OF CO2 AND CO IN TROPICAL SAVANNAS OF CENTRAL BRAZIL UNDER DIFFERENT FIRE REGIMES
The Cerrado is a tropical savanna in which herbaceous vegetation (mainly C4 grasses) coexists with trees and shrubs. It covers more than two million square kilometers and accounts for 22% of the total area of Brazil. In general, cerrado soils are old, deep, well drained, well s...
ERIC Educational Resources Information Center
Watkins, James F.; And Others
These performance tests for the area of transportation/automotive mechanics consist of a sampling technique (domain referenced tests) which covers all the possible performance situations. When used in total, they may also serve as a comprehensive test. Introductory materials discuss domain referenced testing, determining the domains, and…
Social Development Training Project. Stage I and Stage II. [The Granville Project].
ERIC Educational Resources Information Center
Riches, Vivienne C., Ed.
The book presents a training program developed at the Granville Work Preparation Centre in Australia, to teach mildly retarded adolescents basic social skills and competencies. The program is divided into two stages, with a total of 17 different skill areas. Stage 1 covers self-awareness, social/interpersonal skills, relaxation and behavioral self…
T.W. Lister; J.L Perdue; C.J. Barnett; B.J. Butler; S.J. Crocker; G.M. Domke; D. Griffith; M.A. Hatfield; C.M. Kurtz; A.J. Lister; R.S. Morin; W.K. Moser; M.D. Nelson; C.H. Perry; R.J. Piva; R. Riemann; R. Widmann; C.W. Woodall
2011-01-01
The first full annual inventory of Maryland's forests reports approximately 2.5 million acres of forest land, which covers 40 percent of the State's land area and with a total volume of more than 2,100 cubic feet per acre. Nineteen percent of the growing-stock volume is yellow-poplar, followed by red maple (13 percent) and loblolly pine (10 percent). All...
William H. McWilliams; Seth P. Cassell; Carol L. Alerich; Brett J. Butler; Michael L. Hoppus; Stephen B. Horsley; Andrew J. Lister; Tonya W. Lister; Randall S. Morin; Charles H. Perry; James A. Westfall; Eric H. Wharton; Christopher W. Woodall
2007-01-01
Pennsylvania's forest-land base is stable, covering 16.6 million acres or 58 percent of the land area. Sawtimber volume totals 88.9 billion board feet, an average of about 5,000 board feet per acre. Currently, only half of the forest land that should have advance tree seedling and sapling regeneration is adequately stocked with high-canopy species, and only one-...
VizieR Online Data Catalog: Multiwavelength catalog in the SEP field (Baronchelli+, 2016)
NASA Astrophysics Data System (ADS)
Baronchelli, I.; Scarlata, C.; Rodighiero, G.; Franceschini, A.; Capak, P. L.; Mei, S.; Vaccari, M.; Marchetti, L.; Hibon, P.; Sedgwick, C.; Pearson, C.; Serjeant, S.; Menendez-Delmestre, K.; Salvato, M.; Malkan, M.; Teplitz, H. I.; Hayes, M.; Colbert, J.; Papovich, C.; Devlin, M.; Kovacs, A.; Scott, K. S.; Surace, J.; Kirkpatrick, J. D.; Atek, H.; Urrutia, T.; Scoville, N. Z.; Takeuchi, T. T.
2016-04-01
Spitzer-IRAC/MIPS Extragalactic survey (SIMES) is a Spitzer Cycle 8 General Observer program (PID 80039, P.I.: Scarlata) observed during the warm mission phase. The survey covers an area of 7.74deg2 to a depth of ~5.80μJy (3σ) at 3.6μm and 5.25μJy at 4.5μm. The field was covered in two visits, between 2011 November 16 and 23, in order to facilitate identification and removal of asteroids. The MIPS 24μm catalog is described in Clements et al. (2011, J/MNRAS/411/373). This catalog covers an area of ~12deg2 in the South Ecliptic Pole (SEP) region and includes counterparts at 70um of the 24um detected sources, and so we limit the analysis to the cross-correlation between IRAC and MIPS 24 and report the 70um association identified in the original MIPS catalog. The SIMES field was observed as part of the Herschel Multi-tiered Extragalactic Survey (HerMES, Oliver et al. 2012, VIII/95; Wang et al. 2014MNRAS.444.2870W). Here, we keep only those sources with fluxes above 3σ in at least one SPIRE band (250, 350 or 500um). A central area of approximately one square degree was observed at the MPG/ESO 2.2m telescope at La Silla with the Wide Field Imager (WFI) during 2010 October (P.I.: T. Takeuchi). Four pointings with the Rc broadband filter (λc=6517.25Å) were obtained, covering a total area of 1.13deg2. (1 data file).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The Baton Rouge quadrangle covers 8250 square miles in the Mississippi River delta area. The area overlies thick sections of the Gulf of Mexico Basin. Surficial exposures are dominated by Recent and Pleistocene sediment. A search of available literature revealed no known uranium deposits. A total of 87 uranium anomalies were detected and are discussed briefly in this report. None were considered significant and all appear to relate to cultural features. Magnetic data appears to be in agreement with existing structural interpretations of the area.
Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.
NASA Astrophysics Data System (ADS)
Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.
2000-12-01
The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air temperature.
Meneguzzo, Dacia M; Liknes, Greg C; Nelson, Mark D
2013-08-01
Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.
Hydrology of area 2, Eastern Coal Province, Pennsylvania and New York
Herb, W.J.; Brown, D.E.; Shaw, L.C.; Stoner, J.E.; Felbinger, J.K.
1983-01-01
Provisions of the Surface Mining Control and Reclamation Act of 1977 recognized a nationwide need for hydrologic information in mined and potentially mined areas. This report is designed to be useful to mine owners, operators, regulatory authorities, citizens groups, and others by presenting information on existing hydrologic conditions and by identifying additional sources of hydrologic information. General hydrologic information is presented in a brief text accompanied by a map, chart, graph, or other illustration for each of a series of water-resourcesrelated topics. The summation of the topical discussions provides a description of the hydrology of the area. The Eastern Coal Province has been divided into 24 hydrologic study areas which are shown on the cover of this report. The divisions are based on hydrologic factors, location, and size. Hydrologic units (surface drainage basins) or parts of units are combined to form each study area. Study Area 2 covers northwestern Pennsylvania and a small part of southwestern New York. Most exposed bedrock is of Pennsylvanian, Mi;;sissippian, or Devonian ages. Glacial drift covers most of the bedrock in the northwestern part of the area. During 1979, more than 7 million tons of bituminous coal was produced from about 230 mines in Area 2 counties. Over 99 percent of the area's coal production is from surface mining. Streamflow data are available for 18 continuousrecord stations; 1 crest-stage, partial-record station; 1 low-flow, partial-record station; and 65 miscellaneous sites. Water-quality data are available for 78 locations. Streams having the highest median specific conductance, highest median dissolved-solids concentrations, lowest median pH, highest median total-iron concentration, highest median total-manganese concentration, and highest dissolved-sulfate concentrations were found in Clarion County, the leading coal-producing county in the area. Statistics on low flow, mean flow, peak flow, and flow duration for gaging stations can be computed from recorded mean daily flows. Similar statistics can be estimated for ungaged streams by regression and graphical techniques. Five ground-water observation wells are being operated in Area 2. Ground-water levels fluctuate seasonally. Depth to water increases with well depth in upland areas and decreases with well depth in valleys. Well yields in the area range from less than 1 to more than 2,000 gallons per minute. Wells in unconsolidated materials usually have higher yields. Ground-water quality is adequate for most domestic purposes, except locally. Additional water-data information are available through: (1) The National Water Data Exchange, (2) The National Water Data Storage and Retrieva
Driving Factors of Understory Evapotranspiration within a Siberian Larch Forest
NASA Astrophysics Data System (ADS)
Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.; Spawn, S.; Farmer, S.
2017-12-01
Amplified rates of climate change are causing alterations in vegetation productivity, hydrologic cycling, and wildfire severity and intensity in arctic ecosystems. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem that are affected by these modifications. These forests cover 2.5 million km2 with densities ranging from spare to thick. The current average canopy cover is at around 17% and is expected to increase with the observed increases in vegetation productivity and wildfire. These projected changes in forest density can alter the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. Low density boreal forests have much higher rates of understory evapotranspiration and can contribute as much as 80% to total ecosystem evapotranspiration, while the understory in high density forests is responsible for only around 15% of total ecosystem evapotranspiration. The objective of this research is to understand why there are changes in understory evapotranspiration with varying overstory density by looking at light levels, biomass, vegetation, and air and soil differences. To better learn about these differences in understory evapotranspiration in boreal larch forests the driving factors of evapotranspiration were measured within a burn scar with varying densities of high, medium, and low. Water fluxes were conducted using the static chamber technique under different environmental conditions. Furthermore, controlling factors of evapotranspiration such as photosynethically active radiation, vapor pressure deficit, soil moisture, moss cover, biomass, and leaf area index were measured or derived. In general, we found that low density areas have highest rates of evapotranspiration due to larger amount of biomass, and increased access to light, despite low levels of soil moisture. These results can help us understand how and why total ecosystem water exchange will change in boreal larch forests as they become denser.
NASA Astrophysics Data System (ADS)
Janeček, Štěpán; Lepš, Jan
2005-09-01
The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.
Tsai, Wei-Lun; McHale, Melissa R; Jennings, Viniece; Marquet, Oriol; Hipp, J Aaron; Leung, Yu-Fai; Floyd, Myron F
2018-02-14
Urbanization increases risk for depression and other mental disorders. A growing body of research indicates the natural environment confers numerous psychological benefits including alleviation of mental distress. This study examined land cover types and landscape metrics in relation to mental health for 276 U.S. counties within metropolitan areas having a population of 1 million or more. County Health Rankings and Behavioral Risk and Factor Surveillance System (BRFSS) provided a measure of mental health. The 2011 National Land Cover Database (NLCD) provided data on green land cover types, from which seven landscape metrics were generated to characterize landscape patterns. Spearman's rho correlation and stepwise logistic regression models, respectively, were employed to examine bivariate and multivariate relationships. Models were adjusted for county population and housing density, region, race, and income to account for potential confounding. Overall, individual measures of landscape patterns showed stronger associations with mental health than percent total cover alone. Greater edge contrast was associated with 3.81% lower odds of Frequent Mental Distress (FMD) (Adjusted Odd's Ratio (AOR) = 0.9619, 95% CI = 0.9371, 0.9860). Shrubland cohesion was associated with greater odds of FMD (AOR = 1.0751, 95% CI = 1.0196, 1.1379). In addition, distance between shrubland cover was associated with greater odds of FMD (AOR = 1.0027, 95% CI = 1.0016, 1.0041). Although effect sizes were small, findings suggest different types of landscape characteristics may have different roles in improving mental health.
Photogrammetric registration of dental plaque accumulation in vivo.
Bergström, J
1981-01-01
Using the labial surface of upper anterior laterals for determination, the accumulation of plaque was assessed by means of a stereo-photogrammetric method. The stereoimages were subjected to photogrammetric evaluation, the part of the surface area covered by plaque being given in per cent of the total surface area of the tooth. Plaque extension and plaque topography was studied in young adults with healthy periodontia during a 20 day period of no oral hygiene. At the end of the experimental period, on an average 75 per cent of the surface area was covered by plaque, corresponding to an extension rate of 3.75 per cent per day. The correlation between plaque values obtained by photogrammetry and various estimates obtained from clinical scoring ranged between r = 0.66 and r = 0.78. It is concluded that the method introduced is a sensitive means of determining small amounts of plaque and should prove useful for in vivo investigation of plaque growth and plaque suppression, where measurements of high quality is of importance.
VizieR Online Data Catalog: 86 new variables in Andromed (Dimitrov+, 2007)
NASA Astrophysics Data System (ADS)
Dimitrov, D.; Popov, V.
2016-05-01
One of the most extensive sky surveys in the recent years is the Northern Sky Variability Survey (NSVS, Wozniak et al., 2004AJ....127.2436W). Light curves of about 14000000 objects with instrumental magnitudes between 8 and 15.5 are included in the database of that survey, for the period April 1999 - March 2000, covering all of the Northern hemisphere and reaching DE=-38° in the South. To look for different types of variables, we rely only upon internal NSVS data. We select an area on the sky and check for variability in the NSVS database. Our test area covers 46 deg in Andromeda, its coordinates are: 23:00<=RA<=23:45 and 43:30<=DE<=29:30 (2000.0). The galactic latitude is in the -10° - -20° range. The total number of NSVS light curves in this area is and every star has between 1 and 4 light curves, the mean value being 1.875 light curves per star. (2 data files).
Using a 3D tool to document and determine graft loss: A mini-review and case report.
Benjamin, Nicole C; Wurzer, Paul; Voigt, Charles D; Benjamin, Debra A; Herndon, David N
2016-06-01
In severe burns, accurate determination of burn wound size and areas of debridement and graft loss is challenging. In this case report, we describe the use of 3D wound measurement software (BurnCase 3D, RISC Software GmbH, Hagenberg, Austria) in a 29-year-old patient with burns covering 92% of the total body surface area. BurnCase 3D was used to assess burn and monitor all surgical interventions. The software allowed us to calculate areas of graft loss and graft take throughout the acute hospitalization (until 90% of the wounds were covered with homografts). It also enabled preoperative planning for wound coverage and blood loss. Thus, BurnCase 3D appears to be a useful tool for accurate determination of burn wound areas and preoperative planning. However, whether the benefit of more efficient preoperative planning overcomes the disadvantage of the additional time needed to document the wound using the software needs to be evaluated further. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Lockyer, Zachary B.; Coates, Peter S.; Casazza, Michael L.; Espinosa, Shawn; Delehanty, David J.
2015-01-01
Identifying links between micro-habitat selection and wildlife reproduction is imperative to population persistence and recovery. This information is particularly important for landscape species such as greater sage-grouse (Centrocercus urophasianus; sage-grouse). Although this species has been widely studied, because environmental factors can affect sage-grouse populations, local and regional studies are crucial for developing viable conservation strategies. We studied the habitat-use patterns of 71 radio-marked sage-grouse inhabiting an area affected by wildfire in the Virginia Mountains of northwestern Nevada during 2009–2011 to determine the effect of micro-habitat attributes on reproductive success. We measured standard vegetation parameters at nest and random sites using a multi-scale approach (range = 0.01–15,527 ha). We used an information-theoretic modeling approach to identify environmental factors influencing nest-site selection and survival, and determine whether nest survival was a function of resource selection. Sage-grouse selected micro-sites with greater shrub canopy cover and less cheatgrass (Bromus tectorum) cover than random sites. Total shrub canopy, including sagebrush (Artemisia spp.) and other shrub species, at small spatial scales (0.8 ha and 3.1 ha) was the single contributing selection factor to higher nest survival. These results indicate that reducing the risk of wildfire to maintain important sagebrush habitats could be emphasized in sage-grouse conservation strategies in Nevada. Managers may seek to mitigate the influx of annual grass invasion by preserving large intact sagebrush-dominated stands with a mixture of other shrub species. For this area of Nevada, the results suggest that ≥40% total shrub canopy cover in sage-grouse nesting areas could yield improved reproductive success.
Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China.
Xu, C; Liu, M; An, S; Chen, J M; Yan, P
2007-11-01
Urbanization is one of the most important aspects of global change. The process of urbanization has a significant impact on the terrestrial ecosystem carbon cycle. The Yangtze Delta region has one of the highest rates of urbanization in China. In this study, carried out in Jiangyin County as a representative region within the Yangtze Delta, land use and land cover changes were estimated using Landsat TM and ETM+ imagery. With these satellite data and the BEPS process model (Boreal Ecosystem Productivity Simulator), the impacts of urbanization on regional net primary productivity (NPP) and annual net primary production were assessed for 1991 and 2002. Landsat-based land cover maps in 1991 and 2002 showed that urban development encroached large areas of cropland and forest. Expansion of residential areas and reduction of vegetated areas were the major forms of land transformation in Jiangyin County during this period. Mean NPP of the total area decreased from 818 to 699 gCm(-2)yr(-1) during the period of 1991 to 2002. NPP of cropland was only reduced by 2.7% while forest NPP was reduced by 9.3%. Regional annual primary production decreased from 808 GgC in 1991 to 691 GgC in 2002, a reduction of 14.5%. Land cover changes reduced regional NPP directly, and the increasing intensity and frequency of human-induced disturbance in the urbanized areas could be the main reason for the decrease in forest NPP.
Sander, Heather A; Haight, Robert G
2012-12-30
A need exists to increase both knowledge and recognition of the values associated with ecosystem services and amenities. This article explores the use of hedonic pricing as a tool for eliciting these values. We take a case study approach, valuing several services provided by ecosystems, namely aesthetic quality (views), access to outdoor recreation, and the benefits provided by tree cover in Dakota County, Minnesota, USA. Our results indicate that these services are valued by local residents and that hedonic pricing can be used to elicit at least a portion of this value. We find that many aspects of the aesthetic environment significantly impact home sale prices. Total view area as well as the areas of some land-cover types (water and lawn) in views positively influenced home sale prices while views of impervious surfaces generally negatively influenced home sale price. Access to outdoor recreation areas significantly and positively influenced home sale prices as did tree cover in the neighborhood surrounding a home. These results illustrate the ability of hedonic pricing to identify partial values for ecosystem services and amenities in a manner that is highly relevant to local and regional planning. These values could be used to increase policy-maker and public awareness of ecosystem services and could improve their consideration in planning and policy decisions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kharazmi, Rasoul; Tavili, Ali; Rahdari, Mohammad Reza; Chaban, Lyudmila; Panidi, Evgeny; Rodrigo-Comino, Jesús
2018-05-23
The availability of Landsat data allows improving the monitoring and assessment of large-scale areas with land cover changes in rapid developing regions. Thus, we pretend to show a combined methodology to assess land cover changes (LCCs) in the Hamoun Wetland region (Iran) over a period of 30-year (1987-2016) and to quantify seasonal and decadal landscape and land use variabilities. Using the pixel-based change detection (PBCD) and the post-classification comparison (PCC), four land cover classes were compared among spring, summer, and fall seasons. Our findings showed for the water class a higher correlation between spring and summer (R 2 = 0.94) than fall and spring (R 2 = 0.58) seasons. Before 2000, ~ 50% of the total area was covered by bare soil and 40% by water. However, after 2000, more than 70% of wetland was transformed into bare soils. The results of the long-term monitoring period showed that fall season was the most representative time to show the inter-annual variability of LCCs monitoring and the least affected by seasonal-scale climatic variations. In the Hamoun Wetland region, land cover was highly controlled by changes in surface water, which in turn responded to both climatic and anthropogenic impacts. We were able to divide the water budget monitoring into three different ecological regimes: (1) a period of high water level, which sustained healthy extensive plant life, and approximately 40% of the total surface water was retained until the end of the hydrological year; (2) a period of drought during high evaporation rates was observed, and a mean wetland surface of about 85% was characterized by bare land; and (3) a recovery period in which water levels were overall rising, but they are not maintained from year to year. After a spring flood, in 2006 and 2013, grassland reached the highest extensions, covering till more than 20% of the region, and the dynamics of the ecosystem were affected by the differences in moisture. The Hamoun wetland region served as an important example and demonstration of the feedbacks between land cover and land uses, particularly as pertaining to water resources available to a rapidly expanding population.
The role of ERTS in the establishment and of a nationwide land cover information system
NASA Technical Reports Server (NTRS)
Abram, P.; Tullos, J.
1974-01-01
The economic potential of utilizing an ERTS type satellite in the development, updating, and maintenance of a nation-wide land cover information system in the post-1977 time frame was examined. Several alternative acquisition systems were evaluated for land cover data acquisition, processing, and interpretation costs in order to determine, on a total life cycle cost basis, under which conditions of user demand (i.e., area of coverage, frequency of coverage, timeliness of information, and level of information detail) an ERTS type satellite would be cost effective, and what the annual cost savings benefits would be. It was concluded that a three satellite system with high and low altitude aircraft and ground survey team utilizing automatic interpretation and classification techniques is an economically sound proposal.
Effect of land uses and wind direction on the contribution of local sources to airborne pollen.
Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa
2015-12-15
The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport. Copyright © 2015 Elsevier B.V. All rights reserved.
Berger, David L.; Johnson, Michael J.; Tumbusch, Mary L.; Mackay, Jeffrey
2001-01-01
The Ruby Lake National Wildlife Refuge in Ruby Valley, Nevada, contains the largest area of perennial wetlands in northeastern Nevada and provides habitat to a large number of migratory and nesting waterfowl. The long-term preservation of the refuge depends on the availability of sufficient water to maintain optimal habitat conditions. In the Ruby Valley water budget, evapotranspiration (ET) from the refuge is one of the largest components of natural outflow. To help determine the amount of inflow needed to maintain wetland habitat, estimates of ET for May 1999 through October 2000 were made at major habitats throughout the refuge. The Bowen-ratio method was used to estimate daily ET at four sites: over open water, in a moderate-to-dense cover of bulrush marsh, in a moderate cover of mixed phreatophytic shrubs, and in a desert-shrub upland. The eddy-correlation method was used to estimate daily ET for periods of 2 to 12 weeks at a meadow site and at four sites in a sparse-to-moderate cover of phreatophytic shrubs. Daily ET rates ranged from less than 0.010 inch per day at all of the sites to a maximum of 0.464 inch per day at the open-water site. Average daily ET rates estimated for open water and a bulrush marsh were about four to five times greater than in areas of mixed phreatophytic shrubs, where the depth to ground water is less than 5 feet. Based on the seasonal distribution of major habitats in the refuge and on winter and summer ET rates, an estimated total of about 89,000 acre-feet of water was consumed by ET during October 1999-September 2000 (2000 water year). Of this total, about 49,800 acre-feet was consumed by ET in areas of open water and bulrush marsh.
Effects of Land Cover Change on Soil Greenhouse Gas Fluxes in Subtropical Hong Kong
NASA Astrophysics Data System (ADS)
Wong, C. N.; Lai, D. Y. F.
2016-12-01
Nowadays, over 50% of the world's population live in urbanized areas and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biochemical processes in urban areas, which subsequently affect the provision of ecosystem services and functions. Soil greenhouse gas (GHG) exchange plays an important role in governing future climate change. Yet, the effects of urbanization on soil GHG exchange remain uncertain and not well understood. This study aims to examine the effects of urbanization on GHG fluxes among four land covers- natural forest, urban forest, farmland and roadside planter in Hong Kong based on closed chamber measurements for one full year. CO2 emission significantly varied among land covers (p<0.05), with the highest and lowest CO2 emissions being recorded in roadside planter and farmland, respectively. The N2O flux was highest in roadside planter whereas the lowest flux was recorded in urban forest, though the difference in N2O fluxes was only statistically significant at a level of 0.1. No significant difference of CH4 emission was found among all the land covers. Emission of CO2 increased markedly with soil organic matter content, while N2O flux increased markedly with total Kjeldahl nitrogen content. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban areas.
Gilliam, Mary E; Rechkemmer, Will T; McCravy, Kenneth W; Jenkins, Seán E
2018-03-22
The distribution of Amblyomma americanum (L.) is changing and reports of tick-borne disease transmitted by A. americanum are increasing in the USA. We used flagging to collect ticks, surveyed vegetation and collected weather data in 2015 and 2016. A. americanum dominated collections in both years (97%). Ticks did not differ among burn treatments; however, tick abundance differed between years among total, adult, and larval ticks. Habitat variables showed a weak negative correlation to total ticks in respect to: Shannon diversity index, percent bare ground, perennial cover, and coarse woody debris. Nymphal ticks showed a weak negative correlation to percent bare ground and fewer adults were collected in areas with more leaf litter and coarse woody debris. Conversely, we found larvae more often in areas with more total cover, biennials, vines, shrubs, and leaf litter, suggesting habitat is important for this life stage. We compared weather variables to tick presence and found, in 2015, temperature, precipitation, humidity, and sample period influenced tick collection and were life stage specific. In 2016, temperature, precipitation, humidity, wind, and sample period influenced tick collection and were also life stage specific. These results indicate that spring burns in an oak woodland do not reduce ticks; other variables such as habitat and weather are more influential on tick abundance or presence at different life stages.
Unsupervised Framework to Monitor Lake Dynamics
NASA Technical Reports Server (NTRS)
Chen, Xi C. (Inventor); Boriah, Shyam (Inventor); Khandelwal, Ankush (Inventor); Kumar, Vipin (Inventor)
2016-01-01
A method of reducing processing time when assigning geographic areas to land cover labels using satellite sensor values includes a processor receiving a feature value for each pixel in a time series of frames of satellite sensor values, each frame containing multiple pixels and each frame covering a same geographic location. For each sub-area of the geographic location, the sub-area is assigned to one of at least three land cover labels. The processor determines a fraction function for a first sub-area assigned to a first land cover label. The sub-areas that were assigned to the first land cover label are reassigned to one of the second land cover label and the third land cover label based on the fraction functions of the sub-areas.
Emergency burn rehabilitation: cost, risk, effectiveness
Scott R. Miles; Donald M. Haskins; Darrel W. Ranken
1989-01-01
The fires of 1987 had a heavy impact on the Hayfork Ranger District. Over 50,000 acres were burned within the South Fork Trinity River watershed, which contains an important anadromous fishery. Major problems within the burned area were found to be: (1) slopes having highly erodible soils where intense wildfire resulted in a total loss of ground cover, and (2) burnout...
Forest inventory and analysis in the United States: remote sensing and geospatial activities
Mark Nelson; Gretchen Moisen; Mark Finco
2007-01-01
Our Nation's forests provide a wealth of ecological, social, and economic resources. These forest lands cover over 300 million hectares of the United States, or about one third of the total land area. Accurate and timely information about them is essential to their wise management and use. The mission of the Forest Service's Forest Inventory and Analysis (FIA...
Forest Inventory and Analysis in the United States: Remote sensing and geospatial activities
Mark Nelson; Gretchen Moisen; Mark Finco
2007-01-01
Our Nation's forests provide a wealth of ecological, social, and economic resources. These forest lands cover over 300 million hectares of the United States, or about one third of the total land area. Accurate and timely information about them is essential to their wise management and use. The mission of the Forest Service's Forest Inventory and Analysis (FIA...
Determining genetic erosion in fourteen Picea chihuahuana Martínez populations.
C.Z. Quiñones-Pérez; C. Wehenkel
2017-01-01
Picea chihuahuana is an endemic species in Mexico and is considered endangered, according to the Mexican Official Norm (NOM-ECOL-059-2010). This species covers a total area of no more than 300 ha located in at least 40 sites along the Sierra Madre Occidental in Durango and Chihuahua states. A minimum of 42,600 individuals has been estimated,...
Mohammad Naghi Adel; Hassan Pourbabaei; Daniel C. Dey
2014-01-01
Beech forests are the richest forest community in Iran because they are both economically and environmentally valuable. The greatest forest volume occurs in Iran's beech forests. Forests dominated by oriental beech (Fagus orientalis Lipskey) cover about 565,000 ha and represent the total area of indigenous forests in Guilan Province. A system for classifying beech...
Mohammad Naghi Adel; Hassan Pourbabaei; Daniel C. Dey
2014-01-01
Beech forests are the richest forest community in Iran because they are both economically and environmentally valuable. The greatest forest volume occurs in Iran's beech forests. Forests dominated by oriental beech (Fagus orientalis Lipskey) cover about 565,000 ha and represent the total area of indigenous forests in Guilan Province. A system...
East Oklahoma forests: trends and outlook
Paul A. Murphy
1977-01-01
Forests cover 4.9 million acres or 49 percent of the land in the 18 counties that comprise east Oklahoma (figure 1). Of this total forest area, about 4.3 million acres are classed as commercial forest land. The remaining 600,000 acres are either too low in productivity to be considered commercial or occur on public land reserved for nontimber use.
Global assessment of rural-urban interface in Portugal related to land cover changes
NASA Astrophysics Data System (ADS)
Tonini, Marj; Parente, Joana; Pereira, Mário G.
2018-06-01
The rural-urban interface (RUI), known as the area where structures and other human developments meet or intermingle with wildland and rural area, is at present a central focus of wildfire policy and its mapping is crucial for wildfire management. In the Mediterranean Basin, humans cause the vast majority of fires and fire risk is particularly high in the proximity of infrastructure and of rural/wildland areas. RUI's extension changes under the pressure of environmental and anthropogenic factors, such as urban growth, fragmentation of rural areas, deforestation and, more in general, land use/land cover change (LULCC). As with other Mediterranean countries, Portugal has experienced significant LULCC in the last decades in response to migration, rural abandonment, ageing of population and trends associated with the high socioeconomic development. In the present study, we analyzed the LULCC occurring in this country in the 1990-2012 period with the main objective of investigating how these changes affected RUI's evolution. Moreover, we performed a qualitative and quantitative characterization of burnt areas within the RUI in relation to the observed changes. Obtained results disclose important LULCC and reveal their spatial distribution, which is far from uniform within the territory. A significant increase in artificial surfaces was registered near the main metropolitan communities of the northwest, littoral-central and southern regions, whilst the abandonment of agricultural land near the inland urban areas led to an increase in uncultivated semi-natural and forest areas. Within agricultural areas, heterogeneous patches suffered the greatest changes and were the main contributors to the increase in urban areas; moreover, this land cover class, together with forests, was highly affected by wildfires in terms of burnt area. Finally, from this analysis and during the investigated period, it appears that RUI increased in Portugal by more than two-thirds, while the total burnt area decreased by one-third; nevertheless, burnt area within RUI doubled, which emphasizes the significance of RUI monitoring for land and fire managers.
Land-Cover Change Within the Peatlands Along the Rocky Mountain Front, Montana: 1937-2009
NASA Astrophysics Data System (ADS)
Klene, A. E.; Milbrath, J. T.; Shelly, J. S.
2013-12-01
While peatlands are globally abundant, the fens of the Rocky Mountain Front (RMF), are the eastern-most, rich, peatlands in Montana, and are unique wetland habitats in this region of semi-arid continental climate. The peatlands provide critical riparian connectivity between the mountains and the plains and are habitat for grizzly bears, wolves, and within just the 450 ha Pine Butte Fen at least 93 species of vascular plants, including seven of Montana's Plant Species of Concern. Aerial photographs of the nine peatlands along the RMF in Montana were analyzed in a GIS. The boundary of each wetland was hand-digitized and the area within was classified into land-cover types: total area, open fen, open water, woody vegetation, and non-wetland/agriculture. Changes in wetland extent and land-cover categories were evaluated from the earliest available imagery in 1937 to the last available imagery in 2009. Images prior to 1995 were orthorectified, and all georectified. Climate change, wildlife, and agriculture were examined as potential drivers of land-cover change at these sites. Results indicate little change in overall peatland area between 1937 and 2009 despite increasing air temperatures in the region. Approximately 16% of these peatlands is 'open fen' and that proportion remained stable over the last seventy years. Area of open water quadrupled and the number of ponds which could be delineated tripled over the study period, reflecting a recovering beaver population. The non-wetland/agricultural area halved over the course of the study, primarily due to declines in agriculture within the three largest remaining peatlands: Pine Butte Fen, McDonald Swamp, and the Blackleaf Creek wetland complex. Most of the first two fens were purchased outright by the Nature Conservancy (TNC) and they hold a conservation easement on the third (as well as two other fens), all of which have been been put in place since the late 1970s. One fen is owned by the State of Montana and another is located within the Lewis and Clark National Forest and is in a protected Research Natural Area. Conversely almost all of the once sprawling Theboe Lake wetland has been heavily cultivated since prior to 1937 and two-thirds of the Bynum wetland was heavily impacted since the middle of the study period. Together these represent a loss of ~27% of the total peatlands on the RMF in the early 1900s. This study quantified the impacts of changing management and conservation practices during the twentieth century in these critical peatlands.
Liu, Yan Xu; Peng, Jian; Sun, Mao Long; Yang, Yang
2016-08-01
Urban growth boundary, with full consideration of regional ecological constraints, can effectively control the unordered urban sprawl. Thus, urban growth boundary is a significant planning concept integrating regional ecological protection and urban construction. Finding the preferential position for urban construction, as well as controlling the ecological risk, has always been the core content of urban growth boundary delimitation. This study selected Taibai Lake New District in Jining City as a case area, and analyzed the scenario of ecological suitability by ordered weighted ave-raging algorithm. Surface temperature retrieval and rain flooding simulation were used to identify the spatial ecological risk. In the result of ecological suitability, the suitable construction zone accounted for 25.3% of the total area, the unsuitable construction zone accounted for 20.4%, and the other area was in the limit construction zone. Excluding the ecological risk control region, the flexible urban growth boundary covered 2975 hm 2 in near term, and covered 6754 hm 2 in long term. The final inflexible urban growth boundary covered 9405 hm 2 . As a new method, the scenario algorithms of ordered weighted averaging and ecological risk modeling could provide effective support in urban growth boundary identification.
NASA Astrophysics Data System (ADS)
Kothyari, B. P.; Verma, P. K.; Joshi, B. K.; Kothyari, U. C.
2004-06-01
The Bhetagad watershed in Kumaon Hills of Central Himalaya represents for hydro-meteorological conditions of the middle mountains over the Hindu Kush Himalayas. This study was conducted to assess the runoff, soil loss and subsequent nutrient losses from different prominent land uses in the Bhetagad watershed of Central Himalayas. Four experimental natural plots each of 20 m length and 5 m width were delineated on four most common land covers viz, pine forests, tea plantation, rainfed agricultural and degraded lands. Monthly values of runoff, soil loss and nutrient loss, for four successive years (1998-2001), from these land uses were quantified following standard methodologies. The annual runoff in these plots ranged between 51 and 3593 m 3/ha while the annual soil loss varied between 0.06 and 5.47 tonnes/ha during the entire study period. The loss of organic matter was found to be maximum in plot having pine forest followed by plot having tea plantation as the land cover. Annual loss of total N (6.24 kg/ha), total P (3.88 kg/ha) and total K (5.98 kg/ha),per unit loss of soil (tonnes/ha), was maximum from the plot having rainfed agricultural crop as the land cover. The loss of total N ranged between 0.30 and 21.27 kg/ha, total P ranged between 0.14 and 9.42 kg/ha, total K ranged from 0.12 to 11.31 kg/ha whereas organic matter loss varied between 3.65 and 255.16 kg/ha, from different experimental plots. The findings will lead towards devising better conservation/management options for mountain land use systems.
Detection of long duration cloud contamination in hyper-temporal NDVI imagery
NASA Astrophysics Data System (ADS)
Ali, A.; de Bie, C. A. J. M.; Skidmore, A. K.; Scarrott, R. G.
2012-04-01
NDVI time series imagery are commonly used as a reliable source for land use and land cover mapping and monitoring. However long duration cloud can significantly influence its precision in areas where persistent clouds prevails. Therefore quantifying errors related to cloud contamination are essential for accurate land cover mapping and monitoring. This study aims to detect long duration cloud contamination in hyper-temporal NDVI imagery based land cover mapping and monitoring. MODIS-Terra NDVI imagery (250 m; 16-day; Feb'03-Dec'09) were used after necessary pre-processing using quality flags and upper envelope filter (ASAVOGOL). Subsequently stacked MODIS-Terra NDVI image (161 layers) was classified for 10 to 100 clusters using ISODATA. After classifications, 97 clusters image was selected as best classified with the help of divergence statistics. To detect long duration cloud contamination, mean NDVI class profiles of 97 clusters image was analyzed for temporal artifacts. Results showed that long duration clouds affect the normal temporal progression of NDVI and caused anomalies. Out of total 97 clusters, 32 clusters were found with cloud contamination. Cloud contamination was found more prominent in areas where high rainfall occurs. This study can help to stop error propagation in regional land cover mapping and monitoring, caused by long duration cloud contamination.
Nelson, Cara R; Halpern, Charles B; Agee, James K
2008-04-01
Many historically fire-adapted forests are now highly susceptible to damage from insects, pathogens, and stand-replacing fires. As a result, managers are employing treatments to reduce fuel loadings and to restore the structure, species, and processes that characterized these forests prior to widespread fire suppression, logging, and grazing. However, the consequences of these activities for understory plant communities are not well understood. We examined the effects of thinning and prescribed fire on plant composition and diversity in Pinus ponderosa forests of eastern Washington (USA). Data on abundance and richness of native and nonnative plants were collected in 70 stands in the Colville, Okanogan, and Wenatchee National Forests. Stands represented one of four treatments: thinning, burning, thinning followed by burning, or control; treatments had been conducted 3-19 years before sampling. Multi-response permutation procedures revealed no significant effect of thinning or burning on understory plant composition. Similarly, there were no significant differences among treatments in cover or richness of native plants. In contrast, nonnative plants showed small, but highly significant, increases in cover and richness in response to both thinning and burning. In the combined treatment, cover of nonnative plants averaged 2% (5% of total plant cover) but did not exceed 7% (16% of total cover) at any site. Cover and richness of nonnative herbs showed small increases with intensity of disturbance and time since treatment. Nonnative plants were significantly less abundant in treated stands than on adjacent roadsides or skid trails, and cover within these potential source areas explained little of the variation in abundance within treated stands. Although thinning and burning may promote invasion of nonnative plants in these forests, our data suggest that their abundance is limited and relatively stable on most sites.
Decadal land cover change dynamics in Bhutan.
Gilani, Hammad; Shrestha, Him Lal; Murthy, M S R; Phuntso, Phuntso; Pradhan, Sudip; Bajracharya, Birendra; Shrestha, Basanta
2015-01-15
Land cover (LC) is one of the most important and easily detectable indicators of change in ecosystem services and livelihood support systems. This paper describes the decadal dynamics in LC changes at national and sub-national level in Bhutan derived by applying object-based image analysis (OBIA) techniques to 1990, 2000, and 2010 Landsat (30 m spatial resolution) data. Ten LC classes were defined in order to give a harmonized legend land cover classification system (LCCS). An accuracy of 83% was achieved for LC-2010 as determined from spot analysis using very high resolution satellite data from Google Earth Pro and limited field verification. At the national level, overall forest increased from 25,558 to 26,732 km(2) between 1990 and 2010, equivalent to an average annual growth rate of 59 km(2)/year (0.22%). There was an overall reduction in grassland, shrubland, and barren area, but the observations were highly dependent on time of acquisition of the satellite data and climatic conditions. The greatest change from non-forest to forest (277 km(2)) was in Bumthang district, followed by Wangdue Phodrang and Trashigang, with the least (1 km(2)) in Tsirang. Forest and scrub forest covers close to 75% of the land area of Bhutan, and just over half of the total area (51%) has some form of conservation status. This study indicates that numerous applications and analyses can be carried out to support improved land cover and land use (LCLU) management. It will be possible to replicate this study in the future as comparable new satellite data is scheduled to become available. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nordberg, Maj-Liz; Evertson, Joakim
2003-12-01
Vegetation cover-change analysis requires selection of an appropriate set of variables for measuring and characterizing change. Satellite sensors like Landsat TM offer the advantages of wide spatial coverage while providing land-cover information. This facilitates the monitoring of surface processes. This study discusses change detection in mountainous dry-heath communities in Jämtland County, Sweden, using satellite data. Landsat-5 TM and Landsat-7 ETM+ data from 1984, 1994 and 2000, respectively, were used. Different change detection methods were compared after the images had been radiometrically normalized, georeferenced and corrected for topographic effects. For detection of the classes change--no change the NDVI image differencing method was the most accurate with an overall accuracy of 94% (K = 0.87). Additional change information was extracted from an alternative method called NDVI regression analysis and vegetation change in 3 categories within mountainous dry-heath communities were detected. By applying a fuzzy set thresholding technique the overall accuracy was improved from of 65% (K = 0.45) to 74% (K = 0.59). The methods used generate a change product showing the location of changed areas in sensitive mountainous heath communities, and it also indicates the extent of the change (high, moderate and unchanged vegetation cover decrease). A total of 17% of the dry and extremely dry-heath vegetation within the study area has changed between 1984 and 2000. On average 4% of the studied heath communities have been classified as high change, i.e. have experienced "high vegetation cover decrease" during the period. The results show that the low alpine zone of the southern part of the study area shows the highest amount of "high vegetation cover decrease". The results also show that the main change occurred between 1994 and 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Shafer; M. Y oung; S. Zitzer
2006-01-18
Monolayer evapotranspiration (ET) covers are the baseline method for closure of disposal sites for low-level radioactive waste (LLW), mixed LLW, and transuranic (TRU) waste at the Nevada Test Site (NTS). The regulatory timeline is typically 1,000 years for LLW and 10,000 years for TRU waste. Covers for such waste have different technical considerations than those with shorter timelines because they are subject to environmental change for longer periods of time, and because the environmental processes are often coupled. To evaluate these changes, four analog sites (approximately 30, 1,000 to 2,000, 7,000 to 12,500, and 125,000 years in age) on themore » NTS were analyzed to address the early post-institutional control period (the youngest site), the 1,000-year compliance period for disposal of LLW, and the 10,000-year period for TRU waste. Tests included soil texture, structure, and morphology; surface soil infiltration and hydraulic conductivity; vegetation and faunal surveys; and literature reviews. Separate measurements were made in plant undercanopy and intercanopy areas. The results showed a progressive increase in silt and clay content of surface soils with age. Changes in soil texture and structure led to a fivefold decline in saturated hydraulic conductivity in intercanopy areas, but no change in undercanopies, which were subject to bioturbation. These changes may have been responsible for the reduction in total plant cover, most dramatically in intercanopy areas, primarily because more precipitation either runs off the site or is held nearer to the surface where plant roots are less common. The results suggest that covers may evolve over longer timeframes to stable landforms that minimize the need for active maintenance.« less
Predicting Greater Prairie-Chicken Lek Site Suitability to Inform Conservation Actions
Hovick, Torre J.; Dahlgren, David K.; Papeş, Monica; Elmore, R. Dwayne; Pitman, James C.
2015-01-01
The demands of a growing human population dictates that expansion of energy infrastructure, roads, and other development frequently takes place in native rangelands. Particularly, transmission lines and roads commonly divide rural landscapes and increase fragmentation. This has direct and indirect consequences on native wildlife that can be mitigated through thoughtful planning and proactive approaches to identifying areas of high conservation priority. We used nine years (2003–2011) of Greater Prairie-Chicken (Tympanuchus cupido) lek locations totaling 870 unique leks sites in Kansas and seven geographic information system (GIS) layers describing land cover, topography, and anthropogenic structures to model habitat suitability across the state. The models obtained had low omission rates (<0.18) and high area under the curve scores (AUC >0.81), indicating high model performance and reliability of predicted habitat suitability for Greater Prairie-Chickens. We found that elevation was the most influential in predicting lek locations, contributing three times more predictive power than any other variable. However, models were improved by the addition of land cover and anthropogenic features (transmission lines, roads, and oil and gas structures). Overall, our analysis provides a hierarchal understanding of Greater Prairie-Chicken habitat suitability that is broadly based on geomorphological features followed by land cover suitability. We found that when land features and vegetation cover are suitable for Greater Prairie-Chickens, fragmentation by anthropogenic sources such as roadways and transmission lines are a concern. Therefore, it is our recommendation that future human development in Kansas avoid areas that our models identified as highly suitable for Greater Prairie-Chickens and focus development on land cover types that are of lower conservation concern. PMID:26317349
Predicting Greater Prairie-Chicken Lek Site Suitability to Inform Conservation Actions.
Hovick, Torre J; Dahlgren, David K; Papeş, Monica; Elmore, R Dwayne; Pitman, James C
2015-01-01
The demands of a growing human population dictates that expansion of energy infrastructure, roads, and other development frequently takes place in native rangelands. Particularly, transmission lines and roads commonly divide rural landscapes and increase fragmentation. This has direct and indirect consequences on native wildlife that can be mitigated through thoughtful planning and proactive approaches to identifying areas of high conservation priority. We used nine years (2003-2011) of Greater Prairie-Chicken (Tympanuchus cupido) lek locations totaling 870 unique leks sites in Kansas and seven geographic information system (GIS) layers describing land cover, topography, and anthropogenic structures to model habitat suitability across the state. The models obtained had low omission rates (<0.18) and high area under the curve scores (AUC >0.81), indicating high model performance and reliability of predicted habitat suitability for Greater Prairie-Chickens. We found that elevation was the most influential in predicting lek locations, contributing three times more predictive power than any other variable. However, models were improved by the addition of land cover and anthropogenic features (transmission lines, roads, and oil and gas structures). Overall, our analysis provides a hierarchal understanding of Greater Prairie-Chicken habitat suitability that is broadly based on geomorphological features followed by land cover suitability. We found that when land features and vegetation cover are suitable for Greater Prairie-Chickens, fragmentation by anthropogenic sources such as roadways and transmission lines are a concern. Therefore, it is our recommendation that future human development in Kansas avoid areas that our models identified as highly suitable for Greater Prairie-Chickens and focus development on land cover types that are of lower conservation concern.
Li, Jun; Wang, Zhaoli; Lai, Chengguang; Wu, Xiaoqing; Zeng, Zhaoyang; Chen, Xiaohong; Lian, Yanqing
2018-05-19
Land use and land cover patterns in mainland China have substantially changed in the recent decades under the economic reform policies of the government. The terrestrial carbon cycle, particularly the net primary productivity (NPP), has been substantially changed on both local and national scales. With the growing concern over the effects of the terrestrial carbon cycle on global climate changes, the impacts of land use and cover change (LUCC) on NPP need to be understood. In this study, variations in NPP caused by LUCC (e.g., urbanization and conversion of other land use to forest and grassland) in mainland China from the late 1980s to 2015 were evaluated based on land cover datasets and NPPs simulated from the Carnegie-Ames-Stanford Approach model. The results indicate that the national total losses in NPP attributed to urbanization reached 1.695 TgC between the late 1980s and 2015. A large proportion (63.02%) of the total losses was due to the transformation from cropland to urban land. Urban expansion decreased the monthly and total NPPs over southern China, which includes the South China Region, Southwest China Region, and the middle and lower regions of the Yangtze River. However, the total NPP increased in the majority of urbanized areas in Northern China, including the Huang-Huai-Hai Region, Inner Mongolia Region (MGR), Gan-Xin Region (GXR), and Northeast China Region; monthly NPP in GXR and MGR increased throughout the year. By contrast, the conversion to grassland or forestland increased the monthly and total NPPs of Northern China, suggesting that returning to forestland and grassland could increase the carbon sequestration capacity of terrestrial ecosystems in mainland China. Among the sub-regions, the Loess Plateau Region contributed the largest increase in NPP, which was prompted by the conversion to grassland and forestland. Copyright © 2018 Elsevier B.V. All rights reserved.
Automated Burned Area Delineation Using IRS AWiFS satellite data
NASA Astrophysics Data System (ADS)
Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.
2014-12-01
India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.
Oviedo, Lenin; Silva, Noemi
2005-01-01
The study of local cetaceans in Venezuela has a very recent history, and few efforts have been made in the assessment of coastal populations based on field research. The occurrence of whales and dolphins along the northeast coast of Venezuela has been documented through sightings and stranding records. Given the underwater topographical features and the influence of upwelling processes, this area is considered a very productive coastal ecosystem. Our objective was to establish the sighting frequency and relative abundance of bottlenose dolphins in the area. Sighting records were gathered on bottlenose dolphins and other cetacean species occurring along the northeast coast of Margarita Island and Los Frailes Archipelago through direct observation during land-based (6 surveys, 48 hours of observation) and boat-based surveys (24 surveys, 121 hours of observation, 1295 km covered). A sighting frequency was calculated using two methodologies and then compared, considering: 1) a mean effective observation time (4.27 hours), and 2) distance covered with cetacean sightings (1108 kin). A third method is proposed relating a mean effective distance covered with cetacean sightings and expressed as a percentage. The abundance index was calculated using the mean effective observation time. The sighting frequency of Tursiops truncattus in the study area was 3 - 4 sightings per day of 4.27 observation hours, or by 185 kilometers covered. The relative abundance was calculated as 35 dolphins in the study area, so a total population of less than 60 dolphins could inhabit the proposed range. Tursiops truncatus is the dominant species in the northeast coast of Margarita Island and Los Frailes Archipelago with 70% of all the sightings, so this locality could be termed as the distribution range of a possible local population of bottlenose dolphins.
A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products
Hansen, M.C.; Reed, B.
2000-01-01
Two global 1 km land cover data sets derived from 1992-1993 Advanced Very High Resolution Radiometer (AVHRR) data are currently available, the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) DISCover and the University of Maryland (UMd) 1 km land cover maps. This paper makes a preliminary comparison of the methodologies and results of the two products. The DISCover methodology employed an unsupervised clustering classification scheme on a per-continent basis using 12 monthly maximum NDVI composites as inputs. The UMd approach employed a supervised classification tree method in which temporal metrics derived from all AVHRR bands and the NDVI were used to predict class membership across the entire globe. The DISCover map uses the IGBP classification scheme, while the UMd map employs a modified IGBP scheme minus the classes of permanent wetlands, cropland/natural vegetation mosaic and ice and snow. Global area totals of aggregated vegetation types are very similar and have a per-pixel agreement of 74%. For tall versus short/no vegetation, the per-pixel agreement is 84%. For broad vegetation types, core areas map similarly, while transition zones around core areas differ significantly. This results in high regional variability between the maps. Individual class agreement between the two 1 km maps is 49%. Comparison of the maps at a nominal 0.5 resolution with two global ground-based maps shows an improvement of thematic concurrency of 46% when viewing average class agreement. The absence of the cropland mosaic class creates a difficulty in comparing the maps, due to its significant extent in the DISCover map. The DISCover map, in general, has more forest, while the UMd map has considerably more area in the intermediate tree cover classes of woody savanna/ woodland and savanna/wooded grassland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, Esther E.; Hamada, Yuki; O’Connor, Ben L.
Here, a recent assessment that quantified potential impacts of solar energy development on water resources in the southwestern United States necessitated the development of a methodology to identify locations of mountain front recharge (MFR) in order to guide land development decisions. A spatially explicit, slope-based algorithm was created to delineate MFR zones in 17 arid, mountainous watersheds using elevation and land cover data. Slopes were calculated from elevation data and grouped into 100 classes using iterative self-organizing classification. Candidate MFR zones were identified based on slope classes that were consistent with MFR. Land cover types that were inconsistent with groundwatermore » recharge were excluded from the candidate areas to determine the final MFR zones. No MFR reference maps exist for comparison with the study’s results, so the reliability of the resulting MFR zone maps was evaluated qualitatively using slope, surficial geology, soil, and land cover datasets. MFR zones ranged from 74 km2 to 1,547 km2 and accounted for 40% of the total watershed area studied. Slopes and surficial geologic materials that were present in the MFR zones were consistent with conditions at the mountain front, while soils and land cover that were present would generally promote groundwater recharge. Visual inspection of the MFR zone maps also confirmed the presence of well-recognized alluvial fan features in several study watersheds. While qualitative evaluation suggested that the algorithm reliably delineated MFR zones in most watersheds overall, the algorithm was better suited for application in watersheds that had characteristic Basin and Range topography and relatively flat basin floors than areas without these characteristics. Because the algorithm performed well to reliably delineate the spatial distribution of MFR, it would allow researchers to quantify aspects of the hydrologic processes associated with MFR and help local land resource managers to consider protection of critical groundwater recharge regions in their development decisions.« less
Bowen, Esther E.; Hamada, Yuki; O’Connor, Ben L.
2014-06-01
Here, a recent assessment that quantified potential impacts of solar energy development on water resources in the southwestern United States necessitated the development of a methodology to identify locations of mountain front recharge (MFR) in order to guide land development decisions. A spatially explicit, slope-based algorithm was created to delineate MFR zones in 17 arid, mountainous watersheds using elevation and land cover data. Slopes were calculated from elevation data and grouped into 100 classes using iterative self-organizing classification. Candidate MFR zones were identified based on slope classes that were consistent with MFR. Land cover types that were inconsistent with groundwatermore » recharge were excluded from the candidate areas to determine the final MFR zones. No MFR reference maps exist for comparison with the study’s results, so the reliability of the resulting MFR zone maps was evaluated qualitatively using slope, surficial geology, soil, and land cover datasets. MFR zones ranged from 74 km2 to 1,547 km2 and accounted for 40% of the total watershed area studied. Slopes and surficial geologic materials that were present in the MFR zones were consistent with conditions at the mountain front, while soils and land cover that were present would generally promote groundwater recharge. Visual inspection of the MFR zone maps also confirmed the presence of well-recognized alluvial fan features in several study watersheds. While qualitative evaluation suggested that the algorithm reliably delineated MFR zones in most watersheds overall, the algorithm was better suited for application in watersheds that had characteristic Basin and Range topography and relatively flat basin floors than areas without these characteristics. Because the algorithm performed well to reliably delineate the spatial distribution of MFR, it would allow researchers to quantify aspects of the hydrologic processes associated with MFR and help local land resource managers to consider protection of critical groundwater recharge regions in their development decisions.« less
Soybean canopy reflectance as influenced by cultural practices. [West Lafayette, Indiana
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Kollenkark, J. C.; Daughtry, C. S. T.
1981-01-01
Experiments were conducted at West Lafayette, Indiana in 1978 and 1979 to study the reflectance factor of soybean canopies as affected by differences in row width, population, planting date, cultivar and soil type. Reflectance factor data were acquired throughout the growing season with a LANDSAT-band radiometer. Agronomic data included plant height, leaf area index, development stage, total fresh and dry biomass, percent soil cover, and grain yield. The results indicate that row width, planting date, and cultivar influence the percent soil cover, leaf area index, and biomass present, which are in turn related to the multispectral reflectance. Additionally, the reflectance data were quite sensitive to the onset of senescence. Soil color and moisture were found to be important factors influencing the reflectance in single LANDSAT bands, but the near infrared/red reflectance ratio and the greeness transformation were less sensitive than the single bands to the soil background present.
NASA Astrophysics Data System (ADS)
Spötl, Christoph; Reimer, Paula J.; Göhlich, Ursula B.
2018-06-01
This study examines remains of the woolly mammoth (Mammuthus primigenius) found inside the Austrian Alps, an area occupied by an extensive ice-stream network during the Last Glacial Maximum. The data demonstrate that these cold steppe-adapted animals locally migrated several tens of kilometers into alpine valleys. Radiocarbon analyses constrain the age of these fossils to the first half of Marine Isotope Stage 3, documenting ice-free conditions in major valleys at that time. We also provide a list of all traceable Austrian sites of Mammuthus primigenius, totaling about 230 localities, compiled through 15 museums and collections in Austria. The vast majority of these findings are from the corridors of the Danube and Mur rivers and their tributaries and the adjacent loess-covered foreland of the Alps, areas that were never ice-covered during Pleistocene glaciations.
Agrogenic degradation of soils in Krasnoyarsk forest-steppe
NASA Astrophysics Data System (ADS)
Shpedt, A. A.; Trubnikov, Yu. N.; Zharinova, N. Yu.
2017-10-01
Agrogenic degradation of soils in Krasnoyarsk forest-steppe was investigated. Paleocryogenic microtopography of microlows and microhighs in this area predetermined the formation of paragenetic soil series and variegated soil cover. Specific paleogeographic conditions, thin humus horizons and soil profiles, and long-term agricultural use of the land resulted in the formation of soils unstable to degradation processes and subjected to active wind and water erosion. Intensive mechanical soil disturbances during tillage and long-term incorporation of the underlying Late Pleistocene (Sartan) calcareous silty and clay loams into the upper soil horizons during tillage adversely affected the soil properties. We determined the contents of total and labile humus and easily decomposable organic matter and evaluated the degree of soil exhaustion. It was concluded that in the case of ignorance of the norms of land use and soil conservation practices, intense soil degradation would continue leading to complete destruction of the soil cover within large areas.
NASA Astrophysics Data System (ADS)
Carrer, Dominique; Pique, Gaétan; Ferlicoq, Morgan; Ceamanos, Xavier; Ceschia, Eric
2018-04-01
Land cover management in agricultural areas is a powerful tool that could play a role in the mitigation of climate change and the counterbalance of global warming. First, we attempted to quantify the radiative forcing that would increase the surface albedo of croplands in Europe following the inclusion of cover crops during the fallow period. This is possible since the albedo of bare soil in many areas of Europe is lower than the albedo of vegetation. By using satellite data, we demonstrated that the introduction of cover crops into the crop rotation during the fallow period would increase the albedo over 4.17% of Europe’s surface. According to our study, the effect resulting from this increase in the albedo of the croplands would be equivalent to a mitigation of 3.16 MtCO2-eq.year‑1 over a 100 year time horizon. This is equivalent to a mitigation potential per surface unit (m2) of introduced cover crop over Europe of 15.91 gCO2-eq.year‑1.m‑2. This value, obtained at the European scale, is consistent with previous estimates. We show that this mitigation potential could be increased by 27% if the cover crop is maintained for a longer period than 3 months and reduced by 28% in the case of no irrigation. In the second part of this work, based on recent studies estimating the impact of cover crops on soil carbon sequestration and the use of fertilizer, we added the albedo effect to those estimates, and we argued that, by considering areas favourable to their introduction, cover crops in Europe could mitigate human-induced agricultural greenhouse gas emissions by up to 7% per year, using 2011 as a reference. The impact of the albedo change per year would be between 10% and 13% of this total impact. The countries showing the greatest mitigation potentials are France, Bulgaria, Romania, and Germany.
NASA Astrophysics Data System (ADS)
Kimball, H.; Selmants, P. C.; Running, S. W.; Moreno, A.; Giardina, C. P.
2016-12-01
In this study we evaluate the influence of spatial data product accuracy and resolution on the application of global models for smaller scale heterogeneous landscapes. In particular, we assess the influence of locally specific land cover and high-resolution climate data products on estimates of Gross Primary Production (GPP) for the Hawaiian Islands using the MOD17 model. The MOD17 GPP algorithm uses a measure of the fraction of absorbed photosynthetically active radiation from the National Aeronautics and Space Administration's Earth Observation System. This direct measurement is combined with global land cover (500-m resolution) and climate models ( 1/2-degree resolution) to estimate GPP. We first compared the alignment between the global land cover model used in MOD17 with a Hawaii specific land cover data product. We found that there was a 51.6% overall agreement between the two land cover products. We then compared four MOD17 GPP models: A global model that used the global land cover and low-resolution global climate data products, a model produced using the Hawaii specific land cover and low-resolution global climate data products, a model with global land cover and high-resolution climate data products, and finally, a model using both Hawaii specific land cover and high-resolution climate data products. We found that including either the Hawaii specific land cover or the high-resolution Hawaii climate data products with MOD17 reduced overall estimates of GPP by 8%. When both were used, GPP estimates were reduced by 16%. The reduction associated with land cover is explained by a reduction of the total area designated as evergreen broad leaf forest and an increase in the area designated as barren or sparsely vegetated in the Hawaii land cover product as compared to the global product. The climate based reduction is explained primarily by the spatial resolution and distribution of solar radiation in the Hawaiian Islands. This study highlights the importance of accuracy and resolution when applying global models to highly variable landscapes and provides an estimate of the influence of land cover and climate data products on estimates of GPP using MOD17.
Total mercury levels in commercial fish species from Italian fishery and aquaculture.
Di Lena, Gabriella; Casini, Irene; Caproni, Roberto; Fusari, Andrea; Orban, Elena
2017-06-01
Total mercury levels were measured in 42 commercial fish species caught off the Central Adriatic and Tyrrhenian coasts of Italy and in 6 aquaculture species. The study on wild fish covered species differing in living habitat and trophic level. The study on farmed fish covered marine and freshwater species from intensive and extensive aquaculture and their feed. Mercury levels were analysed by thermal decomposition-amalgamation-atomic absorption spectrophotometry. Total mercury concentrations in the muscle of wild fish showed a high variability among species (0.025-2.20 mg kg -1 wet weight). The lowest levels were detected in low trophic-level demersal and pelagic-neritic fish and in young individuals of high trophic-level species. Levels exceeding the European Commission limits were found in large-size specimens of high trophic-level pelagic and demersal species. Fish from intensive farming showed low levels of total mercury (0.008-0.251 mg kg -1 ). Fish from extensive rearing showed variable contamination levels, depending on the area of provenience. An estimation of the human intake of mercury associated to the consumption of the studied fish and its comparison with the tolerable weekly intake is provided.
NASA Astrophysics Data System (ADS)
Sirithian, Duanpen; Thepanondh, Sarawut; Sattler, Melanie L.; Laowagul, Wanna
2018-03-01
Emission factors for speciated volatile organic compounds (VOCs) from maize residue burning were determined in this study based on chamber experiments. Thirty-six VOC species were identified by Gas Chromatography/Mass Spectrometer (GC/MS). They were classified into six groups, including alkanes, alkenes, oxygenated VOCs, halogenated VOCs, aromatics and other. The emission factor for total VOCs was estimated as about 148 mg kg-1 dry mass burned. About 68.4% of the compounds were aromatics. Field samplings of maize residues were conducted to acquire the information of fuel characteristics including fuel loading, fraction of maize residues that were actually burned as well as proximate and elemental analysis of maize residues. The emission factors were then applied to estimate speciated VOC emissions from maize residue open burning at the provincial level in the upper-northern region of Thailand for the year 2014. Total burned area of maize covered an area of about 500,000 ha which was about 4.7% of the total area of upper-northern region of the country. It was found that total VOC emissions released during the burning season (January-April) was about 79.4 tons. Ethylbenzene, m,p-xylene, 1,2,4-trimethylbenzene, acetaldehyde and o-xylene were the major contributors, accounting for more than 65% of total speciated VOC emissions.
Multi-index time series monitoring of drought and fire effects on desert grasslands
Villarreal, Miguel; Norman, Laura M.; Buckley, Steven; Wallace, Cynthia S.A.; Coe, Michelle A.
2016-01-01
The Western United States is expected to undergo both extended periods of drought and longer wildfire seasons under forecasted global climate change and it is important to understand how these disturbances will interact and affect recovery and composition of plant communities in the future. In this research paper we describe the temporal response of grassland communities to drought and fire in southern Arizona, where land managers are using repeated, prescribed fire as a habitat restoration tool. Using a 25-year atlas of fire locations, we paired sites with multiple fires to unburned control areas and compare satellite and field-based estimates of vegetation cover over time. Two hundred and fifty Landsat TM images, dating from 1985–2011, were used to derive estimates of Total Vegetation Fractional Cover (TVFC) of live and senescent grass using the Soil-Adjusted Total Vegetation Index (SATVI) and post-fire vegetation greenness using the Normalized Difference Vegetation Index (NDVI). We also implemented a Greenness to Cover Index that is the difference of time-standardized SATVI-TVFC and NDVI values at a given time and location to identify post-fire shifts in native, non-native, and annual plant cover. The results highlight anomalous greening and browning during drought periods related to amounts of annual and non-native plant cover present. Results suggest that aggressive application of prescribed fire may encourage spread of non-native perennial grasses and annual plants, particularly during droughts.
NASA Astrophysics Data System (ADS)
Hale, Stephen Roy
Landsat-7 Enhanced Thematic Mapper satellite imagery was used to model Bicknell's Thrush (Catharus bicknelli) distribution in the White Mountains of New Hampshire. The proof-of-concept was established for using satellite imagery in species-habitat modeling, where for the first time imagery spectral features were used to estimate a species-habitat model variable. The model predicted rising probabilities of thrush presence with decreasing dominant vegetation height, increasing elevation, and decreasing distance to nearest Fir Sapling cover type. To solve the model at all locations required regressor estimates at every pixel, which were not available for the dominant vegetation height and elevation variables. Topographically normalized imagery features Normalized Difference Vegetation Index and Band 1 (blue) were used to estimate dominant vegetation height using multiple linear regression; and a Digital Elevation Model was used to estimate elevation. Distance to nearest Fir Sapling cover type was obtained for each pixel from a land cover map specifically constructed for this project. The Bicknell's Thrush habitat model was derived using logistic regression, which produced the probability of detecting a singing male based on the pattern of model covariates. Model validation using Bicknell's Thrush data not used in model calibration, revealed that the model accurately estimated thrush presence at probabilities ranging from 0 to <0.40 and from 0.50 to <0.60. Probabilities from 0.40 to <0.50 and greater than 0.60 significantly underestimated and overestimated presence, respectively. Applying the model to the study area illuminated an important implication for Bicknell's Thrush conservation. The model predicted increasing numbers of presences and increasing relative density with rising elevation, with which exists a concomitant decrease in land area. Greater land area of lower density habitats may account for more total individuals and reproductive output than higher density less abundant land area. Efforts to conserve areas of highest individual density under the assumption that density reflects habitat quality could target the smallest fraction of the total population.
Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.
NASA Astrophysics Data System (ADS)
Hahnenberger, Maura; Nicoll, Kathleen
2014-01-01
This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern Great Basin negatively impact air quality and transportation in the populated regions of Utah; this study details an improved forecasting protocol for dust storm events that will benefit transportation planning and improve public health.
Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.
Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J
2013-02-01
Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.
Impact of dynamically changing land cover on runoff process: the case of Iligan river basin
NASA Astrophysics Data System (ADS)
Salcedo, Stephanie Mae B.; Suson, Peter D.; Milano, Alan E.; Ignacio, Ma. Teresa T.
2016-10-01
Iligan river basin located in Northern Mindanao, Philippines covers 165.7 km2 of basin area. In December 2011, tropical storm Sendong (Washi) hit Iligan City, leaving a trail of wrecked infrastructures and about 490 persons reported dead. What transpired was a wake up call to mitigate future flood disasters. Fundamental to mitigation is understanding runoff behavior inside a basin considering that this is the main source of flooding. For this reason, the present study evaluated total runoff volume, peak discharge and lag time given land cover scenarios in four different years- 1973, 1989, 1998 and 2008. IFSAR and LIDAR DEM were integrated to generate the basin model in ArcGIS. HEC-HMS was used in simulating models for each scenario with Soil Conservation Service Curve Number (SCS CN) as the loss parameter method. Four simulation models of the runoff with varying CN values were established using RIDF as rainfall input with 5 year, 10 year, 25 year, 50 year and 100 year Rainfall Return Period (RRP). Total Runoff volume, peak discharge and lag time were progressively higher from 1973 to 2008 with 1989 land cover as exception where runoff parameters was its lowest. The total runoff volume, peak discharge and lag time is governed by vegetation type. When vegetation is characterized predominantly with woody perennials, runoff volume and peak time is lower. Conversely, when the presence of woody perennials is minimal, these parameters are higher. This study shows that an important way to mitigate flooding is to reduce surface runoff by maintaining vegetation predominantly composed of woody perennials.
NASA Astrophysics Data System (ADS)
Xue, Yongan; Liu, Jin; Li, Jun; Shang, Changsheng; Zhao, Jinling; Zhang, Mingmei
2018-06-01
It is highly helpful and necessary to investigate and monitor the status of coal seam. Fortunately, remote sensing has facilitated the identification and dynamical monitoring of spontaneous combustion for a large area coal mining area, especially using the time series remotely-sensed datasets. In this paper, Datong Jurassic coal mining area is used as the study area, China, and an exclusion method and a multiple-factor analysis method are jointly used to identify the spontaneous combustion, including land surface temperature (LST), burnt rocks, and land use and land cover change (LUCC). The LST is firstly retrieved using a single-window algorithm due to a thermal infrared band of Landsat-5 TM (Thematic Mapper). Burnt rocks is then extracted using a decision-tree classification method based on a high-resolution SPOT-5 image. The thermal anomaly areas are identified and refined by the spatial overlay analysis of the above affecting factors. Three-period maps of coal fire areas are obtained and dynamically analyzed in 2007, 2009 and 2010. The results show that a total of 12 coal fire areas have been identified, which account for more than 1% of the total area of the study area. In general, there is an increasing trend yearly and a total of 771,970 m2 is increased. The average annual increase is 257,320 m2, the average annual growth rate is 3.78%, and the dynamic degree is 11.29%.
An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin
Tan, Zhengxi; Tieszen, Larry L.; Zhu, Zhiliang; Liu, Shuguang; Howard, Stephen M.
2007-01-01
BackgroundWildfires are an increasingly important component of the forces that drive the global carbon (C) cycle and climate change as progressive warming is expected in boreal areas. This study estimated C emissions from the wildfires across the Alaskan Yukon River Basin in 2004. We spatially related the firescars to land cover types and defined the C fractions of aboveground biomass and the ground layer (referring to the top 15 cm organic soil layer only in this paper) consumed in association with land cover types, soil drainage classes, and the C stocks in the ground layer.ResultsThe fires led to a burned area of 26,500 km2 and resulted in the total C emission of 81.1 ± 13.6 Tg (Tg, Teragram; 1 Tg = 1012 g) or 3.1 ± 0.7 kg C m-2 burned. Of the total C emission, about 73% and 27% could be attributed to the consumption of the ground layer and aboveground biomass, respectively.ConclusionThe predominant contribution of the ground layer to the total C emission implies the importance of ground fuel management to the control of wildfires and mitigation of C emissions. The magnitude of the total C emission depends on fire extent, while the C loss in kg C m-2 burned is affected strongly by the ground layer and soil drainage condition. The significant reduction in the ground layer by large fires may result in profound impacts on boreal ecosystem services with an increase in feedbacks between wildfires and climate change.
NASA Astrophysics Data System (ADS)
Sousa, Alina; Jacinto, David; Penteado, Nélia; Martins, Pedro; Fernandes, Joana; Silva, Teresa; Castro, João J.; Cruz, Teresa
2013-10-01
The stalked barnacle Pollicipes pollicipes is a cirriped crustacean that lives on very exposed rocky shores. This barnacle is the most important economical resource on intertidal rocky shores of continental Portugal. It is highly prized as food and heavily exploited (professional and recreational fishery), but fishery data are scarce and do not estimate the real pressure upon this resource. Despite its socio-economic interest, specific regulations on this fishery are recent and different along the Portuguese coast. Four regions with different regulation can be identified: the marine reserve “Reserva Natural das Berlengas” (RNB) and the marine park “Parque Marinho Prof. Luiz Saldanha” (PMLS) (both in central Portugal); the natural park located in SW Portugal (“Parque Natural do Sudoeste Alentejano e Costa Vicentina”, PNSACV); and the rest of the coast. The main objective of the present study was to study the spatial patterns of percentage cover, biomass, density and size structure of P. pollicipes in areas with different exploitation regimes, including harvested areas and no-take areas. Additionally, variability between mid shore and low shore barnacles was also analysed. Seven areas were sampled with a variable number of sites (a total of 24) randomly sampled in each area during 2011. Photographs and image analysis (percentage cover) and destructive sampling (density, biomass and size) were used. In general, percentage cover, biomass and density were higher in mid shore when compared to low shore, namely in harvested areas. Low shore barnacles had a higher proportion of adults with moderate and high commercial value, while juveniles were relatively more abundant at mid shore. There were no consistent differences in the patterns of distribution and abundance of P. pollicipes among areas subject to different exploitation regimes. The most different area was the harvested area by professional fishers in RNB, where the highest biomass within the study was registered (mid shore, 7.7 kg·m- 2). Barnacles within this area presented a higher proportion of adults with commercial value, while recruits and juveniles were relatively more abundant in other areas. The hypothesis of a highest percentage cover, density and biomass in the low shore of no-take sites was not supported.
BIM (Building Information Modeling) and TCO (Total Cost of Ownership)
ERIC Educational Resources Information Center
Christensen, Douglas K.
2009-01-01
There are some words in the building industry that seem to be clear and understandable to say, yet they need some help in understanding the depth of the meaning. When the term maintenance is talked about there seems to be some agreement that it does not mean building a new building. Maintenance as a term covers many areas and if not clarified…
Ice fishing by wintering Bald Eagles in Arizona
Teryl G. Grubb; Roy G. Lopez
1997-01-01
Northern Arizona winters vary within and between years with occasional heavy snows (up to 0.6 m) and extreme cold (overnight lows -18 to -29°C) interspersed with dry periods, mild temperatures (daytime highs reaching 10°C), and general loss of snow cover at all but highest elevations. Lakes in the area may freeze and thaw partially or totally several times during a...
Characterization of the large fire regime in SE France
Anne Ganteaume; Marielle Jappiot
2015-01-01
Southeastern France is the most wildfire prone region of the country, covering 14.7 percent of its land area-entire country, is the region most affected by wildfires, with 55 percent of the total number of fires recorded in the whole country from 2006 to 2008. It is a typical Mediterranean climate with hot and dry summers, often with strong NW wind, and includes plant...
San Juan Bay Estuary watershed urban forest inventory
Thomas J. Brandeis; Francisco J. Escobedo; Christina L. Staudhammer; David J. Nowak; Wayne C. Zipperer
2014-01-01
We present information on the urban forests and land uses within the watershed of Puerto Ricoâs 21 658-ha San Juan Bay Estuary based on urban forest inventories undertaken in 2001 and 2011. We found 2548 ha of mangrove and subtropical moist secondary forests covering 11.8 percent of the total watershed area in 2011. Red, black, and white mangroves (Rhizophora...
Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region
Penížek, Vít; Zádorová, Tereza; Kodešová, Radka; Vaněk, Aleš
2016-01-01
The development of a soil cover is a dynamic process. Soil cover can be altered within a few decades, which requires updating of the legacy soil maps. Soil erosion is one of the most important processes quickly altering soil cover on agriculture land. Colluvial soils develop in concave parts of the landscape as a consequence of sedimentation of eroded material. Colluvial soils are recognised as important soil units because they are a vast sink of soil organic carbon. Terrain derivatives became an important tool in digital soil mapping and are among the most popular auxiliary data used for quantitative spatial prediction. Prediction success rates are often directly dependent on raster resolution. In our study, we tested how raster resolution (1, 2, 3, 5, 10, 20 and 30 meters) influences spatial prediction of colluvial soils. Terrain derivatives (altitude, slope, plane curvature, topographic position index, LS factor and convergence index) were calculated for the given raster resolutions. Four models were applied (boosted tree, neural network, random forest and Classification/Regression Tree) to spatially predict the soil cover over a 77 ha large study plot. Models training and validation was based on 111 soil profiles surveyed on a regular sampling grid. Moreover, the predicted real extent and shape of the colluvial soil area was examined. In general, no clear trend in the accuracy prediction was found without the given raster resolution range. Higher maximum prediction accuracy for colluvial soil, compared to prediction accuracy of total soil cover of the study plot, can be explained by the choice of terrain derivatives that were best for Colluvial soils differentiation from other soil units. Regarding the character of the predicted Colluvial soils area, maps of 2 to 10 m resolution provided reasonable delineation of the colluvial soil as part of the cover over the study area. PMID:27846230
NASA Astrophysics Data System (ADS)
Baker, E. H.; Raleigh, M. S.; Molotch, N. P.
2014-12-01
Since the mid-1990s, outbreaks of aggressive bark beetle species have caused extensive forest morality across 600,000 km2 of North-American forests, killing over 17,800 km2 of forest in Colorado alone. This mortality has resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack. In the Western United States, where approximately 70-80% of total annual runoff originates as mountain snowmelt, it is important to monitor and quantify changes in forest canopy in snow-dominated catchments. To quantify annual values of forest canopy cover, this research develops a metric from time series of daily fractional snow covered area (FSCA) from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where soil and rock are completely snow-covered, a land pixel is composed only of forest canopy and snow. Following a snowfall event, FSCA initially rises rapidly, as snow is intercepted in the canopy, and then declines, as snow unloads from the canopy. The lower of these local minima form a threshold representative of snow-free canopy conditions, which serves as a spatially explicit metric of forest canopy. Investigation of a site in southern Colorado with over 40% spruce beetle mortality shows a statistically significant decrease of canopy cover, from 76 (±4)% pre-infestation to 55 (±8)% post-infestation (t=-5.1, p<0.01). Additionally, this yearly parameterization of forest canopy is well correlated (ρ=0.76, p<0.01) with an independent product of yearly crown mortality derived from U.S. Forest Service Aerial Detection Surveys. Future work will examine this relationship across varied ecologic settings and geographic locations, and incorporate field measurements of species-specific canopy change after beetle kill.
Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013
Tyukavina, Alexandra; Hansen, Matthew C.; Potapov, Peter V.; Stehman, Stephen V.; Smith-Rodriguez, Kevin; Okpa, Chima; Aguilar, Ricardo
2017-01-01
Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil’s national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000–2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study period, nonprimary forest clearing, together with primary forest degradation within the BLA, became comparable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests. Fire accounted for 9% of the 2000–2013 primary forest disturbance area, with peak disturbances corresponding to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss is required to achieve accurate carbon accounting and other monitoring objectives. PMID:28439536
Areas of Indian Country Covered by the EPA Plan
Areas of Indian country covered by the EPA Plan for certification are those that are not covered by another EPA-approved certification plan.Most areas are NOT covered by an EPA-approved plan, so this new plan would apply to most locations.
Larreguy, C; Carrera, A L; Bertiller, M B
2017-09-01
The objective of this study was to estimate the size and chemical quality of the total organic C stock and its partition between above-belowground plant parts and soil at sites with different plant cover induced by sheep grazing in the arid Patagonian Monte. This study was conducted at six representative sites with increasing signs of canopy disturbance attributed to grazing pressure. We used faeces density as a proxy of grazing pressure at each site. We assessed the total plant cover, shrub and perennial grass cover, total standing aboveground biomass (AGB), litter mass and belowground biomass (BGB) at each site. We further estimated the content of organic C, lignin and soluble phenols in plant compartments and the content of organic C, organic C in humic substances (recalcitrant C) and water soluble C (labile C) in soil at each site. Total plant cover was significantly related to grazing pressure. Standing AGB and litter mass decreased with increasing canopy disturbance while BGB did not vary across sites. Total organic C stock and the organic C stock in standing AGB increased with increasing total plant, shrub, and perennial grass cover. The organic C stock in litter mass increased with increasing total plant and shrub cover, while the organic C stock in BGB did not vary across sites. Lignin content in plant compartments increased with increasing total and shrub cover, while soluble phenols content did not change across sites. The organic C stock and the water soluble C content in soil were positively associated with perennial grass cover. Changes in total plant cover induced by grazing pressure negatively affected the size of the total organic C stock, having minor impact on the size of belowground than aboveground components. The reduction of perennial grass cover was reflected in decreasing chemical quality of the organic C stock in soil. Accordingly, plant managerial strategies should not only be focused on the amount of organic C sequestered but also on the chemical quality of organic C stocks since C chemistry could have an important impact on ecosystem functioning. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah
2016-09-01
Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.
Two-dimensional Topology of the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III; Blanton, Michael; Tegmark, Max; Weinberg, David H.; Bahcall, N.; Brinkmann, J.; York, D.
2002-12-01
We present the topology of a volume-limited sample of 11,884 galaxies, selected from an apparent magnitude limited sample of over 100,000 galaxies observed as part of the Sloan Digital Sky Survey (SDSS). The data currently cover three main regions on the sky: one in the Galactic north and one in the south, both at zero degrees declination, and one area in the north at higher declination. Each of these areas covers a wide range of survey longitude but a narrow range of survey latitude, allowing the two-dimensional genus to be measured. The genus curves of the SDSS subsamples are similar, after appropriately normalizing these measurements for the different areas. We sum the genus curves from the three areas to obtain the total genus curve of the SDSS. The total curve has a shape similar to the genus curve derived from mock catalogs drawn from the Hubble volume ΛCDM simulation and is similar to that of a Gaussian random field. Likewise, comparison with the genus of the Two-Degree Field Galaxy Redshift Survey, after normalization for the difference in area, reveals remarkable similarity in the topology of these samples. We test for the effects of galaxy-type segregation by splitting the SDSS data into thirds, based on the u*-r* colors of the galaxies, and measure the genus of the reddest and bluest subsamples. This red/blue split in u*-r* is essentially a split by morphology, as explained by Strateva and coworkers. We find that the genus curve for the reddest galaxies exhibits a ``meatball'' shift of the topology-reflecting the concentration of red galaxies in high-density regions-compared to the bluest galaxies and the full sample, in agreement with predictions from simulations.
Optimization of a large-area detector-block based on SiPM and pixelated LYSO crystal arrays.
Calva-Coraza, E; Alva-Sánchez, H; Murrieta-Rodríguez, T; Martínez-Dávalos, A; Rodríguez-Villafuerte, M
2017-10-01
We present the performance evaluation of a large-area detector module based on the ArrayC-60035-64P, an 8×8 array of tileable, 7.2mm pitch, silicon photomultipliers (SiPM) by SensL, covering a total area of 57.4mm×57.4mm. We characterized the ArrayC-60035-64P, operating at room temperature, using LYSO pixelated crystal arrays of different pitch sizes (1.075, 1.430, 1.683, 2.080 and 2.280mm) to determine the resolvable crystal size. After an optimization process, a 7mm thick coupling light guide was used for all crystal pitches. To identify the interaction position a 16-channel (8 columns, 8 rows) symmetric charge division (SCD) readout board together with a center-of-gravity algorithm was used. Based on this, we assembled the detector modules using a 40×40 LYSO, 1.43mm pitch array, covering the total detector area. Calibration was performed using a 137 Cs source resulting in excellent crystal maps with minor geometric distortion, a mean 4.1 peak-to-valley ratio and 9.6% mean energy resolution for 662keV photons in the central region. The resolvability index was calculated in the x and y directions with values under 0.42 in all cases. We show that these large area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, without processing a big number of signals, attaining excellent energy resolution and detector uniformity. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
McGinnis, Thomas W.; Keeley, Jon E.; Stephens, Scott L.; Roller, Gary B.
2010-01-01
Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.
Controls on vegetation structure in Southwestern ponderosa pine forests, 1941 and 2004.
Bakker, Jonathan D; Moore, Margaret M
2007-09-01
Long-term studies can broaden our ecological understanding and are particularly important when examining contingent effects that involve changes to dominance by long-lived species. Such a change occurred during the last century in Southwestern (USA) ponderosa pine (Pinus ponderosa) forests. We used five livestock grazing exclosures established in 1912 to quantify vegetation structure in 1941 and 2004. Our objectives were to (1) assess the effects of historical livestock grazing on overstory structure and age distribution, (2) assess the effects of recent livestock grazing and overstory on understory vegetation, and (3) quantify and explain changes in understory vegetation between 1941 and 2004. In 1941, canopy cover of tree regeneration was significantly higher inside exclosures. In 2004, total tree canopy cover was twice as high, density was three times higher, trees were smaller, and total basal area was 40% higher inside exclosures. Understory species density, herbaceous plant density, and herbaceous cover were negatively correlated with overstory vegetation in both years. Most understory variables did not differ between grazing treatments in 1941 but were lower inside exclosures in 2004. Differences between grazing treatments disappeared once overstory effects were accounted for, indicating that they were due to the differential overstory response to historical livestock grazing practices. Between 1941 and 2004, species density declined by 34%, herbaceous plant density by 37%, shrub cover by 69%, total herbaceous cover by 59%, graminoid cover by 39%, and forb cover by 82%. However, these variables did not differ between grazing treatments or years once overstory effects were accounted for, indicating that the declines were driven by the increased dominance of the overstory during this period. Our results demonstrate that historical livestock grazing practices are an aspect of land-use history that can affect ecosystem development. Grazing history must be considered when extrapolating results from one site to another. In addition, the understory vegetation was more strongly controlled by the ponderosa pine overstory than by recent livestock grazing or by temporal dynamics, indicating that overstory effects must be accounted for when examining understory responses in this ecosystem.
Predator selection of prairie landscape features and its relation to duck nest success
Phillips, M.L.; Clark, W.R.; Sovada, M.A.; Horn, D.J.; Koford, Rolf R.; Greenwood, R.J.
2003-01-01
Mammalian predation is a major cause of mortality for breeding waterfowl in the U.S. Northern Great Plains, and yet we know little about the selection of prairie habitats by predators or how this influences nest success in grassland nesting cover. We selected 2 41.4-km2 study areas in both 1996 and 1997 in North Dakota, USA, with contrasting compositions of perennial grassland. A study area contained either 15-20% perennial grassland (Low Grassland Composition [LGC]) or 45-55% perennial grassland (High Grassland Composition [HGC]). We used radiotelemetry to investigate the selection of 9 landscape cover types by red fox (Vulpes vulpes) and striped skunk (Mephitis mephitis), while simultaneously recording duck nest success within planted cover. The cover types included the edge and core areas of planted cover, wetland edges within planted cover or surrounded by cropland, pastureland, hayland, cropland, roads, and miscellaneous cover types. Striped skunks selected wetland edges surrounded by agriculture over all other cover types in LGC landscapes (P-values for all pairwise comparisons were <0.05). Striped skunks also selected wetland edges surrounded by agriculture over all other cover types in HGC landscapes (P < 0.05), except for wetland edges within planted cover (P = 0.12). Red foxes selected the edge and core areas of planted cover, as well as wetland edges within planted cover in LGC landscapes (i.e., they were attracted to the more isolated patches of planted cover). However, in HGC landscapes, red foxes did not select interior areas of planted cover (i.e., core areas of planted cover and wetland edges in planted cover) as frequently as edges of planted cover (P < 0.05). Red foxes selected core areas of planted cover more frequently in LGC than in HGC landscapes (P < 0.05) and selected pastureland more frequently in HGC than in LGC landscapes (P < 0.05). Furthermore, red foxes selected the isolated patches of planted cover more than pastureland in LGC landscapes (P < 0.05). Duck nest success was greater in HGC landscapes than in LGC landscapes for planted-cover core (P < 0.0001), planted-cover edge (P < 0.001) and planted cover-wetland edge (P < 0.001). Both the increased amount of planted-cover core area and the increased pastureland selection in HGC landscapes may have diluted predator foraging efficiency in the interior areas of planted cover and contributed to higher nest success in HGC landscapes. Our observations of predator cover-type selection not only support the restoration and management of large blocks of grassland but also indicate the influence of alternative cover types for mitigating nest predation in the Prairie Pothole Region.
A quantitative evaluation of the effects of Ascophyllum harvesting on the littoral ecosystem
NASA Astrophysics Data System (ADS)
Boaden, P. J. S.; Dring, M. T.
1980-03-01
Little is known of the ecological effects of harvesting littoral algae although this is a worldwide commercial activity. In 1976 an attempt to establish harvesting in Strangford Lough, Northern Ireland, was opposed on mainly theoretical conservation grounds. The attempt began and stopped within a single small bay leaving a sharp boundary between cut and uncut areas. A subjective survey apparently confirmed the predicted loss of cryptic fauna, decline through predation and the resorting of interboulder sediment. In April 1979 the cut and uncut areas were examined in detail to determine whether any of these effects had persisted and were demonstrable scientifically. Beach and boulder transects and various other studies showed some increases in the cut area. There was significantly more Fucus, Enteromorpha and Ulva; Cirratulus (inhabiting Rhodochorton-bound sediment on boulder surfaces) had a greater biomass. Some changes in Littorina colour morphs were apparent. Sediment in the cut area was coarser and had significantly more crustacean meiofauna. Ascophyllum internodal length and lateral branching were increased but it still provided 20% less shore cover than in the uncut area. There were significant decreases in the cover of Cladophora on the sides of boulders and of Halichondria, Hymeniacodon and Balanus on undersurfaces. Indeed on the habitable underside of boulders total animal cover had been reduced by nearly two-thirds and the average number of species per boulder by one-third. It is concluded that Ascophyllum harvesting has a significant and persistent effect on shore ecology. Littoral algae are a valuable commercial asset but it is important that some fairly large intertidal areas should be left unharvested for general conservation purposes.
High resolution wetland mapping in West Siberian taiga zone for methane emission inventory
NASA Astrophysics Data System (ADS)
Terentieva, I. E.; Glagolev, M. V.; Lapshina, E. D.; Sabrekov, A. F.; Maksyutov, S. S.
2015-12-01
High latitude wetlands are important for understanding climate change risks because these environments sink carbon and emit methane. Fine scale heterogeneity of wetland landscapes pose challenges for producing the greenhouse gas flux inventories based on point observations. To reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the taiga zone of West Siberia on a scene-by-scene basis using a supervised classification of Landsat imagery. The training dataset was based on high-resolution images and field data that were collected at 28 test areas. Classification scheme was aimed at methane inventory applications and included 7 wetland ecosystem types composing 9 wetland complexes in different proportions. Accuracy assessment based on 1082 validation polygons of 10 × 10 pixels indicated an overall map accuracy of 79 %. The total area of the wetlands and water bodies was estimated to be 52.4 Mha or 4-12 % of the global wetland area. Ridge-hollow complexes prevail in WS's taiga, occupying 33 % of the domain, followed by forested bogs or "ryams" (23 %), ridge-hollow-lake complexes (16 %), open fens (8 %), palsa complexes (7 %), open bogs (5 %), patterned fens (4 %), and swamps (4 %). Various oligotrophic environments are dominant among the wetland ecosystems, while fens cover only 14 % of the area. Because of the significant update in the wetland ecosystem coverage, a considerable revaluation of the total CH4 emissions from the entire region is expected. A new Landsat-based map of WS's taiga wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland datasets in high latitudes.
Stevens, Andrew W.; Lacy, Jessica R.; Finlayson, David P.; Gelfenbaum, Guy
2008-01-01
Seagrass at two sites in northern Puget Sound, Possession Point and nearby Browns Bay, was mapped using both a single-beam sonar and underwater video camera. The acoustic and underwater video data were compared to evaluate the accuracy of acoustic estimates of seagrass cover. The accuracy of the acoustic method was calculated for three classifications of seagrass observed in underwater video: bare (no seagrass), patchy seagrass, and continuous seagrass. Acoustic and underwater video methods agreed in 92 percent and 74 percent of observations made in bare and continuous areas, respectively. However, in patchy seagrass, the agreement between acoustic and underwater video was poor (43 percent). The poor agreement between the two methods in areas with patchy seagrass is likely because the two instruments were not precisely colocated. The distribution of seagrass at the two sites differed both in overall percent vegetated and in the distribution of percent cover versus depth. On the basis of acoustic data, seagrass inhabited 0.29 km2 (19 percent of total area) at Possession Point and 0.043 km2 (5 percent of total area) at the Browns Bay study site. The depth distribution at the two sites was markedly different. Whereas the majority of seagrass at Possession Point occurred between -0.5 and -1.5 m MLLW, most seagrass at Browns Bay occurred at a greater depth, between -2.25 and -3.5 m MLLW. Further investigation of the anthropogenic and natural factors causing these differences in distribution is needed.
NASA Astrophysics Data System (ADS)
Kamthonkiat, D.; Rodfai, C.; Saiwanrungkul, A.; Koshimura, S.; Matsuoka, M.
2011-07-01
In the aftermath of the 2004 Indian Ocean Tsunami, it has been proven that mangrove ecosystems provide protection against coastal disasters by acting as bioshields. Satellite data have been effectively used to detect, assess, and monitor the changes in mangroves during the pre- and post- tsunami periods. However, not much information regarding mangrove restoration or reforestation is available. Rather than undertaking time-consuming fieldwork, this study proposed using geoinformatic technologies such as Remote Sensing (RS), Geographic Information System (GIS), and Global Positioning System (GPS) to monitor the mangrove recovery. The analysis focused only on the tsunami-impacted mangrove areas along the western coast of the Tai Muang, Takuapa and Khuraburi Districts of Phang Nga Province, southern region of Thailand. The results consisted of 2 parts, first: the supervised classification of main land uses, namely forest, mangrove, agricultural land, built-up area, bare soil, water body, and miscellaneous covers in ASTER images, was conducted using the maximum likelihood method with higher than 75 % for overall accuracy. Once the confusion between classes was improved in post-processing, the accuracy of mangrove class was greater than 85 % for all dates. The results showed that the mangrove area in 2005 was reduced by approximately 5 % (1054.5 ha) from 2003 due to the impact of the 2004 Indian Ocean Tsunami. Although the recovery program (replacing the same species of dead mangrove trees, mainly the Rhizophora apiculata Bl and Rhizophora mucronata Poir, in situ) had started by mid-2005, the areas gradually decreased to approximately 7-8 % in 2006 and 2010 compared with the reference year of 2003. Second, the recovery trend was observed in the Normalized Difference Vegetation Index (NDVI) fluctuation curve and the supporting field survey data. The recovery patterns were summarized into 2 categories: (i) gradually recovery, and (ii) fluctuating recovery. The gradually recovery category that implied the homogeneous pattern or uniform reforestation was observed in the seriously damaged area where most of the mangrove trees were swept away during the tsunami. This pattern covered approximately 50.35 % of the total reforested area. The NDVI time series of the uniform or homogeneous reforested mangrove at the sampled plots has gradually increased after 2005. The fluctuating recovery category that implied the heterogeneous pattern or non-uniform reforestation was observed in partially damaged areas where some of the mangrove trees were swept away and broken but still some trees were remained in the area. The heterogeneous patterns covered approximately 49.65 % of the total reforested area.
NASA Astrophysics Data System (ADS)
Hama-Aziz, Zanist; Hiscock, Kevin; Adams, Christopher; Reid, Brian
2016-04-01
Atmospheric nitrous oxide concentrations are increasing by 0.3% annually and a major source of this greenhouse gas is agriculture. Indirect emissions of nitrous oxide (e.g. from groundwater and surface water) account for about quarter of total nitrous oxide emissions. However, these indirect emissions are subject to uncertainty, mainly due to the range in reported emission factors. It's hypothesised in this study that cover cropping and implementing reduced (direct drill) cultivation in intensive arable systems will reduce dissolved nitrate concentration and subsequently indirect nitrous oxide emissions. To test the hypothesis, seven fields with a total area of 102 ha in the Wensum catchment in eastern England have been chosen for experimentation together with two fields (41 ha) under conventional cultivation (deep inversion ploughing) for comparison. Water samples from field under-drainage have been collected for nitrate and nitrous oxide measurement on a weekly basis from April 2013 for two years from both cultivation areas. A purge and trap preparation line connected to a Shimadzu GC-8A gas chromatograph fitted with an electron capture detector was used for dissolved nitrous oxide analysis. Results revealed that with an oilseed radish cover crop present, the mean concentration of nitrate, which is the predominant form of N, was significantly depleted from 13.9 mg N L-1 to 2.5 mg N L-1. However, slightly higher mean nitrous oxide concentrations under the cover crop of 2.61 μg N L-1 compared to bare fields of 2.23 μg N L-1 were observed. Different inversion intensity of soil tended to have no effect on nitrous oxide and nitrate concentrations. The predominant production mechanism for nitrous oxide was nitrification process and the significant reduction of nitrate was due to plant uptake rather than denitrification. It is concluded that although cover cropping might cause a slight increase of indirect nitrous oxide emission, it can be a highly effective mitigation measure in an agricultural area where high nitrate losses from fields into groundwater or surface water is excessively occurring.
Raghavan, Ram K; Almes, Kelli; Goodin, Doug G; Harrington, John A; Stackhouse, Paul W
2014-07-01
Feline cytauxzoonosis is a highly fatal tick-borne disease caused by a hemoparasitic protozoan, Cytauxzoon felis. This disease is a leading cause of mortality for cats in the Midwestern United States, and no vaccine or effective treatment options exist. Prevention based on knowledge of risk factors is therefore vital. Associations of different environmental factors, including recent climate were evaluated as potential risk factors for cytauxzoonosis using Geographic Information Systems (GIS). There were 69 cases determined to be positive for cytauxzoonosis based upon positive identification of C. felis within blood film examinations, tissue impression smears, or histopathologic examination of tissues. Negative controls totaling 123 were selected from feline cases that had a history of fever, malaise, icterus, and anorexia but lack of C. felis within blood films, impression smears, or histopathologic examination of tissues. Additional criteria to rule out C. felis among controls were the presence of regenerative anemia, cytologic examination of blood marrow or lymph node aspirate, other causative agent diagnosed, or survival of 25 days or greater after testing. Potential environmental determinants were derived from publicly available sources, viz., US Department of Agriculture (soil attributes), US Geological Survey (land-cover/landscape, landscape metrics), and NASA (climate). Candidate variables were screened using univariate logistic models with a liberal p value (0.2), and associations with cytauxzoonosis were modeled using a global multivariate logistic model (p<0.05). Spatial heterogeneity among significant variables in the study region was modeled using a geographically weighted regression (GWR) approach. Total Edge Contrast Index (TECI), grassland-coverage, humidity conditions recorded during the 9(th) week prior to case arrival, and an interaction variable, "diurnal temperature range × percent mixed forest area" were significant risk factors for cytauxzoonosis in the study region. TECI and grassland areas exhibited significant regional differences in their effects on cytauxzoonosis outcome, whereas others were uniform. Land-cover areas favorable for tick habitats and climatic conditions that favor the tick life cycle are strong risk factors for feline cytauxzoonosis. Spatial heterogeneity and interaction effects between land-cover and climatic variables may reveal new information when evaluating risk factors for vector-borne diseases.
NASA Astrophysics Data System (ADS)
Saleh, D.; Domagalski, J. L.
2012-12-01
Sources and factors affecting the transport of total nitrogen are being evaluated for a study area that covers most of California and some areas in Oregon and Nevada, by using the SPARROW model (SPAtially Referenced Regression On Watershed attributes) developed by the U.S. Geological Survey. Mass loads of total nitrogen calculated for monitoring sites at stream gauging stations are regressed against land-use factors affecting nitrogen transport, including fertilizer use, recharge, atmospheric deposition, stream characteristics, and other factors to understand how total nitrogen is transported under average conditions. SPARROW models have been used successfully in other parts of the country to understand how nutrients are transported, and how management strategies can be formulated, such as with Total Maximum Daily Load (TMDL) assessments. Fertilizer use, atmospheric deposition, and climatic data were obtained for 2002, and loads for that year were calculated for monitored streams and point sources (mostly from wastewater treatment plants). The stream loads were calculated by using the adjusted maximum likelihood estimation method (AMLE). River discharge and nitrogen concentrations were de-trended in these calculations in order eliminate the effect of temporal changes on stream load. Effluent discharge information as well as total nitrogen concentrations from point sources were obtained from USEPA databases and from facility records. The model indicates that atmospheric deposition and fertilizer use account for a large percentage of the total nitrogen load in many of the larger watersheds throughout the study area. Point sources, on the other hand, are generally localized around large cities, are considered insignificant sources, and account for a small percentage of the total nitrogen loads throughout the study area.
Indices for estimating fractional snow cover in the western Tibetan Plateau
NASA Astrophysics Data System (ADS)
Shreve, Cheney M.; Okin, Gregory S.; Painter, Thomas H.
Snow cover in the Tibetan Plateau is highly variable in space and time and plays a key role in ecological processes of this cold-desert ecosystem. Resolution of passive microwave data is too low for regional-scale estimates of snow cover on the Tibetan Plateau, requiring an alternate data source. Optically derived snow indices allow for more accurate quantification of snow cover using higher-resolution datasets subject to the constraint of cloud cover. This paper introduces a new optical snow index and assesses four optically derived MODIS snow indices using Landsat-based validation scenes: MODIS Snow-Covered Area and Grain Size (MODSCAG), Relative Multiple Endmember Spectral Mixture Analysis (RMESMA), Relative Spectral Mixture Analysis (RSMA) and the normalized-difference snow index (NDSI). Pearson correlation coefficients were positively correlated with the validation datasets for all four optical snow indices, suggesting each provides a good measure of total snow extent. At the 95% confidence level, linear least-squares regression showed that MODSCAG and RMESMA had accuracy comparable to validation scenes. Fusion of optical snow indices with passive microwave products, which provide snow depth and snow water equivalent, has the potential to contribute to hydrologic and energy-balance modeling in the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Surajit; Chattopadhyay, Goutami
2012-10-01
In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.
NASA Astrophysics Data System (ADS)
Sun, Yang-Yi; Liu, Jann-Yenq; Lin, Charles Chien-Hung; Lin, Chi-Yen; Shen, Ming-Hsueh; Chen, Chieh-Hung; Chen, Chia-Hung; Chou, Min-Yang
2018-01-01
A moon shadow of the total solar eclipse swept through the continent of United States (CONUS) from west to east on 21 August 2017. Massive total electron content (integration of electron density from 0 km to 20,200 km altitude) observations from 2,255 ground-based Global Navigation Satellite System receivers show that the moon shadow ship generates a great ionospheric bow wave front which extends 1,500 km away from the totality path covering the entire CONUS. The bow wave front consists of the acoustic shock wave due to the supersonic/near-supersonic moon shadow ship and the significant plasma recombination due to the reduction in solar irradiation within the shadow area. The deep bow wave trough (-0.02 total electron content unit (1 TECU = 1016 el m-2) area) nearly coincides with the 100% obscuration moving along the totality path over the CONUS through the entire eclipse period. The supersonic moon shadow ship induces a bow wave crest in front of the ship ( 80% obscuration). It is the first time to find the acoustic shock wave-formed bow wave trough and crest near the totality.
Use of palm-mat geotextiles for rainsplash erosion control
NASA Astrophysics Data System (ADS)
Bhattacharyya, R.; Fullen, M. A.; Davies, K.; Booth, C. A.
2010-07-01
Soil detachment by raindrop action (rainsplash erosion) is a very important subprocess of erosion by water. It is a particular problem in the UK as most soils are sandy or loamy sand in texture and lands have gentle to medium slope. However, few studies report potential rainsplash erosion control options under field conditions. Hence, the utilization of palm-mat geotextiles as a rainsplash erosion control technique was investigated at Hilton, east Shropshire, U.K. (52°33'5.7″ N, 2°19'18.3″ W). Geotextile-mats constructed from Borassus aethiopum (Borassus palm of West Africa) and Mauritia flexuosa (Buriti palm of South America) leaves are termed Borassus mats and Buriti mats, respectively. Two-year field experiments were conducted at Hilton to study the effects of emplacing Borassus and Buriti mats on rainsplash erosion of a loamy sand soil. Two sets (12 plots each) of experiments were established to study the effects of these mats on splash height and splash erosion. Splash height needs to be known to assess the transport mechanism of major soil fraction and its constituents on sloping land by rainsplash. In both sets, six randomly-selected plots were covered with mats, and the rest were bare. Results (during 22/01/2007‒23/01/2009; total precipitation = 1731.5 mm) show that Borassus mat-covered plots had ˜ 89% ( P < 0.001) less total splash erosion (2.97 kg m - 2 ) than bare plots (27.02 kg m - 2 ). Comparatively, mean splash height from Borassus mat-covered plots (0.12 m) was significantly ( P < 0.001) less than the bare plots, by ˜ 54%. However, Buriti mat-cover on bare plots had no significant ( P > 0.05) effect in rainsplash erosion control during that period, although plots with Buriti mats significantly ( P < 0.05) decreased splash height (by ˜ 18%) compared with bare plots (0.26 m). Buriti mats, probably due to their ˜ 43, 62 and 50% lower cover percentage (44%), mass per unit area (413 g - 2 ) and thickness (10 mm), respectively, compared with Borassus mats, were not effective in rainsplash erosion control. Both mats did not significantly ( P > 0.05) improve selected soil properties (i.e., soil organic matter, particle size distribution, aggregate stability and total soil carbon) as soil organic matter (SOM) input from mat-decomposition was much less than total SOM content. However, the changes in fine and medium sand contents (after 2 years) in the Borassus covered plots were significantly ( P < 0.05; n = 6) related to the total rainsplash erosion during 2007‒2009. Emplacement of Borassus and Buriti mats on bare soils did not decrease SOM contents after 2 years, indicating that improvements in some soil properties might occur over longer durations. After ˜ 10 months, Buriti mats lost ˜ 70% of their initial weight ( P < 0.001) and their initial cover percentage ( C, %) decreased drastically ( P < 0.05); whereas, Borassus mats maintained similar C to the initial condition, although mass per unit area decreased by ˜ 20% ( P < 0.05). Moreover, the functional longevity of Borassus mats was ˜ 2 years against only 1 year for Buriti mats. Hence, use of Borassus mats is highly effective for rainsplash erosion control in the UK.
Percolation characteristics of solvent invasion in rough fractures under miscible conditions
NASA Astrophysics Data System (ADS)
Korfanta, M.; Babadagli, T.; Develi, K.
2017-10-01
Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be utilized to model oil recovery, waste disposal, and groundwater contamination processes in the presence of fractures.
Fire regime in Mediterranean ecosystem
NASA Astrophysics Data System (ADS)
Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo
2010-05-01
The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in Liguria and is limited in Sardinia. What is common in the two regions is the widespread presence of shrub species frequently spread by fire. The analysis in the two regions thus allows in a rather limited area to study almost all the species that characterize the Mediterranean region. This work shows that the fire regime in Mediterranean area is strongly related with vegetation patterns, is almost totally independent by the cause of ignition, and only partially dependent by fire extinguishing actions.
NASA Astrophysics Data System (ADS)
Lee, Joong Gwang; Nietch, Christopher T.; Panguluri, Srinivas
2018-05-01
Urban stormwater runoff quantity and quality are strongly dependent upon catchment properties. Models are used to simulate the runoff characteristics, but the output from a stormwater management model is dependent on how the catchment area is subdivided and represented as spatial elements. For green infrastructure modeling, we suggest a discretization method that distinguishes directly connected impervious area (DCIA) from the total impervious area (TIA). Pervious buffers, which receive runoff from upgradient impervious areas should also be identified as a separate subset of the entire pervious area (PA). This separation provides an improved model representation of the runoff process. With these criteria in mind, an approach to spatial discretization for projects using the US Environmental Protection Agency's Storm Water Management Model (SWMM) is demonstrated for the Shayler Crossing watershed (SHC), a well-monitored, residential suburban area occupying 100 ha, east of Cincinnati, Ohio. The model relies on a highly resolved spatial database of urban land cover, stormwater drainage features, and topography. To verify the spatial discretization approach, a hypothetical analysis was conducted. Six different representations of a common urbanscape that discharges runoff to a single storm inlet were evaluated with eight 24 h synthetic storms. This analysis allowed us to select a discretization scheme that balances complexity in model setup with presumed accuracy of the output with respect to the most complex discretization option considered. The balanced approach delineates directly and indirectly connected impervious areas (ICIA), buffering pervious area (BPA) receiving impervious runoff, and the other pervious area within a SWMM subcatchment. It performed well at the watershed scale with minimal calibration effort (Nash-Sutcliffe coefficient = 0.852; R2 = 0.871). The approach accommodates the distribution of runoff contributions from different spatial components and flow pathways that would impact green infrastructure performance. A developed SWMM model using the discretization approach is calibrated by adjusting parameters per land cover component, instead of per subcatchment and, therefore, can be applied to relatively large watersheds if the land cover components are relatively homogeneous and/or categorized appropriately in the GIS that supports the model parameterization. Finally, with a few model adjustments, we show how the simulated stream hydrograph can be separated into the relative contributions from different land cover types and subsurface sources, adding insight to the potential effectiveness of planned green infrastructure scenarios at the watershed scale.
Danielson, John R.; Walter, Robert J.
2005-01-01
Objective: The purpose of this report is to present the results of a preliminary treatment regimen for hypertrophic scars combining topical 2% salicylic acid cream (Avosil) with an overlay of hydrogel dressing (Avogel). Methods: The study group consisted of 3 patients with symptomatic hypertrophic scars: 2 presternal and 1 on the inner thigh. Scars were divided into 3 equal-size areas: (1) untreated control, (2) hydrogel alone, and (3) 2% salicylic acid with hydrogel cover. Treatments were applied every 8 to 12 hours and a Velcro appliance was employed to cover the area during treatment. The total length of treatment was 60 days. Results: At the end of the 60-day treatment protocol, the area treated with 2% salicylic acid and hydrogel was asymptomatic. In contrast, the hydrogel-treated and untreated control areas remained erythematous and symptomatic for burning pain and pruritis. Conclusion: This small study suggests the efficacy of combined salicylic acid and hydrogel therapy in the treatment of hypertrophic scars. More extensive studies of scar treatment with salicylic acid and hydrogel are needed. These studies must be larger in scope to carefully document the spectrum of patient responses and should include methods for evaluating alterations in the levels of different inflammatory mediators. PMID:16921411
Schaefer, Carlos Ernesto G.R.; Santana, Rogério Mercandelle; Simas, Felipe Nogueira Bello; Francelino, Márcio R.; Filho, Elpídio Inácio Fernandes; Albuquerque, Miriam Abreu; Calijuri, Maria Lúcia
2007-01-01
The use of a geographic information system (GIS) allows the mapping and quantification of biotic and physical features of importance to the environmental planning of Antarctic areas. In this paper we examined the main aspects of the geoenvironments of Arctowski Station vicinity (Admiralty bay, Maritime Antartica), by means of a photointerpretation of an orthomosaic at 1:6000 scale, produced by non-conventional aerial photographs obtained by the Brazilian Cryosols project. We carried out a preliminary environmental valuation and vulnerability assessment of the area. Hence, geoenvironments were classified and ranked according with their biological valuation and vulnerability (fragility), mapping 20 units covering approximately 150 ha. The most fragile geoenvironmental units were former and present penguin rookeries with different vegetation covers, all very prone to degradation by over-trampling and human perturbations. The relationships between each geoenvironment were also explored, emphasizing the ecological aspects and their valuation. In quantitative terms, the most vulnerable and fragile units (classes 4 and 5) occupy nearly 22 % of the total area, being highly concentrated near the coastal areas. There, ornithogenic input is an important factor favoring the vegetation development.
Modeling Precipitation Dependent Forest Resilience in India
NASA Astrophysics Data System (ADS)
Das, P.; Behera, M. D.; Roy, P. S.
2018-04-01
The impact of long term climate change that imparts stress on forest could be perceived by studying the regime shift of forest ecosystem. With the change of significant precipitation, forest may go through density change around globe at different spatial and temporal scale. The 100 class high resolution (60 meter spatial resolution) Indian vegetation type map was used in this study recoded into four broad categories depending on phrenology as (i) forest, (ii) scrubland, (iii) grassland and (iv) treeless area. The percentage occupancy of forest, scrub, grass and treeless were observed as 19.9 %, 5.05 %, 1.89 % and 7.79 % respectively. Rest of the 65.37 % land area was occupied by the cropland, built-up, water body and snow covers. The majority forest cover were appended into a 5 km × 5 km grid, along with the mean annual precipitation taken from Bioclim data. The binary presence and absence of different vegetation categories in relates to the annual precipitation was analyzed to calculate their resilience expressed in probability values ranging from 0 to 1. Forest cover observed having resilience probability (Pr) < 0.3 in only 0.3 % (200 km2) of total forest cover in India, which was 4.3 % < 0.5 Pr. Majority of the scrubs and grass (64.92 % Pr < 0.5) from North East India which were the shifting cultivation lands showing low resilience, having their high tendency to be transform to forest. These results have spatial explicitness to highlight the resilient and non-resilient distribution of forest, scrub and grass, and treeless areas in India.
Cartographic modeling of snow avalanche path location within Glacier National Park, Montana
NASA Technical Reports Server (NTRS)
Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.
1990-01-01
Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.
Silva, Felipe Ennes; Endo, Whaldener; de Sousa E Silva Júnior, José; Dos Santos Junior, Marcelo A; Sampaio, Ricardo; Röhe, Fabio
2018-05-04
Among the 13 Mico species recognized by the IUCN Red List of Threatened Species, six are listed as "Data Deficient". The geographic range of most of the Mico species has been estimated from only a few records. We report new localities and the geographic extension of Mico chrysoleucos. In addition, we confirmed the presence of the species in two distinct protected areas. We modeled the habitat suitability of M. chrysoleucos using the maximum entropy method and including new records obtained by the authors in the state of Amazonas, Brazil. From the total area of occurrence calculated for the species, 22.8% is covered by protected areas and indigenous lands. The annual mean deforestation rate estimated between 2000 and 2015 was 2.95%, and the total area deforested by 2015 was 3354 km 2 or 8.6% of the total distribution limits of the species. The habitat lost between 2000 and 2015 was 3.2% (1131 km 2 ) of the total potential distribution, while the habitat loss area legally protected was 31 km 2 , and the habitat loss in settlements was equal to 691 km 2 . Our results extend the geographic distribution of the species about 100 km farther south, with the Maracanã River being a possible geographic barrier for the species. The significantly low rate of habitat loss inside protected areas and indigenous land, when compared to unprotected areas, points out the importance of these areas to M. chrysoleucos conservation. The species is relatively wide-ranging, legally protected, and resilient to regional anthropic threats. However, the hydroelectric schemes and the improvement of the road system in southern Amazonia pose an imminent threat to the species.
40 CFR Table Hh-3 to Subpart Hh of... - Landfill Gas Collection Efficiencies
Code of Federal Regulations, 2011 CFR
2011-07-01
...: Area with daily soil cover and active gas collection CE3: 60%. A4: Area with an intermediate soil cover, or a final soil cover not meeting the criteria for A5 below, and active gas collection CE4: 75%. A5: Area with a final soil cover of 3 feet or thicker of clay and/or geomembrane cover system and active...
40 CFR Table Hh-3 to Subpart Hh of... - Landfill Gas Collection Efficiencies
Code of Federal Regulations, 2013 CFR
2013-07-01
...: Area with daily soil cover and active gas collection CE3: 60%. A4: Area with an intermediate soil cover, or a final soil cover not meeting the criteria for A5 below, and active gas collection CE4: 75%. A5: Area with a final soil cover of 3 feet or thicker of clay and/or geomembrane cover system and active...
40 CFR Table Hh-3 to Subpart Hh of... - Landfill Gas Collection Efficiencies
Code of Federal Regulations, 2014 CFR
2014-07-01
...: Area with daily soil cover and active gas collection CE3: 60%. A4: Area with an intermediate soil cover, or a final soil cover not meeting the criteria for A5 below, and active gas collection CE4: 75%. A5: Area with a final soil cover of 3 feet or thicker of clay and/or geomembrane cover system and active...
40 CFR Table Hh-3 to Subpart Hh of... - Landfill Gas Collection Efficiencies
Code of Federal Regulations, 2012 CFR
2012-07-01
...: Area with daily soil cover and active gas collection CE3: 60%. A4: Area with an intermediate soil cover, or a final soil cover not meeting the criteria for A5 below, and active gas collection CE4: 75%. A5: Area with a final soil cover of 3 feet or thicker of clay and/or geomembrane cover system and active...
View Angle Effects on MODIS Snow Mapping in Forests
NASA Technical Reports Server (NTRS)
Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.
2012-01-01
Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.
Effects of land use changes on the ecosystem service values of coastal wetlands.
Camacho-Valdez, Vera; Ruiz-Luna, Arturo; Ghermandi, Andrea; Berlanga-Robles, César A; Nunes, Paulo A L D
2014-10-01
Changes in the coastal landscape of Southern Sinaloa (Mexico), between 2000 and 2010, were analyzed to relate spatial variations in wetlands extent with the provision and economic value of the ecosystem services (ES). Remote sensing techniques applied to Landsat TM imagery were used to evaluate land use/land cover changes while the value transfer method was used to assess the value of ES by land cover category. Five wetland types and other four land covers were found as representative of the coastal landscape. Findings reveal a 14 % decrease in the saltmarsh/forested mangrove area and a 12 % increase in the area of shrimp pond aquaculture (artificial wetland) during the study period. ES valuation shows that the total value flow increased by 9 % from $215 to $233 million (2007 USD) during the 10-year period. This increase is explained as result of the high value worldwide assigned to saltmarsh. We recognize limitations in the transfer-based approach in quantifying and mapping ES values in the region, but this method provides with value estimates spatially defined, and also provides some guidance in the preliminary screening of policies and projected development in the context of data-scarce regions.
Leis, S.A.; Engle, David M.; Leslie, David M.; Fehmi, J.S.
2005-01-01
Loss of grassland species resulting from activities such as off-road vehicle use increases the need for models that predict effects of anthropogenic disturbance. The relationship of disturbance by military training to plant species richness and composition on two soils (Foard and Lawton) in a mixed prairie area was investigated. Track cover (cover of vehicle disturbance to the soil) and soil organic carbon were selected as measures of short- and long-term disturbance, respectively. Soil and vegetation data, collected in 1-m 2 quadrats, were analyzed at three spatial scales (60, 10, and 1 m2). Plant species richness peaked at intermediate levels of soil organic carbon at the 10-m2 and 1-m2 spatial scales on both the Lawton and Foard soils, and at intermediate levels of track cover at all three spatial scales on the Foard soil. Species composition differed across the disturbance gradient on the Foard soil but not on the Lawton soil. Disturbance increased total plant species richness on the Foard soil. The authors conclude that disturbance up to intermediate levels can be used to maintain biodiversity by enriching the plant species pool. ?? 2005 Springer Science+Business Media, Inc.
The use of Hyalomatrix PA in the treatment of deep partial-thickness burns.
Gravante, Gianpiero; Delogu, Daniela; Giordan, Nicola; Morano, Giuseppina; Montone, Antonio; Esposito, Gaetano
2007-01-01
Since 2001, Hyalomatrix PA (Fidia Advanced Biopolymers, Abano Terme, Italy) has been used in our center on pediatric burned patients as a temporary dermal substitute to cover deep partial-thickness burns after dermabrasion. This "bridge" treatment was adopted to remove necrotic debris (dermabrasion) and to stimulate regeneration in a humid and protected environment (Hyalomatrix PA). We present results obtained with this approach. On the third to fifth day after admission, dermabrasion was practiced on deep burned areas, which were covered with Hyalomatrix PA. Change of dressings was performed every 7 days. On day 21, those areas still without signs of recovery were removed with classic escharectomy and covered with thin skin grafts. We treated 300 patients. Sixty-one percent needed only one dermabrasion treatment, 22.3% (67 patients) more than one, and 16.7% (50 patients) the classic escharectomy. A total of 83% of patients healed within 21 days. Our study suggests that the combination of dermabrasion with a temporary dermal substitute could be a good and feasible approach for treatment of deep partial-thickness burns. Prospective randomized studies are now necessary to compare our protocol with the gold standard treatment of topical dressings.
Cloud types and the tropical Earth radiation budget, revised
NASA Technical Reports Server (NTRS)
Dhuria, Harbans L.; Kyle, H. Lee
1989-01-01
Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.
NASA Astrophysics Data System (ADS)
Terentieva, Irina; Sabrekov, Alexander; Glagolev, Mikhail; Maksyutov, Shamil
2017-04-01
Boreal wetlands are important for understanding climate change risks because these environments sink carbon dioxide and emit methane. The West Siberia Lowland (WSL) is the biggest peatland area in Eurasia and is situated in the high latitudes experiencing enhanced rate of climate change. However, fine-scale heterogeneity of wetland landscapes poses a serious challenge when generating regional-scale estimates of greenhouse gas fluxes from point observations. A number of peatland maps of the West Siberia was developed in 1970s, but their accuracy is limited. In order to reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the WSL on a scene-by-scene basis using a supervised classification of Landsat imagery. Training data consisted of high-resolution images and extensive field data collected at 41 test areas. The classification scheme aimed at supporting methane inventory applications and included 7 wetland ecosystem types comprising 9 wetland complexes distinguishable at the Landsat resolution. To merge typologies, mean relative areas of wetland ecosystems within each wetland complex type were estimated using high-resolution images. Accuracy assessment based on 1082 validation polygons of 10×10 pixels indicated an overall map accuracy of 79%. The total area of the WSL wetlands and water bodies was estimated to be 70.78 Mha or 5-17% of the global wetland area. Various oligotrophic environments are dominant among wetland ecosystems, while different fens cover only 14% of the area. Taiga zone contains 75% of WSL's wetlands; their distribution was described in detail by Terentieva et al. (2016). Concerning methane emission, taiga contributes 85% to regional methane flux and tundra only 8%, however ebullition in tundra lakes was not directly measured. Elevated environments as forested bogs and ridges emit at the lowest rates of methane emission. They account for only 2% of the regional total emissions occupying almost 40% of the wetland area. Depressed environments as different types of hollows contribute 96% to the methane regional flux, covering 50% of the wetland area in the region. Applying the new map resulted in total methane emissions of 4.62 TgCH4/yr, which is 72% higher than the earlier estimate based on the same emission dataset and the less detailed map by Peregon et al. (2009). The revision resulted from the changes in fractional coverages of methane emitting ecosystems due to the better spatial resolution of the new map. The new Landsat-based map of WSL wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland datasets in high latitudes. Terentieva, I.E., Glagolev, M.V., Lapshina, E.D., Sabrekov, A.F., Maksyutov, S. Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions // Biogeosciences. 2016. V. 13. № 16. P. 4615-4626.
The relative influence of nutrients and habitat on stream metabolism in agricultural streams
Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.
2010-01-01
Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).
Wireless, Acoustically Linked, Undersea, Magnetometer Sensor Network
2010-06-01
Hull Street, San Diego, CA 92152 mihajlo.tomic@navy.mil, sullivap@spawar.navy.mil, keyko.mcdonald.navy.mil Abstract—This paper presents a magnetometer...sensor node design that consists of a He3 nuclear precession total-field magne- tometer, data acquisition and recording electronics, and acoustic modem...detection range, thereby minimizing the overall number of required nodes to cover a given area. Given the aversion to continuously streaming data via the
Proposed hybrid-classifier ensemble algorithm to map snow cover area
NASA Astrophysics Data System (ADS)
Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir
2018-01-01
Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.
Third International Symposium on Magnetic Suspension Technology. Part 2
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1996-01-01
In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors.
Propeller propulsion system integration: State of technology survey
NASA Technical Reports Server (NTRS)
Miley, S. J.; Vonlavante, E.
1985-01-01
A literature survey was performed to identify and review technical material applicable to the problem area of propeller propulsion system integration. The survey covered only aerodynamic interference aspects of the problem, and was restricted primarily to propeller effects on the airframe. The subject of airframe aerodynamic interference on the propeller was limited to the problem of vibration due to nonuniform inflow. The problem of airframe effects on propeller performance was not included. A total of 1121 references are given. The references are grouped into the subject areas of Aircraft Stability, Propulsive Efficiency, Aerodynamic Interference, Aerodynamic Interference-Propeller Vibration, and Miscellaneous.
Fifth International Symposium on Magnetic Suspension Technology
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P.
2000-01-01
In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Fifth International Symposium on Magnetic Suspension Technology was held at the Radisson Hotel Santa Barbara, Santa Barbara, California, on December 1-3, 1999. The symposium included 18 sessions in which a total of 53 papers were presented. The technical sessions covered the areas of bearings, controls, modeling, electromagnetic launch, magnetic suspension in wind tunnels, applications flywheel energy storage, rotating machinery, vibration isolation, and maglev. A list of attendees is included in the document.
Fourth International Symposium on Magnetic Suspension Technology
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1998-01-01
In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Fourth International Symposium on Magnetic Suspension Technology was held at The Nagaragawa Convention Center in Gifu, Japan, on October 30 - November 1, 1997. The symposium included 13 sessions in which a total of 35 papers were presented. The technical sessions covered the areas of maglev, controls, high critical temperature (T(sub c)) superconductivity, bearings, magnetic suspension and balance systems (MSBS), levitation, modeling, and applications. A list of attendees is included in the document.
Third International Symposium on Magnetic Suspension Technology
NASA Technical Reports Server (NTRS)
Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)
1996-01-01
In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors.
Seasonal variations in rainfall-induced soil erosion from forest roads in a Mediterranean area
NASA Astrophysics Data System (ADS)
Jordán, Antonio; Zavala, Lorena M.; Gil, Juan
2014-05-01
1. INTRODUCTION Land use change and the development of rural and eco-tourist activities have contributed to a strong development of forest roads in Spain during recent decades. Most of forest roads cause significant hydrological and geomorphological impacts at different scales, altering the runoff-runon patterns, the direction and properties of runoff water, and subsurface water flow. Some of these effects are caused by the removal of native vegetation from backslopes (Martínez-Zavala et al., 2008), which contributes to increased soil erosion and sediment yield in areas where natural soil erosion risk is usually low (Jordán and Martínez-Zavala, 2008; Jordán-López et al., 2009). Rainfall intensity, soil moisture, slope and vegetation cover are key factors for erosion risk in forest roads (Jordán and Martínez-Zavala, 2008; Cao et al., 2013). 2. METHODS Sixty backslopes with plant cover varying between dense shrubs and bare soil were selected. Rainfall simulations (90 mm/h during 20 minutes) were performed in winter (December 2012 - January 2013) and summer (August - September 2013) to study the effect of rainstorms at the end and beginning of the rainy season. Surface runoff was collected to determine runoff rates and sediment yields. Plant cover, rock fragment cover and the area covered by biological crusts were determined at each plot. Slope was determined with a portable clinometer (all selected plots were in the range 41-76%). 3. RESULTS Although soil loss was increased in winter, when soil moisture is higher, small differences were observed at vegetation cover above 75%. Plant cover above 40% considerably reduced sediment yield and runoff flow. In contrast, differences triggered between different plots with decreasing vegetation cover. In bare areas, rock fragments and biological crusts (mosses, lichens, liverworts and fungi) caused great differences between bare areas both during summer and winter periods. REFERENCES Cao, L., Zhang, K., Dai, H., Liang, Y. 2013. Modeling interrill erosion on unpaved roads in the Loess Plateau of China, Land Degradation & Development. DOI: 10.1002/ldr.2253 Jordán, A., Martínez-Zavala, L. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management 255, 913-919. DOI: 10.1016/j.foreco.2007.10.002. Jordán-López, A., Martínez-Zavala, L., Bellinfante, N. 2009. Impact of different parts of unpaved forest roads on runoff and sediment yield in a Mediterranean area. Science of the Total Environment 407, 937-944. DOI: 10.1016/j.scitotenv.2008.09.047. Martínez-Zavala, L., Jordán López, A., Bellinfante, N. 2008. Seasonal variability of runoff and soil loss on forest road backslopes under simulated rainfall. Catena 74, 73-79. DOI: 10.1016/j.catena.2008.03.006.
Discrete post-processing of total cloud cover ensemble forecasts
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian
2017-04-01
This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.
National Level Assessment of Mangrove Forest Cover in Pakistan
NASA Astrophysics Data System (ADS)
Abbas, S.; Qamer, F. M.; Hussain, N.; Saleem, R.; Nitin, K. T.
2011-09-01
Mangroves ecosystems consist of inter tidal flora and fauna found in the tropical and subtropical regions of the world. Mangroves forest is a collection of halophytic trees, shrubs, and other plants receiving inputs from regular tidal flushing and from freshwater streams and rivers. A global reduction of 25 % mangroves' area has been observed since 1980 and it is categorized as one of to the most threatened and vulnerable ecosystems of the world. Forest resources in Pakistan are being deteriorating both quantitatively and qualitatively due to anthropogenic activities, climatic v and loose institutional management. According to the FAO (2007), extent of forest cover of Pakistan in 2005 is 1,902,000 ha, which is 2.5% of its total land area. Annual change rate during 2000-2005 was -2.1% which is highest among all the countries in Asia. The Indus delta region contains the world's fifth-largest mangrove forest which provides a range of important ecosystem services, including coastal stabilisation, primary production and provision of nursery habitat for marine fish. Given their ecological importance in coastal settings, mangroves receive special attention in the assessment of conservation efforts and sustainable coastal developments. Coastline of Pakistan is 1050km long shared by the provinces, Sind (350km) and Baluchistan (700 km). The coastline, with typical arid subtropical climate, possesses five significant sites that are blessed with mangroves. In the Sindh province, mangroves are found in the Indus Delta and Sandspit. The Indus Delta is host to the most extensive mangroves areas and extends from Korangi Creek in the West to Sir Creek in the East, whereas Sandspit is a small locality in the West of Karachi city. In the Balochistan province, mangroves are located at three sites, Miani Hor, Kalmat Khor and Jiwani. Contemporary methods of Earth observation sciences are being incorporated as an integral part of environmental assessment related studies in coastal areas. GIS and Remote Sensing based technologies and methods are in use to map forest cover since the last two decades in Pakistan. The national level forest cover studies based upon satellite images include, Forestry Sector Master Plan (FSMP) and National Forest & Range Resources Assessment Study (NFRRAS). In FSMP, the mangrove forest extent was visually determined from Landsat images of 1988 - 1991, and was estimated to be 155,369 ha; whereas, in NFRRAS, Landsat images of 1997 - 2001 were automated processed and the mangroves areas was estimated to be 158,000 ha. To our knowledge, a comprehensive assessment of current mangroves cover of Pakistan has not been made over the last decade, although the mangroves ecosystems have become the focus of intention in context of recent climate change scenarios. This study was conducted to support the informed decision making for sustainable development in coastal areas of Pakistan by providing up-todate mangroves forest cover assessment of Pakistan. Various types of Earth Observation satellite images and processing methods have been tested in relation to mangroves mapping. Most of the studies have applied classical pixel - based approached, there are a few studies which used object - based methods of image analysis to map the mangroves ecosystems. Object - based methods have the advantage of incorporating spatial neighbourhood properties and hierarchical structures into the classification process to produce more accurate surface patterns recognition compared with classical pixel - based approaches. In this research, we applied multi-scale hierarchical approach of object-based methods of image analysis to ALOS - AVNIR-2 images of the year 2008-09 to map the land cover in the mangroves ecosystems of Pakistan. Considering the tide height and phonological effects of vegetation, particularly the algal mats, these data sets were meticulously chosen. Incorporation of multi-scale hierarchical structures made it easy to effectively discriminate among the land cover classes, particularly the mudflats from sparse mangroves, at their respective scales. Results of current image analysis deciphered that the overall mangroves cover of Pakistan is ~ 98,128 ha. Mangroves cover along the Indus Delta is estimated to be 92, 412 ha that is ~94.17 % of the total mangroves area of the country. 1,056 ha of the forest thrive in Sandspit, whilst the remainin 4,660 ha mangroves occurs along the Makran coast in 3 isolated pockets at Miani Hor (4,018 ha), Kalmat Khor (407 ha) and Jiwani (235 ha). Overall accuracy of land cover maps, from 250 ground reference points, was estimated to be 83.2% (kappa value .7301; kappa variance .0029) which was considered acceptable for optical data in a semi-aquatic environment.
GlobeLand30 shows little cropland area loss but greater fragmentation in China
NASA Astrophysics Data System (ADS)
Yu, Qiangyi; Hu, Qiong; van Vliet, Jasper; Verburg, Peter H.; Wu, Wenbin
2018-04-01
Understanding of cropland dynamics in a large geographical extent is mostly based on observations of area change, while the changes in landscape pattern are hardly assessed. The total amount of cropland in China has remained relatively stable in recent years, which might suggest there was little change. In this analysis, we combine the number of cropland patches (NP) with the total cropland area (TA) for a more comprehensive characterization of cropland change in China. We use GlobeLand30-a global land cover dataset with a 30 m resolution for the years 2000 and 2010-and characterize changes in TA and NP for each county as increase, stable, or decrease. This characterization shows that 703 out of 2420 counties experienced both cropland loss and increased fragmentation. The predominant cropland loss in these areas, especially in the North China Plain, is converted to artificial land. Another 212 are characterized by the opposite developments: an increase in cropland and decreased fragmentation. These counties, are mainly characterized by a conversion of forest areas and grassland areas. It suggests that the cropland conservation policy in China effectively protected the total cropland area in overall, but the consequences in terms of fragmentation might be underestimated. Counties with no obvious change in both indicators, measuring 279 counties, are mainly located in the Southeast. Our results are further compared with local level case studies: the fair consistency indicates alternatives of applying GlobeLand30 for analyzing landscape changes across scales and for cross-site comparisons.
Quantifying Structural and Compositional Changes in Forest Cover in NW Yunnan, China
NASA Astrophysics Data System (ADS)
Hakkenberg, C.
2012-12-01
NW Yunnan, China is a region renowned for high levels of biodiversity, endemism and genetically distinct refugial plant populations. It is also a focal area for China's national reforestation efforts like the Natural Forest Protection Program (NFPP), intended to control erosion in the Upper Yangtze watershed. As part of a larger project to investigate the role of reforestation programs in facilitating the emergence of increasingly species-rich forest communities on a previously degraded and depauperate land mosaic in montane SW China, this study uses a series of Landsat TM images to quantify the spatial pattern and rate of structural and compositional change in forests recovering from medium to large-scale disturbances in the area over the past 25 years. Beyond the fundamental need to assess the outcomes of one of the world's largest reforestation programs, this research offers approaches to confronting two critical methodological issues: (1) techniques for characterizing subtle changes in the nature of vegetation cover, and (2) reducing change detection uncertainty due to persistent cloud cover and shadow. To address difficulties in accurately assessing the structure and composition of vegetative regrowth, a biophysical model was parameterized with over 300 ground-truthed canopy cover assessment points to determine pattern and rate of long-term vegetation changes. To combat pervasive shadow and cloud cover, an interactive generalized additive model (GAM) model based on topographic and spatial predictors was used to overcome some of the constraints of satellite image analysis in Himalayan regions characterized by extreme topography and extensive cloud cover during the summer monsoon. The change detection is assessed for accuracy using ground-truthed observations in a variety of forest cover types and topographic positions. Results indicate effectiveness in reducing the areal extent of unclassified regions and increasing total change detection accuracy. In addition to quantifying forest cover change in this section of NW Yunnan, the analysis attempts to qualify that change - distinguishing among distinct disturbance histories and post-recovery successional pathways.
Comprehensive data set of global land cover change for land surface model applications
NASA Astrophysics Data System (ADS)
Sterling, Shannon; Ducharne, AgnèS.
2008-09-01
To increase our understanding of how humans have altered the Earth's surface and to facilitate land surface modeling experiments aimed to elucidate the direct impact of land cover change on the Earth system, we create and analyze a database of global land use/cover change (LUCC). From a combination of sources including satellite imagery and other remote sensing, ecological modeling, and country surveys, we adapt and synthesize existing maps of potential land cover and layers of the major anthropogenic land covers, including a layer of wetland loss, that are then tailored for land surface modeling studies. Our map database shows that anthropogenic land cover totals to approximately 40% of the Earth's surface, consistent with literature estimates. Almost all (92%) of the natural grassland on the Earth has been converted to human use, mostly grazing land, and the natural temperate savanna with mixed C3/C4 is almost completely lost (˜90%), due mostly to conversion to cropland. Yet the resultant change in functioning, in terms of plant functional types, of the Earth system from land cover change is dominated by a loss of tree cover. Finally, we identify need for standardization of percent bare soil for global land covers and for a global map of tree plantations. Estimates of land cover change are inherently uncertain, and these uncertainties propagate into modeling studies of the impact of land cover change on the Earth system; to begin to address this problem, modelers need to document fully areas of land cover change used in their studies.
[Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters].
Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang
2011-09-01
The events of red tide were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red tide, the distribution map was generated accordingly. The results show: (1) There are three red tide-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red tide occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red tide were significantly increasing; (2) The frequent occurrence of red tide was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red tide plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red tides caused by these species were 38, 35, 15, 10 times separately.
NASA Technical Reports Server (NTRS)
Potter, Christopher
2015-01-01
Landsat imagery was analyzed to understand changes in subalpine forest stands since the mid-1980s in the Sierra-Nevada region of California. At locations where long-term plot measurements have shown that stands are becoming denser in the number of small tree stems (compared to the early 1930s), the 30-year analysis of Landsat greenness index (NDVI) indicated that no consistent increases in canopy leaf cover have occurred at these same locations since the mid-1980s. Interannual variations in stand NDVI closely followed snow accumulation amounts recorded at nearby stations. In contrast, at eastern Sierra whitebark pine stand locations where it has been observed that widespread tree mortality has occurred, decreasing NDVI trends over the past 5-10 years were consistent with rapid loss of forest canopy cover. Landsat imagery was further analyzed to understand patterns of post-wildfire vegetation recovery, focusing on high burn severity (HBS) patches within burned areas dating from the late 1940s. Analysis of landscape metrics showed that the percentage of total HBS area comprised by the largest patch of recovered woody cover was relatively small in all fires that occurred since 1995, but increased rapidly with time since fire. Patch complexity of recovered woody cover decreased notably after more than 50 years of regrowth, but was not readily associated with time for fires that occurred since the mid 1990s. The aggregation level of patches with recovery of woody cover increased steadily with time since fire. The study approach using satellite remote sensing can be expanded to assess the consequences of stand-replacing wildfires in all forests of the region.
Ground water resources of southeastern Oakland County, Michigan
Ferris, J.G.; Burt, E.M.; Stramel, G.J.; Crosthwaite, E.G.
1954-01-01
The area covered by this report comprises a square which measures three townships on a side and enclose 318 square miles in southeastern Oakland County. The investigation of the ground-water resources of this area was made by the U.S. Geological Survey in cooperation with the Detroit Metropolitan Area Regional Planning Commission, the Michigan Department of Conservation, and the Michigan Water Resources Commission.In 1950 the population of this nine-township area exceeded 341,000, or more than 86 percent of the total population of Oakland County. This county ranks third in the state in number of industrial establishments and workers and is fifteenth in agricultural importance. Its numerous lakes and rolling uplands contribute to its top rank in the state in the number of recreational enterprises in rural or suburban areas.The climate is moderately humid. The average annual precipitation is 30 inches and the mean air temperature is 47.2° F. Snowfall averages 38 inches in the November-April interval. The growing season averages 151 days.The regional land surface slopes from northwest to southeast and has a total relief of 360 feet. Pitted outwash plains and morainal hills that are more than 1,000 feet above sea level in the northwest corner of the area give way southeastward to a sequence of terminal moraines and intervening till plains in the middle part. These give way to the broad lake plains that cover the southeastern third of the area.The area lies on the southeast edge of the Michigan Basin and the bedrock is composed of northwest dipping strata of the Devonian and Mississippian systems. The Antrim shale, of Lake Devonian and early Mississippian age, is the oldest formation cropping out beneath the mantle of glacial Berea sandstone, and Sunbury shale overlie the Antrim and are overlain by the Coldwater shale, their areas of outcrop beneath the drift lying successively farther northwest. These formations are of early Mississippian age.Throughout the area the bedrock is covered by glacial drift which ranges in thickness from 25 to more than 350 feet. The drift increases in thickness from southeast to northwest, but considerable relief on the underlying bedrock surface greatly modifies this trend. Extensive moraines, till plains, lake plains, and gravel outwash plains cover the area. In the northwestern third of the area an extensive upland of gravel plains is dotted with lakes ranging from a few feet to more than 100 feet in depth.Precipitation is the perennial source of all water in this area, whether on the surface of underground. The average annual rainfall on the nine-townships is equivalent to a continuous supply of 450 m.g.d. or 9 times the combined annual withdrawal from all wells in the area.About 53 percent of the area is drained by the Clinton River, 44 percent by the River Rouge, and the remaining 3 percent by the Huron River. Less than one-third of the annual precipitation reappears as surface discharge from the watersheds of this area.About two-thirds of the annual precipitation on the area is lost by evaporation from water and land surfaces and by transpirations from vegetative cover. A substantial part of this large annual water loss is from the many lakes and other exposed water surfaces and from contiguous lands where the depth to the water table is slight. Average annual water losses by evapotranspiration are equivalent to about 280 m.g.d. or nearly 6 times the combined withdrawal from all ground-water supplies in the area.The principal aquifers are the alluvial deposits bordering streams and the buried outwash deposits which represent alluvial fills in preglacial or interglacial stream channels. Intensive well developments in the urban areas have greatly lowered ground-water levels in the buried outwash deposits, have brought localized problems of declining well yield, and have induced migration of mineralized waters from the underlying consolidated formations. During 1952, withdrawals of ground water in the nine township area averages about 50 m.g.d., most of this quantity being pumped from municipal wells. This annual pumpage was distributed as follows: 60 percent in Pontiac and environs; 20 percent in Birmingham, Royal Oak and Troy Township; and the remaining 20 percent throughout the suburban and rural areas.
Likus-Cieślik, Justyna; Pietrzykowski, Marcin; Szostak, Marta; Szulczewski, Melanie
2017-02-01
This work aims to assess the spatial distribution and concentration of sulfur in the topsoil layer and to determine the relationships between sulfur concentration, soil pH, soil electrical conductivity, and plant cover at the reforested site of the former sulfur mine (Southern Poland). Soil samples were collected from 0 to 20 cm (topsoil) from a total of 86 sampling points in a regular square grid with sides of 150 m. Plant cover was assayed in circular plots with an area of 100 m 2 , divided into a woody plant layer and herbaceous plant layer. Soil properties such as particle size distribution, pH in KCl and H 2 O, soil electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (N T ), and total sulfur (S T ) were determined. The degree of soil contamination with sulfur was assessed based on the guidelines of the Institute of Soil Science and Plant Cultivation (IUNG), Poland. The results indicate that remediation and application of lime were not fully effective in spatial variation, because 33 points with sulfur contamination above 500 mg kg -1 were observed. These spots occurred irregularly in the topsoil horizons. This high sulfur concentration in the soil did not result in severe acidification (below 4.5) in all cases, most likely due to neutralization from the application of high doses of flotation lime. High vegetative cover occurred at some points with high soil sulfur concentrations, with two points having S concentration above 40,000 mg kg -1 and tree cover about 60%. Numerous points with high soil EC above 1500 μS cm -1 as well as limited vegetation and high soil sulfur concentrations, however, indicate that the reclamation to forest is still not completely successful.
Exploring spatial patterns and drivers of forest fires in Portugal (1980-2014).
Nunes, A N; Lourenço, L; Meira, A C Castro
2016-12-15
Information on the spatial incidence of fire ignition density and burnt area, trends and drivers of wildfires is vitally important in providing support for environmental and civil protection policies, designing appropriate prevention measures and allocating firefighting resources. The key objectives of this study were to analyse the geographical incidence and temporal trends for wildfires, as well as the main drivers of fire ignition and burnt area in Portugal on a municipal level. The results show that fires are not distributed uniformly throughout Portuguese territory, both in terms of ignition density and burnt area. One spot in the north-western area is well defined, covering 10% of the municipalities where more than one third of the total fire ignitions are concentrated. In >80% of Portuguese municipalities, ignition density has registered a positive trend since the 1980s. With regard to burnt area, 60% of the municipalities had a nil annual trend, 35% showed a positive trend and 5%, located mainly in the central region, revealed negative trends. Geographically weighted regression proved more efficient in identifying the most relevant physical and anthropogenic drivers of municipal wildfires in comparison with simple linear regression models. Topography, density of population, land cover and livestock were found to be significant in both ignition density and burnt area, although considerable variations were observed in municipal explanatory power. Copyright © 2016 Elsevier B.V. All rights reserved.
Scale dependency in effectiveness, isolation, and social-ecological spillover of protected areas.
Ament, Judith M; Cumming, Graeme S
2016-08-01
Protected areas are considered vital for the conservation of biodiversity. Given their central role in many conservation strategies, it is important to know whether they adequately protect biodiversity within their boundaries; whether they are becoming more isolated from other natural areas over time; and whether they play a role in facilitating or reducing land-cover change in their surroundings. We used matching methods and national and local analyses of land-cover change to evaluate the combined effectiveness (i.e., avoided natural-cover loss), isolation (i.e., changes in adjacent areas), and spillover effects (i.e., impacts on adjacent areas) of 19 national parks in South Africa from 2000 to 2009. All parks had either similar or lower rates of natural-cover loss than matched control samples. On a national level, mean net loss of natural cover and mean net gain of cultivation cover decreased with distance from park boundary, but there was considerable variation in trends around individual parks, providing evidence for both increased isolation and buffering of protected areas. Fourteen parks had significant positive spillover and reduced natural-cover loss in their surroundings, whereas five parks experienced elevated levels of natural-cover loss. Conclusions about social-ecological spillover effects from protected areas depended heavily on the measures of land-cover change used and the scale at which the results were aggregated. Our findings emphasize the need for high-resolution data when assessing spatially explicit phenomena such as land-cover change and challenge the usefulness of large-scale (coarse grain, broad extent) studies for understanding social-ecological dynamics around protected areas. © 2016 Society for Conservation Biology.
Water hyacinths for upgrading sewage lagoons to meet advanced wastewater treatment standards, part 2
NASA Technical Reports Server (NTRS)
Wolverton, B. C.; Mcdonald, R. C.
1976-01-01
Field tests using water hyacinths as biological filtration agents were conducted in the Mississippi gulf coast region. The plants were installed in one single cell and one multiple cell sewage lagoon systems. Water hyacinths demonstrated the ability to maintain BOD5 and total suspended solid (TSS) levels within the Environmental Protection Agency's prescribed limits of 30 mg/lBOD5 and 30 mg/l TSS. A multiple cell sewage lagoon system consisting of two aerated and one water hyacinth covered cell connected in series demonstrated the ability to maintain BOD5 and TSS levels below 30 mg/l year-round. A water hyacinth covered lagoon with a surface area of 0.28 hectare containing a total volume of 6.8 million liters demonstrated the capacity to treat 437,000 to 1,893,000 liters of sewage influent from 2.65 hectares of aerated lagoons daily and produce an effluent that met or exceeded standards year-round.
Leopold, Christina R.; Hess, Steve; Kendall, Steve J.; Judge, Seth W.
2016-01-01
The Hakalau Forest Unit (HFU) of Big Island National Wildlife Refuge Complex (BINWRC) has intensively monitored non-native ungulate presence and distribution during surveys of all managed areas since 1988. In this report we: 1) provide results from recent ungulate surveys and the number of removals at HFU to determine the distribution, abundance, and efficacy of removals of feral pigs, the dominant ungulate, from 2010 to 2015; 2) present results of surveys of the presence and distribution of several ungulate species at the Kona Forest Unit (KFU) of BINWRC from November of 2012 to April of 2015; 3) present results of surveys of weed presence and cover at both refuge units; and 4) present comparative analyses of forest canopy cover at KFU from visual estimates and geospatial imagery. Removals of feral pigs at HFU appear to have significantly decreased pig abundance over the study period from 2010–2015. A grand total of 1,660 feral pigs were removed from managed areas of HFU from 2010 until September of 2015. Management units 2 and 4 contained the majority of pigs at HFU. Recent surveys recorded high densities of pigs in the unenclosed, unmanaged area of Lower Maulua, reaching 14.9 ± (3.2) pigs/km2 in March of 2015. The total amount of ungulate sign ranged from 22.2 to 54.3 percent of plots surveyed at KFU from November of 2012 to April of 2015. The ability to differentiate sign of ungulate species remains problematic at KFU; although there appears to have been a significant decline in feral cattle sign at KFU, this result is likely to be unreliable because cattle and pig sign were not differentiated consistently during later surveys. Spatial distributions in weed cover are distinctive; however, some weed species may not be reliably represented due to observers’ inconsistencies in recording data and abilities to recognize less common weeds.
Chabuk, Ali; Al-Ansari, Nadhir; Hussain, Hussain Musa; Knutsson, Sven; Pusch, Roland
2016-05-01
Al-Hillah Qadhaa is located in the central part of Iraq. It covers an area of 908 km(2) with a total population of 856,804 inhabitants. This Qadhaa is the capital of Babylon Governorate. Presently, no landfill site exists in that area based on scientific site selection criteria. For this reason, an attempt has been carried out to find the best locations for landfills. A total of 15 variables were considered in this process (groundwater depth, rivers, soil types, agricultural land use, land use, elevation, slope, gas pipelines, oil pipelines, power lines, roads, railways, urban centres, villages and archaeological sites) using a geographic information system. In addition, an analytical hierarchy process was used to identify the weight for each variable. Two suitable candidate landfill sites were determined that fulfil the requirements with an area of 9.153 km(2) and 8.204 km(2) These sites can accommodate solid waste till 2030. © The Author(s) 2016.
Marques, M; Hogland, W
2001-02-01
Stormwater run-off from twelve different areas and roads has been characterized in a modern waste disposal site, where several waste management activities are carried out. Using nonparametric statistics, medians and confidence intervals of the medians, 22 stormwater quality parameters were calculated. Suspended solids, chemical oxygen demand, biochemical oxygen demand, total nitrogen and total phosphorus, as well as run-off from several areas, showed measured values above standard limits for discharge into recipient waters--even higher than those of leachate from covered landfill cells. Of the heavy metals analyzed, copper, zinc and nickel were the most prevalent, being detected in every sample. Higher concentrations of metals such as zinc, nickel, cobalt, iron and cadmium were found in run-off from composting areas, compared to areas containing stored and exposed scrap metal. This suggests that factors other than the total amount of exposed material affect the concentration of metals in run-off, such as binding to organic compounds and hydrological transport efficiency. The pollutants transported by stormwater represent a significant environmental threat, comparable to leachate. Careful design, monitoring and maintenance of stormwater run-off drainage systems and infiltration elements are needed if infiltration is to be used as an on-site treatment strategy.
Alves, Daniel Borini; Pérez-Cabello, Fernando
2017-12-01
Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.
Xian, George; Homer, Collin G.; Fry, Joyce
2009-01-01
The recent release of the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001, which represents the nation's land cover status based on a nominal date of 2001, is widely used as a baseline for national land cover conditions. To enable the updating of this land cover information in a consistent and continuous manner, a prototype method was developed to update land cover by an individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season in 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, land cover classifications at the full NLCD resolution for 2006 areas of change were completed by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain several metropolitan areas including Seattle, Washington; San Diego, California; Sioux Falls, South Dakota; Jackson, Mississippi; and Manchester, New Hampshire. Results from the five study areas show that the vast majority of land cover change was captured and updated with overall land cover classification accuracies of 78.32%, 87.5%, 88.57%, 78.36%, and 83.33% for these areas. The method optimizes mapping efficiency and has the potential to provide users a flexible method to generate updated land cover at national and regional scales by using NLCD 2001 as the baseline.
Using NOAA AVHRR data to assess flood damage in China.
Wang, Quan; Watanabe, Masataka; Hayashi, Seiji; Murakami, Shogo
2003-03-01
The article used two NOAA-14 Advanced Very High Resolution Radiometer (AVHRR) datasets to assess flood damage in the middle and lower reaches of China's Changjiang River (Yangtze River) in 1998. As the AVHRR is an optical sensor, it cannot penetrate the clouds that frequently cover the land during the flood season, and this technology is greatly limited in flood monitoring. However the widely used normalized difference vegetation index (NDVI) can be used to monitor flooding, since water has a much lower NDVI value than other surface features. Though many factors other than flooding (e.g. atmospheric conditions, different sun-target-satellite angles, and cloud) can change NDVI values, inundated areas can be distinguished from other types of ground cover by changes in the NDVI value before and after the flood after eliminating the effects of other factors on NDVI. AVHRR data from 26 May and 22 August, 1998 were selected to represent the ground conditions before and after flooding. After accurate geometric correction by collecting GCPs, and atmospheric and angular corrections by using the 6S code, NDVI values for both days and their differences were calculated for cloud-free pixels. The difference in the NDVI values between these two times, together with the NDVI values and a land-use map, were used to identify inundated areas and to assess the area lost to the flood. The results show a total of 358,867 ha, with 207,556 ha of cultivated fields (paddy and non-irrigated field) inundated during the flood of 1998 in the middle and lower reaches of the Changjiang River Catchment; comparing with the reported total of 321,000 and 197,000 ha, respectively. The discrimination accuracy of this method was tested by comparing the results from two nearly simultaneous sets of remote-sensing data (NOAA's AVHRR data from 10 September, 1998, and JERS-1 synthetic aperture radar (SAR) data from 11 September, 1998, with a lag of about 18.5 hr) over a representative flooded region in the study area. The results showed that 67.26% of the total area identified as inundated using the NOAA data was also identified as inundated using the SAR data.
A water-budget model and estimates of groundwater recharge for Guam
Johnson, Adam G.
2012-01-01
On Guam, demand for groundwater tripled from the early 1970s to 2010. The demand for groundwater is anticipated to further increase in the near future because of population growth and a proposed military relocation to Guam. Uncertainty regarding the availability of groundwater resources to support the increased demand has prompted an investigation of groundwater recharge on Guam using the most current data and accepted methods. For this investigation, a daily water-budget model was developed and used to estimate mean recharge for various land-cover and rainfall conditions. Recharge was also estimated for part of the island using the chloride mass-balance method. Using the daily water-budget model, estimated mean annual recharge on Guam is 394.1 million gallons per day, which is 39 percent of mean annual rainfall (999.0 million gallons per day). Although minor in comparison to rainfall on the island, water inflows from water-main leakage, septic-system leachate, and stormwater runoff may be several times greater than rainfall at areas that receive these inflows. Recharge is highest in areas that are underlain by limestone, where recharge is typically between 40 and 60 percent of total water inflow. Recharge is relatively high in areas that receive stormwater runoff from storm-drain systems, but is relatively low in urbanized areas where stormwater runoff is routed to the ocean or to other areas. In most of the volcanic uplands in southern Guam where runoff is substantial, recharge is less than 30 percent of total water inflow. The water-budget model in this study differs from all previous water-budget investigations on Guam by directly accounting for canopy evaporation in forested areas, quantifying the evapotranspiration rate of each land-cover type, and accounting for evaporation from impervious areas. For the northern groundwater subbasins defined in Camp, Dresser & McKee Inc. (1982), mean annual baseline recharge computed in this study is 159.1 million gallons per day, which is 50 percent of mean annual rainfall, and is 42 percent greater than the recharge estimate of Camp, Dresser & McKee Inc. (1982). For the northern aquifer sectors defined in Mink (1991), which encompass most of the northern half of the island, mean annual baseline recharge computed in this study is 238.0 million gallons per day, which is 51 percent of mean annual rainfall, and is about 6 percent lower than the recharge estimate of Mink (1991). For the drought simulation performed in this study, recharge for the entire island is 259.3 million gallons per day, which is 34 percent lower than recharge computed for baseline conditions. For all aquifer sectors defined by Mink (1991), total recharge during drought conditions is 32 percent lower than mean baseline recharge. For the future land-cover water-budget simulation, which represents potential land-cover changes owing to the military relocation and population growth, estimated recharge for the entire island is nearly equal to the baseline recharge estimate that was based on 2004 land cover. Using the water-budget model, estimated recharge in the northern half of the island is most sensitive to crop coefficients and net precipitation rates—two of the water-budget parameters used in the estimation of total evapotranspiration. Estimated recharge in the southern half of the island is most sensitive to crop coefficients, net precipitation rate, and runoff-to-rainfall ratios. During March 2010 to May 2011, bulk-deposition samples from five rainfall stations on Guam were collected and analyzed for chloride. Additionally, samples from five groundwater sites were collected and analyzed for chloride. Results were used to estimate groundwater recharge using the chloride mass-balance method. Recharge estimates using this method at three bulk-deposition stations on the northern limestone plateau range from about 25 to 48 percent of rainfall. These recharge estimates are similar to the estimate of Ayers (1981) who also used this method. Recharge estimates at each bulk-deposition station, however, are lower than the baseline recharge estimate from the water-budget model used in this study. This may be because no large storms, such as tropical cyclones, passed near Guam during March 2010 to May 2011.
Impacts of global change on landslide hazard and risk in Europe in 21st century
NASA Astrophysics Data System (ADS)
Jaedicke, C.; Nadim, F.; Kalsnes, B.; Sverdrup-Thygeson, K.; Radermacher, C.; Fischer, G.; Hervas, J.; Van Den Eeckhaut, M.
2012-04-01
The research done previously in the SafeLand project (www.safeland-fp7.eu) identified the hotspots of landslide hazard and risk in Europe using three different models. All models were, however, based on the same input data. The analyses covered entire Europe, such that differences between regions and countries in Europe could be identified. This homogenous and objective analysis allowed comparing and ranking European countries in absolute or relative numbers of exposed land area, population and infrastructure. All models identified Italy as the country with the highest exposure to landslide risk. However, the small alpine countries had the highest relative exposure compared to their total land area and population. Overall, 4 to 7 million people in Europe, as well as significant amount of infrastructure are exposed to landslide threat. In the expectation of a changing climate, the question arises on how the level and spatial pattern of landslide hazard and risk in Europe will develop in the 21st century. To answer this question, several factors must be considered. Not only will the climate change in the next 90 years, but also the demography and land cover in Europe will change significantly. Prognosis of landslide risk must take into account a possible reduction in the total population and significant urbanisation in most parts of Europe. This again leads to changes in land cover where for example the amount of forested areas and urban areas may change dramatically. The paper presents the results of a study in the SafeLand project that explores the possible changes in landslide risk and hazard in Europe. The main objective of the study was to quantify the landslide hazard and risk in Europe now and in the future and see if there will be significant changes. Changing precipitation pattern, land cover and population were used as input to assess the landslide hazard and risk in the years 2030, 2050, 2070 and 2090. The results were then compared to the present situation in 2010. The effect of climate change varies depending on the type of landslide. In this study the focus was on precipitation-induced landslides, which are a direct consequence of the extreme precipitation events and therefore closely coupled to a change in the frequency of extreme events. Other landslides caused by draught or melt-freeze cycles are often followed a complex sequence of weather events that are difficult, if not impossible to forecast into the future. The study showed that climate change and changes in land cover will only cause minor variations in landslide hazard. The risk associated with landslides, however, is expected to change significantly due to changing patterns of population in Europe.
NASA Astrophysics Data System (ADS)
Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Zullo, J.; Victoria, D.; Gomes, D.; Bayma, G.
2013-12-01
Agriculture is closely related to land-use/cover changes (LUCC). The increase in demand for ethanol necessitates the expansion of areas occupied by corn and sugar cane. In São Paulo state, the conversion of this land raises concern for impacts on food security, such as the decrease in traditional food crop production areas. We used remote sensing data to train and evaluate future land-cover scenarios using a machine-learning algorithm. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey, covering three time periods over twenty years (1990 - 2010). Landsat images were segmented into homogeneous objects, which represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. Based on the object shape, texture and spectral characteristics, land use/cover was visually identified, considering the following classes: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. Results for the western regions of São Paulo state indicate that sugarcane crop area advanced mostly upon pasture areas with few areas of food crops being replaced by sugarcane.
Hambrook Berkman, Julie A.; Scudder, Barbara C.; Lutz, Michelle A.; Harris, Mitchell A.
2010-01-01
This study evaluated the relations between algal, invertebrate, and fish assemblages and physical environmental characteristics of streams at the reach, segment, and watershed scale in agricultural settings in the Midwest. The 86 stream sites selected for study were in predominantly agricultural watersheds sampled as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Species abundance and over 130 biological metrics were used to determine which aspects of the assemblages were most sensitive to change at the three spatial scales. Digital orthophotograph-based riparian land use/land cover was used for analyses of riparian conditions at the reach and segment scales. The percentage area of different land-use/land-cover types was also determined for each watershed. Out of over 230 environmental characteristics examined, those that best explained variation in the biotic assemblages at each spatial scale include the following: 1) reach: bank vegetative cover, fine silty substrate, and open canopy angle; 2) segment: woody vegetation and cropland in the 250-m riparian buffer, and average length of undisturbed buffer; and 3) watershed: land use/land cover (both total forested and row crop), low-permeability soils, slope, drainage area, and latitude. All three biological assemblages, especially fish, correlated more with land use/land cover and other physical characteristics at the watershed scale than at the reach or segment scales. This study identifies biotic measures that can be used to evaluate potential improvements resulting from agricultural best-management practices and other conservation efforts, as well as evaluate potential impairment from urban development or other disturbances.
NASA Astrophysics Data System (ADS)
Selim, El Sayed Ibrahim
2016-01-01
The Sinai Peninsula is a part of the Sinai sub-plate that located between the southeast Nubian-Arabian shield and the southeastern Mediterranean northward. The main objectives of this investigation are to deduce the main sedimentary basin and its subdivisions, identify the subsurface structural framework that affects the study area and determine the thickness of sedimentary cover of the basement surface. The total intensity magnetic map, Bouguer gravity map and seismic data were used to achieve the study aims. Structural interpretation of the gravity and magnetic data were done by applying advanced processing techniques. These techniques include; Reduce to the pole (RTP), Power spectrum, Tile derivative and Analytical Signal techniques were applied on gravity and magnetic data. Two dimensional gravity and magnetic modeling and interpretation of seismic sections were done to determine the thickness of sedimentary cover of the study area. The integration of our interpretation suggests that, the northern Sinai area consists of elongated troughs that contain many high structural trends. Four major structural trends have been identified, that, reflecting the influence of district regional tectonic movements. These trends are: (1) NE-SW trend; (2) NNW-SSE trend; (3) ENE-WSW trend and (4) WNW-ESE trend. There are also many minor trends, E-W, NW-SE and N-S structural trends. The main sedimentary basin of North Sinai is divided into four sub-basins; (1) Northern Maghara; (2) Northeastern Sinai; (3) Northwestern Sinai and (4) Central Sinai basin. The sedimentary cover ranges between 2 km and 7 km in the northern part of the study area.
Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David
2008-01-01
Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.
What We Do Not Yet Know About Global Ocean Depths, and How Satellite Altimetry Can Help
NASA Astrophysics Data System (ADS)
Smith, W. H. F.; Sandwell, D. T.; Marks, K. M.
2017-12-01
Half Earth's ocean floor area lies several km or more away from the nearest depth measurement. Areas more than 50 km from any sounding sum to a total area larger than the entire United States land area; areas more than 100 km from any sounding comprise a total area larger than Alaska. In remote basins the majority of available data were collected before the mid-1960s, and so often are mis-located by many km, as well as mis-digitized. Satellite altimetry has mapped the marine gravity field with better than 10 km horizontal resolution, revealing nearly all seamounts taller than 2 km; new data can detect some seamounts less than 1 km tall. Seafloor topography can be estimated from satellite altimetry if sediment is thin and relief is due to seafloor spreading and mid-plate volcanism. The accuracy of the estimate depends on the geological nature of the relief and on the accuracy of the soundings available to calibrate the estimation. At best, the estimate is a band-pass-filtered version of the true depth variations, but does not resolve the small-scale seafloor roughness needed to model mixing and dissipation in the ocean. In areas of thick or variable sediment cover there can be little correlation between depth and altimetry. Yet altimeter-estimated depth is the best guess available in most of the ocean. The MH370 search area provides an illustration. Prior to the search it was very sparsely (1% to 5%) covered by soundings, many of these were old, low-tech data, and plateaus with thick sediments complicate the estimation of depth from altimetry. Even so, the estimate was generally correct about the tectonic nature of the terrain and the extent of depth variations to be expected. If ships will fill gaps strategically, visiting areas where altimetry shows that interesting features will be found, and passing near the centroids of the larger gaps, the data will be exciting in their own right and will also improve future altimetry estimates.
Zhou, Xiaoqi; Wu, Hanwen; Li, Guangdi; Chen, Chengrong
2016-11-01
Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187-253 kg ha -1 and the mean soil total N by 16.3-19.1 kg ha -1 relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5-20.9 kg ha -1 and the mean soil microbial biomass N by 4.5-10.2 kg ha -1 . We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6-13.9 %, whereas non-legume crops accounted for 16.4-18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.
Hydrology of area 25, Eastern Region, Interior Coal Province, Illinois
Zuehls, E.E.; Ryan, G.L.; Peart, D.B.; Fitzgerald, K.K.
1981-01-01
The eastern region of the Interior Coal Province has been divided into 11 hydrologic study areas. Area 25, located in west-central Illinois, includes the Spoon River and small tributaries to the Illinois River. Pennsylvanian age rocks underlie most of the study area. Illinois, with the largest reserves of bituminous coal, is second only to Montana in total coal reserves. Loess soils cover most of the study area. Agriculture is the dominant land use. Surface water provides 97% of all the water used. Precipitation averages 34 to 35 inches. Water-quality data has been collected at over 31 sites. Analysis for specific conductance, pH, alkalinity, iron, manganese, sulfate and many trace elements and other water-quality constituents have been completed. These data are available from computer storage through the National Water Data Storage and Retrieval System (WATSTORE). (USGS)
NASA Astrophysics Data System (ADS)
Tsai, JuiPin; Chen, Yu Wen; Chang, Liang Cheng; Chiang, Chun Jung; Chen, Jui Er; Chen, You Cheng
2013-04-01
Groundwater recharge areas are regions with high permeability that accept surface water more readily than other regions. If the land use/cover were changed, it would affect the groundwater recharge. Also, if this area were polluted, the contamination easily infiltrates into the groundwater system. Therefore, the goal of this study is to delineate the recharge area of Choshuihsi Alluvial Fan. This study applies 6 recharge potential scale factors, including land use/land cover, soil, drainage density, annual average rainfall, hydraulic conductivity and aquifer thickness to estimate the infiltration ability and storage capacity of study area. The fundamental data of these factors were digitized using GIS (Geographic Information System) technology and their GIS maps were created. Then each of these maps was translated to a score map ranged from 1 to 100. Moreover, these score maps are integrated as a recharge potential map using arithmetic average, and this map shows recharge potential in 5 levels, such as very poor, poor, moderate, good and excellent. The result shows that majority of "good" and "excellent" areas is located at the top of the fan. This is because the land use of top-fan is agricultural and its surface soil type is gravel and coarse. The top-fan, which is close to mountain areas, has a higher average annual rainfall than other areas. Also, the aquifer thickness of top-fan is much thicker than other areas. The percentage of the areas ranged as "good" and above is 9.63% of total area, and most areas located at top-fan. As a result, we suggest that the top-fan of study area should be protected and more field surveys are required to accurately delineate the recharge area boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-09-01
This report contains an analysis of the costs and benefits of controlling microbial contaminants in drinking water through the promulgation of two regulations: (1) the Surface Water Treatment Rule (SWTR); and (2) the Total Coliform Rule. This regulatory impact analysis (RIA) was prepared in accordance with Executive Order 12291, which requires that the costs and benefits of all major rules be examined and compared. The major topical areas covered in the RIA are as follows: problem definition; market imperfections, the need for federal regulation, and consideration of regulatory alternatives; assessment of total costs; assessment of benefits; regulatory flexibility act andmore » Paperwork Reduction Act analyses; and a summary of costs and benefits.« less
Beaulieu, Karen M.; Bell, Amanda H.; Coles, James F.
2012-01-01
Beginning in 1999, the U.S. Geological Survey National Water Quality Assessment Program investigated the effects of urban development on stream ecosystems in nine metropolitan study areas across the United States. In seven of these study areas, stream-chemistry samples were collected every other month for 1 year at 6 to 10 sites. Within a study area, the sites collectively represented a gradient of urban development from minimally to highly developed watersheds, based on the percentage of urban land cover; depending on study area, the land cover before urban development was either forested or agricultural. The stream-chemistry factors measured in the samples were total nitrogen, total phosphorus, chloride, and pesticide toxicity. These data were used to characterize the stream-chemistry factors in four ways (hereafter referred to as characterizations)—seasonal high-flow value, seasonal low-flow value, the median value (representing a single integrated value of the factor over the year), and the standard deviation of values (representing the variation of the factor over the year). Aquatic macroinvertebrate communities were sampled at each site to infer the biological condition of the stream based on the relative sensitivity of the community to environmental stressors. A Spearman correlation analysis was used to evaluate relations between (1) urban development and each characterization of the stream-chemistry factors and (2) the biological condition of a stream and the different characterizations of chloride and pesticide toxicity. Overall, the study areas where the land cover before urban development was primarily forested had a greater number of moderate and strong relations compared with the study areas where the land cover before urban development was primarily agriculture; this was true when urban development was correlated with the stream-chemistry factors (except chloride) and when chloride and pesticide toxicity was correlated with the biological condition. Except for primarily phosphorus in two study areas, stream-chemistry factors generally increased with urban development, and among the different characterizations, the median value typically indicated the strongest relations. The variation in stream-chemistry factors throughout the year generally increased with urban development, indicating that water quality became less consistent as watersheds were developed. In study areas with high annual snow fall, the variation in chloride concentrations throughout the year was particularly strongly related to urban development, likely a result of road salt applications during the winter. The relations of the biological condition to chloride and pesticide toxicity were calculated irrespective of urban development, but the overall results indicated that the relations were still stronger in the study areas that had been forested before urban development. The weaker relations in the study areas that had been agricultural before urban development were likely the results of biological communities having been degraded from agricultural practices in the watersheds. Collectively, these results indicated that, compared with sampling a stream at a single point in time, sampling at regular intervals during a year may provide a more representative measure of water quality, especially in the areas of high urban development where water quality fluctuated more widely between samples. Furthermore, the use of "integrated" values of stream chemistry factors may be more appropriate when assessing relations to the biological condition of a stream because the taxa composition of a biological community typically reflects the water-quality conditions over time.
Advances in water resources monitoring from space
NASA Technical Reports Server (NTRS)
Salomonson, V. V.
1974-01-01
Nimbus-5 observations indicate that over the oceans the total precipitable water in a column of atmosphere can be estimated to within + or - 10%, the liquid water content of clouds can be estimated to within + or - 25%, areas of precipitation can be delineated, and broad estimates of the precipitation rate obtained. ERTS-1 observations permit the measurement of snow covered area to within a few percent of drainage basin area and snowline altitudes can be estimated to within 60 meters. Surface water areas as small as 1 hectare can be inventoried over large regions such as playa lakes region of West Texas and Eastern New Mexico. In addition, changes in land use on water-sheds occurring as a result of forest fires, urban development, clear cutting, or strip mining can be rapidly obtained.
Cumulative impacts of oil fields on northern Alaskan landscapes
Walker, D.A.; Webber, P.J.; Binnian, Emily F.; Everett, K.R.; Lederer, N.D.; Nordstrand, E.A.; Walker, M.D.
1987-01-01
Proposed further developments on Alaska's Arctic Coastal Plain raise questions about cumulative effects on arctic tundra ecosystems of development of multiple large oil fields. Maps of historical changes to the Prudhoe Bay Oil Field show indirect impacts can lag behind planned developments by many years and the total area eventually disturbed can greatly exceed the planned area of construction. For example, in the wettest parts of the oil field (flat thaw-lake plains), flooding and thermokarst covered more than twice the area directly affected by roads and other construction activities. Protecting critical wildlife habitat is the central issue for cumulative impact analysis in northern Alaska. Comprehensive landscape planning with the use of geographic information system technology and detailed geobotanical maps can help identify and protect areas of high wildlife use.
NASA Astrophysics Data System (ADS)
Hugelius, Gustaf; Virtanen, Tarmo; Kaverin, Dmitry; Pastukhov, Alexander; Rivkin, Felix; Marchenko, Sergey; Romanovsky, Vladimir; Kuhry, Peter
2011-09-01
This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C m-2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C m-2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C m-2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.
Satellite inventory of Minnesota forest resources
NASA Technical Reports Server (NTRS)
Bauer, Marvin E.; Burk, Thomas E.; Ek, Alan R.; Coppin, Pol R.; Lime, Stephen D.; Walsh, Terese A.; Walters, David K.; Befort, William; Heinzen, David F.
1993-01-01
The methods and results of using Landsat Thematic Mapper (TM) data to classify and estimate the acreage of forest covertypes in northeastern Minnesota are described. Portions of six TM scenes covering five counties with a total area of 14,679 square miles were classified into six forest and five nonforest classes. The approach involved the integration of cluster sampling, image processing, and estimation. Using cluster sampling, 343 plots, each 88 acres in size, were photo interpreted and field mapped as a source of reference data for classifier training and calibration of the TM data classifications. Classification accuracies of up to 75 percent were achieved; most misclassification was between similar or related classes. An inverse method of calibration, based on the error rates obtained from the classifications of the cluster plots, was used to adjust the classification class proportions for classification errors. The resulting area estimates for total forest land in the five-county area were within 3 percent of the estimate made independently by the USDA Forest Service. Area estimates for conifer and hardwood forest types were within 0.8 and 6.0 percent respectively, of the Forest Service estimates. A trial of a second method of estimating the same classes as the Forest Service resulted in standard errors of 0.002 to 0.015. A study of the use of multidate TM data for change detection showed that forest canopy depletion, canopy increment, and no change could be identified with greater than 90 percent accuracy. The project results have been the basis for the Minnesota Department of Natural Resources and the Forest Service to define and begin to implement an annual system of forest inventory which utilizes Landsat TM data to detect changes in forest cover.
NASA Astrophysics Data System (ADS)
Young, Michael; Andrews, John; Caldwell, Todd; Saylam, Kutalmis
2017-04-01
The desert Southwestern United States serves as the host to the habitat for several threatened and endangered species, one of which is the desert tortoise (Gopherus agassizii). The goal in this study was to develop a fine-scale, remote sensing-based model that predicts potential habitat locations of G. agassizii in the Boulder City (Nevada) Conversation Easement area (35,500 hectares). This was done by analyzing airborne Lidar data (5-7 points/m2) and color imagery (4 bands, 0.15 m resolution) and determining percent vegetation cover, shrub height and area, NDVI, and several geomorphic characteristics including slope, azimuth, roughness, etc. Other field data used herein include estimates of canopy area and species richness using 1271 line transects, and shrub height and canopy area using plant-specific measurements of 200 plants. Larrea tridentada and Ambrosia dumosa shrubs were identified using an algorithm that obtained an optimum combination of NDVI and average reflectance of the four bands (IR, R, G, B) from pixels in each image. Results identified more than 65 million shrubs across the study area, and indicate that percent vegetation cover from the aerial imagery across the site (13.92%) compared favorably (14.52%) to the estimate obtained from the line transects, though the lidar method yielded shrub heights approximately 60% of measured shrub heights. Plants and landscape properties were combined with known locations of tortoise burrows (visually observed in 2014), yielding a predictive model of potential tortoise habitats. Masks were created using roughness coefficient, slope percent, azimuth of burrow openings, elevation and percent ground cover to isolate areas more likely to host habitats. Combined together, the masks isolated 55% of the total survey area, which would help target future field surveys. Overall, the vegetation map superimposed onto the background soil data could estimate the location of tortoise burrows.
Patterns of plant invasions: A case example in native species hotspots and rare habitats
Stohlgren, T.J.; Otsuki, Yuka; Villa, C.A.; Lee, M.; Belnap, J.
2001-01-01
Land managers require landscape-scale information on where exotic plant species have successfully established, to better guide research, control, and restoration efforts. We evaluated the vulnerability of various habitats to invasion by exotic plant species in a 100,000 ha area in the southeast corner of Grand Staircase-Escalante National Monument, Utah. For the 97 0.1-ha plots in 11 vegetation types, exotic species richness (log10) was strongly negatively correlated to the cover of cryptobiotic soil crusts (r = −0.47, P < 0.001), and positively correlated to native species richness (r = 0.22, P < 0.03), native species cover (r = 0.23, P < 0.05), and total nitrogen in the soil (r = 0.40, P < 0.001). Exotic species cover was strongly positively correlated to exotic species richness (r = 0.68, P < 0.001). Only 6 of 97 plots did not contain at least one exotic species. Exotic species richness was particularly high in locally rare, mesic vegetation types and nitrogen rich soils. Dry, upland plots (n = 51) had less than half of the exotic species richness and cover compared to plots (n = 45) in washes and lowland depressions that collect water intermittently. Plots dominated by trees had significantly greater native and exotic species richness compared to plots dominated by shrubs. For the 97 plots combined, 33% of the variance in exotic species richness could be explained by a positive relationship with total plant cover, and negative relationships with the cover of cryptobiotic crusts and bare ground. There are several reasons for concern: (1) Exotic plant species are invading hot spots of native plant diversity and rare/unique habitats. (2) The foliar cover of exotic species was greatest in habitats that had been invaded by several exotic species.(3) Continued disturbance of fragile cryptobiotic crusts by livestock, people, and vehicles may facilitate the further invasion of exotic plant species.
Fill, Jennifer M; Forsyth, Greg G; Kritzinger-Klopper, Suzaan; Le Maitre, David C; van Wilgen, Brian W
2017-01-01
The long-term effectiveness of ecological restoration projects is seldom reported in the scientific literature. This paper reports on the outcomes of ecosystem restoration following the clearing of alien Pinus plantations and associated alien plant invasions over 13 years from an 8000 ha mountain catchment in the Western Cape Province, South Africa. We examined the goals, methods and costs of management, and the ecological outcomes in terms of reduced alien plant cover and native vegetation recovery. While the goals were not explicitly formulated at the outset, they were implicitly focussed on the conservation of water resources, the restoration of biodiversity, and the provision of employment. Initially, most (>90% of the area) was occupied by Pinus and Acacia invasions, mostly at low densities. The cost of control (initial clearing and up to 16 follow-up visits to remove emergent seedlings) amounted to almost ZAR 50 million (14 ZAR ∼ 1US$). Although the cover of alien plants was greatly reduced, over 1000 ha still support dense or medium invasions (>25% cover), and the area occupied by scattered Pinus plants increased by over 3000 ha to >5700 ha. A reliance on passive restoration had not yet resulted in full recovery of the natural vegetation. The mean number of species, and total projected canopy cover on 50 m 2 plots was lower in cleared than in comparable reference sites with pristine vegetation (21 vs 32 species/plot, and 94 vs 168% cover respectively). While the project is ongoing, we conclude that the entire area could revert to a more densely-invaded state in the event of a reduction of funding. Several changes to the management approach (including the integrated use of fire, a greater use of power tools, and active re-seeding of cleared areas with indigenous shrubs) would substantially increase the future effectiveness of the project and the sustainability of its outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
AmeriFlux CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine Cutover
Margolis, Hank A. [Université Laval
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site CA-Qcu Quebec - Eastern Boreal, Black Spruce/Jack Pine Cutover. Site Description - The ground is gently rolling with a weak slope (<5%). In mesic areas (designated as well to moderately well drained areas, according to the Canadian System of Soil Classification (Agriculture Canada Expert Committee on Soil Survey, 1983)), the soil is a ferro-humic to humic podzol covered by an organic layer having an average depth of 26 cm (Fig. 1). In humid areas, the soil is organic (imperfectly to poorly drained) with an average organic layer of 125 cm. Mesic areas accounted for approximately 75% of the total surface area of the footprint and humid areas accounted for 25%. Full-time continuous measurements eneded in 2011. Intermittent measurements are on-going as resources permit.
Water Resources Development in Minnesota 1991
1991-01-01
the primary elements of the Pick-Sloan Program. These six have total storage capacity of 75-m illion acre -feet, more than three times the average...almost 121 million acres . Water is an element indispensable to life. Not only does it It includes that part of the United States that is drained by...oilpollutionandsedimentproblemsallimpact million acres of the area is covered by freshwater lakes and on water quality. About two-thirds of the people in
McCoy-Sulentic, Miles; Kolb, Thomas; Merritt, David; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel; Shafroth, Patrick B.
2017-01-01
Comparisons of community-level functional traits across environmental gradients have potential for identifying links among plant characteristics, adaptations to stress and disturbance, and community assembly. We investigated community-level variation in specific leaf area (SLA), plant mature height, seed mass, stem specific gravity (SSG), relative cover of C4 species, and total plant cover over hydrologic zones and gradients in years 2013 and 2014 in the riparian plant community along the Colorado River in the Grand Canyon. Vegetation cover was lowest in the frequently inundated active channel zone, indicating constraints on plant establishment and production by flood disturbance and anaerobic stress. Changes in trait values over hydrologic zones and inundation gradients indicate that frequently inundated plots exhibit a community-level ruderal strategy with adaptation to submergence (high SLA and low SSG, height, seed mass, C4 relative cover), whereas less frequently inundated plots exhibit adaptation to drought and infrequent flood disturbance (low SLA and high SSG, height, seed mass, C4 relative cover). Variation in traits not associated with inundation suggests niche differentiation and multiple modes of community assembly. The results enhance understanding of future responses of riparian communities of the Grand Canyon to anticipated drying and changes in hydrologic regime.
SIZE AND SURFACE AREA OF ICY DUST AGGREGATES AFTER A HEATING EVENT AT A PROTOPLANETARY NEBULA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirono, Sin-iti
2013-03-01
The activity of a young star rises abruptly during an FU Orionis outburst. This event causes a temporary temperature increase in the protoplanetary nebula. H{sub 2}O icy grains are sublimated by this event, and silicate cores embedded inside the ice are ejected. During the high-temperature phase, the silicate grains coagulate to form silicate core aggregates. After the heating event, the temperature drops, and the ice recondenses onto the aggregates. I determined numerically the size distribution of the ice-covered aggregates. The size of the aggregates exceeds 10 {mu}m around the snow line. Because of the migration of the ice to largemore » aggregates, only a small fraction of the silicate core aggregate is covered with H{sub 2}O ice. After the heating event, the surface of an ice-covered aggregate is totally covered by silicate core aggregates. This might reduce the fragmentation velocity of aggregates when they collide. It is possible that the covering silicate cores shield the UV radiation field which induces photodissociation of H{sub 2}O ice. This effect may cause the shortage of cold H{sub 2}O vapor observed by Herschel.« less
A mapping and monitoring assessment of the Philippines' mangrove forests from 1990 to 2010
Long, Jordan; Napton, Darrell; Giri, Chandra; Graesser, Jordan
2014-01-01
Information on the present condition and spatiotemporal dynamics of mangrove forests is needed for land-change studies and integrated natural resources planning and management. Although several national mangrove estimates for the Philippines exist, information is unavailable at sufficient spatial and thematic detail for change analysis. Historical and contemporary mangrove distribution maps of the Philippines for 1990 and 2010 were prepared at nominal 30-m spatial resolution using Landsat satellite data. Image classification was performed using a supervised decision tree classification approach. Additionally, decadal land-cover change maps from 1990 to 2010 were prepared to depict changes in mangrove area. Total mangrove area decreased 10.5% from 1990 to 2010. Comparison of estimates produced from this study with selected historical mangrove area estimates revealed that total mangrove area decreased by approximately half (51.8%) from 1918 to 2010. This study provides the most current and reliable data regarding the Philippines mangrove area and spatial distribution and delineates where and when mangrove change has occurred in recent decades. The results from this study are useful for developing conservation strategies, biodiversity loss mitigation efforts, and future monitoring and analysis.
Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.
He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan
2009-01-01
Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.
Land use change and landslide characteristics analysis for community-based disaster mitigation.
Chen, Chien-Yuan; Huang, Wen-Lin
2013-05-01
On August 8, 2009, Typhoon Morakot brought heavy rain to Taiwan, causing numerous landslides and debris flows in the Taihe village area of Meishan Township, Chiayi County, in south-central Taiwan. In the Taihe land is primary used for agriculture and land use management may be a factor in the area's landslides. This study explores Typhoon Morakot-induced landslides and land use changes between 1999 and 2009 using GIS with the aid of field investigation. Spot 5 satellite images with a resolution of 2.5 m are used for landslide interpretation and manually digitalized in GIS. A statistical analysis for landslide frequency-area distribution was used to identify the landslide characteristics associated with different types of land use. There were 243 landslides with a total area of 2.75 km(2) in the study area. The area is located in intrinsically fragile combinations of sandstone and shale. Typhoon Morakot-induced landslides show a power-law distribution in the study area. Landslides were mainly located in steep slope areas containing natural forest and in areas planted with bamboo, tea, and betel nut. Land covered with natural forest shows the highest landslide ratio, followed by bamboo, betel nut, and tea. Landslides thus show a higher ratio in areas planted with shallow root vegetation such as bamboo, betel nut, and tea. Furthermore, the degree of basin development is proportional to the landslide ratio. The results show that a change in vegetation cover results in a modified landslide area and frequency and changed land use areas have higher landslide ratios than non-changed. Land use management and community-based disaster prevention are needed in mountainous areas of Taiwan for hazard mitigation.
Identifying optimal remotely-sensed variables for ecosystem monitoring in Colorado Plateau drylands
Poitras, Travis; Villarreal, Miguel; Waller, Eric K.; Nauman, Travis; Miller, Mark E.; Duniway, Michael C.
2018-01-01
Water-limited ecosystems often recover slowly following anthropogenic or natural disturbance. Multitemporal remote sensing can be used to monitor ecosystem recovery after disturbance; however, dryland vegetation cover can be challenging to accurately measure due to sparse cover and spectral confusion between soils and non-photosynthetic vegetation. With the goal of optimizing a monitoring approach for identifying both abrupt and gradual vegetation changes, we evaluated the ability of Landsat-derived spectral variables to characterize surface variability of vegetation cover and bare ground across a range of vegetation community types. Using three year composites of Landsat data, we modeled relationships between spectral information and field data collected at monitoring sites near Canyonlands National Park, UT. We also developed multiple regression models to assess improvement over single variables. We found that for all vegetation types, percent cover bare ground could be accurately modeled with single indices that included a combination of red and shortwave infrared bands, while near infrared-based vegetation indices like NDVI worked best for quantifying tree cover and total live vegetation cover in woodlands. We applied four models to characterize the spatial distribution of putative grassland ecological states across our study area, illustrating how this approach can be implemented to guide dryland ecosystem management.
Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact
NASA Astrophysics Data System (ADS)
Huang, Kuo-Ching; Huang, Thomas C. C.
2014-02-01
Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred.
Estimating riparian area extent and land use in the Midwest.
Brian J. Palik; Swee May Tang; Quinn. Chavez
2004-01-01
This report quantifies the amount and land use/land cover of riparian area in the seven-State Midwest Region of the continental United States. We estimate that riparian areas cover 8.9 to 13.2 million hectares in the region and that approximately 72 percent of riparian areas support natural or semi-natural land cover.
Code of Federal Regulations, 2011 CFR
2011-10-01
... aggregate workforce in each trade on all construction work in the covered area, are as follows: Goals for... all the Contractor's construction work performed in the covered area. If the Contractor performs construction work in a geographical area located outside of the covered area, the Contractor shall apply the...
Code of Federal Regulations, 2010 CFR
2010-10-01
... aggregate workforce in each trade on all construction work in the covered area, are as follows: Goals for... all the Contractor's construction work performed in the covered area. If the Contractor performs construction work in a geographical area located outside of the covered area, the Contractor shall apply the...
Comparing Minnesota land cover/use area estimates using NRI and FIA data
Veronica C. Lessard; Mark H. Hansen; Mark D. Nelson
2002-01-01
Areas for land cover/use categories on non-Federal land in Minnesota were estimated from Forest Inventory and Analysis (FIA) data and National Resources Inventory (NRI) data. Six common land cover/use categories were defined, and the NRI and FIA land cover/use categories were assigned to them. Area estimates for these categories were calculated from the FIA and NRI...
Sallam, Mohamed F; Al Ahmed, Azzam M; Abdel-Dayem, Mahmoud S; Abdullah, Mohamed A R
2013-01-01
The mosquito, Culex tritaeniorhynchus Giles is a prevalent and confirmed Rift Valley Fever virus (RVFV) vector. This vector, in association with Aedimorphus arabiensis (Patton), was responsible for causing the outbreak of 2000 in Jazan Province, Saudi Arabia. Larval occurrence records and a total of 19 bioclimatic and three topographic layers imported from Worldclim Database were used to predict the larval suitable breeding habitats for this vector in Jazan Province using ArcGIS ver.10 and MaxEnt modeling program. Also, a supervised land cover classification from SPOT5 imagery was developed to assess the land cover distribution within the suitable predicted habitats. Eleven bioclimatic and slope attributes were found to be the significant predictors for this larval suitable breeding habitat. Precipitation and temperature were strong predictors of mosquito distribution. Among six land cover classes, the linear regression model (LM) indicated wet muddy substrate is significantly associated with high-very high suitable predicted habitats (R(2) = 73.7%, P<0.05). Also, LM indicated that total dissolved salts (TDS) was a significant contributor (R(2) = 23.9%, P<0.01) in determining mosquito larval abundance. This model is a first step in understanding the spatial distribution of Cx. tritaeniorhynchus and consequently the risk of RVFV in Saudi Arabia and to assist in planning effective mosquito surveillance and control programs by public health personnel and researchers.
Assessment of the Geothermal Potential Within the BPA Marketing Area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, John W.; Allen, Eliot D.
1980-07-01
The potential of geothermal energy is estimated that can be used for direct heat applications and electrical power generation within the Bonneville Power Administration (BPA) marketing area. The BPA marketing area includes three principal states of Oregon, Washington, and Idaho and portions of California, Montana, Wyoming, Nevada, and Utah bordering on these three states. This area covers approximately 384,000 square miles and has an estimated population of 6,760,000. The total electrical geothermal potential within this marketing area is 4077 MW/sub e/ from hydrothermal resources and 16,000 MW/sub e/ from igneous systems, whereas the total thermal (wellhead) potential is 16.15 xmore » 10/sup 15/ Btu/y. Approximately 200 geothermal resource sites were initially identified within the BPA marketing area. This number was then reduced to about 100 sites thought to be the most promising for development by the year 2000. These 100 sites, due to load area overlap, were grouped into 53 composite sites; 21-3/4 within BPA preference customer areas and 31-1/4 within nonpreference customer areas. The geothermal resource potential was then estimated for high-temperature (> 302/sup 0/F = 150/sup 0/C), intermediate-temperature (194 to 302/sup 0/F = 90 to 150/sup 0/C), and low-temperature (< 194/sup 0/F = 90/sup 0/C) resources.« less
Reduction of livelihood risk for river bank erosion affected villagers
NASA Astrophysics Data System (ADS)
Majumder, S. Sen; Fox, D. M.; Chakrabari, S.; Bhandari, G.
2014-12-01
Bank erosion process of the Ganga River created a serious livelihood risk for the villagers situated on left bank of the river in Malda district of the State of West Bengal, India since last four decades. Due to the erosion of agriculture land by the river, most of the villagers having agriculture as their only means of livelihood became jobless suddenly. Presently they are living in a miserable condition. One of the main objectives of this paper is to find out an alternative means of livelihood for the victims to improve their miserable socio-economic condition. It has been found from field survey that some erosion affected villagers have started to live and practice agriculture temporarily on the riverine islands (large and stable since thirteen years) as these islands have very fertile soil. If the re-emerged land plots can again be demarcated on the newly formed islands and distributed among the landless people to practice agriculture over there, then it will be a useful alternative livelihood strategy for the victims. The demarcation of re-emerged plots can be achieved by georeferencing the cadastral maps and then overlaying the plots on the present river course. In the present study area geo-referencing process of the cadastral maps became a serious issue as the study area has been very dynamic in terms of land cover and land use. Most of the villages were lost into the river course. Thus the common permanent features, required for geo-referencing, shown in the cadastral maps (surveyed during 1954-1962) were not found in the present satellite images. The second important objective of the present study is to develop a proper methodology for geo-referencing the cadastral maps of this area. The Spatial Adjustment Transformation and Automatic Digitization tools of Arc GIS were used to prepare geo-referenced plot maps. In Projective Transformation method the geometrically corrected block maps having village boundaries were used as source file. Then the georeferenced plot maps were overlaid on the present river course and the plots covered by islands or lands were extracted. For e.g., Gopalpur village contains nearly 29% of its total area as riverine island and 36% of total plots are covered by this island area. These plots can be distributed to the land less people so that they can utilize it and reduce their livelihood risk in future.
Land-use and Land-cover Change from 1974 to 2008 around Mobile Bay
NASA Technical Reports Server (NTRS)
Ellis, Jean; Spruce, Joseph; Smoot, James; Hilbert, Kent; Swann, Roberta
2008-01-01
This project is a Gulf of Mexico Application Pilot in which NASA Stennis Space Center (SSC) is working within a regional collaboration network of the Gulf of Mexico Alliance. NASA researchers, with support from the NASA SSC Applied Science Program Steering Committee, employed multi-temporal Landsat data to assess land-use and land-cover (LULC) changes in the coastal counties of Mobile and Baldwin, AL, between 1974 and 2008. A multi-decadal time-series, coastal LULC product unique to NASA SSC was produced. The geographic extent and nature of change was quantified for the open water, barren, upland herbaceous, non-woody wetland, upland forest, woody wetland, and urban landscapes. The National Oceanic and Atmospheric Administration (NOAA) National Coastal Development Data Center (NCDDC) will assist with the transition of the final product to the operational end user, which primarily is the Mobile Bay National Estuary Program (MBNEP). We found substantial LULC change over the 34-year study period, much more than is evident when the change occurring in the last years. Between 1974 and 2008, the upland forest landscape lost almost 6% of the total acreage, while urban land cover increased by slightly more than 3%. With exception to open water, upland forest is the dominant landscape, accounting for about 25-30% of the total area.
Diurnal stream habitat use of juvenile Atlantic salmon, brown trout and rainbow trout in winter
Johnson, J. H.; Douglass, K.A.
2009-01-01
The diurnal winter habitat of three species of juvenile salmonids was examined in a tributary of Skaneateles Lake, NY to compare habitat differences among species and to determine if species/age classes were selecting specific habitats. A total of 792 observations were made on the depth, velocity, substrate and cover (amount and type) used by sympatric subyearling Atlantic salmon, subyearling brown trout and subyearling and yearling rainbow trout. Subyearling Atlantic salmon occurred in shallower areas with faster velocities and less cover than the other salmonid groups. Subyearling salmon was also the only group associated with substrate of a size larger than the average size substrate in the study reach during both winters. Subyearling brown trout exhibited a preference for vegetative cover. Compared with available habitat, yearling rainbow trout were the most selective in their habitat use. All salmonid groups were associated with more substrate cover in 2002 under high flow conditions. Differences in the winter habitat use of these salmonid groups have important management implications in terms of both habitat protection and habitat enhancement.
Manzo-Delgado, Lilia; López-García, José; Alcántara-Ayala, Irasema
2014-06-01
With international concern about the rates of deforestation worldwide, particular attention has been paid to Latin America. Forest conservation programmes in Mexico include Payment for Environmental Services (PES), a scheme that has been successfully introduced in the Monarch Butterfly Biosphere Reserve. To seek further evidence of the role of PES in lessening land degradation processes in a temperate region, the conservation state of the Cerro Prieto ejido within the Reserve was assessed by an analysis of changes in vegetation cover and land-use between 1971 and 2013. There were no changes in the total forest surface area, but the relative proportions of the different classes of cover density had changed. In 1971, closed and semi-closed forest occupied 247.81 ha and 5.38 ha, 82.33% and 1.79% of the total area of the ejido, respectively. By 2013, closed forest had decreased to 230.38 ha (76.54% of the ejido), and semi-closed cover was 17.23 ha (5.72% of the ejido), suggesting that some semi-closed forest had achieved closed status. The final balance between forest losses and recovery was: 29.63 ha were lost, whereas 13.72 ha were recovered. Losses were mainly linked to a sanitation harvest programme to control the bark beetle Scolytus mundus. Ecotourism associated with forest conservation in the Cerro Prieto ejido has been considered by inhabitants as a focal alternative for economic development. Consequently, it is essential to develop a well-planned and solidly structured approach based on social cohesion to foster a community-led sustainable development at local level. Copyright © 2013 Elsevier Ltd. All rights reserved.
Employment and residential characteristics in relation to automated external defibrillator locations
Griffis, Heather M.; Band, Roger A; Ruther, Matthew; Harhay, Michael; Asch, David A.; Hershey, John C.; Hill, Shawndra; Nadkarni, Lindsay; Kilaru, Austin; Branas, Charles C.; Shofer, Frances; Nichol, Graham; Becker, Lance B.; Merchant, Raina M.
2015-01-01
Background Survival from out-of-hospital cardiac arrest (OHCA) is generally poor and varies by geography. Variability in automated external defibrillator (AED) locations may be a contributing factor. To inform optimal placement of AEDs, we investigated AED access in a major US city relative to demographic and employment characteristics. Methods and Results This was a retrospective analysis of a Philadelphia AED registry (2,559 total AEDs). The 2010 US Census and the Local Employment Dynamics (LED) database by ZIP code was used. AED access was calculated as the weighted areal percentage of each ZIP code covered by a 400 meter radius around each AED. Of 47 ZIP codes, only 9%(4) were high AED service areas. In 26%(12) of ZIP codes, less than 35% of the area was covered by AED service areas. Higher AED access ZIP codes were more likely to have a moderately populated residential area (p=0.032), higher median household income (p=0.006), and higher paying jobs (p=008). Conclusions The locations of AEDs vary across specific ZIP codes; select residential and employment characteristics explain some variation. Further work on evaluating OHCA locations, AED use and availability, and OHCA outcomes could inform AED placement policies. Optimizing the placement of AEDs through this work may help to increase survival. PMID:26856232
Impacts of the Variability of Ice Types on the Decline of the Arctic Perennial Sea Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2005-01-01
The observed rapid decline in the Arctic perennial ice cover is one of the most remarkable signal of change in the Arctic region. Updated data now show an even higher rate of decline of 9.8% per decade than the previous report of 8.9% per decade mainly because of abnormally low values in the last 4 years. To gain insights into this decline, the variability of the second year ice, which is the relatively thin component of the perennial ice cover, and other ice types is studied. The perennial ice cover in the 1990s was observed to be highly variable which might have led to higher production of second year ice and may in part explain the observed ice thinning during the period and triggered further decline. The passive microwave signature of second year ice is also studied and results show that while the signature is different from that of the older multiyear ice, it is surprisingly more similar to that of first year ice. This in part explains why previous estimates of the area of multiyear ice during the winter period are considerably lower than the area of the perennial ice cover during the preceding summer. Four distinct clusters representing radiometrically different types have been identified using multi-channel cluster analysis of passive microwave data. Data from two of these clusters, postulated to come from second year and older multiyear ice regions are also shown to have average thicknesses of 2.4 and 4.1 m, respectively, indicating that the passive microwave data may contain some ice thickness information that can be utilized for mass balance studies. The yearly anomaly maps indicate high gains of first year ice cover in the Arctic during the last decade which means higher production of second year ice and fraction of this type in the declining perennial ice cover. While not the only cause, the rapid decline in the perennial ice cover is in part caused by the increasing fractional component of the thinner second year ice cover that is very vulnerable to total melt due to warming in the Arctic, especially in spring.
Tsao, Danika C.; Takekawa, John Y.; Woo, Isa; Yee, Julie L.; Evens, Jules G.
2009-01-01
Little is known about the movements and habitat selection of California Black Rails (Laterallus jamaicensis coturniculus) in coastal California. We captured 130 Black Rails, of which we radio-marked 48, in tidal marshes in San Francisco Bay during 2005 and 2006. Our objective was to examine their home ranges, movements, and habitat selection to improve the species' conservation. The mean fixed-kernel home range was 0.59 ha, the mean core area was 0.14 ha. Home ranges and core areas did not differ by year or site. Males had significantly larger home ranges and core areas than did females. All sites combined, Black Rails used areas with ≥94% total vegetative cover, with perennial pickleweed (Sarcocornia pacifica) the dominant plant. The rails' habitat selection varied by year and site but not by sex. A multivariate analysis of variance indicated that Black Rails selected areas with pickleweed taller and denser than average, greater cover and height of alkali bulrush (Bolboschoenus maritimus) and common saltgrass (Distichlis spicata), more stems between 20 and 30 cm above the ground, maximum vegetation height, and shorter distance to refugia. On average, Black Rails moved 27.6 ±1.8 (SE) m daily and 38.4 ± 5.5 m during extreme high tides. Understanding the California Black Rail's movements, home range, and habitat use is critical for management to benefit the species.
Thanh Noi, Phan; Kappas, Martin
2017-01-01
In previous classification studies, three non-parametric classifiers, Random Forest (RF), k-Nearest Neighbor (kNN), and Support Vector Machine (SVM), were reported as the foremost classifiers at producing high accuracies. However, only a few studies have compared the performances of these classifiers with different training sample sizes for the same remote sensing images, particularly the Sentinel-2 Multispectral Imager (MSI). In this study, we examined and compared the performances of the RF, kNN, and SVM classifiers for land use/cover classification using Sentinel-2 image data. An area of 30 × 30 km2 within the Red River Delta of Vietnam with six land use/cover types was classified using 14 different training sample sizes, including balanced and imbalanced, from 50 to over 1250 pixels/class. All classification results showed a high overall accuracy (OA) ranging from 90% to 95%. Among the three classifiers and 14 sub-datasets, SVM produced the highest OA with the least sensitivity to the training sample sizes, followed consecutively by RF and kNN. In relation to the sample size, all three classifiers showed a similar and high OA (over 93.85%) when the training sample size was large enough, i.e., greater than 750 pixels/class or representing an area of approximately 0.25% of the total study area. The high accuracy was achieved with both imbalanced and balanced datasets. PMID:29271909
Thanh Noi, Phan; Kappas, Martin
2017-12-22
In previous classification studies, three non-parametric classifiers, Random Forest (RF), k-Nearest Neighbor (kNN), and Support Vector Machine (SVM), were reported as the foremost classifiers at producing high accuracies. However, only a few studies have compared the performances of these classifiers with different training sample sizes for the same remote sensing images, particularly the Sentinel-2 Multispectral Imager (MSI). In this study, we examined and compared the performances of the RF, kNN, and SVM classifiers for land use/cover classification using Sentinel-2 image data. An area of 30 × 30 km² within the Red River Delta of Vietnam with six land use/cover types was classified using 14 different training sample sizes, including balanced and imbalanced, from 50 to over 1250 pixels/class. All classification results showed a high overall accuracy (OA) ranging from 90% to 95%. Among the three classifiers and 14 sub-datasets, SVM produced the highest OA with the least sensitivity to the training sample sizes, followed consecutively by RF and kNN. In relation to the sample size, all three classifiers showed a similar and high OA (over 93.85%) when the training sample size was large enough, i.e., greater than 750 pixels/class or representing an area of approximately 0.25% of the total study area. The high accuracy was achieved with both imbalanced and balanced datasets.
Effects of protective fencing on birds, lizards, and black-tailed hares in the Western Mojave Desert
Brooks, M.
1999-01-01
Effects of protective fencing on birds, lizards, black-tailed hares (Lepus californicus), perennial plant cover, and structural diversity of perennial plants were evaluated from spring 1994 through winter 1995 at the Desert Tortoise Research Natural Area (DTNA), in the Mojave Desert, California. Abundance and species richness of birds were higher inside than outside the DTNA, and effects were larger during breeding than wintering seasons and during a high than a low rainfall year. Ash-throated flycatchers (Myiarchus cinerascens), cactus wrens (Campylorhynchus brunneicapillus), LeConte's thrashers (Toxostoma lecontei), loggerhead shrikes (Lanius ludovicianus), sage sparrows (Amphispiza belli), and verdins (Auriparus flaviceps) were more abundant inside than outside the DTNA. Nesting activity was also more frequent inside. Total abundance and species richness of lizards and individual abundances of western whiptail lizards (Cnemidophorous tigris) and desert spiny lizards (Sceloporus magister) were higher inside than outside. In contrast, abundance of black-tailed hares was lower inside. Structural diversity of the perennial plant community did not differ due to protection, but cover was 50% higher in protected areas. Black-tailed hares generally prefer areas of low perennial plant cover, which may explain why they were more abundant outside than inside the DTNA. Habitat structure may not affect bird and lizard communities as much as availability of food at this desert site, and the greater abundance and species richness of vertebrates inside than outside the DTNA may correlate with abundances of seeds and invertebrate prey.
NASA Astrophysics Data System (ADS)
Marko, K.; Zulkarnain, F.; Kusratmoko, E.
2016-11-01
Land cover changes particular in urban catchment area has been rapidly occur. Land cover changes occur as a result of increasing demand for built-up area. Various kinds of environmental and hydrological problems e.g. floods and urban heat island can happen if the changes are uncontrolled. This study aims to predict land cover changes using coupling of Markov chains and cellular automata. One of the most rapid land cover changes is occurs at upper Ci Leungsi catchment area that located near Bekasi City and Jakarta Metropolitan Area. Markov chains has a good ability to predict the probability of change statistically while cellular automata believed as a powerful method in reading the spatial patterns of change. Temporal land cover data was obtained by remote sensing satellite imageries. In addition, this study also used multi-criteria analysis to determine which driving factor that could stimulate the changes such as proximity, elevation, and slope. Coupling of these two methods could give better prediction model rather than just using it separately. The prediction model was validated using existing 2015 land cover data and shown a satisfactory kappa coefficient. The most significant increasing land cover is built-up area from 24% to 53%.
Status of the Tunka Advanced Instrument for Cosmic Ray Physics and Gamma Astronomy (TAIGA)
NASA Astrophysics Data System (ADS)
Tkachev, L.; Astapov, I.; Bezyazeekov, P.; Borodin, A.; Brueckner, M.; Budnev, N.; Chiavassa, A.; Gress, O.; Gress, T.; Grishin, O.; Dyachok, A.; Fedorov, O.; Gafarov, A.; Grebenyuk, V.; Grinyuk, A.; Ivanova, A.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kiryuhin, S.; Kokoulin, R.; Kompaniets, K.; Korosteleva, E.; Kozhin, V.; Kravchenko, E.; Kunnas, M.; Kuzmichev, L.; Lemeshev, Yu.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoya, R.; Monkhoev, R.; Nachtigall, R.; Osipova, E.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Poleschuk, V.; Popesku, M.; Popova, E.; Porelli, A.; Postnikov, E.; Prosin, V.; Ptuskin, V.; Rjabov, E.; Rubtsov, G.; Pushnin, A.; Sabirov, B.; Sagan, Y.; Samoliga, V.; Semeney, Yu.; Silaev, A.; Silaev, A.; Sidorenkov, A.; Skurikhin, A.; Slunecka, V.; Sokolov, A.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tarashansky, B.; Tkachenko, A.; Tluczykont, M.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.; Zhurov, D.
The new TAIGA project is proposed to solve a number of fundamental problems of high- energy gamma astronomy, cosmic-ray and particle physics. The array will be located in the Tunka valley at the site of the Tunka-133 array. TAIGA will consist of wide-angle (FOV 0.6 sr) non-imaging Cherenkov optical detectors (TAIGA-HiSCORE) covering an area of up to 5 km2, and up to 16 IACTs (Imaging Atmospheric Cherenkov Telescopes) (FOV 10 × 10°) based on 9 m2 mirrors and muon detectors with a total sensitive area of 2000 m2. The current TAIGA status is presented.
A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011
Jin, Suming; Yang, Limin; Zhu, Zhe; Homer, Collin G.
2017-01-01
Monitoring and mapping land cover changes are important ways to support evaluation of the status and transition of ecosystems. The Alaska National Land Cover Database (NLCD) 2001 was the first 30-m resolution baseline land cover product of the entire state derived from circa 2001 Landsat imagery and geospatial ancillary data. We developed a comprehensive approach named AKUP11 to update Alaska NLCD from 2001 to 2011 and provide a 10-year cyclical update of the state's land cover and land cover changes. Our method is designed to characterize the main land cover changes associated with different drivers, including the conversion of forests to shrub and grassland primarily as a result of wildland fire and forest harvest, the vegetation successional processes after disturbance, and changes of surface water extent and glacier ice/snow associated with weather and climate changes. For natural vegetated areas, a component named AKUP11-VEG was developed for updating the land cover that involves four major steps: 1) identify the disturbed and successional areas using Landsat images and ancillary datasets; 2) update the land cover status for these areas using a SKILL model (System of Knowledge-based Integrated-trajectory Land cover Labeling); 3) perform decision tree classification; and 4) develop a final land cover and land cover change product through the postprocessing modeling. For water and ice/snow areas, another component named AKUP11-WIS was developed for initial land cover change detection, removal of the terrain shadow effects, and exclusion of ephemeral snow changes using a 3-year MODIS snow extent dataset from 2010 to 2012. The overall approach was tested in three pilot study areas in Alaska, with each area consisting of four Landsat image footprints. The results from the pilot study show that the overall accuracy in detecting change and no-change is 90% and the overall accuracy of the updated land cover label for 2011 is 86%. The method provided a robust, consistent, and efficient means for capturing major disturbance events and updating land cover for Alaska. The method has subsequently been applied to generate the land cover and land cover change products for the entire state of Alaska.
Experimental Performance of a Micromachined Heat Flux Sensor
NASA Technical Reports Server (NTRS)
Stefanescu, S.; DeAnna, R. G.; Mehregany, M.
1998-01-01
Steady-state and frequency response calibration of a microfabricated heat-flux sensor have been completed. This sensor is batch fabricated using standard, micromachining techniques, allowing both miniaturization and the ability to create arrays of sensors and their corresponding interconnects. Both high-frequency and spatial response is desired, so the sensors are both thin and of small cross-sectional area. Thin-film, temperature-sensitive resistors are used as the active gauge elements. Two sensor configurations are investigated: (1) a Wheatstone-bridge using four resistors; and (2) a simple, two-resistor design. In each design, one resistor (or pair) is covered by a thin layer (5000 A) thermal barrier; the other resistor (or pair) is covered by a thick (5 microns) thermal barrier. The active area of a single resistor is 360 microns by 360 microns; the total gauge area is 1.5 mm square. The resistors are made of 2000 A-thick metal; and the entire gauge is fabricated on a 25 microns-thick flexible, polyimide substrate. Heat flux through the surface changes the temperature of the resistors and produces a corresponding change in resistance. Sensors were calibrated using two radiation heat sources: (1) a furnace for steady-state, and (2) a light and chopper for frequency response.
Land use classification using texture information in ERTS-A MSS imagery
NASA Technical Reports Server (NTRS)
Haralick, R. M. (Principal Investigator); Shanmugam, K. S.; Bosley, R.
1973-01-01
The author has identified the following significant results. Preliminary digital analysis of ERTS-1 MSS imagery reveals that the textural features of the imagery are very useful for land use classification. A procedure for extracting the textural features of ERTS-1 imagery is presented and the results of a land use classification scheme based on the textural features are also presented. The land use classification algorithm using textural features was tested on a 5100 square mile area covered by part of an ERTS-1 MSS band 5 image over the California coastline. The image covering this area was blocked into 648 subimages of size 8.9 square miles each. Based on a color composite of the image set, a total of 7 land use categories were identified. These land use categories are: coastal forest, woodlands, annual grasslands, urban areas, large irrigated fields, small irrigated fields, and water. The automatic classifier was trained to identify the land use categories using only the textural characteristics of the subimages; 75 percent of the subimages were assigned correct identifications. Since texture and spectral features provide completely different kinds of information, a significant increase in identification accuracy will take place when both features are used together.
Profiling Fallow Land in California's Drought Conditions Using the Cropland Data Layer
NASA Astrophysics Data System (ADS)
Zakzeski, A.
2014-12-01
Drought conditions caused by soaring temperatures and decreasing amounts of precipitation continue to plague the particularly heavily cultivated areas of California. Research efforts from state and federal government stakeholders are ongoing to track, quantify, and forecast the impact of these changing conditions. For the State of California, beginning in 2007, the US Department of Agriculture's National Agricultural Statistics Service (NASS) annually began using remote sensing techniques to produce a geospatial agricultural land cover classification data product called the Cropland Data Layer (CDL). The CDL is produced using current farmer reported data in conjunction with satellite imagery collected during the summer growing season each year to identify the type and location of multiple categories of land cover across the state. Tracking the impact of drought conditions on agriculture in California can be done by analyzing the land cover category for fallow and idle agricultural land within the CDL. Using multiple years of CDLs, profiles are created to document the different characteristics of fallow land across the agricultural landscape including NDVI measurements, average field sizes, and total acreage amounts in each county. The fallow land profiles also detail the increasing amount of fallow land appearing in what was historically agricultural intensive areas, as well as what types of land cover are being replaced with fallow land instead of being cultivated during the growing season. Understanding the dynamic changes of fallowing land in each county helps researchers quantify the agricultural impact and assist with mitigation efforts caused by the water shortages.
Climatological determinants of woody cover in Africa.
Good, Stephen P; Caylor, Kelly K
2011-03-22
Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.
Huang, Shu-Li; Lee, Ying-Chieh; Budd, William W; Yang, Min-Chia
2012-04-01
The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed.
The Effects of Water Parameters on Monthly Seagrass Percentage Cover in Lawas, East Malaysia
Ahmad-Kamil, E. I.; Ramli, R.; Jaaman, S. A.; Bali, J.; Al-Obaidi, J. R.
2013-01-01
Seagrass is a valuable marine ecosystem engineer. However, seagrass population is declining worldwide. The lack of seagrass research in Malaysia raises questions about the status of seagrasses in the country. The seagrasses in Lawas, which is part of the coral-mangrove-seagrass complex, have never been studied in detail. In this study, we examine whether monthly changes of seagrass population in Lawas occurred. Data on estimates of seagrass percentage cover and water physicochemical parameters (pH, turbidity, salinity, temperature, and dissolved oxygen) were measured at 84 sampling stations established within the study area from June 2009 to May 2010. Meteorological data such as total rainfall, air temperature, and Southern Oscillation Index were also investigated. Our results showed that (i) the monthly changes of seagrass percentage cover are significant, (ii) the changes correlated significantly with turbidity measurements, and (iii) weather changes affected the seagrass populations. Our study indicates seagrass percentage increased during the El-Nino period. These results suggest that natural disturbances such as weather changes affect seagrass populations. Evaluation of land usage and measurements of other water physicochemical parameters (such as heavy metal, pesticides, and nutrients) should be considered to assess the health of seagrass ecosystem at the study area. PMID:24163635
Airborne Laser Swath Mapping: Improved Penetration of Dense Vegetation Opens New Applications
NASA Astrophysics Data System (ADS)
Carter, W. E.; Shrestha, R. L.; Slatton, K. C.
2009-12-01
Historically, mapping structures and terrain obscured by dense forests has been problematical, because shadows limit or prevent the use of airborne photogrammetric techniques, and ground surveying techniques are slow, labor intensive, and too costly for many applications. Airborne laser swath mapping (ALSM) units with pulse rates of a few thousand to a few tens of thousands of pulses per second typically resulted in 1 or 2 points per square meter of terrain, which worked reasonably well in sparse to moderately forested areas. For example, data collected with a 30 kHz laser, provided sufficient returns from the ground in areas covered with redwood, mixed hardwoods, and conifer forests, to create 1 to 2 meter resolution bare earth digital elevation models (DEM). These DEMs were useful in studies of forest covered landslides, terraces, and fault lines. However, in dense semi-tropical areas of Florida, with primary and secondary canopies that include dense brush such as palmetto, the DEMs were significantly degraded, and in many areas it was not possible to derive bare earth DEMs that were reliable in height to better than 0.5 to 1.0 meter. In 2007 the UF purchased a second generation Optech ALSM unit that has decimeter accuracy ranging with pulse rates of 100 to 125 kHz. Flying at 600 meters AGL, 60 meters per second, and using a scan angle of ± 20 degrees and scan rate of 40 Hz, results in about 5 laser pulses per square meter within a single swath. In April 2009 a UF team collected ALSM observations covering approximately 2000 acres at Caracol, Belize, to support archaeological studies of the ancient (650 to 900AD) Mayan city, which is largely covered with dense jungle. By overlapping adjacent swaths by 50%, and flying the project area twice with orthogonal flight lines, an accumulated data set containing approximately 20 pulses per square meter, with a distribution of incident angles was realized. The Caracol area has been under study for 25 years and traditional mapping techniques involved cutting pathways through the jungle, typically at 50 meter intervals, and using transits, electronic distance measuring instruments and total stations to map visible features. Without completely clearing the vegetation, it was difficult for ground surveyors to identify and map all of the pertinent features, and preliminary analysis suggest that the ALSM data display areas of previously unmapped mounded settlement, as well as subtle features in the terrain, including shallow agricultural terraces. The ability to map structures and terrain in areas covered with semi-tropical and tropical forests and jungles opens new opportunities for archaeological studies, and promises to impact geological and geophysical studies in these difficult to map regions as well.
Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD)
Hansen, M.C.; Egorov, Alexey; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Turubanova, S.A.; Roy, David P.; Goetz, S.J.; Loveland, Thomas R.; Ju, J.; Kommareddy, A.; Kovalskyy, Valeriy; Forsyth, C.; Bents, T.
2014-01-01
Forest cover loss and bare ground gain from 2006 to 2010 for the conterminous United States (CONUS) were quantified at a 30 m spatial resolution using Web-Enabled Landsat Data available from the USGS Center for Earth Resources Observation and Science (EROS) (http://landsat.usgs.gov/WELD.php). The approach related multi-temporal WELD metrics and expert-derived training data for forest cover loss and bare ground gain through a decision tree classification algorithm. Forest cover loss was reported at state and ecoregional scales, and the identification of core forests' absent of change was made and verified using LiDAR data from the GLAS (Geoscience Laser Altimetry System) instrument. Bare ground gain correlated with population change for large metropolitan statistical areas (MSAs) outside of desert or semi-desert environments. GoogleEarth™ time-series images were used to validate the products. Mapped forest cover loss totaled 53,084 km2 and was found to be depicted conservatively, with a user's accuracy of 78% and a producer's accuracy of 68%. Excluding errors of adjacency, user's and producer's accuracies rose to 93% and 89%, respectively. Mapped bare ground gain equaled 5974 km2 and nearly matched the estimated area from the reference (GoogleEarth™) classification; however, user's (42%) and producer's (49%) accuracies were much less than those of the forest cover loss product. Excluding errors of adjacency, user's and producer's accuracies rose to 62% and 75%, respectively. Compared to recent 2001–2006 USGS National Land Cover Database validation data for forest loss (82% and 30% for respective user's and producer's accuracies) and urban gain (72% and 18% for respective user's and producer's accuracies), results using a single CONUS-scale model with WELD data are promising and point to the potential for national-scale operational mapping of key land cover transitions. However, validation results highlighted limitations, some of which can be addressed by improving training data, creating a more robust image feature space, adding contemporaneous Landsat 5 data to the inputs, and modifying definition sets to account for differences in temporal and spatial observational scales. The presented land cover extent and change data are available via the official WELD website (ftp://weldftp.cr.usgs.gov/CONUS_5Y_LandCover/ftp://weldftp.cr.usgs.gov/CONUS_5Y_LandCover/).
NASA Astrophysics Data System (ADS)
Baharuddin, M. F. T.; Masirin, M. I. M.; Hazreek, Z. A. M.; Azman, M. A. A.; Madun, A.
2018-04-01
Groundwater suitability for water supply and agriculture in an island coastal area may easily be influenced by seawater intrusion. The aim of this study was to investigate seawater intrusion to the suitability of the groundwater for water supply and oil palm cultivation on Carey Island in Malaysia. This is the first study that used integrated method of geo-electrical resistivity and hydrogeochemical methods to investigate seawater intrusion to the suitability of groundwater for water supply and oil palm cultivation at two different surface elevation and land cover. The relationship between earth resistivity, total dissolved solids and earth conductivity was derived with water type classifications and crop suitability classification according to salinity, used to identify water types and also oil palm tolerance to salinity. Results from the contour resistivity and conductivity maps showed that the area facing severe coastal erosion (east area) exhibited unsuitable groundwater condition for water supply and oil palm at the unconfined aquifer thickness of 7.8 m and 14.1 m, respectively. Comparing to the area that are still intact with mangrove (west area), at the same depth, groundwater condition exhibits suitable usage for both socioeconomic activities. Different characteristics of surface elevation and land cover are paramount factors influencing saltwater distribution at the west and east area. By the end of the twenty-first century there will no longer be suitable water for supply and oil palm plantation based on the local sea-level rise prediction and Ghyben–Herzberg assumption (sharp interface), focusing on the severe erosion area of the study site.
Veech, Joseph A.; Pardieck, Keith L.; Ziolkowski, David
2017-01-01
The occurrence of birds in a survey unit is partly determined by the habitat present. Moreover, some bird species preferentially avoid some land cover types and are attracted to others. As such, land cover composition within the 400 m survey areas along a Breeding Bird Survey (BBS) route clearly influences the species available to be detected. Ideally, to extend survey results to the larger landscape, land cover composition within the survey area should be similar to that at larger spatial extents defining the landscape. Such representativeness helps minimize possible roadside effects (bias), here defined as differences in bird species composition and abundance along a roadside as compared to a larger surrounding landscape. We used land cover data from the 2011 National Land Cover Database to examine representativeness of land cover composition along routes. Using ArcGIS, the percentages of each of 15 land cover types within 400 m buffers along 2,696 U.S. BBS routes were calculated and compared to percentages in 2 km, 5 km, and 10 km buffers surrounding each route. This assessment revealed that aquatic cover types and highly urbanized land tend to be slightly underrepresented in the survey areas. Two anthropogenic cover types (pasture/hay and cropland) may be slightly overrepresented in the survey areas. Over all cover types, 92% of the 2,696 routes exhibited “good” representativeness, with <5 percentage points per cover type difference in proportional cover between the 400 m and 10 km buffers. This assessment further supports previous research indicating that any land-cover-based roadside bias in the bird data of the BBS is likely minimal.
Four-Tap RF Canceller Evaluation for Indoor In-Band Full-Duplex Wireless Operation
2016-07-24
2.45 GHz with +20 dBm of total output power . This waveform and power level are representative of many handheld wireless devices that can be used for...to investigate a canceller’s performance with higher transmit power levels that are characteristic of wireless nodes that cover larger areas. Fig. 5...Four-Tap RF Canceller Evaluation for Indoor In-Band Full-Duplex Wireless Operation Kenneth E. Kolodziej and Bradley T. Perry MIT Lincoln Laboratory
Mapping Fire Scars in the Brazilian Cerrado Using AVHRR Imagery
NASA Technical Reports Server (NTRS)
Hlavka, C. A.; Ambrosia, V. G.; Brass, J. A.; Rezendez, A.; Alexander, S.; Guild, L. S.; Peterson, David L. (Technical Monitor)
1995-01-01
The Brazilian cerrado, or savanna, spans an area of 1,800,000 square kilometers on the great plateau of Central Brazil. Large fires covering hundreds of square kilometers, frequently occur in wildland areas of the cerrado, dominated by grasslands or grasslands mixed with shrubs and small trees, and also within area in the cerrado used for agricultural purposes, particularly for grazing. Smaller fires, typically extending over arm of a few square kilometers or less, are associated with the clewing of crops, such as dry land rice. A method for mapping fire scars and differentiating them from extensive areas of bare sod with AVHRR bands 1 (.55 -.68 micrometer) and 3 (3.5 - 3.9 micrometers) and measures of performance based on comparison with maps of fires with Landsat imagery will be presented. Methods of estimating total area burned from the AVHRR fire scar map will be discussed and related to land use and scar size.
Abrahamsson, Peter; Isaksson, Sten; Andersson, Gunilla
2011-11-01
To evaluate the space-maintaining capacity of titanium mesh covered by a collagen membrane after soft tissue expansion on the lateral border of the mandible in rabbits, and to assess bone quantity and quality using autogenous particulate bone or bone-substitute (Bio-Oss(®) ), and if soft tissue ingrowth can be avoided by covering the mesh with a collagen membrane. In 11 rabbits, a self-inflatable soft tissue expander was placed under the lateral mandibular periosteum via an extra-oral approach. After 2 weeks, the expanders were removed and a particulated onlay bone graft and deproteinized bovine bone mineral (DBBM) (Bio-Oss(®) ) were placed in the expanded area and covered by a titanium mesh. The bone and DBBM were separated in two compartments under the mesh with a collagen membrane in between. The mesh was then covered with a collagen membrane. After 3 months, the animals were sacrificed and specimens were collected for histology. The osmotic soft tissue expander created a subperiosteal pocket and a ridge of new bone formed at the edges of the expanded periosteum in all sites. After the healing period of 3 months, no soft tissue dehiscence was recorded. The mean bone fill was 58.1±18% in the bone grafted area and 56.9±13.7% in the DBBM area. There was no significant difference between the autologous bone graft and the DDBM under the titanium mesh with regard to the total bone area or the mineralized bone area. Scanning electron microscopy showed that new bone was growing in direct contact with the DBBM particles and the titanium mesh. There is a soft tissue ingrowth even after soft tissue expansion and protection of the titanium mesh with a collagen membrane. This study confirms that an osmotic soft tissue expander creates a surplus of periosteum and soft tissue, and that new bone can subsequently be generated under a titanium mesh with the use of an autologous bone graft or DBBM. © 2011 John Wiley & Sons A/S.
Large Area Crop Inventory Experiment (LACIE). Phase 1: Evaluation report
NASA Technical Reports Server (NTRS)
1976-01-01
It appears that the Large Area Crop Inventory Experiment over the Great Plains, can with a reasonable expectation, be a satisfactory component of a 90/90 production estimator. The area estimator produced more accurate area estimates for the total winter wheat region than for the mixed spring and winter wheat region of the northern Great Plains. The accuracy does appear to degrade somewhat in regions of marginal agriculture where there are small fields and abundant confusion crops. However, it would appear that these regions tend also to be marginal with respect to wheat production and thus increased area estimation errors do not greatly influence the overall production estimation accuracy in the United States. The loss of segments resulting from cloud cover appears to be a random phenomenon that introduces no significant bias into the estimates. This loss does increase the variance of the estimates.
The effect of a paraffin screen on the neutron dose at the maze door of a 15 MV linear accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krmar, M.; Kuzmanović, A.; Nikolić, D.
2013-08-15
Purpose: The purpose of this study was to explore the effects of a paraffin screen located at various positions in the maze on the neutron dose equivalent at the maze door.Methods: The neutron dose equivalent was measured at the maze door of a room containing a 15 MV linear accelerator for x-ray therapy. Measurements were performed for several positions of the paraffin screen covering only 27.5% of the cross-sectional area of the maze. The neutron dose equivalent was also measured at all screen positions. Two simple models of the neutron source were considered in which the first assumed that themore » source was the cross-sectional area at the inner entrance of the maze, radiating neutrons in an isotropic manner. In the second model the reduction in the neutron dose equivalent at the maze door due to the paraffin screen was considered to be a function of the mean values of the neutron fluence and energy at the screen.Results: The results of this study indicate that the equivalent dose at the maze door was reduced by a factor of 3 through the use of a paraffin screen that was placed inside the maze. It was also determined that the contributions to the dosage from areas that were not covered by the paraffin screen as viewed from the dosimeter, were 2.5 times higher than the contributions from the covered areas. This study also concluded that the contributions of the maze walls, ceiling, and floor to the total neutron dose equivalent were an order of magnitude lower than those from the surface at the far end of the maze.Conclusions: This study demonstrated that a paraffin screen could be used to reduce the neutron dose equivalent at the maze door by a factor of 3. This paper also found that the reduction of the neutron dose equivalent was a linear function of the area covered by the maze screen and that the decrease in the dose at the maze door could be modeled as an exponential function of the product φ·E at the screen.« less
Subsurface Investigation of the Neogene Mygdonian Basin, Greece Using Magnetic Data
NASA Astrophysics Data System (ADS)
Ibraheem, Ismael M.; Gurk, Marcus; Tougiannidis, Nikolaos; Tezkan, Bülent
2018-02-01
A high-resolution ground and marine magnetic survey was executed to determine the structure of the subsurface and the thickness of the sedimentary cover in the Mygdonian Basin. A spacing of approximately 250 m or 500 m between measurement stations was selected to cover an area of 15 km × 22 km. Edge detectors such as total horizontal derivative (THDR), analytic signal (AS), tilt derivative (TDR), enhanced total horizontal gradient of tilt derivative (ETHDR) were applied to map the subsurface structure. Depth was estimated by power spectrum analysis, tilt derivative, source parameter imaging (SPI), and 2D-forward modeling techniques. Spectral analysis and SPI suggest a depth to the basement ranging from near surface to 600 m. For some selected locations, depth was also calculated using the TDR technique suggesting depths from 160 to 400 m. 2D forward magnetic modeling using existing boreholes as constraints was carried out along four selected profiles and confirmed the presence of alternative horsts and grabens formed by parallel normal faults. The dominant structural trends inferred from THDR, AS, TDR, and ETHDR are N-S, NW-SE, NE-SW and E-W. This corresponds with the known structural trends in the area. Finally, a detailed structural map showing the magnetic blocks and the structural architecture of the Mygdonian Basin was drawn up by collating all of the results.
Ramachandran, Andimuthu; Radhapriya, Parthasarathy; Jayakumar, Shanmuganathan; Dhanya, Praveen; Geetha, Rajadurai
2016-01-01
India has one of the largest assemblages of tropical biodiversity, with its unique floristic composition of endemic species. However, current forest cover assessment is performed via satellite-based forest surveys, which have many limitations. The present study, which was performed in the Eastern Ghats, analysed the satellite-based inventory provided by forest surveys and inferred from the results that this process no longer provides adequate information for quantifying forest degradation in an empirical manner. The study analysed 21 soil properties and generated a forest soil quality index of the Eastern Ghats, using principal component analysis. Using matrix modules and geospatial technology, we compared the forest degradation status calculated from satellite-based forest surveys with the degradation status calculated from the forest soil quality index. The Forest Survey of India classified about 1.8% of the Eastern Ghats’ total area as degraded forests and the remainder (98.2%) as open, dense, and very dense forests, whereas the soil quality index results found that about 42.4% of the total area is degraded, with the remainder (57.6%) being non-degraded. Our ground truth verification analyses indicate that the forest soil quality index along with the forest cover density data from the Forest Survey of India are ideal tools for evaluating forest degradation. PMID:26812397
Connecting people with ecosystems in the 21st century: an assessment of our nation's urban forests.
John F. Dwyer; David J. Nowak; Mary Heather Noble; Susan M. Sisinni
2000-01-01
Urban areas (cities, towns, villages, etc.) cover 3.5 percent of the 48 conterminous states and contain more than 75 percent of the population. urban areas, about 3.8 billion trees cover 27.1 percent of the land. On a broader scale, metropolitan areas (urban counties) cover 24.5 percent of the conterminous United States and contain 74.4 billion trees that cover 33.4...
Phosmet residues in an orchard and adjacent recreational area.
MacNeil, J D; Hikichi, M
1986-10-01
Two cover sprays of phosmet were applied to an orchard adjoining a camping area and a bird sanctuary with a resident goose population. Insecticide residues were monitored on orchard leaves, orchard ground cover, ground cover in the camp-site and along the adjacent lakeshore. Despite attempts to minimize drift, significant spray residues were found outside the target area. Residues on ground cover and leaves were reduced by sprinkler irrigation subsequent to spray application.
Undeveloped green space and free-time physical activity in 11 to 13-year-old children.
Janssen, Ian; Rosu, Andrei
2015-02-21
Research on the association between the physical environment and physical activity in children has focused on built and developed features or total green space. The impact of natural, undeveloped green spaces is unknown. The objective of this study was to determine whether the presence of undeveloped green spaces in the home neighborhood are associated with physical activity in 11 to 13-year-olds. This was a cross-sectional study of grade 6 to 8 urban residing Canadian students who participated in the 2009/10 Health Behaviour in School-Aged Children survey. Children self-reported the frequency they participated in physical activity in their free-time outside of school hours. Geographic Information Systems (GIS) were used to assess the proportion of land area within 1 km of participants' homes that was devoted to publicly accessible meadows (i.e., field vegetated primarily by grass and other non-woody plants) and treed areas (i.e., field vegetated primarily by trees and shrubs). Ordinal logistic regression models were used to examine the relationships between the undeveloped green space areas and free-time physical activity. Several intrapersonal, family, and neighborhood environment factors were controlled for in these regression models. The proportion of neighborhood land covered by meadows was not associated with the physical activity outcome (p > 0.6). However, the proportion of neighborhood land covered by treed areas was independently associated with the physical activity outcome (p = 0.02). For each additional 5% increase in the proportion of neighborhood land covered by treed areas there was a corresponding 5% increase (95% confidence interval: 1-10% increase) in the relative odds of increasing free-time physical activity outside of school hours. The physical activity levels of 11 to 13-year-old children was associated with the amount of space in their home neighborhood devoted to treed areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.D.; Beley, J.R.; Ditsworth, T.M.
1983-03-01
At a site about 16 km south of Black Canyon City, Arizona, density of arthropods on an undisturbed plot after an access road was built for powerline construction was much greater than on a disturbed plot. Mites, springtails, leafhoppers, scale insects, ants and thrips were significantly reduced on the disturbed area. Diversity increased on the disturbed plot after construction, but density decreased. A slight increase in similarity (H', Clambda) of the arthropod communities of the two plots appears to be related to the modest increase in cover on the disturbed area. Globe-mallow, goosefoot and a four-o'clock were pioneer species andmore » occurred only on the disturbed area. There was a significant reduction in cover of all plant species on the disturbed plot after construction, but there was a steady increase of annual forbs at the end of the study. The results indicate that restoration of numbers of arthropods on the disturbed area is dependent on the total plant cover on the plot, apparently regardless of the composition of the plant species involved. It is obvious in this area that the plant communities will remain dissimilar, with the pioneering herbaceous plants on the disturbed plot dominating. Construction of a powerline apparently has had little impact on the structure of the arthropod community on the disturbed area, as proportions of three trophic categories of arthropods have not been radically altered. The results of this study, when compared to other studies in the Sonoran Desert and in desert grasslands disturbed by powerline construction, indicate that lengthy secondary succession does occur in the Sonoran Desert. Early arthropod invaders were found to be mainly herbivores, with few parasites or predators, and an equilibrium was eventually reached between colonizers and space requirements. 35 references, 3 figures, 3 tables« less
NASA Astrophysics Data System (ADS)
Molinario, G.; Hansen, M. C.; Potapov, P. V.
2015-09-01
Shifting cultivation has traditionally been practiced in the Democratic Republic of Congo by carving agricultural fields out of primary and secondary forest, resulting in the rural complex: a characteristic land cover mosaic of roads, villages, active and fallow fields and secondary forest. Forest clearing has varying impacts depending on where it occurs relative to this area: whether inside it, along its primary forest interface, or in more isolated primary forest areas. The spatial contextualization of forest cover loss is therefore necessary to understand its impacts and plan its management. We characterized forest clearing using spatial models in a Geographical Information System, applying morphological image processing to the Forets d’Afrique Central Evaluee par Teledetection product. This process allowed us to create forest fragmentation maps for 2000, 2005 and 2010, classifying previously homogenous primary forest into separate patch, edge, perforated, fragmented and core forest subtypes. Subsequently we used spatial rules to map the established rural complex separately from isolated forest perforations, tracking the growth of these areas in time. Results confirm that the expansion of the rural complex and forest perforations has high variance throughout the country, with consequent differences in local impacts on forest ecology and habitat fragmentation. Between 2000 and 2010 the rural complex grew by 10.2% (46 182 ha), increasing from 11.9% to 13.1% of the total land area (1.2% change) while perforated forest grew by 74.4% (23 856 ha), from 0.8% to 1.5%. Core forest decreased by 3.8% (54 852 ha), from 38% to 36.6% of the 2010 land area. Of particular concern is the nearly doubling of perforated forest, a land dynamic that represents greater spatial intrusion of forest clearing within core forest areas and a move away from the established rural complex.
Hollyday, E.F.; Sauer, S.P.
1976-01-01
Land-cover information is needed to select subbasins within the New River basin, Tennessee, for the study of hydrologic processes and also is needed to transfer study results to other sites affected by coal mining. It was believed that data recorded by the first Earth Resources Technology Satellite (Landsat-1) could be processed to yield the needed land-cover information. This study demonstrates that digital computer processing of the spectral information contained in each picture element (pixel) of 1.1 acres (4,500 m2) can produce maps and tables of the areal extent of selected land-cover categories.The distribution of water, rock, agricultural areas, evergreens, bare earth, hardwoods, and uncategorized areas, is portrayed on a map of the entire New River basin (1:62,500 scale) and on 15 quadrangles (1:24,000 scale). Although some categories are a mixture of land-cover types, they portray the predominant component named. Tables quantify the area of each category and indicate that agriculture covers 5 percent of the basin, evergreens cover 7 percent, bare earth covers 6 percent, three categories of hardwoods cover 81 percent, and water, rock, and uncategorized areas each cover less than 1 percent of the basin.
NASA Astrophysics Data System (ADS)
Takarada, Shinji; Oikawa, Teruki; Furukawa, Ryuta; Hoshizumi, Hideo; Itoh, Jun'ichi; Geshi, Nobuo; Miyagi, Isoji
2016-08-01
The total mass discharged by the phreatic eruption of Ontake Volcano, central Japan, on September 27, 2014, was estimated using several methods. The estimated discharged mass was 1.2 × 106 t (segment integration method), 8.9 × 105 t (Pyle's exponential method), and varied from 8.6 × 103 to 2.5 × 106 t (Hayakawa's single isopach method). The segment integration and Pyle's exponential methods gave similar values. The single isopach method, however, gave a wide range of results depending on which contour was used. Therefore, the total discharged mass of the 2014 eruption is estimated at between 8.9 × 105 and 1.2 × 106 t. More than 90 % of the total mass accumulated within the proximal area. This shows how important it is to include a proximal area field survey for the total mass estimation of phreatic eruptions. A detailed isopleth mass distribution map was prepared covering as far as 85 km from the source. The main ash-fall dispersal was ENE in the proximal and medial areas and E in the distal area. The secondary distribution lobes also extended to the S and NW proximally, reflecting the effects of elutriation ash and surge deposits from pyroclastic density currents during the phreatic eruption. The total discharged mass of the 1979 phreatic eruption was also calculated for comparison. The resulting volume of 1.9 × 106 t (using the segment integration method) indicates that it was about 1.6-2.1 times larger than the 2014 eruption. The estimated average discharged mass flux rate of the 2014 eruption was 1.7 × 108 kg/h and for the 1979 eruption was 1.0 × 108 kg/h. One of the possible reasons for the higher flux rate of the 2014 eruption is the occurrence of pyroclastic density currents at the summit area.
Ruiz-Fernández, Jesús; Oliva, Marc; García-Hernández, Cristina
2017-06-01
This article focuses on the spatial distribution of vegetation formations in Elephant Point, an ice-free area of 1.16km 2 located in Livingston Island (South Shetland Islands, Antarctica). Fieldwork carried out in January 2014 consisted of floristic surveys and designation of a vegetation map. We have examined these data in a GIS environment together with topographical and geomorphological features existing in the peninsula in order to infer the factors controlling vegetation distribution. This has allowed quantifying the total area covered by the four different vegetation formations distributed across the peninsula, proliferating mainly on bedrock plateaus and Holocene raised beaches. Grass formation is essentially composed of Deschampsia antarctica, distributed almost exclusively on raised beaches, and covering 4.1% of the ice-free surface. The remaining three formations are fundamentally composed of cryptogam species. The first of which is fruticose lichen and moss formation, present on high bedrock plateaus and principally formed by lichens such as Usnea aurantiaco-atra. The next is the crustose lichen formation, spreading on bedrock plateaus near the coast populated by bird colonies. In this case, ornitocoprophilous lichens such as Caloplaca regalis, Xanthoria elegans and Haematomma erythromma are predominant. Together, both formations have colonised 5.1% of the peninsula. The last variety, moss carpet and moss cushion formation, occupies 1.4% of the deglaciated surface, spreading primarily in flooded areas, stabilised talus slopes, and bedrock plateaus as well. Therefore, the total surface colonised by vegetation is 12.2ha, which comprises 10.5% of the peninsula. Due to the retreat of the Rotch Dome glacier, 20.1ha remain ice-free since 1956 (17.3% of the deglaciated area). Ever since, even though the Antarctic Peninsula has registered one of the most significant temperature rises on Earth, vegetation has only colonised 0.04ha of this new space, which merely represents 0.3% of the vegetated area in Elephant Point. Copyright © 2017 Elsevier B.V. All rights reserved.
Potential solar radiation and land cover contributions to digital climate surface modeling
NASA Astrophysics Data System (ADS)
Puig, Pol; Batalla, Meritxell; Pesquer, Lluís; Ninyerola, Miquel
2016-04-01
Overview: We have designed a series of ad-hoc experiments to study the role of factors that a priori have a strong weight in developing digital models of temperature and precipitation, such as solar radiation and land cover. Empirical test beds have been designed to improve climate (mean air temperature and total precipitation) digital models using statistical general techniques (multiple regression) with residual correction (interpolated with inverse weighting distance). Aim: Understand what roles these two factors (solar radiation and land cover) play to incorporate them into the process of generating mapping of temperature and rainfall. Study area: The Iberian Peninsula and supported in this, Catalonia and the Catalan Pyrenees. Data: The dependent variables used in all experiments relate to data from meteorological stations precipitation (PL), mean temperature (MT), average temperature minimum (MN) and maximum average temperature (MX). These data were obtained monthly from the AEMET (Agencia Estatal de Meteorología). Data series of stations covers the period between 1950 to 2010. Methodology: The idea is to design ad hoc, based on a sample of more equitable space statistician, to detect the role of radiation. Based on the influence of solar radiation on the temperature of the air from a quantitative point of view, the difficulty in answering this lies in the fact that there are lots of weather stations located in areas where solar radiation is similar. This suggests that the role of the radiation variable remains "off" when, instead, we intuitively think that would strongly influence the temperature. We have developed a multiple regression analysis between these meteorological variables as the dependent ones (Temperature and rainfall), and some geographical variables: altitude (ALT), latitude (LAT), continentality (CON) and solar radiation (RAD) as the independent ones. In case of the experiment with land covers, we have used the NDVI index as a proxy of land covers and added this variable in to the independents to improve the models. Results: The role of solar radiation does not improve models only under certain conditions and areas, especially in the Pyrennes. The vegetation index NDVI and therefore the land cover on which the station is located, helps improve rainfall and temperature patterns, obtaining various degrees of improvement in terms of molded variables and months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demchenko, V.S.; Filipov, V.I.; Semenyuk, V.I.
This article shows how the protective properties of preservative greases and oils can be determined by using an index which characterizes the kinetics of the corrosion processes on the metal surface under the layer of the lubricant. The index takes into account the actual time of existence of the corrosion products (from the moment of their appearance to the end of the test) and the actual area of the metal test specimens occupied by these products. In order to compare the proposed index to the indexes being used, the protective properties of aviation oil MS-20s, industrial oils I-12A and I-50A,more » and spindle oil AU, to which oil-soluble corrosion inhibitors were added, are examined. The mean rate of spreading of initial corrosion (referred to the total test time of 60 days) and the mean rate of corrosion (the total metal weight loss divided by the total surface area of the metal panel and the total test time) are calculated. It is concluded that in order to improve the reliability of protection ratings of preservative oils and greases, it is preferable to determine the rate of spreading of corrosion damage, the metal panel weight loss, and the increase in depth of the corrosion with allowance for the actual time of existence of corrosion (from the moment of appearance to the end of the test) and the actual area covered by the corrosion products. Includes a table.« less
Sponge epibionts on ecosystem-engineering ascidians: The case of Microcosmus sabatieri
NASA Astrophysics Data System (ADS)
Voultsiadou, Eleni; Kyrodimou, Marianthi; Antoniadou, Chryssanthi; Vafidis, Dimitris
2010-03-01
The study of epibionts on habitat engineering ascidians is of increasing interest because changes in the population structure of the latter may affect associated communities, especially in the case of commercially exploited species. The solitary ascidian Microcosmus sabatieri lives on rocky cliffs in the Eastern Mediterranean and is harvested in certain Aegean areas. Its hard, wrinkled tunic is usually fouled by various epibionts both sessile and motile. Sponges are an important component of this complex and their biomass may be higher than that of the ascidian itself, strongly affecting diversity and abundance of the motile epifauna. The aim of this study was to examine in detail the structure of the epibiotic sponge assemblage on ascidians collected from their main fishing grounds in the South Aegean Sea. A rich (41 species) and taxonomically diverse sponge assemblage was found, while only eight species contributed 80% of the total sponge cover. Most of the epibiotic sponges commonly grow on the surrounding sublittoral cliffs. The encrusting sponge growth form prevailed in cover of the ascidian tunic, while two massive species dominated in terms of frequency of appearance and abundance. Ascidian dimensions, weight and volume were significantly correlated with sponge diversity, abundance and cover area, thus structuring the epibiotic sponge assemblage. Spatial patterns in sponge cover were not clear, but a general declining NW to SE trend in sponge richness, abundance and cover appeared in accordance with previous records. Sponge distribution on the ascidian tunic presented a clear pattern related with characteristic features of the ascidian: the posterior zone supported the richest and most expansive sponge fauna. The ecosystem-engineering process performed by the ascidian is enhanced by the diverse epibiotic sponge assemblage, thus further increasing habitat complexity in this space-limited, temperate, sublittoral, rocky environment.
Early vegetational changes on a forested wetland constructed for mitigation
Perry, M.C.; Osenton, P.C.; Sibrel, C.B.
1997-01-01
Changes in vegetation were studied on 15 acres of a 35 acre forested wetland created as a mitigation site in Anne Arundel County, Maryland during 1994-96. Meter-square sampling on four different hydrologic elevations determined that grasses initially dominated the area, but decreased from 59 percent in 1994 to 51 percent in 1995 and 30 percent in 1996. Herbaceous non-grass plants (forbs) increased from 19 percent to 56 percent in the three-year period. Area with no plant cover decreased from 21 percent in 1994 to 11 percent in 1995, and 10 percent in 1996. Woody plants comprised 2 percent of the cover in 1994, increased to 4 percent in 1995, and remained at 4 percent in 1996. The increase of woody plants was mainly from natural regeneration (pioneer) plants. Monitoring of the transplanted trees and shrubs indicated 35 percent mortality and little growth of surviving plants. The pioneer woody plant forming most of the cover was black willow (Salix nigra). Differences in the vegetation were observed among the four elevations, although no differences were observed for the major vegetation classes between plots that were planted and those that were not planted with woody plants. Dominant grass species was redtop (Agrostis stolonifera), which comprised 51 percent of the cover in 1994 and 42 percent cover in 1995 and 23 percent in 1996. Other species that were common were bush clover (Lespedeza cuneata), Japanese clover (Lespedeza striata) and flat pea (Lathyrus sylvestris). All four of these dominant species were part of the original seed mixtures that were seeded on the site. A total of 134 species of plants was recorded on the site indicating a fairly diverse community for a newly established habitat.
Estimation of the spatiotemporal dynamics of snow covered area by using cellular automata models
NASA Astrophysics Data System (ADS)
Pardo-Igúzquiza, Eulogio; Collados-Lara, Antonio-Juan; Pulido-Velazquez, David
2017-07-01
Given the need to consider the cryosphere in water resources management for mountainous regions, the purpose of this paper is to model the daily spatially distributed dynamics of snow covered area (SCA) by using calibrated cellular automata models. For the operational use of the calibrated model, the only data requirements are the altitude of each cell of the spatial discretization of the area of interest and precipitation and temperature indexes for the area of interest. For the calibration step, experimental snow covered area data are needed. Potential uses of the model are to estimate the snow covered area when satellite data are absent, or when they provide a temporal resolution different from the operational resolution, or when the satellite images are useless because they are covered by clouds or because there has been a sensor failure. Another interesting application is the simulation of SCA dynamics for the snow covered area under future climatic scenarios. The model is applied to the Sierra Nevada mountain range, in southern Spain, which is home to significant biodiversity, contains important water resources in its snowpack, and contains the most meridional ski resort in Europe.
Williams, Richard S.; Ferrigno, Jane G.
2010-01-01
This chapter is the ninth to be released in U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World, a series of 11 chapters. In each of the geographic area chapters, remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, are used to analyze the specific glacierized region of our planet under consideration and to monitor glacier changes. Landsat images, acquired primarily during the middle to late 1970s and early 1980s, were used by an international team of glaciologists and other scientists to study various geographic regions and (or) to discuss related glaciological topics. In each glacierized geographic region, the present areal distribution of glaciers is compared, wherever possible, with historical information about their past extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of a growing international scientific effort to measure global environmental change on the Earth?s surface. The chapter is divided into seven geographic parts and one topical part: Glaciers of the Former Soviet Union (F-1), Glaciers of China (F-2), Glaciers of Afghanistan (F?3), Glaciers of Pakistan (F-4), Glaciers of India (F-5), Glaciers of Nepal (F?6), Glaciers of Bhutan (F-7), and the Paleoenvironmental Record Preserved in Middle-Latitude, High-Mountain Glaciers (F-8). Each geographic section describes the glacier extent during the 1970s and 1980s, the benchmark time period (1972-1981) of this volume, but has been updated to include more recent information. Glaciers of the Former Soviet Union are located in the Russian Arctic and various mountain ranges of Russia and the Republics of Georgia, Kyrgyzstan, Tajikistan, and Kazakstun. The Glacier Inventory of the USSR and the World Atlas of Ice and Snow Resources recorded a total of 28,881 glaciers covering an area of 78,938 square kilometers (km2). China includes many of the mountain-glacier systems of the world including the Himalaya, Karakorum, Tien Shan and Altay mountain ranges. The glaciers are widely scattered and cover an area of about 59,425 km2. The mountain glaciers may be classified as maritime, subcontinental or extreme continental. In Afghanistan, more than 3,000 small glaciers occur in the Hindu Kush and Pamir mountains. Most glaciers occur on north-facing slopes shaded by mountain peaks and on east and southeast slopes that are shaded by monsoon clouds. The glaciers provide vital water resources to the region and cover an area of about 2,700 km2. Glaciers of northern Pakistan are some of the largest and longest mid-latitude glaciers on Earth. They are located in the Hindu Kush, Himalaya, and Karakoram mountains and cover an area of about 15,000 km2. Glaciers here are important for their role in providing water resources and their hazard potential. The glaciers in India are located in the Himalaya and cover about 8,500 km2. The Himalaya contains one of the largest reservoirs of snow and ice outside the polar regions. The glaciers are a major source of fresh water and supply meltwater to all the rivers in northern India, thereby affecting the quality of life of millions of people. In Nepal, the glaciers are located in the Himalaya as individual glaciers; the glacierized area covers about 5,324 km2. The region is the highest mountainous region on Earth and includes the Mt. Everest region. Glaciers in the Bhutan Himalaya have a total area of about 1,317 km2. Many recent glacier studies are focused on glacier lakes that have the potential of generating dangerous glacier lake outburst floods. Research on the glaciers of the middle-latitude, high-mountain glaciers of Asia has also focused on the information contained in the ice cores from the glaciers. This information helps in the reconstruction of paleoclimatic records, and the computer modeling of global climate change.
NASA Astrophysics Data System (ADS)
Liu, Yibo; Ju, Weimin; He, Honglin; Wang, Shaoqiang; Sun, Rui; Zhang, Yuandong
2013-03-01
Net primary productivity (NPP) is an important component of the terrestrial carbon cycle. Accurately mapping the spatial-temporal variations of NPP in China is crucial for global carbon cycling study. In this study the process-based Boreal Ecosystem Productivity Simulator (BEPS) was employed to study the changes of NPP in China's ecosystems for the period from 2000 to 2010. The BEPS model was first validated using gross primary productivity (GPP) measured at typical flux sites and forest NPP measured at different regions. Then it was driven with leaf area index (LAI) inversed from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance and land cover products and meteorological data interpolated from observations at 753 national basic meteorological stations to simulate NPP at daily time steps and a spatial resolution of 500 m from January 1, 2000 to December 31, 2010. Validations show that BEPS is able to capture the seasonal variations of tower-based GPP and the spatial variability of forest NPP in different regions of China. Estimated national total of annual NPP varied from 2.63 to 2.84Pg C·yr-1, averaging 2.74 Pg C·yr-1 during the study period. Simulated terrestrial NPP shows spatial patterns decreasing from the east to the west and from the south to the north, in association with land cover types and climate. South-west China makes the largest contribution to the national total of NPP while NPP in the North-west account for only 3.97% of the national total. During the recent 11 years, the temporal changes of NPP were heterogamous. NPP increased in 63.8% of China's landmass, mainly in areas north of the Yangtze River and decreased in most areas of southern China, owing to the low temperature freezing in early 2008 and the severe drought in late 2009.
Classification and Mapping of Agricultural Land for National Water-Quality Assessment
Gilliom, Robert J.; Thelin, Gail P.
1997-01-01
Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at smaller scales using locally available data.
Land Use Cover Changes and Run Off Potention of Cipunten Agung Watershed Banten
NASA Astrophysics Data System (ADS)
Karima, A.; Kaswanto, R. L.
2017-10-01
The changes of landscape form such as Land Use Cover Changes (LUCC) of Cipunten Agung watershed could be identified periodically in 1995, 2005, and 2015. In general, land utilization in Cipunten Agung classified into protected region and cultivated region. In 2011, total of protected area is 885.80 ha or 22.54% of watershed area. Those conditions affected both positively to the community development and negatively to the water quantity condition in Cipunten Agung such as flooding, run off, and erosion. Therefore, the purpose of this research is to analyze LUCC impacts to run off potential in Cipunten Agung watershed. Supervised classification method and Soil Conservation Services (Qscs) approach were correlated to determine the figure out an optimal solution to reduce the rate of LUCC. Cipunten Agung watershed imagery was classified into five classes, namely water bodies, forest, cultivated tree, settlement and paddy field. The result shows that area of cultivation tree and paddy fields are larger than others in midstream, and settlement is denser in downstream, particularly at riparian landscapes. The LUCC into paddy field often occur at two period 1995 to 2005 and 2005 to 2015 with several area are 530.92 ha and 388.17 ha. The Qscs method calculation result for 1995 until 2015 was affected by land use cover composition in each year and it was defined by Curve Number (CN). High rainfall in 1995 was generating high run off potential volume. Nevertheless, curve number value was increase get near to 100, which indicate the potential of run off volume increases along with LUCC in each year, those are 70.95; 72.47; and 72.81.
NASA Astrophysics Data System (ADS)
Santos, Ângela R. G.; Cunha, Margarida S.; Avelino, Pedro P.; Chaplin, William J.; Campante, Tiago L.
2017-10-01
The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short-and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.
NASA Technical Reports Server (NTRS)
Dey, B.
1985-01-01
In this study, the existing seasonal snow cover area runoff forecasting models of the Indus, Kabul, Sutlej and Chenab basins were evaluated with the concurrent flow correlation model for the period 1975-79. In all the basins under study, correlation of concurrent flow model explained the variability in flow better than by the snow cover area runoff models. Actually, the concurrent flow correlation model explained more than 90 percent of the variability in the flow of these rivers. Compared to this model, the snow cover area runoff models explained less of the variability in flow. In the Himalayan river basins under study and at least for the period under observation, the concurrent flow correlation model provided a set of results with which to compare the estimates from the snow cover area runoff models.
NASA Technical Reports Server (NTRS)
Potter, Christopher S.
2014-01-01
The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in forest vegetation cover for areas burned by wildfires in the Sierra Nevada Mountains of California between the periods of 1975- 79 and 1995-1999. Results for areas burned by wildfire between 1995 and 1999 confirmed the importance of regrowing forest vegetation over 17% of the combined burned areas. A notable fraction (12%) of the entire 5-km (unburned) buffer area outside the 1995-199 fires perimeters showed decline in forest cover, and not nearly as many regrowing forest areas, covering only 3% of all the 1995-1999 buffer areas combined. Areas burned by wildfire between 1975 and 1979 confirmed the importance of disturbed (or declining evergreen) vegetation covering 13% of the combined 1975- 1979 burned areas. Based on comparison of these results to ground-based survey data, the LEDAPS methodology should be capable of fulfilling much of the need for consistent, low-cost monitoring of changes due to climate and biological factors in western forest regrowth following stand-replacing disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas
Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000more » ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the secondary sites. Aboveground carbon density is 120 {+-} 15 t ha{sup -1} in primary forest and 40 {+-} 5 t ha{sup -1} in secondary forest. Forest stands in the secondary forest sites range in age from 10 to 42 y. Growth in biomass (t ha{sup -1}) as a function of time (y) follows the relation: biomass = 4.09-0.017 age{sup 2} (p < 0.001). Aboveground biomass and forest species richness are positively correlated (r{sup 2} = 0.59, p < 0.001). Analyses of Landsat data show that the land cover of the 3700 km{sup 2} of non-cloud areas in 1999 was: closed forest 78%; open forest 12%, low vegetation cover 4%, sparse vegetation cover 6%. Deforestation from 1987 to 1999 claimed a net 200 km{sup 2} of forest, proceeding at a rate of 0.005 y{sup -1}. Of those areas of closed forest in 1987, only 89% remained closed forest in 1999. Consequently, closed forests experienced disruption in the time period at double the rate of net deforestation. The three protected areas experienced negligible deforestation or slight reforestation. Based on 1987 forest cover, 26,000 ha are eligible for forest carbon trading under the Clean Development Mechanism, established by the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Principal components analysis showed that distance to nonforest was the factor that best explained observed patterns of deforestation while distance to forest best explained observed patterns of reforestation, more significant than elevation, distance to rivers, distance to roads, slope, and distance to towns of population > 400. Aboveground carbon in live vegetation in the project area decreased from 35 million {+-} 4 million t in 1987 to 34 million {+-} 4 million t in 1999. Projected aboveground carbon in live vegetation would fall to 33 million {+-} 4 million t in 2006, 32 million {+-} 4 million t in 2011, and 29 million {+-} 3 million t in 2035. Projected net deforestation in the research area would total 13,000 {+-} 3000 ha in the period 1999-2011, proceeding at a rate of 0.003 {+-} 0.0007 y{sup -1}, and would total 33,000 {+-} 7000 ha in the period 2006-2035. The proposed 7000 ha of forest conservation could prevent gross baseline deforestation of 100 ha (min. 70 ha, max 150 ha) in the period 2006-2035, averting baseline carbon emissions of 10,000 t (min. 6 000 t, max. 18 000 t). Projected gross reforestation in the research area would total 8500 {+-} 1500 ha in the period 1999-2011, proceeding at a rate of 0.0012 y{sup -1} (min. 0.01 y{sup -1}, max. 0.014 y{sup -1}), and would total 24,000 {+-} 4000 ha in the period 2006-2035. Gross baseline reforestation for the proposed 7000 ha of reforestation would total 2600 {+-} 400 ha in the period 2006-2035, representing a baseline removal from the atmosphere of 73,000 t carbon (min. 30,000 t, max. 120,000 t). The proposed reforestation project could sequester 230,000 t carbon (min. 140,000 t, max. 310,000 t) above baseline removal in the period 2006-2035.« less
Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.
Aksoy, Ece; Yigini, Yusuf; Montanarella, Luca
2016-01-01
Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they're collected from the "Land Use/Cover Area frame Statistical Survey" (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and "Soil Transformations in European Catchments" (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960-1990 and 2000-2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%.
Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe
Aksoy, Ece
2016-01-01
Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they’re collected from the “Land Use/Cover Area frame Statistical Survey” (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and “Soil Transformations in European Catchments” (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960–1990 and 2000–2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%. PMID:27011357
Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery
NASA Astrophysics Data System (ADS)
Axelsson, C.; Hanan, N. P.
2016-12-01
High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.
VizieR Online Data Catalog: Detected sources in the region of Magellanic Stream (For+, 2014)
NASA Astrophysics Data System (ADS)
For, B.-Q.; Staveley-Smith, L.; Matthews, D.; McClure-Griffiths, N. M.
2017-04-01
The ATCA high-resolution MS survey covers a 500 deg2 field Magellanic Stream (here after MS) using the H75 configuration of the ATCA. MS I to MS IV, part of the SMC, and the Interface Region (IFR) are covered in this survey. The observations were carried out over a period from 2005 to 2006, which resulted in ~180 hr of total observing time. The entire area was divided into 33 regions with 154 pointing centers per region, resulting in 5082 pointing centers. Each pointing center was separated by 20', arranged in a hexagonal grid, observed for 20 s, and revisited six times during an average of 10 hours of observation. The resulting ATCA data have an angular resolution of 413''x330'', a brightness sensitivity of 210 mK and a velocity resolution of 1.65 km/s after Hanning smoothing. The survey covers the local standard of rest velocity (VLSR) between -315 and +393 km/s. (1 data file).
de Souza, Mirian S; Pepinelli, Mateus; de Almeida, Eduardo C; Ochoa-Quintero, Jose M; Roque, Fabio O
2016-01-01
Given the general expectation that forest loss can alter biodiversity patterns, we hypothesize that blow fly species abundances differ in a gradient of native vegetation cover. This study was conducted in 17 fragments across different landscapes in central Brazil. Different land cover type proportions were used to represent landscape structure. In total, 2334 specimens of nine species of Calliphoridae were collected. We used principal component analysis (PCA) to reduce dimensionality and multicollinearity of the landscape data. The first component explained 70%, and it represented a gradient of forest-pasture land uses. Alien species showed a wide distribution in different fragments with no clear relationship between the abundance values and the scores of PCA axes, whereas native species occurred only in areas with a predominance of forest cover. Our study revealed that certain native species may be sensitive to forest loss at the landscape scale, and they represent a bioindicator in forensic entomology. © 2015 American Academy of Forensic Sciences.
NASA Technical Reports Server (NTRS)
Ragan, R. M.; Jackson, T. J.; Fitch, W. N.; Shubinski, R. P.
1976-01-01
Models designed to support the hydrologic studies associated with urban water resources planning require input parameters that are defined in terms of land cover. Estimating the land cover is a difficult and expensive task when drainage areas larger than a few sq. km are involved. Conventional and LANDSAT based methods for estimating the land cover based input parameters required by hydrologic planning models were compared in a case study of the 50.5 sq. km (19.5 sq. mi) Four Mile Run Watershed in Virginia. Results of the study indicate that the LANDSAT based approach is highly cost effective for planning model studies. The conventional approach to define inputs was based on 1:3600 aerial photos, required 110 man-days and a total cost of $14,000. The LANDSAT based approach required 6.9 man-days and cost $2,350. The conventional and LANDSAT based models gave similar results relative to discharges and estimated annual damages expected from no flood control, channelization, and detention storage alternatives.
Jakubietz, Rafael G; Jakubietz, Michael G; Kloss, Danni F; Gruenert, Joerg G
2009-02-01
After massive upper extremity injuries, prosthetic use might be complicated by the formation of pressure ulcerations. Especially the coverage with insensate free flaps may predispose the patient for developing chronic ulcerations when using an upper extremity prosthesis. This complication may be reduced when sensate local flaps are used to cover bony prominences. A new operative technique is described. Immediate sensate soft tissue coverage improves prosthetic fitting. Successful manipulation of the prosthesis can be quickly achieved with a decreased risk for pressure ulceration. This challenging procedure helps to achieve durable and sensate coverage of bony prominences. The use of local sensate tissue to cover bony prominences reduces the risk for pressure ulceration when wearing a prosthesis. Areas where prosthetic use causes only low pressure and shearing forces are adequately covered with free flaps. Immediate sensibility of local flaps allows prosthetic fitting and use as soon as wound healing has occurred. Return to work is thus expedited.
Application of LANDSAT imagery for snow mapping in Norway
NASA Technical Reports Server (NTRS)
Odegaard, H. (Principal Investigator); Ostrem, G.
1977-01-01
The author has identified the following significant results. It was shown that if the snow cover extent was determined from all four LANDSAT bands, there were significant differences in results. The MSS 4 gave the largest snow cover, but only slightly more than MSS 5, whereas MSS 6 and 7 gave the smallest snow area. A study was made to show that there was a relationship between the last date of snow fall and the area covered with snow, as determined from different bands. Imagery obtained shortly after a snow fall showed no significant difference in the snow-covered area when the four bans were compared, whereas, pronounced differences in the snow-covered area were found in images taken after a long period without precipitation.
NASA Astrophysics Data System (ADS)
Zhang, Jixian; Zhengjun, Liu; Xiaoxia, Sun
2009-12-01
The eco-environment in the Three Gorges Reservoir Area (TGRA) in China has received much attention due to the construction of the Three Gorges Hydropower Station. Land use/land cover changes (LUCC) are a major cause of ecological environmental changes. In this paper, the spatial landscape dynamics from 1978 to 2005 in this area are monitored and recent changes are analyzed, using the Landsat TM (MSS) images of 1978, 1988, 1995, 2000 and 2005. Vegetation cover fractions for a vegetation cover analysis are retrieved from MODIS/Terra imagery from 2000 to 2006, being the period before and after the rising water level of the reservoir. Several analytical indices have been used to analyze spatial and temporal changes. Results indicate that cropland, woodland, and grassland areas reduced continuously over the past 30 years, while river and built-up area increased by 2.79% and 4.45% from 2000 to 2005, respectively. The built-up area increased at the cost of decreased cropland, woodland and grassland. The vegetation cover fraction increased slightly. We conclude that significant changes in land use/land cover have occurred in the Three Gorges Reservoir Area. The main cause is a continuous economic and urban/rural development, followed by environmental management policies after construction of the Three Gorges Dam.
Ecological impacts of wheat seeding after a Sierra Nevada wildfire
Keeley, Jon E.
2004-01-01
The Highway Fire burned 1680 ha of mixed ponderosa pine–oak–chaparral in the newly created Giant Sequoia National Monument and the adjacent Sequoia National Forest of Fresno County, California in August 2001. The USDA Forest Service Burned Area Emergency Rehabilitation (BAER) program recommended that portions of the burned forest be seeded with a non-persistent variety of wheat at a density of 157 kg ha–1 (140 lb/ac). The present study compared the vascular plant diversity and cover in seeded and unseeded parts of this burn to evaluate the ecological impact of seeding an alien grass. In the first post-fire growing season, the natural regeneration of unseeded control sites averaged ~55% ground surface covered. Wheat seeding enhanced the ground cover, averaging 95% ground surface cover. Wheat was the dominant species on the seeded sites, comprising 67% of the total cover. Dominance–diversity curves were markedly affected by the seeding and indicated a disruption in the natural ecological structure of these communities. On seeded sites, wheat dominated and all other species were poorly represented whereas, on unseeded control sites, there was a more equitable distribution of species. Correlated with the wheat cover was a significant decrease in species richness at all scales examined. Total species richness was reduced from 152 species across all unseeded sites to 104 species on all seeded sites. Average species richness, at scales from 1 to 1000 m2, was 30–40% lower on seeded sites. Species most strongly inhibited were post-fire endemics whose lifecycle is restricted to immediate post-fire environments. Seeded sites had fewer alien species than unseeded sites; however, this may not have any lasting effect since other studies show the primary alien threat is not in the first post-fire year. Seeding was also associated with an order of magnitude drop in Pinus ponderosa seedling recruitment and, coupled with the massive thatch still remaining on the site, it is likely that recruitment will be inhibited in subsequent years.
Effects of soil management techniques on soil water erosion in apricot orchards.
Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi
2016-05-01
Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide treatment should be avoided. Copyright © 2016 Elsevier B.V. All rights reserved.
Asadi, S S; Vuppala, Padmaja; Reddy, M Anji
2005-01-01
A preliminary survey of area under Zone-III of MCH was undertaken to assess the ground water quality, demonstrate its spatial distribution and correlate with the land use patterns using advance techniques of remote sensing and geographical information system (GIS). Twenty-seven ground water samples were collected and their chemical analysis was done to form the attribute database. Water quality index was calculated from the measured parameters, based on which the study area was classified into five groups with respect to suitability of water for drinking purpose. Thematic maps viz., base map, road network, drainage and land use/land cover were prepared from IRS ID PAN + LISS III merged satellite imagery forming the spatial database. Attribute database was integrated with spatial sampling locations map in Arc/Info and maps showing spatial distribution of water quality parameters were prepared in Arc View. Results indicated that high concentrations of total dissolved solids (TDS), nitrates, fluorides and total hardness were observed in few industrial and densely populated areas indicating deteriorated water quality while the other areas exhibited moderate to good water quality.
Snow cover and snow goose Anser caerulescens caerulescens distribution during spring migration
Hupp, Jerry W.; Zacheis, Amy B.; Anthony, R. Michael; Robertson, Donna G.; Erickson, Wallace P.; Palacios, Kelly C.
2001-01-01
Arctic geese often use spring migration stopover areas when feeding habitats are partially snow covered. Melting of snow during the stopover period causes spatial and temporal variability in distribution and abundance of feeding habitat. We recorded changes in snow cover and lesser snow goose Anser caerulescens caerulescens distribution on a spring migration stopover area in south-central Alaska during aerial surveys in 1993-1994. Our objectives were to determine whether geese selected among areas with different amounts of snow cover and to assess how temporal changes in snow cover affected goose distribution. We also measured temporal changes in chemical composition of forage species after snow melt. We divided an Arc/Info coverage of the approximately 210 km2 coastal stopover area into 2-km2 cells, and measured snow cover and snow goose use of cells. Cells that had 10-49.9% snow cover were selected by snow geese, whereas cells that lacked snow cover were avoided. In both years, snow cover diminished along the coast between mid-April and early May. Flock distribution changed as snow geese abandoned snow-free areas in favour of cells where snow patches were interspersed with bare ground. Snow-free areas may have been less attractive to geese because available forage had been quickly exploited as bare ground was exposed, and because soils became drier making extraction of underground forage more difficult. Fiber content of two forage species increased whereas non-structural carbohydrate concentrations of forage plants appeared to diminish after snow melt, but changes in nutrient concentrations likely occurred too slowly to account for abandonment of snow-free areas by snow geese.
A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets
Giri, C.; Zhu, Z.; Reed, B.
2005-01-01
Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level. We compared the recently available Global Land Cover 2000 (GLC-2000) and MODerate resolution Imaging Spectrometer (MODIS) global land cover data to evaluate the similarities and differences in methodologies and results, and to identify areas of spatial agreement and disagreement. These two global land cover data sets were prepared using different data sources, classification systems, and methodologies, but using the same spatial resolution (i.e., 1 km) satellite data. Our analysis shows a general agreement at the class aggregate level except for savannas/shrublands, and wetlands. The disagreement, however, increases when comparing detailed land cover classes. Similarly, percent agreement between the two data sets was found to be highly variable among biomes. The identified areas of spatial agreement and disagreement will be useful for both data producers and users. Data producers may use the areas of spatial agreement for training area selection and pay special attention to areas of disagreement for further improvement in future land cover characterization and mapping. Users can conveniently use the findings in the areas of agreement, whereas users might need to verify the informaiton in the areas of disagreement with the help of secondary information. Learning from past experience and building on the existing infrastructure (e.g., regional networks), further research is necessary to (1) reduce ambiguity in land cover definitions, (2) increase availability of improved spatial, spectral, radiometric, and geometric resolution satellite data, and (3) develop advanced classification algorithms.
War and deforestation in Sierra Leone
NASA Astrophysics Data System (ADS)
Burgess, Robin; Miguel, Edward; Stanton, Charlotte
2015-09-01
The impact of armed conflict on the environment is of major public policy importance. We use a geographically disaggregated dataset of civil war violence together with satellite imagery of land cover to test whether war facilitated or prevented forest loss in Sierra Leone. The conflict data set allows us to establish where rebel groups were stationed and where battles and attacks occurred. The satellite data enables to us to monitor the change in forest cover (total, primary, and secondary) in all of Sierra Leone’s 151 chiefdoms, between 1990 (prior to the war) and 2000 (just prior to its end). The results suggest that conflict in Sierra Leone acted as a brake on local deforestation: conflict-ridden areas experienced significantly less forest loss relative to their more conflict-free counterparts.
Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images
NASA Astrophysics Data System (ADS)
Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.
2014-12-01
Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.
NASA Astrophysics Data System (ADS)
Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee
2013-09-01
The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.
Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico
Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.
2009-01-01
Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.
NASA Astrophysics Data System (ADS)
Navar, J.
2015-12-01
Forests are important sources of livelihoods to millions of people and contribute to national economic development of many countries. In addition, they are vital sources and sinks of carbon and contribute to the rate of climate change. The UN Food and Agriculture Organization has been collecting and presenting data on global forest resources and forest cover since 1948. This paper builds on data from FAO's 2015 Global Forest Resource Assessment (FRA) and presents information on growing stock, biomass, carbon stock, wood removals, and changes of forest area primarily designated for production and multiple use of the world's forests. Between 1990 and 2015, the total growing stock volume has increased in East Asia, Caribbean, Western and Central Asia, North America, Europe (including the Russian Federation), and Oceania with the highest relative increase in East Asia and the Caribbean. In all other subregions the total growing stock volume decreased. North and Central America, Europe and Asia report forest C stock increases while South America and Africa report strong decreases and Oceania reports stable forest C stocks. The annual rate of decrease of forest C stock weakened between 1990 and 2015. The total volume of annual wood removals including wood fuel removals increased between 1990 and 2011, but shows a remarkable decline during the 2008-2009 economic crisis. Forest areas designated for production purposes differ considerably between subregions. The percentage of production area out of total forest area ranges between 16 percent in South America and 53 percent in Europe. Globally about one quarter of the forest area is designated to multiple use forestry. The balance between biomass growth and removals shows considerable sub-regional differences and related implications for the sustainable use of forests.
NASA Astrophysics Data System (ADS)
Williams, I.; Polunin, N.
2001-05-01
Since the 1970s, macroalgae have become considerably more abundant on many Caribbean reefs and overfishing of grazing fishes has been implicated as a contributory factor. We explored relationships between algal cover and grazers (biomass of herbivorous fishes and abundance of the sea-urchin Diadema antillarum) on mid-depth reefs (12-15 m) in 19 areas at seven locations in Jamaica, Barbados, Belize, Grand Cayman and Cuba, between April 1997 and April 1998. Diadema antillarum density was never >0.01 m-2, while herbivorous fish biomass (acanthurids and scarids ≥12 cm total length) varied from 2-5 g m-2 in Jamaica to 17.1 g m-2 in Barbados, and was strongly correlated, negatively with macroalgal cover and positively with 'cropped' substratum (sum of 'bare', turf and crustose-coralline substrata) cover. However, overfishing of herbivorous fishes alone cannot explain the widespread abundance of macroalgae, as even on lightly fished reefs, macroalgal cover was mostly >20%. Herbivorous fish populations on those reefs were apparently only able to maintain approximately 40-60% of reef substratum in cropped states, but due to low space-occupation by coral and other invertebrates, 70-90% of substratum was available to algae. The abundance of macroalgae on lightly fished reefs may therefore be a symptom of low coral cover in combination with the continuing absence of Diadema antillarum.
Thailand national programme of the earth resources technology satellite
NASA Technical Reports Server (NTRS)
Sabhasri, S. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Accomplishments include the identification of a series of active alluvial fans along the margins of the Central Plain, the compilation of crop resources maps of central and eastern Thailand, and evaluation of the Purdue/LARS printout using unsupervised mode of an area near Bangkok. Results from LANDSAT 1 imagery and ground truth survey showed that Thailand existing forest in 1973 covered an area of approximately 37% of total land area. The last countrywide survey using aerial photographs at 1:60,000 scale conducted in 1961 gave the figure of 58%. Experience has shown many advantages of LANDSAT imagery over the conventional aerial photography in locating faults and fractures in the preparation of tectonic maps. Several rock types can also be identified from LANDSAT imagery.
Ice-Shelf Melting Around Antarctica
NASA Astrophysics Data System (ADS)
Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.
2013-07-01
We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This data set represents the average normalized atmospheric (wet) deposition, in kilograms, of Total Inorganic Nitrogen for the year 2002 compiled for every catchment of NHDPlus for the conterminous United States. Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA
Gallo, Kevin P.; Tarpley, Dan; Mitchell, Ken; Csiszar, Ivan; Owen, Timothy W.; Reed, Bradley C.
2001-01-01
The land cover classes developed under the coordination of the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) have been analyzed for a study area that includes the Conterminous United States and portions of Mexico and Canada. The 1-km resolution data have been analyzed to produce a gridded data set that includes within each 20-km grid cell: 1) the three most dominant land cover classes, 2) the fractional area associated with each of the three dominant classes, and 3) the fractional area covered by water. Additionally, the monthly fraction of green vegetation cover (fgreen) associated with each of the three dominant land cover classes per grid cell was derived from a 5-year climatology of 1-km resolution NOAA-AVHRR data. The variables derived in this study provide a potential improvement over the use of monthly fgreen linked to a single land cover class per model grid cell.
Methods Used in EnviroAtlas to Assess Urban Natural ...
Previous studies have positively correlated human exposures to natural features with health promoting outcomes such as increased physical activity, improved cognitive function, increased social engagement, and reduced ambient air pollution. When using remotely-sensed data to investigate these relationships, researchers must first identify an appropriate spatial resolution to characterize exposures. However, metric development has often been limited by the lack of fine-scale land cover data, especially across multiple communities. As a result, researchers commonly use coarse resolution imagery. EnviroAtlas, a U.S. Environmental Protection Agency web-based ecosystem services mapping tool, has developed 1-meter resolution land cover data across 16 diverse U.S. Census Urban Areas using aerial photography and supplemental data. Research maps derived from these foundational data include percent tree cover along busy roads, percent tree cover and green space along walkable streets, and percent natural vegetation bordering water bodies. EnviroAtlas has also developed multiple smoothed “heat maps” of proximity to specific types of features at every 1m point; these include total green space, tree cover, and water within 50m, 500m, and 1,000m buffers; walking distance to the nearest park entrance; and intersection density as an indicator of neighborhood walkability.EnviroAtlas variables are available to external researchers, public health professionals and planners t
Increased biogenic volatile organic compounds emission in Beijing
NASA Astrophysics Data System (ADS)
Wang, H.; Liu, H.; Wu, Q.
2017-12-01
Beijing is suffering the severe ozone pollution during the summer period and reliable biogenic volatile organic compounds (BVOCs) emission inventories would help to understand the local ozone pollution. According to the National Forest Resource Survey (NFRS), the forest coverage rate rises from 20.56% to 35.84% during 1998-2013 in Beijing. In this study, we recalculated local BVOC inventory in Beijing based on the latest MEGAN v2.1 model and satellite products. We adopted three independent leaf area index (LAI) products and three independent land cover (LC) products and designed five experiments, E1-E5, to test the sensitivity and uncertainty of local BVOC inventory. According to the estimation from the model, we conclude that: (1) the total amount of BVOCs is about 73.99 98.88 Gg. The estimated annual amount of isoprene, monoterpene, sesquiterpene and other VOC kinds are 38.79 50.93 Gg, 8.39 10.95 Gg, 1.04 1.49 Gg and 25.77 35.64 Gg, respectively. (2) Indicated by results of baseline experiment (E1), the proportions of isoprene, monoterpene, sesquiterpene and other VOCs are 52.57 %, 11.09 %, 1.39 % and 34.95%. (3) The variance of GEOV2 and GLASS LAI products only lead to 1% difference of total BVOC emissions. (4) The difference of PFTs affects the spatial distribution and emission density. The E4 with MODIS land cover leads to about 5.0% decline of BVOC compared with the E1 because of uneven meteorological conditions, e.g. DSW. The CCI-LC leads to a sharp decline of total BVOC emissions with percentage of 25.95%, which is owing to the relative low cover percentage of forest. (5) The broadleaf trees, as the dominant contributor, account for the 68.25% total annual BVOCs in Beijing in 2013. For the specific species, broadleaf trees contribute 94.52% of isoprene, 53.30% of monoterpene, 53.78% of sesquiterpene and 34.06% of other VOCs. (6) The estimated emission of BVOC in this study is much higher than the earlier estimation, and the development of forest area as well as the difference of meteorological conditions could explain the gap between the results in this study and that in previous publications. Further study would focus on the effect of BVOC on local atmospheric environment using chemistry transport model (CTM).
Reverse radial artery flap for soft tissue defects of hand in pediatric age group.
Cheema, Saeed Ashraf; Talaat, Nabeela
2009-01-01
To highlight the usefulness of reverse radial artery flap in covering various soft tissue defects of hand in paediatric age group. A total of 16 reverse radial artery flaps were utilized in a period of three years to cover various soft tissue defects of hand for paediatric age group patients. The age ranged from 5-18 years. The two common causes of soft tissue defects in this series were mechanical trauma and fireworks trauma with five cases in each group. Three of the cases were burn victims and other two presented with earth quake injuries. One patient had wound because of road traffic accident. Soft tissue defects of palm were covered with this flap in eight cases while in three cases it was wrapped around the thumb. First web space defects were covered with this flap in two cases. Two cases required coverage of amputation stump at transmetacarpal level and yet another required a big flap to cover the soft tissue defects at palm, dorsum and thumb. Donor site was covered with split skin graft in all cases but one, which was closed primarily. We had partial loss of flap in one case. Grafted donor sites healed uneventfully and were quite acceptable to the patients in due course of time. Reverse radial artery flap has a quite long arc of rotation which brings it great ease to cover the soft tissue defects of various areas of hand like palm, dorsum, first web space and thumb.
Fire rehabilitation effectiveness: a chronosequence approach for the Great Basin
Pyke, David A.; Pilliod, David S.; Chambers, Jeanne C.; Brooks, Matthew L.; Grace, James
2009-01-01
Federal land management agencies have invested heavily in seeding vegetation for emergency stabilization and rehabilitation (ES&R) of non-forested lands. ES&R projects are implemented to reduce post-fire dominance of non-native annual grasses, minimize probability of recurrent fire, quickly recover lost habitat for sensitive species, and ultimately result in plant communities with desirable characteristics including resistance to invasive species and resilience or ability to recover following disturbance. Land managers lack scientific evidence to verify whether seeding non-forested lands achieves their desired long-term ES&R objectives. The overall objective of our investigation is to determine if ES&R projects increase perennial plant cover, improve community composition, decrease invasive annual plant cover and result in a more desirable fuel structure relative to no treatment following fires while potentially providing habitat for Greater Sage-Grouse, a species of management concern. In addition, we provide the locations and baseline vegetation data for further studies relating to ES&R project impacts. We examined effects of seeding treatments (drill and broadcast) vs. no seeding on biotic and abiotic (bare ground and litter) variables for the dominant climate regimes and ecological types within the Great Basin. We attempted to determine seeding effectiveness to provide desired plant species cover while restricting non-native annual grass cover relative to post-treatment precipitation, post-treatment grazing level and time-since-seeding. Seedings were randomly sampled from all known post-fire seedings that occurred in the four-state area of Idaho, Nevada, Oregon and Utah. Sampling locations were stratified by major land resource area, precipitation, and loam-dominated soils to ensure an adequate spread of locations to provide inference of our findings to similar lands throughout the Great Basin. Nearly 100 sites were located that contained an ES&R project. Of these sites, 61 were seeded by using a drill, 27 were broadcast aerially, and 12 had a combination of both. We randomly sampled three burned and seeded, burned and unseeded, and unburned and unseeded locations in the vicinity of the fire, each within the same ecological site. We measured foliar cover of all plant functional groups (perennial or annual, shrub, grass, forb, native or introduced), biological soil crusts, and abiotic (bare soil and litter) variables using the line-point intercept protocol. Fuel loads and horizontal fuel continuity were measured. We applied linear mixed models to response variables (cover and density of plant groups) relative to the dependent variables (seeding treatments and precipitation/temperature relationships. Post-fire strengths with native perennial grasses or shrubs in mixes did not increase density or cover of these groups significantly relative to unseeded, burned areas. Seeded non-native perennial grasses and the shrub Bassia prostrata were effective in providing more cover in aerial and drill seedings. Seeded non-native perennial grass cover increased with increased annual precipitation regardless of seeding type. Seeding native shrubs, particularly Artemisia tridentata, did not significantly increase shrub cover in burned areas. Cover of undesirable non-native annual grasses was lower in drill seedings relative to unseeded areas but only at higher elevations. Seeding effectiveness after wildfire is unpredictable in drier, low elevation environments, and our findings indicate management objectives are more likely met when focusing efforts on higher elevation or higher precipitation locations where establishment of perennial grasses is more likely. On sites where potential for invasion and dominance of non-native annuals is high, such as lower and drier sites, intensive methods of restoration that include invasive plant control before seeding may be required. Where establishment of native perennial plants is the goal, managers might consider using native-only seed mixtures, because we found that the non-native perennials typically used in Great Basin restoration efforts are selected for their competitive nature and may reduce establishment of less competitive native species. Although we attempted to include information on livestock grazing history after seedings, we were unable to extract sufficient data from files to address this topic that may play an additional role in understanding native plant abundance post-fire seeding. Evaluation of drill and aerial seeding effects on fuel characteristics focused on two metrics that are standard inputs for fire behavior models, fuel load and fuel continuity. Fuel loads were evaluated separately for total fuel load biomass, and the individual components that sum to total biomass, namely herbaceous, shrub, shrub:herbaceous ratio, litter, 10-hour, and 100-hour fuel biomasses. Fuel continuity was evaluated using the following cover categories, total, annual grass, annual forb, perennial forb perennial grass, shrub, litter, vegetative interspace, and perennial interspace. Drill seeding did not affect fuel loads, except to reduce 10-hour fuels, probably due to mechanical destruction of dead and down fuels by the drill seeding equipment. Drill seeding did affect fuel continuity, specifically decreasing total plant cover by increasing perennial grass cover which suppressed annual grass and litter production resulting in a net decrease in continuity, but only at the elevations above approximately 1500m. Aerial seeding had no effect on any fuel load or fuel continuity category. For the Greater Sage-Grouse habitat study, we developed multi-scale empirical models of sage-grouse occupancy in 211 randomly located plots within a 40 million ha portion of the species’ range. We then used these models to predict sage-grouse habitat quality at 101 ES&R seeding projects. We compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy was positively related to plot- and landscape-level dwarf sagebrush (Artemisia arbuscula, A. nova, A. tripartita) and big sagebrush steppe, and negatively associated with non-native grass and human development. The predicted probability of sage-grouse occupancy at treated plots was low on average (0.07–0.09) and was not significantly different from burned areas that had not been treated. Restoration was more often successful at higher elevation sites with low annual temperatures, high spring precipitation, and high plant diversity. No plots seeded after fire (n=313) met all overstory guidelines for breeding habitats, but approximately 50% met understory guidelines, particularly for perennial grasses. This trend was similar for summer habitat. Ninety-eight percent of treated plots did not meet winter habitat guidelines. Restoration actions in burned areas did not increase the probability of meeting most guideline criteria. The probability of meeting guidelines was influenced by a latitudinal gradient, local climate, and topography. Post-fire seeding treatments in Great Basin sagebrush shrublands generally have not created high quality habitat for sage-grouse. Understory conditions are more likely to be adequate than those of overstory, but in unfavorable climates, establishing forbs and reducing cheatgrass dominance is unlikely. Reestablishing sagebrush cover will require more than 20 years using the restoration methods of the past two decades. Given current fire frequencies and restoration capabilities, protection of landscapes containing a mix of dwarf sagebrush and big sagebrush steppe, minimal human development, and low non-native plant cover may provide the best opportunity for conservation of sage-grouse habitats. Our database of ES&R locations has used the Land Treatment Digital Library to archive data and location information regarding our study (see Pilliod and Welty 2013). This has contributed to two additional studies. One examined the potential spread of Bassia prostrata (aka Kochia prostrata; forage kochia) from ES&R project locations (Gray and Muir 2013). The second used remote sensing to determine the phenology of vegetation green-up on post-fire seeded sites (Sankey et al. 2013).
Gravity Survey on the Glass Buttes Geothermal Exploration Project Lake County, Oregon
John Akerley
2011-10-12
This report covers data acquisition, instrumentation and processing of a gravity survey performed on the Glass Buttes Geothermal Exploration Project, located in Lake County, Oregon for ORMAT Technologies Inc. The survey was conducted during 21 June 2010 to 26 June 2010. The survey area is located in T23S, R21-23E and lies within the Glass Buttes, Hat Butte, and Potato Lake, Oregon 1:24,000 topographic sheets. A total of 180 gravity stations were acquired along five profile lines.
Child health: fertile ground for philanthropic investment.
Schwartz, Anne L; LeRoy, Lauren
2004-01-01
Children and youth are the focus for many foundations and corporate-giving programs working in the health field. Total foundation giving targeted to children and youth more than doubled during the late 1990s; in 2000, health accounted for 25 percent of philanthropic dollars invested in this population. This funding covers a broad range of child health issues but clusters in four key areas-promoting healthy behavior, improving access to care and expanding insurance coverage, strengthening mental health services, and addressing the broader determinants of health.
Assimilation of HF Radar-Derived Radials and Total Currents in the Monterey Bay Area
2009-01-01
39529-5004, USA b Naval Postgraduate School Monterey. USA ARTICLE INFO Article history: Accepted 16 August 2008 Available online 19 September 2008 ...et al„ 1998; Breivick and Saetra, 2001; Oke et al., 2002; Kurapov et al., 2003; Paduan and Shulman, 2004; Wilkin et al., 2005). Surface-current data...atmospheric model nest covering the central California region that was first put in place during AOSN-II (Doyle et al., 2008 ). In this study, we address
2015-08-10
The Akashi Kaikyo Bridge in Japan has the longest central span of any suspension bridge in the world at 1991 m. The total length of the bridge is 3911 m. It links the city of Kobe on the mainland of Honshu to Iwaya on Awaji Island, crossing the busy Akashi Strait. The image was acquired April 26, 2014, covers an area of 8.1 by 11.2 km, and is located at 34.6 degrees north, 135 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA19747
Solar energy retrofit for Clarksville Middle School, Clarksville, Indiana
NASA Technical Reports Server (NTRS)
1979-01-01
The solar energy retrofit heating system installed to provide heating for two gymnasiums at the Clarksville Middle School located in Clarksville, Indiana is described in detail. The system type is hot water using existing chilled water piping and chilled water coils in an air handler system. Flat plate, single-glazed selectively coated solar collectors were installed on the roof of each gymnasium. Total collector area covers 6,520 square feet. The liquid is stored in a 10,000 gallon steel tank installed below grade.
VizieR Online Data Catalog: REFLEX II. Properties of the survey (Boehringer+ 2013)
NASA Astrophysics Data System (ADS)
Boehringer, H.; Chon, G.; Collins, C. A.; Guzzo, L.; Nowak, N.; Bobrovskyi, S.
2013-06-01
Like REFLEX I, the extended survey covers the southern sky outside the band of the Milky Way (|bII|>=20°) with regions around the Magellanic clouds excised (3 in LMC, 3 in SMC). The total survey area after this excision amounts to 4.24 steradian (or 13924°2) which corresponds to 33.75% of the sky. Different from REFLEX I, we use the refined RASS product RASS III (Voges et al. 1999, Cat. IX/10). (2 data files).
2010-02-01
Combat System (MCS) or Medical Vehicle Treatment (MV- T ), A for unmanned aerial vehicles such as Class II, and G for unmanned ground vehicles the...effective co-ordination with other NATO bodies involved in R& T activities. RTO reports both to the Military Committee of NATO and to the Conference of...research is one of the more promising areas of co-operation. The total spectrum of R& T activities is covered by the following 7 bodies: • AVT Applied
Hernández-Guzmán, Rafael; Ruiz-Luna, Arturo; Berlanga-Robles, César Alejandro
2008-10-01
Results on runoff estimates as a response to land-use and land-cover changes are presented. We used remote sensing and GIS techniques with rainfall time-series data, spatial ancillary information, and the curve-number method (NRCS-CN) to assess the runoff response in the San Pedro subbasin. Thematic maps with eight land-cover classes derived from satellite imagery classification (1973, 1990, and 2000) and hydrologic soil-group maps were used as the input for the runoff calculation. About 20% to 25% of the subbasin landscape has changed since 1973, mainly as consequence of the growth of agriculture. Forest is the main cover, although further analyses indicate that forest is degrading from good to poor conditions when evaluated as a function of the spectral response. Soils with low infiltration rates, classified as the hydrological soil-group "C", were dominant in the area (52%). The overlaying of all the hydrological soil groups with the land-use map produced a total of 43 hydro-group and land-use categories for which runoff was calculated using the curve-number method. Estimates of total runoff volumes (26 x 10(6) m3) were similar for the three dates analyzed in spite of landscape changes, but there were temporal variations among the hydro-group and land-use categories as a consequence. Changes are causing the rise of covers with high runoff potential and the increase of runoff depth is expected, but it can be reversed by different management of subbasin hydro-groups and land-use units.
NASA Astrophysics Data System (ADS)
Ball, Will; Unruh, Yvonne; Krivova, Natalie; Solanki, Sami K.; Harder, Jerald
Climate models rely on accurate total and spectral solar irradiance inputs, but until 2003 con-tinuous spectral irradiance information across a large portion of the solar spectrum was lacking. Since the launch of the Solar Radiation and Climate Experiment (SORCE), with the Spectral Irradiance Monitor (SIM) observing the UV, visible and IR, data have been accumulating and now cover a significant portion of a cycle. For the first time this allows spectral models to be tested over periods greater than a solar rotation. We present six years of total and spectral irradiance reconstructions using the SATIRE model that incorporates SOHO/MDI continuum and magnetogram images for the period April 2004 to November 2009 in the declining phase of cycle 23 and through the recent unusual minimum. We compare these results with the SIM instrument and so cover the spectral region 200 -1600 nm. While detrended, short-term, variation is recreated well by the model, there are discrepancies in longer-term trends between observations and the model. This may become important when considering the radiative forcing from the Sun used in climate research and so understanding why there is such a significant disagreement is an important area of investigation.
Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stoker, J.M.; Stohlgren, T.J.
2003-01-01
We examined patterns of non-native plant diversity in protected and managed ponderosa pine/Douglas-fir forests of the Colorado Front Range. Cheesman Lake, a protected landscape, and Turkey Creek, a managed landscape, appear to have had similar natural disturbance histories prior to European settlement and fire protection during the last century. However, Turkey Creek has experienced logging, grazing, prescribed burning, and recreation since the late 1800s, while Cheesman Lake has not.Using the modified-Whittaker plot design to sample understory species richness and cover, we collected data for 30 0.1 ha plots in each landscape. Topographic position greatly influenced results, while management history did not. At both Cheesman Lake and Turkey Creek, low/riparian plots had highest native and non-native species richness and cover; upland plots (especially east/west-facing, south-facing and flat, high plots) had the lowest. However, there were no significant differences between Cheesman Lake and Turkey Creek for native species richness, native species cover, non-native species richness, or non-native species cover for any topographic category. In general, non-native species richness and cover were highly positively correlated with native species richness and/or cover (among other variables). In total, 16 non-native species were recorded at Cheesman Lake and Turkey Creek; none of the 16 non-native species were more common at one site than another.These findings suggest that: (1) areas that are high in native species diversity also contain more non-native species; (2) both protected and managed areas can be invaded by non-native plant species, and at similar intensities; and (3) logging, grazing, and other similar disturbances may have less of an impact on non-native species establishment and growth than topographic position (i.e., in lowland and riparian zones versus upland zones).
Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stoker, J.M.; Stohlgren, T.J.
2003-01-01
We examined patterns of non-native plant diversity in protected and managed ponderosa pine/Douglas-fir forests of the Colorado Front Range. Cheesman Lake, a protected landscape, and Turkey Creek, a managed landscape, appear to have had similar natural disturbance histories prior to European settlement and fire protection during the last century. However, Turkey Creek has experienced logging, grazing, prescribed burning, and recreation since the late 1800s, while Cheesman Lake has not. Using the modified-Whittaker plot design to sample understory species richness and cover, we collected data for 30 0.1 ha plots in each landscape. Topographic position greatly influenced results, while management history did not. At both Cheesman Lake and Turkey Creek, low/riparian plots had highest native and non-native species richness and cover; upland plots (especially east/west-facing, south-facing and flat, high plots) had the lowest. However, there were no significant differences between Cheesman Lake and Turkey Creek for native species richness, native species cover, non-native species richness, or non-native species cover for any topographic category. In general, non-native species richness and cover were highly positively correlated with native species richness and/or cover (among other variables). In total, 16 non-native species were recorded at Cheesman Lake and Turkey Creek; none of the 16 non-native species were more common at one site than another. These findings suggest that: (1) areas that are high in native species diversity also contain more non-native species; (2) both protected and managed areas can be invaded by non-native plant species, and at similar intensities; and (3) logging, grazing, and other similar disturbances may have less of an impact on non-native species establishment and growth than topographic position (i.e., in lowland and riparian zones versus upland zones).
Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.
2014-01-01
The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral characteristics. The vector dataset was then populated with the per-pixel spectral change information to provide an estimated percentage of vegetation increase or decrease of pixels within each polygon. Information collected during a field visit to the Waldo Canyon burn scar in September 2013 was used to help validate this assessment (see photographs 1-3). The numbers on the satellite images correspond to the location of the photographs. For display purposes, the polygons shown on the map represent areas where significant decrease or increase in vegetation cover occurred. Only polygons that held a 70 percent or greater cover change are shown on this map (a GIS dataset with complete information is available upon request). A significant increase in vegetation cover was found in the burned area. This increase is likely due to the growth of grasses and other herbaceous vegetation. Minimal vegetation cover decrease was detected at this threshold. This product is meant to provide a broad survey of post-fire vegetation trends within the Waldo Canyon burned area to Federal, State, and local officials. It is not designed to quantify species-level vegetation change at this time.
NASA Astrophysics Data System (ADS)
Cherubini, Francesco; Hu, Xiangping; Vezhapparambu, Sajith; Stromman, Anders
2017-04-01
Surface albedo, a key parameter of the Earth's climate system, has high variability in space, time, and land cover and its parameterization is among the most important variables in climate models. The lack of extensive estimates for model improvement is one of the main limitations for accurately quantifying the influence of surface albedo changes on the planetary radiation balance. We use multi-year satellite retrievals of MODIS surface albedo (MCD43A3), high resolution land cover maps, and meteorological records to characterize albedo variations in Norway across latitude, seasons, land cover type, and topography. We then use this dataset to elaborate semi-empirical models to predict albedo values as a function of tree species, age, volume and climate variables like temperature and snow water equivalents (SWE). Given the complexity of the dataset and model formulation, we apply an innovative non-linear programming approach simultaneously coupled with linear un-mixing. The MODIS albedo products are at a resolution of about 500 m and 8 days. The land cover maps provide vegetation structure information on relative abundance of tree species, age, and biomass volumes at 16 m resolution (for both deciduous and coniferous species). Daily observations of meteorological information on air temperature and SWE are produced at 1 km resolution from interpolation of meteorological weather stations in Norway. These datasets have different resolution and projection, and are harmonized by identifying, for each MODIS pixel, the intersecting land cover polygons and the percentage area of the MODIS pixel represented by each land cover type. We then filter the subplots according to the following criteria: i) at least 96% of the total pixel area is covered by a single land cover class (either forest or cropland); ii) if forest area, at least 98% of the forest area is covered by spruce, deciduous or pine. Forested pixels are then categorized as spruce, deciduous, or pine dominant if the fraction of the respective tree species is greater than 75%. Results show averages of albedo estimates for forests and cropland depicting spatial (along a latitudinal gradient) and temporal (daily, monthly, and seasonal) variations across Norway. As the case study region is a country with heterogeneous topography, we also study the sensitivity of the albedo estimates to the slope and aspect of the terrain. The mathematical programming approach uses a variety of functional forms, constraints and variables, leading to many different model outputs. There are several models with relatively high performances, allowing for a flexibility in the model selection, with different model variants suitable for different situations. This approach produces albedo predictions at the same resolution of the land cover dataset (16 m, notably higher than the MODIS estimates), can incorporate changes in climate conditions, and is robust to cross-validation between different locations. By integrating satellite measurements and high-resolution vegetation maps, we can thus produce semi-empirical models that can predict albedo values for boreal forests using a variety of input variables representing climate and/or vegetation structure. Further research can explore the possible advantages of its implementation in land surface schemes over existing approaches.
Mapping optimal areas of ecosystem services potential in Vilnius (Lithuania)
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Depellegrin, Daniel; Misiune, Ieva; Cerda, Artemi
2016-04-01
Maps are fundamental to understand the spatial pattern of natural and human impacts on the landscape (Brevik et al., 2016; Lavado Contador et al., 2009; Pereira et al., 2010a,b). Urban areas are subjected to an intense human pressure (Beniston et al., 2015), contributing to the degradation of the ecosystems, reducing their capacity to provide services in quality and quantity (Requier-Desjardins et al., 2011; Zhang et al., 2011). Environments that can provide a high number and quality of ecosystem services (ES) must be identified and managed correctly, since are spaces that can mitigate the impacts of human settlements and improve their quality. thus is of major importance have identify the areas that can provide better ES (Deppelegrin and Pereira, 2015). The aim of this work is to identify areas with high ES potential in Vilnius city. Here, we identified a total of 4 different land uses, agricultural areas (32.48%), water bodies (1.46%), forest and semi-natural (31.91%) areas and artificial surfaces (34.16%). CORINE land cover 2006 was used as base information to classify ES potential. The assessment of each land cover potential was carried out using expert assessment. Each land use type was ranked from 0 (no potential) to 5 (High potential). In this work the sum of total regulating, providing and cultural ES were assessed. The areas with optimal ES were the ones with the sum of all ranks equal or higher than the 3rd Quartil of each distribution. After identifying these areas, data was mapped using ArcGIS software. The results showed that on average Vilnius city has a higher potential for regulating services (20.35±15.92), followed by cultural (14.43±8.81) and providing (14.26±8.87). There was a significant correlation among the different type of services. Regulating vs cultural (0.92, p<0.001), regulating vs providing (0.72, p<0.001) and providing vs cultural (0.65, p<0.001). The results of Morans I autocorrelation index showed that regulating (Z-score: 10.45, p<0.001), providing (Z-score: 11.39, p<0.001) and cultural services (Z-score: 10.46, p<0.001) in Vilnius were significantly clustered. In total 39.73% of the area covered was classified as optimal potential for "regulating" ES, 40.19% for "providing" ES and 31.91% for "cultural" ES. These results suggested that ES regulating, providing and cultural ES are located in specific regions, and according to optimal areas assessment, an important area of Vilnius had high potential to provide very good ES. These results are important for a better planing of these areas in order to maintain the quality of these services. References Beniston, J.W., Lal, R., Mercer, K.L. (2015) Assessing and managing soil quality for urban agriculture in a vacant lot soil. Land Degradation and Development, DOI: 10.1002/ldr.2342 Brevik, E., Baumgarten, A., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Jordán, A. (2016) Soil mapping, classification, and modelling: history and future directions. Geoderma, 264, Part B, 256-274. Depellegrin, D.A., Pereira, P. (2015) Assessing the oil spill sensitivity of Lithuanian-Russian coastal areas of the South-Eastern Baltic Sea, Marine Pollution Bulletin, doi:10.1016/j.marpolbul.2015.12.005 Requier-Desjardins, M., Adkhikari, B., Sperlich, S. (2011) Some notes on the economic assessment of land degradation. Land Degradation and Development, 22, 285-298. Lavado Contador, J.F., Schnabel, S., Gomez-Gutierrez, A., Pulido-Fernandez, M. (2009) Mappind sensivity to land degradation in Extremadura. SW Spain. Land Degradation and Development, 20, 129-144. Pereira, P., Úbeda, X., Baltrenaite, E. (2010) Mapping Total Nitrogen in ash after a Wildfire, a microplot analysis, Ekologija, 56 (3-4), 144-152. Pereira, P., Oliva, M., Baltrenaité, E. (2010) Modeling extreme precipitation in mountain hazard areas. A contribution to landscape planning and environmental management, Journal of Environmental Engineering and Landscape Management, 18, 329-342. Zhang, J.J., Fu, M.C., Zeng, H., Geng, Y.H., Hassani, F.P. (2011) Variations in ecosystem service values and local economy in response to land use: A case study of Wuan, China. Land Degradation and Development, 24, 236-249.
Effects of spatial resolution and landscape structure on land cover characterization
NASA Astrophysics Data System (ADS)
Yang, Wenli
This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods.
Sensitivity of the snowmelt runoff model to underestimates of remotely sensed snow covered area
USDA-ARS?s Scientific Manuscript database
Three methods for estimating snow covered area (SCA) from Terra MODIS data were used to derive conventional depletion curves for input to the Snowmelt Runoff Model (SRM). We compared the MOD10 binary and fractional snow cover products and a method for estimating sub-pixel snow cover using spectral m...