Sample records for total bacterial load

  1. Molecular diagnosis of bacterial vaginosis: Does adjustment for total bacterial load or human cellular content improve diagnostic performance?

    PubMed

    Plummer, E L; Garland, S M; Bradshaw, C S; Law, M G; Vodstrcil, L A; Hocking, J S; Fairley, C K; Tabrizi, S N

    2017-02-01

    We investigated the utility of quantitative PCR assays for diagnosis of bacterial vaginosis and found that while the best model utilized bacterial copy number adjusted for total bacterial load (sensitivity=98%, specificity=93%, AUC=0.95[95%CI=0.93,0.97]), adjusting for total bacterial or human cell load did not consistently increase the diagnostic performance of the assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Quantitative Polymerase Chain Reaction to Assess Response to Treatment of Bacterial Vaginosis and Risk of Preterm Birth.

    PubMed

    Abramovici, Adi; Lobashevsky, Elena; Cliver, Suzanne P; Edwards, Rodney K; Hauth, John C; Biggio, Joseph R

    2015-10-01

    The aim of this study was to determine whether quantitative polymerase chain reaction (qPCR) bacterial load measurement is a valid method to assess response to treatment of bacterial vaginosis and risk of preterm birth in pregnant women. Secondary analysis by utilizing stored vaginal samples obtained during a previous randomized controlled trial studying the effect of antibiotics on preterm birth (PTB). All women had risk factors for PTB: (1) positive fetal fibronectin (n=146), (2) bacterial vaginosis (BV) and a prior PTB (n=43), or (3) BV and a prepregnancy weight<50 kg (n=54). Total and several individual BV-related bacteria loads were measured using qPCR for 16S rRNA. Loads were correlated with Nugent scores (Spearman correlation coefficients). Loads were compared pre- and posttreatment with Wilcoxon rank-sum test. Individual patient differences were examined with Wilcoxon signed-rank test. A total of 243 paired vaginal samples were available for analysis: 123 antibiotics and 120 placebo. Groups did not differ by risk factors for PTB. For all samples, bacterial loads were correlated with Nugent score and each of its specific bacterial components (all p<0.01). Baseline total bacterial load did not differ by treatment group (p=0.87). Posttreatment total bacterial load was significantly lower in the antibiotics group than the placebo group (p<0.01). Individual patient total bacterial load decreased significantly posttreatment in the antibiotics group (p<0.01), but not in the placebo group (p=0.12). The rate of PTB did not differ between groups (p=0.24). PTB relative risks calculated for BV positive versus BV negative women and women with the highest quartile total and individual bacterial loads were not statistically significant. qPCR correlates with Nugent score and demonstrates decreased bacterial load after antibiotic treatment. Therefore, it is a valid method of vaginal flora assessment in pregnant women who are at high risk for PTB. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Cervicovaginal cytokines, sialidase activity and bacterial load in reproductive-aged women with intermediate vaginal flora.

    PubMed

    Santos-Greatti, Mariana Morena de Vieira; da Silva, Márcia Guimarães; Ferreira, Carolina Sanitá Tafner; Marconi, Camila

    2016-11-01

    Studies have shown that not only bacterial vaginosis, but also intermediate vaginal flora has deleterious effects for women's reproductive health. However, literature still lacks information about microbiological and immunological aspects of intermediate flora. To characterize intermediate flora regarding levels of Interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor-alpha, interleukin 1 receptor antagonist (IL-1ra), IL-10, sialidase; loads of Gardnerella vaginalis, total bacteria and to verify whether it is closer related to normal flora or bacterial vaginosis. This cross-sectional study enrolled 526 non-pregnant reproductive-aged women distributed in 3 groups according to pattern of vaginal flora using Nugent's system in normal, intermediate and bacterial vaginosis. Cervicovaginal levels of cytokines, sialidases, loads of G. vaginalis and total bacteria were assessed by ELISA, conversion of MUAN and quantitative real-time PCR, respectively. A principal component analysis(PCA) using all measured parameters was performed to compare the three different types of flora. Results showed that intermediate flora is associated with increased cervicovaginal IL-1beta in relation to normal flora(P<0.0001). When compared to bacterial vaginosis, intermediate flora has higher IL-8 and IL-10 levels(P<0.01). Sialidases were in significantly lower levels in normal and intermediate flora than bacterial vaginosis(P<0.0001). Loads of G. vaginalis and total bacterial differed among all groups(P<0.0001), being highest in bacterial vaginosis. PCA showed that normal and intermediate flora were closely scattered, while bacterial vaginosis were grouped separately. Although intermediate flora shows some differences in cytokines, sialidases and bacterial loads in relation to normal flora and bacterial vaginosis, when taken together, general microbiological and immunological pattern pattern of intermediate flora resembles the normal flora. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Bacterial components are the major contributors to the macrophage stimulating activity exhibited by extracts of common edible mushrooms.

    PubMed

    Tyler, Heather L; Haron, Mona H; Pugh, Nirmal D; Zhang, Jin; Jackson, Colin R; Pasco, David S

    2016-10-12

    Recent studies have indicated that a major contributor to the innate immune enhancing properties of some medicinal plants is derived from the cell wall components of bacteria colonizing these plants. The purpose of the current study was to assess if the bacteria present within edible and medicinal mushrooms substantially contribute to the innate immune stimulating potential of these mushrooms. Whole mushrooms from thirteen types of edible fungi and individual parts from Agaricus bisporus were analyzed for in vitro macrophage activation as well as bacterial lipopolysaccharides (LPS) content, cell load, and community composition. Substantial variation between samples was observed in macrophage activation (over 500-fold), total bacterial load (over 200-fold), and LPS content (over 10 million-fold). Both LPS content (ρ = 0.832, p < 0.0001) and total bacterial load (ρ = 0.701, p < 0.0001) correlated significantly with macrophage activation in the whole mushroom extracts. Extract activity was negated by treatment with NaOH, conditions that inactivate LPS and other bacterial components. Significant correlations between macrophage activation and total bacterial load (ρ = 0.723, p = 0.0001) and LPS content (ρ = 0.951, p < 0.0001) were also observed between different tissues of Agaricus bisporus. Pseudomonas and Flavobacterium were the most prevalent genera identified in the different tissue parts and these taxa were significantly correlated with in vitro macrophage activation (ρ = 0.697, p < 0.0001 and ρ = 0.659, p = 0.0001, respectively). These results indicate that components derived from mushroom associated bacteria contribute substantially to the innate immune enhancing activity exhibited by mushrooms and may result in similar therapeutic actions as reported for ingestion of bacterial preparations such as probiotics.

  5. Changes in abundance of heterotrophic and coliform bacteria resident in stored water bodies in relation to incoming bacterial loads following rain events.

    PubMed

    Martin, Anthony Richard; Coombes, Peter John; Harrison, Tracey Lee; Hugh Dunstan, R

    2010-01-01

    Microbial properties of harvested rainwater were assessed at two study sites at Newcastle on the east coast of Australia. The investigation monitored daily counts of heterotrophic bacteria (HPC), total coliforms and E. coli during a mid-winter month (July). Immediately after a major rainfall event, increases in bacterial loads were observed at both sites, followed by gradual reductions in numbers to prior baseline levels within 7 days. Baseline HPC levels ranged from 500-1000 cfu/mL for the sites evaluated, and the loads following rain peaked at 3590-6690 cfu/mL. Baseline levels of total coliforms ranged from 0-100 cfu/100 mL and peaked at 480-1200 cfu/100 mL following rain. At Site 1, there was no evidence of E. coli loading associated with the rain events assessed, and Site 2 had no detectable E.coli colonies at baseline, with a peak load of 17 cfu/100 mL following rain which again diminished to baseline levels. It was concluded that rainfall events contributed to the bacterial load in rainwater storage systems, but processes within the rainwater storage ensured these incoming loads were not sustained.

  6. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin

    PubMed Central

    Stroman, David W; Mintun, Keri; Epstein, Arthur B; Brimer, Crystal M; Patel, Chirag R; Branch, James D; Najafi-Tagol, Kathryn

    2017-01-01

    Purpose To examine the magnitude of bacterial load reduction on the surface of the periocular skin 20 minutes after application of a saline hygiene solution containing 0.01% pure hypochlorous acid (HOCl). Methods Microbiological specimens were collected immediately prior to applying the hygiene solution and again 20 minutes later. Total microbial colonies were counted and each unique colony morphology was processed to identify the bacterial species and to determine the susceptibility profile to 15 selected antibiotics. Results Specimens were analyzed from the skin samples of 71 eyes from 36 patients. Prior to treatment, 194 unique bacterial isolates belonging to 33 different species were recovered. Twenty minutes after treatment, 138 unique bacterial isolates belonging to 26 different species were identified. Staphylococci accounted for 61% of all strains recovered and Staphylococcus epidermidis strains comprised 60% of the staphylococcal strains. No substantial differences in the distribution of Gram-positive, Gram-negative, or anaerobic species were noted before and after treatment. The quantitative data demonstrated a >99% reduction in the staphylococcal load on the surface of the skin 20 minutes following application of the hygiene solution. The total S. epidermidis colony-forming units were reduced by 99.5%. The HOCl hygiene solution removed staphylococcal isolates that were resistant to multiple antibiotics equally well as those isolates that were susceptible to antibiotics. Conclusion The application of a saline hygiene solution preserved with pure HOCl acid reduced the bacterial load significantly without altering the diversity of bacterial species remaining on the skin under the lower eyelid. PMID:28458509

  7. Molecular identification and quantification of bacteria from endodontic infections using real-time polymerase chain reaction.

    PubMed

    Blome, B; Braun, A; Sobarzo, V; Jepsen, S

    2008-10-01

    It was the aim of the present study to evaluate root canal samples for the presence and numbers of specific species as well as for total bacterial load in teeth with chronic apical periodontitis using quantitative real-time polymerase chain reaction (PCR). Forty adult patients with one radiographically documented periapical lesion were included. Twenty teeth presented with primary infections and 20 with secondary infections, requiring retreatment. After removal of necrotic pulp tissue or root canal filling, a first bacterial sample was obtained. Following chemo-mechanical root canal preparation a second sample was taken and a third sample was obtained after 14 days of intracanal dressing with calcium hydroxide. Analysis by real-time PCR enabled the quantification of total bacterial counts and of nine selected species. Root canals with primary infections harbored significantly more bacteria (by total bacterial count) than teeth with secondary infections (P < 0.05). Mean total bacterial count in the retreatment group was 2.1 x 10(6) and was significantly reduced following root canal preparation (3.6 x 10(4)) and intracanal dressing (1.4 x 10(5)). Corresponding values for primary infections were: 4.6 x 10(7), 3.6 x 10(4), and 6.9 x 10(4). The numbers of the selected bacteria and their detection frequency were also significantly reduced. Root canals with primary infections contained a higher bacterial load. Chemo-mechanical root canal preparation reduced bacterial counts by at least 95%.

  8. External Bacterial Flora and Antimicrobial Susceptibility Patterns of Staphylococcus spp. and Pseudomonas spp. Isolated from Two Household Cockroaches, Blattella germanica and Blatta orientalis.

    PubMed

    Menasria, Taha; Tine, Samir; Mahcene, Djaouida; Benammar, Leyla; Megri, Rochdi; Boukoucha, Mourad; Debabza, Manel

    2015-04-01

    A study was performed to estimate the prevalence of the external bacterial flora of two domestic cockroaches (Blattella germanica and Blatta orientalis) collected from households in Tebessa (northeast Algeria). Three major bacterial groups were cultured (total aerobic, enterobacteria, and staphylococci) from 14 specimens of cockroaches, and antibiotic susceptibility was tested for both Staphylococcus and Pseudomonas isolates. Culturing showed that the total bacterial load of cockroaches from different households were comparable (P<0.001) and enterobacteria were the predominant colonizers of the insect surface, with a bacterial load of (2.1 × 10⁵ CFU/insect), whereas the staphylococci group was the minority. Twenty-eight bacterial species were isolated, and susceptibility patterns showed that most of the staphylococci isolates were highly susceptible to chloramphenicol, gentamycin, pristinamycin, ofloxacin, clindamycin, and vancomycin; however, Pseudomonas strains exhibited resistance to amoxicillin/clavulanic acid, imipenem, and the second-generation antibiotic cephalosporin cefuroxime. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  9. Bacterial production and their role in the removal of dissolved organic matter from tributaries of drinking water reservoirs.

    PubMed

    Kamjunke, Norbert; Oosterwoud, Marieke R; Herzsprung, Peter; Tittel, Jörg

    2016-04-01

    Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6-12% of total DOM released by the catchments was degraded within the tributaries. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Short-term microbiological effects of scaling and root planing and essential-oils mouthwash in Chinese adults*

    PubMed Central

    He, Jia-yan; Qi, Gang-gang; Huang, Wu-jing; Sun, Xu-dong; Tong, Yu; Peng, Chun-mei; Zhou, Xue-ping; Chen, Hui

    2013-01-01

    Objective: To assess the short-term effect of scaling and root planing (SRP) and essential-oils mouthwash on the levels of specific bacteria in Chinese adults. Methods: Fifty Chinese adults with chronic periodontitis were randomly assigned to full-mouth SRP or a 7-d essential-oils mouthwash regimen. In addition, 22 periodontally healthy adults used essential-oils mouthwash for 7 d. Clinical examination and plaque/saliva sampling were performed at baseline and on Day 7. Quantitative real-time polymerase chain reaction (PCR) was used to measure Aggregatibacter actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), and total bacterial loads in saliva, supra- and sub-gingival plaque samples. Results: The detection frequencies of four tested species remained unchanged after either treatment. However, the bacterial loads of Fn, Pg, and Pi were significantly reduced by SRP; the mean reduction of bacterial counts in saliva ranged from 52.2% to 62.5% (p<0.01), in supragingival plaque from 68.2% to 81.0% (p<0.05), and in subgingival plaque from 67.9% to 93.0% (p<0.01). Total bacterial loads were reduced after SRP in supra- and sub-gingival plaque (p<0.05). Essential-oils mouthwash reduced Fn levels in supragingival plaque by a mean of 53.2%, and reduced total bacterial loads in supra- and sub-gingival plaque (p<0.01). In subgingival plaque from periodontal patients, Pg and Pi reductions were high after SRP compared to essential-oils mouthwash (93.0% vs. 37.7% and 87.0% vs. 21.0%, p<0.05). No significant bacterial reduction was observed in periodontally healthy subjects using essential-oils mouthwash. Conclusions: SRP and essential-oils mouthwash both have an impact on saliva and gingival plaque flora in Chinese periodontitis patients in 7 d, with greater microbiological improvement by SRP. PMID:23645178

  11. Total Antioxidant Capacity and Total Oxidant Status in Saliva of Periodontitis Patients in Relation to Bacterial Load

    PubMed Central

    Zhang, Taowen; Andrukhov, Oleh; Haririan, Hady; Müller-Kern, Michael; Liu, Shutai; Liu, Zhonghao; Rausch-Fan, Xiaohui

    2016-01-01

    The detection of salivary biomarkers has a potential application in early diagnosis and monitoring of periodontal inflammation. However, searching sensitive salivary biomarkers for periodontitis is still ongoing. Oxidative stress is supposed to play an important role in periodontitis progression and tissue destruction. In this cross-sectional study, we investigated total antioxidant capacity (TAC) and total oxidant status (TOS) in saliva of periodontitis patients compared to healthy controls and their relationship with periodontopathic bacteria and periodontal disease severity. Unstimulated saliva was collected from 45 patients with generalized severe periodontitis and 37 healthy individuals and the TAC/TOS were measured. In addition, salivary levels of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Fusobacterium nucleatum in saliva were measured. Salivary TAC was lower in periodontitis patients compared to healthy controls. Moreover, a significant negative correlation of salivary TAC with clinical attachment loss was observed in periodontitis patients. No significant difference in the salivary TOS was observed between periodontitis patients and healthy controls. Bacterial load was enhanced in periodontitis patients and exhibited correlation with periodontal disease severity but not with salivary TAC/TOS. Our data suggest that changes in antioxidant capacity in periodontitis patients are not associated with increased bacterial load and are probably due to a dysregulated immune response. PMID:26779448

  12. Differential bacterial load on components of total knee prosthesis in patients with prosthetic joint infection.

    PubMed

    Holinka, Johannes; Pilz, Magdalena; Hirschl, Alexander M; Graninger, Wolfgang; Windhager, Reinhard; Presterl, Elisabeth

    2012-10-01

    The purpose of our study was to evaluate and quantify the bacterial adherence on different components of total knee prosthesis with the sonication culture method. Explanted components of all patients with presumptive prosthetic or implant infection were treated by sonication separately in sterile containers to dislodge the adherent bacteria from the surfaces and cultured. The bacterial load of the different knee components (femur, tibia, PE-inlay and patella) was evaluated by counting of colony-forming units (CFU) dislodged from the components surfaces using the sonication culture method. Overall, 27 patients had positive sonication cultures of explanted total knee prostheses. Microorganisms were detected from 88 of 100 explanted components. Twenty femoral components were culture positive and 7 negative, 23 tibial components as well as 23 polyethylene (PE) platforms had positive microorganism detection from the surface. Staphylococcus epidermidis adhered to the highest number of components whereas Staphylococcus aureus yielded the highest load of CFU in the sonication cultures. Although not significant, PE-inlays and tibial components were most often affected. The highest CFU count was detected in polyethylene components. The sonication culture method is a reliable method to detect bacteria from the components. Additionally, the results demonstrate that bacterial adherence is not affecting a single component of knee prosthesis only. Thus, in septic revision surgery partial prosthetic exchange or exchange of single polyethylene components alone may be not sufficient.

  13. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    PubMed

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  14. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation

    PubMed Central

    Boix-Amorós, Alba; Collado, Maria C.; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 106 bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, “planktonic” state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system. PMID:27148183

  15. Effects of different antibiotic classes on airway bacteria in stable COPD using culture and molecular techniques: a randomised controlled trial

    PubMed Central

    Brill, Simon E; Law, Martin; El-Emir, Ethaar; Allinson, James P; James, Phillip; Maddox, Victoria; Donaldson, Gavin C; McHugh, Timothy D; Cookson, William O; Moffatt, Miriam F; Nazareth, Irwin; Hurst, John R; Calverley, Peter M A; Sweeting, Michael J; Wedzicha, Jadwiga A

    2015-01-01

    Background Long-term antibiotic therapy is used to prevent exacerbations of COPD but there is uncertainty over whether this reduces airway bacteria. The optimum antibiotic choice remains unknown. We conducted an exploratory trial in stable patients with COPD comparing three antibiotic regimens against placebo. Methods This was a single-centre, single-blind, randomised placebo-controlled trial. Patients aged ≥45 years with COPD, FEV1<80% predicted and chronic productive cough were randomised to receive either moxifloxacin 400 mg daily for 5 days every 4 weeks, doxycycline 100 mg/day, azithromycin 250 mg 3 times a week or one placebo tablet daily for 13 weeks. The primary outcome was the change in total cultured bacterial load in sputum from baseline; secondary outcomes included bacterial load by 16S quantitative PCR (qPCR), sputum inflammation and antibiotic resistance. Results 99 patients were randomised; 86 completed follow-up, were able to expectorate sputum and were analysed. After adjustment, there was a non-significant reduction in bacterial load of 0.42 log10 cfu/mL (95% CI −0.08 to 0.91, p=0.10) with moxifloxacin, 0.11 (−0.33 to 0.55, p=0.62) with doxycycline and 0.08 (−0.38 to 0.54, p=0.73) with azithromycin from placebo, respectively. There were also no significant changes in bacterial load measured by 16S qPCR or in airway inflammation. More treatment-related adverse events occurred with moxifloxacin. Of note, mean inhibitory concentrations of cultured isolates increased by at least three times over placebo in all treatment arms. Conclusions Total airway bacterial load did not decrease significantly after 3 months of antibiotic therapy. Large increases in antibiotic resistance were seen in all treatment groups and this has important implications for future studies. Trial registration number clinicaltrials.gov (NCT01398072). PMID:26179246

  16. Gastroesophageal Reflux is Not Associated with Dental Erosion in Children

    PubMed Central

    Wild, Yvette K.; Heyman, Melvin B.; Vittinghoff, Eric; Dalal, Deepal H.; Wojcicki, Janet M.; Clark, Ann L.; Rechmann, Beate; Rechmann, Peter

    2011-01-01

    Background & Aims Dental erosion is a complication of gastroesophageal reflux (GER) in adults; in children, it is not clear if GER has a role in dental pathologic conditions. Dietary intake, oral hygiene, high bacterial load, and decreased salivary flow might contribute independently to GER development or dental erosion, but their potential involvement in dental erosion from GER is not understood. We investigated the prevalence of dental erosion among children with and without GER symptoms, and whether salivary flow rate or bacterial load contribute to location-specific dental erosion. Methods We performed a cross-sectional study of 59 children (ages 9–17 y) with symptoms of GER and 20 asymptomatic children (controls); all completed a questionnaire on dietary exposure. Permanent teeth were examined for erosion into dentin, erosion locations, and affected surfaces. The dentist was not aware of GER status, nor was the gastroenterologist aware of dental status. Stimulated salivary flow was measured and salivary bacterial load was calculated for total bacteria, Streptococcus mutans and Lactobacilli. Results Controlling for age, dietary intake, and oral hygiene, there was no association between GER symptoms and dental erosion, by tooth location or affected surface. Salivary flow did not correlate with GER symptoms or erosion. Erosion location and surface were independent of total bacteria and levels of Streptococcus mutans and Lactobacilli. Conclusions Location-specific dental erosion is not associated with GER, salivary flow, or bacterial load. Prospective studies are required to determine the pathogenesis of GER-associated dental erosion and the relationship between dental caries to GER and dental erosion. PMID:21820389

  17. Gastroesophageal reflux is not associated with dental erosion in children.

    PubMed

    Wild, Yvette K; Heyman, Melvin B; Vittinghoff, Eric; Dalal, Deepal H; Wojcicki, Janet M; Clark, Ann L; Rechmann, Beate; Rechmann, Peter

    2011-11-01

    Dental erosion is a complication of gastroesophageal reflux (GER) in adults; in children, it is not clear if GER has a role in dental pathologic conditions. Dietary intake, oral hygiene, high bacterial load, and decreased salivary flow might contribute independently to GER development or dental erosion, but their potential involvement in dental erosion from GER is not understood. We investigated the prevalence of dental erosion among children with and without GER symptoms, and whether salivary flow rate or bacterial load contribute to location-specific dental erosion. We performed a cross-sectional study of 59 children (ages, 9-17 y) with symptoms of GER and 20 asymptomatic children (controls); all completed a questionnaire on dietary exposure. Permanent teeth were examined for erosion into dentin, erosion locations, and affected surfaces. The dentist was not aware of GER status, and the gastroenterologist was not aware of dental status. Stimulated salivary flow was measured and salivary bacterial load was calculated for total bacteria, Streptococcus mutans, and Lactobacilli. Controlling for age, dietary intake, and oral hygiene, there was no association between GER symptoms and dental erosion by tooth location or affected surface. Salivary flow did not correlate with GER symptoms or erosion. Erosion location and surface were independent of total bacteria and levels of Streptococcus mutans and Lactobacilli. Location-specific dental erosion is not associated with GER, salivary flow, or bacterial load. Prospective studies are required to determine the pathogenesis of GER-associated dental erosion and the relationship between dental caries to GER and dental erosion. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater.

    PubMed

    Evans, C A; Coombes, P J; Dunstan, R H

    2006-01-01

    The microbiological and chemical quality of tank-stored rainwater is impacted directly by roof catchment and subsequent run-off contamination, via direct depositions by birds and small mammals, decay of accumulated organic debris, and atmospheric deposition of airborne micro-organisms and chemical pollutants. Previous literature reports on roof water quality have given little consideration to the relative significance of airborne micro-organisms. This study involved analyses of direct roof run-off at an urban housing development in Newcastle, on the east coast of Australia. A total of 77 samples were collected during 11 separate rainfall events, and microbial counts and mean concentrations of several ionic contaminants were matched to climatic data corresponding to each of the monitored events. Conditions both antecedent to, and those prevailing during each event, were examined to investigate the influence of certain meteorological parameters on the bacterial composition of the roof water and indirectly assess the relative contribution of airborne micro-organisms to the total bacterial load. Results indicated that airborne micro-organisms represented a significant contribution to the bacterial load of roof water at this site, and that the overall contaminant load was influenced by wind velocities, while the profile (composition) of the load varied with wind direction. The implications of these findings to the issues of tank water quality and health risk analysis, appropriate usage and system design are discussed.

  19. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  20. Influence of sulfhydryl sites on metal binding by bacteria

    NASA Astrophysics Data System (ADS)

    Nell, Ryan M.; Fein, Jeremy B.

    2017-02-01

    The role of sulfhydryl sites within bacterial cell envelopes is still unknown, but the sites may control the fate and bioavailability of metals. Organic sulfhydryl compounds are important complexing ligands in aqueous systems and they can influence metal speciation in natural waters. Though representing only approximately 5-10% of the total available binding sites on bacterial surfaces, sulfhydryl sites exhibit high binding affinities for some metals. Due to the potential importance of bacterial sulfhydryl sites in natural systems, metal-bacterial sulfhydryl site binding constants must be determined in order to construct accurate models of the fate and distribution of metals in these systems. To date, only Cd-sulfhydryl binding has been quantified. In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low metal loading conditions, and another more abundant site that we term non-sulfhydryl sites that becomes important at high metal loadings. The resulting calculated stability constants do not vary significantly as a function of metal loading and yield reasonable fits to the observed adsorption behaviors as a function of both pH and metal loading. We use the results to calculate the speciation of metals bound by the bacterial envelope in realistic bacteria-bearing, heavy metal contaminated systems in order to demonstrate the potential importance of metal-sulfhydryl binding in the budget of bacterially-adsorbed metals under low metal-loading conditions.

  1. Community structure of denitrifying and total bacteria during nitrogen accumulation in an ammonia-loaded biofilter.

    PubMed

    Yasuda, T; Waki, M; Fukumoto, Y; Hanajima, D; Kuroda, K; Suzuki, K; Matsumoto, T; Uenishi, H

    2017-12-01

    To obtain insight into the complex behaviour of denitrifying and total bacterial groups during the nitrogen accumulation process in an ammonia-loaded biofiltration system. Denitrifying and total bacterial communities in a laboratory-scale rockwool biofilter with intermittent water recirculation were analysed by using denaturing gradient gel electrophoresis targeting nosZ and metabarcoding sequencing of the 16S rRNA gene. Gene abundance was evaluated by quantitative PCR. The nosZ number increased from 6·59 × 10 6 to 3·33 × 10 8 copies per gram dry sample over the 436 days of operation, during which nitrogen mass balance errors increased to 39%. The nosZ sequences associated with the genera Castellaniella, Hyphomicrobium and Pseudomonas were detected. Metabarcoding sequencing analysis indicated that the proportions of the genera for which at least one denitrifying strain or species possessing nosZ had been characterized corresponded well to the nitrogen loss. In addition, the genus Nitrosococcus (γ-proteobacteria) increased its relative abundance at days 317 and 436. The increased proportion of denitrifying bacteria in this ammonia-loaded biofiltration system could be related to the nitrogen loss. These results will help to clarify the complex behaviour of nitrifiers and denitrifiers within ammonia-loaded biofiltration systems. © 2017 The Society for Applied Microbiology.

  2. Association between nasopharyngeal load of Streptococcus pneumoniae, viral coinfection, and radiologically confirmed pneumonia in Vietnamese children.

    PubMed

    Vu, Huong Thi Thu; Yoshida, Lay Myint; Suzuki, Motoi; Nguyen, Hien Anh Thi; Nguyen, Cat Dinh Lien; Nguyen, Ai Thi Thuy; Oishi, Kengo; Yamamoto, Takeshi; Watanabe, Kiwao; Vu, Thiem Dinh

    2011-01-01

    The interplay between nasopharyngeal bacterial carriage, viral coinfection, and lower respiratory tract infections (LRTIs) is poorly understood. We explored this association in Vietnamese children aged less than 5 years. A hospital-based case-control study of pediatric LRTIs was conducted in Nha Trang, Vietnam. A total of 550 hospitalized children (274 radiologically confirmed pneumonia [RCP] and 276 other LRTIs) were enrolled and 350 healthy controls were randomly selected from the community. Polymerase chain reaction-based methods were used to measure bacterial loads of Streptococcus pneumoniae (SP), Haemophilus influenzae, and Moraxella catarrhalis and to detect 13 respiratory viruses and bacterial serotypes in nasopharyngeal samples of study participants. The median nasopharyngeal bacterial load of SP was substantially higher in children with RCP compared with healthy controls or children with other LRTIs (P < 0.001). SP load was 15-fold higher in pneumonia children with viral coinfection compared with those children without viral coinfection (1.4 x 10⁷/mL vs. 9.1 x 10⁵/mL; P 0.0001). SP load was over 200-fold higher in serotypeable SP compared with nontypeable SP (2.5 x 10⁶/mL vs. 1 x 10⁴/mL; P < 0.0001). These associations were independent of potential confounders in multiple regression models. No clear association was found between nasopharyngeal load of Haemophilus influenzae or Moraxella catarrhalis and viral coinfection in either RCP or other LRTIs groups. An increased load of SP in the nasopharynx was associated with RCP, viral coinfection, and presence of pneumococcal capsule.

  3. Association between bacterial survival and free chlorine concentration during commercial fresh-cut produce wash operation.

    PubMed

    Luo, Yaguang; Zhou, Bin; Van Haute, Sam; Nou, Xiangwu; Zhang, Boce; Teng, Zi; Turner, Ellen R; Wang, Qin; Millner, Patricia D

    2018-04-01

    Determining the minimal effective free chlorine (FC) concentration for preventing pathogen survival and cross-contamination during produce washing is critical for developing science- and risk-based food safety practices. The correlation between dynamic FC concentrations and bacterial survival was investigated during commercial washing of chopped Romaine lettuce, shredded Iceberg lettuce, and diced cabbage as pathogen inoculation study during commercial operation is not feasible. Wash water was sampled every 30 min and assayed for organic loading, FC, and total aerobic mesophilic bacteria after chlorine neutralization. Water turbidity, chemical oxygen demand, and total dissolved solids increased significantly over time, with more rapid increases in diced cabbage water. Combined chlorine increased consistently while FC fluctuated in response to rates of chlorine dosing, product loading, and water replenishment. Total bacterial survival showed a strong correlation with real-time FC concentration. Under approximately 10 mg/L, increasing FC significantly reduced the frequency and population of surviving bacteria detected. Increasing FC further resulted in the reduction of the aerobic plate count to below the detection limit (50 CFU/100 mL), except for a few sporadic positive samples with low cell counts. This study confirms that maintaining at least 10 mg/L FC in wash water strongly reduced the likelihood of bacterial survival and thus potential cross contamination of washed produce. Published by Elsevier Ltd.

  4. Impact of different tongue cleaning methods on the bacterial load of the tongue dorsum.

    PubMed

    Bordas, Alice; McNab, Rod; Staples, Angela M; Bowman, Jim; Kanapka, Joe; Bosma, Marylynn P

    2008-04-01

    To assess the extent and duration of the effect of tongue cleaning procedures on bacterial load on the dorsal surface of the tongue. 19 subjects participated in this blinded crossover study. Subjects abstained from oral hygiene, eating and drinking from 22:00 h the previous evening. Tongue samples were collected at baseline and within 15 minutes of one of three procedures: teeth brushing alone; teeth brushing plus tongue scraping; teeth brushing plus tongue cleaning using a high speed vacuum ejector and irrigation with 20 ml antibacterial mouthwash. Subjects then brushed twice daily for 3 days apart from the second group who additionally scraped their tongue twice daily. On day 4, baseline and post-treatment samples were collected as per day 1. Bacteria (total anaerobes, Gram-negative anaerobes, VSC-producing bacteria and Streptococcus saliuarius) were enumerated using appropriate selective media. The tongue dorsum was colonized by all 4 bacterial categories (log(10) 6-8 cfu/sample). For subjects who brushed their teeth only, there was a significant reduction from baseline for S. saliuarius only. In contrast, tooth brushing plus tongue scraping resulted in statistically significant reductions from baseline for all bacterial categories (range log(10) 0.11-0.40 cfu/sample). Highly statistically significant reductions (log(10) 1.11-1.96 cfu/sample) were observed for subjects who underwent thorough tongue cleaning with the saliva ejector/mouthwash. To determine longevity of treatment effects, baseline bacterial loads for days 1 and 4 were compared. Only daily tongue scraping resulted in statistical significant reduction in baseline microbial loads on day 4. While mechanical tongue cleaning with or without chemical intervention can reduce bacterial load on the tongue, this effect is transient, and regular tongue cleaning is required to provide a long lasting (overnight) reduction in bacterial numbers. Nevertheless, tongue cleaning is an oral hygiene procedure that is little practiced due to discomfort and/or lack of awareness on the part of dental professionals and their patients.

  5. Implant Dentistry: Monitoring of Bacteria Along the Transmucosal Passage of the Healing Screw in Absence of Functional Load

    PubMed Central

    MEYNARDI, F.; PASQUALINI, M.E.; ROSSI, F.; DAL CARLO, L.; NARDONE, M.; BAGGI, L.

    2016-01-01

    SUMMARY Purpose To assess the changes in bacterial profile along the transmucosal path of healing screws placed immediately after insertion of two-piece endosseus implants during the 4-month osseointegration phase, in absence of functional load. Materials and methods Two site-specific samples were collected at the peri-implant mucosa of the healing screws of 80 two-piece implants, for a total of 640 samples. Implants placement was performed following a single protocol with flapless technique, in order to limit bacterial contamination of the surgical site. Identical healing screws (5 mm diameter/4 mm height) were used for each of the 80 implants. During the 4 months of the study, the patients followed a standard oral care regimen with no special hygiene maneuvers at the collection sites. Results The present research documents that during the 4-month period prior to application of function load the bacterial profile of all sites exhibited a clear prevalence of cocci at the interface between implant neck and osteoalveolar crest margin. Conclusions A potentially pathogenic bacterial flora developed only along the peri-implant transmucosal path. PMID:28280528

  6. Assessment of carbon nanotubes and silver nanoparticles loaded clays as adsorbents for removal of bacterial contaminants from water sources.

    PubMed

    Hassouna, M E M; ElBably, M A; Mohammed, Asmaa N; Nasser, M A G

    2017-02-01

    This work evaluated the antimicrobial efficacy of kaolin clay and its loaded forms with carbon nanotubes (CNTs) and silver nanoparticles (AgNPs) against bacterial isolates from different water supplies (tap, underground and surface water) in addition to wastewater. A total of 160 water samples were collected from different water sources in the investigated districts. Samples were cultured for isolation and serological identification of pathogenic bacteria. AgNPs were synthesized by a typical one-step synthesis protocol, where CNTs were carried out in a reactor employing the double bias-assisted hot filament chemical vapor deposition method. Both were characterized using transmission electron microscopy, infrared and X-ray fluorescence (XRF) spectroscopy. The antimicrobial efficacy of each of natural kaolin clay, AgNPs- and CNTs-loaded clays were evaluated by their application in four concentrations (0.01, 0.03, 0.05 and 0.1 ppm) at different contact times (5 min, 15 min, 30 min and 2 h). AgNPs-loaded clays at concentrations of 0.05 and 0.1 mg/l for 2 h contact time exhibited a higher bactericidal efficacy on Escherichia coli and Salmonella spp. (70, 70, 80 and 90%, respectively) compared to CNTs-loaded clay. Concluding, the application of AgNPs-loaded clay for removal of water bacterial contaminants at a concentration of 0.1 ppm for 2 h contact times resulted in highly effective removals.

  7. New dosing strategies for an old antibiotic: pharmacodynamics of front-loaded regimens of colistin at simulated pharmacokinetics in patients with kidney or liver disease.

    PubMed

    Rao, Gauri G; Ly, Neang S; Haas, Curtis E; Garonzik, Samira; Forrest, Alan; Bulitta, Jurgen B; Kelchlin, Pamela A; Holden, Patricia N; Nation, Roger L; Li, Jian; Tsuji, Brian T

    2014-01-01

    Increasing evidence suggests that colistin monotherapy is suboptimal at currently recommended doses. We hypothesized that front-loading provides an improved dosing strategy for polymyxin antibiotics to maximize killing and minimize total exposure. Here, we utilized an in vitro pharmacodynamic model to examine the impact of front-loaded colistin regimens against a high bacterial density (10(8) CFU/ml) of Pseudomonas aeruginosa. The pharmacokinetics were simulated for patients with hepatic (half-life [t1/2] of 3.2 h) or renal (t1/2 of 14.8 h) disease. Front-loaded regimens (n=5) demonstrated improvement in bacterial killing, with reduced overall free drug areas under the concentration-time curve (fAUC) compared to those with traditional dosing regimens (n=14) with various dosing frequencies (every 12 h [q12h] and q24h). In the renal failure simulations, front-loaded regimens at lower exposures (fAUC of 143 mg · h/liter) obtained killing activity similar to that of traditional regimens (fAUC of 268 mg · h/liter), with an ∼97% reduction in the area under the viable count curve over 48 h. In hepatic failure simulations, front-loaded regimens yielded rapid initial killing by up to 7 log10 within 2 h, but considerable regrowth occurred for both front-loaded and traditional regimens. No regimen eradicated the high bacterial inoculum of P. aeruginosa. The current study, which utilizes an in vitro pharmacodynamic infection model, demonstrates the potential benefits of front-loading strategies for polymyxins simulating differential pharmacokinetics in patients with hepatic and renal failure at a range of doses. Our findings may have important clinical implications, as front-loading polymyxins as a part of a combination regimen may be a viable strategy for aggressive treatment of high-bacterial-burden infections.

  8. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: Associations with uterine diseases and reproductive outcome.

    PubMed

    Bicalho, M L S; Santin, T; Rodrigues, M X; Marques, C E; Lima, S F; Bicalho, R C

    2017-04-01

    We investigated the microbiota found in the vaginas of Holstein dairy cows during the transition period and described the differences in bacterial composition and total bacterial load (TBL) associated with disease and fertility. Vaginal swabs were collected at -7, 0, 3, and 7 d relative to parturition from 111 dairy cows housed on a commercial dairy farm near Ithaca, New York. Microbiota were characterized by next-generation DNA sequencing of the bacterial 16S rRNA gene, and TBL was determined by real-time quantitative PCR. We applied repeated-measures ANOVA to evaluate the associations of uterine disease and related risk factors with the microbiota and TBL. We estimated phylum-specific bacterial load by multiplying the TBL by the relative abundance of each phylum observed in the metagenomics results. We confirmed the validity of this approach for estimating bacterial load by enumerating the number of bacteria in an artificial sample mixed in vitro and in clinical and healthy vaginal samples. Phyla associated with uterine disease and related risk factors were Proteobacteria, Fusobacteria, and Bacteroidetes. Cows with retained placenta and healthy cows had similar TBL at the day of parturition, but at d 7 postpartum, cows with retained placenta showed a significantly higher TBL, mainly driven by higher estimated loads of Fusobacteria and Bacteroidetes. Cows diagnosed with metritis had a significantly higher estimated load of Proteobacteria at d -7 and at calving and higher estimated loads of Fusobacteria in the postpartum samples. Additionally, the estimated load of Bacteroidetes at d 7 postpartum was higher for cows diagnosed with endometritis at 35 days in milk. Higher estimated loads of Fusobacteria and Bacteroidetes were also evident in cows with postpartum fever, in primiparous cows, in cows with assisted parturition, and in cows that gave birth to twins. Our findings demonstrated that microbiota composition and TBL were associated with known periparturient risk factors of uterine diseases and reproductive failure, including parity, assisted parturition, and retained fetal membranes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low-Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron-Rated Filters during Process-Specific Filter Validation Testing.

    PubMed

    Folmsbee, Martha

    2015-01-01

    Approximately 97% of filter validation tests result in the demonstration of absolute retention of the test bacteria, and thus sterile filter validation failure is rare. However, while Brevundimonas diminuta (B. diminuta) penetration of sterilizing-grade filters is rarely detected, the observation that some fluids (such as vaccines and liposomal fluids) may lead to an increased incidence of bacterial penetration of sterilizing-grade filters by B. diminuta has been reported. The goal of the following analysis was to identify important drivers of filter validation failure in these rare cases. The identification of these drivers will hopefully serve the purpose of assisting in the design of commercial sterile filtration processes with a low risk of filter validation failure for vaccine, liposomal, and related fluids. Filter validation data for low-surface-tension fluids was collected and evaluated with regard to the effect of bacterial load (CFU/cm(2)), bacterial load rate (CFU/min/cm(2)), volume throughput (mL/cm(2)), and maximum filter flux (mL/min/cm(2)) on bacterial penetration. The data set (∼1162 individual filtrations) included all instances of process-specific filter validation failures performed at Pall Corporation, including those using other filter media, but did not include all successful retentive filter validation bacterial challenges. It was neither practical nor necessary to include all filter validation successes worldwide (Pall Corporation) to achieve the goals of this analysis. The percentage of failed filtration events for the selected total master data set was 27% (310/1162). Because it is heavily weighted with penetration events, this percentage is considerably higher than the actual rate of failed filter validations, but, as such, facilitated a close examination of the conditions that lead to filter validation failure. In agreement with our previous reports, two of the significant drivers of bacterial penetration identified were the total bacterial load and the bacterial load rate. In addition to these parameters, another three possible drivers of failure were also identified: volume throughput, maximum filter flux, and pressure. Of the data for which volume throughput information was available, 24% (249/1038) of the filtrations resulted in penetration. However, for the volume throughput range of 680-2260 mL/cm(2), only 9 out of 205 bacterial challenges (∼4%) resulted in penetration. Of the data for which flux information was available, 22% (212/946) resulted in bacterial penetration. However, in the maximum filter flux range from 7 to 18 mL/min/cm(2), only one out of 121 filtrations (0.6%) resulted in penetration. A slight increase in filter failure was observed in filter bacterial challenges with a differential pressure greater than 30 psid. When designing a commercial process for the sterile filtration of a low-surface-tension fluid (or any other potentially high-risk fluid), targeting the volume throughput range of 680-2260 mL/cm(2) or flux range of 7-18 mL/min/cm(2), and maintaining the differential pressure below 30 psid, could significantly decrease the risk of validation filter failure. However, it is important to keep in mind that these are general trends described in this study and some test fluids may not conform to the general trends described here. Ultimately, it is important to evaluate both filterability and bacterial retention of the test fluid under proposed process conditions prior to finalizing the manufacturing process to ensure successful process-specific filter validation of low-surface-tension fluids. An overwhelming majority of process-specific filter validation (qualification) tests result in the demonstration of absolute retention of test bacteria by sterilizing-grade membrane filters. As such, process-specific filter validation failure is rare. However, while bacterial penetration of sterilizing-grade filters during process-specific filter validation is rarely detected, some fluids (such as vaccines and liposomal fluids) have been associated with an increased incidence of bacterial penetration. The goal of the following analysis was to identify important drivers of process-specific filter validation failure. The identification of these drivers will possibly serve to assist in the design of commercial sterile filtration processes with a low risk of filter validation failure. Filter validation data for low-surface-tension fluids was collected and evaluated with regard to bacterial concentration and rates, as well as filtered fluid volume and rate (Pall Corporation). The master data set (∼1160 individual filtrations) included all recorded instances of process-specific filter validation failures but did not include all successful filter validation bacterial challenge tests. This allowed for a close examination of the conditions that lead to process-specific filter validation failure. As previously reported, two significant drivers of bacterial penetration were identified: the total bacterial load (the total number of bacteria per filter) and the bacterial load rate (the rate at which bacteria were applied to the filter). In addition to these parameters, another three possible drivers of failure were also identified: volumetric throughput, filter flux, and pressure. When designing a commercial process for the sterile filtration of a low-surface-tension fluid (or any other penetrative-risk fluid), targeting the identified bacterial challenge loads, volume throughput, and corresponding flux rates could decrease, and possibly eliminate, the risk of validation filter failure. However, it is important to keep in mind that these are general trends described in this study and some test fluids may not conform to the general trends described here. Ultimately, it is important to evaluate both filterability and bacterial retention of the test fluid under proposed process conditions prior to finalizing the manufacturing process to ensure successful filter validation of low-surface-tension fluids. © PDA, Inc. 2015.

  10. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    USDA-ARS?s Scientific Manuscript database

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  11. The Effect of Vacuum-Assisted Closure on the Bacterial Load and Type of Bacteria: A Systematic Review

    PubMed Central

    Patmo, Aryan S.P.; Krijnen, Pieta; Tuinebreijer, Wim E.; Breederveld, Roelf S.

    2014-01-01

    Significance: A high bacterial load interferes with the healing process of a wound. Vacuum-assisted closure (VAC) is a wound healing therapy that utilizes a dressing system that continuously or intermittently applies a negative pressure to the wound surface. Recent Advances: VAC stimulates wound healing, but data on changes in the bacterial load and changes in the bacterial spectrum are scarce. Critical Issues: While VAC supposedly removes bacteria from the treated wounds and therefore reduces the risk of infection, this relationship has not yet been clinically proven. If VAC increases the bacterial load instead of decreasing it, then this may be a reason not to use VAC on certain types of wounds. Only seven small and heterogeneous studies reporting on the relationship between VAC usage and the bacterial load and type of bacteria in the treated wounds in clinical practice were found in the literature. Although there is some low quality evidence that VAC therapy does not change the bacterial load, no definite conclusions on changes in the bacterial load and type of bacteria during VAC can be drawn. Future Directions: Prospectively monitoring changes in the bacterial load and bacterial spectrum in patients that will receive VAC treatment on indication might be an effective way to find out whether it should indeed be used on specific wounds. PMID:24804158

  12. A 10-day vacancy period after cleaning and disinfection has no effect on the bacterial load in pig nursery units.

    PubMed

    Luyckx, K; Millet, S; Van Weyenberg, S; Herman, L; Heyndrickx, M; Dewulf, J; De Reu, K

    2016-10-19

    Biosecurity measures such as cleaning, disinfection and a vacancy period between production cycles on pig farms are essential to prevent disease outbreaks. No studies have tested the effect of a longer vacancy period on bacterial load in nursery units. The present study evaluated the effect of a 10-day vacancy period in pig nursery units on total aerobic flora, Enterococcus spp., Escherichia coli, faecal coliforms and methicillin resistant Staphylococcus aureus (MRSA). Three vacancy periods of 10 days were monitored, each time applied in 3 units. The microbiological load was measured before disinfection and at 1, 4, 7 and 10 days after disinfection. No significant decrease or increase in E. coli, faecal coliforms, MRSA and Enterococcus spp. was noticed. Total aerobic flora counts were the lowest on day 4 after disinfection (i.e. 4.07 log CFU/625 cm 2 ) (P < 0.05), but the difference with other sampling moments was limited (i.e. 0.6 log CFU/625 cm 2 ) and therefore negligible. Furthermore, this observation on day 4 was not confirmed for the other microbiological parameters. After disinfection, drinking nipples were still mostly contaminated with total aerobic flora (i.e. 5.32 log CFU/625 cm 2 ) and Enterococcus spp. (i.e. 95 % of the samples were positive) (P < 0.01); the feeding troughs were the cleanest location (total aerobic flora: 3.53 log CFU/625 cm 2 and Enterococcus spp.: 50 % positive samples) (P < 0.01). This study indicates that prolonging the vacancy period in nursery units to 10 days after disinfection with no extra biosecurity measures has no impact on the environmental load of total aerobic flora, E. coli, faecal coliforms, MRSA and Enterococcus spp..

  13. Bacterial diversity in different regions of gastrointestinal tract of Giant African snail (Achatina fulica).

    PubMed

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-12-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. © 2012 The Authors. Published by Blackwell Publishing Ltd.

  14. Bacterial diversity in different regions of gastrointestinal tract of Giant African Snail (Achatina fulica)

    PubMed Central

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-01-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. PMID:23233413

  15. Effects of the antimicrobial peptide protegrine 1 on sperm viability and bacterial load of boar seminal doses.

    PubMed

    Sancho, S; Briz, M; Yeste, M; Bonet, S; Bussalleu, E

    2017-10-01

    The presence of bacteria adversely affects boar sperm quality of seminal doses intended for artificial insemination. Currently, the most common measure to prevent bacteriospermia is the addition of antibiotics in semen extenders; however, mounting evidence shows that microbial resistance exists. A promising alternative to replace antibiotics are antimicrobial peptides. In this study, the effects of the antimicrobial peptide protegrine 1 (PG1) on the sperm viability and bacterial load of boar seminal doses were evaluated. Three different concentrations of PG1 (2.5, 25 and 100 μg/ml) were tested over a storing period of 10 days at 17°C. Sperm viability was analysed by fluorescence microscopy (SYBR14/propidium iodide), and bacterial load was assessed by plating 100 μl of each sample in Luria-Bertani medium and incubated at 37°C for 72 hr under aerobic conditions. Protegrine 1 was effective in controlling the bacterial load in all the assessed concentrations (p < .05), reaching the lowest values at the highest concentrations of the antimicrobial peptide. Nevertheless, sperm viability was significantly (p < .05) reduced by all tested concentrations of this peptide, the most cytotoxic effects being observed at the highest PG1 concentrations. Despite these results, the use of PG1 as an alternative to antibiotics cannot be totally discarded, as further studies using the truncated form of this peptide are needed. © 2017 Blackwell Verlag GmbH.

  16. Furnishing spaceship environment: evaluation of bacterial biofilms on different materials used inside International Space Station.

    PubMed

    Perrin, Elena; Bacci, Giovanni; Garrelly, Laurent; Canganella, Francesco; Bianconi, Giovanna; Fani, Renato; Mengoni, Alessio

    2018-05-08

    Performed inside International Space Station (ISS) from 2011 to 2016, VIABLE (eValuatIon And monitoring of microBiofiLms insidE International Space Station) ISS was a long-lasting experiment aimed at evaluating the bacterial contamination on different surface space materials subjected to different pre-treatment, to provide useful information for future space missions. In this work, surfaces samples of the VIABLE ISS experiment were analyzed to determine both the total bacterial load (ATP-metry, qPCR) and the composition of the microbial communities (16S rRNA genes amplicon sequencing). Data obtained showed a low bacterial contamination of all the surfaces, with values in agreement with those allowed inside ISS, and with a taxonomic composition similar to those found in previous studies (Enterobacteriales, Bacillales, Lactobacillales and Actinomycetales). No pre-treatment or material effect were observed on both the bacterial load and the composition of the communities, but for both a slight effect of the position (expose/not expose to air) was observed. In conclusion, under the conditions used for VIABLE ISS, no material or pre-treatment seems to be better than others in terms of quantity and type of bacterial contamination. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. DNA BASED MOLECULAR METHODS FOR BACTERIAL SOURCE TRACKING IN WATERSHEDS

    EPA Science Inventory

    Point and non-point pollution sources of fecal pollution on a watershed adversely impact the quality of drinking source waters and recreational waters. States are required to develop total maximum daily loads (TMDLs) and devise best management practices (BMPs) to reduce the po...

  18. Baby Shampoo Versus Povidone-Iodine or Isopropyl Alcohol in Reducing Eyelid Skin Bacterial Load.

    PubMed

    Garcia, Giancarlo A; Nguyen, Christine V; Yonkers, Marc A; Tao, Jeremiah P

    Baby shampoo is used as an alternative surgical skin preparation, but the evidence supporting its use is scarce with no descriptions of efficacy in the periocular region. The authors compare the efficacy of baby shampoo, povidone-iodine (PI, Betadine) and isopropyl alcohol (IA) in reducing eyelid skin bacterial load. Prospective, randomized, comparative, and interventional trial. Bacterial load on adult, human eyelid skin was quantitated before and after cleansing with 1) dilute baby shampoo, 2) 10% PI, or 3) 70% IA. Paired skin swabs were collected from a 1 cm area of the upper eyelid of subjects before and after a standardized surgical scrub technique. Samples were cultured on 5% sheep blood agar for 24 hours. The number of colony forming units (CFU) was assessed and bacterial load per square centimeter of eyelid skin was quantified. Baseline and postcleansing samples were assessed from 42 eyelids of 42 subjects (n = 14 for each of baby shampoo, PI, and IA). Before cleansing, similar amounts of bacterial flora were grown from all specimens (median log CFU/cm = 2.04 before baby shampoo, 2.01 before PI, 2.11 before IA; p > 0.05). All 3 cleansing agents significantly reduced the bacterial load (p < 0.01 for each). There was no statistically significant difference in postcleansing bacterial load between the 3 cleansing agents (median log CFU/cm = 0.48 after baby shampoo, 0.39 after PI, 0.59 after IA; p > 0.05). Change from baseline in bacterial load was statistically similar for all 3 agents (median reduction in log CFU/cm = 1.28 with baby shampoo, 1.57 with PI, 1.40 with IA; p > 0.05). These corresponded to bacterial load reductions of 96.3%, 96.6%, and 98.4% for baby shampoo, PI, and IA, respectively. Baby shampoo achieved comparable diminution in eyelid skin bacterial load to PI or IA. These data suggest baby shampoo may be an effective preoperative cleansing agent.

  19. Effect of microbial activities on stored raw buffalo hide.

    PubMed

    Shede, P N; Kanekar, P P; Polkade, A V; Sarnaik, S S; Dhakephalkar, P K; Chiplonkar, S A; Nilegaonkar, S S

    2009-11-01

    'Keeping qualities' of hides are dependent on the total microbial flora associated with the hides and the biochemical changes brought about by these microorganisms during short-term storage at ambient temperature (28 +/- 2 degrees C). It was evident that within first 24 hr of hide's ambient storage, bacterial load was raised to 8.8 log cfu g(-1) hide from 6.1 log cfu g(-1) hide. Nonlinear parabolic increase in release of hydroxyproline and tyrosine from stored hide was observed starting from 0 hr and confirming proteolytic activities. Continuous release of CO2 from the stored hide suggested its mineralization. Exponential release of free fatty acids during storage indicated simultaneous lipolysis. Thus the process of biodegradation during the course of ambient storage of hide piece was found to progress steadily and seems to be interrelated as well as very complex. During the storage period, the liquefaction of hide piece was also observed visually within 96 hr. Present studies of assessment of bacterial activities on hide with respect to total bacterial load, release of amino acids, free fatty acids and evolved CO2 provide data that can be used to formulate and evaluate hide curing agent(s) other than salt, thus rendering leather industry a platform to design bio-based technologies for efficient and ecofriendly preservation of raw materials.

  20. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm.

    PubMed

    Gosau, Martin; Hahnel, Sebastian; Schwarz, Frank; Gerlach, Till; Reichert, Torsten E; Bürgers, Ralf

    2010-08-01

    The aim of this human in vivo pilot study was to evaluate the efficacy of six antimicrobial agents on the surface decontamination of an oral biofilm attached to titanium implants. For in vivo biofilm formation, we fixed titanium specimens to individual removable acrylic upper jaw splints (14 specimens in every splint), which were worn by four volunteers overnight for 12 h. The specimens were then treated with different antimicrobial agents for 1 min (Sodium hypochlorite, Hydrogen peroxide 3%, Chlorhexidingluconate 0.2%, Plax, Listerine, citric acid 40%). Afterwards, we quantified the total bacterial load and the viability of adhering bacteria by live or dead cell labelling in combination with fluorescence microscopy. The total bacterial load on the titanium surfaces was significantly higher after incubation in the control solution phosphate-buffered saline (PBS) than after disinfection in sodium hypochlorite, hydrogen peroxide, chlorhexidine, Plax, Listerine, and citric acid. Furthermore, a significantly lower ratio between dead and total adhering bacteria (bactericidal effect) was found after incubation in control PBS, Plax mouth rinse, and citric acid than after incubation in sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine. All tested antiseptics seem to be able to reduce the total amount of microorganisms accumulating on titanium surfaces. Furthermore, sodium hypochlorite, hydrogen peroxide, chlorhexidine, and Listerine showed a significant bactericidal effect against adhering bacteria.

  1. Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps

    PubMed Central

    Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.

    2015-01-01

    Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624

  2. Use of the Hydrological Simulation Program-FORTRAN and bacterial source tracking for development of the fecal coliform total maximum daily load (TMDL) for Blacks Run, Rockingham County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Blacks Run, in Rockingham County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Blacks Run. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Blacks Run watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Blacks Run. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Blacks Run. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 40 to 7,000 colonies per 100 milliliters, and peak concentrations during storm-flow periods ranged from 33,000 to 260,000 colonies per 100 milliliters. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were cats, cattle, deer, dogs, ducks, geese, horses, humans, muskrats, poultry, raccoons, and sheep. According to model results, a 95-percent reduction in the current fecal coliform load delivered from the watershed to Blacks Run would result in compliance with the designated water-quality goals and associated TMDL.

  3. Use of the Hydrological Simulation Program-FORTRAN and Bacterial Source Tracking for Development of the fecal coliform Total Maximum Daily Load (TMDL) for Accotink Creek, Fairfax County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Accotink Creek, in Fairfax County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Accotink Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Accotink Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Accotink Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Accotink Creek. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 25 to 800 colonies per 100 milliliters, and peak concentrations during storm-flow periods ranged from 19,000 to 340,000 colonies per 100 milliliters. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were cats, deer, dogs, ducks, geese, humans, muskrats, and raccoons. According to model results, an 89-percent reduction in the current fecal coliform load delivered from the watershed to Accotink Creek would result in compliance with the designated water-quality goals and associated TMDL.

  4. Impact of egg disinfection of hatching eggs on the eggshell microbiome and bacterial load.

    PubMed

    Olsen, R; Kudirkiene, E; Thøfner, I; Pors, S; Karlskov-Mortensen, P; Li, L; Papasolomontos, S; Angastiniotou, C; Christensen, J

    2017-09-01

    Disinfection of hatching eggs is essential to ensure high quality production of broilers. Different protocols are followed in different hatcheries; however, only limited scientific evidence on how the disinfection procedures impact the microbiome is available. The aim of the present study was to characterize the microbiome and aerobic bacterial load of hatching eggs before disinfection and during the subsequent disinfection steps. The study included a group of visibly clean and a group of visibly dirty eggs. For dirty eggs, an initial wash in chlorine was performed, hereafter all eggs were submitted to two times fumigation and finally spray disinfection. The eggshell microbiome was characterized by sequencing of the total amount of 16S rRNA extracted from each sample, consisting of shell surface swabs of five eggs from the same group. In addition, the number of colony forming units (cfu) under aerobic conditions was established for each disinfection step. The disinfection procedure reduced the bacterial load from more than 104 cfu (initially visibly clean eggs) and 105 cfu (initially visibly dirty eggs) to less than 10 cfu per sample after disinfection for both groups of eggs. The microbiome of both initially visibly clean and initially visibly dirty eggs had the highest abundances of the phyla Firmicutes, Proteobacteria and Bacteroidetes. Within the phyla Firmicutes the relative abundances of Clostridiales decreased while Lactobacillus increased from before to after final disinfection. In conclusion, the investigated disinfection procedure is effective in reducing the bacterial load, and by adding a chlorine wash for initially visibly dirty eggs, the microbiome of initially visibly clean and initially visibly dirty eggs had a highly similar microflora after the final disinfection step. © 2017 Poultry Science Association Inc.

  5. Association of Borrelia and Rickettsia spp. and bacterial loads in Ixodes ricinus ticks.

    PubMed

    Raulf, Marie-Kristin; Jordan, Daniela; Fingerle, Volker; Strube, Christina

    2018-01-01

    In recent years, awareness of coinfections has increased as synergistic or antagonistic effects on interacting bacteria have been observed. To date, several reports on coinfections of ticks with Rickettsia and Borrelia spp. are available. However, associations are rarely described and studies are based on rather low sample sizes. In the present study, coinfections of Ixodes ricinus with these pathogens were investigated by determining their association in a meta-analysis. A total of 5079 tick samples examined for Rickettsia and Borrelia spp. via probe-based quantitative real-time PCR in previous prevalence studies or as submitted diagnostic material were included. In Borrelia-positive ticks, genospecies were determined by Reverse Line Blot. Determination of bacterial loads resulted in an increase between developmental tick stages with highest mean bacterial loads in female ticks (7.96×10 4 in Borrelia single-infected, 4.87×10 5 in Rickettsia single-infected and 3.22×10 5 in Borrelia-Rickettsia coinfected females). The determined Borrelia-Rickettsia tick coinfection rate was 12.3% (626/5079) with a significant difference to the expected coinfection rate of 9.0% (457/5079). A significant slight association as well as correlation between Borrelia and Rickettsia were determined. In addition, a significant interrelation of the bacterial load in coinfected ticks was shown. At the level of Borrelia genospecies, significant weak associations with Rickettsia spp. were detected for B. afzelii, B. garinii/bavariensis, B. valaisiana and B. lusitaniae. The positive association provides evidence for interactions between Borrelia and Rickettsia spp. in the tick vector, presumably resulting in higher bacterial replication rates in the tick vector and possibly the reservoir host. However, coinfection may impact the vector negatively as indicated by an absent increase in coinfection rates from nymphs to adults. Future studies are needed to investigate the underlying mechanisms of the positive association in ticks and possible associations in the vertebrate host as well as the potential influence of environmental factors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Male circumcision significantly reduces prevalence and load of genital anaerobic bacteria.

    PubMed

    Liu, Cindy M; Hungate, Bruce A; Tobian, Aaron A R; Serwadda, David; Ravel, Jacques; Lester, Richard; Kigozi, Godfrey; Aziz, Maliha; Galiwango, Ronald M; Nalugoda, Fred; Contente-Cuomo, Tania L; Wawer, Maria J; Keim, Paul; Gray, Ronald H; Price, Lance B

    2013-04-16

    Male circumcision reduces female-to-male HIV transmission. Hypothesized mechanisms for this protective effect include decreased HIV target cell recruitment and activation due to changes in the penis microbiome. We compared the coronal sulcus microbiota of men from a group of uncircumcised controls (n = 77) and from a circumcised intervention group (n = 79) at enrollment and year 1 follow-up in a randomized circumcision trial in Rakai, Uganda. We characterized microbiota using16S rRNA gene-based quantitative PCR (qPCR) and pyrosequencing, log response ratio (LRR), Bayesian classification, nonmetric multidimensional scaling (nMDS), and permutational multivariate analysis of variance (PerMANOVA). At baseline, men in both study arms had comparable coronal sulcus microbiota; however, by year 1, circumcision decreased the total bacterial load and reduced microbiota biodiversity. Specifically, the prevalence and absolute abundance of 12 anaerobic bacterial taxa decreased significantly in the circumcised men. While aerobic bacterial taxa also increased postcircumcision, these gains were minor. The reduction in anaerobes may partly account for the effects of circumcision on reduced HIV acquisition. The bacterial changes identified in this study may play an important role in the HIV risk reduction conferred by male circumcision. Decreasing the load of specific anaerobes could reduce HIV target cell recruitment to the foreskin. Understanding the mechanisms that underlie the benefits of male circumcision could help to identify new intervention strategies for decreasing HIV transmission, applicable to populations with high HIV prevalence where male circumcision is culturally less acceptable.

  7. A comparative study of the effects of Escherichia coli and Clostridium perfringens upon boar semen preserved in liquid storage.

    PubMed

    Pinart, Elisabeth; Domènech, Esther; Bussalleu, Eva; Yeste, Marc; Bonet, Sergi

    2017-02-01

    The present study compares the sperm quality of boar seminal doses artificially inoculated with Escherichia coli and Clostridium perfringens, and maintained in liquid storage at 15°C for a 9-day period. Seminal doses from 10 sexually mature Piétrain boars were diluted in a Beltsville Thawing Solution (BTS)-based extender and infected either with E. coli or C. perfringens, with bacterial loads ranging from 10 1 to 10 7 cfumL -1 . During storage, the changes in sperm quality were determined by assessing pH, sperm viability, sperm motiliy, sperm morphology, sperm agglutination degree, and sperm-bacteria interaction. The infection of seminal doses led to an alkalinization of the medium, which was of higher extend in doses infected with C. perfringens. The effect of contamination on sperm viability and motility relied on bacterial type and load. Therefore, while E. coli was more harmful than C. perfringens in bacterial loads ranging from 10 1 to 10 6 cfumL -1 , the detrimental impact of C. perfringens was more apparent than that of E. coli at a bacterial load of 10 7 cfumL -1 . Despite sperm morphology not being affected by either bacterial type or load, sperm agglutination and sperm-bacteria interaction were characteristic of doses infected with E. coli, and increased concomintantly with bacterial load and along storage period. In conclusion, the effects of infection by E. coli on sperm quality were dependent of both bacterial load and storage period, whereas the effects of C. perfringens were mainly dependent on the bacterial load, with a threshold at 10 7 cfumL -1 from which the sperm quality of seminal doses was greatly impaired. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effects of agricultural management, land use, and watershed scale on E. coli concentrations in runoff and streamflow

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of surface waters is a critical water quality concern with serious human health implications. Many states use Escherichia coli (E. coli) as an indicator organism for fecal contamination and apply watershed models to develop and support bacterial Total Maximum Daily Loads; howeve...

  9. Influence of Thawing Methods and Storage Temperatures on Bacterial Diversity, Growth Kinetics, and Biogenic Amine Development in Atlantic Mackerel.

    PubMed

    Onyango, S; Palmadottir, H; Tómason, T; Marteinsson, V T; Njage, P M K; Reynisson, E

    2016-11-01

    Limited knowledge is currently available on the influence of fish thawing and subsequent storage conditions on bacterial growth kinetics, succession, and diversity alongside the production of biogenic amines. This study aimed to address these factors during the thawing and subsequent storage of mackerel. Thawing was either done fast in 18°C water for 2 h or slowly at 30°C overnight. Subsequent storage was at 30°C (ambient) for 36 h and 2 to 5°C (refrigerated) for 12 days. The cultivation methods used were total viable counts, hydrogen sulfide-producing bacteria, and Pseudomonas . Maximum growth rate, population density, and lag time were fitted on the counts using the Baranyi model. The bacterial diversity and succession were based on sequencing of 16S rRNA amplicons, and biogenic amines were quantified on high-pressure liquid chromatography-UV. The results show that lag time of hydrogen sulfide-producing bacteria was significantly affected by both thawing methods, and further, the interaction between thawing and storage significantly affected the maximum growth rate of these bacteria. However, the maximum growth rate of Pseudomonas was higher during refrigerated storage compared with storage at ambient temperature. Total viable counts showed longer lag time and reduced growth rate under refrigerated storage. Higher bacterial diversity was correlated to slow thawing and storage at ambient temperature compared with slow thawing and refrigerated storage. Overall, Acinetobacter and Psychrobacter genera were the dominant bacterial populations. The amine levels were low and could not be differentiated along the thawing and storage approaches, despite a clear increase in bacterial load, succession, and diversity. This corresponded well with the low abundance of biogenic amine-producing bacteria, with the exception of the genus Proteus , which was 8.6% in fast-thawed mackerel during storage at ambient temperature. This suggests that the decarboxylation potential is dependent on both microbial load and microbial community structure.

  10. Effect of species, breed, and age on bacterial load in bovine and bubaline semen

    PubMed Central

    Sannat, Chandrahas; Nair, Ajit; Sahu, S. B.; Sahasrabudhe, S. A.; Kumar, Ashish; Gupta, Amit Kumar; Shende, R. K.

    2015-01-01

    Aim: The present study was conducted to investigate the effect of species, breed and age on bacterial load in fresh and frozen semen of Cattle and Buffalo bull. Materials and Methods: Present study covered 56 cow and 10 buffalo bulls stationed at Central Semen Station Anjora, Durg (Chhattisgarh). Impact of breeds on bacterial load in semen was assessed using six breeds of cattle viz. Sahiwal, Gir, Red Sindhi, Tharparkar, Jersey and Holstein Friesian (HF) cross. Cow bulls were categorized into four different groups based on their age (<4 years, 4-5 years, 5-6 years and > 6 years) to study variation among age groups. Bacterial load was measured in fresh and frozen semen samples from these bulls using the standard plate count (SPC) method and count was expressed as colony forming unit (CFU) per ml of semen. Results: Higher bacterial load was reported in fresh (2.36 × 104 ± 1943 CFU/ml) and frozen (1.00 × 10 ± 90 CFU/ml) semen of cow bulls as compared to buffalo bulls (1.95 × 104 ± 2882 and 7.75 × 102 ± 160 CFU/ml in fresh and frozen semen, respectively). Jersey bull showed significantly higher bacterial count (p < 0.05) both in fresh (4.07 × 104 ± 13927 CFU/ml) and frozen (1.92 × 103 ± 178 CFU/ml) semen followed by HF cross, Sahiwal, Gir, Red Sindhi and Tharparkar bull. Bulls aged < 4 years and more than 6 years yielded increased bacterial load in their semen. Although a minor variation was reported between species and among age groups, no significant differences were measured. Conclusion: Bacterial load in semen did not differ significantly between species and age groups; however significant variation was reported among different breeds. Bulls of Jersey breed showed significantly higher bacterial load in semen as compared to the crossbred and indigenous bull. PMID:27047115

  11. Laying date, incubation and egg breakage as determinants of bacterial load on bird eggshells: experimental evidence.

    PubMed

    Soler, Juan José; Ruiz-Rodríguez, Magdalena; Martín-Vivaldi, Manuel; Peralta-Sánchez, Juan Manuel; Ruiz-Castellano, Cristina; Tomás, Gustavo

    2015-09-01

    Exploring factors guiding interactions of bacterial communities with animals has become of primary importance for ecologists and evolutionary biologists during the last years because of their likely central role in the evolution of animal life history traits. We explored the association between laying date and eggshell bacterial load (mesophilic bacteria, Enterobacteriaceae, Staphylococci, and Enterococci) in natural and artificial magpie (Pica pica) nests containing fresh commercial quail (Coturnix coturnix) eggs. We manipulated hygiene conditions by spilling egg contents on magpie and artificial nests and explored experimental effects during the breeding season. Egg breakage is a common outcome of brood parasitism by great spotted cuckoos (Clamator glandarius) on the nests of magpie, one of its main hosts. We found that the treatment increased eggshell bacterial load in artificial nests, but not in magpie nests with incubating females, which suggests that parental activity prevents the proliferation of bacteria on the eggshells in relation to egg breakage. Moreover, laying date was positively related to eggshell bacterial load in active magpie nests, but negatively in artificial nests. The results suggest that variation in parental characteristics of magpies rather than climatic variation during the breeding season explained the detected positive association. Because the eggshell bacterial load is a proxy of hatching success, the detected positive association between eggshell bacterial loads and laying date in natural, but not in artificial nests, suggests that the generalized negative association between laying date and avian breeding success can be, at least partially, explained by differential bacterial effects.

  12. The molecular bacterial load assay replaces solid culture for measuring early bactericidal response to antituberculosis treatment.

    PubMed

    Honeyborne, Isobella; Mtafya, Bariki; Phillips, Patrick P J; Hoelscher, Michael; Ntinginya, Elias N; Kohlenberg, Anke; Rachow, Andrea; Rojas-Ponce, Gabriel; McHugh, Timothy D; Heinrich, Norbert

    2014-08-01

    We evaluated the use of the molecular bacterial load (MBL) assay, for measuring viable Mycobacterium tuberculosis in sputum, in comparison with solid agar and liquid culture. The MBL assay provides early information on the rate of decline in bacterial load and has technical advantages over culture in either form. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Colour of sputum is a marker for bacterial colonisation in chronic obstructive pulmonary disease.

    PubMed

    Miravitlles, Marc; Marín, Alicia; Monsó, Eduard; Vilà, Sara; de la Roza, Cristian; Hervás, Ramona; Esquinas, Cristina; García, Marian; Millares, Laura; Morera, Josep; Torres, Antoni

    2010-05-14

    Bacterial colonisation in chronic obstructive pulmonary disease (COPD) contributes to airway inflammation and modulates exacerbations. We assessed risk factors for bacterial colonisation in COPD. Patients with stable COPD consecutively recruited over 1 year gave consent to provide a sputum sample for microbiologic analysis. Bronchial colonisation by potentially pathogenic microorganisms (PPMs) was defined as the isolation of PPMs at concentrations of > or =102 colony-forming units (CFU)/mL on quantitative bacterial culture. Colonised patients were divided into high (>105 CFU/mL) or low (<105 CFU/mL) bacterial load. A total of 119 patients (92.5% men, mean age 68 years, mean forced expiratory volume in one second [FEV1] [% predicted] 46.4%) were evaluated. Bacterial colonisation was demonstrated in 58 (48.7%) patients. Patients with and without bacterial colonisation showed significant differences in smoking history, cough, dyspnoea, COPD exacerbations and hospitalisations in the previous year, and sputum colour. Thirty-six patients (62% of those colonised) had a high bacterial load. More than 80% of the sputum samples with a dark yellow or greenish colour yielded PPMs in culture. In contrast, only 5.9% of white and 44.7% of light yellow sputum samples were positive (P < 0.001). Multivariate analysis showed an increased degree of dyspnoea (odds ratio [OR] = 2.63, 95% confidence interval [CI] 1.53-5.09, P = 0.004) and a darker sputum colour (OR = 4.11, 95% CI 2.30-7.29, P < 0.001) as factors associated with the presence of PPMs in sputum. Almost half of our population of ambulatory moderate to very severe COPD patients were colonised with PPMs. Patients colonised present more severe dyspnoea, and a darker colour of sputum allows identification of individuals more likely to be colonised.

  14. Biofilm responses to ageing and to a high phosphate load in a bench-scale drinking water system.

    PubMed

    Batté, Magali; Koudjonou, Boniface; Laurent, Patrick; Mathieu, Laurence; Coallier, Josée; Prévost, Michèle

    2003-03-01

    The effects of ageing and of phosphate load on drinking water biofilms developed on a polycarbonate substratum in the pseudo-equilibrium state have been evaluated. Phosphate was added in an amount higher than the stochiometric nutrient requirements of bacteria, at concentrations commonly applied in a drinking water distribution system for corrosion control. Multiple parameters were monitored: heterotrophic plate counts (HPCs), total direct counts (TDCs) and potential exoproteolytic activity (PEPA) in order to characterise changes in bacterial biofilms. The total carbohydrate, amino acid and phosphate contents of biofilms were analysed to characterise and monitor the biochemical composition of the biofilm.The three enumeration methods showed that a pseudo-equilibrium state was reached after 7 weeks of colonisation after which, the bacterial growth rate in the biofilm was 0.1 log per week on average. Bulk phosphate addition doubled the phosphate in the biofilm, but did not affect the other biological, physiological or chemical parameters measured. Polysaccharides increased in the biofilm with ageing and the dynamics of individual carbohydrate synthesis also varied with the age of the biofilm. Once pseudo-equilibrium, it was found that the total proteins were globally constant, whereas the spectra of some individual amino acids of the proteins had significantly changed.

  15. Effects of organic pollution on biological communities of marine biofilm on hard substrata.

    PubMed

    Sanz-Lázaro, C; Fodelianakis, S; Guerrero-Meseguer, L; Marín, A; Karakassis, I

    2015-06-01

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ(13)C and δ(15)N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Use of the Hydrological Simulation Program-FORTRAN and bacterial source tracking for development of the fecal coliform total maximum daily load (TMDL) for Christians Creek, Augusta County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Christians Creek, in Augusta County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Christians Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Christians Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Christians Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Christians Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Christians Creek. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 40 to 2,000 colonies per 100 milliliters, and peak concentrations during stormflow periods ranged from 23,000 to 730,000 colonies per 100 milliliters. Additionally, fecal coliform bacteria concentrations were generally higher upstream and lower downstream. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were beaver, cats, cattle, deer, dogs, ducks, geese, horses, humans, muskrats, poultry, raccoons, and sheep. According to model results, a 96-percent reduction in the current fecal coliform load delivered from the watershed to Christians Creek would result in compliance with the designated water-quality goals and associated TMDL.

  17. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.

    PubMed

    Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T

    2008-03-01

    Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.

  18. Changes in Vaginal Microbiota and Immune Mediators in HIV-1-Seronegative Kenyan Women Initiating Depot Medroxyprogesterone Acetate.

    PubMed

    Roxby, Alison C; Fredricks, David N; Odem-Davis, Katherine; Ásbjörnsdóttir, Kristjana; Masese, Linnet; Fiedler, Tina L; De Rosa, Stephen; Jaoko, Walter; Kiarie, James N; Overbaugh, Julie; McClelland, R Scott

    2016-04-01

    Depot medroxyprogesterone acetate (DMPA) is associated with HIV acquisition. We studied changes in vaginal microbiota and inflammatory milieu after DMPA initiation. In a cohort of HIV-negative Kenyan women, we collected monthly vaginal swabs over 1 year before and after DMPA. Using quantitative polymerase chain reaction, we compared quantities of Lactobacillus crispatus, Lactobacillus jensenii, Lactobacillus iners, Gardnerella vaginalis, and total bacterial load (16S ribosomal RNA gene levels). Six vaginal immune mediators were measured with enzyme-linked immunosorbent assay. Trends in the detection and quantity of bacteria were estimated by logistic and linear mixed-effects regression. From 2010 to 2012, 15 HIV-seronegative women initiated DMPA, contributing 85 visits (median, 6 visits/woman; range, 3-8 visits/woman). The median time of DMPA-exposed follow-up was 8.4 months (range, 1.5-11.6 months). Seven women (46%) had bacterial vaginosis within 70 days before DMPA start. L. iners was detected in 13 women (87%) before DMPA start, but other lactobacilli were rarely detected. Gardnerella vaginalis decreased by 0.21 log10 copies per swab per month after DMPA exposure (P = 0.01). Total bacterial load decreased by 0.08 log10 copies per swab per month of DMPA (P = 0.02). Sustained decreases in interleukin (IL)-6 (P = 0.03), IL-8 (P = 0.04), and IL-1 receptor antagonist (P < 0.001) were also noted. Nine women (60%) had L. crispatus detected post-DMPA, which significantly correlated with reduced IL-6 (P < 0.01) and IL-8 (P = 0.02). Initiation of DMPA led to sustained shifts in vaginal bacterial concentrations and levels of inflammatory mediators. Further studies are warranted to outline components of the vaginal microbiota influenced by DMPA use and impact on HIV susceptibility.

  19. Biofunctionalization of Titanium Granules with Simvastatin for Improving Osteogenic Activity and Antibacterial Properties (Ex Vivo Study).

    PubMed

    Karaji, Zahra Gorgin; Houshmand, Behzad; Abbasi, Shahsanam; Shafiei, Sara; Faghihi, Shahab

    Titanium-based biomaterials present good biocompatibility, while their osseointegration and antibacterial properties need to be improved. This study aimed to enhance the bone-bonding ability of titanium-based granules, which are intended to be used as bone graft. The titanium granules were anodized in ethylene glycol-based electrolyte and subsequently annealed to be loaded separately with simvastatin. The samples were then inspected with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) for drug loading. The release of simvastatin from titanium granule samples was measured after soaking samples in phosphate-buffered saline (PBS) for 30 days using ultraviolet-visible (UV/Vis) spectroscopy. The alkaline phosphatase (ALP) activity of MG63 osteosarcoma-loaded samples was measured, and microbroth dilution assay was performed to evaluate the antibacterial potential of drug-loaded and nonloaded titanium granule samples for bacterial growth. The results expressed the gradual and constant release of simvastatin within the duration of the examination. ALP of the samples showed improved activity of anodized and annealed granules, while the antibacterial test illustrated no significant improvement in their bactericidal effects. However, the simvastatin-loaded samples showed an improved antibacterial effect compared with nonloaded samples. It is assumed that anodizing, annealing, and subsequent simvastatin loading of titanium granules could be used as surface modification to improve osseointegration and restrain bacterial growth and adhesion. It is fair to believe that the results of this study could be used to treat titanium granules as bone graft substitute materials for dental and orthopedic applications.

  20. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds.

    PubMed

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-04-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99-100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. © 2014 AAFC. New Phytologist © 2014 New Phytologist Trust.

  1. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds

    PubMed Central

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-01-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99–100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. PMID:24444052

  2. The impact of dairy cows' bedding material and its microbial content on the quality and safety of milk - A cross sectional study of UK farms.

    PubMed

    Bradley, Andrew J; Leach, Katharine A; Green, Martin J; Gibbons, Jenny; Ohnstad, Ian C; Black, David H; Payne, Barbara; Prout, Victoria E; Breen, James E

    2018-03-23

    The introduction of bedding dairy cows on recycled manure solids (RMS) in the UK led to concern by competent authorities that there could be an increased, unacceptable risk to animal and human health. A cross-sectional study was designed to evaluate the microbial content of different bedding materials, when used by dairy cows, and its impact on the microbial content of milk. Data were collected from farms bedding lactating cows on sand (n=41), sawdust (n=44) and RMS (n=40). The mean duration of RMS use prior to sampling was 13months. Total bacterial count, and counts of Streptococcus/Enterococcus spp., Staphylococcus spp., Bacillus cereus, thermophilic, thermoduric and psychrotrophic bacteria were determined in used bedding and milk. Samples were evaluated for the presence/absence of Listeria monocytogenes, Salmonella spp. and Yersinia enterocolitica. Data on milking practices were collected to investigate their potential to reduce microbial transfer from bedding to milk. There were substantial differences in bacterial counts both within and between bedding materials. However, there were no significant differences between bedding groups in counts in milk for any of the organisms studied, and no significant correlations between bacterial load in used bedding and milk. Fore-milking was associated with a reduced total bacterial count in milk. Dipping teats with disinfectant and drying, prior to milking, was associated with lower numbers of Streptococcus/Enterococcus spp. in milk. Disinfecting clusters between milking different cows was associated with a reduction in thermophilic and psychrotrophic counts in milk. This study did not provide evidence that use of RMS bedding increased the risk of presence of Y. enterocolitica, Salmonella spp. or L. monocytogenes in milk. However, the strength of this conclusion should be tempered by the relatively small number of farms on which Y. enterocolitica and Salmonella spp. were isolated. It is concluded that, despite the higher bacterial load of RMS, its use as bedding for lactating dairy cows need not be associated with a higher bacterial load in milk than the use of sand or sawdust. However, this finding must be interpreted in the light of the relatively recent introduction of RMS as a bedding material on the farms studied. Teat preparation provides a control point for the potential transfer of microorganisms from bedding to milk. The detection of zoonotic pathogens in a small proportion of milk samples, independent of bedding type, indicates that pasteurisation of milk prior to human consumption remains an important control measure. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A New Experimental Design for Bacterial Microleakage Investigation at the Implant-Abutment Interface: An In Vitro Study.

    PubMed

    Zipprich, Holger; Miatke, Sven; Hmaidouch, Rim; Lauer, Hans-Christoph

    2016-01-01

    This study aimed to test bacterial microleakage at the implant-abutment interface (IAI) before and after dynamic loading using a new chewing simulation. Fourteen implant systems (n = 5 samples of each) were divided into two groups: (1) systems with conical implant-abutment connections (IACs), and (2) systems with flat IACs. For collecting samples without abutment disconnection, channels (Ø = 0.3 mm) were drilled into implants perpendicularly to their axes, and stainless-steel cannulas were adhesively glued inside these channels to allow a sterilized rinsing solution to enter the implant interior and to exit with potential contaminants for testing. Implants were embedded in epoxy resin matrices, which were supported by titanium cylinders with lateral openings for inward and outward cannulas. Abutments were tightened and then provided with vertically adjustable, threaded titanium balls, which were cemented using composite cement. Specimens were immersed in a bacterial liquid and after a contact time of 15 minutes, the implant interior was rinsed prior to chewing simulation (0 N ≘ static seal testing). Specimens were exposed to a Frankfurt chewing simulator. Two hundred twenty force cycles per power level (110 in ± X-axis) were applied to simulate a daily masticatory load of 660 chewing cycles (equivalent to 1,200,000 cycles/5 years). The applied load was gradually increased from 0 N to a maximum load of 200 N in 25-N increments. The implant interior was rinsed to obtain samples before each new power level. All samples were tested using fluorescence microscopy; invading microorganisms could be counted and evaluated. No bacterial contamination was detected under static loading conditions in both groups. After loading, bacterial contamination was detected in one sample from one specimen in group 1 and in two samples from two specimens in group 2. Controlled dynamic loading applied in this study simulated a clinical situation and enabled time-dependent analysis regarding the bacterial seal of different implant systems. Conical IACs offer a better bacterial seal compared with flat IACs, which showed increased microleakage after dynamic loading. IAC design plays a crucial role in terms of bacterial colonization. Taking samples of the implant interior without abutment disconnection eliminates an error source.

  4. Negligible seeding source effect on the final ANAMMOX community under steady and high nitrogen loading rate after enrichment using poly(vinyl alcohol) gel carriers.

    PubMed

    Cho, Kyungjin; Choi, Minkyu; Lee, Seockheon; Bae, Hyokwan

    2018-05-26

    This study investigated the effect of seeding source on the mature anaerobic ammonia oxidation (ANAMMOX) bacterial community niche in continuous poly(vinyl alcohol) (PVA) gel systems operated under high nitrogen loading rate (NLR) condition. Four identical column reactors packed with PVA gels were operated for 182 d using different seeding sources which had distinct community structures. The ANAMMOX reaction was achieved in all the bioreactors with comparable total and ANAMMOX bacterial 16S rRNA gene quantities. The bacterial community structure of the bioreactors became similar during operation; some major bacteria were commonly found. Interestingly, one ANAMMOX species, "Candidatus Brocadia sinica", was conclusively predominant in all the bioreactors, even though different seeding sludges were used as inoculum source, possibly due to the unique physiological characteristics of "Ca. Brocadia sinica" and the operating conditions (i.e., PVA gel-based continuous system and 1.0 kg-N/(m 3 ·d) of NLR). The results clearly suggest that high NLR condition is a more significant factor determining the final ANAMMOX community niche than is the type of seeding source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. An empirical model to quantify fecal bacterial loadings to coastal areas: Application in a Mediterranean context

    NASA Astrophysics Data System (ADS)

    Rio, Marlène; Salles, Christian; Rodier, Claire; Cantet, Franck; Marchand, Pierre; Mosser, Thomas; Cernesson, Flavie; Monfort, Patrick; Tournoud, Marie-George

    2017-10-01

    In coastal catchments, rainfall events primarily drive bacterial inputs to the sea by causing land runoff, surface leaching and sewer overflow. Under semi-arid climate, extensive dry periods are interspersed with extreme precipitation. This paper aims to assess the impact of intense summer rainstorms events on Fecal Indicator Bacteria loadings to Mediterranean seawaters. Firstly, explanatory relationships were derived between an Antecedent Precipitation Index and the loads of thermo-tolerant coliforms and intestinal enterococci measured at three catchment outlets in the Gulf of Aigues-Mortes (southern France). Secondly, fecal bacterial loadings were simulated during summer season from 2006-2016, with a confidence interval arising from measurements uncertainties. On average, more than two rainstorms per summer season elevate bacterial loads at least by one order of magnitude, potentially leading to the degradation of bathing and fishing water quality observed in regulatory monitoring data. The results highlight the crucial importance of considering hydrological conditions in coastal water quality management.

  6. Is it possible to sanitize athletes' shoes?

    PubMed

    Messina, Gabriele; Burgassi, Sandra; Russo, Carmela; Ceriale, Emma; Quercioli, Cecilia; Meniconi, Cosetta

    2015-02-01

    Footwear should be designed to avoid trauma and injury to the skin of the feet that can favor bacterial and fungal infections. Procedures and substances for sanitizing the interior of shoes are uncommon but are important aspects of primary prevention against foot infections and unpleasant odor. To evaluate the efficacy of a sanitizing technique for reducing bacterial and fungal contamination of footwear. Crossover study. Mens Sana basketball team. Twenty-seven male athletes and 4 coaches (62 shoes). The experimental protocol required a first sample (swab), 1/shoe, at time 0 from inside the shoes of all athletes before the sanitizing technique began and a second sample at time 1, after about 4 weeks, April 2012 to May 2012, of daily use of the sanitizing technique. The differences before and after use of the sanitizing technique for total bacterial count at 36 °C and 22 °C for Staphylococcus spp, yeasts, molds, Enterococcus spp, Pseudomonas spp, Escherichia coli , and total coliform bacteria were evaluated. Before use of the sanitizing technique, the total bacterial counts at 36 °C and 22 °C and for Staphylococcus spp were greater by a factor of 5.8 (95% confidence interval [CI] = 3.42, 9.84), 5.84 (95% CI = 3.45, 9.78), and 4.78 (95% CI = 2.84, 8.03), respectively. All the other comparisons showed a reduction in microbial loads, whereas E coli and coliforms were no longer detected. No statistically significant decrease in yeasts (P = .0841) or molds (P = .6913) was recorded probably because of low contamination. The sanitizing technique significantly reduced the bacterial presence in athletes' shoes.

  7. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill.

    PubMed

    Mohamed, Ami F; Karaiskos, Ilias; Plachouras, Diamantis; Karvanen, Matti; Pontikis, Konstantinos; Jansson, Britt; Papadomichelakis, Evangelos; Antoniadou, Anastasia; Giamarellou, Helen; Armaganidis, Apostolos; Cars, Otto; Friberg, Lena E

    2012-08-01

    A previous pharmacokinetic study on dosing of colistin methanesulfonate (CMS) at 240 mg (3 million units [MU]) every 8 h indicated that colistin has a long half-life, resulting in insufficient concentrations for the first 12 to 48 h after initiation of treatment. A loading dose would therefore be beneficial. The aim of this study was to evaluate CMS and colistin pharmacokinetics following a 480-mg (6-MU) loading dose in critically ill patients and to explore the bacterial kill following the use of different dosing regimens obtained by predictions from a pharmacokinetic-pharmacodynamic model developed from an in vitro study on Pseudomonas aeruginosa. The unbound fractions of colistin A and colistin B were determined using equilibrium dialysis and considered in the predictions. Ten critically ill patients (6 males; mean age, 54 years; mean creatinine clearance, 82 ml/min) with infections caused by multidrug-resistant Gram-negative bacteria were enrolled in the study. The pharmacokinetic data collected after the first and eighth doses were analyzed simultaneously with the data from the previous study (total, 28 patients) in the NONMEM program. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.026 and 2.2 h, respectively. For colistin, a one-compartment model was sufficient and the estimated half-life was 18.5 h. The unbound fractions of colistin in the patients were 26 to 41% at clinical concentrations. Colistin A, but not colistin B, had a concentration-dependent binding. The predictions suggested that the time to 3-log-unit bacterial kill for a 480-mg loading dose was reduced to half of that for the dose of 240 mg.

  8. Application of a Loading Dose of Colistin Methanesulfonate in Critically Ill Patients: Population Pharmacokinetics, Protein Binding, and Prediction of Bacterial Kill

    PubMed Central

    Karaiskos, Ilias; Plachouras, Diamantis; Karvanen, Matti; Pontikis, Konstantinos; Jansson, Britt; Papadomichelakis, Evangelos; Antoniadou, Anastasia; Giamarellou, Helen; Armaganidis, Apostolos; Cars, Otto; Friberg, Lena E.

    2012-01-01

    A previous pharmacokinetic study on dosing of colistin methanesulfonate (CMS) at 240 mg (3 million units [MU]) every 8 h indicated that colistin has a long half-life, resulting in insufficient concentrations for the first 12 to 48 h after initiation of treatment. A loading dose would therefore be beneficial. The aim of this study was to evaluate CMS and colistin pharmacokinetics following a 480-mg (6-MU) loading dose in critically ill patients and to explore the bacterial kill following the use of different dosing regimens obtained by predictions from a pharmacokinetic-pharmacodynamic model developed from an in vitro study on Pseudomonas aeruginosa. The unbound fractions of colistin A and colistin B were determined using equilibrium dialysis and considered in the predictions. Ten critically ill patients (6 males; mean age, 54 years; mean creatinine clearance, 82 ml/min) with infections caused by multidrug-resistant Gram-negative bacteria were enrolled in the study. The pharmacokinetic data collected after the first and eighth doses were analyzed simultaneously with the data from the previous study (total, 28 patients) in the NONMEM program. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.026 and 2.2 h, respectively. For colistin, a one-compartment model was sufficient and the estimated half-life was 18.5 h. The unbound fractions of colistin in the patients were 26 to 41% at clinical concentrations. Colistin A, but not colistin B, had a concentration-dependent binding. The predictions suggested that the time to 3-log-unit bacterial kill for a 480-mg loading dose was reduced to half of that for the dose of 240 mg. PMID:22615285

  9. Contribution of Secretory Antibodies to Intestinal Mucosal Immunity against Helicobacter pylori

    PubMed Central

    Wijburg, Odilia L. C.; Pedersen, John S.; Walduck, Anna K.; Kwok, Terry; Strugnell, Richard A.; Robins-Browne, Roy M.

    2013-01-01

    The natural immune response to Helicobacter pylori neither clears infection nor prevents reinfection. However, the ability of secretory antibodies to influence the course of H. pylori infection has not been determined. We compared the natural progression of H. pylori infection in wild-type C57BL/6 mice with that in mice lacking the polymeric immunoglobulin receptor (pIgR) that is essential for the secretion of polymeric antibody across mucosal surfaces. H. pylori SS1-infected wild-type and pIgR knockout (KO) mice were sampled longitudinally for gastrointestinal bacterial load, antibody response, and histological changes. The gastric bacterial loads of wild-type and pIgR KO mice remained constant and comparable at up to 3 months postinfection (mpi) despite SS1-reactive secretory IgA in the intestinal contents of wild-type mice at that time. Conversely, abundant duodenal colonization of pIgR KO animals contrasted with the near-total eradication of H. pylori from the intestine of wild-type animals by 3 mpi. H. pylori was cultured only from the duodenum of those animals in which colonization in the distal gastric antrum was of sufficient density for immunohistological detection. By 6 mpi, the gastric load of H. pylori in wild-type mice was significantly lower than in pIgR KO animals. While there was no corresponding difference between the two mouse strains in gastric pathology results at 6 mpi, reductions in gastric bacterial load correlated with increased gastric inflammation together with an intestinal secretory antibody response in wild-type mice. Together, these results suggest that naturally produced secretory antibodies can modulate the progress of H. pylori infection, particularly in the duodenum. PMID:23918779

  10. Quantitative Real-Time Polymerase Chain Reaction for the Diagnosis of Mycoplasma genitalium Infection in South African Men With and Without Symptoms of Urethritis.

    PubMed

    le Roux, Marie Cecilia; Hoosen, Anwar Ahmed

    2017-01-01

    This study was done to diagnose Mycoplasma genitalium infection based on bacterial load in urine specimens from symptomatic and asymptomatic men. Urine specimens from 94 men with visible urethral discharge, 206 with burning on micturition and 75 without symptoms presenting to a family practitioner were tested for M. genitalium as well as Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis by transcription-mediated amplification assays. A quantitative polymerase chain reaction assay was used to determine the bacterial load for all specimens in which M. genitalium was the only organism detected. Among the 375 specimens collected, M. genitalium was detected in 59 (15.7%) men (both symptomatic and asymptomatic) using the transcription-mediated amplification assay, and in 45 (12.0%) of the total population, it was the only pathogen detected. One or more pathogens were detected in 129 (43%) of the symptomatic men, with N. gonorrhoeae in 50 (16.7%); C. trachomatis in 37 (12.3%) and T. vaginalis present in 24 (8.0%) patients. Among the 17 patients where mixed infections were detected, M. genitalium with N. gonorrhoeae was the most common (11/17; 64.7%). Patients with visible urethral discharge had significantly higher M. genitalium concentrations than those with burning on micturition. The median M. genitalium load in symptomatic men was significantly higher than that in asymptomatic men. This study confirms the high prevalence of M. genitalium among men with urethritis in South Africa and demonstrates that there is a strong association with M. genitalium bacterial load and clinical urethritis. As the number of organisms increased, the severity of the symptoms increased, an indication of the role that the organism plays in disease progression.

  11. Co-selection of antibiotic resistance via copper shock loading on bacteria from a drinking water bio-filter.

    PubMed

    Zhang, Menglu; Chen, Lihua; Ye, Chengsong; Yu, Xin

    2018-02-01

    Heavy metal contamination of source water frequently occurred in developing countries as a result of accidents. To address the problems, most of the previous studies have focused on engineering countermeasures. In this study, we investigated the effects of heavy metals, particularly copper, on the development of antibiotic resistance by establishing a copper shock loading test. Results revealed that co-selection occurred rapidly within 6 h. Copper, at the levels of 10 and 100 mg/L, significantly increased bacterial resistance to the antibiotics tested, including rifampin, erythromycin, kanamycin, and a few others. A total of 117 antimicrobial-resistance genes were detected from 12 types of genes, and the relative abundance of most genes (particularly mobile genetic elements intⅠand transposons) was markedly enriched by at least one fold. Furthermore, the copper shock loading altered the bacterial community. Numerous heavy metal and antibiotic resistant strains were screened out and enriched. These strains are expected to enhance the overall level of resistance. More noticeably, the majority of the co-selected antibiotic resistance could sustain for at least 20 h in the absence of copper and antimicrobial drugs. Resistance to vancomycin, erythromycin and lincomycin even could remain for 7 days. The prominent selection pressure by the copper shock loading implies that a real accident most likely poses similar impacts on the water environment. An accidental release of heavy metals would not only cause harm to the ecological environment, but also contribute to the development of bacterial antibiotic resistance. Broader concerns should be raised about the biological risks caused by sudden releases of pollutants by accidents. Copyright © 2017. Published by Elsevier Ltd.

  12. The effect of metal loading on Cd adsorption onto Shewanella oneidensis bacterial cell envelopes: The role of sulfhydryl sites

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Fein, Jeremy B.

    2015-10-01

    The adsorption and desorption of Cd onto Shewanella oneidensis bacterial cells with and without blocking of sulfhydryl sites was measured in order to determine the effect of metal loading and to understand the role of sulfhydryl sites in the adsorption reactions. The observed adsorption/desorption behaviors display strong dependence on metal loading. Under a high loading of 40 μmol Cd/g bacterial cells, blocking the sulfhydryl sites within the cell envelope by exposure of the biomass to monobromo(trimethylammonio)bimane bromide (qBBr) does not significantly affect the extent of Cd adsorption, and we observed fully reversible adsorption under this condition. In contrast, under a low metal loading of 1.3 μmol Cd/g bacterial cells, the extent of Cd adsorption onto sulfhydryl-blocked S. oneidensis cells was significantly lower than that onto untreated cells, and only approximately 50-60% of the adsorbed Cd desorbed from the cells upon acidification. In conjunction with previous EXAFS results, our findings demonstrate that Cd adsorption onto S. oneidensis under low metal loading conditions is dominated by sulfhydryl binding, and thus is controlled by a distinct adsorption mechanism from the non-sulfhydryl site binding which controls Cd adsorption under high metal loading conditions. We use the data to develop a surface complexation model that constrains the values of the stability constants for individual Cd-sulfhydryl and Cd-non-sulfhydryl bacterial complexes, and we use this approach to account for the Cd adsorption behavior as a function of both pH and metal loading. This approach is crucial in order to predict metal adsorption onto bacteria under environmentally relevant metal loading conditions where sulfhydryl binding sites can dominate the adsorption reaction.

  13. The Effect of a Bacteria- and Fungi- binding Mesh Dressing on the Bacterial Load of Pressure Ulcers Treated With Negative Pressure Wound Therapy: A Pilot Study.

    PubMed

    Ciliberti, Marino; De Lara, Francesco; Serra, Gianfranco; Tafuro, Felice; Iazzetta, Francesco Maria; Filosa, Alessia; Scognamiglio, Rosa; Ciliberti, Giorgia; Veneri, Maria Rosaria

    2016-11-01

    This study was designed to clinically evaluate the efficacy of a bacteria- and-fungi-binding mesh (BFBM) dressing to modify the bacterial load of pressure ulcers (PUs) of categories 3 and 4, when used as a wound contact layer (WCL) during negative pressure wound therapy (NPWT). This was an observational single-centre study in patients with PUs of categories 3 or 4, who were treated with NPWT. Patients were observed for 7 days and received NPWT at -80 mm Hg with the BFBM dressing as the WCL. Wound biopsies were performed at inclusion (B0), at 48 hours (B1), and at day 7 (B7). Bacteria- and fungi-binding mesh dressings were examined for bacterial load at 48 hours (D1) and at 7 days (D7). The primary endpoint was the changes in bacterial loads. Fifty patients were enrolled; 43 (86%) of their PUs were on the sacrum. At B0, 3 groups of wounds were identified by the bioburden level: group A had negative results (28%) to bacterial loads from 102 to 5 x 103 colony forming units (CFU) CFU/mL (18%); group B had 104 to 105 CFU/mL (18%); and group C with ≥ 106 CFU/mL (36%). The authors did not find any significant difference in bacterial loads in group A, but significant differences were found in group B at B1 and B7 (P = 0.04 and P = 0.0067) and in group C at B1 and B7 (P < 0.00001). There was no significant difference on the bacterial loads of the dressing at D1 and D7 (P = 0.823). No device-related adverse events were reported. The BFBM dressing seems to be at the origin of a statistically significant reduction of bacterial burden in wounds with moderate or high levels of colonization. The authors' findings suggest BFBM dressings may be a WCL of choice during the treatment of chronic wounds with NPWT.

  14. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Ortega-Retuerta, E.; Joux, F.; Jeffrey, W. H.; Ghiglione, J.-F.

    2012-12-01

    We explored the patterns of total and active bacterial community structure in a gradient covering surface waters from the Mackenzie River to the coastal Beaufort Sea, Canadian Arctic Ocean, with a particular focus on free-living vs. particle-attached communities. Capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) showed significant differences when comparing river, coast and open sea bacterial community structures. In contrast to the river and coastal waters, total (16S rDNA-based) and active (16S rRNA-based) communities in the open sea samples were not significantly different, suggesting that most present bacterial groups were equally active in this area. Additionally, we observed significant differences between particle-attached (PA) and free-living (FL) bacterial communities in the open sea, but similar structure in the two fractions for coastal and river samples. Direct multivariate statistical analyses showed that total community structure was mainly driven by salinity (proxy of DOC and CDOM), suspended particles, amino acids and chlorophyll a. 16S rRNA genes pyrosequencing of selected samples confirmed these significant differences from river to sea and also between PA and FL fractions only in open sea samples, and PA samples generally showed higher diversity (Shannon, Simpson and Chao indices) than FL samples. At the class level, Opitutae was most abundant in the PA fraction of the sea sample, followed by Flavobacteria and Gammaproteobacteria, while the FL sea sample was dominated by Alphaproteobacteria. Finally, the coast and river samples, both PA and FL fractions, were dominated by Betaproteobacteria, Alphaproteobacteria and Actinobacteria. These results highlight the coexistence of particle specialists and generalists and the role of particle quality in structuring bacterial communities in the area. These results may also serve as a~basis to predict further changes in bacterial communities should climate change lead to further increases in river discharge and related particles load.

  15. Microorganisms associated with feathers of barn swallows in radioactively contaminated areas around chernobyl.

    PubMed

    Czirják, Gábor Arpád; Møller, Anders Pape; Mousseau, Timothy A; Heeb, Philipp

    2010-08-01

    The Chernobyl catastrophe provides a rare opportunity to study the ecological and evolutionary consequences of low-level, environmental radiation on living organisms. Despite some recent studies about negative effects of environmental radiation on macroorganisms, there is little knowledge about the effect of radioactive contamination on diversity and abundance of microorganisms. We examined abundance patterns of total cultivable bacteria and fungi and the abundance of feather-degrading bacterial subset present on feathers of barn swallows (Hirundo rustica), a colonial migratory passerine, around Chernobyl in relation to levels of ground level environmental radiation. After controlling for confounding variables, total cultivable bacterial loads were negatively correlated with environmental radioactivity, whereas abundance of fungi and feather-degrading bacteria was not significantly related to contamination levels. Abundance of both total and feather-degrading bacteria increased with barn swallow colony size, showing a potential cost of sociality. Males had lower abundance of feather-degrading bacteria than females. Our results show the detrimental effects of low-level environmental radiation on total cultivable bacterial assemblage on feathers, while the abundance of other microorganism groups living on barn swallow feathers, such as feather-degrading bacteria, are shaped by other factors like host sociality or host sex. These data lead us to conclude that the ecological effects of Chernobyl may be more general than previously assumed and may have long-term implications for host-microbe interactions and overall ecosystem functioning.

  16. Geochemical influences and mercury methylation of a dental wastewater microbiome

    PubMed Central

    Rani, Asha; Rockne, Karl J.; Drummond, James; Al-Hinai, Muntasar; Ranjan, Ravi

    2015-01-01

    The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of geochemical factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for geochemical parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and geochemical factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation. PMID:26271452

  17. Plaque retention by self-ligating vs elastomeric orthodontic brackets: quantitative comparison of oral bacteria and detection with adenosine triphosphate-driven bioluminescence.

    PubMed

    Pellegrini, Peter; Sauerwein, Rebecca; Finlayson, Tyler; McLeod, Jennifer; Covell, David A; Maier, Tom; Machida, Curtis A

    2009-04-01

    Enamel decalcification is a common problem in orthodontics. The objectives of this randomized clinical study were to enumerate and compare plaque bacteria surrounding 2 bracket types, self-ligating (SL) vs elastomeric ligating (E), and to determine whether adenosine triphosphate (ATP)-driven bioluminescence could be used for rapid assessment of bacterial load in plaque. Patients (ages, 11-17 years) were bonded with SL and E brackets in 14 maxillary and 12 mandibular arches by using a split-mouth design. Recall visits were at 1 and 5 weeks after bonding. Plaque specimens were assayed for oral bacteria and subjected to ATP-driven bioluminescence determinations with a luciferin-based assay. In most patients, teeth bonded with SL attachments had fewer bacteria in plaque than did teeth bonded with E brackets. At 1 and 5 weeks after bonding, the means for SL vs E brackets were statistically lower for total bacteria and oral streptococci (P <0.05). ATP bioluminescence values were statistically correlated to the total oral bacteria and oral streptococci, with correlation coefficients of 0.895 and 0.843, respectively. SL appliances promote reduced retention of oral bacteria, and ATP bioluminescence might be a useful tool in the rapid quantification of bacterial load and the assessment of oral hygiene during orthodontic treatment.

  18. Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study.

    PubMed

    Cappello, S; Caruso, G; Zampino, D; Monticelli, L S; Maimone, G; Denaro, R; Tripodo, B; Troussellier, M; Yakimov, M; Giuliano, L

    2007-01-01

    Microcosm experiments simulating an oil spill event were performed to evaluate the response of the natural microbial community structure of Messina harbour seawater following the accidental load of petroleum. An experimental harbour seawater microcosm, supplemented with nutrients and crude oil, was monitored above 15 days in comparison with unpolluted ones (control microcosms). Bacterial cells were counted with a Live/Dead BacLight viability kit; leucine aminopeptidase, beta-glucosidase, alkaline phosphatase, lipase and esterase enzymes were measured using fluorogenic substrates. The microbial community dynamic was monitored by isolation of total RNA, RT-PCR amplification of 16S rRNA, cloning and sequencing. Oil addition stimulated an increase of the total bacterial abundance, leucine aminopeptidase and phosphatase activity rates, as well as a change in the community structure. This suggested a prompt response of micro-organisms to the load of petroleum hydrocarbons. The present study on the viability, specific composition and metabolic characteristics of the microbial community allows a more precise assessment of oil pollution. Both structural and functional parameters offer interesting perspectives as indicators to monitor changes caused by petroleum hydrocarbons. A better knowledge of microbial structural successions at oil-polluted sites is essential for environmental bioremediation. Data obtained in microcosm studies improve our understanding of natural processes occurring during oil spills.

  19. Steam versus hot-water scalding in reducing bacterial loads on the skin of commercially processed poultry.

    PubMed

    Patrick, T E; Goodwin, T L; Collins, J A; Wyche, R C; Love, B E

    1972-04-01

    A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling.

  20. Pediatric tuberculosis-human immunodeficiency virus co-infection in the United Kingdom highlights the need for better therapy monitoring tools: a case report.

    PubMed

    Evangelopoulos, Dimitrios; Whittaker, Elizabeth; Honeyborne, Isobella; McHugh, Timothy D; Klein, Nigel; Shingadia, Delane

    2017-02-26

    Tuberculosis is an infection that requires at least 6 months of chemotherapy in order to clear the bacteria from the patient's lungs. Usually, therapeutic monitoring is dependent on smear microscopy where a decline in acid-fast bacilli is observed. However, this might not be indicative of the actual decline of bacterial load and thus other tools such as culture and molecular assays are required for patient management. Here, we report the case of a 12-year-old Black African boy co-infected with tuberculosis and human immunodeficiency virus who remained smear culture positive and liquid culture negative for a prolonged period of time following chemotherapy. In order to determine whether there was any live bacteria present in his specimens, we applied the newly developed molecular bacterial load assay that detects the presence of 16S ribosomal ribonucleic acid derived from the bacteria. Using this methodology, we were able to quantify his bacterial load and inform the management of his treatment in order to reduce the disease burden. Following this intervention he went on to make a complete recovery. This case report highlights the value of improved biomarkers for monitoring the treatment of tuberculosis and the role of molecular assays such as the molecular bacterial load assay applied here. The molecular bacterial load assay detects bacterial ribonucleic acid which corresponds closely with the number of live bacilli as compared with polymerase chain reaction that detects deoxyribonucleic acid and may include dead bacteria.

  1. Comparison of bacterial communities of conventional and A-stage activated sludge systems

    PubMed Central

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Lotti, Tommaso; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; Gonzalez-Lopez, Jesus; van Loosdrecht, Mark C. M.

    2016-01-01

    The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis. PMID:26728449

  2. Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part II: Polyethylene Particles Decrease the Effect of Polycyclic Aromatic Hydrocarbons on Microorganisms.

    PubMed

    Kleinteich, Julia; Seidensticker, Sven; Marggrander, Nikolaj; Zarfl, Christiane

    2018-02-07

    Microplastic particles in terrestrial and aquatic ecosystems are currently discussed as an emerging persistent organic pollutant and as acting as a vector for hydrophobic chemicals. Microplastic particles may ultimately deposit and accumulate in soil as well as marine and freshwater sediments where they can be harmful to organisms. In this study, we tested the sensitivity of natural freshwater sediment bacterial communities (by genetic fingerprint) to exposure to microplastics (polyethylene, 2 and 20 mg/g sediment) and microplastics loaded with polycyclic aromatic hydrocarbons (PAHs, phenanthrene and anthracene), using a laboratory-based approach. After two weeks of incubation, the bacterial community composition from an unpolluted river section was altered by high concentrations of microplastics, whereas the community downstream of a wastewater treatment plant remained unchanged. Low microplastic concentrations loaded with phenanthrene or anthracene induced a less pronounced response in the sediment communities compared to the same total amount of phenanthrene or anthracene alone. In addition, biodegradation of the PAHs was reduced. This study shows, that microplastic can affect bacterial community composition in unpolluted freshwater sediments. Moreover, the results indicate that microplastics can serve as a vehicle for hydrophobic pollutants but bioavailability of the latter is reduced by the sorption to microplastics.

  3. Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part II: Polyethylene Particles Decrease the Effect of Polycyclic Aromatic Hydrocarbons on Microorganisms

    PubMed Central

    Kleinteich, Julia; Marggrander, Nikolaj; Zarfl, Christiane

    2018-01-01

    Microplastic particles in terrestrial and aquatic ecosystems are currently discussed as an emerging persistent organic pollutant and as acting as a vector for hydrophobic chemicals. Microplastic particles may ultimately deposit and accumulate in soil as well as marine and freshwater sediments where they can be harmful to organisms. In this study, we tested the sensitivity of natural freshwater sediment bacterial communities (by genetic fingerprint) to exposure to microplastics (polyethylene, 2 and 20 mg/g sediment) and microplastics loaded with polycyclic aromatic hydrocarbons (PAHs, phenanthrene and anthracene), using a laboratory-based approach. After two weeks of incubation, the bacterial community composition from an unpolluted river section was altered by high concentrations of microplastics, whereas the community downstream of a wastewater treatment plant remained unchanged. Low microplastic concentrations loaded with phenanthrene or anthracene induced a less pronounced response in the sediment communities compared to the same total amount of phenanthrene or anthracene alone. In addition, biodegradation of the PAHs was reduced. This study shows, that microplastic can affect bacterial community composition in unpolluted freshwater sediments. Moreover, the results indicate that microplastics can serve as a vehicle for hydrophobic pollutants but bioavailability of the latter is reduced by the sorption to microplastics. PMID:29414906

  4. Comparison of vaginal microbiota sampling techniques: cytobrush versus swab.

    PubMed

    Mitra, Anita; MacIntyre, David A; Mahajan, Vishakha; Lee, Yun S; Smith, Ann; Marchesi, Julian R; Lyons, Deirdre; Bennett, Phillip R; Kyrgiou, Maria

    2017-08-29

    Evidence suggests the vaginal microbiota (VM) may influence risk of persistent Human Papillomavirus (HPV) infection and cervical carcinogenesis. Established cytology biobanks, typically collected with a cytobrush, constitute a unique resource to study such associations longitudinally. It is plausible that compared to rayon swabs; the most commonly used sampling devices, cytobrushes may disrupt biofilms leading to variation in VM composition. Cervico-vaginal samples were collected with cytobrush and rayon swabs from 30 women with high-grade cervical precancer. Quantitative PCR was used to compare bacterial load and Illumina MiSeq sequencing of the V1-V3 regions of the 16S rRNA gene used to compare VM composition. Cytobrushes collected a higher total bacterial load. Relative abundance of bacterial species was highly comparable between sampling devices (R 2  = 0.993). However, in women with a Lactobacillus-depleted, high-diversity VM, significantly less correlation in relative species abundance was observed between devices when compared to those with a Lactobacillus species-dominant VM (p = 0.0049). Cytobrush and swab sampling provide a comparable VM composition. In a small proportion of cases the cytobrush was able to detect underlying high-diversity community structure, not realized with swab sampling. This study highlights the need to consider sampling devices as potential confounders when comparing multiple studies and datasets.

  5. Is it Possible to Sanitize Athletes' Shoes?

    PubMed Central

    Messina, Gabriele; Burgassi, Sandra; Russo, Carmela; Ceriale, Emma; Quercioli, Cecilia; Meniconi, Cosetta

    2015-01-01

    Context: Footwear should be designed to avoid trauma and injury to the skin of the feet that can favor bacterial and fungal infections. Procedures and substances for sanitizing the interior of shoes are uncommon but are important aspects of primary prevention against foot infections and unpleasant odor. Objective: To evaluate the efficacy of a sanitizing technique for reducing bacterial and fungal contamination of footwear. Design: Crossover study. Setting: Mens Sana basketball team. Patients or Other Participants: Twenty-seven male athletes and 4 coaches (62 shoes). Intervention(s): The experimental protocol required a first sample (swab), 1/shoe, at time 0 from inside the shoes of all athletes before the sanitizing technique began and a second sample at time 1, after about 4 weeks, April 2012 to May 2012, of daily use of the sanitizing technique. Main Outcome Measure(s): The differences before and after use of the sanitizing technique for total bacterial count at 36°C and 22°C for Staphylococcus spp, yeasts, molds, Enterococcus spp, Pseudomonas spp, Escherichia coli, and total coliform bacteria were evaluated. Results: Before use of the sanitizing technique, the total bacterial counts at 36°C and 22°C and for Staphylococcus spp were greater by a factor of 5.8 (95% confidence interval [CI] = 3.42, 9.84), 5.84 (95% CI = 3.45, 9.78), and 4.78 (95% CI = 2.84, 8.03), respectively. All the other comparisons showed a reduction in microbial loads, whereas E coli and coliforms were no longer detected. No statistically significant decrease in yeasts (P = .0841) or molds (P = .6913) was recorded probably because of low contamination. Conclusions: The sanitizing technique significantly reduced the bacterial presence in athletes' shoes. PMID:25415415

  6. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation

    PubMed Central

    Abusleme, Loreto; Dupuy, Amanda K; Dutzan, Nicolás; Silva, Nora; Burleson, Joseph A; Strausbaugh, Linda D; Gamonal, Jorge; Diaz, Patricia I

    2013-01-01

    The goals of this study were to better understand the ecology of oral subgingival communities in health and periodontitis and elucidate the relationship between inflammation and the subgingival microbiome. Accordingly, we used 454-pyrosequencing of 16S rRNA gene libraries and quantitative PCR to characterize the subgingival microbiome of 22 subjects with chronic periodontitis. Each subject was sampled at two sites with similar periodontal destruction but differing in the presence of bleeding, a clinical indicator of increased inflammation. Communities in periodontitis were also compared with those from 10 healthy individuals. In periodontitis, presence of bleeding was not associated with different α-diversity or with a distinct microbiome, however, bleeding sites showed higher total bacterial load. In contrast, communities in health and periodontitis largely differed, with higher diversity and biomass in periodontitis. Shifts in community structure from health to periodontitis resembled ecological succession, with emergence of newly dominant taxa in periodontitis without replacement of primary health-associated species. That is, periodontitis communities had higher proportions of Spirochetes, Synergistetes, Firmicutes and Chloroflexi, among other taxa, while the proportions of Actinobacteria, particularly Actinomyces, were higher in health. Total Actinomyces load, however, remained constant from health to periodontitis. Moreover, an association existed between biomass and community structure in periodontitis, with the proportion of specific taxa correlating with bacterial load. Our study provides a global-scale framework for the ecological events in subgingival communities that underline the development of periodontitis. The association, in periodontitis, between inflammation, community biomass and community structure and their role in disease progression warrant further investigation. PMID:23303375

  7. Impacts of Long-Term Irrigation of Domestic Treated Wastewater on Soil Biogeochemistry and Bacterial Community Structure

    PubMed Central

    Wafula, Denis; White, John R.; Canion, Andy; Jagoe, Charles; Pathak, Ashish

    2015-01-01

    Freshwater scarcity and regulations on wastewater disposal have necessitated the reuse of treated wastewater (TWW) for soil irrigation, which has several environmental and economic benefits. However, TWW irrigation can cause nutrient loading to the receiving environments. We assessed bacterial community structure and associated biogeochemical changes in soil plots irrigated with nitrate-rich TWW (referred to as pivots) for periods ranging from 13 to 30 years. Soil cores (0 to 40 cm) were collected in summer and winter from five irrigated pivots and three adjacently located nonirrigated plots. Total bacterial and denitrifier gene abundances were estimated by quantitative PCR (qPCR), and community structure was assessed by 454 massively parallel tag sequencing (MPTS) of small-subunit (SSU) rRNA genes along with terminal restriction fragment length polymorphism (T-RFLP) analysis of nirK, nirS, and nosZ functional genes responsible for denitrification of the TWW-associated nitrate. Soil physicochemical analyses showed that, regardless of the seasons, pH and moisture contents (MC) were higher in the irrigated (IR) pivots than in the nonirrigated (NIR) plots; organic matter (OM) and microbial biomass carbon (MBC) were higher as a function of season but not of irrigation treatment. MPTS analysis showed that TWW loading resulted in the following: (i) an increase in the relative abundance of Proteobacteria, especially Betaproteobacteria and Gammaproteobacteria; (ii) a decrease in the relative abundance of Actinobacteria; (iii) shifts in the communities of acidobacterial groups, along with a shift in the nirK and nirS denitrifier guilds as shown by T-RFLP analysis. Additionally, bacterial biomass estimated by genus/group-specific real-time qPCR analyses revealed that higher numbers of total bacteria, Acidobacteria, Actinobacteria, Alphaproteobacteria, and the nirS denitrifier guilds were present in the IR pivots than in the NIR plots. Identification of the nirK-containing microbiota as a proxy for the denitrifier community indicated that bacteria belonged to alphaproteobacteria from the Rhizobiaceae family within the agroecosystem studied. Multivariate statistical analyses further confirmed some of the above soil physicochemical and bacterial community structure changes as a function of long-term TWW application within this agroecosystem. PMID:26253672

  8. Distribution and identification of culturable airborne microorganisms in a Swiss milk processing facility.

    PubMed

    Brandl, Helmut; Fricker-Feer, Claudia; Ziegler, Dominik; Mandal, Jyotshna; Stephan, Roger; Lehner, Angelika

    2014-01-01

    Airborne communities (mainly bacteria) were sampled and characterized (concentration levels and diversity) at 1 outdoor and 6 indoor sites within a Swiss dairy production facility. Air samples were collected on 2 sampling dates in different seasons, one in February and one in July 2012 using impaction bioaerosol samplers. After cultivation, isolates were identified by mass spectrometry (matrix-assisted laser desorption/ionization-time-of-flight) and molecular (sequencing of 16S rRNA and rpoB genes) methods. In general, total airborne particle loads and total bacterial counts were higher in winter than in summer, but remained constant within each indoor sampling site at both sampling times (February and July). Bacterial numbers were generally very low (<100 cfu/m(3) of air) during the different steps of milk powder production. Elevated bacterial concentrations (with mean values of 391 ± 142 and 179 ± 33 cfu/m(3) of air during winter and summer sampling, respectively; n=15) occurred mainly in the "logistics area," where products in closed tins are packed in secondary packaging material and prepared for shipping. However, total bacterial counts at the outdoor site varied, with a 5- to 6-fold higher concentration observed in winter compared with summer. Twenty-five gram-positive and gram-negative genera were identified as part of the airborne microflora, with Bacillus and Staphylococcus being the most frequent genera identified. Overall, the culturable microflora community showed a composition typical and representative for the specific location. Bacterial counts were highly correlated with total airborne particles in the size range 1 to 5 µm, indicating that a simple surveillance system based upon counting of airborne particles could be implemented. The data generated in this study could be used to evaluate the effectiveness of the dairy plant's sanitation program and to identify potential sources of airborne contamination, resulting in increased food safety. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Surfaces and Air Bacteriology of Selected Wards at a Referral Hospital, Northwest Ethiopia: A Cross-Sectional Study.

    PubMed

    Getachew, Hailu; Derbie, Awoke; Mekonnen, Daniel

    2018-01-01

    The hospital environment is a source of medically important pathogens that are mostly multidrug resistant (MDR) and posing a major therapeutic challenge. The aim of this study was to assess the surface and air bacteriology of selected wards at Felege Hiwot Referral Hospital (FHRH), Northwest Ethiopia. A cross-sectional study was carried out from 15th February to 30th April 2017. A total of 356 surface and air samples were collected from selected wards using 5% sheep blood agar (Oxoid, UK) and processed at FHRH microbiology laboratory following the standard bacteriological procedures. Pure isolates were tested against the recommended antibiotics using Kirby-Bauer disc diffusion methods, and the susceptibility profile was determined based on Clinical Laboratory Standards Institute (CLSI). Data were entered and analyzed using SPSS version 23 for Windows. Of the total 356 samples processed, 274 were from surfaces and 82 were from air. Among these, 141 (39.6%) showed bacterial growth, yielding a total of 190 isolates. Gram-positive isolates were predominant at 81.6% ( n =155), while the gram negatives were at 18.4% ( n =35). The main isolates were coagulase negative staphylococci ( CoNs ), 44%, followed by S. aureus , 37.4%, and Klebsiella species at 11.6%. The bacterial load on surfaces and air was found beyond the standard limits. Besides, the antimicrobial susceptibility profile of the isolates showed that about 75% of the identified isolates were found resistant for two and more antimicrobial agents tested. This study showed high degree of bacterial load that is beyond the standard limits on both surfaces and air samples of the hospital. Furthermore, some 75% of the isolates were found multidrug resistant. Therefore, it is important to evaluate and strengthen the infection prevention practice of the hospital. Moreover, stakeholders should also reinforce actions to decrease the pressure of antimicrobial resistance in the studied area.

  10. Steam Versus Hot-Water Scalding in Reducing Bacterial Loads on the Skin of Commercially Processed Poultry

    PubMed Central

    Patrick, Thomas E.; Goodwin, T. L.; Collins, J. A.; Wyche, R. C.; Love, B. E.

    1972-01-01

    A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling. PMID:4553146

  11. Detection of food-borne bacteria in ready to eat betel leaf sold at local markets in Mymensingh.

    PubMed

    Haque, Md Mazedul; Sarker, Md Atiqur Rahman; Rifa, Rafia Afroze; Islam, Md Ariful; Khatun, Mst Minara

    2017-09-01

    The present study was undertaken to determine bacterial load as well as characterize bacterial flora of ready to eat (RTE) betel leaf sold at local markets in Mymensingh city. A total of 25 RTE betel leaf samples were collected from five local markets such as Kamal-Ranjit (KR) market, Shesh more, Kewatkhali, Jobber more, and Ganginar par. Total viable count of bacteria in betel leaf (log 10 mean colony forming unit±standard deviation/ml) was 7.58±0.04 for KR market, 7.72±0.06 for Shesh more, 7.62±0.04 for Kewatkhali, 7.40±0.03 for Jobber more, and 7.60±0.06 for Ganginar par. A total of 98 bacterial isolates belong to five genera ( Escherichia coli , Salmonella spp., Vibrio spp., Bacillus spp., and Staphylococcus spp.) were identified. The prevalence of E. coli was 17.34%, Salmonella spp. was 25.51%, Vibrio spp. was 19.39%, Bacillus spp. was 18.37%, and Staphylococcus spp. was 19.39%. Antibiotic sensitivity test showed that all isolates were sensitive to two antibiotics such as ciprofloxacin and gentamicin. Four isolates ( E. coli , Salmonella spp., Vibrio spp., and Staphylococcus spp.) were resistant to two antibiotics (ampicillin and cephalexin). Antibiogram profile of bacterial isolates of betel leaf suggests that they were multidrug resistance. Data of this study indicate that betel leaf sold at local market harbors multidrug resistance food-borne bacteria which might cause public health hazards if these antibiotic resistant transfer to human through food chain.

  12. Detection of food-borne bacteria in ready to eat betel leaf sold at local markets in Mymensingh

    PubMed Central

    Haque, Md. Mazedul; Sarker, Md. Atiqur Rahman; Rifa, Rafia Afroze; Islam, Md. Ariful; Khatun, Mst. Minara

    2017-01-01

    Aim: The present study was undertaken to determine bacterial load as well as characterize bacterial flora of ready to eat (RTE) betel leaf sold at local markets in Mymensingh city. Materials and Methods: A total of 25 RTE betel leaf samples were collected from five local markets such as Kamal-Ranjit (KR) market, Shesh more, Kewatkhali, Jobber more, and Ganginar par. Results: Total viable count of bacteria in betel leaf (log10 mean colony forming unit±standard deviation/ml) was 7.58±0.04 for KR market, 7.72±0.06 for Shesh more, 7.62±0.04 for Kewatkhali, 7.40±0.03 for Jobber more, and 7.60±0.06 for Ganginar par. A total of 98 bacterial isolates belong to five genera (Escherichia coli, Salmonella spp., Vibrio spp., Bacillus spp., and Staphylococcus spp.) were identified. The prevalence of E. coli was 17.34%, Salmonella spp. was 25.51%, Vibrio spp. was 19.39%, Bacillus spp. was 18.37%, and Staphylococcus spp. was 19.39%. Antibiotic sensitivity test showed that all isolates were sensitive to two antibiotics such as ciprofloxacin and gentamicin. Four isolates (E. coli, Salmonella spp., Vibrio spp., and Staphylococcus spp.) were resistant to two antibiotics (ampicillin and cephalexin). Antibiogram profile of bacterial isolates of betel leaf suggests that they were multidrug resistance. Conclusion: Data of this study indicate that betel leaf sold at local market harbors multidrug resistance food-borne bacteria which might cause public health hazards if these antibiotic resistant transfer to human through food chain. PMID:29062191

  13. Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate.

    PubMed

    Xie, Bing; Xiong, Shunzi; Liang, Shaobo; Hu, Chong; Zhang, Xiaojun; Lu, Jun

    2012-01-01

    Aged landfill leachates become more refractory over time and difficulty to treat. Recently, aged refuse bioreactors show great promise in treating leachates. In this study, aged refuse bioreactors were constructed to simulate landfill leachate degradation process. The characteristics of leachate were: CODcr, ∼2200 mg/L; BOD5, ∼280 mg/L; total nitrogen, ∼2030 mg/L; and ammonia, ∼1900 mg/L. Results showed that bioreactor could remove leachate pollutants effectively at hydraulic loading of 20 L/m3 d. The removal rate reduced when hydraulic loading doubled or temperature lowered. Effluent recirculation could alleviate the temperature effect. Combining aged refuse and slag biofilters could treat leachate more efficiently. Pyrosequencing analysis indicated that bacteria from Pseudomonas, Lysobacter, Bacillus and δ-proteobacter, Flexibacteraceae were more abundant in the samples. The Shannon index decreased at lower temperature, while evenness and equitability increased with recirculation. We suggest that filter medium and temperature may be the main factors for shaping bacterial community structure. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Assessment of water-quality conditions in the J.B. Converse Lake watershed, Mobile County, Alabama, 1990-98

    USGS Publications Warehouse

    Journey, Celeste A.; Gill, Amy C.

    2001-01-01

    J.B. Converse (Converse) Lake is a 3,600-acre, tributary-storage reservoir in Mobile County, southwestern Alabama. The lake serves as the primary drinking-water supply for the city of Mobile. The Converse Lake watershed lies within the Coastal Plain Physiographic Province. Semiconsolidated to unconsolidated sediments of sand, silt, gravel, and clay underlie the watershed, and are covered by acidic soils. Land use in the watershed is mainly forest (64 percent) and agriculture (31 percent). Residential and commercial development account for only 1 percent of the total land use in the watershed. Converse Lake receives inflow from seven major tributaries. The greatest inflows are from Big Creek, Crooked Creek, and Hamilton Creek that had mean annual streamflows of 72.2, 19.4, and 25.0 cubic feet per second, respectively, for the period 1990 to 1998, which represents about 72 percent of the total annual streamflow to the lake. The total mean annual inflow to the lake is estimated to be about 163 cubic feet per second. In general, water quality in Converse Lake and its tributaries meets the criteria established by the Alabama Department of Environmental Management (ADEM) for drinking-water supplies, whole-body contact, and aquatic life. The exceptions include acidic pH levels, iron and manganese levels above secondary or aesthetic criteria, and fecal bacterial levels in some tributaries above whole-body contact (swimmable) criteria. The pH levels throughout the watershed were commonly below the criteria level of 6.0, but this appears to have been a naturally occurring phenomenon caused by poorly buffered soil types, resistant sediments, and forested land use. Median iron and manganese levels were above aesthetic criteria levels of 300 and 50 micrograms per liter, respectively, in some tributaries. All tributary sites in the Converse Lake watershed had median and minimum dissolved-oxygen concentrations above the ADEM criteria level of 5 milligrams per liter except for Boggy Branch, which had a minimum dissolved-oxygen concentration of 3.7 milligrams per liter. The degree to which nutrient contributions from tributaries were causing nutrient enrichment and eutrophication in Converse Lake was assessed. Trend analysis detected little or no change in nutrient concentrations at the tributary and lake sites in the Converse Lake watershed from the 1991 to 1998 water years. Nutrient concentrations at most tributary sites exhibited a significant, positive relation with streamflow that indicated the dominant source of nutrient input to the watershed is from nonpoint contributions. From 1990 to 1998, computed mean annual loads of 75,400 kilograms of total nitrogen, 36,950 kilograms of total Kjeldahl nitrogen, 28,870 kilograms of total inorganic nitrogen, and 3,480 kilograms of total phosphorus were contributed to the lake by Big Creek, Hamilton Creek, and Crooked Creek combined. These mean annual loads of nutrients corresponded to borderline eutrophic/mesotrophic conditions in the lake. Of the combined loads, 62 percent of the total nitrogen, 70 percent of the total Kjeldahl nitrogen, 54 percent of the total inorganic nitrogen, and 47 percent of the total phosphorus originated from the forested subbasin of Big Creek. The more residential and agricultural subbasins of Crooked Creek and Hamilton Creek, however, yielded over twice the total phosphorus load per hectare of land use. Crooked and Hamilton Creek subbasins also had higher yields of the more bioavailable total inorganic nitrogen. A simplistic empirical model could not explain the relation between year-to-year nutrient contributions to Converse Lake from the tributaries and the lake's ability to assimilate those contributions. The potential presence of pathogens in the lake and its tributaries was assessed based on fecal bacterial concentrations. Fecal bacterial concentrations at some tributary sites were above existing criteria for swimmable uses. Contributions of fecal bacte

  15. Direct quantification of test bacteria in synthetic water-polluted samples by square wave voltammetry and chemometric methods.

    PubMed

    Carpani, Irene; Conti, Paolo; Lanteri, Silvia; Legnani, Pier Paolo; Leoni, Erica; Tonelli, Domenica

    2008-02-28

    A home-made microelectrode array, based on reticulated vitreous carbon, was used as working electrode in square wave voltammetry experiments to quantify the bacterial load of Escherichia coli ATCC 13706 and Pseudomonas aeruginosa ATCC 27853, chosen as test microorganisms, in synthetic samples similar to drinking water (phosphate buffer). Raw electrochemical signals were analysed with partial least squares regression coupled to variable selection in order to correlate these values with the bacterial load estimated by aerobic plate counting. The results demonstrated the ability of the method to detect even low loads of microorganisms in synthetic water samples. In particular, the model detects the bacterial load in the range 3-2,020 CFU ml(-1) for E. coli and in the range 76-155,556 CFU ml(-1) for P. aeruginosa.

  16. The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment.

    PubMed

    Healy, M G; Burke, P; Rodgers, M

    2010-10-01

    The aim of this study was to examine the performance of intermittently loaded, 150 mm-diameter stratified filter columns of 2 depths (0.65 and 0.375 m) comprising different media--sand, crushed glass and soil--in polishing the effluent from a laboratory horizontal flow biofilm reactor (HFBR) treating synthetic domestic-strength wastewater. The HFBR has been successfully used to remove organic carbon and ammonium-nitrogen (NH4-N) from domestic wastewater. In this treatment method, wastewater is allowed to flow over and back along a stack of polyvinyl chloride (PVC) sheets. Biofilms on the sheets reduce organic carbon, suspended matter, and nutrients in the wastewater, but to achieve the quality of a septic tank system, additional treatment is required. In all filters, at a hydraulic loading rate of 100 L m(-2) d(-1), 40-65% of chemical oxygen demand (COD) and practically 100% of total suspended solids (TSS) were removed, nitrification was complete, and bacterial numbers were reduced by over 80%, with best removals achieved in the soil filters (93%). Soil polishing filters with the depth of 0.65 m performed best in terms of organic carbon, total nitrogen (Tot-N) and bacterial removal. Data from this preliminary study are useful in the design of treatment systems to polish secondary wastewaters with similar water quality characteristics.

  17. Differences in Bordetella pertussis DNA load according to clinical and epidemiological characteristics of patients with whooping cough.

    PubMed

    Brotons, Pedro; de Paz, Hector D; Toledo, Diana; Villanova, Marta; Plans, Pedro; Jordan, Iolanda; Dominguez, Angela; Jane, Mireia; Godoy, Pere; Muñoz-Almagro, Carmen

    2016-04-01

    To identify associations between nasopharyngeal Bordetella pertussis DNA load and clinical and epidemiological characteristics and evaluate DNA load prognostic value in pertussis severity. Prospective observational multi-centre study including nasopharyngeal samples positive to pertussis DNA by real-time PCR collected from children and adult patients in more than 200 health centres of Catalonia (Spain) during 2012-2013. B. pertussis load was inversely correlated with age (rho = -0.32, p < 0.001), time to diagnosis (rho = -0.33, p < 0.001) and number of symptoms (rho = 0.13, p = 0.002). Median bacterial load was significantly higher in inpatients versus outpatients (4.91 vs. 2.55 log10 CFU/mL, p < 0.001), patients with complications versus those without (6.05 vs. 2.82 log10 CFU/mL, p < 0.001), disease incidence in summer and autumn versus spring and winter (3.50 vs. 2.21 log10 CFU/mL, p = 0.002), and unvaccinated-partially vaccinated patients versus vaccinated (4.20 vs. 2.76 log10 CFU/mL, p = 0.004). A logistic regression model including bacterial load and other candidate prognostic factors showed good prediction for hospital care (AUC = 0.94) although only age and unvaccinated status were found to be prognostic factors. We observed strong positive associations of nasopharyngeal bacterial load with severity outcomes of hospitalisation and occurrence of complications. Bacterial load and other independent variables contributed to an accurate prognostic model for hospitalisation. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  18. Load-dependent assembly of the bacterial flagellar motor.

    PubMed

    Tipping, Murray J; Delalez, Nicolas J; Lim, Ren; Berry, Richard M; Armitage, Judith P

    2013-08-20

    It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. The transition between liquid living and surface living is important in the life cycles of many bacteria. In this paper, we describe how the flagellar motor, used by bacteria for locomotion through liquid media and across solid surfaces, is capable of adjusting the number of bound stator units to better suit the external load conditions. By stalling motors using external magnetic fields, we also show that rotation is not required for maintenance of stators around the motor; instead, torque production is the essential factor for motor stability. These new results, in addition to previous data, lead us to hypothesize that the motor stators function as mechanosensors as well as functioning as torque-generating units.

  19. Advanced Caries Microbiota in Teeth with Irreversible Pulpitis.

    PubMed

    Rôças, Isabela N; Lima, Kenio C; Assunção, Isauremi V; Gomes, Patrícia N; Bracks, Igor V; Siqueira, José F

    2015-09-01

    Bacterial taxa in the forefront of caries biofilms are candidate pathogens for irreversible pulpitis and are possibly the first ones to invade the pulp and initiate endodontic infection. This study examined the microbiota of the most advanced layers of dentinal caries in teeth with irreversible pulpitis. DNA extracted from samples taken from deep dentinal caries associated with pulp exposures was analyzed for the presence and relative levels of 33 oral bacterial taxa by using reverse-capture checkerboard hybridization assay. Quantification of total bacteria, streptococci, and lactobacilli was also performed by using real-time quantitative polymerase chain reaction. Associations between the target bacterial taxa and clinical signs/symptoms were also evaluated. The most frequently detected taxa in the checkerboard assay were Atopobium genomospecies C1 (53%), Pseudoramibacter alactolyticus (37%), Streptococcus species (33%), Streptococcus mutans (33%), Parvimonas micra (13%), Fusobacterium nucleatum (13%), and Veillonella species (13%). Streptococcus species, Dialister invisus, and P. micra were significantly associated with throbbing pain, S. mutans with pain to percussion, and Lactobacillus with continuous pain (P < .05). Quantitative polymerase chain reaction revealed a mean total bacterial load of 1 × 10(8) (range, 2.05 × 10(5) to 4.5 × 10(8)) cell equivalents per milligram (wet weight) of dentin. Streptococci and lactobacilli were very prevalent but comprised only 0.09% and 2% of the whole bacterial population, respectively. Several bacterial taxa were found in advanced caries lesions in teeth with exposed pulps, and some of them were significantly associated with symptoms. A role for these taxa in the etiology of irreversible pulpitis is suspected. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    PubMed

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Evolution of defence cocktails: Antimicrobial peptide combinations reduce mortality and persistent infection.

    PubMed

    Zanchi, Caroline; Johnston, Paul R; Rolff, Jens

    2017-10-01

    The simultaneous expression of costly immune effectors such as multiple antimicrobial peptides is a hallmark of innate immunity of multicellular organisms, yet the adaptive advantage remains unresolved. Here, we test current hypotheses on the evolution of such defence cocktails. We use RNAi gene knock-down to explore, the effects of three highly expressed antimicrobial peptides, displaying different degrees of activity in vitro against Staphylococcus aureus, during an infection in the beetle Tenebrio molitor. We find that a defensin confers no survival benefit but reduces bacterial loads. A coleoptericin contributes to host survival without affecting bacterial loads. An attacin has no individual effect. Simultaneous knock-down of the defensin with the other AMPs results in increased mortality and elevated bacterial loads. Contrary to common expectations, the effects on host survival and bacterial load can be independent. The expression of multiple AMPs increases host survival and contributes to the control of persisting infections and tolerance. This is an emerging property that explains the adaptive benefit of defence cocktails. © 2017 John Wiley & Sons Ltd.

  2. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic)

    NASA Astrophysics Data System (ADS)

    Ortega-Retuerta, E.; Joux, F.; Jeffrey, W. H.; Ghiglione, J. F.

    2013-04-01

    We explored the patterns of total and active bacterial community structure in a gradient covering surface waters from the Mackenzie River to the coastal Beaufort Sea in the Canadian Arctic Ocean, with a particular focus on free-living (FL) vs. particle-attached (PA) communities. Capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) showed significant differences when comparing river, coast and open sea bacterial community structures. In contrast to the river and coastal waters, total (16S rDNA-based) and active (16S rRNA-based) communities in the open sea samples were not significantly different, suggesting that most present bacterial groups were equally active in this area. Additionally, we observed significant differences between PA and FL bacterial community structure in the open sea, but similar structure in the two fractions for coastal and river samples. Direct multivariate statistical analyses showed that total community structure was mainly driven by salinity (a proxy of dissolved organic carbon and chromophoric dissolved organic matter), suspended particles, amino acids and chlorophyll a. Pyrosequencing of 16S rRNA genes from selected samples confirmed significant differences between river, coastal and sea samples. The PA fraction was only different (15.7% similarity) from the FL one in the open sea sample. Furthermore, PA samples generally showed higher diversity (Shannon, Simpson and Chao indices) than FL samples. At the class level, Opitutae was most abundant in the PA fraction of the sea sample, followed by Flavobacteria and Gammaproteobacteria, while the FL sea sample was dominated by Alphaproteobacteria. Finally, for the coast and river samples and both PA and FL fractions, Betaproteobacteria, Alphaproteobacteria and Actinobacteria were dominant. These results highlight the coexistence of particle specialists and generalists and the role of particle quality in structuring bacterial communities in the area. These results may also serve as a basis to predict further changes in bacterial communities should climate change lead to further increases in river discharge and related particle loads.

  3. Intermittent fasting promotes bacterial clearance and intestinal IgA production in Salmonella typhimurium-infected mice.

    PubMed

    Godínez-Victoria, M; Campos-Rodriguez, R; Rivera-Aguilar, V; Lara-Padilla, E; Pacheco-Yepez, J; Jarillo-Luna, R A; Drago-Serrano, M E

    2014-05-01

    The impact of intermittent fasting versus ad libitum feeding during Salmonella typhimurium infection was evaluated in terms of duodenum IgA levels, bacterial clearance and intestinal and extra-intestinal infection susceptibility. Mice that were intermittently fasted for 12 weeks or fed ad libitum were infected with S. typhimurium and assessed at 7 and 14 days post-infection. Next, we evaluated bacterial load in the faeces, Peyer's patches, spleen and liver by plate counting, as well as total and specific intestinal IgA and plasmatic corticosterone levels (by immunoenzymatic assay) and lamina propria IgA levels in plasma cells (by cytofluorometry). Polymeric immunoglobulin receptor, α- and J-chains, Pax-5 factor, pro-inflammatory cytokine (tumour necrosis factor-α and interferon-γ) and anti-inflammatory cytokine (transforming growth factor-β) mRNA levels were assessed in mucosal and liver samples (by real-time PCR). Compared with the infected ad libitum mice, the intermittently fasted infected animals had (1) lower intestinal and systemic bacterial loads; (2) higher SIgA and IgA plasma cell levels; (3) higher mRNA expression of most intestinal parameters; and (4) increased or decreased corticosterone levels on day 7 and 14 post-infection, respectively. No contribution of liver IgA was observed at the intestinal level. Apparently, the changes following metabolic stress induced by intermittent fasting during food deprivation days increased the resistance to S. typhimurium infection by triggering intestinal IgA production and presumably, pathogen elimination by phagocytic inflammatory cells. © 2014 John Wiley & Sons Ltd.

  4. Can Particulate Air Sampling Predict Microbial Load in Operating Theatres for Arthroplasty?

    PubMed Central

    Cristina, Maria Luisa; Spagnolo, Anna Maria; Sartini, Marina; Panatto, Donatella; Gasparini, Roberto; Orlando, Paolo; Ottria, Gianluca; Perdelli, Fernanda

    2012-01-01

    Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m3; the mean particle count was 4,194,569 no./m3 for particles of diameter ≥0.5 µm and 13,519 no./m3 for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of evaluating the quality of air in operating theatres. PMID:23285189

  5. Can particulate air sampling predict microbial load in operating theatres for arthroplasty?

    PubMed

    Cristina, Maria Luisa; Spagnolo, Anna Maria; Sartini, Marina; Panatto, Donatella; Gasparini, Roberto; Orlando, Paolo; Ottria, Gianluca; Perdelli, Fernanda

    2012-01-01

    Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m(3); the mean particle count was 4,194,569 no./m(3) for particles of diameter ≥0.5 µm and 13,519 no./m(3) for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of evaluating the quality of air in operating theatres.

  6. Molecular analysis of microbial diversity in advanced caries.

    PubMed

    Chhour, Kim-Ly; Nadkarni, Mangala A; Byun, Roy; Martin, F Elizabeth; Jacques, Nicholas A; Hunter, Neil

    2005-02-01

    Real-time PCR analysis of the total bacterial load in advanced carious lesions has shown that the total load exceeds the number of cultivable bacteria. This suggests that an unresolved complexity exists in bacteria associated with advanced caries. In this report, the profile of the microflora of carious dentine was explored by using DNA extracted from 10 lesions selected on the basis of comparable total microbial load and on the relative abundance of Prevotella spp. Using universal primers for the 16S rRNA gene, PCR amplicons were cloned, and approximately 100 transformants were processed for each lesion. Phylogenetic analysis of 942 edited sequences demonstrated the presence of 75 species or phylotypes in the 10 carious lesions. Up to 31 taxa were represented in each sample. A diverse array of lactobacilli were found to comprise 50% of the species, with prevotellae also abundant, comprising 15% of the species. Other taxa present in a number of lesions or occurring with high abundance included Selenomonas spp., Dialister spp., Fusobacterium nucleatum, Eubacterium spp., members of the Lachnospiraceae family, Olsenella spp., Bifidobacterium spp., Propionibacterium sp., and Pseudoramibacter alactolyticus. The mechanisms by which such diverse patterns of bacteria extend carious lesions, including the aspect of infection of the vital dental pulp, remain unclear.

  7. Mesoporous silica nanoparticles decorated with polycationic dendrimers for infection treatment.

    PubMed

    González, Blanca; Colilla, Montserrat; Díez, Jaime; Pedraza, Daniel; Guembe, Marta; Izquierdo-Barba, Isabel; Vallet-Regí, María

    2018-03-01

    This work aims to provide an effective and novel solution for the treatment of infection by using nanovehicles loaded with antibiotics capable of penetrating the bacterial wall, thus increasing the antimicrobial effectiveness. These nanosystems, named "nanoantibiotics", are composed of mesoporous silica nanoparticles (MSNs), which act as nanocarriers of an antimicrobial agent (levofloxacin, LEVO) localized inside the mesopores. To provide the nanosystem of bacterial membrane interaction capability, a polycationic dendrimer, concretely the poly(propyleneimine) dendrimer of third generation (G3), was covalently grafted to the external surface of the LEVO-loaded MSNs. After physicochemical characterization of this nanoantibiotic, the release kinetics of LEVO and the antimicrobial efficacy of each released dosage were evaluated. Besides, internalization studies of the MSNs functionalized with the G3 dendrimer were carried out, showing a high penetrability throughout Gram-negative bacterial membranes. This work evidences that the synergistic combination of polycationic dendrimers as bacterial membrane permeabilization agents with LEVO-loaded MSNs triggers an efficient antimicrobial effect on Gram-negative bacterial biofilm. These positive results open up very promising expectations for their potential application in new infection therapies. Seeking new alternatives to current available treatments of bacterial infections represents a great challenge in nanomedicine. This work reports the design and optimization of a new class of antimicrobial agent, named "nanoantibiotic", based on mesoporous silica nanoparticles (MSNs) decorated with polypropyleneimine dendrimers of third generation (G3) and loaded with levofloxacin (LEVO) antibiotic. The covalently grafting of these G3 dendrimers to MSNs allows an effective internalization in Gram-negative bacteria. Furthermore, the LEVO loaded into the mesoporous cavities is released in a sustained manner at effective antimicrobial dosages. The novelty and originality of this manuscript relies on proving that the synergistic combination of bacteria-targeting and antimicrobial agents into a unique nanosystem provokes a remarkable antimicrobial effect against bacterial biofilm. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro?

    PubMed

    Drago, Lorenzo; Boot, Willemijn; Dimas, Kostantinos; Malizos, Kostantinos; Hänsch, Gertrud M; Stuyck, Jos; Gawlitta, Debby; Romanò, Carlo L

    2014-11-01

    Implant-related infections represent one of the most severe complications in orthopaedics. A fast-resorbable, antibacterial-loaded hydrogel may reduce or prevent bacterial colonization and biofilm formation of implanted biomaterials. We asked: (1) Is a fast-resorbable hydrogel able to deliver antibacterial compounds in vitro? (2) Can a hydrogel (alone or antibacterial-loaded) coating on implants reduce bacterial colonization? And (3) is intraoperative coating feasible and resistant to press-fit implant insertion? We tested the ability of Disposable Antibacterial Coating (DAC) hydrogel (Novagenit Srl, Mezzolombardo, Italy) to deliver antibacterial agents using spectrophotometry and a microbiologic assay. Antibacterial and antibiofilm activity were determined by broth microdilution and a crystal violet assay, respectively. Coating resistance to press-fit insertion was tested in rabbit tibias and human femurs. Complete release of all tested antibacterial compounds was observed in less than 96 hours. Bactericidal and antibiofilm effect of DAC hydrogel in combination with various antibacterials was shown in vitro. Approximately 80% of the hydrogel coating was retrieved on the implant after press-fit insertion. Implant coating with an antibacterial-loaded hydrogel reduces bacterial colonization and biofilm formation in vitro. A fast-resorbable, antibacterial-loaded hydrogel coating may help prevent implant-related infections in orthopaedics. However, further validation in animal models and properly controlled human studies is required.

  9. Which is the best method to trace group A streptococci in sore throat patients: culture or GAS antigen test?

    PubMed

    Lindbaek, Morten; Høiby, Ernst Arne; Lermark, Gro; Steinsholt, Inger Marie; Hjortdahl, Per

    2004-12-01

    To compare an antigen detection test (GAS antigen test) with the results from combinations of two various bacteriological test media in general practice patients with sore throat. Furthermore to assess the diagnostic properties of the chosen GAS antigen test and to compare semi-quantitative results of this test with the bacterial load found in the throat culture. Two Norwegian general practices in Stokke and Kongsberg communities. 306 patients with sore throat lasting less than 7 days; 244 were adults, 62 were children under 10 years old, mean age 23.9 years (SD 15.0), 40% were men. Results from GAS antigen test, and distribution of bacteriological findings in throat cultures, compared with the results of our GAS antigen test; semi-quantitative results of the GAS antigen test compared with the bacterial load by culture. In the primary culture 110 patients harboured group A streptococci (GAS) infection, while the second culture identified another 17, giving a total of 127 patients. Some 33 patients harboured large-colony groups C and G. The GAS antigen test used had a sensitivity of 97% and specificity of 95% regarding GAS when compared with the two cultures. We found a significant correlation between the bacterial loads by culture and the semi-quantitative results of the GAS antigen test. By using a second, different set of bacteriological media, we identified an additional 17 patients with GAS infections. This raises the question of validity of frequently used reference standards in studies related to streptococcal infections. Compared with the combined results of the two throat cultures, the GAS antigen test used showed high sensitivity and specificity. Semi-quantitative evaluations of the rapid immunological test may also be of clinical value.

  10. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers

    PubMed Central

    Laffite, Amandine; Kilunga, Pitchouna I.; Kayembe, John M.; Devarajan, Naresh; Mulaji, Crispin K.; Giuliani, Gregory; Slaveykova, Vera I.; Poté, John

    2016-01-01

    Data concerning the occurrence of emerging biological contaminants such as antibiotic resistance genes (ARGs) and fecal indicator bacteria (FIB) in aquatic environments in Sub-Saharan African countries is limited. On the other hand, antibiotic resistance remains a worldwide problem which may pose serious potential risks to human and animal health. Consequently, there is a growing number of reports concerning the prevalence and dissemination of these contaminants into various environmental compartments. Sediments provide the opportunity to reconstruct the pollution history and evaluate impacts so this study investigates the abundance and distribution of toxic metals, FIB, and ARGs released from hospital effluent wastewaters and their presence in river sediments receiving systems. ARGs (blaTEM, blaCTX-M, blaSHV, and aadA), total bacterial load, and selected bacterial species FIB [Escherichia coli, Enterococcus (ENT)] and species (Psd) were quantified by targeting species specific genes using quantitative PCR (qPCR) in total DNA extracted from the sediments recovered from 4 hospital outlet pipes (HOP) and their river receiving systems in the City of Kinshasa in the Democratic Republic of the Congo. The results highlight the great concentration of toxic metals in HOP, reaching the values (in mg kg−1) of 47.9 (Cr), 213.6 (Cu), 1434.4 (Zn), 2.6 (Cd), 281.5 (Pb), and 13.6 (Hg). The results also highlight the highest (P < 0.05) values of 16S rRNA, FIB, and ARGs copy numbers in all sampling sites including upstream (control site), discharge point, and downstream of receiving rivers, indicating that the hospital effluent water is not an exclusive source of the biological contaminants entering the urban rivers. Significant correlation were observed between (i) all analyzed ARGs and total bacterial load (16S rRNA) 0.51 to 0.72 (p < 0.001, n = 65); (ii) ARGs (except blaTEM) and FIB and Psd 0.57 < r < 0.82 (p < 0.001, n = 65); and (iii) ARGs (except blaTEM) and toxic metals (Cd, Cr, Cu, and Zn) 0.44 to 0.72, (p < 0.001, n = 65). These findings demonstrate that several sources including hospital and urban wastewaters contribute to the spread of toxic metals and biological emerging contaminants in aquatic ecosystems. PMID:27499749

  11. Carnobacterium divergens - a dominating bacterium of pork meat juice.

    PubMed

    Rieder, Gabriele; Krisch, Linda; Fischer, Harald; Kaufmann, Maria; Maringer, Adolf; Wessler, Silja

    2012-07-01

    Nonspoiled food that nevertheless contains bacterial pathogens constitutes a much more serious health problem than spoiled food, as the consumer is not warned beforehand. However, data on the diversity of bacterial species in meat juice are rare. To study the bacterial load of fresh pork from ten different distributors, we applied a combination of the conventional culture-based and molecular methods for detecting and quantifying the microbial spectrum of fresh pork meat juice samples. Altogether, we identified 23 bacterial species of ten different families analyzed by 16S rRNA gene sequencing. The majority of isolates were belonging to the typical spoilage bacterial population of lactic acid bacteria (LAB), Enterococcaceae, and Pseudomonadaceae. Several additional isolates were identified as Staphylococcus spp. and Bacillus spp. originating from human and animal skin and other environmental niches including plants, soil, and water. Carnobacterium divergens, a LAB contributing to the spoilage of raw meat even at refrigeration temperature, was the most frequently isolated species in our study (5/10) with a bacterial load of 10(3) - 10(7) CFU mL(-1). In several of the analyzed pork meat juice samples, two bacterial faecal indicators, Serratia grimesii and Serratia proteamaculans, were identified together with another opportunistic food-borne pathogen, Staphylococcus equorum. Our data reveal a high bacterial load of fresh pork meat supporting the potential health risk of meat juice for the end consumer even under refrigerated conditions. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. The relation between oral Candida load and bacterial microbiome profiles in Dutch older adults.

    PubMed

    Kraneveld, Eefje A; Buijs, Mark J; Bonder, Marc J; Visser, Marjolein; Keijser, Bart J F; Crielaard, Wim; Zaura, Egija

    2012-01-01

    Currently there are no evidence-based ecological measures for prevention of overgrowth and subsequent infection by fungi in the oral cavity. The aim of this study was to increase our knowledge on fungal-bacterial ecological interactions. Salivary Candida abundance of 82 Dutch adults aged 58-80 years was established relative to the bacterial load by quantitative PCR analysis of the Internal Transcribed (ITS) region (Candida) and 16S rDNA gene (bacteria). The salivary microbiome was assessed using barcoded pyrosequencing of the bacterial hypervariable regions V5-V7 of 16S rDNA. Sequencing data was preprocessed by denoising and chimera removal, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. Both OTU-based (PCA, diversity statistics) and phylogeny-based analyses (UniFrac, PCoA) were performed. Saliva of Dutch older adults contained 0-4 × 10(8) CFU/mL Candida with a median Candida load of 0.06%. With increased Candida load the diversity of the salivary microbiome decreased significantly (p<0.001). Increase in the Candida load correlated positively with class Bacilli, and negatively with class Fusobacteria, Flavobacteria, and Bacteroidia. Microbiomes with high Candida load were less diverse and had a distinct microbial composition towards dominance by saccharolytic and acidogenic bacteria--streptococci. The control of the acidification of the oral environment may be a potential preventive measure for Candida outgrowth that should be evaluated in longitudinal clinical intervention trials.

  13. The Relation between Oral Candida Load and Bacterial Microbiome Profiles in Dutch Older Adults

    PubMed Central

    Kraneveld, Eefje A.; Buijs, Mark J.; Bonder, Marc J.; Visser, Marjolein; Keijser, Bart J. F.; Crielaard, Wim; Zaura, Egija

    2012-01-01

    Currently there are no evidence-based ecological measures for prevention of overgrowth and subsequent infection by fungi in the oral cavity. The aim of this study was to increase our knowledge on fungal–bacterial ecological interactions. Salivary Candida abundance of 82 Dutch adults aged 58–80 years was established relative to the bacterial load by quantitative PCR analysis of the Internal Transcribed (ITS) region (Candida) and 16S rDNA gene (bacteria). The salivary microbiome was assessed using barcoded pyrosequencing of the bacterial hypervariable regions V5–V7 of 16S rDNA. Sequencing data was preprocessed by denoising and chimera removal, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. Both OTU-based (PCA, diversity statistics) and phylogeny-based analyses (UniFrac, PCoA) were performed. Saliva of Dutch older adults contained 0–4 × 108 CFU/mL Candida with a median Candida load of 0.06%. With increased Candida load the diversity of the salivary microbiome decreased significantly (p<0.001). Increase in the Candida load correlated positively with class Bacilli, and negatively with class Fusobacteria, Flavobacteria, and Bacteroidia. Microbiomes with high Candida load were less diverse and had a distinct microbial composition towards dominance by saccharolytic and acidogenic bacteria - streptococci. The control of the acidification of the oral environment may be a potential preventive measure for Candida outgrowth that should be evaluated in longitudinal clinical intervention trials. PMID:22900048

  14. Impact of effluents from a car battery manufacturing plant in Nigeria on water, soil, and food qualities.

    PubMed

    Orisakwe, Orish Ebere; Asomugha, Rose; Afonne, Onyenmechi Johnson; Anisi, C N; Obi, Ejeatuluchukwualo; Dioka, Chudi Emma

    2004-01-01

    The authors investigated the impact of effluents from a car battery manufacturing plant in Nnewi, Nigeria, on water, soil, and food qualities. The authors analyzed heavy metals mercury, arsenic, lead, cadmium and nickel in tap and cassava waters, soil, dried cassava tuber, and edible fruit samples from the company, using an atomic absorption spectrophotometer. Other parameters the authors analyzed include pH, electrical conductivity (EC), salinity (SAL), total hardness (TH), biological oxygen demand (BOD), volatile and non-volatile solids, and bacterial and fungal loads of the soil samples. Results show that lead had the highest concentration in all the samples, with the soil samples having the highest lead concentration (38-12 ppm, 102 ppm) and the water samples having the lowest (0.02-0.20 ppm). Mercury had the lowest concentration (<0.0002 ppm) in all the samples. Soil sample B had the highest concentration of all the metals tested. Cassava water had higher levels of EC, SAL, TH, BOD, and volatile and nonvolatile solids, but lower pH than tap water. Bacterial loads were higher than fungal loads in all the soil samples. Because there was moderate contamination of the environment by some of the metals studied, with lead being exceptionally high and above the specified international standards, the authors recommend control measures to reduce lead exposure to the local populace within and around this industry.

  15. Monitoring the bacterial community dynamics in a petroleum refinery wastewater membrane bioreactor fed with a high phenolic load.

    PubMed

    Silva, Cynthia C; Viero, Aline F; Dias, Ana Carolina F; Andreote, Fernando D; Jesus, Ederson C; De Paula, Sergio O; Torres, Ana Paula R; Santiago, Vania M J; Oliveira, Valeria M

    2010-01-01

    The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

  16. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    PubMed

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A snapshot of the microbiome of Amblyomma tuberculatum ticks infesting the gopher tortoise, an endangered species.

    PubMed

    Budachetri, Khemraj; Gaillard, Daniel; Williams, Jaclyn; Mukherjee, Nabanita; Karim, Shahid

    2016-10-01

    The gopher tortoise tick, Amblyomma tuberculatum, has a unique relationship with the gopher tortoise, Gopherus polyphemus, found in sandy habitats across the southeastern United States. We aimed to understand the overall bacterial community associated with A. tuberculatum while also focusing on spotted fever group Rickettsia. These tortoises in the Southern Mississippi region are a federally threatened species; therefore, we have carefully trapped the tortoises and removed the species-specific ticks attached to them. Genomic DNA was extracted from individual ticks and used to explore overall bacterial load using pyrosequencing of bacterial 16S rRNA on 454-sequencing platform. The spotted fever group of Rickettsia was explored by amplifying rickettsial outer membrane protein A (rompA) gene by nested PCR. Sequencing results revealed 330 bacterial operational taxonomic units (OTUs) after all the necessary curation of sequences. Four whole A. tuberculatum ticks showed Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as the most dominant phyla with a total of 74 different bacterial genera detected. Together Rickettsiae and Francisella showed >85% abundance, thus dominating the bacterial community structure. Partial sequences obtained from ompA amplicons revealed the presence of an uncharacterized Rickettsia similar to the Rickettsial endosymbiont of A. tuberculatum. This is the first preliminary profile of a complete bacterial community from gopher tortoise ticks and warrants further investigation regarding the functional role of Rickettsial and Francisella-like endosymbionts in tick physiology. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Analysis of changes in intestinal flora and intravascular inflammation and coronary heart disease in obese patients.

    PubMed

    Li, Xv; Li, Chuantao

    2018-05-01

    Changes in intestinal flora in obese patients and intravascular C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and coronary heart disease (CHD) were analyzed. A total of 75 cases of obese patients were divided into obesity (OB) alone (n=40) and OB with CHD group (n=35). There was no statistically significant difference in age, sex, pre-existing basic diabetes, history of hypertension, and body mass index (P>0.05). Results showed that total bacterial load of CHD was obviously higher than that of OB group. The uric acid decomposed by intestinal flora (IFUA) and blood uric acid levels in CHD were higher than those in OB group, but the fecal uric acid level was lower than that of OB group (P<0.05). Levels of inflammatory factors in CHD, were significantly higher than those in OB group (P<0.05). Correlation analyses showed that the intestinal flora total load and CRP were positively correlated (r=0.793, P<0.001). Intestinal flora and Gensini score were also positively related to total load (r=0.893, P=0.893). Furthermore, CRP and Gensini score were positively related (r=0.796, P<0.796). IFUA and Gensini score were positively related to (r=0.647, P<0.001). Over-reaction in the flammation system in obese patients may lead to intestinal flora disorder, disturbance and also increased levels of IFUA and inflammatory factors.

  19. Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared spectroscopy and chemometrics.

    PubMed

    Nicolaou, Nicoletta; Goodacre, Royston

    2008-10-01

    Microbiological safety plays a very significant part in the quality control of milk and dairy products worldwide. Current methods used in the detection and enumeration of spoilage bacteria in pasteurized milk in the dairy industry, although accurate and sensitive, are time-consuming. FT-IR spectroscopy is a metabolic fingerprinting technique that can potentially be used to deliver results with the same accuracy and sensitivity, within minutes after minimal sample preparation. We tested this hypothesis using attenuated total reflectance (ATR), and high throughput (HT) FT-IR techniques. Three main types of pasteurized milk - whole, semi-skimmed and skimmed - were used and milk was allowed to spoil naturally by incubation at 15 degrees C. Samples for FT-IR were obtained at frequent, fixed time intervals and pH and total viable counts were also recorded. Multivariate statistical methods, including principal components-discriminant function analysis and partial least squares regression (PLSR), were then used to investigate the relationship between metabolic fingerprints and the total viable counts. FT-IR ATR data for all milks showed reasonable results for bacterial loads above 10(5) cfu ml(-1). By contrast, FT-IR HT provided more accurate results for lower viable bacterial counts down to 10(3) cfu ml(-1) for whole milk and, 4 x 10(2) cfu ml(-1) for semi-skimmed and skimmed milk. Using FT-IR with PLSR we were able to acquire a metabolic fingerprint rapidly and quantify the microbial load of milk samples accurately, with very little sample preparation. We believe that metabolic fingerprinting using FT-IR has very good potential for future use in the dairy industry as a rapid method of detection and enumeration.

  20. Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite.

    PubMed

    Barros, J; Grenho, L; Fernandes, M H; Manuel, C M; Melo, L F; Nunes, O C; Monteiro, F J; Ferraz, M P

    2015-06-01

    Nanohydroxyapatite possesses exceptional biocompatibility and bioactivity regarding bone cells and tissues, justifying its use as a coating material or as a bone substitute. Unfortunately, this feature may also encourage bacterial adhesion and biofilm formation. Surface functionalization with antimicrobials is a promising strategy to reduce the likelihood of bacterial infestation and colonization on medical devices. Chlorhexidine digluconate is a common and effective antimicrobial agent used for a wide range of medical applications. The purpose of this work was the development of a nanoHA biomaterial loaded with CHX to prevent surface bacterial accumulation and, simultaneously, with good cytocompatibility, for application in the medical field. CHX (5-1500 mg/L) was loaded onto nanoHA discs and the materials were evaluated for CHX adsorption and release profile, physic-chemical features, antibacterial activity against Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis, and cytocompatibility toward L929 fibroblasts. Results showed that the adsorption of CHX on nanoHA surface occurred by electrostatic interactions between the cationic group of CHX and the phosphate group of nanoHA. The release of CHX from CHX-loaded nanoHA showed a fast initial rate followed by a slower kinetics release, due to constraints caused by dilution and diffusion-limiting processes. NanoHA.50 to nanoHA.1500 showed strong anti-sessile activity, inhibiting bacterial adhesion and the biofilm formation. CHX-nanoHA caused a dose- and time-dependent inhibitory effect on the proliferation of fibroblasts for nanoHA.100 to nanoHA.1500. Cellular behavior on nanoHA.5 and nanoHA.50 was similar to control. Therefore, CHX-loaded nanoHA surfaces appear as a promising alternative to prevention of devices-related infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome.

    PubMed

    Becker, C G; Longo, A V; Haddad, C F B; Zamudio, K R

    2017-08-30

    Deforestation has detrimental consequences on biodiversity, affecting species interactions at multiple scales. The associations among vertebrates, pathogens and their commensal/symbiotic microbial communities (i.e. microbiomes) have important downstream effects for biodiversity conservation, yet we know little about how deforestation contributes to changes in host microbial diversity and pathogen abundance. Here, we tested the effects of landcover, forest connectivity and infection by the chytrid fungus Batrachochytrium dendrobatidis ( Bd ) on amphibian skin bacterial diversity along deforestation gradients in Brazilian landscapes. If disturbance to natural habitat alters skin microbiomes as it does in vertebrate host communities, then we would expect higher host bacterial diversity in natural forest habitats. Bd infection loads are also often higher in these closed-canopy forests, which may in turn impact skin-associated bacterial communities. We found that forest corridors shaped composition of host skin microbiomes; high forest connectivity predicted greater similarity of skin bacterial communities among host populations. In addition, we found that host skin bacterial diversity and Bd loads increased towards natural vegetation. Because symbiotic bacteria can potentially buffer hosts from Bd infection, we also evaluated the bi-directional microbiome- Bd link but failed to find a significant effect of skin bacterial diversity reducing Bd infections. Although weak, we found support for Bd increasing bacterial diversity and/or for core bacteria dominance reducing Bd loads. Our research incorporates a critical element in the study of host microbiomes by linking environmental heterogeneity of landscapes to the host-pathogen-microbiome triangle. © 2017 The Author(s).

  2. Combined effect of gamma-irradiation and conventional cooking on Aeromonas hydrophila in meatball.

    PubMed

    Ozbaş, Z Y; Vural, H; Aytaç, S A

    1996-01-01

    Irradiation combined with a conventional cooking procedure was applied to meatball and the effects on bacterial load and inoculated Aeromonas hydrophila were determined. Meatball samples were irradiated by using a 60Co source at the dose levels of 0, 0.30, 0.75, 1.50, 2.50 kGy and cold stored at 4 +/- 1 degrees C for 7 days. Bacterial load and the count of A. hydrophila decreased when the irradiation dose level increased. A minimum inhibition effect was found at the dose of 0.30 kGy. Irradiation in combination with a conventional cooking procedure was found to be more effective in reducing A. hydrophila and the bacterial load in meatball. This study indicated that a dose of 0.75 kGy was sufficient to destroy approximately 10(4) cfu/g of A. hydrophila in meatball.

  3. Modified niche optima and breadths explain the historical contingency of bacterial community responses to eutrophication in coastal sediments.

    PubMed

    Fodelianakis, S; Moustakas, A; Papageorgiou, N; Manoli, O; Tsikopoulou, I; Michoud, G; Daffonchio, D; Karakassis, I; Ladoukakis, E D

    2017-04-01

    Previous studies have shown that the response of bacterial communities to disturbances depends on their environmental history. Historically fluctuating habitats host communities that respond better to disturbance than communities of historically stable habitats. However, the exact ecological mechanism that drives this dependency remains unknown. Here, we experimentally demonstrate that modifications of niche optima and niche breadths of the community members are driving this dependency of bacterial responses to past environmental conditions. First, we develop a novel, simple method to calculate the niche optima and breadths of bacterial taxa regarding single environmental gradients. Then, we test this method on sediment bacterial communities of three habitats, one historically stable and less loaded and two historically more variable and more loaded habitats in terms of historical chlorophyll-α water concentration, that we subject to hypoxia via organic matter addition ex situ. We find that communities containing bacterial taxa differently adapted to hypoxia show different structural and functional responses, depending on the sediment's environmental history. Specifically, in the historically less fluctuating and loaded sediments where we find more taxa poorly adapted to hypoxic conditions, communities change a lot over time and organic matter is not degraded efficiently. The opposite is true for the historically more fluctuating and loaded sediments where we find more taxa well adapted to hypoxia. Based on the community responses observed here, we also propose an alternative calculation of community resistance that takes into account how rapidly the communities respond to disturbances and not just the initial and final states of the community. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  4. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia.

    PubMed

    Su, Y-L; Feng, J; Li, Y-W; Bai, J-S; Li, A-X

    2016-02-01

    Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish. © 2015 John Wiley & Sons Ltd.

  5. Stereological analysis of bacterial load and lung lesions in nonhuman primates (rhesus macaques) experimentally infected with Mycobacterium tuberculosis.

    PubMed

    Luciw, Paul A; Oslund, Karen L; Yang, Xiao-Wei; Adamson, Lourdes; Ravindran, Resmi; Canfield, Don R; Tarara, Ross; Hirst, Linda; Christensen, Miles; Lerche, Nicholas W; Offenstein, Heather; Lewinsohn, David; Ventimiglia, Frank; Brignolo, Laurie; Wisner, Erik R; Hyde, Dallas M

    2011-11-01

    Infection with Mycobacterium tuberculosis primarily produces a multifocal distribution of pulmonary granulomas in which the pathogen resides. Accordingly, quantitative assessment of the bacterial load and pathology is a substantial challenge in tuberculosis. Such assessments are critical for studies of the pathogenesis and for the development of vaccines and drugs in animal models of experimental M. tuberculosis infection. Stereology enables unbiased quantitation of three-dimensional objects from two-dimensional sections and thus is suited to quantify histological lesions. We have developed a protocol for stereological analysis of the lung in rhesus macaques inoculated with a pathogenic clinical strain of M. tuberculosis (Erdman strain). These animals exhibit a pattern of infection and tuberculosis similar to that of naturally infected humans. Conditions were optimized for collecting lung samples in a nonbiased, random manner. Bacterial load in these samples was assessed by a standard plating assay, and granulomas were graded and enumerated microscopically. Stereological analysis provided quantitative data that supported a significant correlation between bacterial load and lung granulomas. Thus this stereological approach enables a quantitative, statistically valid analysis of the impact of M. tuberculosis infection in the lung and will serve as an essential tool for objectively comparing the efficacy of drugs and vaccines.

  6. Predominance of anaerobic bacterial community over aerobic community contribute to intensify ‘oxygen minimum zone’ in the eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Gonsalves, M.-J.; Paropkari, A. L.; Fernandes, C. E. G.; Loka Bharathi, P. A.; Krishnakumari, L.; Fernando, V.; Nampoothiri, G. E.

    2011-08-01

    The presence of a delicately poised mid-depth oxygen minimum zone (OMZ) makes the Arabian Sea a unique and important ecosystem. So far, various aspects responsible for its formation have been studied. However, the contributions from bacterial groups mediating its formation and maintaining its intensity are described for the first time in this study. Thus, we hypothesize that the bacterial dynamics along with organic carbon loading result in bringing about differences in the intensity of OMZ between two stations in the Eastern Arabian Sea (EAS). Water column from 2 stations, one from offshore and another from slope, in the EAS were examined for phytoplankton diversity and pertinent groups of culturable bacteria. Vertical profiles of dissolved oxygen, productivity, chlorophyll a, total organic carbon and different physiological groups of bacteria showed well-defined stratified patterns in tandem with physical and chemical stratifications of the water column. The phytoplankton diversity was higher at the slope station (SS) and was dominated by the heterotrophic dinoflagellates. The offshore station (OS) on the other hand, showed lower diversity dominated by diatoms ( p<0.05). This observation could imply relatively higher autotrophy at the OS. Our results show that OMZ from these 'oligotrophic' regions is dominated by anaerobic bacteria. We believe that these bacteria contribute to intensify the OMZ in the EAS. Further, a higher abundance of viable anaerobic bacteria (TVC anaero) and other anaerobic groups at the SS than the OS suggest that the OMZ is relatively much more intense near the slope. Besides, total organic carbon (TOC) load is three-fold higher at the SS than at OS implying its higher accumulation and lower degradability in slope waters. Settling of this more preserved organic carbon in mid-slope sediments in contact with OMZ results in one of the highest enrichments of sedimentary TOC in the world oceans.

  7. Patterns of Piscirickettsia salmonis load in susceptible and resistant families of Salmo salar.

    PubMed

    Dettleff, Phillip; Bravo, Cristian; Patel, Alok; Martinez, Victor

    2015-07-01

    The pathogen Piscirickettsia salmonis produces a systemic aggressive infection that involves several organs and tissues in salmonids. In spite of the great economic losses caused by this pathogen in the Atlantic salmon (Salmo salar) industry, very little is known about the resistance mechanisms of the host to this pathogen. In this paper, for the first time, we aimed to identify the bacterial load in head kidney and muscle of Atlantic salmon exhibiting differential familiar mortality. Furthermore, in order to assess the patterns of gene expression of immune related genes in susceptible and resistant families, a set of candidate genes was evaluated using deep sequencing of the transcriptome. The results showed that the bacterial load was significantly lower in resistant fish, when compared with the susceptible individuals. Based on the candidate genes analysis, we infer that the resistant hosts triggered up-regulation of specific genes (such as for example the LysC), which may explain a decrease in the bacterial load in head kidney, while the susceptible fish presented an exacerbated innate response, which is unable to exert an effective response against the bacteria. Interestingly, we found a higher bacterial load in muscle when compared with head kidney. We argue that this is possible due to the availability of an additional source of iron in muscle. Besides, the results show that the resistant fish could not be a likely reservoir of the bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Bacterial and parasitic diseases of parrots.

    PubMed

    Doneley, Robert J T

    2009-09-01

    As wild-caught birds become increasingly rare in aviculture, there is a corresponding decline in the incidence of bacterial and parasitic problems and an increase in the recognition of the importance of maintaining health through better nutrition and husbandry. Nevertheless, the relatively close confines of captivity mean an increased pathogen load in the environment in which companion and aviary parrots live. This increased pathogen load leads to greater exposure of these birds to bacteria and parasites, and consequently a greater risk of infection and disease. This article discusses bacterial and parasitic infections in companion and aviary parrots. It includes the origins, pathogens, diagnosis, treatment, and some of the associated risk factors.

  9. Oral and endotracheal tubes colonization by periodontal bacteria: a case-control ICU study.

    PubMed

    Porto, A N; Cortelli, S C; Borges, A H; Matos, F Z; Aquino, D R; Miranda, T B; Oliveira Costa, F; Aranha, A F; Cortelli, J R

    2016-03-01

    Periodontal infection is a possible risk factor for respiratory disorders; however, no studies have assessed the colonization of periodontal pathogens in endotracheal tubes (ET). This case-control study analyzed whether periodontal pathogens are able to colonize ET of dentate and edentulous patients in intensive care units (ICU) and whether oral and ET periodontal pathogen profiles have any correlation between these patients. We selected 18 dentate and 18 edentulous patients from 78 eligible ICU patients. Oral clinical examination including probing depth, clinical attachment level, gingival index , and plaque index was performed by a single examiner, followed by oral and ET sampling and processing by quantitative polymerase chain reaction (total bacterial load, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia). Data were statistically analyzed by Mann-Whitney U, two-way analysis of variance (p < 0.05). Among dentate, there was no correlation between clinical parameters and ET bacterial levels. Both dentate and edentulous patients showed similar ET bacterial levels. Dentate patients showed no correlation between oral and ET bacterial levels, while edentulous patients showed positive correlations between oral and ET levels of A. actinomycetemcomitans, P. gingivalis, and T. forsythia. Periodontal pathogens can colonize ET and the oral cavity of ICU patients. Periodontal pathogen profiles tend to be similar between dentate and edentulous ICU patients. In ICU patients, oral cavity represents a source of ET contamination. Although accompanied by higher oral bacterial levels, teeth do not seem to influence ET bacterial profiles.

  10. The importance of mobile phones in the possible transmission of bacterial infections in the community.

    PubMed

    Bhoonderowa, A; Gookool, S; Biranjia-Hurdoyal, S D

    2014-10-01

    Mobile phones have become indispensable accessories in today's life. However, they might act as fomites as they have travelled with their owner to places such as toilets, hospitals and kitchens which are loaded with microorganisms. A cross-sectional study was carried out to isolate and identify bacteria from mobile phones of volunteers in the community. A total of 192 mobile phones from 102 males and 90 females were swabbed and cultured. The bacteria were identified by gram staining and conventional biochemical tests. A total of 176 mobile phones (91.7 %) showed bacterial contamination. Coagulase negative Staphylococcus was the most prevalent (69.3 %) followed by Micrococci (51.8 %), Klebsiella (1.5 %) and Pseudomonas (1 %). The mean colony forming units was higher among females than males (p < 0.05; 95 % CI 0.021-0.365) and higher on mobile phones which were kept in bags than in pockets (p < 0.05; 95 % CI 0.019-0.369). Furthermore, the use of phone cover was found to reduce microbial growth (OR 4.2; 95 % CI 1.423-12.39; p < 0.05). Significant associations were also found between bacterial growth and female participants, agricultural workers, mobile phones older than 6 months and sharing of mobile phones (p < 0.05). Mobile phones from the community carry potential pathogens. Cleaning of mobile phones should be encouraged and should be preferably stored in pockets or carry cases.

  11. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production.

    PubMed

    Lefébure, R; Degerman, R; Andersson, A; Larsson, S; Eriksson, L-O; Båmstedt, U; Byström, P

    2013-05-01

    Both temperature and terrestrial organic matter have strong impacts on aquatic food-web dynamics and production. Temperature affects vital rates of all organisms, and terrestrial organic matter can act both as an energy source for lower trophic levels, while simultaneously reducing light availability for autotrophic production. As climate change predictions for the Baltic Sea and elsewhere suggest increases in both terrestrial matter runoff and increases in temperature, we studied the effects on pelagic food-web dynamics and food-web efficiency in a plausible future scenario with respect to these abiotic variables in a large-scale mesocosm experiment. Total basal (phytoplankton plus bacterial) production was slightly reduced when only increasing temperatures, but was otherwise similar across all other treatments. Separate increases in nutrient loads and temperature decreased the ratio of autotrophic:heterotrophic production, but the combined treatment of elevated temperature and terrestrial nutrient loads increased both fish production and food-web efficiency. CDOM: Chl a ratios strongly indicated that terrestrial and not autotrophic carbon was the main energy source in these food webs and our results also showed that zooplankton biomass was positively correlated with increased bacterial production. Concomitantly, biomass of the dominant calanoid copepod Acartia sp. increased as an effect of increased temperature. As the combined effects of increased temperature and terrestrial organic nutrient loads were required to increase zooplankton abundance and fish production, conclusions about effects of climate change on food-web dynamics and fish production must be based on realistic combinations of several abiotic factors. Moreover, our results question established notions on the net inefficiency of heterotrophic carbon transfer to the top of the food web. © 2013 Blackwell Publishing Ltd.

  12. Do antimicrobial peptides PR-39, PMAP-36 and PMAP-37 have any effect on bacterial growth and quality of liquid-stored boar semen?

    PubMed

    Bussalleu, Eva; Sancho, Sílvia; Briz, Maria D; Yeste, Marc; Bonet, Sergi

    2017-02-01

    The use of antimicrobial peptides (AMP) has become one of the most promising alternatives to the use of antibiotics (Abs) in semen extender's formulation to overcome the increasing bacterial resistance to antibiotics. However, AMP may impair boar sperm quality, so that their deleterious effects might be higher than their effectiveness against bacteria. Thus, the aim of this study was to determine whether three different AMP, the proline-arginine-rich antimicrobial peptide PR-39 (PR-39), and the porcine myeloid antimicrobial peptides 36 (PMAP-36) and 37 (PMAP-37) had any effect upon boar sperm quality and bacterial growth. For this purpose, three different concentrations of each peptide (1 μM, 10 μM and 20 μM for PR-39 and 0.5 μM, 1 μM and 3 μM for PMAP-36 and PMAP-37) were added to 2 mL of a pool of extended semen with BTS without Abs; two controls, one without AMPs and Abs, and the other with Abs only were used for each peptide (n = 3). Total (TMOT) and progressive (PMOT) sperm motility, sperm viability and bacterial concentration were assessed before the addition of each AMP or Abs and at 1, 3, 6, 8 and 10 days post-addition. For each AMP, results revealed a drop in the TMOT and PMOT in all treatments and controls. In regard to sperm viability, while PR-39 at 10 μM maintained it in values similar to those of the control with Abs and PMAP-36 kept also the sperm viability in a similar fashion to the treatment with Abs, PMAP-37 was more effective in keeping sperm viability than controls (P < 0.05). Whereas PR-39 at 20 μM and PMAP-37 at 3 μM were quite effective in controlling bacterial load, PMAP-36 did not avoid bacterial growth at any concentration tested. In conclusion, taking all results together, PMAP-37 seems to be a suitable candidate to replace Abs in extended semen, as it hardly impairs sperm viability and controls the bacterial load. Nevertheless, further studies are still required to improve its effectiveness. Copyright © 2016. Published by Elsevier Inc.

  13. Ag/AgBr-loaded mesoporous silica for rapid sterilization and promotion of wound healing.

    PubMed

    Jin, Chen; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Zheng, Yufeng; Yeung, Kelvin Wai Kwok; Chu, Paul K; Wu, Shuilin

    2018-06-25

    Bacterial infection is a major concern during the wound healing process. Herein, Ag/AgBr-loaded mesoporous silica nanoparticles (Ag/AgBr/MSNs) are designed to harvest visible light for rapid sterilization and acceleration of wound healing. The Ag/AgBr nanostructure has remarkable photocatalysis ability due to the critical factor that it can generate electron-hole pairs easily after light absorption. This remarkable photocatalytic effect enhances the antibacterial activity by producing reactive oxygen species (ROS). The bacterial killing efficiency of Ag/AgBr/MSNs is 95.62% and 99.99% against Staphylococcus aureus and Escherichia coli, respectively, within 15 min under simulated solar light irradiation due to the generation of ROS. Furthermore, the composites can arrest the bacterial growth and damage the bacterial membrane through electrostatic interaction. The gradual release of Ag+ not only prevents bacterial infection with good long-term effectiveness but also stimulates the immune function to produce a large number of white blood cells and neutrophils, which favors the promotion of the wound healing process. This platform provides an effective strategy to prevent bacterial infection during wound healing.

  14. Microbial Dysbiosis Is Associated with Human Breast Cancer

    PubMed Central

    Xuan, Caiyun; Shamonki, Jaime M.; Chung, Alice; DiNome, Maggie L.; Chung, Maureen; Sieling, Peter A.; Lee, Delphine J.

    2014-01-01

    Breast cancer affects one in eight women in their lifetime. Though diet, age and genetic predisposition are established risk factors, the majority of breast cancers have unknown etiology. The human microbiota refers to the collection of microbes inhabiting the human body. Imbalance in microbial communities, or microbial dysbiosis, has been implicated in various human diseases including obesity, diabetes, and colon cancer. Therefore, we investigated the potential role of microbiota in breast cancer by next-generation sequencing using breast tumor tissue and paired normal adjacent tissue from the same patient. In a qualitative survey of the breast microbiota DNA, we found that the bacterium Methylobacterium radiotolerans is relatively enriched in tumor tissue, while the bacterium Sphingomonas yanoikuyae is relatively enriched in paired normal tissue. The relative abundances of these two bacterial species were inversely correlated in paired normal breast tissue but not in tumor tissue, indicating that dysbiosis is associated with breast cancer. Furthermore, the total bacterial DNA load was reduced in tumor versus paired normal and healthy breast tissue as determined by quantitative PCR. Interestingly, bacterial DNA load correlated inversely with advanced disease, a finding that could have broad implications in diagnosis and staging of breast cancer. Lastly, we observed lower basal levels of antibacterial response gene expression in tumor versus healthy breast tissue. Taken together, these data indicate that microbial DNA is present in the breast and that bacteria or their components may influence the local immune microenvironment. Our findings suggest a previously unrecognized link between dysbiosis and breast cancer which has potential diagnostic and therapeutic implications. PMID:24421902

  15. Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: hydrographic patterns and terrestrial runoff relationships.

    PubMed

    Stumpf, Curtis H; Piehler, Michael F; Thompson, Suzanne; Noble, Rachel T

    2010-09-01

    In the New River Estuary (NRE) in eastern North Carolina (NC), fecal indicator bacteria (FIB) levels exceed water quality standards, leading to closure of estuarine waters for shellfishing and classification of parts of the estuary as "impaired" per the Clean Water Act section 303(d) list. As a means to investigate fecal contamination and loading of FIB to the NRE, a continuous automated sampler (ISCO) outfitted with flow modules and water quality probes was placed in four first-order tidal creek headwaters. Total storm discharge and bacterial load for Escherichia coli (EC) and Enterococcus spp. (ENT) were calculated using graphical volumetric flow calculations and interpolation of FIB measurements over each storm's duration for 10 storms. Mean total load of 10(9)-10(12) EC and ENT cells (MPN) occurred over the course of each storm. Total storm loading, averaged across all storms, was as much as 30 and 37 times greater than equivalent duration of baseflow loading for EC and ENT, respectively. Within the first 30% of creek storm volume for all storms and all creeks combined, a mean cumulative load of only 37% and 44% of the total EC and ENT cells, respectively, was discharged, indicating these creeks are not demonstrating a 'first flush' scenario for FIB. The median storm Event Mean Concentrations (EMCs) were 6.37 × 10(2) and 2.03 × 10(2) MPN/100 mL, for EC and ENT, respectively, compared with median baseflow concentrations of 1.48 × 10(2) and 4.84 × 10(1) for EC and ENT, respectively, and were significantly different between base and storm flow events. FIB was correlated with TSS (weak), flow rate (strong), and different stages (base, rising, peak, and falling) of the hydrograph (strong). Pollutographs indicate large intra-storm variability of FIB, and the need for more intensive sampling throughout a storm in order to attain accurate FIB contaminant estimates. Instream sediment concentrations ranged from 5 to 478 (MPN/g) and 13 to 776 (MPN/g) for EC and ENT, respectively, indicating sediment as a source, but a minor reservoir. This overall approach for calculating loading in headwater tidal creeks is detailed. Accurate loading characterization of FIB during storms and dry weather conditions, and understanding intra-storm FIB concentrations, is imperative for understanding patterns of water quality impairment, establishing management planning, and developing appropriate mitigation strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Preliminary evaluation of pathogenic bacteria loading on organic Municipal Solid Waste compost and vermicompost.

    PubMed

    Soobhany, Nuhaa

    2018-01-15

    The use of composts or vermicomposts derived from organic fraction of Municipal Solid Waste (OFMSW) brought about certain disagreement in terms of high level of bacterial pathogens, thereby surpassing the legal restrictions. This preliminary study was undertaken to compare the evolution of pathogenic bacteria on OFMSW compost against vermicompost (generated by Eudrilus eugeniae) with promises of achieving sanitation goals. Analysis to quality data showed that OFMSW vermicomposting caused a moderately higher reduction in total coliforms in contrast to composting. E. coli in OFMSW composts was found to be in the range of 4.72-4.96 log 10  CFU g -1 whilst on a clear contrary, E. coli was undetectable in the final vermicomposts (6.01-6.14 logs of reduction) which might be explained by the involvement of the digestive processes in worms' guts. Both OFMSW composts and vermicomposts generated Salmonella-free products which were acceptable for agricultural usage and soil improvement. In comparison to compost, the analysis of this research indicated that earthworm activity can effectively destroy bacterial pathogenic load in OFMSW vermicomposts. But still, this study necessitates extra research in order to comprehend the factors that direct pathogenic bacteria in vermicomposting and earthworm-free decomposition systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles.

    PubMed

    Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew

    2015-03-01

    Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Cold Atmospheric Plasma for Clinical Purposes: Promising Results in Patients and Future Applications

    NASA Astrophysics Data System (ADS)

    Isbary, Georg

    Infected chronic wounds are both socioeconomic and medical problem. Cold atmospheric plasma (CAP) has already proven its efficacy in killing bacteria on agar plates but also the first prospective randomized controlled trial in patients. As an add-on therapy CAPs proved a highly significant decrease in bacterial load in 5 min plasma-treated wounds (34%, p < 10-6, n = 291, 36 patients) in comparison with wounds that received only standard wound care. This reduction is found in all kinds of germs, even multiresistant ones. Two minutes of plasma treatment led to a significant reduction in bacterial load as well (40%, p < 0.016, n = 70, 14 patients). The treatment is very well tolerated and no side effects occurred until now (in total more than 2,000 treatments in over 220 patients). The results of this study revealed the potential of atmospheric argon plasma treatment as a new approach to kill bacteria in terms of mutiresistancy. With the same CAP device other dermatologic diseases were treated successfully, e.g. Hailey-Hailey disease. New plasma devices using surrounding ambient air have not only greater bactericidal but also virucidal properties. These devices may herald a new era in public, personal, pet, and food hygiene, same as in decontamination. Investigations of human compatibility are promising.

  19. Numbers of fecal streptococci and Escherichia coli in fresh and dry cattle, horse, and sheep manure.

    PubMed

    Weaver, R W; Entry, J A; Graves, Alexandria

    2005-10-01

    Livestock are known contributors to stream pollution. Numbers of fecal streptococci and Escherichia coli in manure naturally deposited by livestock in the field are needed for activities related to bacterial source tracking and determining maximum daily bacterial loading of streams. We measured populations of fecal streptococci and E. coli in fresh and dry manure from cattle (Bos taurus L.), horses (Equus caballus L.), and sheep (Ovis aires L.) on farms in southern Idaho. Populations of indicator bacteria in dry manure were often as high as that in fresh manure from horse and sheep. There was a 2 log10 drop in the population of fecal coliform numbers in dry cattle manure from cattle in pastures but not from cattle in pens. Bacterial isolates used in source tracking should include isolates from both fresh and dry manure to better represent the bacterial source loading of streams.

  20. Laboratory evaluation of the 3-bowl system used for washing-up eating utensils in the field.

    PubMed

    Hargreaves, Joanna S

    2006-01-01

    A 3-bowl system is used for washing-up eating utensils on many expeditions when running water is not available. The utensils are washed in the first bowl until they are visibly clean, rinsed in the second bowl, and disinfected in the third bowl. The objective of this study was to evaluate the efficacy of this system in reducing bacterial loads on contaminated utensils and to compare it with alternative washing-up methods. Different washing-up systems were tested with a simulated dish washing of 5 contaminated mess tins followed by 5 uncontaminated mess tins. Porridge was used to simulate food residue and was mixed with Escherichia coli to produce bacterial contamination. Reduction of bacterial load on the mess tins was measured, as were subjective observations regarding the various systems. Bacterial load on contaminated tins is reduced when the 3-bowl system is used. Uncontaminated tins become contaminated in bowl 1, but this is then reduced in subsequent bowls. Disinfectant use, especially bleach, produced a marked reduction in bacterial load on contaminated and uncontaminated tins when used in bowl 2. Detergent is needed to remove grease, and a final rinse removes the smell of disinfectant. Overall, the most effective washing-up system in the laboratory was removal of most food residue with detergent in bowl 1, finish washing with bleach until visibly clean in bowl 2, and a final rinse in drinkable water in bowl 3. This system has advantages over the established 3-bowl system by getting mess tins clean more easily, killing potentially harmful bacteria, and removing the smell and taste of disinfectant.

  1. Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain

    PubMed

    Pennanen; Fritze; Vanhala; Kiikkila; Neuvonen; Baath

    1998-06-01

    Humus samples were collected 12 growing seasons after the start of a simulated acid rain experiment situated in the subarctic environment. The acid rain was simulated with H2SO4, a combination of H2SO4 and HNO3, and HNO3 at two levels of moderate acidic loads close to the natural anthropogenic pollution levels of southern Scandinavia. The higher levels of acid applications resulted in acidification, as defined by humus chemistry. The concentrations of base cations decreased, while the concentrations of exchangeable H+, Al, and Fe increased. Humus pH decreased from 3.83 to 3.65. Basal respiration decreased with decreasing humus pH, and total microbial biomass, measured by substrate-induced respiration and total amount of phospholipid fatty acids (PLFA), decreased slightly. An altered PLFA pattern indicated a change in the microbial community structure at the higher levels of acid applications. In general, branched fatty acids, typical of gram-positive bacteria, increased in the acid plots. PLFA analysis performed on the bacterial community growing on agar plates also showed that the relative amount of PLFA specific for gram-positive bacteria increased due to the acidification. The changed bacterial community was adapted to the more acidic environment in the acid-treated plots, even though bacterial growth rates, estimated by thymidine and leucine incorporation, decreased with pH. Fungal activity (measured as acetate incorporation into ergosterol) was not affected. This result indicates that bacteria were more affected than fungi by the acidification. The capacity of the bacterial community to utilize 95 different carbon sources was variable and only showed weak correlations to pH. Differences in the toxicities of H2SO4 and HNO3 for the microbial community were not found.

  2. Air suctioning during colon biopsy forceps removal reduces bacterial air contamination in the endoscopy suite.

    PubMed

    Vavricka, S R; Tutuian, R; Imhof, A; Wildi, S; Gubler, C; Fruehauf, H; Ruef, C; Schoepfer, A M; Fried, M

    2010-09-01

    Bacterial contamination of endoscopy suites is of concern; however studies evaluating bacterial aerosols are lacking. We aimed to determine the effectiveness of air suctioning during removal of biopsy forceps in reducing bacterial air contamination. This was a prospective single-blinded trial involving 50 patients who were undergoing elective nontherapeutic colonoscopy. During colonoscopy, endoscopists removed the biopsy forceps first without and then with suctioning following contact with the sigmoid mucosa. A total of 50 L of air was collected continuously for 30 seconds at 30-cm distance from the biopsy channel valve of the colonoscope, with time starting at forceps removal. Airborne bacteria were collected by an impactor air sampler (MAS-100). Standard Petri dishes with CNA blood agar were used to culture Gram-positive bacteria. Main outcome measure was the bacterial load in endoscopy room air. At the beginning and end of the daily colonoscopy program, the median (and interquartile [IQR] range) bioaerosol burden was 4 colony forming units (CFU)/m (3) (IQR 3 - 6) and 16 CFU/m (3) (IQR 13 - 18), respectively. Air suctioning during removal of the biopsy forceps reduced the bioaerosol burden from a median of 14 CFU/m (3) (IQR 11 - 29) to a median of 7 CFU/m (3) (IQR 4 - 16) ( P = 0.0001). Predominantly enterococci were identified on the agar plates. The bacterial aerosol burden during handling of biopsy forceps can be reduced by applying air suction while removing the forceps. This simple method may reduce transmission of infectious agents during gastrointestinal endoscopies. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  3. Using the rate of bacterial clearance determined by real-time polymerase chain reaction as a timely surrogate marker to evaluate the appropriateness of antibiotic usage in critical patients with Acinetobacter baumannii bacteremia.

    PubMed

    Chuang, Yu-Chung; Chang, Shan-Chwen; Wang, Wei-Kung

    2012-08-01

    Bacteremia caused by Acinetobacter baumannii is becoming more frequent among critically ill patients, and has been associated with high mortality and prolonged hospital stay. Multidrug resistance and delay in blood culture have been shown to be significant barriers to appropriate antibiotic treatment. Quantitative polymerase chain reaction assays were recently used to monitor bacterial loads; we hypothesized that the rate of bacterial clearance determined by quantitative polymerase chain reaction can be used as a timely surrogate marker to evaluate the appropriateness of antibiotic usage. Prospective observational study. University hospital and research laboratory. Patients with culture-proven A. baumannii bacteremia in the intensive care units were prospectively enrolled from April 2008 to February 2009. Plasmid Oxa-51/pCRII-TOPO, which contained a 431-bp fragment of the A. baumannii-specific Oxa-51 gene in a pCRII-TOPO vector, was used as the standard. Sequential bacterial DNA loads in the blood were measured by a quantitative polymerase chain reaction assay. We enrolled 51 patients with A. baumannii bacteremia, and examined 318 sequential whole blood samples. The initial mean bacterial load was 2.15 log copies/mL, and the rate of bacterial clearance was 0.088 log copies/mL/day. Multivariate linear regression using the generalized estimation equation approach revealed that the use of immunosuppressants was an independent predictor for slower bacterial clearance (coefficient, 1.116; p<.001), and appropriate antibiotic usage was an independent predictor for more rapid bacterial clearance (coefficient, -0.995; p<.001). Patients with a slower rate of bacterial clearance experienced higher in-hospital mortality (odds ratio, 2.323; p=.04) Immunosuppression and appropriate antibiotic usage were independent factors affecting the rate of clearance of A. baumannii bacteremia in critical patients. These findings highlight the importance of appropriate antibiotic usage and development of effective antibiotics against A. baumannii in an era of emerging antibiotic resistance. The rate of bacterial clearance could serve as a timely surrogate marker for evaluating the appropriateness of antibiotics.

  4. Microleakage Evaluation at Implant-Abutment Interface Using Radiotracer Technique

    PubMed Central

    Siadat, Hakimeh; Arshad, Mahnaz; Mahgoli, Hossein-Ali; Fallahi, Babak

    2016-01-01

    Objectives: Microbial leakage through the implant-abutment (I-A) interface results in bacterial colonization in two-piece implants. The aim of this study was to compare microleakage rates in three types of Replace abutments namely Snappy, GoldAdapt, and customized ceramic using radiotracing. Materials and Methods: Three groups, one for each abutment type, of five implants and one positive and one negative control were considered (a total of 17 regular body implants). A torque of 35 N/cm was applied to the abutments. The samples were immersed in thallium 201 radioisotope solution for 24 hours to let the radiotracers leak through the I-A interface. Then, gamma photons received from the radiotracers were counted using a gamma counter device. In the next phase, cyclic fatigue loading process was applied followed by the same steps of immersion in the radioactive solution and photon counting. Results: Rate of microleakage significantly increased (P≤0.05) in all three types of abutments (i.e. Snappy, GoldAdapt, and ceramic) after cyclic loading. No statistically significant differences were observed between abutment types after cyclic loading. Conclusions: Microleakage significantly increases after cyclic loading in all three Replace abutments (GoldAdapt, Snappy, ceramic). Lowest microleakage before and after cyclic loading was observed in GoldAdapt followed by Snappy and ceramic. PMID:28392814

  5. Composition of the Vaginal Microbiota in Women of Reproductive Age – Sensitive and Specific Molecular Diagnosis of Bacterial Vaginosis Is Possible?

    PubMed Central

    Shipitsyna, Elena; Roos, Annika; Datcu, Raluca; Hallén, Anders; Fredlund, Hans; Jensen, Jørgen S.; Engstrand, Lars; Unemo, Magnus

    2013-01-01

    Background and Objective Bacterial vaginosis (BV) is the most common vaginal disorder, characterized by depletion of the normal lactobacillus-dominant microbiota and overgrowth of commensal anaerobic bacteria. This study aimed to investigate the composition of the vaginal microbiota in women of reproductive age (healthy women and women with BV), with the view of developing molecular criteria for BV diagnosis. Materials and Methods Vaginal samples from 163 women (79 control, 73 BV and 11 intermediate (Lactobacillary grade II flora) cases) were analyzed using 454 pyrosequencing of the hypervariable regions V3–V4 of the 16S rRNA gene and 16 quantitative bacterial species/genus-specific real-time PCR assays. Sensitivities and specificities of potential BV markers were computed using the Amsel criteria as reference standard for BV. The use of quantitative thresholds for prediction of BV, determined for both relative abundance measured with 454 pyrosequencing and bacterial load measured with qPCR, was evaluated. Results Relative to the healthy women, the BV patients had in their vaginal microbiota significantly higher prevalence, loads and relative abundances of the majority of BV associated bacteria. However, only Gardnerella vaginalis, Atopobium vaginae, Eggerthella, Prevotella, BVAB2 and Megasphaera type 1 detected at or above optimal thresholds were highly predictable for BV, with the best diagnostic accuracy shown for A. vaginae. The depletion of Lactobacillus species combined with the presence of either G. vaginalis or A. vaginae at diagnostic levels was a highly accurate BV predictor. Conclusions Quantitative determination of the presence of G. vaginalis, A. vaginae, Eggerthella, Prevotella, BVAB2 and Megasphaera type 1 as well as the depletion of Lactobacillus was highly accurate for BV diagnosis. Measurements of abundance of normal and BV microbiota relative to total bacteria in vaginal fluid may provide more accurate BV diagnosis, and be used for test-of-cure, rather than qualitative detection or absolute counts of BV related microorganisms. PMID:23585843

  6. Mediation analysis to estimate direct and indirect milk losses associated with bacterial load in bovine subclinical mammary infections.

    PubMed

    Detilleux, J; Theron, L; Duprez, J-N; Reding, E; Moula, N; Detilleux, M; Bertozzi, C; Hanzen, C; Mainil, J

    2016-08-01

    Milk losses associated with mastitis can be attributed to either effects of pathogens per se (i.e. direct losses) or to effects of the immune response triggered by the presence of mammary pathogens (i.e. indirect losses). Test-day milk somatic cell counts (SCC) and number of bacterial colony forming units (CFU) found in milk samples are putative measures of the level of immune response and of the bacterial load, respectively. Mediation models, in which one independent variable affects a second variable which, in turn, affects a third one, are conceivable models to estimate direct and indirect losses. Here, we evaluated the feasibility of a mediation model in which test-day SCC and milk were regressed toward bacterial CFU measured at three selected sampling dates, 1 week apart. We applied this method on cows free of clinical signs and with records on up to 3 test-days before and after the date of the first bacteriological samples. Most bacteriological cultures were negative (52.38%), others contained either staphylococci (23.08%), streptococci (9.16%), mixed bacteria (8.79%) or were contaminated (6.59%). Only losses mediated by an increase in SCC were significantly different from null. In cows with three consecutive bacteriological positive results, we estimated a decreased milk yield of 0.28 kg per day for each unit increase in log2-transformed CFU that elicited one unit increase in log2-transformed SCC. In cows with one or two bacteriological positive results, indirect milk loss was not significantly different from null although test-day milk decreased by 0.74 kg per day for each unit increase of log2-transformed SCC. These results highlight the importance of milk losses that are mediated by an increase in SCC during mammary infection and the feasibility of decomposing total milk loss into its direct and indirect components.

  7. Determinants of PCR performance (Xpert MTB/RIF), including bacterial load and inhibition, for TB diagnosis using specimens from different body compartments

    PubMed Central

    Theron, Grant; Peter, Jonny; Calligaro, Greg; Meldau, Richard; Hanrahan, Colleen; Khalfey, Hoosain; Matinyenya, Brian; Muchinga, Tapuwa; Smith, Liezel; Pandie, Shaheen; Lenders, Laura; Patel, Vinod; Mayosi, Bongani M.; Dheda, Keertan

    2014-01-01

    The determinants of Xpert MTB/RIF sensitivity, a widely used PCR test for the diagnosis of tuberculosis (TB) are poorly understood. We compared culture time-to-positivity (TTP; a surrogate of bacterial load), MTB/RIF TB-specific and internal positive control (IPC)-specific CT values, and clinical characteristics in patients with suspected TB who provided expectorated (n = 438) or induced sputum (n = 128), tracheal aspirates (n = 71), bronchoalveolar lavage fluid (n = 152), pleural fluid (n = 76), cerebral spinal fluid (CSF; n = 152), pericardial fluid (n = 131), or urine (n = 173) specimens. Median bacterial load (TTP in days) was the strongest associate of MTB/RIF positivity in each fluid. TTP correlated with CT values in pulmonary specimens but not extrapulmonary specimens (Spearman's coefficient 0.5043 versus 0.1437; p = 0.030). Inhibition affected a greater proportion of pulmonary specimens than extrapulmonary specimens (IPC CT > 34: 6% (47/731) versus 1% (4/381; p < 0.0001). Pulmonary specimens had greater load than extrapulmonary specimens [TTPs (interquartile range) of 11 (7–16) versus 22 (18–33.5) days; p < 0.0001]. HIV-infection was associated with a decreased likelihood of MTB/RIF-positivity in pulmonary specimens but an increased likelihood in extrapulmonary specimens. Mycobacterial load, which displays significant variation across different body compartments, is the main determinant of MTB/RIF-positivity rather than PCR inhibition. MTB/RIF CT is a poor surrogate of load in extrapulmonary specimens. PMID:25014250

  8. Reduction of Coxiella burnetii prevalence by vaccination of goats and sheep, The Netherlands.

    PubMed

    Hogerwerf, Lenny; van den Brom, René; Roest, Hendrik I J; Bouma, Annemarie; Vellema, Piet; Pieterse, Maarten; Dercksen, Daan; Nielen, Mirjam

    2011-03-01

    Recently, the number of human Q fever cases in the Netherlands increased dramatically. In response to this increase, dairy goats and dairy sheep were vaccinated against Coxiella burnetii. All pregnant dairy goats and dairy sheep in herds positive for Q fever were culled. We identified the effect of vaccination on bacterial shedding by small ruminants. On the day of culling, samples of uterine fluid, vaginal mucus, and milk were obtained from 957 pregnant animals in 13 herds. Prevalence and bacterial load were reduced in vaccinated animals compared with unvaccinated animals. These effects were most pronounced in animals during their first pregnancy. Results indicate that vaccination may reduce bacterial load in the environment and human exposure to C. burnetii.

  9. Viable bacterial population and persistence of foodborne pathogens on the pear carpoplane.

    PubMed

    Duvenage, Francois J; Duvenage, Stacey; Du Plessis, Erika M; Volschenk, Quinton; Korsten, Lise

    2017-03-01

    Knowledge on the culturable bacteria and foodborne pathogen presence on pears is important for understanding the impact of postharvest practices on food safety assurance. Pear fruit bacteria were investigated from the point of harvest, following chlorine drenching and after controlled atmosphere (CA) storage to assess the impact on natural bacterial populations and potential foodborne pathogens. Salmonella spp. and Listeria monocytogenes were detected on freshly harvested fruit in season one. During season one, chemical drenching and CA storage did not have a significant effect on the bacterial load of orchard pears, except for two farms where the populations were lower 'after CA storage'. During season two, bacterial populations of orchard pears from three of the four farms increased significantly following drenching; however, the bacterial load decreased 'after CA storage'. Bacteria isolated following enumeration included Enterobacteriaceae, Microbacteriaceae, Pseudomonadaceae and Bacillaceae, with richness decreasing 'after drench' and 'after CA storage'. Salmonella spp. and L. monocytogenes were not detected after postharvest practices. Postharvest practices resulted in decreased bacterial species richness. Understanding how postharvest practices have an impact on the viable bacterial populations of pear fruit will contribute to the development of crop-specific management systems for food safety assurance. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Sustained prevention of biofilm formation on a novel silicone matrix suitable for medical devices.

    PubMed

    Steffensen, Søren Langer; Vestergaard, Merete Hedemark; Groenning, Minna; Alm, Martin; Franzyk, Henrik; Nielsen, Hanne Mørck

    2015-08-01

    Bacterial colonization and biofilm formation on medical devices constitute major challenges in clinical long-term use of e.g. catheters due to the risk of (re)infection of patients, which would result in additional use of antibiotics risking bacterial resistance development. The aim of the present project was to introduce a novel antibacterial approach involving an advanced composite material applicable for medical devices. The polymeric composites investigated consisted of a hydrogel network of cross-linked poly(2-hydroxyethyl methacrylate) (PHEMA) embedded in a poly(dimethylsiloxane) (PDMS) silicone elastomer produced using supercritical carbon dioxide (scCO2). In these materials, the hydrogel may contain an active pharmaceutical ingredient while the silicone elastomer provides the sufficient mechanical stability of the material. In these conceptual studies, the antimicrobial agent ciprofloxacin was loaded into the polymer matrix by a post-polymerization loading procedure. Sustained release of ciprofloxacin was demonstrated, and the release could be controlled by varying the hydrogel content in the range 13-38% (w/w) and by changing the concentration of ciprofloxacin during loading in the range of 1-20mg/mL. Devices containing 25% (w/w) hydrogel and loaded with ciprofloxacin displayed a strong antibacterial effect against Staphylococcus aureus bacterial colonization and subsequent biofilm formation on the device material was inhibited for 29days. In conclusion, the hydrogel/silicone composite represents a promising candidate material for medical devices that prevent bacterial colonization during long-term use. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Future export of particulate and dissolved organic carbon from land to coastal zones of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Strååt, Kim Dahlgren; Mörth, Carl-Magnus; Undeman, Emma

    2018-01-01

    The Baltic Sea is a semi-enclosed brackish sea in Northern Europe with a drainage basin four times larger than the sea itself. Riverine organic carbon (Particulate Organic Carbon, POC and Dissolved Organic Carbon, DOC) dominates carbon input to the Baltic Sea and influences both land-to-sea transport of nutrients and contaminants, and hence the functioning of the coastal ecosystem. The potential impact of future climate change on loads of POC and DOC in the Baltic Sea drainage basin (BSDB) was assessed using a hydrological-biogeochemical model (CSIM). The changes in annual and seasonal concentrations and loads of both POC and DOC by the end of this century were predicted using three climate change scenarios and compared to the current state. In all scenarios, overall increasing DOC loads, but unchanged POC loads, were projected in the north. In the southern part of the BSDB, predicted DOC loads were not significantly changing over time, although POC loads decreased in all scenarios. The magnitude and significance of the trends varied with scenario but the sign (+ or -) of the projected trends for the entire simulation period never conflicted. Results were discussed in detail for the "middle" CO2 emission scenario (business as usual, a1b). On an annual and entire drainage basin scale, the total POC load was projected to decrease by ca 7% under this scenario, mainly due to reduced riverine primary production in the southern parts of the BSDB. The average total DOC load was not predicted to change significantly between years 2010 and 2100 due to counteracting decreasing and increasing trends of DOC loads to the six major sub-basins in the Baltic Sea. However, predicted seasonal total loads of POC and DOC increased significantly by ca 46% and 30% in winter and decreased by 8% and 21% in summer over time, respectively. For POC the change in winter loads was a consequence of increasing soil erosion and a shift in duration of snowfall and onset of the spring flood impacting the input of terrestrial litter, while reduced primary production mainly explained the differences predicted in summer. The simulations also showed that future changes in POC and DOC export can vary significantly across the different sub-basins of the Baltic Sea. These changes in organic carbon input may impact future coastal food web structures e.g. by influencing bacterial and phytoplankton production in coastal zones, which in turn may have consequences at higher trophic levels.

  12. Unraveling the microbiota of teat apices of clinically healthy lactating dairy cows, with special emphasis on coagulase-negative staphylococci.

    PubMed

    Braem, G; De Vliegher, S; Verbist, B; Piessens, V; Van Coillie, E; De Vuyst, L; Leroy, F

    2013-03-01

    Swab samples (n=72) obtained from the teat apex of lactating dairy cows without visual signs of inflammation (n=18) were gathered on 2 well-managed Flemish dairy herds (herds 1 and 2) during the same month to assess the bacterial diversity of teat apices before milking. A combination of both culture-dependent [plating and (GTG)(5)-PCR fingerprinting of the colonies] and culture-independent [denaturing gradient gel electrophoresis (PCR-DGGE)] techniques indicated that the teat apices contain a wide diversity of bacterial genera. Despite a low bacterial load, 20 bacterial genera of 3 phyla (Actinobacteria, Firmicutes, and Proteobacteria) were present. The most prevalent bacteria were the coagulase-negative staphylococci (CNS), encompassing a total of 15 species, which were identified to the species level using a combination of (GTG)(5)-PCR fingerprinting, gene sequencing (16S ribosomal RNA and rpoB genes), and a novel PCR-DGGE technique based on the tuf-PCR amplicon. Overall bacterial diversity did not differ significantly between the herds or between noninfected and subclinically infected quarters in herd 1. In herd 1, borderline significant lower CNS species diversity was found on teat apices of noninfected quarters compared with subclinically infected quarters. The most prevalent CNS species were Staphylococcus haemolyticus and Staphylococcus equorum in both herds and Staphylococcus carnosus in herd 2. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Nest Material Shapes Eggs Bacterial Environment.

    PubMed

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically environmental variation associated with risk of bacterial proliferation determining the strength of such effects. Because of costs associated to nest building, birds should adjust nest building effort to expected bacterial environments during incubation, a prediction that should be further explored.

  14. Nest Material Shapes Eggs Bacterial Environment

    PubMed Central

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically environmental variation associated with risk of bacterial proliferation determining the strength of such effects. Because of costs associated to nest building, birds should adjust nest building effort to expected bacterial environments during incubation, a prediction that should be further explored. PMID:26871451

  15. The effect of photodynamic therapy on pathogenic bacteria around peri-implant sulcus and in the cavity between abutment and implant after healing phase: A prospective clinical study.

    PubMed

    Zhou, Lin-Yi; Shi, Jun-Yu; Zhu, Yu; Qian, Shu-Jiao; Lai, Hong-Chang; Gu, Ying-Xin

    2018-05-14

    To compare levels of pathogens from peri-implant sulcus versus abutment screw cavities after photodynamic therapy. Twenty patients were included. Photodynamic therapy (PDT) was applied both in sulcus and cavities after sampling following suprastructures loading, and repeated after 2 weeks. Two samples each containing four paper points were collected for each implant at baseline, 2 weeks, 3 months: (i) peri-implant sulcus and (ii) abutment screw cavities. Seventy-five percent ethanol was applied in another 20 patients as the control group in the same way. qPCR was used to quantify periodontal pathogens: Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans. PDT showed a better bacterial reduction than ethanol. P. g. and F. n. were most frequently detected, while less for S. m. P. gingivalis' proportion from both sites was significantly higher than the other two bacteria (P < 0.05), except for 2 weeks' peri-implant sulcus sample. Bacteria counts from abutment screw cavities were always less than those from peri-implant sulcus and was significantly lower for total bacteria at 3 months (P < 0.05). Total bacterial from abutment screw cavities significantly reduced at 3 months compared to baseline (P < 0.05). PDT appears to be effective in bacterial reduction compared to ethanol and can reduce P. gingivalis with short time intervals, as well as decreasing total bacteria counts within abutment screw cavities in the long run, suggesting PDT an effective way sterilizing inner surface of oral implant suprastrutures. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  16. Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture.

    PubMed

    Singh, Shail; Chandra, R; Patel, D K; Reddy, M M K; Rai, Vibhuti

    2008-09-01

    Mixed culture of two bacterial strains Bacillus sp. and Serratia marcescens showed potential pentachlorophenol (PCP) degradation and decolorisation of pulp paper mill effluent. The physico-chemical quality of pulp paper mill effluent has been analyzed after 168 h incubation period degraded by mixed culture. The study revealed that it has decreased high load of BOD, COD, TS, TDS, TSS, sulphate, phosphate, total nitrogen, total phenols, metals and different salts (i.e. chloride, sodium, nitrate, potassium) at 168 h incubation period. PCP degradation in pulp paper mill effluent was confirmed by HPLC analysis. Mixed culture was found to degrade PCP up to (94%) present in pulp paper mill effluent with 1% glucose and 0.5% peptone (w/v) at 30+/-1 degrees C, pH 8.0+/-0.2 at 120 rpm in 168 h incubation period. The simultaneous release of chloride ion up to 1,200 mg/l at 168 h emphasized the bacterial dechlorination in the medium. The pulp paper mill effluent degradation was also supported by decline in pH, AOX (absorbable organic halides), color, D.O., BOD, COD and PCP. The analysis of pulp paper mill effluent degradation products by GC-MS analysis revealed the formation of low molecular weight compound like 2-chlorophenol (RT=3.8 min) and tetrachlorohydroquinone (RT=11.86 min) from PCP extracted degraded sample. Further, mixed culture may be used for bioremediation of PCP containing pulp paper mill waste in the environment.

  17. Biomass characteristics of two types of submerged membrane bioreactors for nitrogen removal from wastewater.

    PubMed

    Liang, Zhihua; Das, Atreyee; Beerman, Daniel; Hu, Zhiqiang

    2010-06-01

    Biomass characteristics and microbial community diversity between a submerged membrane bioreactor with mixed liquor recirculation (MLE/MBR) and a membrane bioreactor with the addition of integrated fixed biofilm medium (IFMBR) were compared for organic carbon and nitrogen removal from wastewater. The two bench-scale MBRs were continuously operated in parallel at a hydraulic retention time (HRT) of 24h and solids retention time (SRT) of 20d. Both MBRs demonstrated good COD removal efficiencies (>97.7%) at incremental inflow organic loading rates. The total nitrogen removal efficiencies were 67% for MLE/MBR and 41% for IFMBR. The recirculation of mixed liquor from aerobic zone to anoxic zone in the MLE/MBR resulted in higher microbial activities of heterotrophic (46.96mgO(2)/gVSSh) and autotrophic bacteria (30.37mgO(2)/gVSSh) in the MLE/MBR compared to those from IFMBR. Terminal Restriction Fragment Length Polymorphism analysis indicated that the higher nitrifying activities were correlated with more diversity of nitrifying bacterial populations in the MLE/MBR. Membrane fouling due to bacterial growth was evident in both the reactors. Even though the trans-membrane pressure and flux profiles of MLE/MBR and IFMBR were different, the patterns of total membrane resistance changes had no considerable difference under the same operating conditions. The results suggest that metabolic selection via alternating anoxic/aerobic processes has the potential of having higher bacterial activities and improved nutrient removal in MBR systems. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Adequate Th2-Type Response Associates with Restricted Bacterial Growth in Latent Mycobacterial Infection of Zebrafish

    PubMed Central

    Hammarén, Milka Marjut; Luukinen, Bruno Vincent; Pesu, Marko; Rämet, Mika; Parikka, Mataleena

    2014-01-01

    Tuberculosis is still a major health problem worldwide. Currently it is not known what kind of immune responses lead to successful control and clearance of Mycobacterium tuberculosis. This gap in knowledge is reflected by the inability to develop sufficient diagnostic and therapeutic tools to fight tuberculosis. We have used the Mycobacterium marinum infection model in the adult zebrafish and taken advantage of heterogeneity of zebrafish population to dissect the characteristics of adaptive immune responses, some of which are associated with well-controlled latency or bacterial clearance while others with progressive infection. Differences in T cell responses between subpopulations were measured at the transcriptional level. It was discovered that a high total T cell level was usually associated with lower bacterial loads alongside with a T helper 2 (Th2)-type gene expression signature. At late time points, spontaneous reactivation with apparent symptoms was characterized by a low Th2/Th1 marker ratio and a substantial induction of foxp3 reflecting the level of regulatory T cells. Characteristic gata3/tbx21 has potential as a biomarker for the status of mycobacterial disease. PMID:24968056

  19. [Bacteriological quality of air in a ward for sterile pharmaceutical preparations].

    PubMed

    Caorsi P, Beatriz; Sakurada Z, Andrea; Ulloa F, M Teresa; Pezzani V, Marcela; Latorre O, Paz

    2011-02-01

    An extremely clean area is required for preparation of sterile pharmaceutical compounds, in compliance with international standards, to minimize the probability of microbial contamination. To evaluate the bacteriological quality of the air in the Sterile Pharmaceutical Preparation Unit of the University of Chile's Clinical Hospital and to set up alerts and action levels of bacterial growth. We studied eight representative sites of our Unit on a daily basis from January to February 2005 and twice a week from June 2005 to February 2006. We collected 839 samples of air by impact in the Petri dish. 474 (56.5%) samples were positive; 17 (3.5%) of them had an inappropriate bacterial growth (2% of total samples). The samples from sites 1 and 2 (big and small biosafety cabinets) were negative. The countertop and transfer area occasionally exceeded the bacterial growth limits. The most frequently isolated bacteria were coagulase-negative staphylococci, Micrococcus spp and Corynebacterium spp, from skin microbiota, and Bacillus spp, an environmental bacteria. From a microbiological perspective, the air quality in our sterile preparation unit complied with international standards. Setting institutional alerts and action levels and appropriately identifying bacteria in sensitive areas permits quantification of the microbial load and application of preventive measures.

  20. Intermittent fasting favored the resolution of Salmonella typhimurium infection in middle-aged BALB/c mice.

    PubMed

    Campos-Rodríguez, Rafael; Godínez-Victoria, Marycarmen; Reyna-Garfias, Humberto; Arciniega-Martínez, Ivonne Maciel; Reséndiz-Albor, Aldo Arturo; Abarca-Rojano, Edgar; Cruz-Hernández, Teresita Rocío; Drago-Serrano, Maria Elisa

    2016-02-01

    Intermittent fasting (IF) reportedly increases resistance and intestinal IgA response to Salmonella typhimurium infection in mature mice. The aim of this study was to explore the effect of aging on the aforementioned improved immune response found with IF. Middle-aged male BALB/c mice were submitted to IF or ad libitum (AL) feeding for 40 weeks and then orally infected with S. typhimurium. Thereafter, infected animals were all fed AL (to maximize their viability) until sacrifice on day 7 or 14 post-infection. We evaluated body weight, bacterial load (in feces, Peyer's patches, spleen and liver), total and specific intestinal IgA, lamina propria IgA+ plasma cells, plasma corticosterone, and messenger RNA (mRNA) expression of α-chain, J-chain, and the polymeric immunoglobulin receptor (pIgR) in liver and intestinal mucosa. In comparison with the infected AL counterpart, the infected IF group (long-term IF followed by post-infection AL feeding) generally had lower intestinal and systemic bacterial loads as well as higher total IgA on both post-infection days. Both infected groups showed no differences in corticosterone levels, body weight, or food and caloric intake. The increase in intestinal IgA was associated with enhanced pIgR mRNA expression in the intestine (day 7) and liver. Thus, to maintain body weight and caloric intake, IF elicited metabolic signals that possibly induced the increased hepatic and intestinal pIgR mRNA expression found. The increase in IgA probably resulted from intestinal IgA transcytosis via pIgR. This IgA response along with phagocyte-induced killing of bacteria in systemic organs (not measured) may explain the resolution of the S. typhimurium infection.

  1. Combined effects of phosphate-solubilizing bacterium XMT-5 (Rhizobium sp.) and submerged macrophyte Ceratophyllum demersum on phosphorus release in eutrophic lake sediments.

    PubMed

    Li, Haifeng; Li, Zhijian; Qu, Jianhang; Tian, Hailong; Yang, Xiaohong

    2018-05-02

    Simulation experiments were conducted using sediments collected from the Taihu Lake to determine the combined effects of submerged macrophytes Ceratophyllum demersum and phosphate-solubilizing bacteria (PSB) strain XMT-5 (Rhizobium sp.) on phosphorus (P) concentrations in overlying waters and sediments. After 30 days of experimental incubation, the total phosphorus (TP) and dissolved total phosphorus (DTP) concentrations of the overlying water subjected to AMB and AHMB treatments (both with the combined effects of PSB cells and submerged macrophytes) were generally lower than those of the AM (with individual effects of inoculated C. demersum) and AB (with individual effects of a smaller amount of inoculated PSB cells) control treatments but higher than that of the A (with no effects of inoculated PSB cells or C. demersum) and AHB (with individual effects of a larger amount of inoculated PSB) control treatments. The TP contents of the sediment in the AMB and AHMB treatments were significantly lower than those of the other control treatments. The TP contents of the C. demersum cocultured with the PSB strain XMT-5 cells in the AMB and AHMB treatments were all significantly higher than that of the AM treatment, indicating the enhancement of P uptake by submerged plants inoculated with PSB. The bacterial diversity structures of the rhizosphere sediment subjected to different treatments were also analyzed by the high-throughput sequencing method. According to the ACE and Chao 1 indices, the bacterial diversity in the AMB and AHMB treatments were the highest. Although many sources contributed to the decrease in the nutrient loads of the lake sediment, harvesting macrophytes inoculated with PSB cells prior to their senescence might constitute a significant in-lake measure for reducing internal P load.

  2. Molecular analysis of meso- and thermophilic microbiota associated with anaerobic biowaste degradation

    PubMed Central

    2012-01-01

    Background Microbial anaerobic digestion (AD) is used as a waste treatment process to degrade complex organic compounds into methane. The archaeal and bacterial taxa involved in AD are well known, whereas composition of the fungal community in the process has been less studied. The present study aimed to reveal the composition of archaeal, bacterial and fungal communities in response to increasing organic loading in mesophilic and thermophilic AD processes by applying 454 amplicon sequencing technology. Furthermore, a DNA microarray method was evaluated in order to develop a tool for monitoring the microbiological status of AD. Results The 454 sequencing showed that the diversity and number of bacterial taxa decreased with increasing organic load, while archaeal i.e. methanogenic taxa remained more constant. The number and diversity of fungal taxa increased during the process and varied less in composition with process temperature than bacterial and archaeal taxa, even though the fungal diversity increased with temperature as well. Evaluation of the microarray using AD sample DNA showed correlation of signal intensities with sequence read numbers of corresponding target groups. The sensitivity of the test was found to be about 1%. Conclusions The fungal community survives in anoxic conditions and grows with increasing organic loading, suggesting that Fungi may contribute to the digestion by metabolising organic nutrients for bacterial and methanogenic groups. The microarray proof of principle tests suggest that the method has the potential for semiquantitative detection of target microbial groups given that comprehensive sequence data is available for probe design. PMID:22727142

  3. Eggshell bacterial load is related to antimicrobial properties of feathers lining barn swallow nests.

    PubMed

    Peralta-Sánchez, Juan Manuel; Soler, Juan José; Martín-Platero, Antonio Manuel; Knight, Rob; Martínez-Bueno, Manuel; Møller, Anders Pape

    2014-02-01

    The use of feathers to line bird's nests has traditionally been interpreted as having a thermoregulatory function. Feather-degrading bacteria growing on feathers lining nests may have antimicrobial properties, which may provide an additional benefit to lining nests with feathers. We test the hypothesis that the production of antimicrobial substances by feather bacteria affects the microbiological environment of the nest, and therefore the bacterial density on eggshells and, indirectly, hatching success. These effects would be expected to differ between nests lined with pigmented and white feathers, because bacteria grow differently on feathers of different colors. We experimentally manipulated the composition of pigmented and unpigmented feathers in nests of the barn swallow (Hirundo rustica) and studied the antimicrobial properties against the keratin-degrading bacterium Bacillus licheniformis of bacteria isolated from feathers of each color. Analyzed feathers were collected at the end of the incubation period, and antimicrobial activity was defined as the proportion of bacteria from the feathers that produce antibacterial substances effective against B. licheniformis. Our experimental manipulation affected antimicrobial activity, which was higher in nests with only white feathers at the beginning of incubation. Moreover, white feathers showed higher antimicrobial activity than black ones. Interestingly, antimicrobial activity in feathers of one of the colors correlated negatively with bacterial density on feather of the opposite color. Finally, antimicrobial activity of white feathers was negatively related to eggshell bacterial load. These results suggest that antimicrobial properties of feathers in general and of white feathers in particular affect the bacterial environment in nests. This environment in turn affects the bacterial load on eggshells, which may affect hatching success.

  4. Vancomycin-Loaded Polymethylmethacrylate Spacers Fail to Eradicate Periprosthetic Joint Infection in a Clinically Representative Mouse Model.

    PubMed

    Carli, Alberto V; Bhimani, Samrath; Yang, Xu; de Mesy Bentley, Karen L; Ross, F Patrick; Bostrom, Mathias P G

    2018-06-06

    Periprosthetic joint infection (PJI) remains a devastating complication following total joint arthroplasty. Current animal models of PJI do not effectively recreate the clinical condition and thus provide limited help in understanding why treatments fail. We developed a mouse model of the first-stage surgery of a 2-stage revision for PJI involving a 3-dimensionally printed Ti-6Al-4V implant and a mouse-sized cement spacer that elutes vancomycin. Vancomycin was mixed with polymethylmethacrylate (PMMA) cement and inserted into custom-made mouse-sized spacer molds. Twenty C57BL/6 mice received a proximal tibial implant and an intra-articular injection of 3 × 10 colony-forming units of Staphylococcus aureus Xen36. At 2 weeks, 9 mice underwent irrigation and debridement of the leg with revision of the implant to an articulating vancomycin-loaded PMMA spacer. Postoperatively, mice underwent radiography and serum inflammatory-marker measurements. Following euthanasia of the mice at 6 weeks, bone and soft tissues were homogenized to quantify bacteria within periprosthetic tissues. Implants and articulating spacers were either sonicated to quantify adherent bacteria or examined under scanning electron microscopy (SEM) to characterize the biofilm. Vancomycin-loaded PMMA spacers eluted vancomycin for ≤144 hours and retained antimicrobial activity. Control mice had elevated levels of inflammatory markers, radiographic evidence of septic loosening of the implant, and osseous destruction. Mice treated with a vancomycin-loaded PMMA spacer had significantly lower levels of inflammatory markers (p < 0.01), preserved tibial bone, and no intra-articular purulence. Retrieved vancomycin-loaded spacers exhibited significantly lower bacterial counts compared with implants (p < 0.001). However, bacterial counts in periprosthetic tissue did not significantly differ between the groups. SEM identified S. aureus encased within biofilm on control implants, while vancomycin-loaded spacers contained no bacteria. This animal model is a clinically representative model of PJI treatment. The results suggest that the antimicrobial effects of PMMA spacers are tightly confined to the articular space and must be utilized in conjunction with thorough tissue debridement and systemic antibiotics. These data provide what we believe to be the first insight into the effect of antibiotic-loaded cement spacers in a clinically relevant animal model and justify the adjunctive use of intravenous antibiotics when performing a 2-stage revision for PJI.

  5. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities.

    PubMed

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Li, Chuanlong; Hu, Hongbo; Zhang, Xuehong

    2017-12-01

    Herein, a facile biosynthesis of silver nanoparticles (AgNPs) and AgNPs-loaded chitosan-alginate constructs with biomedical potentialities is reported. The UV-vis spectroscopic profile confirmed the synthesis of AgNPs using methanolic leaves extract of Euphorbia helioscopia. The newly developed AgNPs were characterized using various analytical and imaging techniques including UV-vis and FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The optimally yielded AgNPs at 24h reaction period were loaded onto various chitosan-alginate constructs. A maximum of 95% loading efficiency (LE) was recorded with a chitosan: alginate ratio at 2:1, followed by 81% at 2:2 ratios. The anti-bacterial activities of AgNPs and AgNPs loaded chitosan-alginate constructs were tested against six bacterial strains i.e. Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Morganella morganii and Haemophilus influenza. A significant reduction in the log values was recorded for all test constructs, in comparison to the initial bacterial count (control value, i.e., 1.5×10 8 CFU/mL). The cytotoxicity profile revealed complete biocompatibility against normal cell line i.e. L929. Almost all constructs showed considerable cytotoxicity up to certain extant against human epithelial cells (HeLa) cancer cells. In summary, the highest antibacterial activities along with anti-cancer behavior both suggest the biomedical potentialities of newly engineered AgNPs and AgNPs-loaded chitosan-alginate constructs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates.

    PubMed

    Shaaban, Mona I; Shaker, Mohamed A; Mady, Fatma M

    2017-04-11

    Carbapenem-resistance is an extremely growing medical threat in antibacterial therapy as the incurable resistant strains easily develop a multi-resistance action to other potent antimicrobial agents. Nonetheless, the protective delivery of current antibiotics using nano-carriers opens a tremendous approach in the antimicrobial therapy, allowing the nano-formulated antibiotics to beat these health threat pathogens. Herein, we encapsulated imipenem into biodegradable polymeric nanoparticles to destroy the imipenem-resistant bacteria and overcome the microbial adhesion and dissemination. Imipenem loaded poly Ɛ-caprolactone (PCL) and polylactide-co-glycolide (PLGA) nanocapsules were formulated using double emulsion evaporation method. The obtained nanocapsules were characterized for mean particle diameter, morphology, loading efficiency, and in vitro release. The in vitro antimicrobial and anti adhesion activities were evaluated against selected imipenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical isolates. The obtained results reveal that imipenem loaded PCL nano-formulation enhances the microbial susceptibility and antimicrobial activity of imipenem. The imipenem loaded PCL nanoparticles caused faster microbial killing within 2-3 h compared to the imipenem loaded PLGA and free drug. Successfully, PCL nanocapsules were able to protect imipenem from enzymatic degradation by resistant isolates and prevent the emergence of the resistant colonies, as it lowered the mutation prevention concentration of free imipenem by twofolds. Moreover, the imipenem loaded PCL eliminated bacterial attachment and the biofilm assembly of P. aeruginosa and K. pneumoniae planktonic bacteria by 74 and 78.4%, respectively. These promising results indicate that polymeric nanoparticles recover the efficacy of imipenem and can be considered as a new paradigm shift against multidrug-resistant isolates in treating severe bacterial infections.

  7. Assessment of Flavobacterium columnare from golden shiners Notemingonus crysoleucas subject to crowding stress

    USDA-ARS?s Scientific Manuscript database

    Intensive aquaculture practices and exposure to environmental stressors can trigger outbreaks of Flavobacterium columnare, a bacterial pathogen that causes columnaris disease in commercially important fish including Golden Shiners. A rapid assessment of the bacterial load is essential to prevent out...

  8. Cathelicidin Insufficiency in Patients with Fatal Leptospirosis.

    PubMed

    Lindow, Janet C; Wunder, Elsio A; Popper, Stephen J; Min, Jin-Na; Mannam, Praveen; Srivastava, Anup; Yao, Yi; Hacker, Kathryn P; Raddassi, Khadir; Lee, Patty J; Montgomery, Ruth R; Shaw, Albert C; Hagan, Jose E; Araújo, Guilherme C; Nery, Nivison; Relman, David A; Kim, Charles C; Reis, Mitermayer G; Ko, Albert I

    2016-11-01

    Leptospirosis causes significant morbidity and mortality worldwide; however, the role of the host immune response in disease progression and high case fatality (>10-50%) is poorly understood. We conducted a multi-parameter investigation of patients with acute leptospirosis to identify mechanisms associated with case fatality. Whole blood transcriptional profiling of 16 hospitalized Brazilian patients with acute leptospirosis (13 survivors, 3 deceased) revealed fatal cases had lower expression of the antimicrobial peptide, cathelicidin, and chemokines, but more abundant pro-inflammatory cytokine receptors. In contrast, survivors generated strong adaptive immune signatures, including transcripts relevant to antigen presentation and immunoglobulin production. In an independent cohort (23 survivors, 22 deceased), fatal cases had higher bacterial loads (P = 0.0004) and lower anti-Leptospira antibody titers (P = 0.02) at the time of hospitalization, independent of the duration of illness. Low serum cathelicidin and RANTES levels during acute illness were independent risk factors for higher bacterial loads (P = 0.005) and death (P = 0.04), respectively. To investigate the mechanism of cathelicidin in patients surviving acute disease, we administered LL-37, the active peptide of cathelicidin, in a hamster model of lethal leptospirosis and found it significantly decreased bacterial loads and increased survival. Our findings indicate that the host immune response plays a central role in severe leptospirosis disease progression. While drawn from a limited study size, significant conclusions include that poor clinical outcomes are associated with high systemic bacterial loads, and a decreased antibody response. Furthermore, our data identified a key role for the antimicrobial peptide, cathelicidin, in mounting an effective bactericidal response against the pathogen, which represents a valuable new therapeutic approach for leptospirosis.

  9. In vivo screening and evaluation of four herbs against MRSA infections.

    PubMed

    Arshad, Najma; Mehreen, Arifa; Liaqat, Iram; Arshad, Muhammad; Afrasiab, Humera

    2017-11-23

    Recently, we reported high in vitro antibacterial efficacy of Althaea officinalis, Ziziphus jujuba, Cordia latifolia and Thymus vulgaris out of a total 21 plants against wide range of bacteria including MRSA. This study was therefore, designed to confirm efficacy of these four herbs against MRSA in an animal model. A pilot study was conducted to establish the dose of S. aureus (KY698020) required to induce clinical infection. Afterword, in main trial, efficacy of aforementioned plant extracts on the course of sore throat was checked by evaluating general health, gross lesion score, bacterial load and hematology in mice. Pilot study revealed that 40 μl dose of 10 7  CFU/ml could induce infection which persist upto 08 days post infection. Mice treated with T. vulgaris and Z. jujuba showed reduction in gross lesion score of both heart and lungs. Treatment with only some plants could significantly decrease bacterial load of throat (T. vulgaris) heart, blood and joint (C. latifolia, and T. vulagris). Hematological indicators confirmed in vivo control of MRSA infection in all treatment groups except A. officinalis. This is first report confirming in vivo anti-MRSA potential of C. latifolia and T. vulgaris and highlight the need to explore bioactive constituents of these plants. Moreover, previously reported in vitro antibacterial efficiency of A. officinalis could not be validated in current study.

  10. Nitrogen removal and microbial communities in a three-stage system simulating a riparian environment.

    PubMed

    Wang, Ziyuan; Wang, Zhixin; Pei, Yuansheng

    2014-06-01

    The riparian zone is an active interface for nitrogen removal, in which nitrogen transformations by microorganisms have not been valued. In this study, a three-stage system was constructed to simulate the riparian zone environments, and nitrogen removal as well as the microbial community was investigated in this 'engineered riparian system'. The results demonstrated that stage 1 of this system accounted for 41-51 % of total nitrogen removal. Initial ammonium loading and redox potential significantly impacted the nitrogen removal performances. Stages 1 and 2 were both composed of an anoxic/oxic (A/O) zone and an anaerobic column. The A/O zone removed most of the ammonium load (6.8 g/m(2)/day), while the anaerobic column showed a significant nitrate removal rate (11.1 g/m(2)/day). Molecular biological analysis demonstrated that bacterial diversity was high in the A/O zones, where ammonium-oxidizing bacteria and nitrite-oxidizing bacteria accounted for 8.42 and 3.32 % of the bacterial population, respectively. The denitrifying bacteria Acidovorax sp. and the nitrifying bacteria Nitrosospira/Nitrosomonas were the predominant microorganisms in this engineered riparian system. This three-stage system was established to achieve favorable nitrogen removal and the microbial community in the system was also retained. This investigation should deepen our understanding of biological nitrogen removal in engineered riparian zones.

  11. Novel Pharmacokinetic-Pharmacodynamic Model for Prediction of Outcomes with an Extended-Release Formulation of Ciprofloxacin

    PubMed Central

    Meagher, Alison K.; Forrest, Alan; Dalhoff, Axel; Stass, Heino; Schentag, Jerome J.

    2004-01-01

    The pharmacokinetics of an extended-release (XR) formulation of ciprofloxacin has been compared to that of the immediate-release (IR) product in healthy volunteers. The only significant difference in pharmacokinetic parameters between the two formulations was seen in the rate constant of absorption, which was approximately 50% greater with the IR formulation. The geometric mean plasma ciprofloxacin concentrations were applied to an in vitro pharmacokinetic-pharmacodynamic model exposing three different clinical strains of Escherichia coli (MICs, 0.03, 0.5, and 2.0 mg/liter) to 24 h of simulated concentrations in plasma. A novel mathematical model was derived to describe the time course of bacterial CFU, including capacity-limited replication and first-order rate of bacterial clearance, and to model the effects of ciprofloxacin concentrations on these processes. A “mixture model” was employed which allowed as many as three bacterial subpopulations to describe the total bacterial load at any moment. Comparing the two formulations at equivalent daily doses, the rates and extents of bacterial killing were similar with the IR and XR formulations at MICs of 0.03 and 2.0 mg/liter. At an MIC of 0.5 mg/liter, however, the 1,000-mg/day XR formulation showed a moderate advantage in antibacterial effect: the area under the CFU-time curve was 45% higher for the IR regimen; the nadir log CFU and 24-h log CFU values for the IR regimen were 3.75 and 2.49, respectively; and those for XR were 4.54 and 3.13, respectively. The mathematical model explained the differences in bacterial killing rate for two regimens with identical AUC/MIC ratios. PMID:15155200

  12. Agricultural Freshwater Pond Supports Diverse and Dynamic Bacterial and Viral Populations

    PubMed Central

    Chopyk, Jessica; Allard, Sarah; Nasko, Daniel J.; Bui, Anthony; Mongodin, Emmanuel F.; Sapkota, Amy R.

    2018-01-01

    Agricultural ponds have a great potential as a means of capture and storage of water for irrigation. However, pond topography (small size, shallow depth) leaves them susceptible to environmental, agricultural, and anthropogenic exposures that may influence microbial dynamics. Therefore, the aim of this project was to characterize the bacterial and viral communities of pond water in the Mid-Atlantic United States with a focus on the late season (October–December), where decreasing temperature and nutrient levels can affect the composition of microbial communities. Ten liters of freshwater from an agricultural pond were sampled monthly, and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, and the bacterial communities were characterized using 16S rRNA gene sequencing. The remaining filtrate was chemically concentrated for viruses, DNA-extracted, and shotgun sequenced. Bacterial community profiling showed significant fluctuations over the sampling period, corresponding to changes in the condition of the pond freshwater (e.g., pH, nutrient load). In addition, there were significant differences in the alpha-diversity and core bacterial operational taxonomic units (OTUs) between water fractions filtered through different pore sizes. The viral fraction was dominated by tailed bacteriophage of the order Caudovirales, largely those of the Siphoviridae family. Moreover, while present, genes involved in virulence/antimicrobial resistance were not enriched within the viral fraction during the study period. Instead, the viral functional profile was dominated by phage associated proteins, as well as those related to nucleotide production. Overall, these data suggest that agricultural pond water harbors a diverse core of bacterial and bacteriophage species whose abundance and composition are influenced by environmental variables characteristic of pond topology and the late season. PMID:29740420

  13. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection

    PubMed Central

    Jani, Andrea J.; Briggs, Cheryl J.

    2014-01-01

    Symbiotic microbial communities may interact with infectious pathogens sharing a common host. The microbiome may limit pathogen infection or, conversely, an invading pathogen can disturb the microbiome. Documentation of such relationships during naturally occurring disease outbreaks is rare, and identifying causal links from field observations is difficult. This study documented the effects of an amphibian skin pathogen of global conservation concern [the chytrid fungus Batrachochytrium dendrobatidis (Bd)] on the skin-associated bacterial microbiome of the endangered frog, Rana sierrae, using a combination of population surveys and laboratory experiments. We examined covariation of pathogen infection and bacterial microbiome composition in wild frogs, demonstrating a strong and consistent correlation between Bd infection load and bacterial community composition in multiple R. sierrae populations. Despite the correlation between Bd infection load and bacterial community composition, we observed 100% mortality of postmetamorphic frogs during a Bd epizootic, suggesting that the relationship between Bd and bacterial communities was not linked to variation in resistance to mortal disease and that Bd infection altered bacterial communities. In a controlled experiment, Bd infection significantly altered the R. sierrae microbiome, demonstrating a causal relationship. The response of microbial communities to Bd infection was remarkably consistent: Several bacterial taxa showed the same response to Bd infection across multiple field populations and the laboratory experiment, indicating a somewhat predictable interaction between Bd and the microbiome. The laboratory experiment demonstrates that Bd infection causes changes to amphibian skin bacterial communities, whereas the laboratory and field results together strongly support Bd disturbance as a driver of bacterial community change during natural disease dynamics. PMID:25385615

  14. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    PubMed

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-06-07

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  15. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.

    PubMed

    Jayashree, C; Tamilarasan, K; Rajkumar, M; Arulazhagan, P; Yogalakshmi, K N; Srikanth, M; Banu, J Rajesh

    2016-09-15

    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m(-2) (2.21 W m(-3)) was achieved at an OLR of 2.57 g d(-1). The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Limiting Speed of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Nirody, Jasmine; Berry, Richard; Oster, George

    The bacterial flagellar motor (BFM) drives swimming in a wide variety of bacterial species, making it crucial for several fundamental biological processes including chemotaxis and community formation. Recent experiments have shown that the structure of this nanomachine is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we put forward a model for the torque generation mechanism of this motor and propose that the maximum speed of the motor increases as additional torque-generators are recruited. This is contrary to the current widely-held belief that there is a universal upper limit to the speed of the BFM. Our result arises from the assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.

  17. Release of metronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment.

    PubMed

    Reise, Markus; Wyrwa, Ralf; Müller, Ulrike; Zylinski, Matthias; Völpel, Andrea; Schnabelrauch, Matthias; Berg, Albrecht; Jandt, Klaus D; Watts, David C; Sigusch, Bernd W

    2012-02-01

    We aimed to achieve detailed biomaterials characterization of a drug delivery system for local periodontitis treatment based on electrospun metronidazole-loaded resorbable polylactide (PLA) fibers. PLA fibers loaded with 0.1-40% (w/w) MNA were electrospun and were characterized by SEM and DSC. HPLC techniques were used to analyze the release profiles of metronidazole (MNA) from these fibers. The antibacterial efficacy was determined by measuring inhibition zones of drug-containing aliquots from the same electrospun fiber mats in an agar diffusion test. Three pathogenic periodontal bacterial strains: Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were studied. Cytotoxicity testing was performed with human gingival fibroblasts by: (i) counting viable cells via live/dead staining methods and (ii) by exposing cells directly onto the surface of MNA-loaded fibers. MNA concentration influenced fiber diameters and thus w/w surface areas: diameter being minimal and area maximal at 20% MNA. HPLC showed that these 20% MNA fibers had the fastest initial MNA release. From the third day, MNA release was slower and nearly linear with time. All fiber mats released 32-48% of their total drug content within the first 7 days. Aliquots of media taken from the fiber mats inhibited the growth of all three bacterial strains. MNA released up to the 28th day from fiber mats containing 40% MNA significantly decreased the viability of F. nucleatum and P. gingivalis and up to the 2nd day also for the resistant A. actinomycetemcomitans. All of the investigated fibers and aliquots showed excellent cytocompatibility. This study shows that MNA-loaded electrospun fiber mats represent an interesting class of resorbable drug delivery systems. Sustained drug release properties and cytocompatibility suggest their potential clinical applicability for the treatment of periodontal diseases. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation in cirrhotic rats.

    PubMed

    Úbeda, María; Lario, Margaret; Muñoz, Leticia; Borrero, María-José; Rodríguez-Serrano, Macarena; Sánchez-Díaz, Ana-María; Del Campo, Rosa; Lledó, Lourdes; Pastor, Óscar; García-Bermejo, Laura; Díaz, David; Álvarez-Mon, Melchor; Albillos, Agustín

    2016-05-01

    In advanced cirrhosis, gut bacterial translocation is the consequence of intestinal barrier disruption and leads to bacterial infection. Bile acid abnormalities in cirrhosis could play a role in the integrity of the intestinal barrier and the control of microbiota, mainly through the farnesoid X receptor. We investigated the long-term effects of the farnesoid X receptor agonist, obeticholic acid, on gut bacterial translocation, intestinal microbiota composition, barrier integrity and inflammation in rats with CCl4-induced cirrhosis with ascites. Cirrhotic rats received a 2-week course of obeticholic acid or vehicle starting once ascites developed. We then determined: bacterial translocation by mesenteric lymph node culture, ileum expression of antimicrobial peptides and tight junction proteins by qPCR, fecal albumin loss, enteric bacterial load and microbiota composition by qPCR and pyrosequencing of ileum mucosa-attached contents, and intestinal inflammation by cytometry of the inflammatory infiltrate. Obeticholic acid reduced bacterial translocation from 78.3% to 33.3% (p<0.01) and upregulated the expression of the farnesoid X receptor-associated gene small heterodimer partner. Treatment improved ileum expression of antimicrobial peptides, angiogenin-1 and alpha-5-defensin, tight junction proteins zonulin-1 and occludin, and reduced fecal albumin loss and liver fibrosis. Enteric bacterial load normalized, and the distinctive mucosal microbiota of cirrhosis was reduced. Gut immune cell infiltration was reduced and inflammatory cytokine and Toll-like receptor 4 expression normalized. In ascitic cirrhotic rats, obeticholic acid reduces gut bacterial translocation via several complementary mechanisms at the intestinal level. This agent could be used as an alternative to antibiotics to prevent bacterial infection in cirrhosis. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. The Influence of Organic Material and Temperature on the Burial Tolerance of the Blue Mussel, Mytilus edulis: Considerations for the Management of Marine Aggregate Dredging

    PubMed Central

    Cottrell, Richard S.; Black, Kenny D.; Hutchison, Zoë L.; Last, Kim S.

    2016-01-01

    Rationale and Experimental Approach Aggregate dredging is a growing source of anthropogenic disturbance in coastal UK waters and has the potential to impact marine systems through the smothering of benthic fauna with organically loaded screening discards. This study investigates the tolerance of the blue mussel, Mytilus edulis to such episodic smothering events using a multi-factorial design, including organic matter concentration, temperature, sediment fraction size and duration of burial as important predictor variables. Results and Discussion Mussel mortality was significantly higher in organically loaded burials when compared to control sediments after just 2 days. Particularly, M. edulis specimens under burial in fine sediment with high (1%) concentrations of organic matter experienced a significantly higher mortality rate (p<0.01) than those under coarse control aggregates. Additionally, mussels exposed to the summer maximum temperature treatment (20°C) exhibited significantly increased mortality (p<0.01) compared to those in the ambient treatment group (15°C). Total Oxygen Uptake rates of experimental aggregates were greatest (112.7 mmol m-2 day-1) with 1% organic loadings in coarse sediment at 20°C. Elevated oxygen flux rates in porous coarse sediments are likely to be a function of increased vertical migration of anaerobically liberated sulphides to the sediment-water interface. However, survival of M. edulis under bacterial mats of Beggiatoa spp. indicates the species’ resilience to sulphides and so we propose that the presence of reactive organic matter within the burial medium may facilitate bacterial growth and increase mortality through pathogenic infection. This may be exacerbated under the stable interstitial conditions in fine sediment and increased bacterial metabolism under high temperatures. Furthermore, increased temperature may impose metabolic demands upon the mussel that cannot be met during burial-induced anaerobiosis. Summary Lack of consideration for the role of organic matter and temperature during sedimentation events may lead to an overestimation of the tolerance of benthic species to smothering from dredged material. PMID:26809153

  20. Quantitative analysis of ruminal bacterial populations involved in lipid metabolism in dairy cows fed different vegetable oils.

    PubMed

    Vargas-Bello-Pérez, E; Cancino-Padilla, N; Romero, J; Garnsworthy, P C

    2016-11-01

    Vegetable oils are used to increase energy density of dairy cow diets, although they can provoke changes in rumen bacteria populations and have repercussions on the biohydrogenation process. The aim of this study was to evaluate the effect of two sources of dietary lipids: soybean oil (SO, an unsaturated source) and hydrogenated palm oil (HPO, a saturated source) on bacterial populations and the fatty acid profile of ruminal digesta. Three non-lactating Holstein cows fitted with ruminal cannulae were used in a 3×3 Latin square design with three periods consisting of 21 days. Dietary treatments consisted of a basal diet (Control, no fat supplement) and the basal diet supplemented with SO (2.7% of dry matter (DM)) or HPO (2.7% of DM). Ruminal digesta pH, NH3-N and volatile fatty acids were not affected by dietary treatments. Compared with control and HPO, total bacteria measured as copies of 16S ribosomal DNA/ml by quantitative PCR was decreased (P<0.05) by SO. Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Anaerovibrio lipolytica loads were not affected by dietary treatments. In contrast, compared with control, load of Prevotella bryantii was increased (P<0.05) with HPO diet. Compared with control and SO, HPO decreased (P<0.05) C18:2 cis n-6 in ruminal digesta. Contents of C15:0 iso, C18:11 trans-11 and C18:2 cis-9, trans-11 were increased (P<0.05) in ruminal digesta by SO compared with control and HPO. In conclusion, supplementation of SO or HPO do not affect ruminal fermentation parameters, whereas HPO can increase load of ruminal P. bryantii. Also, results observed in our targeted bacteria may have depended on the saturation degree of dietary oils.

  1. Tuning the Catalytic Activity of Subcellular Nanoreactors.

    PubMed

    Jakobson, Christopher M; Chen, Yiqun; Slininger, Marilyn F; Valdivia, Elias; Kim, Edward Y; Tullman-Ercek, Danielle

    2016-07-31

    Bacterial microcompartments are naturally occurring subcellular organelles of bacteria and serve as a promising scaffold for the organization of heterologous biosynthetic pathways. A critical element in the design of custom biosynthetic organelles is quantitative control over the loading of heterologous enzymes to the interior of the organelles. We demonstrate that the loading of heterologous proteins to the 1,2-propanediol utilization microcompartment of Salmonella enterica can be controlled using two strategies: by modulating the transcriptional activation of the microcompartment container and by coordinating the expression of the microcompartment container and the heterologous cargo. These strategies allow general control over the loading of heterologous proteins localized by two different N-terminal targeting peptides and represent an important step toward tuning the catalytic activity of bacterial microcompartments for increased biosynthetic productivity. Copyright © 2016. Published by Elsevier Ltd.

  2. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Dai, Minhan; Jiao, Nianzhi; Herndl, Gerhard J

    2014-01-01

    To test the hypothesis that different drivers shape the diversity and biogeography of the total and active bacterial community, we examined the bacterial community composition along two transects, one from the inner Pearl River estuary to the open waters of the South China Sea (SCS) and the other from the Luzon Strait to the SCS basin, using 454 pyrosequencing of the 16S rRNA and 16S rRNA gene (V1-3 regions) and thereby characterizing the active and total bacterial community, respectively. The diversity and biogeographic patterns differed substantially between the active and total bacterial communities. Although the composition of both the total and active bacterial community was strongly correlated with environmental factors and weakly correlated with geographic distance, the active bacterial community displayed higher environmental sensitivity than the total community and particularly a greater distance effect largely caused by the active assemblage from deep waters. The 16S rRNA vs. rDNA relationships indicated that the active bacteria were low in relative abundance in the SCS. This might be due to a high competition between active bacterial taxa as indicated by our community network models. Based on these analyses, we speculate that high competition could cause some dispersal limitation of the active bacterial community resulting in a distinct distance-decay relationship. Altogether, our results indicated that the biogeographic distribution of bacteria in the SCS is the result of both environmental control and distance decay. PMID:24684298

  3. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging.

    PubMed

    Tankhiwale, Rasika; Bajpai, S K

    2012-02-01

    The present work describes the preparation of ZnO nanoparticles loaded starch-coated polyethylene film. The presence of ZnO nanoparticles was confirmed by surface plasmon resonance (SPR), X-ray diffraction (XRD) studies and transmission electron microscopy (TEM). The ZnO loaded film was tested for its biocidal action against model bacteria Escherichia coli using zone inhibition and killing kinetics of bacterial growth methods. This newly developed material bears potential to be used as food packaging material to prevent food stuff from bacterial contamination. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. High-and low-affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, B.; Boyanov, M.; Bunker, B. A.

    2010-08-01

    Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior frommore » approximately pH 3-9 that requires the presence of four distinct sites, with pK{sub a} values of 3.3 {+-} 0.2, 4.8 {+-} 0.2, 6.7 {+-} 0.4, and 9.4 {+-} 0.5, and site concentrations of 8.9({+-}2.6) x 10{sup -5}, 1.3({+-}0.2) x 10{sup -4}, 5.9({+-}3.3) x 10{sup -5}, and 1.1({+-}0.6) x 10{sup -4} moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.« less

  5. Bacterial Growth Kinetics under a Novel Flexible Methacrylate Dressing Serving as a Drug Delivery Vehicle for Antiseptics

    PubMed Central

    Forstner, Christina; Leitgeb, Johannes; Schuster, Rupert; Dosch, Verena; Kramer, Axel; Cutting, Keith F.; Leaper, David J.; Assadian, Ojan

    2013-01-01

    A flexible methacrylate powder dressing (Altrazeal®) transforms into a wound contour conforming matrix once in contact with wound exudate. We hypothesised that it may also serve as a drug delivery vehicle for antiseptics. The antimicrobial efficacy and influence on bacterial growth kinetics in combination with three antiseptics was investigated in an in vitro porcine wound model. Standardized in vitro wounds were contaminated with Staphylococcus aureus (MRSA; ATCC 33591) and divided into six groups: no dressing (negative control), methacrylate dressing alone, and combinations with application of 0.02% Polyhexamethylene Biguanide (PHMB), 0.4% PHMB, 0.1% PHMB + 0.1% betaine, 7.7 mg/mL Povidone-iodine (PVP-iodine), and 0.1% Octenidine-dihydrochloride (OCT) + 2% phenoxyethanol. Bacterial load per gram tissue was measured over five days. The highest reduction was observed with PVP-iodine at 24 h to log10 1.43 cfu/g, followed by OCT at 48 h to log10 2.41 cfu/g. Whilst 0.02% PHMB resulted in a stable bacterial load over 120 h to log10 4.00 cfu/g over 120 h, 0.1% PHMB + 0.1% betaine inhibited growth during the first 48 h, with slightly increasing bacterial numbers up to log10 5.38 cfu/g at 120 h. These results indicate that this flexible methacrylate dressing can be loaded with various antiseptics serving as drug delivery system. Depending on the selected combination, an individually shaped and controlled antibacterial effect may be achieved using the same type of wound dressing. PMID:23698780

  6. Use of 16S rRNA sequencing and quantitative PCR to correlate venous leg ulcer bacterial bioburden dynamics with wound expansion, antibiotic therapy, and healing

    PubMed Central

    Sprockett, Daniel D.; Ammons, Christine G.; Tuttle, Marie S.

    2016-01-01

    Clinical diagnosis of infection in chronic wounds is currently limited to subjective clinical signs and culture-based methods that underestimate the complexity of wound microbial bioburden as revealed by DNA-based microbial identification methods. Here, we use 16S rRNA next generation sequencing and quantitative polymerase chain reaction to characterize weekly changes in bacterial load, community structure, and diversity associated with a chronic venous leg ulcer over the 15-week course of treatment and healing. Our DNA-based methods and detailed sampling scheme reveal that the bacterial bioburden of the wound is unexpectedly dynamic, including changes in the bacterial load and community structure that correlate with wound expansion, antibiotic therapy, and healing. We demonstrate that these multidimensional changes in bacterial bioburden can be summarized using swabs taken prior to debridement, and therefore, can be more easily collected serially than debridement or biopsy samples. Overall, this case illustrates the importance of detailed clinical indicators and longitudinal sampling to determine the pathogenic significance of chronic wound microbial dynamics and guide best use of antimicrobials for improvement of healing outcomes. PMID:25902876

  7. Microbial succession in a compost-packed biofilter treating benzene-contaminated air.

    PubMed

    Borin, Sara; Marzorati, Massimo; Brusetti, Lorenzo; Zilli, Mario; Cherif, Hanene; Hassen, Abdennaceur; Converti, Attilio; Sorlini, Claudia; Daffonchio, Daniele

    2006-03-01

    Air artificially contaminated with increasing concentrations of benzene was treated in a laboratory scale compost-packed biofilter for 240 days with a removal efficiency of 81-100%. The bacterial community in the packing material (PM) at different heights of the biofilter was analysed every 60 days. Bacterial plate counts and ribosomal intergenic spacer analysis (RISA) of the isolated strains showed that the number of cultivable aerobic heterotrophic bacteria and the species diversity increased with benzene availability. Identification of the isolated species and the main bands in denaturing gradient gel electrophoresis (DGGE) profiles from total compost DNA during the treatment revealed that, at a relatively low volumetric benzene load (1.2< or =VBL< or =6.4 g m(-3) (PM) h(-1)), besides low G+C Gram positive bacteria, originally present in the packing compost, bacteroidetes and beta- and gamma-proteobacteria became detectable in the colonising population. At the VBL value (24.8 g m(-3) (PM) h(-1)) ensuring the maximum elimination capacity of the biofilter (20.1 g m(-3) (PM) h(-1)), strains affiliated to the genus Rhodococcus dominated the microflora, followed by beta-proteobacteria comprising the genera Bordetella and Neisseria. Under these conditions, more than 35% of the isolated strains were able to grow on benzene as the sole carbon source. Comparison of DGGE and automated RISA profiles of the total community and isolated strains showed that a complex bacterial succession occurred in the reactor in response to the increasing concentrations of the pollutant and that cultivable bacteria played a major role in benzene degradation under the adopted conditions.

  8. Periodontal Therapy Effects on Nitrite Related to Oral Bacteria: A 6-Month Randomized Clinical Trial.

    PubMed

    Cortelli, Sheila C; Costa, Fernando O; Rodrigues, Edson; Cota, Luis O M; Cortelli, Jose R

    2015-08-01

    Nitrite is a biologic factor relevant to oral and systemic homeostasis. Through an oral bacteria reduction process, it was suggested that periodontal therapy and chlorhexidine (CHX) rinse could affect nitrite levels, leading to negative effects, such as an increase in blood pressure. This 6-month randomized clinical trial evaluated the effects of periodontal therapeutic protocols on salivary nitrite and its relation to subgingival bacteria. One hundred patients with periodontitis were allocated randomly to debridement procedures in four weekly sections (quadrant scaling [QS]) or within 24 hours (full-mouth scaling [FMS]) in conjunction with a 60-day CHX (QS + CHX and FMS + CHX), placebo (QS + placebo and FMS + placebo), or no mouthrinse (QS + none and FMS + none) use. Real-time polymerase chain reaction determined total bacterial, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Streptococcus oralis, and Actinomyces naeslundii levels. Salivary nitrite concentration was determined with Griess reagent. Data were analyzed statistically at baseline and 3 and 6 months by analysis of variance, Kruskal-Wallis, Mann-Whitney U, and Spearman correlation tests (P <0.05). Nitrite concentrations did not tend to change over time. Regarding CHX use, there was a negative correlation between nitrite and total bacterial load at 6 months (FMS + CHX) and one positive correlation between P. gingivalis and nitrite at baseline (QS + CHX). Independently of rinse type, in the FMS group, nitrite correlated negatively with several microbial parameters and also with a higher percentage of deep periodontal pockets. The relationship between nitrite and bacterial levels appears weak. Short-term scaling exhibited a greater influence on nitrite concentrations then long-term CHX use.

  9. GreenLight Model 960.

    PubMed

    Fernandes, Richard; Carey, Conn; Hynes, James; Papkovsky, Dmitri

    2013-01-01

    The importance of food safety has resulted in a demand for a more rapid, high-throughput method for total viable count (TVC). The industry standard for TVC determination (ISO 4833:2003) is widely used but presents users with some drawbacks. The method is materials- and labor-intensive, requiring multiple agar plates per sample. More importantly, the method is slow, with 72 h typically required for a definitive result. Luxcel Biosciences has developed the GreenLight Model 960, a microtiter plate-based assay providing a rapid high-throughput method of aerobic bacterial load assessment through analysis of microbial oxygen consumption. Results are generated in 1-12 h, depending on microbial load. The mix and measure procedure allows rapid detection of microbial oxygen consumption and equates oxygen consumption to microbial load (CFU/g), providing a simple, sensitive means of assessing the microbial contamination levels in foods (1). As bacteria in the test sample grow and respire, they deplete O2, which is detected as an increase in the GreenLight probe signal above the baseline level (2). The time required to reach this increase in signal can be used to calculate the CFU/g of the original sample, based on a predetermined calibration. The higher the initial microbial load, the earlier this threshold is reached (1).

  10. Increased Bacterial Load and Expression of Antimicrobial Peptides in Skin of Barrier-Deficient Mice with Reduced Cancer Susceptibility.

    PubMed

    Natsuga, Ken; Cipolat, Sara; Watt, Fiona M

    2016-01-01

    Mice lacking three epidermal barrier proteins-envoplakin, periplakin, and involucrin (EPI-/- mice)-have a defective cornified layer, reduced epidermal γδ T cells, and increased dermal CD4(+) T cells. They are also resistant to developing skin tumors. The tumor-protective mechanism involves signaling between Rae-1 expressing keratinocytes and the natural killer group 2D receptor on immune cells, which also plays a role in host defenses against infection. Given the emerging link between bacteria and cancer, we investigated whether EPI-/- mice have an altered skin microbiota. The bacterial phyla were similar in wild-type and EPI-/- skin. However, bacteria were threefold more abundant in EPI-/- skin and penetrated deeper into the epidermis. The major epithelial defense mechanism against bacteria is production of antimicrobial proteins (AMPs). EPI-/- skin exhibited enhanced expression of antimicrobial peptides. However, reducing the bacterial load by antibiotic treatment or breeding mice under specific pathogen-free conditions did not reduce AMP expression or alleviate the abnormalities in T-cell populations. We conclude that the atopic characteristics of EPI-/- skin are a consequence of the defective barrier rather than a response to the increased bacterial load. It is therefore unlikely that the increase in skin microbiota contributes directly to the observed cancer resistance. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Effects of temperature on Renibacterium salmoninarum infection and transmission potential in Chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Purcell, Maureen K.; McKibben, Constance L.; Pearman-Gillman, Schuyler; Elliott, Diane G.; Winton, James R.

    2016-01-01

    Renibacterium salmoninarum is a significant pathogen of salmonids and the causative agent of bacterial kidney disease (BKD). Water temperature affects the replication rate of pathogens and the function of the fish immune system to influence the progression of disease. In addition, rapid shifts in temperature may serve as stressors that reduce host resistance. This study evaluated the effect of shifts in water temperature on established R. salmoninarum infections. We challenged Chinook salmon with R. salmoninarum at 12°C for 2 weeks and then divided the fish into three temperature groups (8, 12 and 15°C). Fish in the 8°C group had significantly higher R. salmoninarum-specific mortality, kidney R. salmoninarum loads and bacterial shedding rates relative to the fish held at 12 or 15°C. There was a trend towards suppressed bacterial load and shedding in the 15°C group, but the results were not significant. Bacterial load was a significant predictor of shedding for the 8 and 12°C groups but not for the 15°C group. Overall, our results showed little effect of temperature stress on the progress of infection, but do support the conclusion that cooler water temperatures contribute to infection progression and increased transmission potential in Chinook salmon infected with R. salmoninarum.

  12. Photocatalytic ozonation under visible light for the remediation of water effluents and its integration with an electro-membrane bioreactor.

    PubMed

    Toledano Garcia, Diego; Ozer, Lütfiye Y; Parrino, Francesco; Ahmed, Menatalla; Brudecki, Grzegorz Przemyslaw; Hasan, Shadi W; Palmisano, Giovanni

    2018-06-06

    Photocatalysis and photocatalytic ozonation under visible light have been applied for the purification of a complex aqueous matrix such as the grey water of Masdar City (UAE), by using N-doped brookite-rutile catalysts. Preliminary runs on 4-nitrophenol (4-NP) solutions allowed to test the reaction system in the presence of a model pollutant and to afford the relevant kinetic parameters of the process. Subsequently, the remediation of grey water effluent has been evaluated in terms of the reduction of total organic carbon (TOC) and bacterial counts. The concentration of the most abundant inorganic ionic species in the effluent has been also monitored during reaction. Photocatalytic ozonation under visible light allowed to reduce the TOC content of the grey water by ca. 60% in the optimized experimental conditions and to reduce the total bacterial count by ca. 97%. The extent of TOC mineralization reached ca. 80% when the photocatalytic ozonation occurred downstream to a preliminary electro-membrane bioreactor (eMBR). Coupling the two processes enhanced the global efficiency. In fact, the eMBR treatment lowered the turbidity and the organic load of the effluent entering the photocatalytic ozonation treatment, which in turn enhanced the extent of purification and disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Omics approaches on fresh-cut lettuce reveal global molecular responses to sodium hypochlorite and peracetic acid treatment.

    PubMed

    Daddiego, Loretta; Bianco, Linda; Capodicasa, Cristina; Carbone, Fabrizio; Dalmastri, Claudia; Daroda, Lorenza; Del Fiore, Antonella; De Rossi, Patrizia; Di Carli, Mariasole; Donini, Marcello; Lopez, Loredana; Mengoni, Alessio; Paganin, Patrizia; Perrotta, Gaetano; Bevivino, Annamaria

    2018-01-01

    Lettuce is a leafy vegetable that is extensively commercialized as a ready-to-eat product because of its widespread use in human nutrition as salad. It is well known that washing treatments can severely affect the quality and shelf-life of ready-to-eat vegetables. The study presented here evaluated the effect of two washing procedures on fresh-cut lettuce during storage. An omics approach was applied to reveal global changes at molecular level induced by peracetic acid washing in comparison with sodium hypochlorite treatment. Microbiological analyses were also performed to quantify total bacterial abundance and composition. The study revealed wide metabolic alterations induced by the two sanitizers. In particular, transcriptomic and proteomic analyses pointed out a number of transcripts and proteins differentially accumulated in response to peracetic acid washing, mainly occurring on the first day of storage. In parallel, different microbiota composition and significant reduction in total bacterial load following washing were also observed. The results provide useful information for the fresh-cut industry to select an appropriate washing procedure preserving fresh-like attributes as much as possible during storage of the end product. Molecular evidence indicated peracetic acid to be a valid alternative to sodium hypochlorite as sanitizer solution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Water Sources and Their Protection from the Impact of Microbial Contamination in Rural Areas of Beijing, China

    PubMed Central

    Ye, Bixiong; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Li, Hairong

    2013-01-01

    Bacterial contamination of drinking water is a major public health problem in rural China. To explore bacterial contamination in rural areas of Beijing and identify possible causes of bacteria in drinking water samples, water samples were collected from wells in ten rural districts of Beijing, China. Total bacterial count, total coliforms and Escherichia coli in drinking water were then determined and water source and wellhead protection were investigated. The bacterial contamination in drinking water was serious in areas north of Beijing, with the total bacterial count, total coliforms and Escherichia coli in some water samples reaching 88,000 CFU/mL, 1,600 MPN/100 mL and 1,600 MPN/100 mL, respectively. Water source types, well depth, whether the well was adequately sealed and housed, and whether wellhead is above or below ground were the main factors influencing bacterial contamination levels in drinking water. The bacterial contamination was serious in the water of shallow wells and wells that were not closed, had no well housing or had a wellhead below ground level. The contamination sources around wells, including village dry toilets and livestock farms, were well correlated with bacterial contamination. Total bacterial counts were affected by proximity to sewage ditches and polluting industries, however, proximity to landfills did not influence the microbial indicators. PMID:23462436

  15. Spatial clustering of high load ocular Chlamydia trachomatis infection in trachoma: a cross-sectional population-based study.

    PubMed

    Last, Anna; Burr, Sarah; Alexander, Neal; Harding-Esch, Emma; Roberts, Chrissy H; Nabicassa, Meno; Cassama, Eunice Teixeira da Silva; Mabey, David; Holland, Martin; Bailey, Robin

    2017-07-31

    Chlamydia trachomatis (Ct) is the most common cause of bacterial sexually transmitted infection and infectious cause of blindness (trachoma) worldwide. Understanding the spatial distribution of Ct infection may enable us to identify populations at risk and improve our understanding of Ct transmission. In this study, we sought to investigate the spatial distribution of Ct infection and the clinical features associated with high Ct load in trachoma-endemic communities on the Bijagós Archipelago (Guinea Bissau). We collected 1507 conjunctival samples and corresponding detailed clinical data during a cross-sectional population-based geospatially representative trachoma survey. We used droplet digital PCR to estimate Ct load on conjunctival swabs. Geostatistical tools were used to investigate clustering of ocular Ct infections. Spatial clusters (independent of age and gender) of individuals with high Ct loads were identified using local indicators of spatial association. We did not detect clustering of individuals with low load infections. These data suggest that infections with high bacterial load may be important in Ct transmission. These geospatial tools may be useful in the study of ocular Ct transmission dynamics and as part of trachoma surveillance post-treatment, to identify clusters of infection and thresholds of Ct load that may be important foci of re-emergent infection in communities. © FEMS 2017.

  16. Bacterial contamination of ultrasound probes in different radiological institutions before and after specific hygiene training: do we have a general hygienical problem?

    PubMed

    Sartoretti, Thomas; Sartoretti, Elisabeth; Bucher, Candid; Doert, Aleksis; Binkert, Christoph; Hergan, Klaus; Meissnitzer, Matthias; Froehlich, Johannes; Kolokythas, Orpheus; Matoori, Simon; Orasch, Christina; Kos, Sebastian; Sartoretti-Schefer, Sabine; Gutzeit, Andreas

    2017-10-01

    Aim was to investigate hygienic conditions of ultrasound probes before and after hygiene training in radiology institutions in comparison to bacterial contamination in public places. In three radiology departments, bacterial contamination was evaluated using baseline agar plates for cultures taken from 36 ultrasound probes. Afterwards teams were trained by a hygiene service centre and 36 ultrasound probes were routinely disinfected with regular disinfecting wipes and then evaluated. In comparison, bacterial contamination in public places (bus poles, n = 11; toilet seats, n = 10) were analysed. Plates were routinely incubated and the number of colony forming units (CFU) analysed. Cultures taken from the probes showed a median of 53 CFU before and 0 CFU after training (p < 0.001). Cultures taken from public places showed a median of 4 CFU from toilets and 28 from bus poles and had lower bacterial load in comparison to ultrasound probes before training (p = 0.055, toilets; p = 0.772, bus poles), without statistical significance. Bacterial contamination of ultrasound probes prior to hygiene training proved to be high and showed higher bacterial load than toilets seats or bus poles. Radiologists should be aware that the lack of hygiene in the field of ultrasound diagnostics puts patients at risk of healthcare-associated infections. • Hospital-associated infections are a problem for patient care. • Hygiene training of staff prevents bacterial contamination of ultrasound probes. • Disinfection of ultrasound probes is an easy method to protect patients.

  17. Identification of new loci involved in the host susceptibility to Salmonella Typhimurium in collaborative cross mice.

    PubMed

    Zhang, Jing; Malo, Danielle; Mott, Richard; Panthier, Jean-Jacques; Montagutelli, Xavier; Jaubert, Jean

    2018-04-27

    Salmonella is a Gram-negative bacterium causing a wide range of clinical syndromes ranging from typhoid fever to diarrheic disease. Non-typhoidal Salmonella (NTS) serovars infect humans and animals, causing important health burden in the world. Susceptibility to salmonellosis varies between individuals under the control of host genes, as demonstrated by the identification of over 20 genetic loci in various mouse crosses. We have investigated the host response to S. Typhimurium infection in 35 Collaborative Cross (CC) strains, a genetic population which involves wild-derived strains that had not been previously assessed. One hundred and forty-eight mice from 35 CC strains were challenged intravenously with 1000 colony-forming units (CFUs) of S. Typhimurium. Bacterial load was measured in spleen and liver at day 4 post-infection. CC strains differed significantly (P < 0.0001) in spleen and liver bacterial loads, while sex and age had no effect. Two significant quantitative trait loci (QTLs) on chromosomes 8 and 10 and one suggestive QTL on chromosome 1 were found for spleen bacterial load, while two suggestive QTLs on chromosomes 6 and 17 were found for liver bacterial load. These QTLs are caused by distinct allelic patterns, principally involving alleles originating from the wild-derived founders. Using sequence variations between the eight CC founder strains combined with database mining for expression in target organs and known immune phenotypes, we were able to refine the QTLs intervals and establish a list of the most promising candidate genes. Furthermore, we identified one strain, CC042/GeniUnc (CC042), as highly susceptible to S. Typhimurium infection. By exploring a broader genetic variation, the Collaborative Cross population has revealed novel loci of resistance to Salmonella Typhimurium. It also led to the identification of CC042 as an extremely susceptible strain.

  18. Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

    PubMed Central

    2014-01-01

    PURPOSE This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS Polymerized PMMA denture acrylic disc (20 mm × 2 mm) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and 100 µL of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at 37℃ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required. PMID:25006385

  19. Pharmacokinetics and Pharmacodynamics of Aerosolized Antibacterial Agents in Chronically Infected Cystic Fibrosis Patients

    PubMed Central

    2014-01-01

    SUMMARY Bacteria adapt to growth in lungs of patients with cystic fibrosis (CF) by selection of heterogeneously resistant variants that are not detected by conventional susceptibility testing but are selected for rapidly during antibacterial treatment. Therefore, total bacterial counts and antibiotic susceptibilities are misleading indicators of infection and are not helpful as guides for therapy decisions or efficacy endpoints. High drug concentrations delivered by aerosol may maximize efficacy, as decreased drug susceptibilities of the pathogens are compensated for by high target site concentrations. However, reductions of the bacterial load in sputum and improvements in lung function were within the same ranges following aerosolized and conventional therapies. Furthermore, the use of conventional pharmacokinetic/pharmacodynamic (PK/PD) surrogates correlating pharmacokinetics in serum with clinical cure and presumed or proven eradication of the pathogen as a basis for PK/PD investigations in CF patients is irrelevant, as minimization of systemic exposure is one of the main objectives of aerosolized therapy; in addition, bacterial pathogens cannot be eradicated, and chronic infection cannot be cured. Consequently, conventional PK/PD surrogates are not applicable to CF patients. It is nonetheless obvious that systemic exposure of patients, with all its sequelae, is minimized and that the burden of oral treatment for CF patients suffering from chronic infections is reduced. PMID:25278574

  20. Use of natural compounds to improve the microbial stability of Amaranth-based homemade fresh pasta.

    PubMed

    Del Nobile, M A; Di Benedetto, N; Suriano, N; Conte, A; Lamacchia, C; Corbo, M R; Sinigaglia, M

    2009-04-01

    A study on the use of natural antimicrobial compounds to improve the microbiological stability of refrigerated amaranth-based homemade fresh pasta is presented in this work. In particular, the antimicrobial activity of thymol, lemon extract, chitosan and grapefruit seed extract (GFSE) has been tested against mesophilic and psychrotrophic bacteria, total coliforms, Staphylococcus spp., yeasts and moulds. A sensory analysis on both fresh and cooked pasta was also run. Results suggest that chitosan and GFSE strongly increase the microbial acceptability limit of the investigated spoilage microorganisms, being the former the most effective. Thymol efficiently reduces the growth of mesophilic bacteria, psychrotrophic bacteria and Staphylococcus spp., whereas it does not affect, substantially, the growth cycle of total coliforms. Lemon extract is the less effective in preventing microbial growth. In fact, it is able to delay only total mesophilic and psychrotrophic bacterial evolution. From a sensorial point of view no significant differences were recorded between the control samples and all the types of loaded amaranth-based pasta.

  1. Effective biotransformation and detoxification of anthraquinone dye reactive blue 4 by using aerobic bacterial granules.

    PubMed

    Chaudhari, Ashvini U; Paul, Dhiraj; Dhotre, Dhiraj; Kodam, Kisan M

    2017-10-01

    Treatment of textile wastewater containing anthraquinone dye is quite a huge challenge due to its complex aromatic structure and toxicity. Present study deals with the degradation and detoxification of anthraquinone dye reactive blue 4 using aerobic bacterial granules. Bacterial granules effectively decolorized reactive blue 4 at wide range of pH (4.0-11.0) and temperature (20-55 °C) as well as decolorized and tolerated high concentration of reactive blue 4 dye upto 1000 mg l -1 with V max 6.16 ± 0.82 mg l -1 h -1 and K m 227 ± 41 mg l -1 . Metagenomics study evaluates important role of Clostridia, Actinobacteria, and Proteobacterial members in biotransformation and tolerance of high concentrations of reactive blue 4 dye. Up-regulation of xenobiotic degradation and environmental information processing pathways during dye exposure signifies their noteworthy role in dye degradation. Biotransformation of dye was confirmed by significant decrease in the values of total suspended solids, biological and chemical oxygen demand. The metabolites formed after biotransformation was characterized by FT-IR and GC-MS analysis. The reactive blue 4 dye was found to be phytotoxic, cytotoxic and genotoxic whereas its biotransformed product were non-toxic. This study comprehensively illustrates that, bacterial aerobic granules can be used for eco-friendly remediation and detoxification of wastewater containing high organic load of anthraquinone dye. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An alteration of the gut-liver axis drives pulmonary inflammation after intoxication and burn injury in mice

    PubMed Central

    Chen, Michael M.; Zahs, Anita; Brown, Mary M.; Ramirez, Luis; Turner, Jerrold R.; Choudhry, Mashkoor A.

    2014-01-01

    Approximately half of all adult burn patients are intoxicated at the time of their injury and have worse clinical outcomes than those without prior alcohol exposure. This study tested the hypothesis that intoxication alters the gut-liver axis, leading to increased pulmonary inflammation mediated by burn-induced IL-6 in the liver. C57BL/6 mice were given 1.2 g/kg ethanol 30 min prior to a 15% total body surface area burn. To restore gut barrier function, the specific myosin light chain kinase inhibitor membrane-permeant inhibitor of kinase (PIK), which we have demonstrated to reduce bacterial translocation from the gut, was administered 30 min after injury. Limiting bacterial translocation with PIK attenuated hepatic damage as measured by a 47% reduction in serum alanine aminotransferase (P < 0.05), as well as a 33% reduction in hepatic IL-6 mRNA expression (P < 0.05), compared with intoxicated and burn-injured mice without PIK. This mitigation of hepatic damage was associated with a 49% decline in pulmonary neutrophil infiltration (P < 0.05) and decreased alveolar wall thickening compared with matched controls. These results were reproduced by prophylactic reduction of the bacterial load in the intestines with oral antibiotics before intoxication and burn injury. Overall, these data suggest that the gut-liver axis is deranged when intoxication precedes burn injury and that limiting bacterial translocation in this setting attenuates hepatic damage and pulmonary inflammation. PMID:25104501

  3. Survey of bovine colostrum quality and hygiene on northern Victorian dairy farms.

    PubMed

    Phipps, A J; Beggs, D S; Murray, A J; Mansell, P D; Stevenson, M A; Pyman, M F

    2016-11-01

    One of the major challenges for dairy producers is to produce, harvest, and store high-quality colostrum and feed it to their replacement heifer calves. Limited published data are available in Australia regarding the relationship between colostrum management, hygiene, and quality. The objectives of this study were to investigate (1) the colostrum storage and handling practices carried out on farm; (2) the immunoglobulin concentration and bacterial composition of colostrum being fed to replacement dairy heifer calves; (3) the percentage of colostrum being fed to replacement dairy heifer calves that meet industry recommendations; and (4) risk factors for bacterial contamination of colostrum. The study was carried out on 24 dairy farms located near Rochester, Victoria, Australia. Two hundred forty colostrum samples were collected (10 samples per farm). Each farm harvested and stored first-milking colostrum under normal farm conditions. A 10-mL sample of the colostrum was collected in a sterile container immediately before feeding, and a Brix refractometer reading was taken. The samples were then frozen at -4°C and submitted for bacterial concentration analysis. Fifty-eight percent of colostrum samples met the recommended industry standard of a total plate count (TPC) of <100,000cfu/mL, and 94% of colostrum samples met the recommended industry standard of total coliform count (TCC) of 10,000cfu/mL. However, when all the current industry recommendations for TPC, TCC, and Brix refractometer percentage for colostrum quality were considered, only 23% of the samples met all standards. These findings demonstrate that a large number of calves were at risk of receiving colostrum of poor quality, with high bacterial loads that may have interfered with the acquisition of transfer of passive immunity and affected calf health. Further investigation is required to identify the farm-specific factors that may influence the level of bacterial contamination of colostrum. Recommendations as a result of this study include refrigeration of excess colostrum shortly (within 1h) after collection and thorough disinfection of the calf feeding apparatus before use. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Quantitative Real-time Polymerase Chain Reaction for Enteropathogenic Escherichia coli: A Tool for Investigation of Asymptomatic Versus Symptomatic Infections

    PubMed Central

    Barletta, Francesca; Mercado, Erik; Ruiz, Joaquim; Ecker, Lucie; Lopez, Giovanni; Mispireta, Monica; Gil, Ana I.; Lanata, Claudio F.; Cleary, Thomas G.

    2011-01-01

    Background. Enteropathogenic Escherichia coli (EPEC) strains are pediatric pathogens commonly isolated from both healthy and sick children with diarrhea in areas of endemicity. The aim of this study was to compare the bacterial load of EPEC isolated from stool samples from children with and without diarrhea to determine whether bacterial load might be a useful tool for further study of this phenomenon. Methods. EPEC was detected by polymerase chain reaction (PCR) of colonies isolated on MacConkey plates from 53 diarrheal and 90 healthy children aged <2 years. DNA was isolated from stool samples by cetyltrimethylammonium bromide extraction. To standardize quantification by quantitative real-time PCR (qRT-PCR), the correlation between fluorescence threshold cycle and copy number of the intimin gene of EPEC E2348/69 was determined. Results. The detection limit of qRT-PCR was 5 bacteria/mg stool. The geometric mean load in diarrhea was 299 bacteria/mg (95% confidence interval [CI], 77–1164 bacteria/mg), compared with 29 bacteria/mg (95% CI, 10–87 bacteria/mg) in control subjects (P = .016). Bacterial load was significantly higher in children with diarrhea than in control subjects among children <12 months of age (178 vs 5 bacteria/mg; P = .006) and among children with EPEC as the sole pathogen (463 vs 24 bacteria/mg; P = .006). Conclusions. EPEC load measured by qRT-PCR is higher in diarrheal than in healthy children. qRT-PCR may be useful to study the relationship between disease and colonization in settings of endemicity. PMID:22028433

  5. Reduction of fecal indicator bacteria (FIB) in the Ballona Wetlands saltwater marsh (Los Angeles County, California, USA) with implications for restoration actions.

    PubMed

    Dorsey, John H; Carter, Patrick M; Bergquist, Sean; Sagarin, Rafe

    2010-08-01

    A benefit of wetland preservation and restoration is the ecosystem service of improving water quality, typically assessed based on bacterial loading. The Ballona Wetlands, a degraded salt marsh of approximately 100 ac located on the southern border of Marina Del Rey (Los Angeles County, California, USA) are currently the focus of publicly funded restoration planning. The wetlands receive tidal water, usually contaminated with fecal indicator bacteria (FIB: total and fecal coliforms, Escherichia coli, enterococci) from the adjacent Ballona Creek and Estuary. During the summer of 2007, two 24-h studies were conducted to determine FIB tidal dynamics within the wetland. Measurements of water flow and mean FIB concentrations (n = 3) were measured every 1.5 h to determine total FIB load estimates. FIB loading rates (MPN/s) were greatest during flood tides as water entered the wetlands, and then again during spring tide conditions when sediments were resuspended during swifter spring ebb flows. During daylight hours, the wetland acted as a sink for these bacteria as loads diminished, presumably by sunlight and other processes. Conversely, during late afternoon and night, the wetlands shifted to being a source as excess FIB departed on ebb flows. Therefore, the wetlands act as both a source and sink for FIB depending on tidal conditions and exposure to sunlight. Future restoration actions would result in a tradeoff - increased tidal channels offer a greater surface area for FIB inactivation, but also would result in a greater volume of FIB-contaminated resuspended sediments carried out of the wetlands on stronger ebb flows. As levels of FIB in Ballona Creek and Estuary diminish through recently established regulatory actions, the wetlands could shift into a greater sink for FIB. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Antibiotic Screening of Urine Culture for Internal Quality Audit at Amrita Hospital, Kochi.

    PubMed

    Suresh, Aswathy; Gopinathan, Anusha; Dinesh, Kavitha R; Kumar, Anil

    2017-07-01

    Urine antimicrobial activity is a seldom analysed laboratory test which greatly impacts the quantification of urine specimens. Presence of antimicrobial activity in the urine reduces the bacterial load in these specimens. Hence, the chances of erroneously reporting insignificant bacteriuria can be reduced on analysis of the antimicrobial activity in urine. The aim of the study was to measure the antimicrobial activity of urine samples obtained from patients in a tertiary care hospital. A total of 100 urine specimens were collected from the study group. Tests like wet mount, Gram staining and culture were performed. Antimicrobial susceptibility testing was done on the bacteria isolated from each specimen. The urine specimens were reported as significant bacteriuria (>105 Colony Forming Unit (CFU)/ml) and insignificant bacteriuria (<105 CFU/ml - clean catch midstream urine; <102 CFU/ml - catheterized urine sample) according to the CFU/ml. Staphylococcus aureus ATCC ® 25923 ™ and Escherichia coli ATCC ® 25922 ™ were used to identify the presence of antimicrobial activity in the urine sample by Urine Anti-Bacterial substance Assay (UABA). McNemar test was used for statistical analysis using Statistical Package for the Social Sciences (SPSS) version 21.0. On analysis of the antimicrobial activity of urine sample with the prior antibiotic history of the patients, 17 were true positives and 43 were true negatives. Twenty six of samples with UABA positivity were culture negative and 28 samples with UABA positivity were culture positive. Sensitivity and specificity of the test was 85% and 53.8% respectively. Accuracy of the test was 60%. The p-value of UABA was <0.001. Enterobacteriaceae was the most common bacterial family isolated from the urine specimens. A total of 85% patients responded to treatment. Presence of antimicrobial activity in urine has a great impact on the interpretation of urine culture reports. Identification of urine antimicrobial activity helps in evaluating the quantification of bacterial growth reported in urine culture. It facilitates speedy recovery of patients by early administration of antibiotics.

  7. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: In vitro antibacterial study.

    PubMed

    Shaker, Mohamed A; Shaaban, Mona I

    2017-06-15

    Despite the fact that carbapenems (powerful β-lactams antibiotics) were able to fight serious infectious diseases, nowadays the spread of carbapenems-resistant bacteria is considered the main challenge in antibacterial therapy. In this study, we focused on evaluating the surface conjugation of carbapenems (imipenem and meropenem) with gold nanoparticles as a delivering strategy to specifically and safely maximize their therapeutic efficacy while destroying the developing resistance of the pathogens. Different particle size formulae (35, 70 and 200nm) were prepared by citrate reduction method. The prepared nanoparticles were functionalized with imipenem (Ipm) or meropenem (Mem) and physico-chemically characterized for loading efficiency, particle size, morphology, and in-vitro release. The antibacterial efficacy was also evaluated against carbapenems resistant Gram-negative bacteria isolated from infected human, through measuring the minimum inhibitory concentration and antibiotic kill test. All the obtained gold nanoparticles showed a distinct nano-size with loading efficiency up to 72% and 74% for Ipm and Mem, respectively. The conjugation and physico-chemical stability of the formulated carbapenems were confirmed by FTIR and X-RPD. Diffusion driven release behavior was observed for both Ipm and Mem from all of the loaded gold nanoparticles. For both Ipm and Mem, formula with 35nm diameter showed the most significant enhancement in antibacterial activity against all the selected isolates including Klebsiella pneumoniae, Proteus mirabilis and Acinteobacter baumanii. Ipm loaded Gold nanoparticles demonstrated decrease in the MIC of Ipm down to four folds, whereas, Mem loaded gold nanoparticles showed decrease in the MIC of Mem down to three folds on the tested bacterial isolates. Based on these results, the formulation of carbapenems-loaded gold nanoparticles demonstrated to be a promising nano-size delivery vehicle for improving the therapeutic activity and destroying the bacterial resistance for carbapenems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ultrasound-assisted debridement of neuroischaemic diabetic foot ulcers, clinical and microbiological effects: a case series.

    PubMed

    Lázaro-Martínez, José Luis; Álvaro-Afonso, Francisco Javier; García-Álvarez, Yolanda; Molines-Barroso, Raúl Juan; García-Morales, Esther; Sevillano-Fernández, David

    2018-05-02

    To evaluate the clinical and microbiological effects of sequential wound debridement in a case series of neuroischaemic diabetic foot ulcers (DFUs) using an ultrasound-assisted wound debridement (UAW) device. A prospective, single-centre study, involving a case series of 24 neuroischaemic DFUs, was conducted to evaluate sequential wound debridement with UAW during a six-week treatment period. Soft tissue punch biopsies were taken every second week of treatment, both before and after wound debridement sessions. Qualitative and quantitative microbiological analysis was performed and wounds were assessed at patient admission, and before and after each debridement procedure. Wound tissue quality scores improved significantly from a mean score of 2.1±1.3 points at patient inclusion, to 5.3±1.7 points (p=0.001). Mean wound sizes were 4.45cm 2 (range: 2-12.25cm 2 ) at week zero, and 2.75cm 2 (range: 1.67-10.70cm 2 ) at week six (p=0.04). The mean number of bacterial species per culture determined at week zero and at week six was 2.53±1.55 and 1.90±1.16, respectively (p=0.023). Wound debridement resulted in significant decreases in bacterial counts (1.17, 1.31 and 0.77 log units in colony forming units (CFU) for week zero, three and six, respectively). The average bacterial load in tissue samples before and after wound debridement after the six-week treatment was Log 5.55±0.91CFU/g and Log 4.59±0.89CFU/g, respectively (p<0.001). The study results showed a significant bacterial load reduction in DFU tissue samples as a result of UAW debridement, independent of bacterial species, some of which exhibited antibiotic-resistance. Significant bacterial load reduction was correlated with improved wound conditions and significant reductions of wound size.

  9. Monitoring of oil hydrocarbons pollution in the Sea of Japan, based on detection of marker genes in microbial communities

    NASA Astrophysics Data System (ADS)

    Kim, A. V.; Buzoleva, L. S.; Bogatyrenko, E. A.; Zemskaya, T. I.; Mamaeva, E. V.

    2018-01-01

    By means of molecular biology techniques, metabolic potential of microbial communities within the regions of inshore water areas in the Sea of Japan with various anthropogenic load was explored. Presence of functional genes, responsible for oil hydrocarbons destruction, for microbial communities within the regions of inshore water areas in the Sea of Japan was first researched. In total microbial DNA from water mass in the regions with chronic anthropogenic pollution, the genes, responsible for oxidation of broad range of n-alkanes and polycyclic aromatic hydrocarbons, were found. Detection of marker genes in the background water area (in the Vostok Bay) was ever indicating ecological deterioration within this territory. Thereby, it was demonstrated, that molecular genetic methods, aimed at marker gene detection in total bacterial DNA from environment objects, proved themselves to be more effective technique for identification of oil hydrocarbons water pollution, in comparison with trivial culturable methods.

  10. Bacteriospermia in extended porcine semen.

    PubMed

    Althouse, Gary C; Lu, Kristina G

    2005-01-15

    Bacteriospermia is a frequent finding in freshly extended porcine semen and can result in detrimental effects on semen quality and longevity if left uncontrolled. The primary source of bacterial contamination is the boar. Other sources that have been identified include environment, personnel, and the water used for extender preparation. A 1-year retrospective study was performed on submissions of extended porcine semen for routine quality control bacteriological screening at the University of Pennsylvania. Out of 250 sample submissions, 78 (31.2%) tested positive for bacterial contamination. The most popular contaminants included Enterococcus spp. (20.5%), Stenotrophomonas maltophilia (15.4%), Alcaligenes xylosoxidans (10.3%), Serratia marcescens (10.3%), Acinetobacter lwoffi (7.7%), Escherichia coli (6.4%), Pseudomonas spp. (6.4%), and others (23.0%). Prudent individual hygiene, good overall sanitation, and regular monitoring can contribute greatly in controlling bacterial load. Strategies that incorporate temperature-dependent bacterial growth and hyperthermic augmentation of antimicrobial activity are valuable for effective control of susceptible bacterial loads. Aminoglycosides remain the most popular antimicrobial class used in porcine semen extenders, with beta-lactam and lincosamide use increasing. With the advent of more novel antimicrobial selection and semen extender compositions in swine, prudent application and understanding of in vitro pharmacodynamics are becoming paramount to industry success in the use of this breeding modality.

  11. The impact of Rhodiola rosea on the gut microbial community of Drosophila melanogaster.

    PubMed

    Labachyan, Khachik E; Kiani, Dara; Sevrioukov, Evgueni A; Schriner, Samuel E; Jafari, Mahtab

    2018-01-01

    The root extract of Rhodiola rosea has historically been used in Europe and Asia as an adaptogen, and similar to ginseng and Shisandra , shown to display numerous health benefits in humans, such as decreasing fatigue and anxiety while improving mood, memory, and stamina. A similar extract in the Rhodiola family, Rhodiola crenulata , has previously been shown to confer positive effects on the gut homeostasis of the fruit fly, Drosophila melanogaster. Although, R. rosea has been shown to extend lifespan of many organisms such as fruit flies, worms and yeast, its anti-aging mechanism remains uncertain. Using D. melanogaster as our model system, the purpose of this work was to examine whether the anti-aging properties of R. rosea are due to its impact on the microbial composition of the fly gut. Rhodiola rosea treatment significantly increased the abundance of Acetobacter , while subsequently decreasing the abundance of Lactobacillales of the fly gut at 10 and 40 days of age. Additionally, supplementation of the extract decreased the total culturable bacterial load of the fly gut, while increasing the overall quantifiable bacterial load. The extract did not display any antimicrobial activity when disk diffusion tests were performed on bacteria belonging to Microbacterium , Bacillus , and Lactococcus . Under standard and conventional rearing conditions, supplementation of R. rosea significantly alters the microbial community of the fly gut, but without any general antibacterial activity. Further studies should investigate whether R. rosea impacts the gut immunity across multiple animal models and ages.

  12. Validation of a Nylon-Flocked-Swab Protocol for Efficient Recovery of Bacterial Spores from Smooth and Rough Surfaces▿

    PubMed Central

    Probst, Alexander; Facius, Rainer; Wirth, Reinhard; Moissl-Eichinger, Christine

    2010-01-01

    In order to meet planetary-protection requirements, culturable bacterial spore loads are measured representatively for the total microbial contamination of spacecraft. However, the National Aeronautics and Space Administration's (NASA's) cotton swab protocols for spore load determination have not changed for decades. To determine whether a more efficient alternative was available, a novel swab was evaluated for recovery of different Bacillus atrophaeus spore concentrations on stainless steel and other surfaces. Two protocols for the nylon-flocked swab (NFS) were validated and compared to the present NASA standard protocol. The results indicate that the novel swab protocols recover 3- to 4-fold more (45.4% and 49.0% recovery efficiency) B. atrophaeus spores than the NASA standard method (13.2%). Moreover, the nylon-flocked-swab protocols were superior in recovery efficiency for spores of seven different Bacillus species, including Bacillus anthracis Sterne (recovery efficiency, 20%). The recovery efficiencies for B. atrophaeus spores from different surfaces showed a variation from 5.9 to 62.0%, depending on the roughness of the surface analyzed. Direct inoculation of the swab resulted in a recovery rate of about 80%, consistent with the results of scanning electron micrographs that allowed detailed comparisons of the two swab types. The results of this investigation will significantly contribute to the cleanliness control of future life detection missions and will provide significant improvement in detection of B. anthracis contamination for law enforcement and security efforts. PMID:20543054

  13. Distribution and disinfection of bacterial loadings associated with particulate matter fractions transported in urban wet weather flows.

    PubMed

    Dickenson, Joshua A; Sansalone, John J

    2012-12-15

    Urban runoff is a resource for reuse water. However, runoff transports indicator and pathogenic organisms which are mobilized from sources of fecal contamination. These organisms are entrained with particulate matter (PM) that can serve as a mobile substrate for these organisms. Within a framework of additional treatment for reuse of treated runoff which requires the management of PM inventories in unit operations and drainage systems there is a need to characterize organism distributions on PM and the disinfection potential thereof. This study quantifies total coliform, Escherichia coli, fecal streptococcus, and enterococcus generated from 25 runoff events. With the ubiquity and hetero-dispersivity of PM in urban runoff this study examines organism distributions for suspended, settleable and sediment PM fractions differentiated based on PM size and transport functionality. Hypochlorite is applied in batch to elaborate inactivation of PM-associated organisms for each PM fraction. Results indicate that urban runoff bacterial loadings of indicator organisms exceed U.S. wastewater reuse, recreational contact, and Australian runoff reuse criteria as comparative metrics. All monitored events exceeded the Australian runoff reuse criteria for E. coli in non-potable residential and unrestricted access systems. In PM-differentiated events, bacteriological mobilization primarily occurred in the suspended PM fraction. However, sediment PM shielded PM-associated coliforms at all hypochlorite doses, whereas suspended and settleable PM fractions provide less shielding resulting in higher inactivation by hypochlorite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Detection of endocarditis bacteria in tonsillar mucosa of Afghan population.

    PubMed

    Ruggiero, F; Carbone, D; Mugavero, R; Palmieri, A; Lauritano, D; Baggi, L; Nardone, M; Carinci, F; Martinelli, M

    2018-01-01

    Endocarditis is a cardiovascular disease caused by the inflammation of the inner tissues of the heart, the endocardium, usually of the valves. Bacteraemia is essential in the development of endocarditis, and there are some findings that the main pathogens of endocarditis are viridans group streptococci: Streptococcus oralis, Streptococcus sanguinis, and Enterococcus faecalis. There is strong evidence that endocarditis bacteria are present in the tonsillar microbiota, so that tonsillar infection is associated with an increased risk of endocarditis. The aim of this manuscript is to investigate the presence of the main pathogens of endocarditis in tonsillar microbiota of an Afghan population group. A sample of 80 tonsil swabs were analyzed by quantitative real time PCR to detect endocarditis pathogens and an estimation of the total bacterial load. The median bacterial load in PCR reaction was 1.4x106 (interquartile range 4,7x105 - 2,9x106). Three species, S. Oralis, S. Sanguinis, and E. Faecalis were found in large amounts in all specimens. On the other hand, S. Mitis was never detected. The S. Aureus was found in 3 samples with a prevalence of 0.04 (C.I. 0.01-0.10). The S. Mutans was found in 33 samples with a prevalence of 0.41 (C.I. 0.31-0.52). Endocarditis bacteria has been found into the tonsillar microbiota, so there is sufficient evidence to justify that the oral cavity is a reservoir of endocarditis bacteria that can have a significant impact on the cardiovascular function.

  15. Supercritical CO2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging.

    PubMed

    Milovanovic, Stoja; Hollermann, Gesa; Errenst, Cornelia; Pajnik, Jelena; Frerich, Sulamith; Kroll, Stephen; Rezwan, Kurosch; Ivanovic, Jasna

    2018-05-01

    Biodegradable polymers with antibacterial properties are highly desirable materials for active food packaging applications. Thymol, a dietary monoterpene phenol with a strong antibacterial activity is abundant in plants belonging to the genus Thymus. This study presents two approaches for supercritical CO 2 impregnation of poly(lactic acid)(PLA)/poly(ε-caprolactone)(PCL) blended films to induce antibacterial properties of the material: (i) a batch impregnation process for loading pure thymol, and (ii) an integrated supercritical extraction-impregnation process for isolation of thyme extract and its incorporation into the films, operated in both batch or semi-continuous modes with supercritical solution circulation. The PCL content in films, impregnation time and CO 2 flow regime were varied to maximize loading of the films with thymol or thyme extract with preserving films' structure and thermal stability. Representative film samples impregnated with thymol and thyme extract were tested against Gram (-) (Escherichia coli) and Gram(+) (Bacillus subtilis) model strains, by measuring their metabolic activity and re-cultivation after exposure to the films. The film containing thymol (35.8 wt%) showed a strong antibacterial activity leading to a total reduction of bacterial cell viability. Proposed processes enable fast, controlled and organic solvent-free fabrication of the PLA/PCL films containing natural antibacterial substances at moderately low temperature, with a compact structure and a good thermal stability, for potential use as active food packaging materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Antimicrobial effects of essential oils of Cinnamosma fragrans on the bacterial communities in the rearing water of Penaeus monodon larvae.

    PubMed

    Sarter, Samira; Randrianarivelo, Roger; Ruez, Philippe; Raherimandimby, Marson; Danthu, Pascal

    2011-04-01

    Farmed shrimps are vectors of various Vibrio species that are considered a potential health hazard. Previous study has shown that Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio alginolyticus dominated in the water and larval samples of shrimp hatchery (Randrianarivelo et al. 2010 ). The effects of two essential oils (EOs) of Cinnamosma fragrans, an endemic plant to Madagascar (B8: linalool-type and B143: 1,8-cineole-type), were determined on the total heterotrophic aerobic bacteria and the Vibrio concentrations in the rearing water of Penaeus monodon hatchery. The assays took place in OSO Farming's shrimp hatchery in Madagascar. EOs were directly added to the water tank. The bacterial concentrations of water tank were assessed on marine agar and thiosulfate citrate bile sucrose agar. The larvae culture corresponded to four replicates each of B8, B143, erythromycin (E), and control (oil and antibiotic free). The bacterial concentration of the rearing water in B8, B143, and antibiotic (E) tanks were significantly lower (p < 0.05) than in the control. Further, there was no significant difference (p > 0.05) between the three treatments B8, B143, and E. This study demonstrated that both EOs of C. fragrans, like antibiotic, inhibited bacterial growth in the rearing water of P. monodon larvae. The potential of C. fragrans EO to control the bacterial load in in vivo conditions of P. monodon hatchery makes it a relevant option for producers to minimize risk of Vibrio growth in the rearing water of larvae, which is the primary source of colonization of shrimp larvae.

  17. Histopathological and bacterial study of skin and gill of grass carp, Ceteopharyngodon idella, (Valenciennes 1844) exposed to copper sulfate and potassium permanganate.

    PubMed

    Jooyandeh, Fatemeh; Sadeghpour, Ali; Khara, Hossein; Pajand, Zabihollah

    2016-09-01

    The gill histology and bacterial load of skin of the grass carp juveniles were investigated in relation to various concentrations of copper sulfate and potassium permanganate. For this purpose, the sublethal doses were determined after a pre-test and then the experiment was done in five treatments (for copper sulfate: 1, 1.94, 3.71, 7.07 and 15 mg/l and for potassium permanganate: 0.25, 0.52, 1.91, 2.27 and 5 mg/l) with three replicates inside the glass aquaria. Also, one group without disinfecting product was considered as control for each experiment. The microbial and histopathological investigations were done after 96 h exposure. According to results, the lowest bacterial load (CFU/g) of skin was observed in 15 mg/l copper sulfate treatment and 0.25 mg/l potassium permanganate treatment (P < 0.05). Also, the histological investigation showed a range of histopathological alternations in gills tissue including lamellar necrosis, hyperplasia, lamellar adhesion, haemorrhage, clubbing of gill lamellae. The severity of these alternations increased with increasing of the doses of the copper sulfate and potassium permanganate. In this regard, the highest histological damages were observed in 15 mg/l copper sulfate and 5 mg/l potassium permanganate respectively. Our results showed that low dosage of potassium permanganate has best effect on reducing of bacterial load of skin with lowest adverse effects on gill tissue.

  18. Limiting (zero-load) speed of the rotary motor of Escherichia coli is independent of the number of torque-generating units

    PubMed Central

    Wang, Bin; Zhang, Rongjing; Yuan, Junhua

    2017-01-01

    Rotation of the bacterial flagellar motor is driven by multiple torque-generating units (stator elements). The torque-generating dynamics can be understood in terms of the “duty ratio” of the stator elements, that is, the fraction of time a stator element engages with the rotor during its mechanochemical cycle. The dependence of the limiting speed (zero-load speed) of the motor on the number of stator elements is the determining test of the duty ratio, which has been controversial experimentally and theoretically over the past decade. Here, we developed a method combining laser dark-field microscopy and optical trapping to resolve this controversy. We found that the zero-load speed is independent of the number of stator elements for the bacterial flagellar motor in Escherichia coli, demonstrating that these elements have a duty ratio close to 1. PMID:29109285

  19. Limiting (zero-load) speed of the rotary motor of Escherichia coli is independent of the number of torque-generating units.

    PubMed

    Wang, Bin; Zhang, Rongjing; Yuan, Junhua

    2017-11-21

    Rotation of the bacterial flagellar motor is driven by multiple torque-generating units (stator elements). The torque-generating dynamics can be understood in terms of the "duty ratio" of the stator elements, that is, the fraction of time a stator element engages with the rotor during its mechanochemical cycle. The dependence of the limiting speed (zero-load speed) of the motor on the number of stator elements is the determining test of the duty ratio, which has been controversial experimentally and theoretically over the past decade. Here, we developed a method combining laser dark-field microscopy and optical trapping to resolve this controversy. We found that the zero-load speed is independent of the number of stator elements for the bacterial flagellar motor in Escherichia coli , demonstrating that these elements have a duty ratio close to 1.

  20. Source identification analysis for the airborne bacteria and fungi using a biomarker approach

    NASA Astrophysics Data System (ADS)

    Lee, Alex K. Y.; Lau, Arthur P. S.; Cheng, Jessica Y. W.; Fang, Ming; Chan, Chak K.

    Our recent studies have reported the feasibility of employing the 3-hydoxy fatty acids (3-OH FAs) and ergosterol as biomarkers to determine the loading of the airborne endotoxin from the Gram-negative bacteria and fungal biomass in atmospheric aerosols, respectively [Lee, A.K.Y., Chan, C.K., Fang, K., Lau, A.P.S., 2004. The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmospheric Environment 38, 6807-6317; Lau, A.P.S., Lee, A.K.Y., Chan, C.K., Fang, K., 2006. Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment 40, 249-259]. These quantified biomarkers do not, however, provide information on their sources. In this study, the year-long dataset of the endotoxin and ergosterol measured in Hong Kong was integrated with the common water-soluble inorganic ions for source identification through the principal component analysis (PCA) and backward air mass trajectory analysis. In the coarse particles (PM 2.5-10), the bacterial endotoxin is loaded in the same factor group with Ca 2+ and accounted for about 20% of the total variance of the PCA. This implies the crustal origin for the airborne bacterial assemblage. The fungal ergosterol in the coarse particles (PM 2.5-10) had by itself loaded in a factor group of 10.8% of the total variance in one of the sampling sites with large area of natural vegetative coverage. This suggests the single entity nature of the fungal spores and their independent emission to the ambient air upon maturation of their vegetative growth. In the fine particles (2.0) in the fine particles of the continental air masses imply the microbial source from activities related to biomass burning and industries from the north. The low K +/Na + ratios (1.2-1.4) in the fine particles of the mixed air masses suggest microbial sources from the local and regional indoor environment through kitchen emissions and the re-suspension of the road dust due to vehicular exhausts.

  1. Development and testing of real-time PCR assays for determining fecal loading and source identification (cattle, human, etc.) in surface water and groundwater

    NASA Astrophysics Data System (ADS)

    McKay, L. D.; Layton, A.; Gentry, R.

    2004-12-01

    A multi-disciplinary group of researchers at the University of Tennessee is developing and testing a series of microbial assay methods based on real-time PCR to detect fecal bacterial concentrations and host sources in water samples. Real-time PCR is an enumeration technique based on the unique and conserved nucleic acid sequences present in all organisms. The first research task was development of an assay (AllBac) to detect total amount of Bacteroides, which represents up to 30 percent of fecal mass. Subsequent assays were developed to detect Bacteroides from cattle (BoBac) and humans (HuBac) using 16sRNA genes based on DNA sequences in the national GenBank, as well as sequences from local fecal samples. The assays potentially have significant advantages over conventional bacterial source tracking methods because: 1. unlike traditional enumeration methods, they do not require bacterial cultivation; 2. there are no known non-fecal sources of Bacteroides; 3. the assays are quantitative with results for total concentration and for each species expressed in mg/l; and 4. they show little regional variation within host species, meaning that they do not require development of extensive local gene libraries. The AllBac and BoBac assays have been used in a study of fecal contamination in a small rural watershed (Stock Creek) near Knoxville, TN, and have proven useful in identification of areas where cattle represent a significant fecal input and in development of BMPs. It is expected that these types of assays (and future assays for birds, hogs, etc.) could have broad applications in monitoring fecal impacts from Animal Feeding Operations, as well as from wildlife and human sources.

  2. Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces.

    PubMed

    Khan, Shams Tabrez; Ahamed, Maqusood; Alhadlaq, Hisham A; Musarrat, Javed; Al-Khedhairy, Abdulaziz

    2013-12-01

    Oral ailments are often treated with antibiotics, which are rendered ineffective as bacteria continue to develop resistance against them. It has been suggested that the nanoparticles (NPs) approach may provide a safer and viable alternative to traditional antibacterial agents. Therefore, nickel (Ni)- and nickel oxide (NiO)-NPs were synthesized, characterized and assessed for their efficacy in reducing oral bacterial load in vitro. Also, the effects of bulk compound NiCl2 (Ni ions), along with the Ni- and NiO-NPs on bacterial exopolysaccharide (EPS) production and biofilm formation on the surface of artificial teeth, and acrylic dentures, were investigated. Total bacteria from a healthy male were collected and adjusted to 4×109cells/ml for all the tests. Effect of the NPs on growth, biofilm formation, EPS production and acid production from glucose was tested using standard protocols. Data revealed that the Ni-NPs (average size 41.23nm) exhibited an IC50 value of 73.37μg/ml against total oral bacteria. While, NiO-NPs (average size 35.67nm) were found less effective with much higher IC50 value of 197.18μg/ml. Indeed, the Ni ions exhibited greater biocidal activity with an IC50 value of 70μg/ml. Similar results were obtained with biofilm inhibition on the surfaces of dental prostheses. The results explicitly suggested the effectiveness of tested Ni compounds on the growth of oral bacteria and biofilm formation in the order as NiCl2>Ni-NPs>NiO-NPs. The results elucidated that Ni-NPs could serve as effective nanoantibiotics against oral bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film.

    PubMed

    Bakare, Rotimi; Hawthrone, Samantha; Vails, Carmen; Gugssa, Ayele; Karim, Alamgir; Stubbs, John; Raghavan, Dharmaraj

    2016-03-01

    Bacterial infection of orthopedic devices has been a major concern in joint replacement procedures. Therefore, this study is aimed at formulating collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film loaded with bovine serum albumin capped silver nanoparticles (Ag/BSA NPs) to inhibit bacterial growth while retaining/promoting osteoblast cells viability. The nanoparticles loaded collagen immobilized PHBV film was characterized for its composition by X-ray Photoelectron Spectroscopy and Anodic Stripping Voltammetry. The extent of loading of Ag/BSA NPs on collagen immobilized PHBV film was found to depend on the chemistry of the functionalized PHBV film and the concentration of Ag/BSA NPs solution used for loading nanoparticles. Our results showed that more Ag/BSA NPs were loaded on higher molecular weight collagen immobilized PHEMA-g-PHBV film. Maximum loading of Ag/BSA NPs on collagen immobilized PHBV film was observed when 16ppm solution was used for adsorption studies. Colony forming unit and optical density measurements showed broad antimicrobial activity towards Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa at significantly lower concentration i.e., 0.19 and 0.31μg/disc, compared to gentamicin and sulfamethoxazole trimethoprim while MTT assay showed that released nanoparticles from Ag/BSA NPs loaded collagen immobilized PHBV film has no impact on MCTC3-E1 cells viability. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Quality profile of litchi ( Litchi chinensis) cultivars from India and effect of radiation processing

    NASA Astrophysics Data System (ADS)

    Hajare, Sachin N.; Saxena, Sudhanshu; Kumar, Sanjeev; Wadhawan, Surbhi; More, Varsha; Mishra, B. B.; Narayan Parte, Madan; Gautam, Satyendra; Sharma, Arun

    2010-09-01

    Litchi ( Litchi chinensis) is a non-climacteric tropical fruit. The fruit has a short shelf-life making its marketing difficult. Physical, biochemical, microbiological, and organoleptic properties of two major commercially grown Indian cultivars of litchi, 'Shahi' and 'China' were studied. The effect of gamma radiation processing and low temperature storage on the above parameters was evaluated to standardize the optimal process parameters for shelf-life extension of litchi. Physical and biochemical parameters analyzed included weight, moisture, pH, titratable acidity, texture, color, total and reducing sugar, total soluble solids, vitamin C, and flavonoid content. Weight, moisture content, and pH in the fresh fruit ranged between 21-26 g, 74-77%, and 3.7-4.4, respectively, whereas, total and reducing sugar ranged 10-15, and 10-13 g%, respectively. In 'Shahi' vitamin C content was found to be around 17-19 mg%, whereas, in 'China' it was 22-28 mg%. Flavonoid content was in the range of 26-34 μg catechin equivalents/g of fresh fruit. Total surface and internal bacterial load was around 4 and 3 log cfu/g, respectively. Surface yeast-mold count (YMC) was ˜3 log cfu/g whereas internal YMC was ˜2 log cfu/g. Radiation treatment reduced microbial load in a dose dependent manner. Treatment at 0.5 kGy did not significantly affect the quality parameters of the fruit. Treated fruits retained the "good" organoleptic rating during storage. Thus, radiation treatment (0.5 kGy) in combination with low temperature (4 °C) storage achieved a shelf-life of 28 days for litchi fruit.

  5. Involvement of cell shape and flagella in the bacterial retention during percolation of contaminated water through soil columns in tropical region.

    PubMed

    Nola, Moise; Ewoti, Olive V Noah; Nougang, Mireille; Moungang, Marlyse L; Chihib, Nour-Eddine; Krier, Francois; Servais, Pierre; Hornez, Jean-Pierre; Njine, Thomas

    2010-09-01

    Microorganisms' retention in soil contributes to the natural purification of groundwater. Bacteria found in groundwater are generally of various shapes. The aim of this study was to assess the importance of cell shape and flagella in bacterial retention during polluted water percolation through two soil columns CA and CB, in the equatorial region in Central Africa. Percolation tests were carried out using different water loads samples which were contaminated by Escherichia coli (straight rods, peritrichous flagella), Vibrio parahaemolyticus (rods bacteria, polar flagella), and Staphylococcus saprophyticus (spherical, free-flagellum). It has been noted that showed that through soil column CA, the mean values of cells retention ratios (T(R)) varied with bacteria species considered, and from one applied water load sample to another. E. coli T(R) and that of S. saprophyticus were not significantly different (P> 0.05) for the two soil columns. V. parahaemolyticus T(R) significantly differed from that of E. coli and S. saprophyticus through soil column CA (P< 0.01) when the highest water load was applied, and through soil column CB (P< 0.05) for each of water load applied. A relative hierarchical arrangement of retained cells based on the T(R) showed that V. parahaemolyticus was less retained through the 2 soil columns. S. saprophyticus in most cases was more retained than others. The physical properties of the bacterial cell must be taken into consideration when evaluating the transfer of bacteriological pollutants towards groundwater.

  6. Bacterial loads of Ureaplasma parvum contribute to the development of inflammatory responses in the male urethra.

    PubMed

    Deguchi, Takashi; Shimada, Yasushi; Horie, Kengo; Mizutani, Kohsuke; Seike, Kensaku; Tsuchiya, Tomohiro; Yokoi, Shigeaki; Yasuda, Mitsuru; Ito, Shin

    2015-12-01

    Ureaplasma parvum, which has been recognised as a coloniser in the male urethra, is detected in some men with non-gonococcal urethritis. In this study, we quantified the 16 S rRNA genes of U. parvum by a real-time polymerase chain reaction-based assay in first-voided urine from 15 symptomatic and 38 asymptomatic men who were positive only for U. parvum. We also determined the leukocyte counts by automated quantitative urine particle analysis in their first-voided urine. Positive correlations were observed between copies of the 16 S rRNA genes of U. parvum/ml and the leukocyte counts/µl in first-voided urine (p = 0.0019). The loads of ≥10(4) copies of the 16 S rRNA gene/ml, corresponding to ≥5 × 10(3) cells of U. parvum/ml, were significantly associated with the presence of ≥12.5 leukocytes/µl in first-voided urine that might document the presence of inflammatory responses in the urethra. However, a large portion of the subjects (83.0%) had bacterial loads of <5 × 10(3) cells of U. parvum/ml, and 79.5% of them showed <12.5 leukocytes/µl. The ambiguity of the pathogenic role of U. parvum in non-gonococcal urethritis could, in part, be due to its low bacterial loads, which might not give rise to inflammatory responses in the male urethra. © The Author(s) 2015.

  7. Performance and stability of an expanded granular sludge bed reactor modified with zeolite addition subjected to step increases of organic loading rate (OLR) and to organic shock load (OSL).

    PubMed

    Pérez-Pérez, T; Pereda-Reyes, I; Pozzi, E; Oliva-Merencio, D; Zaiat, M

    2018-01-01

    This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR). In addition, the microbial composition and changes in the structure of the bacterial and archaeal communities were assessed. The principal results demonstrate that the presence of zeolite in an EGSB reactor provides a more stable process at higher OLRs and after applying OSL, based on both COD and VFA accumulation, which presented with significant differences compared to the control. Denaturing gradient gel electrophoresis band profiles indicated differences in the populations of Bacteria and Archaea between the R1 and R2 reactors, attributed to the presence of zeolite.

  8. Cultivation of a bacterial consortium with the potential to degrade total petroleum hydrocarbon using waste activated sludge.

    PubMed

    Sivakumar, S; Song, Y C; Kim, S H; Jang, S H

    2015-11-01

    Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.

  9. Effect of treated-sewage contamination upon bacterial energy charge, adenine nucleotides, and DNA content in a sandy aquifer on cape cod

    USGS Publications Warehouse

    Metge, D.W.; Brooks, M.H.; Smith, R.L.; Harvey, R.W.

    1993-01-01

    Changes in adenylate energy charge (EC(A)) and in total adenine nucleotides (A(T)) and DNA content (both normalized to the abundance of free- living, groundwater bacteria) in response to carbon loading were determined for a laboratory-grown culture and for a contaminated aquifer. The latter study involved a 3-km-long transect through a contaminant plume resulting from continued on-land discharge of secondary sewage to a shallow, sandy aquifer on Cape Cod, Mass. With the exception of the most contaminated groundwater immediately downgradient from the contaminant source, DNA and adenylate levels correlated strongly with bacterial abundance and decreased exponentially with increasing distance downgradient. EC(A)s (0.53 to 0.60) and the ratios of ATP to DNA (0.001 to 0.003) were consistently low, suggesting that the unattached bacteria in this groundwater study are metabolically stressed, despite any eutrophication that might have occurred. Elevated EC(A)s (up to 0.74) were observed in glucose-amended groundwater, confirming that the metabolic state of this microbial community could be altered. In general, per-bacterium DNA and ATP contents were approximately twofold higher in the plume than in surrounding groundwater, although EC(A) and per-bacterium levels of A(T) differed little in the plume and the surrounding uncontaminated groundwater. However, per-bacterium levels of DNA and A(T) varied six- and threefold, respectively, during a 6-h period of decreasing growth rate for an unidentified pseudomonad isolated from contaminated groundwater and grown in batch culture. These data suggest that the DNA content of groundwater bacteria may be more sensitive than their A(T) to the degree of carbon loading, which may have significant ramifications in the use of nucleic acids and adenine nucleotides for estimating the metabolic status of bacterial communities within more highly contaminated aquifers.

  10. Optical Brighteners in Laundry Detergents Help Us Determine the Source of Bacterial Contamination

    ERIC Educational Resources Information Center

    Glickstein, Neil

    2006-01-01

    Bacterial loading in water from anthropogenic sources is of common interest in both student research projects and to regulatory agencies. The presence of fecal coliform bacteria in natural waters can be the deciding indicator for how the bodies of water are classified for use. Since current tests are not specific, it is difficult to determine…

  11. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces.

    PubMed

    Wiedmer, David; Petersen, Fernanda Cristina; Lönn-Stensrud, Jessica; Tiainen, Hanna

    2017-07-01

    The chemical decontamination of infected dental implants is essential for the successful treatment of peri-implantitis. The aim of this study was to assess the antibacterial effect of a hydrogen peroxide-titanium dioxide (H 2 O 2 -TiO 2 ) suspension against Staphylococcus epidermidis biofilms. Titanium (Ti) coins were inoculated with a bioluminescent S. epidermidis strain for 8 h and subsequently exposed to H 2 O 2 with and without TiO 2 nanoparticles or chlorhexidine (CHX). Bacterial regrowth, bacterial load and viability after decontamination were analyzed by continuous luminescence monitoring, live/dead staining and scanning electron microscopy. Bacterial regrowth was delayed on surfaces treated with H 2 O 2 -TiO 2 compared to H 2 O 2 . H 2 O 2 -based treatments resulted in a lower bacterial load compared to CHX. Few viable bacteria were found on surfaces treated with H 2 O 2 and H 2 O 2 -TiO 2 , which contrasted with a uniform layer of dead bacteria for surfaces treated with CHX. H 2 O 2 -TiO 2 suspensions could therefore be considered an alternative approach in the decontamination of dental implants.

  12. Reduction in the microbial load on high-touch surfaces in hospital rooms by treatment with a portable saturated steam vapor disinfection system.

    PubMed

    Sexton, Jonathan D; Tanner, Benjamin D; Maxwell, Sheri L; Gerba, Charles P

    2011-10-01

    Recent scientific literature suggests that portable steam vapor systems are capable of rapid, chemical-free surface disinfection in controlled laboratory studies. This study evaluated the efficacy of a portable steam vapor system in a hospital setting. The study was carried out in 8 occupied rooms of a long-term care wing of a hospital. Six surfaces per room were swabbed before and after steam treatment and analyzed for heterotrophic plate count (HPC), total coliforms, methicillin-intermediate and -resistant Staphylococcus aureus (MISA and MRSA), and Clostridium difficile. The steam vapor device consistently reduced total microbial and pathogen loads on hospital surfaces, to below detection in most instances. Treatment reduced the presence of total coliforms on surfaces from 83% (40/48) to 13% (6/48). Treatment reduced presumptive MISA (12/48) and MRSA (3/48) to below detection after cleaning, except for 1 posttreatment isolation of MISA (1/48). A single C difficile colony was isolated from a door push panel before treatment, but no C difficile was detected after treatment. The steam vapor system reduced bacterial levels by >90% and reduced pathogen levels on most surfaces to below the detection limit. The steam vapor system provides a means to reduce levels of microorganisms on hospital surfaces without the drawbacks associated with chemicals, and may decrease the risk of cross-contamination. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  13. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    PubMed

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  14. Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels.

    PubMed

    Guerra, Alberto Daniel; Rose, Warren E; Hematti, Peiman; Kao, W John

    2017-03-15

    Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial bioburden on the hydrogel. This combinatorial approach to biomaterial development has the potential to impact wound healing for contaminated full thickness cutaneous wounds. Copyright © 2017. Published by Elsevier Ltd.

  15. Acute Brucella melitensis M16 infection model in mice treated with tumor necrosis factor-alpha inhibitors.

    PubMed

    Kutlu, Murat; Ergin, Çağrı; Şen-Türk, Nilay; Sayin-Kutlu, Selda; Zorbozan, Orçun; Akalın, Şerife; Şahin, Barboros; Çobankara, Veli; Demirkan, Neşe

    2015-02-19

    There is limited data in the literature about brucellosis related to an intracellular pathogen and anti-tumor necrosis factor alpha (anti-TNFα) medication. The aim of this study was to evaluate acute Brucella infections in mice receiving anti-TNFα drug treatment. Anti-TNFα drugs were injected in mice on the first and fifth days of the study, after which the mice were infected with B. melitensis M16 strain. Mice were sacrificed on the fourteenth day after infection. Bacterial loads in the liver and spleen were defined, and histopathological changes were evaluated. Neither the liver nor the spleen showed an increased bacterial load in all anti-TNFα drug groups when compared to a non-treated, infected group. The most significant histopathological findings were neutrophil infiltrations in the red pulp of the spleen and apoptotic cells with hepatocellular pleomorphism in the liver. There was no significant difference among the groups in terms of previously reported histopathological findings, such as extramedullary hematopoiesis and granuloma formation. There were no differences in hepatic and splenic bacterial load and granuloma formation, which indicate worsening of the acute Brucella infection in mice; in other words, anti-TNFα treatment did not exacerbate the acute Brucella spp. infection in mice.

  16. Randomised clinical trial: the effects of a multispecies probiotic vs. placebo on innate immune function, bacterial translocation and gut permeability in patients with cirrhosis.

    PubMed

    Horvath, A; Leber, B; Schmerboeck, B; Tawdrous, M; Zettel, G; Hartl, A; Madl, T; Stryeck, S; Fuchs, D; Lemesch, S; Douschan, P; Krones, E; Spindelboeck, W; Durchschein, F; Rainer, F; Zollner, G; Stauber, R E; Fickert, P; Stiegler, P; Stadlbauer, V

    2016-11-01

    Probiotics may correct intestinal dysbiosis and proinflammatory conditions in patients with liver cirrhosis. To test the effects of a multispecies probiotic on innate immune function, bacterial translocation and gut permeability. In a randomised, double blind, placebo-controlled study, stable cirrhotic out-patients either received a daily dose of a probiotic powder containing eight different bacterial strains (Ecologic Barrier, Winclove, Amsterdam, The Netherlands) (n = 44) or a placebo (n = 36) for 6 months and were followed up for another 6 months. We found a significant but subclinical increase in neutrophil resting burst (2.6-3.2%, P = 0.0134) and neopterin levels (7.7-8.4 nmol/L, P = 0.001) with probiotics but not with placebo. Probiotic supplementation did not have a significant influence on neutrophil phagocytosis, endotoxin load, gut permeability or inflammatory markers. Ten severe infections occurred in total; one during intervention in the placebo group, and five and four after the intervention has ended in the probiotic and placebo group, respectively. Liver function showed some improvement with probiotics but not with placebo. Probiotic supplementation significantly increased serum neopterin levels and the production of reactive oxygen species by neutrophils. These findings might explain the beneficial effects of probiotics on immune function. Furthermore, probiotic supplementation may be a well-tolerated method to maintain or even improve liver function in stable cirrhosis. However, its influence on gut barrier function and bacterial translocation in cirrhotic patients is minimal. © 2016 The Authors. Alimentary Pharmacology & Therapeutics Published by John Wiley & Sons Ltd.

  17. Dual functional nisin-multi-walled carbon nanotubes coated filters for bacterial capture and inactivation.

    PubMed

    Dong, Xiuli; Yang, Liju

    2015-01-01

    Removal of pathogens from water is one way to prevent waterborne illness. In this paper, we developed dual functional carbon nanotube (CNT) modified filters for bacterial capture and inactivation, utilizing multi-walled CNTs (MWCNTs) to coat on commercially available filters and making use of the exceptional adsorption property of CNTs to adsorb a natural antimicrobial peptide-nisin on it. Two types of MWCNTs with different outer layer diameters were used (MWCNTs1: <8 nm in diameter; MWCNTs2: 10-20 nm in diameter). The thickness of MWCNT layers, surface morphology, and surface hydrophobicity of both types of MWCNT coated filters were characterized. The MWCNT coating on filters significantly increased the surface hydrophobicity. The absorption of nisin and the capture of bacterial pathogens were correlated with increased surface hydrophobicity. The MWCNTs1 and MWCNTs2 filters with 1.5 mg MWCNTs loading captured 2.44 and 3.88 log of cells, respectively, from aqueous solutions containing a total of ~10(6) CFU/mL cells. Nisin deposit at the amount of 0.5 mg on the surfaces of MWCNT filters significantly reduced the viability of captured B. anthracis cells by 95.71-97.19 %, and inhibited the metabolic activities of the captured cells by approximately 98.3 %. The results demonstrated that the MWCNT-nisin filters achieved dual functions in bacterial pathogen capture and inhibition in one single filtration step, which is potentially applicable in removing undesired microorganisms from water sources and inhibiting captured Gram positive bacteria activities.

  18. Premedication with Clarithromycin Is Effective against Secondary Bacterial Pneumonia during Influenza Virus Infection in a Pulmonary Emphysema Mouse Model.

    PubMed

    Harada, Tatsuhiko; Ishimatsu, Yuji; Hara, Atsuko; Morita, Towako; Nakashima, Shota; Kakugawa, Tomoyuki; Sakamoto, Noriho; Kosai, Kosuke; Izumikawa, Koichi; Yanagihara, Katsunori; Mukae, Hiroshi; Kohno, Shigeru

    2016-09-01

    Secondary bacterial pneumonia (SBP) during influenza increases the severity of chronic obstructive pulmonary disease (COPD) and its associated mortality. Macrolide antibiotics, including clarithromycin (CAM), are potential treatments for a variety of chronic respiratory diseases owing to their pharmacological activities, in addition to antimicrobial action. We examined the efficacy of CAM for the treatment of SBP after influenza infection in COPD. Specifically, we evaluated the effect of CAM in elastase-induced emphysema mice that were inoculated with influenza virus (strain A/PR8/34) and subsequently infected with macrolide-resistant Streptococcus pneumoniae CAM was administered to the emphysema mice 4 days prior to influenza virus inoculation. Premedication with CAM improved pathologic responses and bacterial load 2 days after S. pneumoniae inoculation. Survival rates were higher in emphysema mice than control mice. While CAM premedication did not affect viral titers or exert antibacterial activity against S. pneumoniae in the lungs, it enhanced host defense and reduced inflammation, as evidenced by the significant reductions in total cell and neutrophil counts and interferon (IFN)-γ levels in bronchoalveolar lavage fluid and lung homogenates. These results suggest that CAM protects against SBP during influenza in elastase-induced emphysema mice by reducing IFN-γ production, thus enhancing immunity to SBP, and by decreasing neutrophil infiltration into the lung to prevent injury. Accordingly, CAM may be an effective strategy to prevent secondary bacterial pneumonia in COPD patients in areas in which vaccines are inaccessible or limited. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. RNA-oligonucleotide quantification technique (ROQT) for the enumeration of uncultivated bacterial species in subgingival biofilms

    PubMed Central

    Teles, F.R.F.; Teles, R.P.; Siegelin, Y.; Paster, B.; Haffajee, A.D.; Socransky, S.S.

    2010-01-01

    SUMMARY Approximately 35% of the species present in subgingival biofilms are as yet uncultivated, so their role in periodontal pathogenesis is unknown. The aim of the present study was to develop a high throughput method to quantify a wide range of cultivated and uncultivated taxa in subgingival biofilm samples associated with periodontal disease or health. Oligonucleotides targeting the 16S ribosomal DNA gene were designed, synthesized and labeled with digoxigenin. These probes were hybridized with the total nucleic acids of pure cultures or subgingival biofilm samples. Target species included cultivated taxa associated with periodontal health and disease, as well as uncultivated species, such as TM7 sp OT 346, Mitsuokella sp. OT 131 and Desulfobulbus sp. OT 041. Sensitivity and specificity of the probes were determined. A Universal probe was used to assess total bacterial load. Sequences complementary to the probes were used as standards for quantification. Chemiluminescent signals were visualized after film exposure or using a CCD camera. In a pilot clinical study, 266 subgingival plaque samples from eight periodontally healthy people and 11 patients with periodontitis were examined. Probes were specific and sensitivity reached 104 cells. Fusobacterium nucleatum ss polymorphum and Actinomyces gerencseriae were the most abundant cultivated taxa in clinical samples. Among uncultivated/unrecognized species, Mitsuokella sp. OT 131 and Prevotella sp. OT 306 were the most numerous. Porphyromonas gingivalis and Desulfobulbus sp. OT 041 were only detected in patients with periodontitis. Direct hybridization of total nucleic acids using oligonucleotide probes permitted the quantification of multiple cultivated and uncultivated taxa in mixed species biofilm samples. PMID:21375703

  20. Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations.

    PubMed

    Singanayagam, Aran; Glanville, Nicholas; Girkin, Jason L; Ching, Yee Man; Marcellini, Andrea; Porter, James D; Toussaint, Marie; Walton, Ross P; Finney, Lydia J; Aniscenko, Julia; Zhu, Jie; Trujillo-Torralbo, Maria-Belen; Calderazzo, Maria Adelaide; Grainge, Chris; Loo, Su-Ling; Veerati, Punnam Chander; Pathinayake, Prabuddha S; Nichol, Kristy S; Reid, Andrew T; James, Phillip L; Solari, Roberto; Wark, Peter A B; Knight, Darryl A; Moffatt, Miriam F; Cookson, William O; Edwards, Michael R; Mallia, Patrick; Bartlett, Nathan W; Johnston, Sebastian L

    2018-06-08

    Inhaled corticosteroids (ICS) have limited efficacy in reducing chronic obstructive pulmonary disease (COPD) exacerbations and increase pneumonia risk, through unknown mechanisms. Rhinoviruses precipitate most exacerbations and increase susceptibility to secondary bacterial infections. Here, we show that the ICS fluticasone propionate (FP) impairs innate and acquired antiviral immune responses leading to delayed virus clearance and previously unrecognised adverse effects of enhanced mucus, impaired antimicrobial peptide secretion and increased pulmonary bacterial load during virus-induced exacerbations. Exogenous interferon-β reverses these effects. FP suppression of interferon may occur through inhibition of TLR3- and RIG-I virus-sensing pathways. Mice deficient in the type I interferon-α/β receptor (IFNAR1 -/- ) have suppressed antimicrobial peptide and enhanced mucin responses to rhinovirus infection. This study identifies type I interferon as a central regulator of antibacterial immunity and mucus production. Suppression of interferon by ICS during virus-induced COPD exacerbations likely mediates pneumonia risk and raises suggestion that inhaled interferon-β therapy may protect.

  1. In vivo whole animal body imaging reveals colonization of Chlamydia muridarum to the lower genital tract at early stages of infection.

    PubMed

    Gupta, Rishein; Wali, Shradha; Yu, Jieh-Juen; Chambers, James P; Zhong, Guangming; Murthy, Ashlesh K; Bakar, Sazaly Abu; Guentzel, M N; Arulanandam, Bernard P

    2014-10-01

    The leading cause of sexually transmitted bacterial infection is Chlamydia trachomatis. The aim of this study is to investigate the early events in colonization of this bacterium within the murine genital tract. An in vivo animal body imaging technology was used to track fluorophore labeled C. muridarum elementary bodies (EBs) inoculated intravaginally in C57BL/6 mice during the first 24 h of infection. Ascension of viable EBs was observed (1) to be localized to the lower regions of the murine genital tract within the first 24 h post challenge and (2) was dose independent during this early exposure period. Molecular detection revealed enhanced bacterial load in lower regions of the genital tract with increasing bacterial load in the upper region beginning 12 h post inoculation. This study provides additional insight into chlamydial colonization in the murine genital tract during the first 12-24 h following inoculation.

  2. Survival of Escherichia coli O157:H7 during the manufacture and ripening of Cacioricotta goat cheese.

    PubMed

    Ioanna, F; Quaglia, N C; Storelli, M M; Castiglia, D; Goffredo, E; Storelli, A; De Rosa, M; Normanno, G; Jambrenghi, A Caputi; Dambrosio, A

    2018-04-01

    The aim of this study was to assess the growth and survival of Escherichia coli O157:H7 during the manufacturing and ripening of Cacioricotta goat cheese. Goat milk was artificially contaminated with E. coli O157:H7 and the bacterial load was monitored from production up to 90 days of ripening. Goat milk was inoculated with 10 2  cfu ml -1 of E. coli O157:H7 and the bacterial count of the curd at time zero was 2.31 log 10  cfu g -1 . During the first day of ripening, the bacterial load has increased to 5.73 log 10  cfu g -1 to more than 6.20 log 10  cfu g -1 during the first week. The bacterial load remained constant up to 28 days and then slightly decreased until the end of ripening, with values of a w and pH of 0.88 and 5.41 respectively. The results of this study highlighted that E. coli O157:H7 is able to survive the manufacturing process and they suggest that the 90-day period of ripening alone is insufficient to remove E. coli O157:H7 in contaminated Cacioricotta goat cheese. Moreover, these results support the assumption that the presence of a low contamination of milk with E. coli O157:H7 could represent a potential source of infection and a threat to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Food safety knowledge and practices of abattoir and butchery shops and the microbial profile of meat in Mekelle City, Ethiopia

    PubMed Central

    Haileselassie, Mekonnen; Taddele, Habtamu; Adhana, Kelali; Kalayou, Shewit

    2013-01-01

    Objective To assess the food safety knowledge and practices in meat handling, and to determine microbial load and pathogenic organisms in meat at Mekelle city. Methods A descriptive survey design was used to answer questions concerning the current status of food hygiene and sanitation practiced in the abattoir and butcher shops. Workers from the abattoir and butcher shops were interviewed through a structured questionnaire to assess their food safety knowledge. Bacterial load was assessed by serial dilution method and the major bacterial pathogens were isolated by using standard procedures. Results 15.4% of the abattoir workers had no health certificate and there was no hot water, sterilizer and cooling facility in the abattoir. 11.3% of the butchers didn't use protective clothes. There was a food safety knowledge gap within the abattoir and butcher shop workers. The mean values of bacterial load of abattoir meat, butcher shops and street meat sale was found to be 1.1×105, 5.6×105 and 4.3×106 cfu/g, respectively. The major bacterial pathogens isolated were Escherichia coli, Staphylococcus aureus and Bacillus cereus. Conclusions The study revealed that there is a reasonable gap on food safety knowledge by abattoir and butcher shop workers. The microbial profile was also higher compared to standards set by World Health Organization. Due attention should be given by the government to improve the food safety knowledge and the quality standard of meat sold in the city. PMID:23646306

  4. Indoor air bacterial load and antibiotic susceptibility pattern of isolates in operating rooms and surgical wards at jimma university specialized hospital, southwest ethiopia.

    PubMed

    Genet, Chalachew; Kibru, Gebre; Tsegaye, Wondewosen

    2011-03-01

    Surgical site infection is the second most common health care associated infection. One of the risk factors for such infection is bacterial contamination of operating rooms' and surgical wards' indoor air. In view of that, the microbiological quality of air can be considered as a mirror of the hygienic condition of these rooms. Thus, the objective of this study was to determine the bacterial load and antibiotic susceptibility pattern of isolates in operating rooms' and surgical wards' indoor air of Jimma University Specialized Hospital. A cross sectional study was conducted to measure indoor air microbial quality of operating rooms and surgical wards from October to January 2009/2010 on 108 indoor air samples collected in twelve rounds using purposive sampling technique by Settle Plate Method (Passive Air Sampling following 1/1/1 Schedule). Sample processing and antimicrobial susceptibility testing were done following standard bacteriological techniques. The data was analyzed using SPSS version 16 and interpreted according to scientifically determined baseline values initially suggested by Fisher. The mean aerobic colony counts obtained in OR-1(46cfu/hr) and OR-2(28cfu/hr) was far beyond the set 5-8cfu/hr acceptable standards for passive room. Similarly the highest mean aerobic colony counts of 465cfu/hr and 461cfu/hr were observed in Female room-1 and room-2 respectively when compared to the acceptable range of 250-450cfu/hr. In this study only 3 isolates of S. pyogenes and 48 isolates of S. aureus were identified. Over 66% of S. aureus was identified in Critical Zone of Operating rooms. All isolates of S. aureus showed 100% and 82.8% resistance to methicillin and ampicillin respectively. Higher degree of aerobic bacterial load was measured from operating rooms' and surgical wards' indoor air. Reducing foot trafficking, improving the ventilation system and routine cleaning has to be made to maintain the aerobic bacteria load with in optimal level.

  5. Assessment of Apical Expression of Alpha-2 Integrin, Heat Shock Protein, and Proinflammatory and Immunoregulatory Cytokines in Response to Endodontic Infection.

    PubMed

    Bambirra, Wilson; Maciel, Kamilla Faria; Thebit, Marcela Marçal; de Brito, Luciana Carla Neves; Vieira, Leda Quercia; Sobrinho, Antônio Paulino Ribeiro

    2015-07-01

    The purpose of this study was to examine alpha-2 integrin, molecular mediators, cytokines, and chemokines from cells in periapical interstitial fluid from root canal infections before and after the reduction of the bacterial load using a cleaning procedure. Subjects included 20 patients referred to the School of Dentistry at the Universidade Federal de Minas Gerais (Belo Horizonte, Minas Gerais, Brazil). Clinical samples were taken from teeth with pulp necrosis, and no patients had acute periapical symptoms at the time of the appointments. After cleaning and drying, 3 paper points were introduced into the root canal, passing passively through the root apex (2 mm) into the periapical tissues for 1 minute. The samples were collected immediately after root canal cleaning and 7 days later (restrained root canal bacterial load) to characterize those gene expressions using real-time polymerase chain reaction. Significantly lower levels of tumor necrosis factor alpha, chemokine ligand 5 (CCL5), chemokine ligand 2/monocyte chemotactic protein 1 (CCL2/MCP-1), and interleukin (IL)-8 in teeth with restrained bacterial loads (second collection) compared with the first collection were observed (P < .05). Similarly, the messenger RNA expression of the integrins secreted phosphoprotein 1 (SSP1)/ostepontin and focal adhesion kinase (FAK) decreased in samples from the second collection (P < .05). The messenger RNA for the regulatory cytokine IL-10 was significant higher in samples from the second collection (day 7) compared with the first collection (day 0) (P < .05). Messenger RNA expression of IL-1β, IL-17A, interferon gamma, alpha-2 integrin, and Hsp47/SERPINH1 were similar at both time points (P > .05). These findings suggest that after reducing the root canal bacterial load a decrease in the inflammatory response took place in the periapical lesions. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester).

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2014-07-14

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.

  7. Bacterial Dose-Dependent Role of G Protein-Coupled Receptor Kinase 5 in Escherichia coli-Induced Pneumonia.

    PubMed

    Packiriswamy, Nandakumar; Steury, Michael; McCabe, Ian C; Fitzgerald, Scott D; Parameswaran, Narayanan

    2016-05-01

    G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase previously shown to mediate polymicrobial sepsis-induced inflammation. The goal of the present study was to examine the role of GRK5 in monomicrobial pulmonary infection by using an intratracheal Escherichia coli infection model of pneumonia. We used sublethal and lethal doses of E. coli to examine the mechanistic differences between low-grade and high-grade inflammation induced by E. coli infection. With a sublethal dose of E. coli, GRK5 knockout (KO) mice exhibited higher plasma CXCL1/KC levels and enhanced lung neutrophil recruitment early after infection, and lower bacterial loads, than wild-type (WT) mice. The inflammatory response was also diminished, and resolution of inflammation advanced, in the lungs of GRK5 KO mice. In contrast to the reduced bacterial loads in GRK5 KO mice following a sublethal dose, at a lethal dose of E. coli, the bacterial burdens remained high in GRK5 KO mice relative to those in WT mice. This occurred in spite of enhanced plasma CXCL1 levels as well as neutrophil recruitment in the KO mice. But the recruited neutrophils (following high-dose infection) exhibited decreased CD11b expression and reduced reactive oxygen species production, suggesting decreased neutrophil activation or increased neutrophil exhaustion in the GRK5 KO mice. In agreement with the increased bacterial burden, KO mice showed poorer survival than WT mice following E. coli infection at a lethal dose. Overall, our data suggest that GRK5 negatively regulates CXCL1/KC levels during bacterial pneumonia but that the role of GRK5 in the clinical outcome in this model is dependent on the bacterial dose. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Modeling the influence of septic systems on fecal bacteria load in a suburban watershed in Georgia (GWRC 2017)

    EPA Science Inventory

    Watershed scale models such as the soil and water assessment tool (SWAT) are promising tools for studying the impacts of septic systems on water quality and quantity. In this study, SWAT was used to assess the influence of septic systems on bacterial loads in a suburban watershed...

  9. Efficiency of temporary storage of geothermal waters in a lake system: Monitoring the changes of water quality and bacterial community structures.

    PubMed

    Szirányi, Barbara; Krett, Gergely; Kosáros, Tünde; Janurik, Endre; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2017-12-01

    Disposal of used geothermal waters in Hungary often means temporary storage in reservoir lakes to reduce temperature and improve water quality. In this study, the physical and chemical properties and changes in the bacterial community structure of a reservoir lake system in southeast region of Hungary were monitored and compared through 2 years, respectively. The values of biological oxygen demand, concentrations of ammonium ion, total inorganic nitrogen, total phosphorous, and total phenol decreased, whereas oxygen saturation, total organic nitrogen, pH, and conductivity increased during the storage period. Bacterial community structure of water and sediment samples was compared by denaturing gradient gel electrophoresis (DGGE) following the amplification of the 16S rRNA gene. According to the DGGE patterns, greater seasonal than spatial differences of bacterial communities were revealed in both water and sediment of the lakes. Representatives of the genera Arthrospira and Anabaenopsis (cyanobacteria) were identified as permanent and dominant members of the bacterial communities.

  10. Reduction of pasteurization temperature leads to lower bacterial outgrowth in pasteurized fluid milk during refrigerated storage: a case study.

    PubMed

    Martin, N H; Ranieri, M L; Wiedmann, M; Boor, K J

    2012-01-01

    Bacterial numbers over refrigerated shelf-life were enumerated in high-temperature, short-time (HTST) commercially pasteurized fluid milk for 15 mo before and 15 mo after reducing pasteurization temperature from 79.4°C (175°F) [corrected] to 76.1°C (169°F). Total bacterial counts were measured in whole fat, 2% fat, and fat-free milk products on the day of processing as well as throughout refrigerated storage (6°C) at 7, 14, and 21 d postprocessing. Mean total bacterial counts were significantly lower immediately after processing as well as at 21 d postprocessing in samples pasteurized at 76.1°C versus samples pasteurized at 79.4°C. In addition to mean total bacterial counts, changes in bacterial numbers over time (i.e., bacterial growth) were analyzed and were lower during refrigerated storage of products pasteurized at the lower temperature. Lowering the pasteurization temperature for unflavored fluid milk processed in a commercial processing facility significantly reduced bacterial growth during refrigerated storage. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy.

    PubMed

    Honeyborne, Isobella; McHugh, Timothy D; Kuittinen, Iitu; Cichonska, Anna; Evangelopoulos, Dimitrios; Ronacher, Katharina; van Helden, Paul D; Gillespie, Stephen H; Fernandez-Reyes, Delmiro; Walzl, Gerhard; Rousu, Juho; Butcher, Philip D; Waddell, Simon J

    2016-04-07

    New treatment options are needed to maintain and improve therapy for tuberculosis, which caused the death of 1.5 million people in 2013 despite potential for an 86 % treatment success rate. A greater understanding of Mycobacterium tuberculosis (M.tb) bacilli that persist through drug therapy will aid drug development programs. Predictive biomarkers for treatment efficacy are also a research priority. Genome-wide transcriptional profiling was used to map the mRNA signatures of M.tb from the sputa of 15 patients before and 3, 7 and 14 days after the start of standard regimen drug treatment. The mRNA profiles of bacilli through the first 2 weeks of therapy reflected drug activity at 3 days with transcriptional signatures at days 7 and 14 consistent with reduced M.tb metabolic activity similar to the profile of pre-chemotherapy bacilli. These results suggest that a pre-existing drug-tolerant M.tb population dominates sputum before and after early drug treatment, and that the mRNA signature at day 3 marks the killing of a drug-sensitive sub-population of bacilli. Modelling patient indices of disease severity with bacterial gene expression patterns demonstrated that both microbiological and clinical parameters were reflected in the divergent M.tb responses and provided evidence that factors such as bacterial load and disease pathology influence the host-pathogen interplay and the phenotypic state of bacilli. Transcriptional signatures were also defined that predicted measures of early treatment success (rate of decline in bacterial load over 3 days, TB test positivity at 2 months, and bacterial load at 2 months). This study defines the transcriptional signature of M.tb bacilli that have been expectorated in sputum after two weeks of drug therapy, characterizing the phenotypic state of bacilli that persist through treatment. We demonstrate that variability in clinical manifestations of disease are detectable in bacterial sputa signatures, and that the changing M.tb mRNA profiles 0-2 weeks into chemotherapy predict the efficacy of treatment 6 weeks later. These observations advocate assaying dynamic bacterial phenotypes through drug therapy as biomarkers for treatment success.

  12. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China.

    PubMed

    Guan, Xiangyu; Zhu, Lingling; Li, Youxun; Xie, Yuxuan; Zhao, Mingzhang; Luo, Ximing

    2014-04-01

    With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.

  13. Contributions of combined sewer overflows and treated effluents to the bacterial load released into a coastal area.

    PubMed

    Al Aukidy, M; Verlicchi, P

    2017-12-31

    The impact of combined sewer overflow (CSO) on the receiving water body is an issue of increasing concern, as it may lead to restrictions in the use and destination of the receiving body, such as bathing or recreational area closures, fish and shellfish consumption restrictions, and contamination of drinking water resources. Recent investigations have mainly referred to the occurrence and loads of suspended solids, organic compounds and, in some cases, micropollutants. Attempts have been made to find correlations between the discharged load and the size and characteristics of the catchment area, climate conditions, rainfall duration and intensity. This study refers to a touristic coastal area in the north-east of Italy, which is characterized by a combined sewer network including 5 CSO outfalls which, in the case of heavy rain events, directly discharge the exceeding water flow rate into channels which, after a short distance, reach the Adriatic Sea. The study analyzed: i) rainfall events during the summer period in 2014 which led to overflow in the different outfalls, ii) the inter- and intra-event variability with regard to E. coli, Enterococci and conductivity, and iii) the hydraulic and pollutant (E. coli and Enterococci) loads discharged by the local wastewater treatment plant and by all the CSO outfalls. Finally, it estimated the contribution of each source to the released hydraulic and pollutant loads into the receiving water body. Moreover, it was also found that the modest water volume discharged by all CSO outfalls (only 8% of the total volume discharged by the area) contains >90% of the microbial load. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The use of antimicrobial-impregnated PMMA to manage periprosthetic infections: controversial issues and the latest developments.

    PubMed

    Tan, H L; Lin, W T; Tang, T T

    2012-10-01

    Despite improvements in intraoperative antimicrobial procedures, in surgical techniques and in implant design for joint replacement, periprosthetic infection after arthroplasty is still one of the most challenging problems encountered by orthopedic surgeons. Systemic antibiotics are not sufficiently effective to eradicate such deep infections because of the impaired blood circulation and low antibiotic concentration at the implantation site. As a local drug delivery system, antibiotic-impregnated PMMA (polymethylmethacrylate) bone cements have been widely used for prophylaxis or treatment of deep infections after total joint replacement. However, the effectiveness of antibiotic-loaded PMMA in preventing infections after arthroplasty is still controversial. Furthermore, the outcomes of established deep infections treated with this technique are not consistent. The local use of antibiotics has led to the emergence of antibiotic-resistant bacterial strains and has adverse effects on the function of osteogenic cells. Recently, many efforts have been made to identify new antibacterial agents that can be loaded into PMMA. These antimicrobial agents should exhibit good antibacterial activity against antibiotic-resistant strains and should simultaneously enhance osteointegration between the PMMA and the bone tissue. PMMA loaded with chitosan or chitosan derivatives has been demonstrated to induce improved osteogenic activity and to exhibit antibacterial activity in a preclinical study.

  15. Building and environmental factors that influence bacterial and fungal loading on air conditioning cooling coils.

    PubMed

    Bakker, A; Siegel, J A; Mendell, M J; Peccia, J

    2018-05-30

    We investigated bacterial and fungal concentrations on cooling coils of commercial AC units and quantified associations between microbial loads and AC unit or building operational parameters. A field campaign was conducted to sample 25 AC units in the humid, subtropical climate of Southern CT, USA and 15 AC units in the hot-summer Mediterranean climate of Sacramento, CA, USA. Median concentrations (with interquartile range) of bacteria and fungi on the cooling coils were 1.2 × 10 7 (5.1 × 10 6 -3.9 × 10 7 ) cells/m 2 and 7.6 × 10 5 (5.6 × 10 4 -4.4 × 10 6 ) spore equivalents (SE)/m 2 , respectively. Concentrations varied among units with median unit concentrations ranging three orders of magnitude for bacteria and seven orders of magnitude for fungi. Controlled comparisons and multivariable regressions indicate that dominant factors associated with AC coil loading include the nominal efficiency of upstream filters (P = .008 for bacteria and P < .001 for fungi) and coil moisture, which was reflected in fungal loading differences between top and bottom halves of the AC coils in Southern CT (P = .05) and the dew points of the two climates considered (P = .04). Environmental and building characteristics explained 42% (P < .001) of bacterial concentration variability and 66% (P < .001) of fungal concentration variability among samples. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Production of propyl gallate in nonaqueous medium using cell-associated tannase of Bacillus massiliensis: effect of various parameters and statistical optimization.

    PubMed

    Aithal, Mahesh; Belur, Prasanna D

    2013-01-01

    Enzymatic synthesis of propyl gallate in an organic solvent was studied using cell-associated tannase (E.C. 3.1.1.20) of Bacillus massiliensis. Lyophilized biomass showing tannase activity was used as a biocatalyst. The influence of buffer pH and strength, water activity, temperature, biocatalyst loading, gallic acid concentration, and 1-propanol concentration was studied by the one-factor-at-a-time method. Subsequently, response surface methodology was applied based on a central composite design to determine the effects of three independent variables (biocatalyst loading, gallic acid concentration, and 1-propanol concentration) and their mutual interactions. A total of 20 experiments were conducted, and a statistical model was developed, which predicted the maximum propyl gallate yield of 20.28 μg/mL in the reaction mixture comprising 40.4 mg biocatalyst, 0.4 mM gallic acid, and 6.52 % (v/v) 1-propanol in 9.5 mL benzene at 30°C. The subsequent verification experiments established the validity of the model. Under optimal conditions, 25% conversion of gallic acid to propyl gallate was achieved on a molar basis. The absence of the need for enzyme purification and subsequent immobilization steps and good conversion efficiency makes this enzyme system an interesting one. Reports on the applications of bacterial whole cell systems for synthetic reactions in organic solvents are scarce, and perhaps this is the first report on bacterial cell-associated tannase-mediated esterification in a nonaqueous medium. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  17. Correlating bioaerosol load with PM2.5 and PM10cf concentrations: a comparison between natural desert and urban-fringe aerosols

    NASA Astrophysics Data System (ADS)

    Boreson, Justin; Dillner, Ann M.; Peccia, Jordan

    2004-11-01

    Seasonal allergies and microbial mediated respiratory diseases, can coincide with elevated particulate matter concentrations, often when dry desert soils are disturbed. In addition to effects from the allergens, allergic and asthmatic responses may be enhanced when chemical and biological constituents of particulate matter (PM) are combined together. Because of these associations and also the recent regulatory and health-related interests of monitoring PM2.5, separately from total PM10, the biological loading between the fine (dp<2.5 μm) and coarse (2.5 μm

  18. Form and Function of Clostridium thermocellum Biofilms

    PubMed Central

    Dumitrache, Alexandru; Allen, Grant; Liss, Steven N.; Lynd, Lee R.

    2013-01-01

    The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h−1) 12-fold higher than the bacterium's maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion. PMID:23087042

  19. Form and function of Clostridium thermocellum biofilms.

    PubMed

    Dumitrache, Alexandru; Wolfaardt, Gideon; Allen, Grant; Liss, Steven N; Lynd, Lee R

    2013-01-01

    The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate of dilution (2 h(-1)) 12-fold higher than the bacterium's maximum growth rate, we compared biofilm activity under low (44 g/liter) and high (202 g/liter) initial cellulose loading. The average hydrolysis rate was over 3-fold higher in the latter case, while the proportions of oligomeric cellulose hydrolysis products lost from the biofilm were 13.7% and 29.1% of the total substrate carbon hydrolyzed, respectively. Fermentative catabolism was comparable between the two cellulose loadings, with ca. 4% of metabolized sugar carbon being utilized for cell production, while 75.4% and 66.7% of the two cellulose loadings, respectively, were converted to primary carbon metabolites (ethanol, acetic acid, lactic acid, carbon dioxide). However, there was a notable difference in the ethanol-to-acetic acid ratio (g/g), measured to be 0.91 for the low cellulose loading and 0.41 for the high cellulose loading. The results suggest that substrate availability for cell attachment rather than biofilm colonization rates govern the efficiency of cellulose conversion.

  20. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China.

    PubMed

    Guo, Xing-Pan; Lu, Da-Pei; Niu, Zuo-Shun; Feng, Jing-Nan; Chen, Yu-Ru; Tou, Fei-Yun; Liu, Min; Yang, Yi

    2018-01-01

    This study was designed to investigate the characteristics of bacterial communities in intertidal sediments along the Yangtze Estuary and their responses to environmental factors. The results showed that bacterial abundance was significantly correlated with salinity, SO 4 2- and total organic carbon, while bacterial diversity was significantly correlated with SO 4 2- and total nitrogen. At different taxonomic levels, both the dominant taxa and their abundances varied among the eight samples, with Proteobacteria being the most dominant phylum in general. Cluster analysis revealed that the bacterial community structure was influenced by river runoff and sewerage discharge. Moreover, SO 4 2- , salinity and total phosphorus were the vital environmental factors that influenced the bacterial community structure. Quantitative PCR and sequencing of sulphate-reducing bacteria indicated that the sulphate reduction process occurs frequently in intertidal sediments. These findings are important to understand the microbial ecology and biogeochemical cycles in estuarine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis

    PubMed Central

    Yao, Zhichao; Wang, Ailin; Li, Yushan; Cai, Zhaohui; Lemaitre, Bruno; Zhang, Hongyu

    2016-01-01

    The guts of metazoans are in permanent contact with the microbial realm that includes beneficial symbionts, nonsymbionts, food-borne microbes and life-threatening pathogens. However, little is known concerning how host immunity affects gut bacterial community. Here, we analyze the role of a dual oxidase gene (BdDuox) in regulating the intestinal bacterial community homeostasis of the oriental fruit fly Bactrocera dorsalis. The results showed that knockdown of BdDuox led to an increased bacterial load, and to a decrease in the relative abundance of Enterobacteriaceae and Leuconostocaceae bacterial symbionts in the gut. The resulting dysbiosis, in turn, stimulates an immune response by activating BdDuox and promoting reactive oxygen species (ROS) production that regulates the composition and structure of the gut bacterial community to normal status by repressing the overgrowth of minor pathobionts. Our results suggest that BdDuox plays a pivotal role in regulating the homeostasis of the gut bacterial community in B. dorsalis. PMID:26565723

  2. Low Doses of Imatinib Induce Myelopoiesis and Enhance Host Anti-microbial Immunity

    PubMed Central

    Swimm, Alyson; Giver, Cynthia R.; Harris, Wayne A. C.; Laval, Julie; Napier, Brooke A.; Patel, Gopi; Crump, Ryan; Peng, Zhenghong; Bornmann, William; Pulendran, Bali; Buller, R. Mark; Weiss, David S.; Tirouvanziam, Rabindra; Waller, Edmund K.; Kalman, Daniel

    2015-01-01

    Imatinib mesylate (Gleevec) inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs) and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics “emergency hematopoiesis,” a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens. PMID:25822986

  3. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity.

    PubMed

    Napier, Ruth J; Norris, Brian A; Swimm, Alyson; Giver, Cynthia R; Harris, Wayne A C; Laval, Julie; Napier, Brooke A; Patel, Gopi; Crump, Ryan; Peng, Zhenghong; Bornmann, William; Pulendran, Bali; Buller, R Mark; Weiss, David S; Tirouvanziam, Rabindra; Waller, Edmund K; Kalman, Daniel

    2015-03-01

    Imatinib mesylate (Gleevec) inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs) and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics "emergency hematopoiesis," a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens.

  4. Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague

    PubMed Central

    Guinet, Françoise; Avé, Patrick; Filali, Sofia; Huon, Christèle; Savin, Cyril; Huerre, Michel; Fiette, Laurence; Carniel, Elisabeth

    2015-01-01

    Activation and/or recruitment of the host plasmin, a fibrinolytic enzyme also active on extracellular matrix components, is a common invasive strategy of bacterial pathogens. Yersinia pestis, the bubonic plague agent, expresses the multifunctional surface protease Pla, which activates plasmin and inactivates fibrinolysis inhibitors. Pla is encoded by the pPla plasmid. Following intradermal inoculation, Y. pestis has the capacity to multiply in and cause destruction of the lymph node (LN) draining the entry site. The closely related, pPla-negative, Y. pseudotuberculosis species lacks this capacity. We hypothesized that tissue damage and bacterial multiplication occurring in the LN during bubonic plague were linked and both driven by pPla. Using a set of pPla-positive and pPla-negative Y. pestis and Y. pseudotuberculosis strains in a mouse model of intradermal injection, we found that pPla is not required for bacterial translocation to the LN. We also observed that a pPla-cured Y. pestis caused the same extensive histological lesions as the wild type strain. Furthermore, the Y. pseudotuberculosis histological pattern, characterized by infectious foci limited by inflammatory cell infiltrates with normal tissue density and follicular organization, was unchanged after introduction of pPla. However, the presence of pPla enabled Y. pseudotuberculosis to increase its bacterial load up to that of Y. pestis. Similarly, lack of pPla strongly reduced Y. pestis titers in LNs of infected mice. This pPla-mediated enhancing effect on bacterial load was directly dependent on the proteolytic activity of Pla. Immunohistochemistry of Pla-negative Y. pestis-infected LNs revealed extensive bacterial lysis, unlike the numerous, apparently intact, microorganisms seen in wild type Y. pestis-infected preparations. Therefore, our study demonstrates that tissue destruction and bacterial survival/multiplication are dissociated in the bubo and that the primary action of Pla is to protect bacteria from destruction rather than to alter the tissue environment to favor Y. pestis propagation in the host. PMID:26484539

  5. Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague.

    PubMed

    Guinet, Françoise; Avé, Patrick; Filali, Sofia; Huon, Christèle; Savin, Cyril; Huerre, Michel; Fiette, Laurence; Carniel, Elisabeth

    2015-10-01

    Activation and/or recruitment of the host plasmin, a fibrinolytic enzyme also active on extracellular matrix components, is a common invasive strategy of bacterial pathogens. Yersinia pestis, the bubonic plague agent, expresses the multifunctional surface protease Pla, which activates plasmin and inactivates fibrinolysis inhibitors. Pla is encoded by the pPla plasmid. Following intradermal inoculation, Y. pestis has the capacity to multiply in and cause destruction of the lymph node (LN) draining the entry site. The closely related, pPla-negative, Y. pseudotuberculosis species lacks this capacity. We hypothesized that tissue damage and bacterial multiplication occurring in the LN during bubonic plague were linked and both driven by pPla. Using a set of pPla-positive and pPla-negative Y. pestis and Y. pseudotuberculosis strains in a mouse model of intradermal injection, we found that pPla is not required for bacterial translocation to the LN. We also observed that a pPla-cured Y. pestis caused the same extensive histological lesions as the wild type strain. Furthermore, the Y. pseudotuberculosis histological pattern, characterized by infectious foci limited by inflammatory cell infiltrates with normal tissue density and follicular organization, was unchanged after introduction of pPla. However, the presence of pPla enabled Y. pseudotuberculosis to increase its bacterial load up to that of Y. pestis. Similarly, lack of pPla strongly reduced Y. pestis titers in LNs of infected mice. This pPla-mediated enhancing effect on bacterial load was directly dependent on the proteolytic activity of Pla. Immunohistochemistry of Pla-negative Y. pestis-infected LNs revealed extensive bacterial lysis, unlike the numerous, apparently intact, microorganisms seen in wild type Y. pestis-infected preparations. Therefore, our study demonstrates that tissue destruction and bacterial survival/multiplication are dissociated in the bubo and that the primary action of Pla is to protect bacteria from destruction rather than to alter the tissue environment to favor Y. pestis propagation in the host.

  6. The salivary microbiome is altered in the presence of a high salivary glucose concentration

    PubMed Central

    Hartman, Mor-Li; Shi, Ping; Hasturk, Hatice; Yaskell, Tina; Vargas, Jorel; Song, Xiaoqing; Cugini, Maryann; Barake, Roula; Alsmadi, Osama; Al-Mutawa, Sabiha; Ariga, Jitendra; Soparkar, Pramod; Behbehani, Jawad; Behbehani, Kazem

    2017-01-01

    Background Type II diabetes (T2D) has been associated with changes in oral bacterial diversity and frequency. It is not known whether these changes are part of the etiology of T2D, or one of its effects. Methods We measured the glucose concentration, bacterial counts, and relative frequencies of 42 bacterial species in whole saliva samples from 8,173 Kuwaiti adolescents (mean age 10.00 ± 0.67 years) using DNA probe analysis. In addition, clinical data related to obesity, dental caries, and gingivitis were collected. Data were compared between adolescents with high salivary glucose (HSG; glucose concentration ≥ 1.0 mg/d, n = 175) and those with low salivary glucose (LSG, glucose concentration < 0.1 mg/dL n = 2,537). Results HSG was associated with dental caries and gingivitis in the study population. The overall salivary bacterial load in saliva decreased with increasing salivary glucose concentration. Under HSG conditions, the bacterial count for 35 (83%) of 42 species was significantly reduced, and relative bacterial frequencies in 27 species (64%) were altered, as compared with LSG conditions. These alterations were stronger predictors of high salivary glucose than measures of oral disease, obesity, sleep or fitness. Conclusions HSG was associated with a reduction in overall bacterial load and alterations to many relative bacterial frequencies in saliva when compared with LSG in samples from adolescents. We propose that hyperglycemia due to obesity and/or T2D results in HSG and subsequent acidification of the oral environment, leading to a generalized perturbation in the oral microbiome. This suggests a basis for the observation that hyperglycemia is associated with an increased risk of dental erosion, dental caries, and gingivitis. We conclude that HSG in adolescents may be predicted from salivary microbial diversity or frequency, and that the changes in the oral microbial composition seen in adolescents with developing metabolic disease may the consequence of hyperglycemia. PMID:28249034

  7. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes.

    PubMed

    Huang, Kui; Xia, Hui; Li, Fusheng; Wei, Yongfen; Cui, Guangyu; Fu, Xiaoyong; Chen, Xuemin

    2016-07-01

    This study aimed to promote vermicomposting performance for recycling fresh fruit and vegetable wastes (FVWs) and to assess microbial population and community of final products. Five fresh FVWs including banana peels, cabbage, lettuce, potato, and watermelon peels were chosen as earthworms' food. The fate test of earthworms showed that 30 g fresh FVWs/day was the optimal loading and the banana peels was harmful for the survival of Eisenia fetida. The followed vermicomposting test revealed lower contents of total carbon and weaker microbial activity in final vermicomposts, relative to those in compared systems without earthworms worked. The leachate from FVWs carried away great amounts of nutrients from reactors. Additionally, different fresh FVWs displayed dissimilar stabilization process. Molecular biological approaches revealed that earthworms could broaden bacterial diversity in their products, with significant greater populations of actinobacteria and ammonia oxidizing bacteria than in control. This study evidences that vermicomposting efficiency differs with the types and loadings of fresh FVWs and vermicomposts are rich in agricultural probiotics.

  8. Effects of organic loading rate on biogas production from macroalgae: Performance and microbial community structure.

    PubMed

    Sun, Meng-Ting; Fan, Xiao-Lei; Zhao, Xiao-Xian; Fu, Shan-Fei; He, Shuai; Manasa, M R K; Guo, Rong-Bo

    2017-07-01

    Macroalgae biomass has been considered as a promising feedstock for biogas production. In order to improve the efficiency of anaerobic digestion (AD) of macroalgae, semi-continuous fermentation was conducted to examine the effects of organic loading rate (OLR) on biogas production from Macrocystis pyrifer. Results showed that, under OLRs of 1.37, 2.74, 4.12 and 6.85kgVS substrate /(m 3 ·d), the average unit biogas yields were 438.9, 477.3, 480.1 and 188.7mL/(gVS substrate d), respectively. It indicated that biogas production was promoted by the increased OLR in an appropriate range while inhibited by the OLR beyond the appropriate range. The investigation on physical-chemical parameters revealed that unfavorable VFAs concentration, pH and salinity might be the main causes for system failure due to the overrange OLR, while the total phenols failed to reach the inhibitory concentration. Microbial community analysis demonstrated that several bacterial and archaeal phyla altered with increase in OLR apparently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Antibacterial potency of V.A.C. GranuFoam Silver(®) Dressing.

    PubMed

    Sachsenmaier, Saskia; Peschel, Andreas; Ipach, Ingmar; Kluba, Torsten

    2013-10-01

    V.A.C.(®) GranuFoam™ therapy is regularly used in the surgical therapy of infected wounds and soft tissue injuries. Silver nanoparticles can destroy bacterial cell walls and inhibit enzymes for cell replication. Silver dressings are therefore successfully used for many indications in wound therapy. In this study, we investigated the antimicrobial potency of ionic silver released from the silver-coated V.A.C.(®) GranuFoam™ during vacuum therapy. Silver dressing was exposed to agar plates populated with bacteria to measure silver release. A total of 15 agar plates colonised with either Staphylococcus aureus populations or with Staphylococcus epidermidis, were loaded with V.A.C. GranuFoam Silver(®) Dressing polyurethane foam (KCI, San Antonio, Texas). Each of 13 pieces of silver-coated foam was applied to an agar plate. Two plates were loaded with conventional black foam without any coating. After connecting to a vacuum pump, the vacuum therapy of the 15 plates lasted 5 days. The zone of inhibition of bacterial growth around the foam was measured daily. Silver release was also determined as a function of time. At each time point, there was evidence of silver in the agar independent of bacterial colonisation. The S. aureus agar showed a consecutive increase in silver concentration from baseline upon 48 h after exposure to the negative pressure of V.A.C. therapy. An increasing mean silver level after 48, 72 and 96 h was measured under V.A.C. therapy with a peak value after 120 h. In contrast, the results from the S. epidermidis plates did not follow a linear pattern. At the beginning of vacuum therapy, we documented a rise in silver concentration. After 48-96h, the silver levels fluctuated. A maximum zone of inhibition in both bacterial colonised plates (S. aureus and S. epidermidis) was found 39 h after the start of the V.A.C. GranuFoam Silver(®) therapy. From our results, we confirmed the antimicrobial effect of the silver ions against S. aureus and S. epidermidis under continuous V.A.C. GranuFoam(®) Silver therapy with a negative pressure of 25 mmHg. Furthermore we could quantify the amounts of silver, which were released from the foam under negative pressure as a function of time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Comparative analysis of vaginal microbiota sampling using 16S rRNA gene analysis.

    PubMed

    Virtanen, Seppo; Kalliala, Ilkka; Nieminen, Pekka; Salonen, Anne

    2017-01-01

    Molecular methods such as next-generation sequencing are actively being employed to characterize the vaginal microbiota in health and disease. Previous studies have focused on characterizing the biological variation in the microbiota, and less is known about how factors related to sampling contribute to the results. Our aim was to investigate the impact of a sampling device and anatomical sampling site on the quantitative and qualitative outcomes relevant for vaginal microbiota research. We sampled 10 Finnish women representing diverse clinical characteristics with flocked swabs, the Evalyn® self-sampling device, sterile plastic spatulas and a cervical brush that were used to collect samples from fornix, vaginal wall and cervix. Samples were compared on DNA and protein yield, bacterial load, and microbiota diversity and species composition based on Illumina MiSeq sequencing of the 16S rRNA gene. We quantified the relative contributions of sampling variables versus intrinsic variables in the overall microbiota variation, and evaluated the microbiota profiles using several commonly employed metrics such as alpha and beta diversity as well as abundance of major bacterial genera and species. The total DNA yield was strongly dependent on the sampling device and to a lesser extent on the anatomical site of sampling. The sampling strategy did not affect the protein yield or the bacterial load. All tested sampling methods produced highly comparable microbiota profiles based on MiSeq sequencing. The sampling method explained only 2% (p-value = 0.89) of the overall microbiota variation, markedly surpassed by intrinsic factors such as clinical status (microscopy for bacterial vaginosis 53%, p = 0.0001), bleeding (19%, p = 0.0001), and the variation between subjects (11%, p-value 0.0001). The results indicate that different sampling strategies yield comparable vaginal microbiota composition and diversity. Hence, past and future vaginal microbiota studies employing different sampling strategies should be comparable in the absence of other technical confounders. The Evalyn® self-sampling device performed equally well compared to samples taken by a clinician, and hence offers a good-quality microbiota sample without the need for a gynecological examination. The amount of collected sample as well as the DNA and protein yield varied across the sampling techniques, which may have practical implications for study design.

  11. Comparative analysis of vaginal microbiota sampling using 16S rRNA gene analysis

    PubMed Central

    Kalliala, Ilkka; Nieminen, Pekka; Salonen, Anne

    2017-01-01

    Background Molecular methods such as next-generation sequencing are actively being employed to characterize the vaginal microbiota in health and disease. Previous studies have focused on characterizing the biological variation in the microbiota, and less is known about how factors related to sampling contribute to the results. Our aim was to investigate the impact of a sampling device and anatomical sampling site on the quantitative and qualitative outcomes relevant for vaginal microbiota research. We sampled 10 Finnish women representing diverse clinical characteristics with flocked swabs, the Evalyn® self-sampling device, sterile plastic spatulas and a cervical brush that were used to collect samples from fornix, vaginal wall and cervix. Samples were compared on DNA and protein yield, bacterial load, and microbiota diversity and species composition based on Illumina MiSeq sequencing of the 16S rRNA gene. We quantified the relative contributions of sampling variables versus intrinsic variables in the overall microbiota variation, and evaluated the microbiota profiles using several commonly employed metrics such as alpha and beta diversity as well as abundance of major bacterial genera and species. Results The total DNA yield was strongly dependent on the sampling device and to a lesser extent on the anatomical site of sampling. The sampling strategy did not affect the protein yield or the bacterial load. All tested sampling methods produced highly comparable microbiota profiles based on MiSeq sequencing. The sampling method explained only 2% (p-value = 0.89) of the overall microbiota variation, markedly surpassed by intrinsic factors such as clinical status (microscopy for bacterial vaginosis 53%, p = 0.0001), bleeding (19%, p = 0.0001), and the variation between subjects (11%, p-value 0.0001). Conclusions The results indicate that different sampling strategies yield comparable vaginal microbiota composition and diversity. Hence, past and future vaginal microbiota studies employing different sampling strategies should be comparable in the absence of other technical confounders. The Evalyn® self-sampling device performed equally well compared to samples taken by a clinician, and hence offers a good-quality microbiota sample without the need for a gynecological examination. The amount of collected sample as well as the DNA and protein yield varied across the sampling techniques, which may have practical implications for study design. PMID:28723942

  12. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds

    NASA Astrophysics Data System (ADS)

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Gruber, Hermann J.; Cui, Yidan; Traxler, Lukas; Siligan, Christine; Park, Sungsu; Hinterdorfer, Peter

    2016-09-01

    Many enteric bacteria including pathogenic Escherichia coli and Salmonella strains produce curli fibers that bind to host surfaces, leading to bacterial internalization into host cells. By using a nanomechanical force-sensing approach, we obtained real-time information about the distribution of molecular bonds involved in the adhesion of curliated bacteria to fibronectin. We found that curliated E. coli and fibronectin formed dense quantized and multiple specific bonds with high tensile strength, resulting in tight bacterial binding. Nanomechanical recognition measurements revealed that approximately 10 bonds were disrupted either sequentially or simultaneously under force load. Thus the curli formation of bacterial surfaces leads to multi-bond structural components of fibrous nature, which may explain the strong mechanical binding of curliated bacteria to host cells and unveil the functions of these proteins in bacterial internalization and invasion.

  13. Seasonal variability in airborne bacterial communities at a high elevation site and their relationship to other air studies and to potential sources

    NASA Astrophysics Data System (ADS)

    Bowers, R. M.; Mccubbin, I. B.; Hallar, A. G.; Fierer, N.

    2012-12-01

    Airborne bacteria are a large component of the near-surface atmospheric aerosol; however we know surprisingly little about their spatiotemporal dynamics and even less about their distributions at high-elevation. With this work, we describe seasonal shifts in bacterial abundances, total particle abundances, and bacterial community structure at a high-elevation research station located in Colorado, USA. In addition, we describe the unique composition of these high-elevation airborne bacterial communities as compared to the bacteria commonly observed throughout the lower elevation atmosphere as well as bacteria common to major sources such as leaf surfaces, soils, water bodies and various other surfaces. To address these knowledge gaps, we collected aerosol samples on the rooftop of Storm Peak Laboratory (3200 m ASL) over the course of 2-3 week periods during each of the four calendar seasons. Total bacterial abundances were assessed via flow cytometry, total particle abundances were calculated with an aerodynamic particle sizer, and bacterial communities were characterized using a high-throughput barcoded DNA sequencing approach. The airborne bacterial communities at Storm Peak Lab were then used in a meta-analysis comparing Storm Peak bacteria to other near-surface (lower elevation) bacterial communities and to the communities of likely source environments. Bacterial abundances varied by season, which was similar but not identical to the changes in total particle abundances across the same sampling period. Airborne bacterial community structure varied significantly by season, with the summer communities being the most distinct. Season specific bacterial groups were identified, suggesting that a large proportion of the airborne community may be derived from nearby sources. However following a multi-environment meta-analysis using several air and source derived bacterial community datasets, the high-elevation air communities were the most distinct as compared to the other airborne communities used in the analysis. Furthermore, a very low proportion of the Storm Peak airborne community could be explained by the source environments used in the meta-analysis, suggesting a unique airborne community at high-elevation. High-alpine bacterial communities appear to make up a large fraction of the total atmospheric aerosol, however the different seasonal patterns between bacterial counts and total particle counts suggest that distinct factors control the quantities of different particles making it into the atmosphere. Furthermore, the characteristics of local terrestrial sources that undergo seasonal cycles seem to have a large influence on the airborne communities, but these sources could not explain the occurrence of all airborne bacterial taxa. As airborne bacteria are more commonly being recognized as a ubiquitous component of the atmosphere, a better understanding of their temporal dynamics in the high-alpine environment may give us insight into their many potential roles in atmospheric dynamics, free troposphere atmospheric dispersal patterns, and their role in human and environmental health.

  14. Superantigens Modulate Bacterial Density during Staphylococcus aureus Nasal Colonization

    PubMed Central

    Xu, Stacey X.; Kasper, Katherine J.; Zeppa, Joseph J.; McCormick, John K.

    2015-01-01

    Superantigens (SAgs) are potent microbial toxins that function to activate large numbers of T cells in a T cell receptor (TCR) Vβ-specific manner, resulting in excessive immune system activation. Staphylococcus aureus possesses a large repertoire of distinct SAgs, and in the context of host-pathogen interactions, staphylococcal SAg research has focused primarily on the role of these toxins in severe and invasive diseases. However, the contribution of SAgs to colonization by S. aureus remains unclear. We developed a two-week nasal colonization model using SAg-sensitive transgenic mice expressing HLA-DR4, and evaluated the role of SAgs using two well-studied stains of S. aureus. S. aureus Newman produces relatively low levels of staphylococcal enterotoxin A (SEA), and although we did not detect significant TCR-Vβ specific changes during wild-type S. aureus Newman colonization, S. aureus Newman Δsea established transiently higher bacterial loads in the nose. S. aureus COL produces relatively high levels of staphylococcal enterotoxin B (SEB), and colonization with wild-type S. aureus COL resulted in clear Vβ8-specific T cell skewing responses. S. aureus COL Δseb established consistently higher bacterial loads in the nose. These data suggest that staphylococcal SAgs may be involved in regulating bacterial densities during nasal colonization. PMID:26008236

  15. Viruses as Sole Causative Agents of Severe Acute Respiratory Tract Infections in Children.

    PubMed

    Moesker, Fleur M; van Kampen, Jeroen J A; van Rossum, Annemarie M C; de Hoog, Matthijs; Koopmans, Marion P G; Osterhaus, Albert D M E; Fraaij, Pieter L A

    2016-01-01

    Respiratory syncytial virus (RSV) and influenza A viruses are known to cause severe acute respiratory tract infections (SARIs) in children. For other viruses like human rhinoviruses (HRVs) this is less well established. Viral or bacterial co-infections are often considered essential for severe manifestations of these virus infections. The study aims at identifying viruses that may cause SARI in children in the absence of viral and bacterial co-infections, at identifying disease characteristics associated with these single virus infections, and at identifying a possible correlation between viral loads and disease severities. Between April 2007 and March 2012, we identified children (<18 year) with or without a medical history, admitted to our paediatric intensive care unit (PICU) with SARI or to the medium care (MC) with an acute respiratory tract infection (ARTI) (controls). Data were extracted from the clinical and laboratory databases of our tertiary care paediatric hospital. Patient specimens were tested for fifteen respiratory viruses with real-time reverse transcriptase PCR assays and we selected patients with a single virus infection only. Typical bacterial co-infections were considered unlikely to have contributed to the PICU or MC admission based on C-reactive protein-levels or bacteriological test results if performed. We identified 44 patients admitted to PICU with SARI and 40 patients admitted to MC with ARTI. Twelve viruses were associated with SARI, ten of which were also associated with ARTI in the absence of typical bacterial and viral co-infections, with RSV and HRV being the most frequent causes. Viral loads were not different between PICU-SARI patients and MC-ARTI patients. Both SARI and ARTI may be caused by single viral pathogens in previously healthy children as well as in children with a medical history. No relationship between viral load and disease severity was identified.

  16. Histopathological and bacterial study of Persian sturgeon fry, Acipenser persicus (Borodin, 1897) exposed to copper sulfate and potassium permanganate.

    PubMed

    Moshtaghi, Batol; Khara, Hossein; Pazhan, Zabiyollah; Shenavar, Alireza

    2016-09-01

    Persian sturgeon frys were exposed to different concentrations of copper sulfate and potassium permanganate in order to the evaluation of their impacts on bacterial load of skin, gill and surrounding water and also the histopathological alternations of gill tissue. For this purpose, the sublethal doses were determined after a pre-test and then the experiment was done in 4 (for copper sulfate: 0.07, 0.14, 026 and 0.5 mg/l) and 5 (for potassium permanganate: 0.07, 0.14, 026, 0.5 and 1 mg/l) treatments with three replicates inside the glass aquaria. Also, one group without disinfecting drug was considered as control for each experiment. The microbial and histopathological investigations were done after 96 h exposure. According to our results, a range of histopathological alternations were observed in gills tissue including mucus coagulation and secretion, hyperplasia, lamellar necrosis, hyperplasia, lamellar adhesion, haemorrhage, thickening of secondary lamellae, hypertrophy of supporter cartilage, clubbing of gill lamellae and sliming of primary lamellae. The severity of these alternations increased with increasing of the doses of the copper sulfate and potassium permanganate. The bacterial load (CFU/g) of gill, skin and surrounding water was lower in 0.07 mg/l copper sulfate treatment and 1 mg/l potassium permanganate treatment (P < 0.05) than in other treatments. In conclusion, our results showed that the certain doses of the copper sulfate and potassium permanganate have disinfecting effects on bacterial load of gill, skin and surrounding water, although this is along with some histopathological alternations. Also, it seems that the copper sulfate has higher disinfecting power than potassium permanganate.

  17. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria.

    PubMed

    Natan, Michal; Gutman, Ori; Lavi, Ronit; Margel, Shlomo; Banin, Ehud

    2015-02-24

    Increased resistance of bacteria to disinfection and antimicrobial treatment poses a serious public health threat worldwide. This has prompted the search for agents that can inhibit both bacterial growth and withstand harsh conditions (e.g., high organic loads). In the current study, N-halamine-derivatized cross-linked polymethacrylamide nanoparticles (NPs) were synthesized by copolymerization of the monomer methacrylamide (MAA) and the cross-linker monomer N,N-methylenebis(acrylamide) (MBAA) and were subsequently loaded with oxidative chlorine using sodium hypochlorite (NaOCl). The chlorinated NPs demonstrated remarkable stability and durability to organic reagents and to repetitive bacterial loading cycles as compared with the common disinfectant NaOCl (bleach), which was extremely labile under these conditions. The antibacterial mechanism of the cross-linked P(MAA-MBAA)-Cl NPs was found to involve generation of reactive oxygen species (ROS) only upon exposure to organic media. Importantly, ROS were not generated upon suspension in water, revealing that the mode of action is target-specific. Further, a unique and specific interaction of the chlorinated NPs with Staphylococcus aureus was discovered, whereby these microorganisms were all specifically targeted and marked for destruction. This bacterial encircling was achieved without using a targeting module (e.g., an antibody or a ligand) and represents a highly beneficial, natural property of the P(MAA-MBAA)-Cl nanostructures. Our findings provide insights into the mechanism of action of P(MAA-MBAA)-Cl NPs and demonstrate the superior efficacy of the NPs over bleach (i.e., stability, specificity, and targeting). This work underscores the potential of developing sustainable P(MAA-MBAA)-Cl NP-based devices for inhibiting bacterial colonization and growth.

  18. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    PubMed

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during water sample filtration or from DNA extraction protocols. Control measurements for sample contamination are important for clean water studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The role of gut microbiota in the regulation of standard metabolic rate in female Periplaneta americana.

    PubMed

    Ayayee, Paul A; Ondrejech, Andrew; Keeney, George; Muñoz-Garcia, Agustí

    2018-01-01

    Insect gut microbiota contribute significantly to host nutritional ecology. Disrupting insect gut microbial assemblages impacts nutrient provisioning functions, and can potentially affect host standard metabolic rate (SMR), a measure of host energy balance. In this study, we evaluated the effect of disrupting gut microbial assemblages on the SMR of female Periplaneta americana cockroaches fed dog food (DF, high protein/carbohydrate (p/c) ratio), and cellulose-amended dog food (CADF, 30% dog food, 70% cellulose, low p/c ratio) diets, supplemented with none, low, or high antibiotic doses. Bacterial loads decreased significantly between diet types ( P = 0.04) and across antibiotic doses ( P = 0.04). There was a significant diet type x antibiotic dose interaction on SMR of females on both diets ( P = 0.05) by the end of the seven-day experimental period. In CADF-fed females, SMR decreased linearly with decreasing bacterial load. However, SMR of DF-fed females on the low dose was significantly higher than those in the control and high dose groups. This is interpreted as a diet-dependent response by low dose DF-fed females to the loss of nutritional services provided by gut bacteria. Severe reductions in bacterial load at high doses reduced SMR of females on both diet types. This study provides insights into the potential role of gut bacteria as modulators of host energy expenditure under varying dietary conditions.

  20. Atorvastatin along with imipenem attenuates acute lung injury in sepsis through decrease in inflammatory mediators and bacterial load.

    PubMed

    Choudhury, Soumen; Kandasamy, Kannan; Maruti, Bhojane Somnath; Addison, M Pule; Kasa, Jaya Kiran; Darzi, Sazad A; Singh, Thakur Uttam; Parida, Subhashree; Dash, Jeevan Ranjan; Singh, Vishakha; Mishra, Santosh Kumar

    2015-10-15

    Lung is one of the vital organs which is affected during the sequential development of multi-organ dysfunction in sepsis. The purpose of the present study was to examine whether combined treatment with atorvastatin and imipenem could attenuate sepsis-induced lung injury in mice. Sepsis was induced by caecal ligation and puncture. Lung injury was assessed by the presence of lung edema, increased vascular permeability, increased inflammatory cell infiltration and cytokine levels in broncho-alveolar lavage fluid (BALF). Treatment with atorvastatin along with imipenem reduced the lung bacterial load and pro-inflammatory cytokines (IL-1β and TNFα) level in BALF. The markers of pulmonary edema such as microvascular leakage and wet-dry weight ratio were also attenuated. This was further confirmed by the reduced activity of MPO and ICAM-1 mRNA expression, indicating the lesser infiltration and adhesion of inflammatory cells to the lungs. Again, expression of mRNA and protein level of iNOS in lungs was also reduced in the combined treatment group. Based on the above findings it can be concluded that, combined treatment with atorvastatin and imipenem dampened the inflammatory response and reduced the bacterial load, thus seems to have promising therapeutic potential in sepsis-induced lung injury in mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Does negative-pressure wound therapy influence subjacent bacterial growth? A systematic review.

    PubMed

    Glass, Graeme E; Murphy, George R F; Nanchahal, Jagdeep

    2017-08-01

    Negative-pressure wound therapy is a ubiquitous wound management resource. The influence of NPWT on the bacterial bioburden of the subjacent wound remains unclear. We sought to examine the evidence. MEDLINE, Embase, PubMed, the Cochrane Database of Systematic Reviews and the Cochrane Controlled Trials Register were searched for articles quantitatively evaluating bacterial load under NPWT. Twenty-four studies met the inclusion criteria including 4 randomised controlled trials, 8 clinical series and 12 experimental studies. Twenty studies evaluated conventional NPWT, while 4 evaluated infiltration-based NPWT. While 8 studies using conventional NPWT failed to demonstrate an observable effect on bacterial load, 7 studies reported that NPWT was inherently bacteriostatic and 5 others reported species selectivity with suppression of non-fermentative gram-negative bacilli (NFGNB), including Pseudomonas spp. Simultaneously, there was some evidence of enhanced proliferation of gram-positive cocci where the niche was cleared of NFGNB. Two of the 4 studies using infiltration-based NPWT also reported selectively impaired proliferation of Pseudomonas spp. The assumption that NPWT suppresses bacterial proliferation is oversimplified. There is evidence that NPWT exhibits species selectivity, suppressing the proliferation of NFGNB. However, this may depopulate the niche for exploitation by gram-positive cocci. This, in turn, has implications for the use of NPWT where highly virulent strains of gram-positive cocci have been isolated and the duration of NPWT therapy and frequency of dressing changes. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Individual variation is the key to the development of a vaccine against Staphylococcus aureus: a comparative study between mice lineages

    PubMed Central

    dos Santos, D.P.; Muniz, I.P.R.; Queiroz, A.F.; Pereira, I.S.; Souza, M.P.A.; Lima, L.J.; Sousa, L.R.O.; Ribeiro, I.S.; Galantini, M.P.L.; Marques, L.M.; Figueiredo, T.B.; da Silva, R.A.A.

    2018-01-01

    Bacterial infections occur worldwide and are a major public health problem. Among pathogens, Staphylococcus aureus is the main causative agent of bacterial diseases in the world. This study aimed to evaluate which components of the immune system could act protectively against a S. aureus infection in intradermally immunized mice. C57BL/6 and A/j mice were immunized intradermally with S. aureus inactivated by heat and then challenged with viable strains in an air pouch model. At 6, 12, and 24 h after the challenge, euthanasia was performed, and the cellular profile of the inflammatory infiltrate, cytokines, and the bacterial load were evaluated in the air pouch lavages. Immunized mice demonstrated that the intradermal immunization with S. aureus promoted protection in C57BL/6 mice by reducing the bacterial, which was correlated with increased serum concentration of IgG antibodies (IgG1 and IgG2a) against S. aureus. The increase in IgG2a antibody levels was correlated with a decrease of bacterial load in intradermally immunized C57BL/6 mice, along with production of IL-17A at the inflammation site, as well as IgG1consumption. Similar results were not found in the A/j lineage. In conclusion, a vaccine against S. aureus should focus more on the individual characteristics of the host because it is a determinant factor for the success of the immunization. PMID:29590259

  3. The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental sea ice

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Kotovitch, M.; Kaartokallio, H.; Moreau, S.; Tison, J.-L.; Kattner, G.; Dieckmann, G.; Thomas, D. N.; Delille, B.

    2016-02-01

    Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in sea ice brines is generally higher in Arctic sea ice compared to those from the Antarctic sea ice, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher concentrations of DOC in seawater would be reflected in a greater DOC incorporation into sea ice, enhancing bacterial respiration, which in turn would increase the pCO2 in the ice. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC concentration of the water from a median of 142 μmol Lwater-1 in SW to 249 μmol Lwater-1 in SWR. Sea ice was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC concentration, bacterial respiration, total alkalinity and pCO2 in sea ice and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in ice was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in ice was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the ice interiors than at the surfaces or the bottom layers of the ice, where exchanges at the air-ice and ice-water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the ice might approach 0.15 and 0.2. It is thus credible that the higher pCO2 in Arctic sea ice brines compared with those from the Antarctic sea ice were due to an elevated bacterial respiration, sustained by higher riverine DOC loads. These conclusions should hold for locations and time frames when bacterial activity is relatively dominant compared to algal activity, considering our experimental conditions.

  4. Responses of Bacterial Communities in Arable Soils in a Rice-Wheat Cropping System to Different Fertilizer Regimes and Sampling Times

    PubMed Central

    Zhao, Jun; Ni, Tian; Li, Yong; Xiong, Wu; Ran, Wei; Shen, Biao; Shen, Qirong; Zhang, Ruifu

    2014-01-01

    Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October). All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005) and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter) rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production. PMID:24465530

  5. Annual trace-metal load estimates and flow-weighted concentrations of cadmium, lead, and zinc in the Spokane River basin, Idaho and Washington, 1999-2004

    USGS Publications Warehouse

    Donato, Mary M.

    2006-01-01

    Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow differences in the two regression models, 1999-2001 and 1999-2004. Flow-weighted concentrations (FWCs) calculated from the estimated loads for 1999-2004 were examined to aid interpretation of metal load estimates, which were influenced by large spatial and temporal variations in streamflow. FWCs of total cadmium ranged from 0.04 micrograms per liter (?g/L) at Enaville to 14 ?g/L at Ninemile Creek. Total lead FWCs were lowest at Long Lake (1.3 ?g/L) and highest at Ninemile Creek (120 ?g/L). Elevated total lead FWCs at Harrison confirmed that the high total lead loads at this station were not simply due to higher streamflow. Conversely, relatively low total lead loads combined with high total lead FWCs at Ninemile and Canyon Creeks reflected low streamflow but high concentrations of total lead. Very low total lead FWCs (1.3 to 2.7 ?g/L) at the stations downstream of Coeur d'Alene Lake are a result both of deposition of lead-laden sediments in the lake and dilution by additional streamflow. Total zinc FWCs also demonstrated the effect of streamflow on load calculations, and highlighted source areas for zinc in the basin. Total zinc FWCs at Canyon and Ninemile Creeks, 1,600 ?g/L and 2,200 ?g/L, respectively, were by far the highest in the basin but contributed among the lowest total zinc loads due to their relatively low streamflow. Total zinc FWCs ranged from 38 to 67 ?g/L at stations downstream of Coeur d'Alene Lake, but total zinc load estimates at these stations were relatively high because of high mean streamflow compared to other stations in the basin. Long-term regression models for 1991 to 2003 or 2004 were developed and annual trace-metal loads and FWCs were estimated for Pinehurst, Enaville, Harrison, and Post Falls to better understand the variability of metal loading with time. Long-term load estimates are similar to the results for 1999-2004 in terms of spatial distribution of metal loads throughout the basin. LOADEST results for 1991-2004 indicated that statistically significant downward temporal trends for dissolved and total cadmium, dissolved zinc, and total lead were occurring at Pinehurst, Enaville, Harrison, and Post Falls. Additionally, data for Enaville and Post Falls showed significant downward trends for dissolved lead and total zinc loads; Harrison total zinc loads also decreased with time. The Mann-Kendall trend test results agreed with the LOADEST trend results in most cases, but gave contradictory results for total zinc at Pinehurst and at Post Falls. Long- and short-term load and flow-weighted concentration estimates yielded valuable information about metal storage and transport processes, and demonstrated that water quality data are a great aid in understanding these processes.

  6. Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent.

    PubMed

    Glady-Croue, Julie; Niu, Xi-Zhi; Ramsay, Joshua P; Watkin, Elizabeth; Murphy, Riley J T; Croue, Jean-Philippe

    2018-06-01

    Urban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations. Isolates of Pseudomonas putida, Serratia marcescens, and Stenotrophomonas maltophilia nosocomial pathogens were identified as resistant to solar radiation and to at least three antibiotics. Draft genome sequencing and typing revealed isolates carrying multiple resistance genes; where S. maltophilia (resistant to all studied antibiotics) sequence type was similar to strains isolated in blood infections. Results from this study confirm that solar radiation reduces total bacterial load in secondary effluent, but may indirectly increase the relative abundance of ARB. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system.

    PubMed

    Zhang, Meng-Meng; Wang, Ning; Hu, Yan-Bo; Sun, Guang-Yu

    2018-04-01

    A better understanding of tree-based intercropping effects on soil physicochemical properties and bacterial community has a potential contribution to improvement of agroforestry productivity and sustainability. In this study, we investigated the effects of mulberry/alfalfa intercropping on soil physicochemical properties and soil bacterial community by MiSeq sequencing of bacterial 16S rRNA gene. The results showed a significant increase in the contents of available nitrogen, available phosphate, available potassium, and total carbon in the rhizosphere soil of the intercropped alfalfa. Sequencing results showed that intercropping improved bacterial richness and diversity of mulberry and alfalfa based on richness estimates and diversity indices. The relative abundances of Proteobacteria, Actinobacteria, and Firmicutes were significantly higher in intercropping mulberry than in monoculture mulberry; and the abundances of Proteobacteria, Bacteroidetes, and Gemmatimonadetes in the intercropping alfalfa were markedly higher than that in monoculture alfalfa. Bacterial taxa with soil nutrients cycling were enriched in the intercropping system. There were higher relative abundances of Bacillus (0.32%), Pseudomonas (0.14%), and Microbacterium (0.07%) in intercropping mulberry soil, and Bradyrhizobium (1.0%), Sphingomonas (0.56%), Pseudomonas (0.18%), Microbacterium (0.15%), Rhizobium (0.09%), Neorhizobium (0.08%), Rhodococcus (0.06%), and Burkholderia (0.04%) in intercropping alfalfa soil. Variance partition analysis showed that planting pattern contributed 26.7% of the total variation of bacterial community, and soil environmental factors explained approximately 56.5% of the total variation. This result indicated that the soil environmental factors were more important than the planting pattern in shaping the bacterial community in the field soil. Overall, mulberry/alfalfa intercropping changed soil bacterial community, which was related to changes in soil total carbon, available phosphate, and available potassium. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. 24-hour evaluation of dental plaque bacteria and halitosis after consumption of a single placebo or dental treat by dogs.

    PubMed

    Jeusette, Isabelle C; Román, Aurora Mateo; Torre, Celina; Crusafont, Josep; Sánchez, Nuria; Sánchez, Maria C; Pérez-Salcedo, Leire; Herrera, David

    2016-06-01

    OBJECTIVE To determine whether consumption of a single dental treat with specific mechanical properties and active ingredients would provide a 24-hour effect on dental plaque bacteria and halitosis in dogs. ANIMALS 10 dogs of various breeds from a privately owned colony that had received routine dental scaling and polishing 4 weeks before the study began. PROCEDURES Dogs were randomly assigned to receive 1 placebo or dental treat first. A 4-week washout period was provided, and then dogs received the opposite treatment. Oral plaque and breath samples were collected before and 0.5, 3, 12, and 24 hours after treat consumption. Volatile sulfur compounds (VSCs) concentration was measured in breath samples. Total aerobic, total anaerobic, Porphyromonas gulae, Prevotella intermedia-like, Tannerella forsythia, and Fusobacterium nucleatum bacterial counts (measured via bacterial culture) and total live bacterial counts, total live and dead bacterial counts, and bacterial vitality (measured via quantitative real-time PCR assay) were assessed in plaque samples. RESULTS Compared with placebo treat consumption, dental treat consumption resulted in a significant decrease in breath VSCs concentration and all plaque bacterial counts, without an effect on bacterial vitality. Effects of the dental treat versus the placebo treat persisted for 12 hours for several bacterial counts and for 24 hours for breath VSCs concentration. CONCLUSIONS AND CLINICAL RELEVANCE Although clinical benefits should be investigated in larger scale, longer-term studies, results of this study suggested that feeding the evaluated dental treat may help to decrease oral bacterial growth in dogs for 12 hours and oral malodor for 24 hours. A feeding interval of 12 hours is therefore recommended.

  9. Diversity within Italian Cheesemaking Brine-Associated Bacterial Communities Evidenced by Massive Parallel 16S rRNA Gene Tag Sequencing

    PubMed Central

    Marino, Marilena; Innocente, Nadia; Maifreni, Michela; Mounier, Jérôme; Cobo-Díaz, José F.; Coton, Emmanuel; Carraro, Lisa; Cardazzo, Barbara

    2017-01-01

    This study explored the bacterial diversity of brines used for cheesemaking in Italy, as well as their physicochemical characteristics. In this context, 19 brines used to salt soft, semi-hard, and hard Italian cheeses were collected in 14 commercial cheese plants and analyzed using a culture-independent amplicon sequencing approach in order to describe their bacterial microbiota. Large NaCl concentration variations were observed among the selected brines, with hard cheese brines exhibiting the highest values. Acidity values showed a great variability too, probably in relation to the brine use prior to sampling. Despite their high salt content, brine microbial loads ranged from 2.11 to 6.51 log CFU/mL for the total mesophilic count. Microbial community profiling assessed by 16S rRNA gene sequencing showed that these ecosystems were dominated by Firmicutes and Proteobacteria, followed by Actinobacteria and Bacteroidetes. Cheese type and brine salinity seem to be the main parameters accountable for brine microbial diversity. On the contrary, brine pH, acidity and protein concentration, correlated to cheese brine age, did not have any selective effect on the microbiota composition. Nine major genera were present in all analyzed brines, indicating that they might compose the core microbiome of cheese brines. Staphylococcus aureus was occasionally detected in brines using selective culture media. Interestingly, bacterial genera associated with a functional and technological use were frequently detected. Indeed Bifidobacteriaceae, which might be valuable probiotic candidates, and specific microbial genera such as Tetragenococcus, Corynebacterium and non-pathogenic Staphylococcus, which can contribute to sensorial properties of ripened cheeses, were widespread within brines. PMID:29163411

  10. Study of the bacterial diversity of foods: PCR-DGGE versus LH-PCR.

    PubMed

    Garofalo, Cristiana; Bancalari, Elena; Milanović, Vesna; Cardinali, Federica; Osimani, Andrea; Sardaro, Maria Luisa Savo; Bottari, Benedetta; Bernini, Valentina; Aquilanti, Lucia; Clementi, Francesca; Neviani, Erasmo; Gatti, Monica

    2017-02-02

    The present study compared two culture-independent methods, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and length-heterogeneity polymerase chain reaction (LH-PCR), for their ability to reveal food bacterial microbiota. Total microbial DNA and RNA were extracted directly from fourteen fermented and unfermented foods, and domain A of the variable regions V1 and V2 of the 16S rRNA gene was analyzed through LH-PCR and PCR-DGGE. Finally, the outline of these analyses was compared with bacterial viable counts obtained after bacterial growth on suitable selective media. For the majority of the samples, RNA-based PCR-DGGE revealed species that the DNA-based PCR-DGGE was not able to highlight. When analyzing either DNA or RNA, LH-PCR identified several lactic acid bacteria (LAB) and coagulase negative cocci (CCN) species that were not identified by PCR-DGGE. This phenomenon was particularly evident in food samples with viable loads<5.0 Logcfug -1 . Furthermore, LH-PCR was able to detect a higher number of peaks in the analyzed food matrices relative to species identified by PCR-DGGE. In light of these findings, it may be suggested that LH-PCR shows greater sensitivity than PCR-DGGE. However, PCR-DGGE detected some other species (LAB included) that were not detected by LH-PCR. Therefore, certain LH-PCR peaks not attributed to known species within the LH-PCR database could be solved by comparing them with species identified by PCR-DGGE. Overall, this study also showed that LH-PCR is a promising method for use in the food microbiology field, indicating the necessity to expand the LH-PCR database, which is based, up to now, mainly on LAB isolates from dairy products. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Strategies for managing rival bacterial communities: Lessons from burying beetles.

    PubMed

    Duarte, Ana; Welch, Martin; Swannack, Chris; Wagner, Josef; Kilner, Rebecca M

    2018-03-01

    The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through the production of antimicrobials themselves. Whether these alterations to the bacterial community are adaptive from the beetle's perspective, or are simply a by-product of the way in which the beetles prepare the carcass for reproduction, remains to be determined in future work. In general, our work suggests that animals might use more sophisticated techniques for attacking and disrupting rival microbial communities than is currently appreciated. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  12. GAMM's as a New Tool for Evaluating Spatiotemporal Distributions of Nitrate and Bacteria in an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Cey, E. E.; Mellor, A. F.

    2015-12-01

    Generalized additive mixed models (GAMM's) are flexible regression models that are increasingly used in ecological and environmental studies to assess spatial and temporal trends in complex monitoring data. GAMM's hold promise for analysis of spatially and temporally correlated hydrogeologic data, but have been used only sparingly. Here we employed GAMM's to investigate the spatiotemporal distribution of pathogen indicators (E. coli and total coliform [TC]) and nitrate in the vulnerable Abbotsford-Sumas aquifer (ASA), and to explore potential relationships with hydrologic and climatic drivers, such as precipitation, streamflow, and groundwater level and temperature. A total of 46 wells sampled over a one year period showed more than 50% of samples exceeded 10 mg-N/L for nitrate. E. coli detections in groundwater were infrequent (4 of 385 total samples) and attributed mainly to surface water-groundwater connections. TC was detected frequently in groundwater (70% of samples) and the widespread TC distribution across the ASA could not be attributed solely to surface water connectivity. GAMM's showed that increased TC values in the wet season were most strongly related to groundwater temperatures and levels, while precipitation and well location were weaker (but still significant) predictors. In contrast, seasonal trends in nitrate were not significantly related to hydrologic forcings. Instead, nitrate concentrations across the aquifer were controlled by well location and depth, likely due to spatially variable nitrogen loading and localized geochemical attenuation. Major differences in nitrate and bacterial loading to the ASA were apparent in this study, and management strategies specific to each nonpoint source contaminant are recommended for improved source water protection.

  13. Analysis of bacterial populations in the environment using two-dimensional gel electrophoresis of genomic DNA and complementary DNA.

    PubMed

    Liu, Guo-Hua; Nakamura, Tatsuo; Amemiya, Takashi; Rajendran, Narasimmalu; Itoh, Kiminori

    2011-01-01

    Two-dimensional gel electrophoresis (2-DGE) mapping of genomic DNA and complementary DNA (cDNA) amplicons was attempted to analyze total and active bacterial populations within soil and activated sludge samples. Distinct differences in the number and species of bacterial populations and those that were metabolically active at the time of sampling were visually observed especially for the soil community. Statistical analyses and sequencing based on the 2-DGE data further revealed the relationships between total and active bacterial populations within each community. This high-resolution technique would be useful for obtaining a better understanding of bacterial population structures in the environment.

  14. An affinity adsorption media that mimics heparan sulfate proteoglycans for the treatment of drug-resistant bacteremia

    NASA Astrophysics Data System (ADS)

    McCrea, Keith R.; Ward, Robert S.

    2016-06-01

    Removal of several drug-resistant bacteria from blood by affinity adsorption onto a heparin-functional media is reported. Heparin is a chemical analogue of heparan sulfate (HS) proteoglycans, found on transmembrane proteins of endothelial cells. Many blood-borne human pathogens, including bacteria, viruses, parasites, and fungi have been reported to target HS as an initial step in their pathogenesis. Here, we demonstrate the binding and removal of Methicillin-resistant Staphylococcus aureus (MRSA), Extended-Spectrum Betalactamase Klebsiella pneumoniae (ESBL), and two Carbapenem-resistant Enterobacteriaceae (both CRE Escherichia coli and CRE K. pneumoniae) using 300 μm polyethylene beads surface modified with end-point-attached heparin. Depending on the specific bacteria, the amount removed ranged between 39% (ESBL) and 99.9% (CRE). The total amount of bacteria adsorbed ranged between 2.8 × 105 and 8.6 × 105 colony forming units (CFU) per gram of adsorption media. Based on a polymicrobial challenge which showed no competitive binding, MRSA and CRE apparently utilize different binding sequences on the immobilized heparin ligand. Since the total circulating bacterial load during bacteremia seldom exceeds 5 × 105 CFUs, it appears possible to significantly reduce bacterial concentration in infected patients by multi-pass recirculation of their blood through a small extracorporeal affinity filter containing the heparin-functional adsorption media. This 'dialysis-like therapy' is expected to improve patient outcomes and reduce the cost of care, particularly when there are no anti-infective drugs available to treat the infection.

  15. Dynamic succession of substrate-associated bacterial composition and function during Ganoderma lucidum growth

    PubMed Central

    Li, Qiang; Zou, Jie; Tan, Hao; Tan, Wei; Peng, Weihong

    2018-01-01

    Background Ganoderma lucidum, a valuable medicinal fungus, is widely distributed in China. It grows alongside with a complex microbial ecosystem in the substrate. As sequencing technology advances, it is possible to reveal the composition and functions of substrate-associated bacterial communities. Methods We analyzed the bacterial community dynamics in the substrate during the four typical growth stages of G. lucidum using next-generation sequencing. Results The physicochemical properties of the substrate (e.g. acidity, moisture, total nitrogen, total phosphorus and total potassium) changed between different growth stages. A total of 598,771 sequences from 12 samples were obtained and assigned to 22 bacterial phyla. Proteobacteria and Firmicutes were the dominant phyla. Bacterial community composition and diversity significantly differed between the elongation stage and the other three growth stages. LEfSe analysis revealed a large number of bacterial taxa (e.g. Bacteroidetes, Acidobacteria and Nitrospirae) with significantly higher abundance at the elongation stage. Functional pathway prediction uncovered significant abundance changes of a number of bacterial functional pathways between the elongation stage and other growth stages. At the elongation stage, the abundance of the environmental information processing pathway (mainly membrane transport) decreased, whereas that of the metabolism-related pathways increased. Discussion The changes in bacterial community composition, diversity and predicted functions were most likely related to the changes in the moisture and nutrient conditions in the substrate with the growth of G. lucidum, particularly at the elongation stage. Our findings shed light on the G. lucidum-bacteria-substrate relationships, which should facilitate the industrial cultivation of G. lucidum. PMID:29915697

  16. Pilot study to evaluate 3 hygiene protocols on the reduction of bacterial load on the hands of veterinary staff performing routine equine physical examinations.

    PubMed

    Traub-Dargatz, Josie L; Weese, J Scott; Rousseau, Joyce D; Dunowska, Magdalena; Morley, Paul S; Dargatz, David A

    2006-07-01

    Reduction factors (RFs) for bacterial counts on examiners' hands were compared when performing a standardized equine physical examination, followed by the use of one of 3 hand-hygiene protocols (washing with soap, ethanol gel application, and chlorohexidine-ethanol application). The mean RFs were 1.29 log10 and 1.44 log10 at 2 study sites for the alcohol-gel (62% ethyl alcohol active ingredient) protocols and 1.47 log10 and 1.94 log10 at 2 study sites for the chlorhexidine-alcohol (61% ethyl alcohol plus 1% chlorhexidine active ingredients) protocols, respectively. The RFs were significantly different (P < 0.0001) between the hand-washing group and the other 2 treatment groups (the alcohol-gel and the chlorhexidine-alcohol lotion). The use of alcohol-based gels or chlorhexidine-alcohol hand hygiene protocols must still be proven effective in equine practice settings, but in this study, these protocols were equivalent or superior to hand washing for reduction in bacterial load on the hands of people after they perform routine physical examinations.

  17. Pilot study to evaluate 3 hygiene protocols on the reduction of bacterial load on the hands of veterinary staff performing routine equine physical examinations

    PubMed Central

    Traub-Dargatz, Josie L.; Weese, J. Scott; Rousseau, Joyce D.; Dunowska, Magdalena; Morley, Paul S.; Dargatz, David A.

    2006-01-01

    Abstract Reduction factors (RFs) for bacterial counts on examiners’ hands were compared when performing a standardized equine physical examination, followed by the use of one of 3 hand-hygiene protocols (washing with soap, ethanol gel application, and chlorohexidine-ethanol application). The mean RFs were 1.29 log10 and 1.44 log10 at 2 study sites for the alcohol-gel (62% ethyl alcohol active ingredient) protocols and 1.47 log10 and 1.94 log10 at 2 study sites for the chlorhexidine-alcohol (61% ethyl alcohol plus 1% chlorhexidine active ingredients) protocols, respectively. The RFs were significantly different (P < 0.0001) between the hand-washing group and the other 2 treatment groups (the alcohol-gel and the chlorhexidine-alcohol lotion). The use of alcohol-based gels or chlorhexidine-alcohol hand hygiene protocols must still be proven effective in equine practice settings, but in this study, these protocols were equivalent or superior to hand washing for reduction in bacterial load on the hands of people after they perform routine physical examinations. PMID:16898109

  18. Waste gas biofiltration: advances and limitations of current approaches in microbiology.

    PubMed

    Ralebitso-Senior, T Komang; Senior, Eric; Di Felice, Renzo; Jarvis, Kirsty

    2012-08-21

    As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).

  19. Inclusion of detergent in a cleaning regime and effect on microbial load in livestock housing.

    PubMed

    Hancox, L R; Le Bon, M; Dodd, C E R; Mellits, K H

    Determining effective cleaning and disinfection regimes of livestock housing is vital to improving the health of resident animals and reducing zoonotic disease. A cleaning regime consisting of scraping, soaking with or without detergent (treatment and control), pressure washing, disinfection and natural drying was applied to multiple pig pens. After each cleaning stage, samples were taken from different materials and enumerated for total aerobic count (TAC) and Enterobacteriaceae (ENT). Soaking with detergent (Blast-Off, Biolink) caused significantly greater reductions of TAC and ENT on metal, and TAC on concrete, compared with control. Disinfection effect (Virkon S, DuPont) was not significantly associated with prior detergent treatment. Disinfection significantly reduced TAC and ENT on concrete and stock board but not on metal. Twenty-four hours after disinfection TAC and ENT on metal and stock board were significantly reduced, but no significant reductions occurred in the subsequent 96 hours. Counts on concrete did not significantly reduce during the entire drying period (120 hours). Detergent and disinfectant have varying bactericidal effects according to the surface and bacterial target; however, both can significantly reduce microbial numbers so should be used during cleaning, with a minimum drying period of 24 hours, to lower bacterial counts effectively.

  20. Microbiological quality of cuttlefish (Sepia pharaonis) fillets stored in dry and wet ice.

    PubMed

    Jeyasekaran, G; Jeya Shakila, R; Sukumar, D

    2012-10-01

    Microbiological quality of cuttlefish (Sepia pharaonis) fillets stored in three different ice conditions was studied. Fillets stored in wet ice at a ratio of 1:1 (package III) were sensorially acceptable for only 18 h, while that stored in dry ice at 1:1 (package I) and combination of dry ice and wet ice at 1:0.2:0.5 (package II) were in acceptable condition up to 24 h without re-icing and thus there was an extension of shelf life by about 33%. Total bacterial load was 7 log₁₀ cfu/g at the end of the storage period. Total psychrophilic population increased from zero to 7 log₁₀ cfu/g while total lactic acid bacteria from zero to 5 log₁₀ cfu/g. H₂S producers were detected only at 18 h, with a count of 1 log₁₀ cfu/g. Sulphite-reducing Clostridia increased gradually from zero to 110 most probable number count/g. Fresh cuttlefish fillets carried a bacterial flora of Micrococcus, Planococcus, Streptococcus, Moraxella, Proteus and Aeromonas. Pseudomonas was dominant in wet ice pack, while Aeromonas was dominant in both the dry ice and combination pack. Immediately after packing, the temperatures recorded in packages I, II and III were 10.5, 1.2 and 3.0 °C, respectively, which drastically decreased in 1 h and then maintained and finally increased gradually. The results indicate that use of combination of dry ice and wet ice is economical and very much useful to seafood industries, as this package considerably reduced the cost of air freight, as well as improved the quality and shelf life of cuttlefish.

  1. Impact of stressors on transmission potential of Renibacterium salmoninarum in Chinook salmon

    USGS Publications Warehouse

    Purcell, Maureen K.; Winton, James R.

    2014-01-01

    Renibacterium salmoninarum is the causative agent of bacterial kidney disease (BKD) affecting several species of Pacific salmon.  The severity of BKD can range from a chronic infection to overt disease with high mortality as in the case of large losses of adult Chinook salmon (Oncorhynchus tshawytscha) in the Great Lakes during late 1980s. The goal of this study was to empirically evaluate how environmental stressors relevant to the Great Lakes impact R. salmoninarum disease progression and bacterial shedding, the latter parameter being a proxy of horizontal transmission. In the first study (Aim 1), we focused on how endogenous host thiamine levels and dietary fatty acids impacted resistance of Chinook salmon to R. salmoninarum. Juvenile fish were fed one of four experimental diets, including a (1) thiamine replete diet formulated with fish oil, (2) thiamine deplete diet formulated with fish oil, (3) thiamine replete diet formulated with soybean oil, and (4) thiamine deplete diet formulated with soybean oil, before being challenged with buffer or R. salmoninarum. We observed significantly higher mortality in the R. salmoninarum infected groups relative to the corresponding mock controls in only the thiamine replete diet groups. We also observed a significant effect of time and diet on kidney bacterial load and bacterial shedding, with a significant trend towards higher shedding and bacterial load in the fish oil – thiamine replete diet group. However, during the course of the study, unexpected mortality occurred in all groups attributed to the myxozoan parasite Ceratomyxa shasta. Since the fish were dually-infected with C. shasta, we evaluated parasite DNA levels (parasitic load) in the kidney of sampled fish. We found that parasite load varied across time points but there was no significant effect of diet. However, parasite load did differ significantly between the mock and R. salmoninarum challenge groups with a trend towards longer persistence of C. shasta DNA in fish dually-infected with R. salmoninarum. Overall, results in Aim 1 indicated: 1) that the experimental diets impacted bacterial but not parasitic infection patterns, 2) that low thiamine levels may reduce the severity of R. salmoninarum infection, and 3) that fish infected with R. salmoninarum may be less able to clear a secondary infection with a parasite. The second study (Aim 2) focused on the role that temperature plays in the progression of BKD from the asymptomatic infected state to a diseased state. Lake Michigan Chinook salmon were infected with R. salmoninarum at a common intermediate water temperature and, at 2 weeks post-infection, were split into three temperature groups (cool, intermediate and warm). Fish held at the cool temperature (8°C) had significantly greater mortality following challenge, significantly higher levels of bacteria in the kidney, and shed significantly greater amounts of bacteria into the water relative to fish held at the intermediate (12°C) and warm (15°C) temperatures. Thus, our results support the hypothesis that, for BKD, warm temperature stress does not contribute to greater disease progression and increased bacterial shedding. Our laboratory results are consistent with field epidemiological observations that BKD mortality in the Great Lakes is commonly associated with declining water temperatures in the fall or when water temperatures begin to increase but are still cool after over-wintering. 

  2. Protective effects of intermittent hydrostatic pressure on osteoarthritic chondrocytes activated by bacterial endotoxin in vitro.

    PubMed

    Lee, Mel S; Ikenoue, Takashi; Trindade, Michael C D; Wong, Neal; Goodman, Stuart B; Schurman, David J; Smith, R Lane

    2003-01-01

    The role of continuous passive motion (CPM) in the management of septic arthritis and inflammatory arthritis remains of interest. CPM produces cyclic variations in intraarticular pressure that facilitates transport of fluid, nutrients, and solutes within and/or across the joint and stimulates chondrocyte metabolism. However, the precise mechanisms mediating the responses of chondrocytes to joint motion remain unclear. This study tested the hypothesis that dynamic mechanical loading counteracts effects of bacterial lipopolysaccharide (LPS), an inflammatory mediator, on chondrocyte metabolism. Intermittent hydrostatic pressure (IHP) (10 MPa for 4 h) was applied to human chondrocytes pretreated with LPS (1 microg/ml for 18 h). LPS activation of chondrocytes decreased mRNA signal levels of type II collagen by 67% and aggrecan by 56% and increased nitric oxide by 3.1-fold, monocyte chemotactic protein-1 mRNA signal levels by 6.5-fold, and matrix metalloproteinase-2 mRNA signal levels by 1.3-fold. Application of IHP to LPS-activated chondrocytes decreased nitric oxide synthase mRNA signal levels and nitric oxide levels in the culture medium. Exposure of LPS-activated chondrocytes to IHP upregulated type II collagen and aggrecan mRNA signal levels by 1.7-fold, relative to chondrocytes activated by LPS and maintained without loading. In addition, application of IHP decreased the upregulation in signal levels of monocyte chemotactic factor-1 and matrix metalloproteinase-2 following LPS activation by 45% and 15%, respectively. These data show that mechanical loading counteract effects of inflammatory agents, such as bacterial LPS, and suggest that postinfection sequelae are influenced by the presence or absence of joint loading.

  3. Multiple Pathways to Bacterial Load Reduction by Stormwater Best Management Practices: Trade-Offs in Performance, Volume, and Treated Area.

    PubMed

    Wolfand, Jordyn M; Bell, Colin D; Boehm, Alexandria B; Hogue, Terri S; Luthy, Richard G

    2018-06-05

    Stormwater best management practices (BMPs) are implemented to reduce microbial pollution in runoff, but their removal efficiencies differ. Enhanced BMPs, such as those with media amendments, can increase removal of fecal indicator bacteria (FIB) in runoff from 0.25-log 10 to above 3-log 10 ; however, their implications for watershed-scale management are poorly understood. In this work, a computational model was developed to simulate watershed-scale bacteria loading and BMP performance using the Ballona Creek Watershed (Los Angeles County, CA) as a case study. Over 1400 scenarios with varying BMP performance, percent watershed area treated, BMP treatment volume, and infiltrative capabilities were simulated. Incremental improvement of BMP performance by 0.25-log 10 , while keeping other scenario variables constant, reduces annual bacterial load at the outlet by a range of 0-29%. In addition, various simulated scenarios provide the same FIB load reduction; for example, 75% load reduction is achieved by diverting runoff from either 95% of the watershed area to 25 000 infiltrating BMPs with 0.5-log 10 removal or 75% of the watershed area to 75 000 infiltrating BMPs with 1.5-log 10 removal. Lastly, simulated infiltrating BMPs provide greater FIB reduction than noninfiltrating BMPs at the watershed scale. Results provide new insight on the trade-offs between BMP treatment volume, performance, and distribution.

  4. The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria: an in vitro study with clinical strains.

    PubMed

    Ensing, Geert T; Neut, Daniëlle; van Horn, Jim R; van der Mei, Henny C; Busscher, Henk J

    2006-12-01

    Antibiotic-loaded bone cements are used for the permanent fixation of joint prostheses. Antibiotic-loaded cements significantly decrease the incidence of infection. The objective of this study was to investigate whether the viability of bacteria derived from patients with a prosthesis-related infection could be further decreased when antibiotic release from bone cements was combined with application of pulsed ultrasound. Escherichia coli ATCC 10798, Staphylococcus aureus 7323, coagulase-negative staphylococci (CoNS 7368 and CoNS 7391) and Pseudomonas aeruginosa 5148 were grown planktonically in suspension and as a biofilm on three different bone cements: Palacos R without gentamicin as control, gentamicin-loaded Palacos R-G and gentamicin/clindamycin-loaded Copal. The viability of planktonic and biofilm bacteria was measured in the absence and presence of pulsed ultrasound for 40 h. Ultrasound itself did not affect bacterial viability. However, application of pulsed ultrasound in combination with antibiotic release by antibiotic-loaded bone cements yielded a reduction of both planktonic and biofilm bacterial viability compared with antibiotic release without application of ultrasound. This study shows that antibiotic release in combination with ultrasound increases the antimicrobial efficacy further than antibiotic release alone against a variety of clinical isolates. Application of ultrasound in combination with antibiotic release in clinical practice could therefore lead to better prevention or treatment of prosthesis-related infections.

  5. Comparison of the effect of two sugar-substituted chewing gums on different caries- and gingivitis-related variables: a double-blind, randomized, controlled clinical trial.

    PubMed

    Martínez-Pabón, María C; Duque-Agudelo, Lucas; Díaz-Gil, Juan D; Isaza-Guzmán, Diana M; Tobón-Arroyave, Sergio I

    2014-01-01

    The aim of this study was to compare the effect of two sugar-substituted chewing gums besides toothbrushing on different clinical, microbiological, and biochemical caries- and gingivitis-related variables. The study was designed as a double-blind, randomized, controlled trial with three parallel arms. A total of 130 dental students, who volunteered after signing an informed consent, were randomly allocated to receive one of the following interventions: hexitol-sweetened gum containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), pentitol-sweetened gum containing no CPP-ACP, and control group with no gum. Subjects within the experimental groups chewed two gum pellets for 20 min three times a day after meals. The daily consumption level of both polyols was 6.0 g. Clinical examinations and salivary samplings were conducted at baseline and after 30 days of gum use. Pre- and post-intervention stimulated whole saliva samples were quantified for calcium/phosphate ionic concentration, total facultative bacterial load, Streptococcus mutans/Lactobacillus spp. counts, and Gram-negative percentage. A statistically significant reduction in visible plaque score was displayed in the hexitol/CPP-ACP gum group after the intervention when compared with baseline, but the order of the effect was in the same order as the differences between the groups at baseline. A similar tendency was seen in both the pentitol/non-CPP-ACP gum and control groups regarding total salivary facultative bacterial load and S. mutans count, but median values of these parameters were more significantly reduced in the pentitol/non-CPP-ACP gum group in comparison with those of the control group. Alterations of salivary Lactobacillus spp. were demonstrated only in the pentitol/non-CPP-ACP gum group. Although these findings might indicate that a 30-day protocol of daily chewing of pentitol-sweetened gum containing no CPP-ACP might have some a reducing effect on the salivary levels of facultative bacteria, S. mutans and Lactobacillus spp., there was only a marginal, if any, benefit from the chewing gums under study on some microbiological caries- and gingivitis-related variables. Taking into account that for transferring results into clinically relevant conclusions the findings need to be strong and consistent, adhering to single significant differences appears not appropriate. Hence, the clinical significance of chewing gums as an adjunctive tool for daily oral care remained questionable.

  6. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants

    PubMed Central

    Yang, Ying; Ao, Hai-yong; Yang, Sheng-bing; Wang, Yu-gang; Lin, Wen-tao; Yu, Zhi-feng; Tang, Ting-ting

    2016-01-01

    Titanium-based implants have been widely used in orthopedic surgery; however, failures still occur. Our in vitro study has demonstrated that gentamicin-loaded, 80 nm-diameter nanotubes possessed both antibacterial and osteogenic activities. Thus, the aim of this study was to further investigate the in vivo anti-infection effect of the titanium implants with gentamicin-loaded nanotubes. Thirty-six male Sprague Dawley rats were used to establish an implant-associated infection model. A volume of 50 μL Staphylococcus aureus suspension (1×105 CFU/mL) was injected into the medullary cavity of the left femur, and then the titanium rods without modification (Ti), titanium nanotubes without drug loading (NT), and gentamicin-loaded titanium nanotubes (NT-G) were inserted with phosphate-buffered saline-inoculated Ti rods as a blank control. X-ray images were obtained 1 day, 21 days, and 42 days after surgery; micro-computed tomography, microbiological, and histopathological analyses were used to evaluate the infections at the time of sacrifice. Radiographic signs of bone infection, including osteolysis, periosteal reaction, osteosclerosis, and damaged articular surfaces, were demonstrated in the infected Ti group and were slightly alleviated in the NT group but not observed in the NT-G group. Meanwhile, the radiographic and gross bone pathological scores of the NT-G group were significantly lower than those of the infected Ti group (P<0.01). Explant cultures revealed significantly less bacterial growth in the NT-G group than in the Ti and NT groups (P<0.01), and the NT group showed decreased live bacterial growth compared with the Ti group (P<0.01). Confocal laser scanning microscopy, scanning electron microscopy, and histopathological observations further confirmed decreased bacterial burden in the NT-G group compared with the Ti and NT groups. We concluded that the NT-G coatings can significantly prevent the development of implant-associated infections in a rat model; therefore, they may provide an effective drug-loading strategy to combat implant-associated infections in clinic. PMID:27274245

  7. Translational Research to Improve the Treatment of Severe Extremity Injuries

    DTIC Science & Technology

    2014-01-24

    implantation of antibiotic-impregnated PMMA beads) was delayed by 2, 6 or 24 h and subsequent bacterial load in the wounds quantified 2 weeks later. Bacterial...supplemented by local antibiotics in the form of non-biodegradable antibiotic-impregnated poly- methymethacrylate ( PMMA ) beads, which will require removal at a...which K wires are passed to fix the implant to the femur. This produces a standardised and reproducible bone defect which will not heal spontaneously

  8. The influences of the recycle process on the bacterial community in a pilot scale microalgae raceway pond.

    PubMed

    Erkelens, Mason; Ball, Andrew S; Lewis, David M

    2014-04-01

    The use of recycled media has been shown to be a necessary step within the lifecycle of microalgal biofuels for economic sustainability and reducing the water footprint. However the impact of the harvesting of microalgae on the bacterial load of the recycled water has yet to be investigated. Within this study PCR-DGGE and real-time PCR was used to evaluate the bacterial community dynamics within the recycled water following harvest and concentration steps for a pilot scale open pond system (120,000L), which was developed for the production of green crude oil from Tetraselmis sp. in hyper saline water. Two stages were used in the harvesting; Stage 1 electroflocculation, and Stage 2 centrifugation. Electroflocculation was shown to have little effect on the bacterial cell concentration. In contrast bacterial diversity and cell concentration within the centrifugation step was greatly reduced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

    PubMed Central

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2014-01-01

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086

  10. Hormone therapy alters the composition of the vaginal microflora in ovariectomized rats.

    PubMed

    Bezirtzoglou, E; Voidarou, Ch; Papadaki, A; Tsiotsias, A; Kotsovolou, O; Konstandi, M

    2008-05-01

    The aim of the present study was to evaluate the alterations that may take place in the bacterial genital tract flora in the absence of ovarian hormones. The role of hormone replacement therapy was also assessed. For this purpose, various bacteria were identified from the vaginal flora of ovariectomized and sham operated female rats, following the Bergey's manual criteria. The data of this study showed that substantial differences exist in the vaginal bacterial microflora between ovariectomized and normal cyclic rats. Ovariectomy was associated with a lower total bacterial load that may be due mainly to the absence of Lactobacillus. Anaerobic bacteria were also absent. Streptococcus and Enterococcus were also not favored in an environment lacking the ovarian hormones. In contrast, C. perfringens, Bacteroides, S. epidermidis, and S. aureus were detected in high numbers in ovariectomized rats. In terms of the impact of hormone replacement therapy on vaginal flora, only estradiol (EE2) restored Lactobacillus levels in ovariectomized rats, whereas all hormonal schemes used brought Streptococcus, Clostridium lec (-), and C. perfringens, the spore and vegetative forms, close to those detected in normal cyclic female rats. In conclusion, ovarian hormones appeared to be regulatory factors that favor the presence of a broad variety of bacteria, which are members of the normal genital tract flora. On the other hand, ovariectomy modifies the vaginal microbial profile, and hormone replacement therapy based mainly on schemes containing EE2 could alleviate this disturbance.

  11. Effect of pulsed ultrasound in combination with gentamicin on bacterial killing of biofilms on bone cements in vivo

    PubMed Central

    Ensing, G.T.; Roeder, B.L.; Nelson, J.L.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J.; Pitt, W.G.

    2008-01-01

    Aim The aim of this study is to investigate whether pulsed ultrasound in combination with gentamicin yields increased killing of bacterial biofilms on bone cements in vivo. Methods and Results Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a rabbit model. Two bone cement samples with E. coli ATCC 10798 biofilm were implanted in a total of nine rabbits. In two groups bone cement disks loaded with gentamicin were used, and in one group unloaded bone cement disks in combination with systemically administered gentamicin were used. Pulsed ultrasound with a mean acoustic intensity of 167 mW cm−2 and a maximum acoustic intensity of 500 mW cm−2 was applied from 24 h till 72 h post surgery on one of the two implanted disks. After euthanization, the bacteria removed from the disk were quantified. Application of ultrasound, combined with gentamicin, reduced the biofilm in all three groups varying between 58 to 69% compared to the negative control. Ultrasound proved to be safe with respect to creating skin lesions. Conclusions Ultrasound resulted in an tendency of improved efficacy of gentamicin, either applied locally or systemically. Significance and impact of Study This study implies that ultrasound could improve the prevention of infection, especially because the biomaterials, gentamicin and ultrasound used in this model are all in clinical usage, but not yet combined in clinical practice. PMID:16108785

  12. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers.

    PubMed

    Li, Kejun

    2011-11-15

    In the present study, indoor and outdoor air samples were collected using four types of air samplers often used for airborne bacterial sampling. These air samplers included two solid impactors (BioStage and RCS), one liquid impinger (BioSampler), and one filter sampler with two kinds of filters (a gelatin and a cellulose acetate filter). The collected air samples were further processed to analyze the diversity and abundance of culturable bacteria and total bacteria through standard culture techniques, denaturing gradient gel electrophoresis (DGGE) fingerprinting and quantitative polymerase chain reaction (qPCR) analysis. The DGGE analysis indicated that the air samples collected using the BioStage and RCS samplers have higher culturable bacterial diversity, whereas the samples collected using the BioSampler and the cellulose acetate filter sampler have higher total bacterial diversity. To obtain more information on the sampled bacteria, some gel bands were excised and sequenced. In terms of sampling efficiency, results from the qPCR tests indicated that the collected total bacterial concentration was higher in samples collected using the BioSampler and the cellulose acetate filter sampler. In conclusion, the sampling bias and efficiency of four kinds of air sampling systems were compared in the present study and the two solid impactors were concluded to be comparatively efficient for culturable bacterial sampling, whereas the liquid impactor and the cellulose acetate filter sampler were efficient for total bacterial sampling. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Predictive value of decoy receptor 3 in postoperative nosocomial bacterial meningitis.

    PubMed

    Liu, Yong-Juan; Shao, Li-Hua; Wang, Qian; Zhang, Jian; Ma, Rui-Ping; Liu, Hai-Hong; Dong, Xiao-Meng; Ma, Li-Xian

    2014-11-03

    Nosocomial bacterial meningitis requires timely treatment, but what is difficult is the prompt and accurate diagnosis of this disease. The aim of this study was to assess the potential role of decoy receptor 3 (DcR3) levels in the differentiation of bacterial meningitis from non-bacterial meningitis. A total of 123 patients were recruited in this study, among them 80 patients being with bacterial meningitis and 43 patients with non-bacterial meningitis. Bacterial meningitis was confirmed by bacterial culture of cerebrospinal fluid (CSF) culture and enzyme-linked immunosorbent assay (ELISA) was used to detect the level of DcR3 in CSF. CSF levels of DcR3 were statistically significant between patients with bacterial meningitis and those with non-bacterial meningitis (p<0.001). A total of 48.75% of patients with bacterial meningitis received antibiotic>24 h before CSF sampling, which was much higher than that of non-bacterial meningitis. CSF leucocyte count yielded the highest diagnostic value, with an area under the receiver operating characteristic curve (ROC) of 0.928, followed by DcR3. At a critical value of 0.201 ng/mL for DcR3, the sensitivity and specificity were 78.75% and 81.40% respectively. DcR3 in CSF may be a valuable predictor for differentiating patients with bacterial meningitis from those with non-bacterial meningitis. Further studies are needed for the validation of this study.

  14. Correlation between the neutrophil-lymphocyte count ratio and bacterial infection in patient with human immunodeficiency virus

    NASA Astrophysics Data System (ADS)

    Kusnadi, D.; Liwang, M. N. I.; Katu, S.; Mubin, A. H.; Halim, R.

    2018-03-01

    Parameters for starting antibiotic therapy such as CRP andleukocytosis are considered non-specific. Previous studies have shown the Neutrophil-Lymphocyte Count Ratio (NLCR) can serve as the basis of bacterial infection, the level of infection, and the basis of antibiotic therapy. Compared with the Procalcitonin parameter, this NLCR is rapid, an inexpensive and requires no additional sampling. To determine the correlation between The Neutrophil-LymphocyteCount Ratio to bacterial infection in HIV patients. This study was a cross-sectional observational approach to HIV subject at Wahidin Sudirohusodo and Hasanuddin University Hospital. The subjects performed routine blood, microbiology test,and blood Procalcitonin levels tests. Then performed NLCR calculations based on routine blood results. The subjects then grouped the presence or absence of bacterial infection.In 146 study subjects, there were 78 (53.4%) with bacterial infections and 68 (46.6%) without bacterial infection as controls. Subjects with bacterial infections had higher total neutrophils (84.83) compared with non-bacterial infections. Subjects with bacterial infections had total lymphocytes with an average of 8.51 lower than non-bacterial infections. Subjects with bacterial infections had higher NLCR values with an average of 12.80. The Neutrophil-Lymphocyte Count Ratio can become a marker of bacterial infection in HIV patients.

  15. Load application for the contact mechanics analysis and wear prediction of total knee replacement.

    PubMed

    Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin

    2017-05-01

    Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.

  16. [Bacterial contamination of stethoscopes in hospital].

    PubMed

    Davullu, Sevcan; Burger, Sandrine; Kessler, Brigitte; Meunier, Olivier

    2015-01-01

    Although many publications on the subject are available, only few campaigns for stethoscopes cleaning and disinfection are conducted. Stethoscope is a "not critical" reusable medical device and should benefit from a cleaning disinfection "low level" after each use. We studied the bacterial contamination of stethoscopes in our hospital and measured the role of bacterial reservoir and/or vector stethoscope could play. Mean microbial load was estimated at 1.550 CFU per stethoscope. Results obtained in our hospital and those of the literature, led us to propose a simple and efficient cleaning method. We believe motivate everyone to change their habits and carry out disinfection more frequent their very handling stethoscope.

  17. Dental plaque microbial profiles of children from Khartoum, Sudan, with congenital heart defects

    PubMed Central

    Mohamed Ali, Hiba; Berggreen, Ellen; Nguyen, Daniel; Wahab Ali, Raouf; Van Dyke, Thomas E.; Hasturk, Hatice; Mustafa, Manal

    2017-01-01

    ABSTRACT Few studies have focused on the bacterial species associated with the deterioration of the dental and gingival health of children with congenital heart defects (CHD). The aims of this study were (1) to examine the dental plaque of children with CHD in order to quantify bacterial load and altered bacterial composition compared with children without CHD; and (2) to investigate the correlation between the level of caries and gingivitis and dental biofilm bacteria among those children. In this cross-sectional study, participants were children (3–12 years) recruited in Khartoum State, Sudan. A total of 80 CHD cases from the Ahmed Gasim Cardiac Centre and 80 healthy controls from randomly selected schools and kindergartens were included. Participants underwent clinical oral examinations for caries (decayed, missing, and filled teeth indices [DMFT] for primary dentition, and DMFT for permanent dentition), and gingivitis (simplified gingival index [GI]). Pooled dental biofilm samples were obtained from four posterior teeth using paper points. Real-time quantitative polymerase chain reaction was used for the detection and quantification of Streptococcus mutans, Streptococcussanguinis, and Lactobacillus acidophilus. Checkerboard DNA–DNA hybridization was used for the detection of 40 additional bacterial species. CHD cases had a significantly higher caries experience (DMFT = 4.1 vs. 2.3, p < 0.05; DMFT = 1.4 vs. 0.7, p < 0.05) and a higher mean number of examined teeth with gingivitis (4.2 vs. 2.0; p < 0.05) compared with controls. S. mutans counts were significantly higher among the CHD cases (p < 0.05). Checkerboard results revealed that 18/40 bacterial species exhibited significantly higher mean counts among CHD cases (p < 0.01). Correlation analyses revealed that among CHD cases, the detection levels of Tannerella forsythia, Campylobacter rectus, Fusobacterium nucleatum subsp. vincentii, F. nucleatum subsp. nucleatum, and F. nucleatum subsp. polymorphum were highly positively correlated with GI. CHD cases harbor more cariogenic and periodontopathogenic bacterial species in their dental plaque, which correlated with higher levels of caries and gingivitis. PMID:28326155

  18. Dental plaque microbial profiles of children from Khartoum, Sudan, with congenital heart defects.

    PubMed

    Mohamed Ali, Hiba; Berggreen, Ellen; Nguyen, Daniel; Wahab Ali, Raouf; Van Dyke, Thomas E; Hasturk, Hatice; Mustafa, Manal

    2017-01-01

    Few studies have focused on the bacterial species associated with the deterioration of the dental and gingival health of children with congenital heart defects (CHD). The aims of this study were (1) to examine the dental plaque of children with CHD in order to quantify bacterial load and altered bacterial composition compared with children without CHD; and (2) to investigate the correlation between the level of caries and gingivitis and dental biofilm bacteria among those children. In this cross-sectional study, participants were children (3-12 years) recruited in Khartoum State, Sudan. A total of 80 CHD cases from the Ahmed Gasim Cardiac Centre and 80 healthy controls from randomly selected schools and kindergartens were included. Participants underwent clinical oral examinations for caries (decayed, missing, and filled teeth indices [DMFT] for primary dentition, and DMFT for permanent dentition), and gingivitis (simplified gingival index [GI]). Pooled dental biofilm samples were obtained from four posterior teeth using paper points. Real-time quantitative polymerase chain reaction was used for the detection and quantification of Streptococcus mutans , Streptococcus sanguinis, and Lactobacillus acidophilus . Checkerboard DNA-DNA hybridization was used for the detection of 40 additional bacterial species. CHD cases had a significantly higher caries experience (DMFT = 4.1 vs. 2.3, p  < 0.05; DMFT = 1.4 vs. 0.7, p  < 0.05) and a higher mean number of examined teeth with gingivitis (4.2 vs. 2.0; p  < 0.05) compared with controls. S. mutans counts were significantly higher among the CHD cases ( p  < 0.05). Checkerboard results revealed that 18/40 bacterial species exhibited significantly higher mean counts among CHD cases ( p  < 0.01). Correlation analyses revealed that among CHD cases, the detection levels of Tannerella forsythia, Campylobacter rectus, Fusobacterium nucleatum subsp. vincentii, F. nucleatum subsp. nucleatum , and F. nucleatum subsp. polymorphum were highly positively correlated with GI. CHD cases harbor more cariogenic and periodontopathogenic bacterial species in their dental plaque, which correlated with higher levels of caries and gingivitis.

  19. Tat-functionalized liposomes for the treatment of meningitis: an in vitro study

    PubMed Central

    Bartomeu Garcia, Caterina; Shi, Di; Webster, Thomas J

    2017-01-01

    Bacterial meningitis has become a global concern, because of the emergence of antibiotic-resistant bacteria. It has been demonstrated that liposomes can enter bacteria, thus providing a possible treatment for numerous infections, including meningitis. Fusogenic liposomes are pH-sensitive with a high capacity to fuse with the bacteria membrane and promote intracellular drug release. Moreover, this ability can be improved by using cell-penetrating peptides (such as Tat47–57, which is a peptide derived from the Tat protein of HIV). The purpose of this in vitro study was to demonstrate for the first time the ability of the presently prepared fusogenic liposomes, which were spherical particles with a diameter of 100 nm loaded with antibiotics and functionalized with-cell penetrating peptides (Tat47–57), to fight the main bacteria that cause meningitis. For this, vancomycin, methicillin, and ampicillin antibiotics were loaded inside fusogenic liposomes to fight Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Antibacterial activity of Tat-functionalized and nonfunctionalized liposomes loaded with antibiotics was tested by determining bacteria colony-forming units and growth-curve assays coupled with live/dead assays using fluorescence microscopy. Results showed a remarkable decrease in antibiotic minimum inhibitory concentration when all of the bacteria were treated with these novel liposomes, especially for the functionalized liposomes loaded with methicillin. With antibiotic concentrations of 1.7–3 µg/mL for Tat-functionalized liposomes loaded with methicillin, the bacteria population was totally eradicated. Cytotoxicity tests with astrocytes and endothelial cells, major cellular components of the blood–brain barrier, were also performed for all of the liposomes, including free antibiotic and the Tat peptide. Results showed much promise for the further study of the presently formulated liposomes to treat meningitis. PMID:28442909

  20. Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse reflectance spectroscopy (600-1100 nm).

    PubMed

    Lin, M; Al-Holy, M; Mousavi-Hesary, M; Al-Qadiri, H; Cavinato, A G; Rasco, B A

    2004-01-01

    To evaluate the feasibility of visible and short-wavelength near-infrared (SW-NIR) diffuse reflectance spectroscopy (600-1100 nm) to quantify the microbial loads in chicken meat and to develop a rapid methodology for monitoring the onset of spoilage. Twenty-four prepackaged fresh chicken breast muscle samples were prepared and stored at 21 degrees C for 24 h. Visible and SW-NIR was used to detect and quantify the microbial loads in chicken breast muscle at time intervals of 0, 2, 4, 6, 8, 10, 12 and 24 h. Spectra were collected in the diffuse reflectance mode (600-1100 nm). Total aerobic plate count (APC) of each sample was determined by the spread plate method at 32 degrees C for 48 h. Principal component analysis (PCA) and partial least squares (PLS) based prediction models were developed. PCA analysis showed clear segregation of samples held 8 h or longer compared with 0-h control. An optimum PLS model required eight latent variables for chicken muscle (R = 0.91, SEP = 0.48 log CFU g(-1)). Visible and SW-NIR combined with PCA is capable of perceiving the change of the microbial loads in chicken muscle once the APC increases slightly above 1 log cycle. Accurate quantification of the bacterial loads in chicken muscle can be calculated from the PLS-based prediction method. Visible and SW-NIR spectroscopy is a technique with a considerable potential for monitoring food safety and food spoilage. Visible and SW-NIR can acquire a metabolic snapshot and quantify the microbial loads of food samples rapidly, accurately, and noninvasively. This method would allow for more expeditious applications of quality control in food industries.

  1. Macrophage Migration Inhibitory Factor Enzymatic Activity, Lung Inflammation, and Cystic Fibrosis

    PubMed Central

    Adamali, Huzaifa; Armstrong, Michelle E.; McLaughlin, Anne Marie; Cooke, Gordon; McKone, Edward; Costello, Christine M.; Gallagher, Charles G.; Leng, Lin; Baugh, John A.; Fingerle-Rowson, Günter; Bucala, Richard J.; McLoughlin, Paul

    2012-01-01

    Rationale: Macrophage migration inhibitory factor (MIF) is a proinflammatory mediator with unique tautomerase enzymatic activity; the precise function has not been clearly defined. We previously demonstrated that individual patients with cystic fibrosis (CF) who are genetically predisposed to be high MIF producers develop accelerated end-organ injury. Objectives: To characterize the effects of the MIF-CATT polymorphism in patients with CF ex vivo. To investigate the role of MIF’s tautomerase activity in a murine model of Pseudomonas aeruginosa infection. Methods: MIF and tumor necrosis factor (TNF)-α protein levels were assessed in plasma or peripheral blood mononuclear cell (PBMC) supernatants by ELISA. A murine pulmonary model of chronic Pseudomonas infection was used in MIF wild-type mice (mif+/+) and in tautomerase-null, MIF gene knockin mice (mif P1G/P1G). Measurements and Main Results: MIF protein was measured in plasma and PBMCs from 5- and 6-CATT patients with CF; LPS-induced TNF-α production from PBMCs was also assessed. The effect of a specific inhibitor of MIF-tautomerase activity, ISO-1, was investigated in PBMCs. In the murine infection model, total weight loss, differential cell counts, bacterial load, and intraacinar airspace/tissue volume were measured. MIF and TNF-α levels were increased in 6-CATT compared with 5-CATT patients with CF. LPS-induced TNF-α production from PBMCs was attenuated in the presence of ISO-1. In a murine model of Pseudomonas infection, significantly less pulmonary inflammation and bacterial load was observed in mifP1G/P1G compared with mif+/+ mice. Conclusions: MIF-tautomerase activity may provide a novel therapeutic target in patients with chronic inflammatory diseases such as CF, particularly those patients who are genetically predisposed to produce increased levels of this cytokine. PMID:22592805

  2. Pharmacokinetics and pharmacodynamics of DSTA4637A: A novel THIOMAB™ antibody antibiotic conjugate against Staphylococcus aureus in mice

    PubMed Central

    Zhou, Chenguang; Lehar, Sophie; Gutierrez, Johnny; Rosenberger, Carrie M.; Ljumanovic, Nina; Dinoso, Jason; Koppada, Neelima; Hong, Kyu; Baruch, Amos; Saad, Ola; Mariathasan, Sanjeev; Kamath, Amrita V.

    2016-01-01

    ABSTRACT DSTA4637A, a novel THIOMAB™ antibody antibiotic conjugate (TAC) against Staphylococcus aureus (S. aureus), is currently being investigated as a potential therapy against S. aureus infections. Structurally, TAC is composed of an anti-S. aureus antibody linked to a potent antibiotic, dmDNA31. The goal of the current study was to characterize the pharmacokinetics (PK) of TAC in mice, assess the effect of S. aureus infection on its PK, and evaluate its pharmacodynamics (PD) by measuring the bacterial load in various organs at different timepoints following TAC treatment. Plasma concentrations of 3 analytes, total antibody (TAb), antibody-conjugated dmDNA31 (ac-dmDNA31), and unconjugated dmDNA31, were measured in these studies. In non-infected mice (target antigen absent), following intravenous (IV) administration of a single dose of TAC, systemic concentration-time profiles of both TAb and ac-dmDNA31 were bi-exponential and characterized by a short distribution phase and a long elimination phase as expected for a monoclonal antibody-based therapeutic. Systemic exposures of both TAb and ac-dmDNA31 were dose proportional over the dose range tested (5 to 50 mg/kg). In a mouse model of systemic S. aureus infection (target antigen present), a single IV dose of TAC demonstrated PK behavior similar to that in the non-infected mice, and substantially reduced bacterial load in the heart, kidney, and bones on 7 and 14 d post dosing. These findings have increased our understanding of the PK and PK/PD of this novel molecule, and have shown that at efficacious dose levels the presence of S. aureus infection had minimal effect on TAC PK. PMID:27653831

  3. A chemometrics approach applied to Fourier transform infrared spectroscopy (FTIR) for monitoring the spoilage of fresh salmon (Salmo salar) stored under modified atmospheres.

    PubMed

    Saraiva, C; Vasconcelos, H; de Almeida, José M M M

    2017-01-16

    The aim of this work was to investigate the potential of Fourier transform infrared spectroscopy (FTIR) to detect and predict the bacterial load of salmon fillets (Salmo salar) stored at 3, 8 and 30°C under three packaging conditions: air packaging (AP) and two modified atmospheres constituted by a mixture of 50%N 2 /40%CO 2 /10%O 2 with lemon juice (MAPL) and without lemon juice (MAP). Fresh salmon samples were periodically examined for total viable counts (TVC), specific spoilage organisms (SSO) counts, pH, FTIR and sensory assessment of freshness. Principal components analysis (PCA) allowed identification of the wavenumbers potentially correlated with the spoilage process. Linear discriminant analysis (LDA) of infrared spectral data was performed to support sensory data and to accurately identify samples freshness. The effect of the packaging atmospheres was assessed by microbial enumeration and LDA was used to determine sample packaging from the measured infrared spectra. It was verified that modified atmospheres can decrease significantly the bacterial load of fresh salmon. Lemon juice combined with MAP showed a more pronounced delay in the growth of Brochothrix thermosphacta, Photobacterium phosphoreum, psychrotrophs and H 2 S producers. Partial least squares regression (PLS-R) allowed estimates of TVC and psychrotrophs, lactic acid bacteria, molds and yeasts, Brochothrix thermosphacta, Enterobacteriaceae, Pseudomonas spp. and H 2 S producer counts from the infrared spectral data. For TVC, the root mean square error of prediction (RMSEP) value was 0.78logcfug -1 for an external set of samples. According to the results, FTIR can be used as a reliable, accurate and fast method for real time freshness evaluation of salmon fillets stored under different temperatures and packaging atmospheres. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The blow fly, Chrysomya megacephala, and the house fly, Musca domestica, as mechanical vectors of pathogenic bacteria in Northeast Thailand.

    PubMed

    Chaiwong, T; Srivoramas, T; Sueabsamran, P; Sukontason, K; Sanford, M R; Sukontason, K L

    2014-06-01

    The Oriental latrine fly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) and the house fly, Musca domestica L., (Diptera: Muscidae) are synanthropic flies which are adapted to live in close association with human habitations, thereby making them likely mechanical vectors of several pathogens to humans. There were two main aims of this study. The first aim was to determine the prevalence of these two fly species from five types of human habitations including: fresh-food markets, garbage piles, restaurants, school cafeterias and paddy fields, in the Muang Ubon Ratchathani and Warinchamrap districts of Ubon Ratchathani province of Northeast Thailand. Flies collection were conducted monthly from September 2010-October 2011 using a reconstructable funnel trap, containing 1 day-tainted beef offal as bait. A total of 7 750 flies (6 401 C. megacephala and 1 349 M.domestica) were collected. The second aim was to examine the potential of these flies to carry pathogenic bacteria. Bacteria were isolated from 994 individual flies collected using a sweep net (555 C. megacephala and 439 M. domestica). A total of 15 bacterial genera were isolated from the external surfaces, comprising ten genera of gram-negative bacteria and five gram-positive bacteria. The most common bacteria isolated from both species were coagulase-negative staphylococci, followed by Streptococcus group D non-enterococci. Human pathogenic enteric bacteria isolated were Salmonella sp., Shigella sp., Escherichia coli O157:H7, Salmonella typhi, Bacillus sp., and Enterococcus sp., of which S. typhi is the first report of isolation from these fly species. Other human pathogens included Staphylococcus aureus and Pseudomonas aeruginosa. Not only were the number of C. megacephala positive for bacteria significantly higher than for M. domestica, but they were also carrying ~11-12 times greater bacterial load than M. domestica. These data suggest that both fly species should be considered potential mechanical vectors of bacterial pathogens associated with human habitations year-round in this region of Northeast Thailand.

  5. Microbiological evaluation of water during the 2011 flood crisis in Thailand.

    PubMed

    Chaturongkasumrit, Yuphakhun; Techaruvichit, Punnida; Takahashi, Hajime; Kimura, Bon; Keeratipibul, Suwimon

    2013-10-01

    In 2011, a severe flood occurred in Thailand, covering nearly half the country in water for several months. The contamination of floodwater and subsequent contamination of water for human consumption could have potentially led to a widespread health crisis. However, to date, no study has been conducted to determine the safety of the waters used for human consumption in Thailand during the severe flood. Therefore, we conducted microbiological analysis of 4 kinds of water (floodwater, river water, tap water, and filtered tap water) collected from industrial and residential areas that were damaged due to flooding. Higher net levels of bacteria were found in water with a higher turbidity. No clear trend was observed in the pH value of all 4 water samples. The level of total bacterial contamination in the water samples was estimated by real-time quantitative polymerase chain reaction (PCR). Eleven of the 12 tap water samples and all of the filtered tap water samples had a total bacterial load that exceeded the Thai water quality standards. One of the tap water samples and one of the filtered tap water samples were found to be positive for Shigella sp., although none of the floodwater samples showed detectable levels of this pathogen as determined by PCR analysis. One of the samples of floodwater was also found to be positive for Leptospira sp., but none of the tap water or filtered tap water samples were positive. Most of the tap water samples and all filtered tap water samples were found to be contaminated with Vibrio cholerae. Bacterial contamination in water samples was also analyzed by denaturing gradient gel electrophoresis (DGGE) analysis. These results revealed that several microorganisms were transferred via floodwater to different areas in the central part of Thailand and cross-contaminated between floodwater and water for human consumption. © 2013.

  6. Effect of a stannous fluoride dentifrice on the sulcular microbiota: a prospective cohort study in subjects with various levels of periodontal inflammation.

    PubMed

    Benjasupattananan, Supranee; Lai, Caroline S Y; Persson, G Rutger; Pjetursson, Bjarni E; Lang, Niklaus P

    2005-01-01

    To assess the effects of an experimental 0.454% stannous fluoride (SnF2) dentifrice on the oral sulcular microbiota in patients with various stages of oral diseases using checkerboard DNA-DNA hybridization. In the present one-month, single center, single product, prospective cohort trial, 37 adults (mean age 37.6) were assigned to one of four oral health condition cohorts with seven to 10 subjects each: 1. mild gingivitis, 2. marked generalized gingivitis to moderate periodontitis, 3. caries-prone and 4. treated moderate to advanced chronic periodontitis in supportive periodontal care. All four groups were asked to use the test dentifrice and a power toothbrush twice a day for one minute during a four-week test period. Before and after the trial period, Plaque Indices (PII, Silness and Löe, 1964) and Gingival Indices (GI, Löe and Silness, 1963) were recorded. Subgingival plaque samples were collected from all patients at Baseline, as well as after two and four weeks. These samples were analyzed for content of 40 bacterial species using checkerboard DNA-DNA hybridization. As a result of the only one minute brushing with the stannous fluoride dentifrice, the mean PII at Baseline was significantly lower (p < 0.05) from the mean PII at four weeks. No statistically significant differences were found between premolar and molar mean values. Moreover, no statistically significant differences were found between the mean GI at Baseline and at four weeks. The microbiological analysis showed that at baseline subjects in groups 2 and 4 had significantly higher bacterial loads of bacteria than groups 1, and 3 (i.e. A. actinomyctemcomitans P. gingivalis, T. forsythia, and T. denticola. Over the study period, the total bacterial load did not change in groups 2, 3 and 4. In groups 1 and 3, however, an increase in the loads of Streptococci spp. were noticed (p < 0.05) including S. mitis, S. intermedius, and S. sanguis (p < 0.01) suggesting an increase in the presence of early colonizing and health associated bacteria. One minute brushing with a 0.454% stannous fluoride dentifrice did--after four weeks--not affect the subgingival microbial profiles in patients with moderate periodontitis and treated moderate to advanced periodontitis. However, the sulcular microbial profiles of mild gingivitis and caries-prone patients were affected, indicating a shift towards a gingival health associated microbiota in the sulcular region of patients not affected by attachment loss. RUNNING HEAD: Effect of stannous fluoride on sulcular microbiota.

  7. Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation

    PubMed Central

    Salio, Mariolina; Ghadbane, Hemza; Dushek, Omer; Shepherd, Dawn; Cypen, Jeremy; Gileadi, Uzi; Aichinger, Michael C.; Napolitani, Giorgio; Qi, Xiaoyang; van der Merwe, P. Anton; Wojno, Justyna; Veerapen, Natacha; Cox, Liam R.; Besra, Gurdyal S.; Yuan, Weiming; Cresswell, Peter; Cerundolo, Vincenzo

    2013-01-01

    Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery during inflammatory responses. In addition, it is unclear whether saposins, in addition to loading, also promote dissociation of lipids bound to CD1d molecules. To address these questions, we used a combination of cellular assays and demonstrated that saposins influence CD1d-restricted presentation to human iNKT cells not only of exogenous lipids but also of endogenous ligands, such as the self-glycosphingolipid β-glucopyranosylceramide, up-regulated by antigen-presenting cells following bacterial infection. Furthermore, we demonstrated that in human myeloid cells CD1d-loading of endogenous lipids after bacterial infection, but not at steady state, requires trafficking of CD1d molecules through an endo-lysosomal compartment. Finally, using BIAcore assays we demonstrated that lipid-loaded saposin B increases the off-rate of lipids bound to CD1d molecules, providing important insights into the mechanisms by which it acts as a “lipid editor,” capable of fine-tuning loading and unloading of CD1d molecules. These results have important implications in understanding how to optimize lipid-loading onto antigen-presenting cells, to better harness iNKT cells central role at the interface between innate and adaptive immunity. PMID:24248359

  8. Copper as an antibacterial material in different facilities.

    PubMed

    Inkinen, J; Mäkinen, R; Keinänen-Toivola, M M; Nordström, K; Ahonen, M

    2017-01-01

    The present study was performed in real life settings in different facilities (hospital, kindergarten, retirement home, office building) with copper and copper alloy touch surface products (floor drain lids, toilet flush buttons, door handles, light switches, closet touch surfaces, corridor hand rails, front door handles and toilet support rails) in parallel to reference products. Pure copper surfaces supported lower total bacterial counts (16 ± 45 vs 105 ± 430 CFU cm -2 , n = 214, P < 0·001) and a lower occurrence of Staphylococcus aureus (2·6 vs 14%, n = 157, P < 0·01) and Gram-negatives (21 vs 34%, n = 214, P < 0·05) respectively than did reference surfaces, whereas the occurrence of enterococci (15%, n = 214, P > 0·05) was similar. The studied products could be assigned to three categories according to their bacterial loads as follows (P < 0·001): floor drain lids (300 ± 730 CFU cm -2 , n = 32), small area touch surfaces (8·0 ± 7·1 to 62 ± 160 CFU cm -2 , n = 90) and large area touch surfaces (1·1 ± 1·1 to 1·7 ± 2·4 CFU cm -2 , n = 92). In conclusion, copper touch surface products can function as antibacterial materials to reduce the bacterial load, especially on frequently touched small surfaces. The efficiency of copper as an antimicrobial material has been noted in laboratory studies and in the hospital environment. The present study further shows that copper exerted an antibacterial effect in different facilities, i.e. in a hospital, a kindergarten, an office building and in a retirement home for the elderly. The study suggests that copper has potential use as an antibacterial material and therefore might serve as a means to lower the incidence of transmission of infectious agents from inanimate surfaces in different facilities, with everyday functions. © 2016 The Society for Applied Microbiology.

  9. [Effect analysis on the two total load control methods for poisonous heavy metals].

    PubMed

    Fu, Guo-Wei

    2012-12-01

    Firstly it should be made clear that implementation of source total load control for the first type of pollutants is necessary for environmental pollution control legislation and economic structure regulation. This kind of surveillance method has been more practical to be implemented since the Manual of the Industry Discharge Coefficient of First National Pollution Sources Investigation was published. The source total load control and water environment total load control are independent of each other and none of them is redundant, on the other side they can be complementary to each other. In the present, some local planning managers are blurring and confusing the contents and styles of the two surveillance methods. They just use the water total load control to manage all the pollutants, and source total load control is discarded, which results in the loss of control for the first type of pollutants especially for the drinking water source surveillance. There is a big difference between the water quality standards and the water environmental background concentration values for the first type of pollutants in the Environmental quality standard for surface water (GB 3838-88), which means that there are problems such as "relaxing the pollutant discharge permit" and "risk induced by valence state change". Taking an enterprise with 10t electrolytic lead production capacity as an example, there is a big difference between the allowable lead discharged loads by the two total load surveillance methods. In summary, it will bring a lot of harmful effects if the water total load control is implemented for the two types of pollutants, so the source total load control and water environmental total load control should be implemented strictly at the same time.

  10. Microbiological properties and biogenic amines of whole pike-perch (Sander lucioperca, linnaeus 1758): a perspective on fish safety during postharvest handling practices and frozen storage.

    PubMed

    Ehsani, Ali; Jasour, Mohammad Sedigh

    2012-12-01

    The biogenic amines (tyramine, histamine, cadaverine, and puterscine) and microbiological properties (mesophilic, psychrotrophic, and Pseudomonas spp.) of whole pike-perch (Sander lucioperca) was investigated during 2 d prestorage icing and 90 d frozen storage (-24 °C). At the end of ice storage, a noticeable increase only was found for puterscine level (P < 0.05), and microbial loads of fish increased in comparison with fresh fish (P < 0.05). During the frozen storage, as time passed, a continuous increase of biogenic amines and decrease of bacterial load (except for Pseudomonas spp. at the last 30 d) was detected (P < 0.05). The total contents of biogenic amines ranged from 6.24 to 91.76 μg/g during the investigated period. Puterscine was the major amine detected in pike-perch and its concentration varied between 1.75 and 56.95 μg/g; due to a more step-wise increase it was a good quality indicator. At the end of storage, all of the obtained values are below the tolerable maximum amounts based on available regulations. Based on biogenic amines content and microbial load, it could be concluded that pike-perch can be consumed without any health risks after 2 d icing condition and 90 d frozen storage. © 2012 Institute of Food Technologists®

  11. Bacterial treatment effectiveness of point-of-use ceramic water filters.

    PubMed

    Bielefeldt, Angela R; Kowalski, Kate; Summers, R Scott

    2009-08-01

    Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 10(6)CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 10(3)-10(5)CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained <20-41 CFU/mL in two of the filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.

  12. Relationship between airway colonization, inflammation and exacerbation frequency in COPD.

    PubMed

    Tumkaya, Munir; Atis, Sibel; Ozge, Cengiz; Delialioglu, Nuran; Polat, Gurbuz; Kanik, Arzu

    2007-04-01

    To evaluate bacterial colonization and the airway inflammatory response, and its relationship to the frequency of exacerbation in patients with stable chronic obstructive pulmonary disease (COPD). Quantitative bacteriologic cultures, neutrophil elastase, myeloperoxidase (MPO), tumor necrosis factor alpha (TNF-alpha) and interleukin (IL)-8 were measured in bronchoalveoler lavage (BAL) in 39 patients with stable COPD [19 with frequent exacerbation (> or = 3/year), and 20 with infrequent] and in 18 healthy controls (10 smokers and 8 non-smokers). BAL revealed the microorganisms with potential pathogenicity above the established threshold (> or = 10(3)cfu/ml) in 68.4% of patients with frequent exacerbation, 55% of infrequent exacerbation, 40% of smokers and 12.5% of non-smokers controls (P=0.05). BAL MPO, IL-8 and TNF-alpha levels were found to be significantly higher in COPD as compared to controls (P=0.001). However, only IL-8 level was significantly higher in COPD patients with frequent exacerbation as compared to infrequent (P=0.001). Airway bacterial load correlated with levels of airway inflammation markers in COPD (P<0.05). The bacterial load and airway inflammation contributes to each other in stable COPD. However, there is a link only between interleukine (IL)-8 and frequent exacerbations. Clearly, the relationship between bacterial colonization, airway inflammation and frequent exacerbations is of major importance in understanding of the COPD pathogenesis.

  13. Direct Loading and Tunable Release of Antibiotics from Polyelectrolyte Multilayers To Reduce Bacterial Adhesion and Biofilm Formation.

    PubMed

    Wang, Bailiang; Jin, Tingwei; Xu, Qingwen; Liu, Huihua; Ye, Zi; Chen, Hao

    2016-05-18

    Bacteria adhesion on the surface of biomaterials and following biofilm formation are important problems in biomedical applications. The charged antibiotics with small molar mass can hardly deposit alternately with polymers into multilayered films to load the drug. Herein, the (poly(acrylic acid)-gentamicin/poly(ethylenimine))n ((PAA-GS/PEI)n) multilayer film was designed and constructed via a layer-by-layer self-assembly method. Low molar mass GS cations were first combined with polyanion PAA and self-assembled with PEI to form multilayer films showing exponential growth behavior. The GS dosage could be adjusted by changing the layer number of films. Furthermore, the thermal cross-linking method was used to control the release rate of GS in PBS buffer. Owing to the diffusion of GS, a zone of inhibition of about 7.0 mm showed the efficient disinfection activity of the multilayer film. It could also be seen from the biofilm inhibition assay that the multilayer film effectively inhibited bacterial adhesion and biofilm formation. As the drug loading dosage was 160 μg/cm(2), the multilayer films showed very low cytotoxicity against human lens epithelial cells. The present work provides an easy way to load GS into multilayer films which can be applied to surface modification of implants and biomedical devices.

  14. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.

    PubMed

    Moritz, Sebastian; Wiegand, Cornelia; Wesarg, Falko; Hessler, Nadine; Müller, Frank A; Kralisch, Dana; Hipler, Uta-Christina; Fischer, Dagmar

    2014-08-25

    Although bacterial nanocellulose (BNC) may serve as an ideal wound dressing, it exhibits no antibacterial properties by itself. Therefore, in the present study BNC was functionalized with the antiseptic drug octenidine. Drug loading and release, mechanical characteristics, biocompatibility, and antimicrobial efficacy were investigated. Octenidine release was based on diffusion and swelling according to the Ritger-Peppas equation and characterized by a time dependent biphasic release profile, with a rapid release in the first 8h, followed by a slower release rate up to 96 h. The comparison between lab-scale and up-scale BNC identified thickness, water content, and the surface area to volume ratio as parameters which have an impact on the control of the release characteristics. Compression and tensile strength remained unchanged upon incorporation of octenidine in BNC. In biological assays, drug-loaded BNC demonstrated high biocompatibility in human keratinocytes and antimicrobial activity against Staphylococcus aureus. In a long-term storage test, the octenidine loaded in BNC was found to be stable, releasable, and biologically active over a period of 6 months without changes. In conclusion, octenidine loaded BNC presents a ready-to-use wound dressing for the treatment of infected wounds that can be stored over 6 months without losing its antibacterial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers.

    PubMed

    van Oene, Maarten M; Dickinson, Laura E; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H

    2017-03-07

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor's response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor's performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level.

  16. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    PubMed Central

    van Oene, Maarten M.; Dickinson, Laura E.; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor’s response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor’s performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level. PMID:28266562

  17. High bacterial contamination rate of electrocautery tips during total hip and knee arthroplasty.

    PubMed

    Abdelaziz, Hussein; Zahar, Akos; Lausmann, Christian; Gehrke, Thorsten; Fickenscher, Helmut; Suero, Eduardo M; Gebauer, Matthias; Citak, Mustafa

    2018-04-01

    The aim of the study was to quantify the bacterial contamination rate of electrocautery tips during primary total joint replacement (TJR), as well as during aseptic and septic revision TJR. A total of 150 electrocautery tips were collected between April and July 2017. TJR surgeries were divided into three groups: (1) primary, (2) aseptic and (3) septic revisions. In each group, a total of 50 electrocautery tips were collected. A monopolar electrocautery with a reusable stainless-steel blade tip was used in all cases. The rate of bacterial contamination was determined for all groups. Correlation of exposure time and type of surgery was analyzed. The overall bacterial contamination rate was 14.7% (95% CI 9.4 to 21.4%). The highest contamination rate occurred in the septic revision group (30.0%; 95% CI 17.9 to 44.6%), followed by the primary cases group (10.0%; 95% CI 3.3 to 21.8%) and the aseptic revision group (4.0%; 95% CI 0.5 to 13.7%). Exposure time did not affect the bacterial contamination rate. In 12 out of 15 (80%) contaminations identified in the septic group, we found the same causative microorganism of the prosthetic joint infection on the electrocautery tip. The bacterial contamination of the electrocautery tips is relatively high, especially during septic hip revision arthroplasty. Electrocautery tips should be changed after debridement of infected tissue.

  18. Decontamination of stethoscope membranes with chlorhexidine: Should it be recommended?

    PubMed

    Álvarez, José A; Ruíz, Susana R; Mosqueda, Juan L; León, Ximena; Arreguín, Virginia; Macías, Alejandro E; Macias, Juan H

    2016-11-01

    To determine differences in the recontamination of stethoscope membranes after cleaning with chlorhexidine, triclosan, or alcohol. Experimental, controlled, blinded trial to determine differences in the bacterial load on stethoscope membranes. Membranes were cultured by direct imprint after disinfection with 70% isopropyl alcohol, 1% triclosan, or 1% chlorhexidine and normal use for 4 hours. As a baseline and an immediate effect control, bacterial load of membranes without disinfection and after 1 minute of disinfection with isopropyl alcohol was determined as well. Three hundred seventy cultures of in-use stethoscopes were taken, 74 from each arm. In the baseline arm the median growth was 10 CFU (interquartile range [IQR], 32-42 CFU); meanwhile, in the isopropyl alcohol immediate-effect arm it was 0 CFU (IQR, 0-0 CFU). In the arms cultured after 4 hours, a median growth of 8 CFU (IQR, 1-28 CFU) in the isopropyl alcohol arm, 4 CFU (IQR, 0-17 CFU) in the triclosan arm, and 0 CFU (IQR, 0-1 CFU) in the chlorhexidine arm were seen. No significant differences were observed between the bacterial load of the chlorhexidine arm (after 4 hours of use) and that of the isopropyl alcohol arm (after 1 minute without use) (Z= 2.41; P > .05). Chlorhexidine can inhibit recontamination of stethoscope membranes and its use could help avoid cross-infection. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    PubMed

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood coagulation. It also has been shown to produce symptomatic improvement in chronic, muscle and joint pain, a reduction in overall stress levels and tensions, a boost in positive moods, an improvement in heart rate variability, and an improvement in the immune response.

  20. Assessment of variable drinking water sources used in Egypt on broiler health and welfare.

    PubMed

    ELSaidy, N; Mohamed, R A; Abouelenien, F

    2015-07-01

    This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1) received farm tap water; (T2) received filtered tap water (T3) received farm stored water at rooftop tanks, (T4) received underground (well) water. All water sources showed no significant differences among treated groups at (p>0.05) for most of the performance parameters and carcass characteristics. However (T2) group showed higher records for body weight (BWT), BWT gain (BWG), feed conversion ratio, bursa weight, serum total protein, globulin (G), albumin (A) and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI), WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS), electrical conductivity (EC) and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens' health and welfare. Draw attention to the importance of maintaining the hygienic quality of stored water.

  1. Assessment of variable drinking water sources used in Egypt on broiler health and welfare

    PubMed Central

    ELSaidy, N.; Mohamed, R. A.; Abouelenien, F.

    2015-01-01

    Aim: This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. Materials and Methods: A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1) received farm tap water; (T2) received filtered tap water (T3) received farm stored water at rooftop tanks, (T4) received underground (well) water. Results: All water sources showed no significant differences among treated groups at (p>0.05) for most of the performance parameters and carcass characteristics. However (T2) group showed higher records for body weight (BWT), BWT gain (BWG), feed conversion ratio, bursa weight, serum total protein, globulin (G), albumin (A) and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI), WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS), electrical conductivity (EC) and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Conclusion: Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens’ health and welfare. Draw attention to the importance of maintaining the hygienic quality of stored water. PMID:27047165

  2. Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load

    PubMed Central

    Feng, Cuijie; Li, Jiangwei; Qin, Dan; Chen, Lixiang; Zhao, Feng; Chen, Shaohua; Hu, Hongbo; Yu, Chang-Ping

    2014-01-01

    Microorganisms capable of generating electricity in microbial fuel cells (MFCs) have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu) shock load by Hungate roll-tube technique with solid ferric (III) oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load) and B4B2 (after Cu shock load) were chosen for further analysis. B4B2 is resistant to 200 mg L−1 of Cu(II) while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB) broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m−2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density. PMID:25412475

  3. Predictive Value of Decoy Receptor 3 in Postoperative Nosocomial Bacterial Meningitis

    PubMed Central

    Liu, Yong-Juan; Shao, Li-Hua; Wang, Qian; Zhang, Jian; Ma, Rui-Ping; Liu, Hai-Hong; Dong, Xiao-Meng; Ma, Li-Xian

    2014-01-01

    Nosocomial bacterial meningitis requires timely treatment, but what is difficult is the prompt and accurate diagnosis of this disease. The aim of this study was to assess the potential role of decoy receptor 3 (DcR3) levels in the differentiation of bacterial meningitis from non-bacterial meningitis. A total of 123 patients were recruited in this study, among them 80 patients being with bacterial meningitis and 43 patients with non-bacterial meningitis. Bacterial meningitis was confirmed by bacterial culture of cerebrospinal fluid (CSF) culture and enzyme-linked immunosorbent assay (ELISA) was used to detect the level of DcR3 in CSF. CSF levels of DcR3 were statistically significant between patients with bacterial meningitis and those with non-bacterial meningitis (p < 0.001). A total of 48.75% of patients with bacterial meningitis received antibiotic >24 h before CSF sampling, which was much higher than that of non-bacterial meningitis. CSF leucocyte count yielded the highest diagnostic value, with an area under the receiver operating characteristic curve (ROC) of 0.928, followed by DcR3. At a critical value of 0.201 ng/mL for DcR3, the sensitivity and specificity were 78.75% and 81.40% respectively. DcR3 in CSF may be a valuable predictor for differentiating patients with bacterial meningitis from those with non-bacterial meningitis. Further studies are needed for the validation of this study. PMID:25372942

  4. Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas.

    PubMed

    Qiao, Wei; Takayanagi, Kazuyuki; Niu, Qigui; Shofie, Mohammad; Li, Yu You

    2013-12-01

    The performance of thermophilic anaerobic co-digestion of coffee grounds and sludge using membrane reactor was investigated for 148 days, out of a total research duration of 263 days. The OLR was increased from 2.2 to 33.7 kg-COD/m(3)d and HRT was shortened from 70 to 7 days. A significant irreversible drop in pH confirmed the overload of reactor. Under a moderately high OLR of 23.6 kg-COD/m(3)d, and with HRT and influent total solids of 10 days and 150 g/L, respectively, the COD removal efficiency was 44.5%. Hydrogen in biogas was around 100-200 ppm, which resulted in the persistent propionate of 1.0-3.2g/L. The VFA consumed approximately 60% of the total alkalinity. NH4HCO3 was supplemented to maintain alkalinity. The stability of system relied on pH management under steady state. The 16SrDNA results showed that hydrogen-utilizing methanogens dominates the archaeal community. The propionate-oxidizing bacteria in bacterial community was insufficient. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Particulate organic carbon mass distribution at the Bermuda Atlantic Time-series Study (BATS) site

    NASA Astrophysics Data System (ADS)

    Gundersen, Kjell; Orcutt, Karen M.; Purdie, Duncan A.; Michaels, Anthony F.; Knap, Anthony H.

    Errors in total particulate organic carbon (total POC) measurements caused by particles settling in Niskin water samplers, loss of bacterial cells during filtration and undersampling of rare particles such as the diazotrophic cyanobacterium Trichodesmium spp. were investigated at the Bermuda Atlantic Time-series Study (BATS) site. Regular core samples of temperature, primary production, bacterial abundance, chlorophyll- a (Chl- a) and POC were collected at monthly intervals from 1991 to 1996. During this period of time, shorter investigations of particles settling in water samples (1991-1992), bacterial cells lost during filtration (1992-1993), and Trichodesmium abundance (1995-1996) were performed at the BATS site. The BATS site shows striking seasonal patterns in hydrography and phytoplankton primary productivity, with a strong maximum immediately following the deep winter mixing of the water column. Following the peak in primary production, bacterial abundance showed only slightly elevated levels in spring. Maxima of Chl- a and POC also were associated with the primary production peaks, but these particle concentrations became less pronounced through summer and fall. An average of 26% of total POC collected in Niskin water bottles settled below the spigot before it could be sampled. An average of 47% of all bacterial cells passed the nominal pore size of a Whatman GF/F filter, and total POC measurements generated from GF/F filtered seawater samples had to be corrected for this loss. The average integrated stocks of total POC in the upper 65 m of the water column was 32% pigmented phytoplankton, 15% microheterotrophs, 54% other detrital matter (32 : 15 : 54). Phytoplankton C equaled bacterial C in the 65-135 m depth range (16 : 19 : 65), but phytoplankton C was virtually non-existent deeper than 135 m (2 : 14 : 74). Bacterial C biomass was higher than phytoplankton in surface waters outside the spring bloom period, but carbon not accounted for by phytoplankton and bacteria (other C) showed an overall dominance throughout the year. Uncorrected, suspended POC collected on GF/F filters (POC SW) was nearly equal to the sum of phytoplankton C and bacterial C alone, and hence, the other C fraction of total POC was largely generated by the addition of settling particles (POC Dreg). Seasonal occurrences of rare particles such as Trichodesmium colonies in surface waters in late summer may account for as much as 17-56% of total POC. Settling particles and Trichodesmium colonies, seldom included in POC estimates from temperate and tropical regions, constituted more than half of total POC measured in surface waters at BATS.

  6. Comparison of fluorescence microscopy and solid-phase cytometry methods for counting bacteria in water

    USGS Publications Warehouse

    Lisle, John T.; Hamilton, Martin A.; Willse, Alan R.; McFeters, Gordon A.

    2004-01-01

    Total direct counts of bacterial abundance are central in assessing the biomass and bacteriological quality of water in ecological and industrial applications. Several factors have been identified that contribute to the variability in bacterial abundance counts when using fluorescent microscopy, the most significant of which is retaining an adequate number of cells per filter to ensure an acceptable level of statistical confidence in the resulting data. Previous studies that have assessed the components of total-direct-count methods that contribute to this variance have attempted to maintain a bacterial cell abundance value per filter of approximately 106 cells filter-1. In this study we have established the lower limit for the number of bacterial cells per filter at which the statistical reliability of the abundance estimate is no longer acceptable. Our results indicate that when the numbers of bacterial cells per filter were progressively reduced below 105, the microscopic methods increasingly overestimated the true bacterial abundance (range, 15.0 to 99.3%). The solid-phase cytometer only slightly overestimated the true bacterial abundances and was more consistent over the same range of bacterial abundances per filter (range, 8.9 to 12.5%). The solid-phase cytometer method for conducting total direct counts of bacteria was less biased and performed significantly better than any of the microscope methods. It was also found that microscopic count data from counting 5 fields on three separate filters were statistically equivalent to data from counting 20 fields on a single filter.

  7. Meso and micro-scale response of post carbon removal nitrifying MBBR biofilm across carrier type and loading.

    PubMed

    Young, Bradley; Banihashemi, Bahman; Forrest, Daina; Kennedy, Kevin; Stintzi, Alain; Delatolla, Robert

    2016-03-15

    This study investigates the effects of three specific moving bed biofilm reactor (MBBR) carrier types and two surface area loading rates on biofilm thickness, morphology and bacterial community structure of post carbon removal nitrifying MBBR systems along with the effects of carrier type and loading on ammonia removal rates and effluent solids settleability. The meso and micro analyses show that the AOB kinetics vary based on loading condition, but irrespective of carrier type. The meso-scale response to increases in loading was shown to be an increase in biofilm thickness with higher surface area carriers being more inclined to develop and maintain thicker biofilms. The pore spaces of these higher surface area to volume carriers also demonstrated the potential to become clogged at higher loading conditions. Although the biofilm thickness increased during higher loading conditions, the relative percentages of both the embedded viable and non-viable cells at high and conventional loading conditions remained stable; indicating that the reduced ammonia removal kinetics observed during carrier clogging events is likely due to the observed reduction in the surface area of the attached biofilm. Microbial community analyses demonstrated that the dominant ammonia oxidizing bacteria for all carriers is Nitrosomonas while the dominant nitrite oxidizing bacteria is Nitrospira. The research showed that filamentous species were abundant under high loading conditions, which likely resulted in the observed reduction in effluent solids settleability at high loading conditions as opposed to conventional loading conditions. Although the settleability of the effluent solids was correlated to increases in abundances of filamentous organisms in the biofilm, analyzed using next generation sequencing, the ammonia removal rate was not shown to be directly correlated to specific meso or micro-scale characteristics. Instead post carbon removal MBBR ammonia removal kinetics were shown to be related to the viable AOB cell coverage of the carriers; which was calculated by normalizing the surface area removal rate by the biofilm thickness, the bacterial percent abundance of ammonia oxidizing bacteria and the percentage of viable cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation

    PubMed Central

    Wang, Andrew; Huen, Sarah C.; Luan, Harding H.; Yu, Shuang; Zhang, Cuiling; Gallezot, Jean-Dominique; Booth, Carmen J.; Medzhitov, Ruslan

    2017-01-01

    Summary Acute infections are associated with a set of stereotypic behavioral responses, including anorexia, lethargy, and social withdrawal. Although these so called sickness behaviors are the most common and familiar symptoms of infections, their roles in host defense are largely unknown. Here we investigated the role of anorexia in models of bacterial and viral infections. We found that anorexia was protective while nutritional supplementation was detrimental in bacterial sepsis. Furthermore, glucose was necessary and sufficient for these effects. In contrast, nutritional supplementation protected against mortality from influenza infection and viral sepsis, while blocking glucose utilization was lethal. In both bacterial and viral models, these effects were largely independent of pathogen load and magnitude of inflammation. Instead, we identify opposing metabolic requirements tied to cellular stress adaptations critical for tolerance of differential inflammatory states. PMID:27610573

  9. Correlation between chronic treatment with proton pump inhibitors and bacterial overgrowth in the stomach: any possible beneficial role for selected lactobacilli?

    PubMed

    Del Piano, Mario; Pagliarulo, Michela; Tari, Roberto; Carmagnola, Stefania; Balzarini, Marco; Lorenzini, Paola; Pane, Marco

    2014-01-01

    The inhibition of physiological gastric acid secretion induced by proton pump inhibitors (PPIs), the most widely used drugs in the world, may cause a significant bacterial overgrowth in the gastrointestinal tract as a side effect. This study was undertaken firstly to correlate PPI intake with concentration of specific bacterial groups in the stomach as well as possible Helicobacter pylori infection, and secondly to assess the efficacy of the 4 lactobacilli L. rhamnosus LR06 (DSM 21981), L. pentosus LPS01 (DSM 21980), L. plantarum LP01 (LMG P-21021), and L. delbrueckii subsp. delbrueckii LDD01 (DSM 22106) in the restoration of a physiological gastric barrier. Total bacteria, sulphite-reducing bacteria (SRB), total coliforms, and total lactobacilli were quantified in samples of gastric juice from 29 subjects taking PPIs for at least 3 months compared with 36 control subjects. The presence of H. pylori was also assessed.The subjects treated with PPIs with a concentration of total bacteria in the gastric juice higher than 10(5) cells/mL were selected for an intervention study with the 4 lactobacilli L. rhamnosus LR06, L. pentosus LPS01, L. plantarum LP01, and L. delbrueckii subsp. delbrueckii LDD01. After 15 days of supplementation, the same bacterial groups were quantified to compare these values with the baseline. No significant correlation was found between the presence of H. pylori and PPI intake. The baseline quantification of bacterial groups (log10 CFU/mL of gastric juice, PPI group vs. control) showed: total bacteria 8.35 versus 3.95 (P<0.001); total coliforms 4.98 versus 2.35 (P<0.001); SRB 5.71 versus 2.28 (P=0.065); and total lactobacilli 3.85 versus 2.20 (P=0.005). After 15 days of treatment with the 4 lactobacilli, the quantification of bacterial groups gave the following results: total bacteria 7.91 versus 8.35 at time zero (P=0.002); total coliforms 4.21 versus 4.98 at time zero (P<0.001); SRB 4.94 versus 5.71 at baseline (P=0.060); and total lactobacilli 7.20 versus 3.85 at baseline (P=0.040). A significant impairment of intragastric acidity is sufficient to induce a relevant bacterial overgrowth, with particular reference to SRB and total coliforms. This fact can contribute to an increase in the risk of infections and intestinal diseases. It could be crucial to restore the physiological "gastric barrier." The 2-week supplementation with the 4 lactobacilli tested proved to be effective in significantly reducing total bacteria and coliforms in the gastric milieu in subjects chronically treated with PPIs. It is therefore possible to hopothesise a beneficial role for such lactobacilli in clinical practice.

  10. Impacts of Stormwater Management Measures on E. coli and Enterococci Populations in Stormwater Effluent

    NASA Astrophysics Data System (ADS)

    Wildey, R. A.; Ballestero, T. P.; Roseen, R. M.; Houle, J.

    2005-05-01

    In our efforts to improve the quality of runoff entering our streams and waterways, stormwater management measures (or BMPs) are being implemented at a rapid pace. Usually designed to treat one or more specific types of contamination or loading, these measures may have unintended consequences that are not well understood. One issue that has not been fully explored is the potential effect these systems have on microbial contamination of the treated runoff. This study evaluates 11 types of treatment systems and their impact on E. coli and Enterococci contamination. Recent research has demonstrated that near-shore sediment may act as a continuous source of bacterial loading in the overlying waters, rather than bacterial loading being solely a temporal, storm-driven phenomenon. Similarly, stormwater management measures that utilize a soil media for filtration or incorporate a sediment sump may also provide conditions conducive to the incubation of fecal coliforms that can then be released into the environment during runoff events. Following with EPA regulatory guidelines for receiving waters, E. coli and Enterococci are used as surrogates for the presence of other potential disease-causing pathogens typically associated with mammalian and avian enteric bacteria. The stormwater management measures being investigated include: subsurface infiltration, surface sand filter, standard detention pond, bioretention area, hydrodynamic separation, subsurface gravel wetland, street sweeping, and vegetated swale. An adjacent porous parking area and a standard asphalt lot that drains to a tree filter are similarly monitored. Influent is supplied by runoff generated by a 9-acre commuter parking lot at the University of New Hampshire in Durham, NH. This influent is distributed equally to the different treatment devices that operate in parallel. Water quality parameters (DO, pH, specific conductivity, temperature) and flow are continuously monitored upstream from the distribution chamber (influent) and downstream from each device (effluent). Automated samplers are used to collect samples during storm events and grab samples are taken between storm events to evaluate the effect of each device or BMP on bacterial populations. Initial data indicate that influent concentrations of fecal coliforms for this parking area often exceed EPA limits for Class A waterbodies. Several of the treatment units appear to substantially reduce (>90% reduction) bacterial loading, while others appear to increase loading during some storm events (>500% increase). This study is on-going and additional sample events from the Spring of 2005 will also be presented.

  11. Innate humoural immunity is related to eggshell bacterial load of European birds: a comparative analysis.

    PubMed

    Soler, Juan José; Peralta-Sánchez, Juan Manuel; Flensted-Jensen, Einar; Martín-Platero, Antonio Manuel; Møller, Anders Pape

    2011-09-01

    Fitness benefits associated with the development of a costly immune system would include not only self-protection against pathogenic microorganisms but also protection of host offspring if it reduces the probability and the rate of vertical transmission of microorganisms. This possibility predicts a negative relationship between probabilities of vertical transmission of symbionts and level of immune response that we here explore inter-specifically. We estimated eggshell bacterial loads by culturing heterotrophic bacteria, Enterococcus, Staphylococcus and Enterobacteriaceae on the eggshells of 29 species of birds as a proxy of vertical transmission of bacteria from mother to offspring. For this pool of species, we also estimated innate immune response (natural antibody and complement (lysis)) of adults, which constitute the main defence against bacterial infection. Multivariate general linear models revealed the predicted negative association between natural antibodies and density of bacteria on the eggshell of 19 species of birds for which we sampled the eggs in more than one nest. Univariate analyses revealed significant associations for heterotrophic bacteria and for Enterobacteriaceae, a group of bacteria that includes important pathogens of avian embryos. Therefore, these results suggest a possible trans-generational benefit of developing a strong immune system by reducing vertical transmission of pathogens.

  12. Innate humoural immunity is related to eggshell bacterial load of European birds: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Soler, Juan José; Peralta-Sánchez, Juan Manuel; Flensted-Jensen, Einar; Martín-Platero, Antonio Manuel; Møller, Anders Pape

    2011-09-01

    Fitness benefits associated with the development of a costly immune system would include not only self-protection against pathogenic microorganisms but also protection of host offspring if it reduces the probability and the rate of vertical transmission of microorganisms. This possibility predicts a negative relationship between probabilities of vertical transmission of symbionts and level of immune response that we here explore inter-specifically. We estimated eggshell bacterial loads by culturing heterotrophic bacteria, Enterococcus, Staphylococcus and Enterobacteriaceae on the eggshells of 29 species of birds as a proxy of vertical transmission of bacteria from mother to offspring. For this pool of species, we also estimated innate immune response (natural antibody and complement (lysis)) of adults, which constitute the main defence against bacterial infection. Multivariate general linear models revealed the predicted negative association between natural antibodies and density of bacteria on the eggshell of 19 species of birds for which we sampled the eggs in more than one nest. Univariate analyses revealed significant associations for heterotrophic bacteria and for Enterobacteriaceae, a group of bacteria that includes important pathogens of avian embryos. Therefore, these results suggest a possible trans-generational benefit of developing a strong immune system by reducing vertical transmission of pathogens.

  13. Impact of rectal gonorrhoea and chlamydia on HIV viral load in the rectum: potential significance for onward transmission.

    PubMed

    Davies, Olubanke; Costelloe, Sinead; Cross, Gemma; Dew, Tracy; O'Shea, Siobhan; White, John; Fox, Julie

    2017-09-01

    The aim of this study was to investigate the effect of asymptomatic rectal bacterial sexually transmitted infections (STIs) on rectal HIV viral load (VL). A prospective cohort study of HIV-positive men who have sex with men attending a tertiary centre in London, UK, for their routine HIV care was performed. Forty-two HIV-positive men who have sex with men were recruited between January and August 2014. In participants on antiretroviral therapy (ART), there was no significant difference in rectal VL in those with and without STI ( p = 0.4). All rectal HIV VLs were below the limit of detection (<100 copies/µg of total RNA) whether an STI was present or not. In those not on ART, rectal HIV VL was on average 0.6log 10 lower post STI treatment. The presence of asymptomatic rectal chlamydia and gonorrhoea was not associated with increased rectal HIV VL in those fully suppressed on ART. In the context of effective ART, the presence of rectal gonorrhoea or chlamydia does not appear to increase rectal HIV VL and the risk of increased viral infectivity.

  14. Combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes and activated carbon bioreactor for oilfield wastewater treatment.

    PubMed

    Guo, Chunmei; Chen, Yi; Chen, Jinfu; Wang, Xiaojun; Zhang, Guangqing; Wang, Jingxiu; Cui, Wenfeng; Zhang, Zhongzhi

    2014-10-01

    This paper investigated the enhancement of the COD reduction of an oilfield wastewater treatment process by installing air-lift tubes and adding an activated carbon bioreactor (ACB) to form a combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes (HA/air-lift BCO) and an ACB. Three heat-resistant bacterial strains were cultivated and subsequently applied in above pilot plant test. Installing air-lift tubes in aerobic tanks reduced the necessary air to water ratio from 20 to 5. Continuous operation of the HA/air-lift BCO system for 2 months with a hydraulic retention time of 36 h, a volumetric load of 0.14 kg COD/(m(3)d) (hydrolysis-acidification or anaerobic tank), and 0.06 kg COD/(m(3)d) (aerobic tanks) achieved an average reduction of COD by 60%, oil and grease by 62%, total suspended solids by 75%, and sulfides by 77%. With a COD load of 0.56 kg/(m(3)d), the average COD in the ACB effluent was 58 mg/L. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The cervical mucus plug inhibits, but does not block, the passage of ascending bacteria from the vagina during pregnancy.

    PubMed

    Hansen, Lea K; Becher, Naja; Bastholm, Sara; Glavind, Julie; Ramsing, Mette; Kim, Chong J; Romero, Roberto; Jensen, Jørgen S; Uldbjerg, Niels

    2014-01-01

    To evaluate the microbial load and the inflammatory response in the distal and proximal parts of the cervical mucus plug. Experimental research. Twenty women with a normal, singleton pregnancy. Vaginal swabs and specimens from the distal and proximal parts of the cervical mucus plug. Immunohistochemistry, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction and histology. The total bacterial load (16S rDNA) was significantly lower in the cervical mucus plug compared with the vagina (p = 0.001). Among women harboring Ureaplasma parvum, the median genome equivalents/g were 1574 (interquartile range 2526) in the proximal part, 657 (interquartile range 1620) in the distal part and 60,240 (interquartile range 96,386) in the vagina. Histological examinations and quantitative polymerase chain reaction revealed considerable amounts of lactobacilli and inflammatory cells in both parts of the cervical mucus plug. The matrix metalloproteinase-8 concentration was decreased in the proximal part of the plug compared with the distal part (p = 0.08). The cervical mucus plug inhibits, but does not block, the passage of Ureaplasma parvum during its ascending route from the vagina through the cervical canal. © 2013 Nordic Federation of Societies of Obstetrics and Gynecology.

  16. Growth of Salmonella on sprouting alfalfa seeds as affected by the inoculum size, native microbial load and Pseudomonas fluorescens 2-79.

    PubMed

    Liao, C-H

    2008-02-01

    To investigate the growth of salmonellae on sprouting alfalfa seeds as affected by the inoculum size, microbial load and Pseudomonas fluorescens 2-79. Alfalfa seeds pre-inoculated with < or =10(1)-10(3) CFU g(-1) of salmonellae and with or without Ps. fluorescens 2-79 were sprouted in glass jars and the population of salmonellae were determined daily for up to 6 days. The population of salmonellae on germinating seeds reached the maximum 2-3 days after sprouting when total bacterial count reached the maximum (10(9) CFU g(-1)). The population of salmonellae on sprouting seeds not treated with Ps. fluorescens 2-79 showed a net increase of 3-4 log units. However, the population of salmonellae on alfalfa seeds treated with Ps. fluorescens 2-79 showed a net increase of only 1-2 log units. Disinfection of seeds with calcium hypochlorite enhanced the growth of salmonellae. Treatment of seeds with Ps. fluorescens 2-79 reduced the growth of salmonellae by 2-3 log units. The potential of Ps. fluorescens 2-79 as a biological agent for use in control of salmonellae on sprouting seeds was demonstrated and warrants further investigation.

  17. Metal coated colloidosomes as carriers for an antibiotic

    NASA Astrophysics Data System (ADS)

    Sun, Qian; Zhao, Ziyan; Hall, Elizabeth A. H.; Routh, Alexander F.

    2018-06-01

    Colloidosomes are polymer shell microcapsules. They are stable and easy to prepare and have been used to encapsulate drugs for release at specific areas in the body. Traditional polymer shell capsules cannot totally seal drugs, since they are porous and small molecules diffuse through the polymer shell. In this paper, we report a method for encapsulating an antibiotic kanamycin using gold or silver coated colloidosomes. The colloidosomes are impermeable and can be triggered using ultrasound. To investigate the application of the capsules in a biological system, Escherichia Coli (E.coli) was chosen as a model organism. After triggering, the released antibiotic, as well as the metal shell fragments, kill E.coli. Both the silver and gold shells colloidosomes are toxic to this bacterial system and the gold coated colloidosomes can load a higher concentration of kanamycin.

  18. Efficacy of an ethanol/guar/triclosan/glycerine gel on bacteria and yeast loads in canine pododermatitis: a pilot study.

    PubMed

    Ortalda, C; Noli, C; Cena, T

    2016-04-01

    To assess efficacy of a gel compound containing guar, glycerine, triclosan and ethanol (Pawcare®, JOKER Technologies, Kerzers, Switzerland) in decreasing bacterial and yeast loads on the paws of dogs with erythematous, greasy and/or malodorous pododermatitis. In 20 dogs, each with at least two affected paws, semiquantitative Malassezia species counts were performed on 10 oil-immersion fields (range: 0 to 30) from acetate tapes pressed on the palmar/plantar surface of one paw. Half of the area was sampled before and the other half immediately after the application of Pawcare(®) . With a similar procedure, swab samples were collected from the other paw for bacterial culture, identification and evaluation of colony-forming units before and immediately after treatment. Statistical evaluation of pre- and posttreatment counts was performed with the Wilcoxon signed-rank test. Nine dogs were positive for Malassezia species Mean acetate tape preparation counts decreased significantly from 8·78 (±8·03) to 5·668 (±6·65) (P=0·0039) after treatment. Twenty-five bacterial isolates of 11 different species were cultured in 19 dogs. Posttreatment cultures were sterile in 8 dogs that had an initial zero or low number (1 to 2 log counts) of colony-forming units. In cases with a higher pre-treatment number of colony forming units (2 to 6 log counts), there was a significant decrease - by a mean of 1·16 log counts (pre 3·12 ±1·69, post 1·96 ±1·57) (P=0·0002). The findings of the present study support the use of PawCare® gel to decrease bacterial and yeast loads in dogs affected by chronic diseases involving the inter-digital spaces. © 2016 British Small Animal Veterinary Association.

  19. Antibacterial efficacy of an endodontic sonic-powered irrigation system: An in vitro study.

    PubMed

    Zeng, Chang; Willison, Jon; Meghil, Mohamed M; Bergeron, Brian E; Cutler, Christopher W; Tay, Franklin R; Niu, Lina; Ma, Jingzhi

    2018-06-13

    To evaluate the efficacy of EDDY, a new sonic-powered irrigation system, in reducing intracanal bacteria load. Thirty-eight instrumented, autoclaved single-rooted human premolars were inoculated with Enterococcus faecalis (ATCC-29212) for 21 days. Two teeth were used as negative control without bacterial contamination. For the bacteria-inoculated teeth, 6 were used as positive control without irrigation. The remaining 30 teeth were randomly divided into 2 groups (N = 15), using 3% NaOCl as irrigant: (A) 30-gauge syringe needle irrigation (SNI), (B) EDDY (VDW, Munich, Germany). Twelve teeth per group and 4 teeth in the positive control were evaluated for bacterial reduction using MTT assay. The remaining teeth were split for BacLight LIVE/DEAD staining to examine the percentages of live/dead bacteria present in the dentinal tubules from different canal locations (coronal, mid-root and apical portions of the canal space) using confocal laser scanning microscopy (CLSM). MTT assay indicated that both SNI and EDDY significantly reduced overall intracanal bacterial load compared with the positive control, with no significant difference between the two techniques. CLSM indicated that EDDY had better intratubular bacterial killing efficacy than SNI in the coronal and mid-root portions of the canal space only but not in the apical portion. In all canal locations (coronal, mid-root apical), both systems failed to eliminate bacteria that proliferated deep within the dentinal tubules. With the use of 3% NaOCl, sonic-powered irrigant activation with EDDY tips did not provide additional advantage over SNI in killing Enterococcus faecalis from deep intraradicular dentin. Both the sonic-powered root canal irrigant activation system and syringe needle irrigation can reduce intracanal bacteria load but are incapable of completely killing all bacteria that resided deep within the dentinal tubules of root canals infected with Enterococcus faecalis. Published by Elsevier Ltd.

  20. Sensitivity of bacterioplankton nitrogen metabolism to eutrophication in sub-tropical coastal waters of Key West, Florida.

    PubMed

    Hoch, Matthew P; Dillon, Kevin S; Coffin, Richard B; Cifuentes, Luis A

    2008-05-01

    Expression of intracellular ammonium assimilation enzymes were used to assess the response of nitrogen (N) metabolism in bacterioplankton to N-loading of sub-tropical coastal waters of Key West, Florida. Specific activities of glutamine synthetase (GS) and total glutamate dehydrogenase (GDHT) were measured on the bacterial size fraction (<0.8 microm) to assess N-deplete versus N-replete metabolic states, respectively. Enzyme results were compared to concentrations of dissolved organic matter and nutrients and to the biomass and production of phytoplankton and bacteria. Concentrations of dissolved inorganic N (DIN), dissolved organic N (DON), and dissolved organic carbon (DOC) positively correlated with specific activities of GDHT and negatively correlated with that of GS. Total dissolved N (TDN) concentration explained 81% of variance in bacterioplankton GDHT:GS activity ratio. The GDHT:GS ratio, TDN, DOC, and bacterial parameters decreased in magnitude along a tidally dynamic trophic gradient from north of Key West to south at the reef tract, which is consistent with the combined effects of localized coastal eutrophication and tidal exchange of seawater from the Southwest Florida Shelf and Florida Strait. The N-replete bacterioplankton north of Key West can regenerate ammonium which sustains primary production transported south to the reef. The range in GDHT:GS ratios was 5-30 times greater than that for commonly used indicators of planktonic eutrophication, which emphasizes the sensitivity of bacterioplankton N-metabolism to changes in N-bioavailability caused by nutrient pollution in sub-tropical coastal waters and utility of GDHT:GS ratio as an bioindicator of N-replete conditions.

  1. Sources and loads of nutrients in the South Platte River, Colorado and Nebraska, 1994-95

    USGS Publications Warehouse

    Litke, D.W.

    1996-01-01

    The South Platte River Basin was one of 20 river basins selected in 1991 for investigation as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. Nationwide, nutrients have been identified as one of the primary nationwide water-quality concerns and are of particular interest in the South Platte River Basin where nutrient concentrations are large compared to concentrations in other NAWQA river basins. This report presents estimates of the magnitude of nutrient-source inputs to the South Platte River Basin, describes nutrient concen- trations and loads in the South Platte River during different seasons, and presents comparisons of nutrient inputs to instream nutrient loads. Annual nutrient inputs to the basin were estimated to be 306,000 tons of nitrogen and 41,000 tons of phosphorus. The principal nutrient sources were wastewater-treatment plants, fertilizer and manure applications, and atmospheric deposition. To characterize nutrient concentrations and loads in the South Platte River during different seasons, five nutrient synoptic samplings were conducted during 1994 and 1995. Upstream from Denver, Colorado, during April 1994 and January 1995, total nitrogen concentrations were less than 2 milligrams per liter (mg/L), and total phosphorus concentrations were less than 0.2 mg/L. The water in the river at this point was derived mostly from forested land in the mountains west of Denver. Total nutrient concentrations increased through the Denver metropolitan area, and concentration peaks occurred just downstream from each of Denver's largest wastewater-treatment plants with maximum concentrations of 13.6 mg/L total nitrogen and 2.4 mg/L total phosphorus. Nutrient concen- concentrations generally decreased downstream from Denver. Upstream from Denver during April 1994 and January 1995, total nitrogen loads were less than 1,000 pounds per day (lb/d), and total phosphorus loads were less than 125 lb/d. Total nutrient loads increased through the Denver metropolitan area, and load peaks occurred just downstream from each of Denver's largest wastewater-treatment plants, with a maximum load of 14,000 lb/d total nitrogen and 2,300 lb/d total phosphorus. In April 1994, nutrient loads generally decreased from Henderson, Colorado, to North Platte, Nebraska. In January 1995, however, nutrient loads increased from Henderson to Kersey, Colorado (maximum loads of 31,000 lb/d total nitrogen and 3,000 lb/d total phosphorus), and then decreased from Kersey to North Platte. Seasonal nutrient loads primarily were dependent on streamflow. Total nitrogen loads were largest in June 1994 and January 1995 when streamflows also were largest. During June, streamflow was large, but nitrogen concentrations were small, which indicated that snowmelt runoff diluted the available supply of nitrogen. Total phosphorus loads were largest in June, when streamflow and phosphorus concentrations were large, which indicated an additional source of phosphorus during snowmelt runoff. Streamflow along the South Platte River was smallest in April and August 1994, and nutrient loads also were smallest during these months. The downstream pattern for nutrient loads did not vary much by season. Loads were large at Henderson, decreased between Henderson and Kersey, and usually were largest at Kersey. The magnitude of the decrease in loads between Henderson and Kersey varied between synoptics and was dependent on the amount of water removed by irrigation ditches. Nutrient loads leaving the basin were very small compared to the estimated total nutrient inputs to the basin. Streamflow balances indicated that the South Platte River is a gaining river throughout much of its length; streamflow-balance residuals were as large as 15 cubic feet per second per mile. Nutrient-load balances indicated that increases in river nitrate loads were, in some places, due to nitrification and, elsewhere, were due to the influx of nitrate-enriched ground water to

  2. Coherent Synchrotron-Based Micro-Imaging Employed for Studies of Micro-Gap Formation in Dental Implants

    NASA Astrophysics Data System (ADS)

    Rack, T.; Zabler, S.; Rack, A.; Stiller, M.; Riesemeier, H.; Cecilia, A.; Nelson, K.

    2011-09-01

    Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process.

  3. Coherent Synchrotron-Based Micro-Imaging Employed for Studies of Micro-Gap Formation in Dental Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rack, T.; Stiller, M.; Nelson, K.

    Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior ofmore » the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process.« less

  4. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards.

    PubMed

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-11-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle.

  5. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards* #

    PubMed Central

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-01-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle. PMID:25367788

  6. Emission of bacterial bioaerosols from a composting facility in Maharashtra, India.

    PubMed

    Pahari, Arnab Kumar; Dasgupta, Debdeep; Patil, Rashmi S; Mukherji, Suparna

    2016-07-01

    This study was undertaken to quantify and characterize size-segregated bacterial bioaerosols both on-site and off-site of a waste treatment facility (WTF) in Maharashtra employing windrow composting. Viable bacterial bioaerosols on nutrient agar (NA) and actinomycetes isolation agar (AIA) were quantified after sampling using Anderson-six stage impactor. Viable bacterial bioaerosols were identified based on 16S rDNA sequencing. Approximately, 16-34% of the total viable bacteria collected at the WTF were in the size range 0.65-2.1μm that can penetrate deep into the respiratory tract and also represents bacteria present in free form. Thus, 66-84% of bacterial bioaerosols were associated with coarse airborne particles greater than 2.1μm. A total of 24 bacterial species were isolated and characterized through gram staining. Among these 25% were gram negative and 75% were gram positive. The predominant bacterial genera were Bacillus, Streptococcus, Staphylococcus, Acinetobacter and Kocuria. The mean on-site concentration of total viable bacteria on NA and AIA and airborne particles (PM2.5 and PM10) were higher than the corresponding off-site values. The mean on-site concentration of viable bacteria on NA and AIA were in the range of 3.8×10(3) to 5.4×10(4)CFU/m(3) and 9.8×10(3) to 1.2×10(5)CFU/m(3), respectively, during activity period. Good correlation (R(2)=0.999) was observed between total bioaerosols and aerosols (PM10) collected using Anderson impactor and High volume sampler, respectively. Sampling size segregated aerosols using the Siotus personal cascade impactor indicated higher association of bacteria with the coarse fraction (greater than 2.5μm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Microbial Diversity and Parasitic Load in Tropical Fish of Different Environmental Conditions

    PubMed Central

    Theisen, Stefan; Abdul-Aziz, Muslihudeen A.; Mrotzek, Grit; Palm, Harry W.; Saluz, Hans Peter

    2016-01-01

    In this study we analysed fecal bacterial communities and parasites of three important Indonesian fish species, Epinephelus fuscoguttatus, Epinephelus sexfasciatus and Atule mate. We then compared the biodiversity of bacterial communities and parasites of these three fish species collected in highly polluted Jakarta Bay with those collected in less polluted Indonesian areas of Cilacap (E. sexfasciatus, A. mate) and Thousand Islands (E. fuscoguttatus). In addition, E. fuscoguttatus from net cages in an open water mariculture facility was compared with free living E. fuscoguttatus from its surroundings. Both core and shared microbiomes were investigated. Our results reveal that, while the core microbiomes of all three fish species were composed of fairly the same classes of bacteria, the proportions of these bacterial classes strongly varied. The microbial composition of phylogenetically distant fish species, i.e. A. mate and E. sexfasciatus from Jakarta Bay and Cilacap were more closely related than the microbial composition of more phylogentically closer species, i.e. E. fuscoguttatus, E. sexfasciatus from Jakarta Bay, Cilacap and Thousand Islands. In addition, we detected a weak negative correlation between the load of selected bacterial pathogens, i.e. Vibrio sp. and Photobacterium sp. and the number of endoparasites. In the case of Flavobacterium sp. the opposite was observed, i.e. a weak positive correlation. Of the three recorded pathogenic bacterial genera, Vibrio sp. was commonly found in E. fuscoguttatus from mariculture, and lessly in the vicinity of the net cages and rarely in the fishes from the heavily polluted waters from Jakarta Bay. Flavobacterium sp. showed higher counts in mariculture fish and Photobacteria sp. was the most prominent in fish inside and close to the net cages. PMID:27018789

  8. DNA sequences and proteic antigens of H. pylori in cholecystic bile and tissue of patients with gallstones.

    PubMed

    Neri, V; Margiotta, M; de Francesco, V; Ambrosi, A; Valle, N Della; Fersini, A; Tartaglia, N; Minenna, M F; Ricciardelli, C; Giorgio, F; Panella, C; Ierardi, E

    2005-10-15

    Although Helicobacter pylori DNA sequences have been detected in cholecystic bile and tissue of patients with gallstones, controversial results are reported from different geographic areas. To detect H. pylori in cholecystic bile and tissue of patients with gallstones from a previously uninvestigated geographic area, southern Italy. Detection included both the bacterial DNA and the specific antigen (H. pylori stool antigen) identified in the stools of infected patients for diagnostic purposes. The study enclosed 33 consecutive patients undergoing laparoscopic cholecystectomy for gallstones. DNA sequences of H. pylori were detected by polymerase chain reaction in both cholecystic bile and tissue homogenate. Moreover, we assayed H.pylori stool antigen on gall-bladder cytosolic and biliary proteins after their extraction. Bacterial presence in the stomach was assessed by urea breath test in all patients and Deltadelta13CPDB value assumed as marker of intragastric load. Fisher's exact probability and Student's t-tests were used for statistical analysis. DNA sequences of H. pylori in bile were found in 51.5% and significantly correlated with its presence in cholecystic tissue homogenate (P<0.005), H. pylori stool antigen in gall-bladder (P=0.0013) and bile (P=0.04) proteins, gastric infection (P<0.01) and intragastric bacterial load (P<0.001). No correlation was found, however, with sex and age of the patients. Our prevalence value of bacterial DNA in bile and gall-bladder of patients with gallstones agreed with that of the only other Italian study. The simultaneous presence of both bacterial DNA and proteic antigen suggests that the same prototype of bacterium could be located at both intestinal and cholecystic level and, therefore, the intestine represents the source of biliary contagion.

  9. A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan

    PubMed Central

    Newton, Ryan J.; McLellan, Sandra L.

    2015-01-01

    Water quality is impacted significantly by urbanization. The delivery of increased nutrient loads to waterways is a primary characteristic of this land use change. Despite the recognized effects of nutrient loading on aquatic systems, the influence of urbanization on the bacterial community composition of these systems is not understood. We used massively-parallel sequencing of bacterial 16S rRNA genes to examine the bacterial assemblages in transect samples spanning the heavily urbanized estuary of Milwaukee, WI to the relatively un-impacted waters of Lake Michigan. With this approach, we found that genera and lineages common to freshwater lake epilimnia were common and abundant in both the high nutrient, urban-impacted waterways, and the low nutrient Lake Michigan. Although the two environments harbored many taxa in common, we identified a significant change in the community assemblage across the urban-influence gradient, and three distinct community features drove this change. First, we found the urban-influenced waterways harbored significantly greater bacterial richness and diversity than Lake Michigan (i.e., taxa augmentation). Second, we identified a shift in the relative abundance among common freshwater lineages, where acI, acTH1, Algoriphagus and LD12, had decreased representation and Limnohabitans, Polynucleobacter, and Rhodobacter had increased representation in the urban estuary. Third, by oligotyping 18 common freshwater genera/lineages, we found that oligotypes (highly resolved sequence clusters) within many of these genera/lineages had opposite preferences for the two environments. With these data, we suggest many of the defined cosmopolitan freshwater genera/lineages contain both oligotroph and more copiotroph species or populations, promoting the idea that within-genus lifestyle specialization, in addition to shifts in the dominance among core taxa and taxa augmentation, drive bacterial community change in urbanized waters. PMID:26483766

  10. Impact of the Mk VI SkinSuit on skin microbiota of terrestrial volunteers and an International Space Station-bound astronaut.

    PubMed

    Stabler, Richard A; Rosado, Helena; Doyle, Ronan; Negus, David; Carvil, Philip A; Kristjánsson, Juan G; Green, David A; Franco-Cendejas, Rafael; Davies, Cadi; Mogensen, Andreas; Scott, Jonathan; Taylor, Peter W

    2017-01-01

    Microgravity induces physiological deconditioning due to the absence of gravity loading, resulting in bone mineral density loss, atrophy of lower limb skeletal and postural muscles, and lengthening of the spine. SkinSuit is a lightweight compression suit designed to provide head-to-foot (axial) loading to counteract spinal elongation during spaceflight. As synthetic garments may impact negatively on the skin microbiome, we used 16S ribosomal RNA (rRNA) gene amplicon procedures to define bacterial skin communities at sebaceous and moist body sites of five healthy male volunteers undergoing SkinSuit evaluation. Each volunteer displayed a diverse, distinct bacterial population at each skin site. Short (8 h) periods of dry hyper-buoyancy flotation wearing either gym kit or SkinSuit elicited changes in the composition of the skin microbiota at the genus level but had little or no impact on community structure at the phylum level or the richness and diversity of the bacterial population. We also determined the composition of the skin microbiota of an astronaut during pre-flight training, during an 8-day visit to the International Space Station involving two 6-7 h periods of SkinSuit wear, and for 1 month after return. Changes in composition of bacterial skin communities at five body sites were strongly linked to changes in geographical location. A distinct ISS bacterial microbiota signature was found which reversed to a pre-flight profile on return. No changes in microbiome complexity or diversity were noted, with little evidence for colonisation by potentially pathogenic bacteria; we conclude that short periods of SkinSuit wear induce changes to the composition of the skin microbiota but these are unlikely to compromise the healthy skin microbiome.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Molloy

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles intomore » their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter.« less

  12. Predictors of serious bacterial infections in pediatric burn patients with fever.

    PubMed

    Vyles, David; Sinha, Madhumita; Rosenberg, David I; Foster, Kevin N; Tran, Melissa; Drachman, David

    2014-01-01

    To determine predictors of serious bacterial infections in pediatric burn patients with fever (core temp ≥38.5°C), the authors conducted a retrospective review of medical records of pediatric (0-18 years) patients admitted to the Arizona Burn Center between 2008 and 2011 with greater than 5% TBSA and inpatient hospitalization for ≥72 hours. The study group comprised patients with a febrile episode during their inpatient stay. Serious bacterial infection (the primary outcome variable) was defined as: bacteremia, urinary tract infection, meningitis (blood, urine, or cerebrospinal fluid culture positive for a pathogen respectively), pneumonia, line, and wound infection. A generalized estimating equation analysis was done to predict the presence or absence of serious bacterial infection. Of 1082 pediatric burn patients hospitalized during the study period, 353 met the study eligibility criteria. A total of 108 patients (30.6%) had at least one fever episode (fever group). No difference in demographic characteristics was noted between the fever and no-fever groups; significant differences were observed for: third-degree TBSA, second-degree TBSA, total operating room visits, length of stay, Injury Severity Score, and death. A total of 47.2% of the patients had one or more episodes of fever with serious bacterial infection. In a generalized estimating equation predictive model, presence of a central line, second-, and third-degree TBSA were predictive of serious bacterial infection in burn patients with fever. In this study, individual clinical variables such as tachypnea and tachycardia were not predictive of serious bacterial infections, but the presence of a central line, and larger TBSA were significant predictors of serious bacterial infections. Younger age (P =.08) and ventilator support (P =.057) also approached significance as predictors of serious bacterial infections.

  13. A nitrogen budget of the Scheldt hydrographical basin

    NASA Astrophysics Data System (ADS)

    Billen, G.; Somville, M.; De Becker, E.; Servais, P.

    A nitrogen budget including nitrite, nitrate, ammonium and organic nitrogen is presented for the western Scheldt estuary. The nitrogen entering the estuarine zone is evaluated from measurements of NO 2-, NO 3-, NH 4+ and organic nitrogen concentration at Rupelmonde. These results are part of 10 years survey (1973-1983) of water quality in the Scheldt estuary. The origin of this load in the Scheldt estuary is further investigated by the evaluation of the contribution of domestic, industrial sewages, agriculture and breeding in the nitrogenous load of the upper Scheldt drainage basin. Domestic load is evaluated from the watershed population. Industrial sewages are quantified by use of the evaluation of specific nitrogen spoilage by the various industries as a function of their number of workers. Nitrogen leaching of agricultural soils has been measured by determining the nitrogen concentration in small river draining agricultural areas, upstream any domestic or industrial discharges. Cattle-farming wastes are for the biggest part spread on soils. A fraction however is directly rejected in rivers. Denitrification in the tributaries of the Scheldt is important in the control of nitrate entering the estuarine zone. Its evaluation will be presented. In the estuarine part of the Scheldt (Rupelmonde-Vlissingen), the nitrogenous load is important due to the upstream load and to the sewages of the Antwerp district. These sewages (domestic, industrial, agricultural) have been evaluated as described above for the upper Scheldt basin. The important load carried at that moment by the Scheldt gives rise to an important bacterial activity which results in anaerobic conditions. Denitrification then takes place. This process reduces NO 3- to N 2O and N 2, i.e. eliminates a substantial fraction of the nitrate load in the Scheldt. The importance of this process will be quantified both by measurement of in situ denitrifying activities and by analysis of NO 2- + NO 3- profiles in the river. When reoxidation of the water occurs by reaeration and mixing with well aerated seawater, the total mineral nitrogen has a conservative behaviour as indicated by the (straight) linear relationships between Σ N min and chlorinity, in spite of the primary production, bacterial activities and sediment influence. This conservative behaviour of Σ N min is used in this work for evaluating N min exportation by the Scheldt to the North Sea. The straight line relation extrapolated at low salinity gives a "fictive nitrogen concentration" in fresh water. The product of this "fictive concentration" and the upstream discharge gives an accurate evaluation of the exportation flux of mineral nitrogen to the sea. This work shows the predominant role of denitrification in tributaries of the drainage basin and in the estuary itself as a nitrogen sink which reduces the amount of nitrogen exported by the Scheldt to the North Sea. It is suggested that the pursuit of the present waste water treatment policy, only based on the elimination of the organic load without any tertiary treatment, could result in increasing the nitrogen output into the Belgian-Dutch coastal zones by a factor 2-3.

  14. Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release.

    PubMed

    Albright, Victoria; Zhuk, Iryna; Wang, Yuhao; Selin, Victor; van de Belt-Gritter, Betsy; Busscher, Henk J; van der Mei, Henny C; Sukhishvili, Svetlana A

    2017-10-01

    Self-defensive antibiotic-loaded coatings have shown promise in inhibiting growth of pathogenic bacteria adhering to biomaterial implants and devices, but direct proof that their antibacterial release is triggered by bacterially-induced acidification of the immediate environment under buffered conditions remained elusive. Here, we demonstrate that Staphylococcus aureus and Escherichia coli adhering to such coatings generate highly localized acidification, even in buffered conditions, to activate pH-triggered, self-defensive antibiotic release. To this end, we utilized chemically crosslinked layer-by-layer hydrogel coatings of poly(methacrylic acid) with a covalently attached pH-sensitive SNARF-1 fluorescent label for imaging, and unlabeled-antibiotic (gentamicin or polymyxin B) loaded coatings for antibacterial studies. Local acidification of the coatings induced by S. aureus and E. coli adhering to the coatings was demonstrated by confocal-laser-scanning-microscopy via wavelength-resolved imaging. pH-triggered antibiotic release under static, small volume conditions yielded high bacterial killing efficiencies for S. aureus and E. coli. Gentamicin-loaded films retained their antibacterial activity against S. aureus under fluid flow in buffered conditions. Antibacterial activity increased with the number of polymer layers in the films. Altogether, pH-triggered, self-defensive antibiotic-loaded coatings become activated by highly localized acidification in the immediate environment of an adhering bacterium, offering potential for clinical application with minimized side-effects. Polymeric coatings were created that are able to uptake and selectively release antibiotics upon stimulus by adhering bacteria in order to understand the fundamental mechanisms behind pH-triggered antibiotic release as a potential way to prevent biomaterial-associated infections. Through fluorescent imaging studies, this work importantly shows that adhering bacteria produce highly localized pH changes even in buffer. Accordingly such coatings only demonstrate antibacterial activity by antibiotic release in the presence of adhering bacteria. This is clinically important, because ad libitum releasing antibiotic coatings usually show a burst release and have often lost their antibiotic content when bacteria adhere. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Response of the bacterial community in an on-farm biopurification system, to which diverse pesticides are introduced over an agricultural season.

    PubMed

    Holmsgaard, Peter N; Dealtry, Simone; Dunon, Vincent; Heuer, Holger; Hansen, Lars H; Springael, Dirk; Smalla, Kornelia; Riber, Leise; Sørensen, Søren J

    2017-10-01

    A biopurification system (BPS) is used on-farm to clean pesticide-contaminated wastewater. Due to high pesticide loads, a BPS represents a hot spot for the proliferation and selection as well as the genetic adaptation of discrete pesticide degrading microorganisms. However, while considerable knowledge exists on the biodegradation of specific pesticides in BPSs, the bacterial community composition of these systems has hardly been explored. In this work, the Shannon diversity, the richness and the composition of the bacterial community within an operational BPS receiving wastewater contaminated with various pesticides was, for the first time, elucidated over the course of an agricultural season, using DGGE profiling and pyrosequencing of 16S rRNA gene fragments amplified from total community DNA. During the agricultural season, an increase in the concentration of pesticides in the BPS was observed along with the detection of significant community changes including a decrease in microbial diversity. Additionally, a significant increase in the relative abundance of Proteobacteria, mainly the Gammaproteobacteria, was found, and OTUs (operational taxonomic units) affiliated to Pseudomonas responded positively during the course of the season. Furthermore, a banding-pattern analysis of 16S rRNA gene-based DGGE fingerprinting, targeting the Alpha- and Betaproteobacteria as well as the Actinobacteria, indicated that the Betaproteobacteria might play an important role. Interestingly, a decrease of Firmicutes and Bacteroidetes was observed, indicating their selective disadvantage in a BPS, to which pesticides have been introduced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Autonomous generation and loading of DNA guides by bacterial Argonaute

    PubMed Central

    Chandradoss, Stanley D.; Zhu, Yifan; Timmers, Elizabeth M.; Zhang, Yong; Zhao, Hongtu; Lou, Jizhong; Wang, Yanli; Joo, Chirlmin; van der Oost, John

    2018-01-01

    Summary Several prokaryotic Argonaute proteins (pAgos) utilize small DNA guides to mediate host defense by targeting invading DNA complementary to the DNA guide. It is unknown how these DNA guides are being generated and loaded onto pAgo. Here we demonstrate that guide-free Argonaute from Thermus thermophilus (TtAgo) can degrade dsDNA, thereby generating small dsDNA fragments that subsequently are loaded onto TtAgo. Combining single-molecule fluorescence, molecular dynamic simulations and structural studies, we show that TtAgo loads dsDNA molecules with a preference towards a deoxyguanosine on the passenger strand at the position opposite to the 5’-end of the guide strand. This explains why in vivo TtAgo is preferentially loaded with guides with a 5’-end deoxycytidine. Our data demonstrate that TtAgo can independently generate and selectively load functional DNA guides. PMID:28262506

  17. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor.

    PubMed

    Castillo, David J; Nakamura, Shuichi; Morimoto, Yusuke V; Che, Yong-Suk; Kami-Ike, Nobunori; Kudo, Seishi; Minamino, Tohru; Namba, Keiichi

    2013-01-01

    The bacterial flagellar motor is made of a rotor and stators. In Salmonella it is thought that about a dozen MotA/B complexes are anchored to the peptidoglycan layer around the motor through the C-terminal peptidoglycan-binding domain of MotB to become active stators as well as proton channels. MotB consists of 309 residues, forming a single transmembrane helix (30-50), a stalk (51-100) and a C-terminal peptidoglycan-binding domain (101-309). Although the stalk is dispensable for torque generation by the motor, it is required for efficient motor performance. Residues 51 to 72 prevent premature proton leakage through the proton channel prior to stator assembly into the motor. However, the role of residues 72-100 remains unknown. Here, we analyzed the torque-speed relationship of the MotB(Δ72-100) motor. At a low speed near stall, this mutant motor produced torque at the wild-type level. Unlike the wild-type motor, however, torque dropped off drastically by slight decrease in external load and then showed a slow exponential decay over a wide range of load by its further reduction. Since it is known that the stator is a mechano-sensor and that the number of active stators changes in a load-dependent manner, we interpreted this unusual torque-speed relationship as anomaly in load-dependent control of the number of active stators. The results suggest that residues 72-100 of MotB is required for proper load-dependent control of the number of active stators around the rotor.

  18. Effects of management practices on yield and quality of milk from smallholder dairy units in urban and peri-urban Morogoro, Tanzania.

    PubMed

    Gillah, Kejeri A; Kifaro, George C; Madsen, Jorgen

    2014-10-01

    A longitudinal study design was used to assess the management, chemical composition of cows' milk and quantify the microbial load of raw milk produced at farm level. Data were collected between December 2010 and September 2011 in Morogoro municipality. Milk samples were collected once every month and analysed for butter fat (BF), crude protein (CP), total solids (TS) and solids non-fat (SNF). Total bacterial count (TBC) and coliform counts (CC) were normalized by log transformation. The average milk yield was 7.0 l/day and was not influenced by feeding systems and breeds. Dairy cows owned by people who had no regular income produced more milk than government employees and retired officers. Means of BF, TS, SNF and CP were similar in different feeding systems. Wet season had significantly higher TBC (5.9 log10 cfu/ml) and CC (2.4 log10 cfu/ml) but feeding systems had no effect. Stocking density influenced TBC but not CC. It can be concluded that dairy cows produced low milk yield and its quality was poor.

  19. Performance Evaluation of Integrated Constructed Wetland for Domestic Wastewater Treatment.

    PubMed

    Sehar, Shama; Naz, Iffat; Khan, Sumera; Naeem, Sana; Perveen, Irum; Ali, Naeem; Ahmed, Safia

    2016-03-01

    Simple, budget friendly, laboratory-scale integrated constructed wetland (ICW) was designed to assess domestic wastewater treatment performance at a loading rate of 75 mm/d, planted with native plant species: Veronica-angallis aquatica and compared with non-vegetative control system at various residence times of 4, 8, 12, 16, 20, 24, and 28 days. Results revealed that the vegetated ICW demonstrated superior performance over non-vegetated control: 69.12 vs 17.12%, 67.77 vs 16.04%, 68 vs 16.48%, 71.19 vs 6.56%, 71.54 vs 14.80%, and 72.04 vs 11.41% for total dissolved solids, total suspended solids, phosphates (PO4(-)), sulfate (SO4(-)), nitrate (NO3(-)), and nitrite (NO2(-)), respectively, at 20 days residence times. Reduction in bacterial counts (2.79 × 10(4) CFU/mL) and fecal pathogens (345.5 MPN index/100 mL) was observed in V. aquatica at 20 days residence time. Therefore, the present study highlights not only the presence of vegetation but also appropriate residence time in constructed wetlands for better performances.

  20. An eco-friendly method for short term preservation of skins/hides using Semecarpus anacardium nut extract.

    PubMed

    Iyappan, Kuttalam; Ponrasu, Thangavel; Sangeethapriya, Vilvanathan; Gayathri, Vinaya Subramani; Suguna, Lonchin

    2013-09-01

    Preservation or curing of hides and skins is performed as the primary step of leather processing. Common salt is employed as the conventional agent for curing purpose. Use of salt enhances the pollution load of tannery effluent which becomes highly contaminated with increased total dissolved solids and chlorides. To overcome this hurdle, researchers are in constant search of alternative preservation techniques which are either totally void of salt or use only a meager amount of salt. In the present study, we had explored the possibility of using Semecarpus anacardium nut extract as an alternative to salt for the curing process by assessing different parameters like hair slip, putrefaction odor, volatile nitrogen content, moisture content, bacterial count, and shrinkage temperature in comparison to the salt curing method. The antibacterial property of the plant extract was also investigated. The results obtained substantiated that the nut extract of S. anacardium effectively could preserve the skins for more than a month, by its antibacterial activity along with the dehydrating property of acetone.

  1. Monitoring of bioaerosol inhalation risks in different environments using a six-stage Andersen sampler and the PCR-DGGE method.

    PubMed

    Xu, Zhenqiang; Yao, Maosheng

    2013-05-01

    Increasing evidences show that inhalation of indoor bioaerosols has caused numerous adverse health effects and diseases. However, the bioaerosol size distribution, composition, and concentration level, representing different inhalation risks, could vary with different living environments. The six-stage Andersen sampler is designed to simulate the sampling of different human lung regions. Here, the sampler was used in investigating the bioaerosol exposure in six different environments (student dorm, hospital, laboratory, hotel room, dining hall, and outdoor environment) in Beijing. During the sampling, the Andersen sampler was operated for 30 min for each sample, and three independent experiments were performed for each of the environments. The air samples collected onto each of the six stages of the sampler were incubated on agar plates directly at 26 °C, and the colony forming units (CFU) were manually counted and statistically corrected. In addition, the developed CFUs were washed off the agar plates and subjected to polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Results revealed that for most environments investigated, the culturable bacterial aerosol concentrations were higher than those of culturable fungal aerosols. The culturable bacterial and fungal aerosol fractions, concentration, size distribution, and diversity were shown to vary significantly with the sampling environments. PCR-DGGE analysis indicated that different environments had different culturable bacterial aerosol compositions as revealed by distinct gel band patterns. For most environments tested, larger (>3 μm) culturable bacterial aerosols with a skewed size distribution were shown to prevail, accounting for more than 60 %, while for culturable fungal aerosols with a normal size distribution, those 2.1-4.7 μm dominated, accounting for 20-40 %. Alternaria, Cladosporium, Chaetomium, and Aspergillus were found abundant in most environments studied here. Viable microbial load per unit of particulate matter was also shown to vary significantly with the sampling environments. The results from this study suggested that different environments even with similar levels of total microbial culturable aerosol concentrations could present different inhalation risks due to different bioaerosol particle size distribution and composition. This work fills literature gaps regarding bioaerosol size and composition-based exposure risks in different human dwellings in contrast to a vast body of total bioaerosol levels.

  2. Construction of High Drug Loading and Enzymatic Degradable Multilayer Films for Self-Defense Drug Release and Long-Term Biofilm Inhibition.

    PubMed

    Wang, Bailiang; Liu, Huihua; Sun, Lin; Jin, Yingying; Ding, Xiaoxu; Li, Lingli; Ji, Jian; Chen, Hao

    2018-01-08

    Bacterial infections and biofilm formation on the surface of implants are important issues that greatly affect biomedical applications and even cause device failure. Construction of high drug loading systems on the surface and control of drug release on-demand is an efficient way to lower the development of resistant bacteria and biofilm formation. In the present study, (montmorillonite/hyaluronic acid-gentamicin) 10 ((MMT/HA-GS) 10 ) organic/inorganic hybrid multilayer films were alternately self-assembled on substrates. The loading dosage of GS was as high as 0.85 mg/cm 2 , which could be due the high specific surface area of MMT. The obtained multilayer film with high roughness gradually degraded in hyaluronidase (HAS) solutions or a bacterial infection microenvironment, which caused the responsive release of GS. The release of GS showed dual enzyme and bacterial infection responsiveness, which also indicated good drug retention and on-demand self-defense release properties of the multilayer films. Moreover, the GS release responsiveness to E. coli showed higher sensitivity than that to S. aureus. There was only ∼5 wt % GS release from the film in PBS after 48 h of immersion, and the amount quickly increased to 30 wt % in 10 5 CFU/mL of E. coli. Importantly, the high drug dosage, smart drug release, and film peeling from the surface contributed to the efficient antibacterial properties and long-term biofilm inhibition functions. Both in vitro and in vivo antibacterial tests indicated efficient sterilization function and good mammalian cell and tissue compatibility.

  3. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2017-06-01

    Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bacteria on smartphone touchscreens in a German university setting and evaluation of two popular cleaning methods using commercially available cleaning products.

    PubMed

    Egert, Markus; Späth, Kerstin; Weik, Karoline; Kunzelmann, Heike; Horn, Christian; Kohl, Matthias; Blessing, Frithjof

    2015-03-01

    Smartphone touchscreens are known as pathogen carriers in clinical environments. However, despite a rapidly growing number of smartphone users worldwide, little is known about bacterial contamination of smartphone touchscreens in non-clinical settings. Such data are needed to better understand the hygienic relevance of these increasingly popular items. Here, 60 touchscreens of smartphones provided by randomly chosen students of a German university were sampled by directly touching them with contact agar plates. The average bacterial load of uncleaned touchscreens was 1.37 ± 0.33 CFU/cm(2). Touchscreens wiped with commercially available microfiber cloths or alcohol-impregnated lens wipes contained significantly less bacteria than uncleaned touchscreens, i.e., 0.22 ± 0.10 CFU/cm(2) and 0.06 ± 0.02 CFU/cm(2), respectively. Bacteria isolated from cleaned and uncleaned touchscreens were identified by means of MALDI Biotyping. Out of 111 bacterial isolates, 56 isolates (50 %) were identified to genus level and 27 (24 %) to species level. The vast majority of the identified bacteria were typical human skin, mouth, lung, and intestinal commensals, mostly affiliated with the genera Staphylococcus and Micrococcus. Five out of 10 identified species were opportunistic pathogens. In conclusion, the touchscreens investigated here showed low bacterial loads and a species spectrum that is typical for frequently touched surfaces in domestic and public environments, the general health risk of which is still under debate.

  5. Interaction Between Familial Transmission and a Constitutively Active Immune System Shapes Gut Microbiota in Drosophila melanogaster

    PubMed Central

    Mistry, Rupal; Kounatidis, Ilias; Ligoxygakis, Petros

    2017-01-01

    Resident gut bacteria are constantly influencing the immune system, yet the role of the immune system in shaping microbiota composition during an organism’s life span has remained unclear. Experiments in mice have been inconclusive due to differences in husbandry schemes that led to conflicting results. We used Drosophila as a genetically tractable system with a simpler gut bacterial population structure streamlined genetic backgrounds and established cross schemes to address this issue. We found that, depending on their genetic background, young flies had microbiota of different diversities that converged with age to the same Acetobacteraceae-dominated pattern in healthy flies. This pattern was accelerated in immune-compromised flies with higher bacterial load and gut cell death. Nevertheless, immune-compromised flies resembled their genetic background, indicating that familial transmission was the main force regulating gut microbiota. In contrast, flies with a constitutively active immune system had microbiota readily distinguishable from their genetic background with the introduction and establishment of previously undetectable bacterial families. This indicated the influence of immunity over familial transmission. Moreover, hyperactive immunity and increased enterocyte death resulted in the highest bacterial load observed starting from early adulthood. Cohousing experiments showed that the microenvironment also played an important role in the structure of the microbiota where flies with constitutive immunity defined the gut microbiota of their cohabitants. Our data show that, in Drosophila, constitutively active immunity shapes the structure and density of gut microbiota. PMID:28413160

  6. Habitat heterogeneity and connectivity shape microbial communities in South American peatlands.

    PubMed

    Oloo, Felix; Valverde, Angel; Quiroga, María Victoria; Vikram, Surendra; Cowan, Don; Mataloni, Gabriela

    2016-05-10

    Bacteria play critical roles in peatland ecosystems. However, very little is known of how habitat heterogeneity affects the structure of the bacterial communities in these ecosystems. Here, we used amplicon sequencing of the 16S rRNA and nifH genes to investigate phylogenetic diversity and bacterial community composition in three different sub-Antarctic peat bog aquatic habitats: Sphagnum magellanicum interstitial water, and water from vegetated and non-vegetated pools. Total and putative nitrogen-fixing bacterial communities from Sphagnum interstitial water differed significantly from vegetated and non-vegetated pool communities (which were colonized by the same bacterial populations), probably as a result of differences in water chemistry and biotic interactions. Total bacterial communities from pools contained typically aquatic taxa, and were more dissimilar in composition and less species rich than those from Sphagnum interstitial waters (which were enriched in taxa typically from soils), probably reflecting the reduced connectivity between the former habitats. These results show that bacterial communities in peatland water habitats are highly diverse and structured by multiple concurrent factors.

  7. NORMAL VAGINAL BACTERIAL FLORA OF GIANT PANDAS (AILUROPODA MELANOLEUCA) AND THE ANTIMICROBIAL SUSCEPTIBILITY PATTERNS OF THE ISOLATES.

    PubMed

    Yang, Xin; Yang, Jiang; Wang, Hongning; Li, Caiwu; He, Yongguo; Jin, SenYan; Zhang, Hemin; Li, Desheng; Wang, Pengyan; Xu, Yuesong; Xu, Changwen; Fan, Chengyun; Xu, Lulai; Huang, Shan; Qu, Chunmao; Li, Guo

    2016-03-01

    In order to study the typical vaginal bacterial flora of giant pandas (Ailuropoda melanoleuca), we took vaginal swabs for the sake of bacterial isolation, from 24 healthy female giant pandas. A total of 203 isolates were identified, representing a total of 17 bacterial species. The most common bacteria isolated were Lactobacillus spp. (54.2%, 13 of 24), followed by Staphylococcus epidermidis (41.7%, 10 of 24) and Escherichia coli (33.3%, 8 of 24). Some opportunistic pathogenic bacteria, such as Peptostreptococcus spp., Klebsiella pneumoniae, and Proteus mirabilis, were also isolated but showed no pathology. Antimicrobial susceptibility testing of aerobic bacterial isolates was performed with disk diffusion method. Of the 152 isolates, resistance was most frequently observed with chloramphenicol (17.8%), followed by tetracycline (14.5%), ciprofloxacin (12.5%), streptomycin (11.8%), and florfenicol (11.8%), while 7.2% were multidrug resistant. This is the first report of the normal vaginal culturable bacterial flora of giant pandas, followed by the antimicrobial susceptibility patterns of the isolates.

  8. NORMAL VAGINAL BACTERIAL FLORA OF GIANT PANDAS (AILUROPODA MELANOLEUCA) AND THE ANTIMICROBIAL SUSCEPTIBILITY PATTERNS OF THE ISOLATES.

    PubMed

    Yang, Xin; Yang, Jiang; Wang, Hongning; Li, Caiwu; He, Yongguo; Jin, SenYan; Zhang, Hemin; Li, Desheng; Wang, Pengyan; Xu, Yuesong; Xu, Changwen; Fan, Chengyun; Xu, Lulai; Huang, Shan; Qu, Chunmao; Li, Guo

    2016-06-01

    To study the typical vaginal bacterial flora of giant pandas (Ailuropoda melanoleuca), we took vaginal swabs for the sake of bacterial isolation, from 24 healthy female giant pandas. A total of 203 isolates were identified, representing a total of 17 bacterial species. The most common bacteria isolated were Lactobacillus spp. (54.2%, 13/24), followed by Staphylococcus epidermidis (41.7%, 10/24) and Escherichia coli (33.3%, 8/24). Some opportunistic pathogenic bacteria, such as Peptostreptococcus spp., Klebsiella pneumoniae , and Proteus mirabilis , were also isolated but showed no pathology. Antimicrobial susceptibility testing of aerobic bacterial isolates was performed with the disk diffusion method. Of the 152 isolates, resistance was most frequently observed with chloramphenicol (17.8%), followed by tetracycline (14.5%), ciprofloxacin (12.5%), streptomycin (11.8%), and florfenicol (11.8%), whereas 7.2% were multidrug resistant. This is the first report of the normal culturable vaginal bacterial flora of giant pandas and the antimicrobial susceptibility patterns of the isolates.

  9. Inclusion of detergent in a cleaning regime and effect on microbial load in livestock housing

    PubMed Central

    Hancox, L. R.; Le Bon, M.; Dodd, C. E. R.; Mellits, K. H.

    2013-01-01

    Determining effective cleaning and disinfection regimes of livestock housing is vital to improving the health of resident animals and reducing zoonotic disease. A cleaning regime consisting of scraping, soaking with or without detergent (treatment and control), pressure washing, disinfection and natural drying was applied to multiple pig pens. After each cleaning stage, samples were taken from different materials and enumerated for total aerobic count (TAC) and Enterobacteriaceae (ENT). Soaking with detergent (Blast-Off, Biolink) caused significantly greater reductions of TAC and ENT on metal, and TAC on concrete, compared with control. Disinfection effect (Virkon S, DuPont) was not significantly associated with prior detergent treatment. Disinfection significantly reduced TAC and ENT on concrete and stock board but not on metal. Twenty-four hours after disinfection TAC and ENT on metal and stock board were significantly reduced, but no significant reductions occurred in the subsequent 96 hours. Counts on concrete did not significantly reduce during the entire drying period (120 hours). Detergent and disinfectant have varying bactericidal effects according to the surface and bacterial target; however, both can significantly reduce microbial numbers so should be used during cleaning, with a minimum drying period of 24 hours, to lower bacterial counts effectively. PMID:23839725

  10. Negative pressure and nanocrystalline silver dressings for nonhealing ulcer: A randomized pilot study.

    PubMed

    Sáez-Martín, Luis C; García-Martínez, Lourdes; Román-Curto, Concepción; Sánchez-Hernández, Miguel V; Suárez-Fernández, Ricardo M

    2015-01-01

    Chronic wounds have a high prevalence and wound care, treatment, and prevention consume large quantities of resources. Chronic wounds are a growing challenge for clinicians. A prospective randomized pilot study was conducted to assess the effectiveness in terms of reduction in area and safety of the combined use of negative-pressure wound therapy and nanocrystalline silver dressings as compared to negative pressure wound therapy (NPWT) alone in the management of outpatients with chronic wounds. A total of 17 patients were included in the study, 10 were treated with the combined method and 7 with NPWT. Patients were followed for 6 weeks, with a final assessment at 3 months. Clinical improvement, microbiologic data, and toxicity of silver were evaluated. The antibacterial effects of ionic silver together with the development of granulation tissue promoted by NPWT reduced significantly the median extension of the wound between weeks 3 and 6 of treatment. The combination with silver also reduced bacterial colonization with Pseudomonas aeruginosa and the bacterial load on the surface of the wound. The silver levels correlated positively with the extension of the wound, although in none of the patients' toxic levels were reached. The combination of NPWT with nanocrystalline silver dressings was safe and as effective as NPWT alone. © 2015 by the Wound Healing Society.

  11. Microbiota in experimental periodontitis and peri-implantitis in dogs.

    PubMed

    Charalampakis, Georgios; Abrahamsson, Ingemar; Carcuac, Olivier; Dahlén, Gunnar; Berglundh, Tord

    2014-09-01

    To analyze the microbial profile around teeth and implants following ligature removal in experimental periodontitis and peri-implantitis in dogs. Four implants with similar geometry and with two different surface characteristics (implant A: turned/implant B: TiUnite; NobelBiocare AB) were placed pairwise in the right side of the mandible 3 months after tooth extraction in five dogs. Experimental periodontitis and peri-implantitis were initiated 3 months later by ligature placement around implants and mandibular premolars and plaque formation. The ligatures were removed after 10 weeks. Microbial samples were obtained using paper points immediately after ligature removal, at 10 and 25 weeks after ligature removal. The microbiological analysis was performed by "checkerboard" DNA-DNA hybridization, including a panel of 16 bacterial species. The amount of bone loss that occurred during the period following ligature removal was significantly larger at implants with a modified surface than at implants with a turned surface and at teeth. The microbiological analysis revealed that the total bacterial load increased during the period following ligature removal and established an anaerobic Gram-negative microflora. It is suggested that the large variation in regard to the microbial profiles makes interpretation of a correlation between disease progression and microbial profiles difficult. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Chemical and physical characteristics of water and sediment in Scofield Reservoir, Carbon County, Utah

    USGS Publications Warehouse

    Waddell, Kidd M.; Darby, D.W.; Theobald, S.M.

    1985-01-01

    Evaluations based on the nutrient content of the inflow, outflow, water in storage, and the dissolved-oxygen depletion during the summer indicate that the trophic state of Scofield Reservoir is borderline between mesotrophic and eutrophic and may become highly eutrophic unless corrective measures are taken to limit nutrient inflow.Sediment deposition in Scofield Reservoir during 1943-79 is estimated to be 3,000 acre-feet, and has decreased the original storage capacity of the reservoir by 4 percent. The sediment contains some coal, and age dating of those sediments (based on the radioisotope lead-210) indicates that most of the coal was deposited prior to about 1950.Scofield Reservoir is dimictic, with turnovers occurring in the spring and autumn. Water in the reservoir circulates completely to the bottom during turnovers. The concentration of dissolved oxygen decreases with depth except during parts of the turnover periods. Below an altitude of about 7,590 feet, where 20 percent of the water is stored, the concentration of dissolved oxygen was less than 2 milligrams per liter during most of the year. During the summer stratification period, the depletion of dissolved oxygen in the deeper layers is coincident with supersaturated conditions in the shallow layers; this is attributed to plant photosynthesis and bacterial respiration in the reservoir.During October 1,1979-August 31,1980, thedischargeweighted average concentrations of dissolved solids was 195 milligrams per liter in the combined inflow from Fish, Pondtown, and Mud Creeks, and was 175 milligrams per liter in the outflow (and to the Price River). The smaller concentration in the outflow was due primarily to precipitation of calcium carbonate in the reservoir about 80 percent of the decrease can be accounted for through loss as calcium carbonate.The estimated discharge-weighted average concentration of total nitrogen (dissolved plus suspended) in the combined inflow of Fish, Pondtown, and Mud Creeks was 1.1 milligrams per liter as nitrogen. The load of total nitrogen contributed by each stream was about proportional to the quantity of water contributed by the respective stream.For the combined inflow of Fish, Pondtown, and Mud Creeks, the discharge-weighted average concentration of total phosphorus was 0.06 milligram per liter as phosphorus. Percentages of the total phosphorus load contributed by Mud and Pondtown Creeks were significantly larger than their percentages of the total inflow. During October 1, 1979-August 31, 1980, Fish Creek contributed 72 percent of the inflowing water but only 60 percent of the total phosphorus load, Mud Creek contributed 16 percent of the total inflow but 24 percent of the total phosphorus load, and Pondtown Creek contributed 6 percent of the total inflow and 16 percent of the load of total phosphorus.Eccles Canyon is a major contributor of nutrients to Mud Creek, and most of the nutrient load occurs in the form of suspended organic material. During the snowmelt period, concentrations of total nitrogen and phosphorus were as much as 21 and 4.3 milligrams per liter at the gaging station in Eccles Canyon. The unusually large concentrations of nitrogen and phosphorus probably have resulted from flushing of residual debris from the canyon about 27.3 acres of forested land were cleared during 1979 for fire protection around new mine portals and for road rights-of-way.The concentrations of trace metals in the sediments near the inflow of Mud Creek are not greatly different from those in the middle of the reservoir, which suggests that sediments related to coal mining either have not affected the trace-metal concentrations in the sediments or, particularly for the fine-grained sediments, have been uniformly distributed over the reservoir bottom. The concentration of total extractable mercury in the sediments ranged from 0.08 to 0.20 part per million near the inflow of Mud Creek and from 0.08 to 0.46 part per million at a site near the middle of the reservoir. Virtually all the mercury is silica bound, which is the least soluble fraction. The maximum concentration of mercury in the nondetrital and easily soluble fraction was 0.02 part per million at both sites.

  13. Linked Hydrologic-Hydrodynamic Model Framework to Forecast Impacts of Rivers on Beach Water Quality

    NASA Astrophysics Data System (ADS)

    Anderson, E. J.; Fry, L. M.; Kramer, E.; Ritzenthaler, A.

    2014-12-01

    The goal of NOAA's beach quality forecasting program is to use a multi-faceted approach to aid in detection and prediction of bacteria in recreational waters. In particular, our focus has been on the connection between tributary loads and bacteria concentrations at nearby beaches. While there is a clear link between stormwater runoff and beach water quality, quantifying the contribution of river loadings to nearshore bacterial concentrations is complicated due to multiple processes that drive bacterial concentrations in rivers as well as those processes affecting the fate and transport of bacteria upon exiting the rivers. In order to forecast potential impacts of rivers on beach water quality, we developed a linked hydrologic-hydrodynamic water quality framework that simulates accumulation and washoff of bacteria from the landscape, and then predicts the fate and transport of washed off bacteria from the watershed to the coastal zone. The framework includes a watershed model (IHACRES) to predict fecal indicator bacteria (FIB) loadings to the coastal environment (accumulation, wash-off, die-off) as a function of effective rainfall. These loadings are input into a coastal hydrodynamic model (FVCOM), including a bacteria transport model (Lagrangian particle), to simulate 3D bacteria transport within the coastal environment. This modeling system provides predictive tools to assist local managers in decision-making to reduce human health threats.

  14. Sorption of Cr(VI), Cu(II) and Pb(II) by growing and non-growing cells of a bacterial consortium.

    PubMed

    Sannasi, P; Kader, J; Ismail, B S; Salmijah, S

    2006-03-01

    This paper reports the sorption of three metallic ions, namely Cr(VI), Cu(II) and Pb(II) in aqueous solution by a consortium culture (CC) comprising an acclimatised mixed bacterial culture collected from point and non-point sources. Metal sorption capability of growing and non-growing cells at initial pH of between 3 and 8 in the 1-100mg/L concentration range were studied based on Q(max) and K(f) values of the Langmuir and linearised Freundlich isotherm models, respectively. Maximal metal loading was generally observed to be dependent on the initial pH. Growing cells displayed significant maximal loading (Q(max)) for Pb(II) (238.09 mg/g) and Cu(II) (178.87 mg/g) at pH 6 and at pH 7 for Cr(VI) (90.91 mg/g) compared to non-growing cells (p < 0.05). At the pH range of 6-8, growing cells showed higher loading capacity compared to non-growing cells i.e. 38-52% for Cr, 17-28% for Cu and 3-17% for Pb. At lower metal concentrations and at more acidic pH (3-4) however, non-growing cells had higher metal loading capacity than growing cells. The metal sorption capacity for both populations were as follows: Pb(II) > Cu(II) > Cr(VI).

  15. Mesoporous TiO2 implants for loading high dosage of antibacterial agent

    NASA Astrophysics Data System (ADS)

    Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun

    2014-06-01

    We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.

  16. A novel nanofiber Cur-loaded polylactic acid constructed by electrospinning

    NASA Astrophysics Data System (ADS)

    Thu Trang Mai, Thi; Thu Thuy Nguyen, Thi; Duong Le, Quang; Ngoan Nguyen, Thi; Cham Ba, Thi; Binh Nguyen, Hai; Bich Hoa Phan, Thi; Tran, Dai Lam; Phuc Nguyen, Xuan; Park, Jun Seo

    2012-06-01

    Curcumin (Cur), extracted from the Curcuma longa L. plant, is well known for its anti-tumor, anti-oxidant, anti-inflammatory and anti-bacterial properties. Nanofiber mats of polylactic acid (PLA) loading Cur (5 wt%) were fabricated by electrospinning (e-spinning). Morphology and structure of the fibers were characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) spectroscopy, respectively. The diameters of the obtained fibers varied from 200 to 300 nm. The release capacity of curcumin from curcumin-loaded PLA fibers was investigated in phosphate buffer saline (PBS) containing ethanol. After 24 h, 50% of the curcumin was released from curcumin-loaded PLA fibers. These results of electrospun (e-spun) fibers exhibit the potential for biomedical application.

  17. A distinct bacterial dysbiosis associated skin inflammation in ovine footrot

    NASA Astrophysics Data System (ADS)

    Maboni, Grazieli; Blanchard, Adam; Frosth, Sara; Stewart, Ceri; Emes, Richard; Tötemeyer, Sabine

    2017-03-01

    Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression.

  18. Structural equation model of total phosphorus loads in the Red River of the North Basin, USA and Canada

    USGS Publications Warehouse

    Ryberg, Karen R.

    2017-01-01

    Attribution of the causes of trends in nutrient loading is often limited to correlation, qualitative reasoning, or references to the work of others. This paper represents efforts to improve causal attribution of water-quality changes. The Red River of the North basin provides a regional test case because of international interest in the reduction of total phosphorus loads and the availability of long-term total phosphorus data and ancillary geospatial data with the potential to explain changes in water quality over time. The objectives of the study are to investigate structural equation modeling methods for application to water-quality problems and to test causal hypotheses related to the drivers of total phosphorus loads over the period 1970 to 2012. Multiple working hypotheses that explain total phosphorus loads and methods for estimating missing ancillary data were developed, and water-quality related challenges to structural equation modeling (including skewed data and scaling issues) were addressed. The model indicates that increased precipitation in season 1 (November–February) or season 2 (March–June) would increase total phosphorus loads in the basin. The effect of agricultural practices on total phosphorus loads was significant, although the effect is about one-third of the effect of season 1 precipitation. The structural equation model representing loads at six sites in the basin shows that climate and agricultural practices explain almost 60% of the annual total phosphorus load in the Red River of the North basin. The modeling process and the unexplained variance highlight the need for better ancillary long-term data for causal assessments.

  19. Estimated nitrogen loads from selected tributaries in Connecticut draining to Long Island Sound, 1999–2009

    USGS Publications Warehouse

    Mullaney, John R.; Schwarz, Gregory E.

    2013-01-01

    The total nitrogen load to Long Island Sound from Connecticut and contributing areas to the north was estimated for October 1998 to September 2009. Discrete measurements of total nitrogen concentrations and continuous flow data from 37 water-quality monitoring stations in the Long Island Sound watershed were used to compute total annual nitrogen yields and loads. Total annual computed yields and basin characteristics were used to develop a generalized-least squares regression model for use in estimating the total nitrogen yields from unmonitored areas in coastal and central Connecticut. Significant variables in the regression included the percentage of developed land, percentage of row crops, point-source nitrogen yields from wastewater-treatment facilities, and annual mean streamflow. Computed annual median total nitrogen yields at individual monitoring stations ranged from less than 2,000 pounds per square mile in mostly forested basins (typically less than 10 percent developed land) to more than 13,000 pounds per square mile in urban basins (greater than 40 percent developed) with wastewater-treatment facilities and in one agricultural basin. Medians of computed total annual nitrogen yields for water years 1999–2009 at most stations were similar to those previously computed for water years 1988–98. However, computed medians of annual yields at several stations, including the Naugatuck River, Quinnipiac River, and Hockanum River, were lower than during 1988–98. Nitrogen yields estimated for 26 unmonitored areas downstream from monitoring stations ranged from less than 2,000 pounds per square mile to 34,000 pounds per square mile. Computed annual total nitrogen loads at the farthest downstream monitoring stations were combined with the corresponding estimates for the downstream unmonitored areas for a combined estimate of the total nitrogen load from the entire study area. Resulting combined total nitrogen loads ranged from 38 to 68 million pounds per year during water years 1999–2009. Total annual loads from the monitored basins represent 63 to 74 percent of the total load. Computed annual nitrogen loads from four stations near the Massachusetts border with Connecticut represent 52 to 54 percent of the total nitrogen load during water years 2008–9, the only years with data for all the border sites. During the latter part of the 1999–2009 study period, total nitrogen loads to Long Island Sound from the study area appeared to increase slightly. The apparent increase in loads may be due to higher than normal streamflows, which consequently increased nonpoint nitrogen loads during the study, offsetting major reductions of nitrogen from wastewater-treatment facilities. Nitrogen loads from wastewater treatment facilities declined as much as 2.3 million pounds per year in areas of Connecticut upstream from the monitoring stations and as much as 5.8 million pounds per year in unmonitored areas downstream in coastal and central Connecticut.

  20. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo.

    PubMed

    Limpiyakorn, Tawan; Shinohara, Yuko; Kurisu, Futoshi; Yagi, Osami

    2005-10-01

    We investigated ammonia-oxidizing bacteria in activated sludge collected from 12 sewage treatment systems, whose ammonia removal and treatment processes differed, during three different seasons. We used real-time PCR quantification to reveal total bacterial numbers and total ammonia oxidizer numbers, and used specific PCR followed by denaturing gel gradient electrophoresis, cloning, and sequencing of 16S rRNA genes to analyze ammonia-oxidizing bacterial communities. Total bacterial numbers and total ammonia oxidizer numbers were in the range of 1.6 x 10(12) - 2.4 x 10(13) and 1.0 x 10(9) - 9.2 x 10(10)cellsl(-1), respectively. Seasonal variation was observed in the total ammonia oxidizer numbers, but not in the ammonia-oxidizing bacterial communities. Members of the Nitrosomonas oligotropha cluster were found in all samples, and most sequences within this cluster grouped within two of the four sequence types identified. Members of the clusters of Nitrosomonas europaea-Nitrosococcus mobilis, Nitrosomonas cryotolerans, and unknown Nitrosomonas, occurred solely in one anaerobic/anoxic/aerobic (A2O) system. Members of the Nitrosomonas communis cluster occurred almost exclusively in association with A2O and anaerobic/aerobic systems. Solid residence time mainly influenced the total numbers of ammonia-oxidizing bacteria, whereas dissolved oxygen concentration primarily affected the ammonia-oxidizing activity per ammonia oxidizer cell.

  1. Defense reactions of bean genotypes to bacterial pathogens in controlled conditions

    NASA Astrophysics Data System (ADS)

    Uysal, B.; Bastas, K. K.

    2018-03-01

    This study was focused on the role of antioxidant enzymes and total protein in imparting resistance against common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap) and halo blight caused by Pseudomonas syringae pv. phaseolicola (Psp) in bean. Activities of Ascorbate peroxidase (APX), Catalase (CAT) and total protein were studied in resistant and susceptible bean genotypes. Five-day-old seedlings were inoculated with a bacterial suspension (108 CFU ml-1) and harvested at different time intervals (0, 12, 24 and 36 up to 72 h) under controlled growing conditions and assayed for antioxidant enzymes and total protein. Temporal increase of CAT, APX enzymes activities showed maximum activity at 12 h after both pathogens inoculation (hpi) in resistant cultivar, whereas in susceptible it increased at 72 h after both pathogens inoculation for CAT and 12, 24 h for APX enzymes. Maximum total protein activities were observed at 12 h and 24 h respectively after Xap, Psp inoculation (hpi) in resistant and maximum activities were observed at 24 h and 72 h respectively after Xap, Psp inoculation (hpi) in susceptible. Increase of antioxidant enzyme and total protein activities might be an important component in the defense strategy of resistance and susceptible bean genotypes against the bacterial infection. These findings suggest that disease protection is proportional to the amount of enhanced CAT, APX enzyme and total protein activity.

  2. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon.

    PubMed

    Sundin, Olof H; Mendoza-Ladd, Antonio; Zeng, Mingtao; Diaz-Arévalo, Diana; Morales, Elisa; Fagan, B Matthew; Ordoñez, Javier; Velez, Philip; Antony, Nishaal; McCallum, Richard W

    2017-07-17

    The upper half of the human small intestine, known as the jejunum, is the primary site for absorption of nutrient-derived carbohydrates, amino acids, small peptides, and vitamins. In contrast to the colon, which contains 10 11 -10 12 colony forming units of bacteria per ml (CFU/ml), the normal jejunum generally ranges from 10 3 to 10 5  CFU per ml. Because invasive procedures are required to access the jejunum, much less is known about its bacterial microbiota. Bacteria inhabiting the jejunal lumen have been investigated by classical culture techniques, but not by culture-independent metagenomics. The lumen of the upper jejunum was sampled during enteroscopy of 20 research subjects. Culture on aerobic and anaerobic media gave live bacterial counts ranging from 5.8 × 10 3 CFU/ml to 8.0 × 10 6 CFU/ml. DNA from the same samples was analyzed by 16S rRNA gene-specific quantitative PCR, yielding values from 1.5 × 10 5 to 3.1 × 10 7 bacterial genomes per ml. When calculated for each sample, estimated bacterial viability ranged from effectively 100% to a low of 0.3%. 16S rRNA metagenomic analysis of uncultured bacteria by Illumina MiSeq sequencing gave detailed microbial composition by phylum, genus and species. The genera Streptococcus, Prevotella, Veillonella and Fusobacterium, were especially abundant, as well as non-oral genera including Escherichia, Klebsiella, and Citrobacter. The jejunum was devoid of the genera Alistipes, Ruminococcus, Faecalibacterium, and other extreme anaerobes abundant in the colon. In patients with higher bacterial loads, there was no significant change in microbial species composition. The jejunal lumen contains a distinctive bacterial population consisting primarily of facultative anaerobes and oxygen-tolerant obligate anaerobes similar to those found in the oral cavity. However, the frequent abundance of Enterobacteriaceae represents a major difference from oral microbiota. Although a few genera are shared with the colon, we found no evidence for retrograde movement of the most abundant colonic microbes to the jejunum. Some individuals had much higher bacterial loads, but this was not correlated with decreases in bacterial species diversity or other evidence of dysbiosis.

  3. Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of Creole goats fed native forage diet.

    PubMed

    Grilli, D J; Cerón, M E; Paez, S; Egea, V; Schnittger, L; Cravero, S; Escudero, M Sosa; Allegretti, L; Arenas, G N

    2013-09-01

    We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.

  4. Stormwater quality processes for three land-use areas in Broward County, Florida

    USGS Publications Warehouse

    Mattraw, H.C.; Miller, Robert A.

    1981-01-01

    Systematic collection and chemical analysis of stormwater runoff samples from three small urban areas in Broward County, Florida, were obtained between 1974 and 1977. Thirty or more runoff-constituent loads were computed for each of the homogeneous land-use areas. The areas sampled were single family residential, highway, and a commercial shopping center. Rainfall , runoff, and nutrient and metal analyses were stored in a data-management system. The data-management system permitted computation of loads, publication of basic-data reports and the interface of environmental and load information with a comprehensive statistical analysis system. Seven regression models relating water quality loads to characteristics of peak discharge, antecedent conditions, season, storm duration and rainfall intensity were constructed for each of the three sites. Total water-quality loads were computed for the collection period by summing loads for individual storms. Loads for unsampled storms were estimated by using regression models and records of storm precipitation. Loadings, pounds per day per acre of hydraulically effective impervious area, were computed for the three land-use types. Total nitrogen, total phosphorus, and total residue loadings were highest in the residential area. Chemical oxygen demand and total lead loadings were highest in the commercial area. Loadings of atmospheric fallout on each watershed were estimated by bulk precipitation samples collected at the highway and commercial site. (USGS)

  5. Influence of biofilm formation on the optical properties of novel bioactive glass-containing composites

    PubMed Central

    Hyun, Hong-Keun; Ferracane, Jack L.

    2016-01-01

    Objective Bioactive glass (BAG) has been suggested as a possible additive for dental restorative materials because of its antimicrobial effect and potential for promoting apatite formation in body fluids. The purpose of this study was to investigate the effects of bacterial biofilm on the change of colorimetric value and translucency of novel BAG-containing composites having different initial surface roughness. Methods Composites with 72 wt% total filler load were prepared by replacing 15% of the silanized Sr glass with BAG (65 mole% Si; 4% P; 31% Ca), BAG-F (61% Si; 31% Ca; 4% P; 3% F; 1% B), or silanized silica. Light-cured discs of 2-mm thickness (n=10/group) were divided into 4 different surface roughness subgroups produced by wet polishing with 600 and then up to 1200, 2400, or 4000 grit SiC. CIE L*a*b* were measured and the color difference and translucency parameter (TP) were calculated before and after incubating in media with or without a S. mutans (UA 159) biofilm for 2 wks (no agitation). Results were analyzed using ANOVA/Tukey's test (α = 0.05). Results All the color differences for BAG and BAG-F composite showed significant decreases with bacterial biofilm compared to media-only. The mean TP (SD) of BAG and BAG-F composite before aging [10.0 (2.8) and 8.5 (1.4)] was higher than that of the control composite [4.9 (0.8)], while the change in TP with aging was greater compared to the control with or without bacteria. BAG-F composites with the smoothest surfaces showed a greater decrease in TP under bacterial biofilm compared to the BAG composite. Significance Highly polished dental composites containing bioactive glass additives may become slightly rougher and show reduced translucency when exposed to bacterial biofilms, but do not discolor any more than control composites that do not contain the BAG. PMID:27394086

  6. Health Threats from Contamination of Spices Commercialized in Romania: Risks of Fungal and Bacterial Infections.

    PubMed

    Man, Adrian; Mare, Anca; Toma, Felicia; Curticăpean, Augustin; Santacroce, Luigi

    2016-01-01

    The study of fungal contamination in food and mycotoxicoses is a priority today, both internationally and nationally. The purpose of this study is to have a general view over the quality of the most common spices that are sold in Romanian markets, by assessing the degree of fungal, bacterial and mycotoxin contamination in pepper and chili powders. We tested four types of spices: white pepper, black pepper, sweet and hot chili powders from 12 different distributing companies, summing a total of 35 sample types. The fungal and bacterial load was assessed by Standard Plate Count, while the mycotoxin content by High-performance liquid chromatography. Environmental conditions (humidity, pH) and the selling price for each product were also followed. Fungi were observed in 72.7% of black pepper samples, 33.3% in white pepper, 30% in sweet chili and 25% in hot chili products. The most common isolated fungus was Aspergillus spp., while Rhizopus, Mucor, Fusarium, Penicillium, Absidia species were found, in smaller percentage. Four producers (44.4%) presented fungal contamination of over 10^3 CFU/g and two producers (22.2%) presented no fungal contamination in their products. Bacterial contamination was found in 85.7% of the tested products, consisting mostly in Bacillus spp. Aflatoxin B1 was present in all the tested products, mostly in black pepper (mean value 126.3 ng/g); Ochratoxin A was present in sweet chili (mean value 328 ng/g) and Zearalenone in hot chili (mean value 604 ng/g) and sweet chili (mean value 382 ng/g). All spices presented either fungal contamination, mycotoxin contamination, or both. The high humidity and the high pH of spices represent favorable conditions for fungal growth. The selling price was partly related to the physic-chemical conditions and microbiological quality of the spices. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Characterization of suspended solids and total phosphorus loadings from small watersheds in Wisconsin

    USGS Publications Warehouse

    Danz, Mari E.; Corsi, Steven R.; Graczyk, David J.; Bannerman, Roger T.

    2010-01-01

    Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area Ecoregion, the Northern Lakes and Forests Ecoregion, the North Central Hardwoods Ecoregion, and the Southeastern Wisconsin Till Plains Ecoregion. The Northern Lakes and Forests and the North Central Hardwoods Ecoregions were combined into one region for analysis due to a lack of sufficient data in each region. Urban watersheds, all located in the Southeastern Wisconsin Till Plains, were analyzed separately from rural watersheds as the Rural Southeastern Wisconsin Till Plains region and the Urban Southeastern Wisconsin Till Plains region. Results provide information on the distribution of loadings and streamflow between base flow and stormflow, the timing of loadings and streamflow throughout the year, and information regarding the number of days in which the majority of the annual loading is transported. The average contribution to annual solids loading from stormflow periods for the Driftless Area Ecoregion was 84 percent, the Northern Lakes and Forests/North Central Hardwoods region was 71 percent, the Rural Southeastern Wisconsin Till Plains region was 70 percent, and the Urban Southeastern Wisconsin Till Plains region was 90 percent. The average contributions to annual total phosphorus loading from stormflow periods were 72, 49, 61, and 76 percent for each of the respective regions. The average contributions to annual streamflow from stormflow periods are 20, 23, 31, and 50 percent for each of the respective regions. In all regions, the most substantial loading contributions for solids were in the late winter (February through March), spring (April through May), and early summer (June through July), with fall (October through November) and early winter (December through January) contributing the smallest loadings. The Northern Lakes and Forests/North Central Hardwoods region had some substantial loading in September. There was a similar pattern for total phosphorus loading in all regions, with the pattern somewhat less pronounced in urban watersheds. As with the loading results, average monthly streamflow values were greatest in late winter, spring, and early summer, with the lowest values typically in fall and early winter. Loading contributions were greater from stormflow than from base flow in all instances, except total phosphorus in the Northern Lakes and Forests/North Central Hardwoods region, which had equal or greater base-flow contribution for several months. Base flow constituted a greater percentage of the total streamflow than stormflow in all rural watersheds for all regions. Only a few storms each year dominated the annual loading totals for solids and total phosphorus. When daily loading values were ranked for the year, all regions reached 50 percent of the annual solids loading in the 5 highest loading days and nearly 50 percent of the annual total phosphorus loading in the 14 highest loading days.

  8. Spatial distribution of bacterial communities and related biochemical properties in Luzhou-flavor liquor-fermented grains.

    PubMed

    Zheng, Jia; Wu, Chongde; Huang, Jun; Zhou, Rongqing; Liao, Xuepin

    2014-12-01

    Grain fermenting with separate layers in a fermentation pit is the typical and experiential brewing technology for Chinese Luzhou-flavor liquor. However, it is still unclear to what extent the bacterial communities in the different layers of fermented grains (FG) effects the liquor's quality. In this study, the spatial distributions of bacterial communities in Luzhou-flavor liquor FG (top, middle, and bottom layers) from 2 distinctive factories (Jiannanchun and Fenggu) were investigated using culture-independent approaches (phospholipid fatty acid [PLFA] and polymerase chain reaction-denaturing gel electrophoresis [DGGE]). The relationship between bacterial community and biochemical properties was also assessed by Canonical correspondence analysis (CCA). No significant variation in moisture was observed in spatial samples, and the highest content of acidity and total ester was detected in the bottom layer (P < 0.05). A high level of ethanol was observed in the top and middle layers of Fenggu and Jiannanchun, respectively. Significant spatial distribution of the total PLFA was only shown in the 50-y-old pits (P < 0.05), and Gram negative bacteria was the prominent community. Bacterial 16S rDNA DGGE analysis revealed that the most abundant bacterial community was in the top layers of the FG both from Fenggu and Jiannanchun, with Lactobacillaceae accounting for 30% of the total DGGE bands and Lactobacillus acetotolerans was the dominant species. FG samples from the same pit had a highly similar bacterial community structure according to the hierarchal cluster tree. CCA suggested that the moisture, acidity, ethanol, and reducing sugar were the main factors affecting the distribution of L. acetotolerans. Our results will facilitate the knowledge about the spatial distribution of bacterial communities and the relationship with their living environment. © 2014 Institute of Food Technologists®

  9. Limitations of subjective cognitive load measures in simulation-based procedural training.

    PubMed

    Naismith, Laura M; Cheung, Jeffrey J H; Ringsted, Charlotte; Cavalcanti, Rodrigo B

    2015-08-01

    The effective implementation of cognitive load theory (CLT) to optimise the instructional design of simulation-based training requires sensitive and reliable measures of cognitive load. This mixed-methods study assessed relationships between commonly used measures of total cognitive load and the extent to which these measures reflected participants' experiences of cognitive load in simulation-based procedural skills training. Two groups of medical residents (n = 38) completed three questionnaires after participating in simulation-based procedural skills training sessions: the Paas Cognitive Load Scale; the NASA Task Load Index (TLX), and a cognitive load component (CLC) questionnaire we developed to assess total cognitive load as the sum of intrinsic load (how complex the task is), extraneous load (how the task is presented) and germane load (how the learner processes the task for learning). We calculated Pearson's correlation coefficients to assess agreement among these instruments. Group interviews explored residents' perceptions about how the simulation sessions contributed to their total cognitive load. Interviews were audio-recorded, transcribed and subjected to qualitative content analysis. Total cognitive load scores differed significantly according to the instrument used to assess them. In particular, there was poor agreement between the Paas Scale and the TLX. Quantitative and qualitative findings supported intrinsic cognitive load as synonymous with mental effort (Paas Scale), mental demand (TLX) and task difficulty and complexity (CLC questionnaire). Additional qualitative themes relating to extraneous and germane cognitive loads were not reflected in any of the questionnaires. The Paas Scale, TLX and CLC questionnaire appear to be interchangeable as measures of intrinsic cognitive load, but not of total cognitive load. A more complete understanding of the sources of extraneous and germane cognitive loads in simulation-based training contexts is necessary to determine how best to measure and assess their effects on learning and performance outcomes. © 2015 John Wiley & Sons Ltd.

  10. Monitoring to assess progress toward meeting the total maximum daily load for phosphorus in the Assabet River, Massachusetts: phosphorus loads, 2008 through 2010

    USGS Publications Warehouse

    Zimmerman, Marc J.; Savoie, Jennifer G.

    2013-01-01

    Wastewater discharges to the Assabet River contribute substantial amounts of phosphorus, which support accumulations of nuisance aquatic plants that are most evident in the river’s impounded reaches during the growing season. To restore the Assabet River’s water quality and aesthetics, the U.S. Environmental Protection Agency required the major wastewater-treatment plants in the drainage basin to reduce the amount of phosphorus discharged to the river by 2012. From October 2008 to December 2010, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection and in support of the requirements of the Total Maximum Daily Load for Phosphorus, collected weekly flow-proportional, composite samples for analysis of concentrations of total phosphorus and orthophosphorus upstream and downstream from each of the Assabet River’s two largest impoundments: Hudson and Ben Smith. The purpose of this monitoring effort was to evaluate conditions in the river before enhanced treatment-plant technologies had effected reductions in phosphorus loads, thereby defining baseline conditions for comparison with conditions following the mandated load reductions. The locations of sampling sites with respect to the impoundments enabled examination of the impoundments’ effects on phosphorus sequestration and on the transformation of phosphorus between particulate and dissolved forms. The study evaluated the differences between loads upstream and downstream from the impoundments throughout the sampling period and compared differences during two seasonal periods of relevance to aquatic plants: April 1 through October 31, the growing season, and November 1 through March 31, the nongrowing season, when existing permit limits allowed average monthly wastewater-treatment-plant-effluent concentrations of 0.75 milligram per liter (growing season) or 1.0 milligram per liter (nongrowing season) for total phosphorus. At the four sampling sites during the growing season, median weekly total phosphorus loads ranged from 110 to 190 kilograms (kg) and median weekly orthophosphorus loads ranged from 17 to 41 kg. During the nongrowing season, median weekly total phosphorus loads ranged from 240 to 280 kg and median weekly orthophosphorus loads ranged from 56 to 66 kg. During periods of low and moderate streamflow, estimated loads of total phosphorus upstream from the Hudson impoundment generally exceeded those downstream during the same sampling periods throughout the study; orthophosphorus loads downstream from the impoundment were typically larger than those upstream. When storm runoff substantially increased the streamflow, loads of total phosphorus and orthophosphorus both tended to be larger downstream than upstream. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads were generally larger downstream than upstream during low and moderate streamflow, but the differences were not as pronounced as they were at the Hudson impoundment. High flows were also associated with substantially larger total phosphorus and orthophosphorus loads downstream than those entering the impoundment from upstream. In comparing periods of growing- and nongrowing-season loads, the same patterns of loads entering and leaving were observed at both impoundments. That is, at the Hudson impoundment, total phosphorus loads entering the impoundment were greater than those leaving it, and orthophosphorus loads leaving the impoundment were greater than those entering it. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads leaving the impoundment were greater than those entering it. However, the loads were greater during the nongrowing seasons than during the growing seasons, and the net differences between upstream and downstream loads were about the same. The results indicate that some of the particulate fraction of the total phosphorus loads is sequestered in the Hudson impoundment, where particulate phosphorus probably undergoes some physical and biogeochemical transformations to the dissolved form orthophosphorus. The orthophosphorus may be taken up by aquatic plants or transported out of the impoundments. The results for the Ben Smith impoundment are less clear and suggest net export of total phosphorus and orthophosphorus. Differences between results from the two impoundments may be attributable in part to differences in their sizes, morphology, unmonitored tributaries, riparian land use, and processes within the impoundments that have not been quantified for this study.

  11. Dynamics and estimates of growth and loss rates of bacterioplankton in a temperate freshwater system.

    PubMed

    Jugnia, Louis-B; Sime-Ngando, Télesphore; Gilbert, Daniel

    2006-10-01

    The growth rate and losses of bacterioplankton in the epilimnion of an oligo-mesotrophic reservoir were simultaneously estimated using three different methods for each process. Bacterial production was determined by means of the tritiated thymidine incorporation method, the dialysis bag method and the dilution method, while bacterial mortality was assessed with the dilution method, the disappearance of thymidine-labeled natural cells and ingestion of fluorescent bacterial tracers by heterotrophic flagellates. The different methods used to estimate bacterial growth rates yielded similar results. On the other hand, the mortality rates obtained with the dilution method were significantly lower than those obtained with the use of thymidine-labeled natural cells. The bacterial ingestion rate by flagellates accounted on average for 39% of total bacterial mortality estimated by the dilution method, but this value fell to 5% when the total mortality was measured by the thymidine-labeling method. Bacterial abundance and production varied in opposite phase to flagellate abundance and the various bacterial mortality rates. All this points to the critical importance of methodological aspects in the elaboration of quantitative models of matter and energy flows over the time through microbial trophic networks in aquatic systems, and highlights the role of bacterioplankton as a source of carbon for higher trophic levels in the studied system.

  12. Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain.

    PubMed

    Kumar, Arvind; Rai, Lal Chand

    2017-07-01

    Soil quality is an important factor and maintained by inhabited microorganisms. Soil physicochemical characteristics determine indigenous microbial population and rice provides food security to major population of the world. Therefore, this study aimed to assess the impact of physicochemical variables on bacterial community composition and diversity in conventional paddy fields which could reflect a real picture of the bacterial communities operating in the paddy agro-ecosystem. To fulfill the objective; soil physicochemical characterization, bacterial community composition and diversity analysis was carried out using culture-independent PCR-DGGE method from twenty soils distributed across eight districts. Bacterial communities were grouped into three clusters based on UPGMA cluster analysis of DGGE banding pattern. The linkage of measured physicochemical variables with bacterial community composition was analyzed by canonical correspondence analysis (CCA). CCA ordination biplot results were similar to UPGMA cluster analysis. High levels of species-environment correlations (0.989 and 0.959) were observed and the largest proportion of species data variability was explained by total organic carbon (TOC), available nitrogen, total nitrogen and pH. Thus, results suggest that TOC and nitrogen are key regulators of bacterial community composition in the conventional paddy fields. Further, high diversity indices and evenness values demonstrated heterogeneity and co-abundance of the bacterial communities.

  13. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis.

    PubMed

    Chen, Yanhong; Oba, Masahito; Guan, Le Luo

    2012-10-12

    In order to determine differences in the ruminal bacterial community and host Toll-like receptor (TLR) gene expression of beef cattle with different susceptibility to acidosis, rumen papillae and content were collected from acidosis-susceptible (AS, n=3) and acidosis-resistant (AR, n=3) steers. The ruminal bacterial community was characterized using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real time PCR (qRT-PCR) analysis. Global R analysis of bacterial profile similarity revealed that bacterial diversity was significantly different between AR and AS groups for both rumen content (P=0.001) and epithelial (P=0.002) communities. The copy number of total bacterial 16S rRNA genes in content of AS steers was 10-fold higher than that of AR steers, and the copy number of total 16S rRNA genes of epimural bacteria in AR steers was positively correlated with ruminal pH (r=0.59, P=0.04), and negatively correlated with total VFA concentration (r=-0.59, P=0.05). The expressions of host TLR2 and 4 genes were significantly higher in AR steers compared to those in AS steers. These findings enhance our understanding about the ruminal microbial ecology and host gene expression changes that may be useful in the prevention of ruminal acidosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. [Bacterial diversity within different sections of summer sea-ice samples from the Prydz Bay, Antarctica].

    PubMed

    Ma, Jifei; Du, Zongjun; Luo, Wei; Yu, Yong; Zeng, Yixin; Chen, Bo; Li, Huirong

    2013-02-04

    In order to assess bacterial abundance and diversity within three different sections of summer sea-ice samples collected from the Prydz Bay, Antarctica. Fluorescence in situ hybridization was applied to determine the proportions of Bacteria in sea-ice. Bacterial community composition within sea ice was analyzed by 16S rRNA gene clone library construction. Correlation analysis was performed between the physicochemical parameters and the bacterial diversity and abundance within sea ice. The result of fluorescence in situ hybridization shows that bacteria were abundant in the bottom section, and the concentration of total organic carbon, total organic nitrogen and phosphate may be the main factors for bacterial abundance. In bacterial 16S rRNA gene libraries of sea-ice, nearly complete 16S rRNA gene sequences were grouped into three distinct lineages of Bacteria (gamma-Proteobacteria, alpha-Proteobacteria and Bacteroidetes). Most clone sequences were related to cultured bacterial isolates from the marine environment, arctic and Antarctic sea-ice with high similarity. The member of Bacteroidetes was not detected in the bottom section of sea-ice. The bacterial communities within sea-ice were little heterogeneous at the genus-level between different sections, and the concentration of NH4+ may cause this distribution. The number of bacteria was abundant in the bottom section of sea-ice. Gamma-proteobacteria was the dominant bacterial lineage in sea-ice.

  15. The Use of Different Irrigation Techniques to Decrease Bacterial Loads in Healthy and Diabetic Patients with Asymptomatic Apical Periodontitis.

    PubMed

    Ghoneim, Mai; Saber, Shehab ElDin; El-Badry, Tarek; Obeid, Maram; Hassib, Nehal

    2016-12-15

    Diabetes mellitus is a multisystem disease which weakens the human's immunity. Subsequently, it worsens the sequelae of apical periodontitis by raising a fierce bacterial trait due to the impaired host response. This study aimed to estimate bacterial reduction after using different irrigation techniques in systemically healthy and diabetic patients with asymptomatic apical periodontitis. Enterococcus faecalis , Peptostreptococcus micros , and Fusobacterium necleatum bacteria were chosen, as they are the most common and prevailing strains found in periodontitis. Bacterial samples were retrieved from necrotic root canals of systemically healthy and diabetic patients, before and after endodontic cleaning and shaping by using two different irrigation techniques; the conventional one and the EndoVac system. Quantitive polymerase chain reaction (qPCR) was utilised to detect the reduction in the bacterial count. The EndoVac irrigation system was effective in reducing bacteria, especially Peptostreptococcus micros in the diabetic group when compared to conventional irrigation technique with a statistically significant difference. The EndoVac can be considered as a promising tool in combination with irrigant solution to defeat the bacterial colonies living in the root canal system. Additional studies ought to be done to improve the means of bacterial clearance mainly in immune-compromised individuals.

  16. The Use of Different Irrigation Techniques to Decrease Bacterial Loads in Healthy and Diabetic Patients with Asymptomatic Apical Periodontitis

    PubMed Central

    Ghoneim, Mai; Saber, Shehab ElDin; El-Badry, Tarek; Obeid, Maram; Hassib, Nehal

    2016-01-01

    BACKGROUND: Diabetes mellitus is a multisystem disease which weakens the human’s immunity. Subsequently, it worsens the sequelae of apical periodontitis by raising a fierce bacterial trait due to the impaired host response. AIM: This study aimed to estimate bacterial reduction after using different irrigation techniques in systemically healthy and diabetic patients with asymptomatic apical periodontitis. MATERIAL AND METHODS: Enterococcus faecalis, Peptostreptococcus micros, and Fusobacterium necleatum bacteria were chosen, as they are the most common and prevailing strains found in periodontitis. Bacterial samples were retrieved from necrotic root canals of systemically healthy and diabetic patients, before and after endodontic cleaning and shaping by using two different irrigation techniques; the conventional one and the EndoVac system. Quantitive polymerase chain reaction (qPCR) was utilised to detect the reduction in the bacterial count. RESULTS: The EndoVac irrigation system was effective in reducing bacteria, especially Peptostreptococcus micros in the diabetic group when compared to conventional irrigation technique with a statistically significant difference. CONCLUSION: The EndoVac can be considered as a promising tool in combination with irrigant solution to defeat the bacterial colonies living in the root canal system. Additional studies ought to be done to improve the means of bacterial clearance mainly in immune-compromised individuals. PMID:28028421

  17. Organic loading rate and food-to-microorganism ratio shape prokaryotic diversity in a demo-scale up-flow anaerobic sludge blanket reactor treating domestic wastewater.

    PubMed

    Cardinali-Rezende, Juliana; Araújo, Juliana C; Almeida, Paulo G S; Chernicharo, Carlos A L; Sanz, José L; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2013-12-01

    We investigated the microbial community in an up-flow anaerobic sludge blanket (UASB) reactor treating domestic wastewater (DW) during two different periods of organic loading rate (OLR) and food-to-microorganism (F/M) ratio. 16S rDNA clone libraries were generated, and quantitative real-time PCR (qPCR) analyses were performed. Fluctuations in the OLR and F/M ratio affected the abundance and the composition of the UASB prokaryotic community, mainly at the species level, as well as the performance of the UASB reactor. The qPCR analysis suggested that there was a decrease in the bacterial cell number during the rainy season, when the OLR and F/M ratio were lower. However, the bacterial diversity was higher during this time, suggesting that the community degraded more diversified substrates. The diversity and the abundance of the archaeal community were higher when the F/M ratio was lower. Shifts in the methanogenic community composition might have influenced the route of methane production, with methane produced by acetotrophic methanogens (dry season), and by hydrogenotrophic, methylotrophic and acetotrophic methanogens (rainy season). This study revealed higher levels of bacterial diversity, metabolic specialization and chemical oxygen demand removal efficiency of the DW UASB reactor during the rainy season.

  18. [Immunization with Bifidobacterium bifidum-vectored OprI vaccine of Pseudomonas aeruginosa enhances inhibitory effect on P. aeruginosa in mice].

    PubMed

    Liu, Xiao; Li, Wengui

    2017-08-01

    Objective To study the pulmonary bacterial loads, splenocyte proliferation, distributions of T cell subsets and cell apoptosis in mice immunized with Bifidobacterium bifidum-vectored OprI (Bb-OprI) vaccine of Pseudomonas aeruginosa and challenged with P. aeruginosa PA01 strain. Methods BALB/c mice were immunized with 5×10 9 CFUs of vaccine by intragastric administration, 3 times a week for 3 weeks, and challenged intranasally with 5×10 6 CFUs of PA01 strain at the fourth week after the first immunization. At the second week after the challenge, all mice were sacrificed to separate their lungs and spleens, and the pulmonary bacterial loads were counted. The proliferation of the splenocytes was determined by MTT assay. The splenic CD4 + , CD8 + T cell subsets and the apoptotic rate of splenocytes were detected by flow cytometry. Results The number of pulmonary bacterial colonies in the mice immunized with the vaccine and challenged with PA01 strain decreased, while the proliferation of splenocytes and the proportion of CD4 + T cells markedly increased, and the apoptosis of splenocytes was notably reduced. Conclusion The intragastric vaccination of recombinant Bb-OprI vaccine can increase the proportion of CD4 + T cells and enhance the inhibitory effect on P. aeruginosa.

  19. Nutrient loading to Lewisville Lake, north-central Texas, 1984-87

    USGS Publications Warehouse

    Gain, W.S.; Baldys, Stanley

    1995-01-01

    The estimated long-term (1974-89 water years) average annual total nitrogen load (excluding loads from sewage-treatment plants in ungaged areas) is 11,800 pounds per day. The estimated long-term (1974 89 water years) average annual total phosphorus load (excluding loads from sewage-treatment plants in ungaged areas) is 1,100 pounds per day.

  20. Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA

    PubMed Central

    Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang

    2016-01-01

    In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils. PMID:27958371

  1. CHANGES IN BACTERIAL COMPOSITION OF BIOFILM IN A ...

    EPA Pesticide Factsheets

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e., groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to eighteen months. Significant differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity between service areas were associated with Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria, and Firmicutes. After nine months the biofilm bacterial community from both areas were dominated by Mycobacterium species. The distribution of the dominant OTU (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature, but no clear relationship was seen with free chlorine residual, pH, turbidity or total organic carbon (TOC). The results suggest that biofilm microbial communities harbor distinct and diverse bacterial communities, and that source water, treatment processes and environmental conditions may play an important role in shaping the bacterial community in the distribution system. On the other hand, several bacterial groups were present i

  2. Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Li, Yanxia; Zhang, Min; Awasthi, Mukesh Kumar; Ali, Amjad; Li, Ronghua; Wang, Quan; Zhang, Zengqiang

    2016-12-01

    In this study, we investigated the influence of heavy metals (HM) on total soil bacterial population and its diversity pattern from 10 km distance of a Zinc smelter in Feng County, Qinling Mountain, China. We characterized and identified the bacterial community in a HM polluted soil using 16S rDNA technology. Out results indicated that the maximum soil HM concentration and the minimum bacterial population were observed in S2 soil, whereas bacterial diversity raised with the sampling distance increased. The bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria and Actinobacteria in cornfield soils, except Fimicutes phylum which dominated in hilly area soil. The soil CEC, humic acid (HA)/fulvic acid (FA) and microbial OTUs increased with the sampling distance increased. Shewanella, Halomonas and Escherichia genera were highly tolerant to HM stress in both cultivated and non-cultivated soil. Finally, we found a consistent correlation of bacterial diversity with total HM and SOM along the sampling distance surrounding the zinc smelter, which could provide a new insight into the bacterial community-assisted and phytoremediation of HM contaminated soils.

  3. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus.

    PubMed

    Tan, Honglue; Peng, Zhaoxiang; Li, Qingtian; Xu, Xiaofen; Guo, Shengrong; Tang, Tingting

    2012-01-01

    Biomaterial-associated infections remain a serious complication in orthopaedic surgery. Treatments, including the local use of antibiotic-loaded polymethylmethacrylate (PMMA) bone cement, are not always successful because of multiantibiotic-resistant organisms. In this study, we synthesised a new quaternised chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) that contains a series of substitutions of quaternary ammonium and demonstrated that HACC with a 26% degree of substitution (DS; referred to as 26%HACC) had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. We loaded 26%HACC at 20% by weight into PMMA bone cement to investigate whether HACC in PMMA prevents bacterial biofilm formation on the surface of bone cements. Chitosan-loaded PMMA (at the same weight ratio), gentamicin-loaded PMMA and PMMA with no antibiotic were also investigated and compared. Two clinical isolates, Staphylococcus epidermidis 389 and methicillin-resistant S. epidermidis (MRSE287), and two standard strains, S. epidermidis (ATCC35984) and methicillin-resistant Staphylococcus aureus (ATCC43300), were selected to evaluate the bacterial biofilm formation at 6, 12 and 24 h using the spread plate method, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results showed that 26%HACC-loaded PMMA inhibited biofilm formation on its surface, while the PMMA control and chitosan-loaded PMMA were unable to inhibit biofilm formation. The gentamicin-loaded PMMA decreased the number of viable methicillin-resistant Staphylococcus strains, but its ability to inhibit biofilm formation was lower than 26%HACC-loaded PMMA. Real-time PCR demonstrated that 26%HACC-loaded PMMA markedly downregulated the expression of icaAD, which encodes essential enzymes for polysaccharide intercellular adhesion (PIA) biosynthesis, upregulated the expression level of icaR, which negatively mediates icaAD expression, and also downregulated the expression of MecA, which encodes membrane-bound enzymes known to be penicillin-binding proteins. Our study indicates that 26%HACC-loaded PMMA prevents biofilm formation of Staphylococcus, including antibiotic-resistant strains, on the surface of bone cement, and downregulates the virulence-associated gene expression of antibiotic-resistant staphylococcus, thus providing a promising new strategy for combating implant infections and osteomyelitis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study

    PubMed Central

    Gimeno, Marina; Pinczowski, Pedro; Pérez, Marta; Giorello, Antonella; Martínez, Miguel Ángel; Santamaría, Jesús; Arruebo, Manuel; Luján, Lluís

    2015-01-01

    A new device for local delivery of antibiotics is presented, with potential use as a drug-eluting fixation pin for orthopedic applications. The implant consists of a stainless steel hollow tubular reservoir packed with the desired antibiotic. Release takes place through several orifices previously drilled in the reservoir wall, a process that does not compromise the mechanical properties required for the implant. Depending on the antibiotic chosen and the number of orifices, the release profile can be tailored from a rapid release of the load (ca. 20 h) to a combination of rapid initial release and slower, sustained release for a longer period of time (ca. 200 h). An excellent bactericidal action is obtained, with 4-log reductions achieved in as little as 2 h, and total bacterial eradication in 8 h using 6-pinholed implants filled with cefazolin. PMID:26297104

  5. Urinary tract infections and bacterial prostatitis in men.

    PubMed

    Wagenlehner, Florian M E; Weidner, Wolfgang; Pilatz, Adrian; Naber, Kurt G

    2014-02-01

    The purpose of this review is to highlight advances in research on urinary tract infections (UTIs) and bacterial prostatitis in men in the preceding year. The antiseptic properties of the prostate secretions might be an important factor for prevention of recurrency. Risk factors for UTI in men include prostate enlargement and urological interventions, such as transrectal prostate biopsy. Preventive treatment of prostate enlargement has been demonstrated to reduce frequency of UTI. Ensuing infections after prostate biopsy, such as UTI and bacterial prostatitis, are increasing due to increasing rates of fluoroquinolone resistance. The increasing global antibiotic resistance also significantly affects management of UTI in men, and therefore calls for alternative strategies.Apart from prevention of complicating factors leading to UTI, a more thorough understanding of the pathophysiology may play a more important role in the future, to define new targets for treatment. Interesting results that might interfere with the intracellular mucosal bacterial load in the bladder wall have been found in the last years. UTI in men and bacterial prostatitis are currently underrepresented in the medical literature. Increasing antibacterial resistance calls for novel strategies in the prevention and management of UTI and bacterial prostatitis in men.

  6. Rapid staining and enumeration of small numbers of total bacteria in water by solid-phase laser cytometry

    NASA Technical Reports Server (NTRS)

    Broadaway, Susan C.; Barton, Stephanie A.; Pyle, Barry H.

    2003-01-01

    The nucleic acid stain SYBR Green I was evaluated for use with solid-phase laser cytometry to obtain total bacterial cell counts from several water sources with small bacterial numbers. Results were obtained within 30 min and exceeded or equaled counts on R2A agar plates incubated for 14 days at room temperature.

  7. Nitrogen loads from selected rivers in the Long Island Sound Basin, 2005–13, Connecticut and Massachusetts

    USGS Publications Warehouse

    Mullaney, John R.

    2016-03-29

    Total nitrogen loads at 14 water-quality monitoring stations were calculated by using discrete measurements of total nitrogen and continuous streamflow data for the period 2005–13 (water years 2006–13). Total nitrogen loads were calculated by using the LOADEST computer program.Overall, for water years 2006–13, streamflow in Connecticut was generally above normal. Total nitrogen yields ranged from 1,160 to 23,330 pounds per square mile per year. Total nitrogen loads from the French River at North Grosvenordale and the Still River at Brookfield Center, Connecticut, declined noticeably during the study period. An analysis of the bias in estimated loads indicated unbiased results at all but one station, indicating generally good fit for the LOADEST models.

  8. Adequate Hand Washing and Glove Use Are Necessary To Reduce Cross-Contamination from Hands with High Bacterial Loads.

    PubMed

    Robinson, Andrew L; Lee, Hyun Jung; Kwon, Junehee; Todd, Ewen; Rodriguez, Fernando Perez; Ryu, Dojin

    2016-02-01

    Hand washing and glove use are the main methods for reducing bacterial cross-contamination from hands to ready-to-eat food in a food service setting. However, bacterial transfer from hands to gloves is poorly understood, as is the effect of different durations of soap rubbing on bacterial reduction. To assess bacterial transfer from hands to gloves and to compare bacterial transfer rates to food after different soap washing times and glove use, participants' hands were artificially contaminated with Enterobacter aerogenes B199A at ∼9 log CFU. Different soap rubbing times (0, 3, and 20 s), glove use, and tomato dicing activities followed. The bacterial counts in diced tomatoes and on participants' hands and gloves were then analyzed. Different soap rubbing times did not significantly change the amount of bacteria recovered from participants' hands. Dicing tomatoes with bare hands after 20 s of soap rubbing transferred significantly less bacteria (P < 0.01) to tomatoes than did dicing with bare hands after 0 s of soap rubbing. Wearing gloves while dicing greatly reduced the incidence of contaminated tomato samples compared with dicing with bare hands. Increasing soap washing time decreased the incidence of bacteria recovered from outside glove surfaces (P < 0.05). These results highlight that both glove use and adequate hand washing are necessary to reduce bacterial cross-contamination in food service environments.

  9. Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13

    USGS Publications Warehouse

    Buck, Stephanie D.

    2014-01-01

    The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.

  10. Determination and comparison of microbial loads in atmospheres of two hospitals in Izmir, Turkey.

    PubMed

    Aydin Çakir, Nergüze; Uçar, Füsun Bahriye; Haliki Uztan, Alev; Corbaci, Cengiz; Akpinar, Onur

    2013-01-01

    Nosocomial infections, also known as hospital-acquired infections, has become one of the most important health problems in health care units worldwide. The presented study aims to determine the average amount of microorganism loads and to show that the atmospheres of the two hospitals can be a potential source regarding nosocomial infections. The effect of surface and floor disinfection processes in the two hospitals and the antibiotic susceptibility of the bacterial isolates were also evaluated. Microorganisms were isolated from air samples collected from different areas (patient wards, corridors, operating theatres and postoperative units) of the two hospitals in Izmir. Sampling was conducted between December 2006 - March 2007. During the 3-month sampling period, the average number of live microorganisms in the air samples collected from second-class environments in the hospital 1 and the hospital 2 was found to be 224.44 and 536.66 cfu/m(3) , respectively. The average number of microorganisms in hospital 2 collected before the disinfection process was higher than those after the disinfection process. However, because of the closure of the air-conditioning system and the hepa filters after the disinfection process, this was reversed in hospital 1. In total, 54 and 42 isolates were obtained from hospital 1 and hospital 2, respectively. 49 isolates from hospital 1 and 35 isolates from hospital 2 were identified as Staphylacoccus sp. The remaining isolates were identified as Aerococcus sp. and Enterococcus sp. Pseudomonas sp. was not determined in the air samples of the two hospitals. It was detected that the microbial loads in the atmospheres of the two hospitals studied varied greatly depending on the number of people in the environment. As the results indicate, the total number of microorganisms in the atmospheres of operating theatres in both hospitals does not pose a threat according to the Air Microbe Index.

  11. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF - 2005 VERSION

    EPA Science Inventory

    Urban stormwater runoff is a leading cause of water quality impairment in lakes and reservoirs. Stormwater discharges, with latent bacterial loads, can negatively impact receiving water quality and create human health concerns when these waters are used for drinking water resourc...

  12. Bioaerosols study in central Taiwan during summer season.

    PubMed

    Wang, Chun-Chin; Fang, Guor-Cheng; Lee, LienYao

    2007-04-01

    Suspended particles, of which bioaerosols are one type, constitute one of the main reasons to cause severe air quality in Taiwan. Bioaerosols include allergens such as fungi, bacteria, actinomycetes, arthropods and protozoa, as well as microbial products such as mycotoxins, endotoxins and glucans. When allergens and microbial products are suspended in the air, local air quality will be influenced severely. In addition, when the particle size is small enough to pass through the respiratory tract entering the human body, the health of the local population is also threatened. Therefore, the purpose of this study attempted to understand the concentration and types of bacteria during summer period at four sampling sites in Taichung city, central Taiwan. The results indicated that total average bacterial concentration by using R2A medium incubated for 48 h were 7.3 x 10(2) and 1.2 x 10(3) cfu/m3 for Chung-Ming elementary sampling site during daytime and night-time period of summer season. In addition, total average bacterial concentration by using R2A medium incubated for 48 h were 2.2 x 10(3) and 2.5 x 10(3) cfu/m3 for Taichung refuse incineration plant sampling site during daytime and night-time period of summer season. As for Rice Field sampling site during daytime and night-time period of summer season, the results also reflected that the total average bacterial concentration by using R2A medium incubated for 48 h were 3.4 x 10(3) and 3.5 x 10(3) cfu/m3. Finally, total average bacterial concentration by using R2A medium incubated for 48 h were 1.6 x 10(3) and 1.9 x 10(3) cfu/m3 for Central Taiwan Science Park sampling site during daytime and night-time period of summer season. Moreover, the average bacterial concentration increased as the incubated time in a growth medium increased for particle sizes of 0.65-1.1, 1.1-2.1, 2.1-3.3, 3.3-4.7 and 4.7-7.0 microm. The total average bacterial concentration has no significant difference for day and night sampling period at any sampling site for the expression of bacterial concentration in term of order. The high average bacterial concentration was found in the particle size of 0.53-0.71 mm (average bioaerosol size was in the range of 2.1-4.7 microm) for each sampling site. Besides, there were exceeded 20 kinds of bacteria for each sampling site and the bacterial shape were rod, coccus and filamentous.

  13. Habitat heterogeneity and connectivity shape microbial communities in South American peatlands

    PubMed Central

    Oloo, Felix; Valverde, Angel; Quiroga, María Victoria; Vikram, Surendra; Cowan, Don; Mataloni, Gabriela

    2016-01-01

    Bacteria play critical roles in peatland ecosystems. However, very little is known of how habitat heterogeneity affects the structure of the bacterial communities in these ecosystems. Here, we used amplicon sequencing of the 16S rRNA and nifH genes to investigate phylogenetic diversity and bacterial community composition in three different sub-Antarctic peat bog aquatic habitats: Sphagnum magellanicum interstitial water, and water from vegetated and non-vegetated pools. Total and putative nitrogen-fixing bacterial communities from Sphagnum interstitial water differed significantly from vegetated and non-vegetated pool communities (which were colonized by the same bacterial populations), probably as a result of differences in water chemistry and biotic interactions. Total bacterial communities from pools contained typically aquatic taxa, and were more dissimilar in composition and less species rich than those from Sphagnum interstitial waters (which were enriched in taxa typically from soils), probably reflecting the reduced connectivity between the former habitats. These results show that bacterial communities in peatland water habitats are highly diverse and structured by multiple concurrent factors. PMID:27162086

  14. Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area

    NASA Astrophysics Data System (ADS)

    Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua

    2017-10-01

    Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.

  15. The preparation, cytocompatibility and antimicrobial property of micro/nano structural titanium loading alginate and antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Zhong, Mou; Sun, Yuhua; Chen, Junhong; Feng, Bo

    2018-03-01

    Titanium with hybrid microporous/nanotubes (TMNT) structure on its surface was fabricated by acid etching and subsequently anodization at different voltages. Bovine lactoferricin, a kind of antimicrobial peptide, and sodium alginate (NaAlg) were loaded onto titanium surface through layer by layer assembly. The drug release, cytocompatibility and antimicrobial property against S.aureus and E.coil were studied by release experiment, osteoblast and bacterial cultures. Results indicated that samples with nanotubes of bigger diameter carried more drugs and had better biocompatibility, and drug-loaded samples acquired better biocompatibility compared with drug-free samples. Furthermore, the drug-loaded samples exhibited good initial antimicrobial property, but weak long-term antimicrobial property. Therefore, drug-loaded titanium with micro/nano structure, especially, of big diameter nanotubes, could be a promise material for medical implants, such as internal/external fixation devices.

  16. Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany

    PubMed Central

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835

  17. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany.

    PubMed

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.

  18. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes

    PubMed Central

    Fauteux, Lisa; Cottrell, Matthew T.; Kirchman, David L.; Borrego, Carles M.; Garcia-Chaves, Maria Carolina; del Giorgio, Paul A.

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex. PMID:25927833

  19. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    PubMed

    Fauteux, Lisa; Cottrell, Matthew T; Kirchman, David L; Borrego, Carles M; Garcia-Chaves, Maria Carolina; Del Giorgio, Paul A

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  20. Biomonitoring along the Tropical Southern Indian Coast with Multiple Biomarkers.

    PubMed

    Vignesh, Sivanandham; Dahms, Hans-Uwe; Muthukumar, Krishnan; Vignesh, Gopalaswamy; James, Rathinam Arthur

    2016-01-01

    We assessed the spatial and temporal variations of pollution indicators and geochemical and trace metal parameters (23 in total) from water and sediment (144 samples) of three different eco-niches (beach, fishing harbor, and estuary) in larger coastal cities of southern India (Cuddalore and Pondicherry) for one year. A total of 120 marine Pseudomonas isolates were challenged against different concentrations of copper solutions and 10 different antibiotics in heavy metal and antibiotic resistance approaches, respectively. The study shows that 4.16% of the isolates could survive in 250 mM of copper; 70% were resistant to minimum concentrations. Strains were resistant (98.4%) to at least one antibiotic in Cuddalore compared to the Pondicherry (78.4%) region. Pollution index (PI) (0-14.55) and antibiotic resistance index (ARI) (0.05-0.10) ratio indicated that high bacterial and antibiotic loads were released into the coastal environment. The degree of trace metal contamination in sediments were calculated by enrichment factor (EF), contamination factor (CF), pollution load index (PLI), and geo-accumulation index (Igeo). Statistical parameters like two-way analysis of variance (ANOVA), correlation, factor analysis and scatter matrix tools were employed between the 23 parameters in order to find sources, pathways, disparities and interactions of environmental pollutants. It indicates that geochemical and biological parameters were not strongly associated with each other (except a few) and were affected by different sources. Factor analysis elucidated, 'microbe-metal' interaction (Factor 1-48.86%), 'anthropogenic' factor (Factor 2-13.23%) and 'Pseudomonas-Cadmium' factor (Factor 3-11.74%), respectively.

  1. Biomonitoring along the Tropical Southern Indian Coast with Multiple Biomarkers

    PubMed Central

    Vignesh, Sivanandham; Dahms, Hans-Uwe; Muthukumar, Krishnan; Vignesh, Gopalaswamy; James, Rathinam Arthur

    2016-01-01

    We assessed the spatial and temporal variations of pollution indicators and geochemical and trace metal parameters (23 in total) from water and sediment (144 samples) of three different eco-niches (beach, fishing harbor, and estuary) in larger coastal cities of southern India (Cuddalore and Pondicherry) for one year. A total of 120 marine Pseudomonas isolates were challenged against different concentrations of copper solutions and 10 different antibiotics in heavy metal and antibiotic resistance approaches, respectively. The study shows that 4.16% of the isolates could survive in 250 mM of copper; 70% were resistant to minimum concentrations. Strains were resistant (98.4%) to at least one antibiotic in Cuddalore compared to the Pondicherry (78.4%) region. Pollution index (PI) (0–14.55) and antibiotic resistance index (ARI) (0.05–0.10) ratio indicated that high bacterial and antibiotic loads were released into the coastal environment. The degree of trace metal contamination in sediments were calculated by enrichment factor (EF), contamination factor (CF), pollution load index (PLI), and geo-accumulation index (Igeo). Statistical parameters like two-way analysis of variance (ANOVA), correlation, factor analysis and scatter matrix tools were employed between the 23 parameters in order to find sources, pathways, disparities and interactions of environmental pollutants. It indicates that geochemical and biological parameters were not strongly associated with each other (except a few) and were affected by different sources. Factor analysis elucidated, ‘microbe–metal’ interaction (Factor 1–48.86%), ‘anthropogenic’ factor (Factor 2–13.23%) and ‘Pseudomonas–Cadmium’ factor (Factor 3–11.74%), respectively. PMID:27941969

  2. Rapid and quantitative detection of the microbial spoilage of meat by fourier transform infrared spectroscopy and machine learning.

    PubMed

    Ellis, David I; Broadhurst, David; Kell, Douglas B; Rowland, Jem J; Goodacre, Royston

    2002-06-01

    Fourier transform infrared (FT-IR) spectroscopy is a rapid, noninvasive technique with considerable potential for application in the food and related industries. We show here that this technique can be used directly on the surface of food to produce biochemically interpretable "fingerprints." Spoilage in meat is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. FT-IR was exploited to measure biochemical changes within the meat substrate, enhancing and accelerating the detection of microbial spoilage. Chicken breasts were purchased from a national retailer, comminuted for 10 s, and left to spoil at room temperature for 24 h. Every hour, FT-IR measurements were taken directly from the meat surface using attenuated total reflectance, and the total viable counts were obtained by classical plating methods. Quantitative interpretation of FT-IR spectra was possible using partial least-squares regression and allowed accurate estimates of bacterial loads to be calculated directly from the meat surface in 60 s. Genetic programming was used to derive rules showing that at levels of 10(7) bacteria.g(-1) the main biochemical indicator of spoilage was the onset of proteolysis. Thus, using FT-IR we were able to acquire a metabolic snapshot and quantify, noninvasively, the microbial loads of food samples accurately and rapidly in 60 s, directly from the sample surface. We believe this approach will aid in the Hazard Analysis Critical Control Point process for the assessment of the microbiological safety of food at the production, processing, manufacturing, packaging, and storage levels.

  3. When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition.

    PubMed

    Pena-Miller, Rafael; Laehnemann, David; Jansen, Gunther; Fuentes-Hernandez, Ayari; Rosenstiel, Philip; Schulenburg, Hinrich; Beardmore, Robert

    2013-01-01

    Conventional wisdom holds that the best way to treat infection with antibiotics is to 'hit early and hit hard'. A favoured strategy is to deploy two antibiotics that produce a stronger effect in combination than if either drug were used alone. But are such synergistic combinations necessarily optimal? We combine mathematical modelling, evolution experiments, whole genome sequencing and genetic manipulation of a resistance mechanism to demonstrate that deploying synergistic antibiotics can, in practice, be the worst strategy if bacterial clearance is not achieved after the first treatment phase. As treatment proceeds, it is only to be expected that the strength of antibiotic synergy will diminish as the frequency of drug-resistant bacteria increases. Indeed, antibiotic efficacy decays exponentially in our five-day evolution experiments. However, as the theory of competitive release predicts, drug-resistant bacteria replicate fastest when their drug-susceptible competitors are eliminated by overly-aggressive treatment. Here, synergy exerts such strong selection for resistance that an antagonism consistently emerges by day 1 and the initially most aggressive treatment produces the greatest bacterial load, a fortiori greater than if just one drug were given. Whole genome sequencing reveals that such rapid evolution is the result of the amplification of a genomic region containing four drug-resistance mechanisms, including the acrAB efflux operon. When this operon is deleted in genetically manipulated mutants and the evolution experiment repeated, antagonism fails to emerge in five days and antibiotic synergy is maintained for longer. We therefore conclude that unless super-inhibitory doses are achieved and maintained until the pathogen is successfully cleared, synergistic antibiotics can have the opposite effect to that intended by helping to increase pathogen load where, and when, the drugs are found at sub-inhibitory concentrations.

  4. Material and biofilm load of K wires in toe surgery: titanium versus stainless steel.

    PubMed

    Clauss, Martin; Graf, Susanne; Gersbach, Silke; Hintermann, Beat; Ilchmann, Thomas; Knupp, Markus

    2013-07-01

    Recurrence rates for toe deformity correction are high and primarily are attributable to scar contractures. These contractures may result from subclinical infection. We hypothesized that (1) recurrence of toe deformities and residual pain are related to low-grade infections from biofilm formation on percutaneous K wires, (2) biofilm formation is lower on titanium (Ti) K wires compared with stainless steel (SS) K wires, and (3) clinical outcome is superior with the use of Ti K wires compared with SS K wires. In this prospective nonrandomized, comparative study, we investigated 135 lesser toe deformities (61 patients; 49 women; mean ± SD age, 60 ± 15 years) temporarily fixed with K wires between August 2010 and March 2011 (81 SS, 54 Ti). K wires were removed after 6 weeks. The presence of biofilm-related infections was analyzed by sonication. High bacterial loads (> 500 colony-forming units [CFU]/mL) were detected on all six toes requiring revision before 6 months. Increased bacterial load was associated with pain and swelling but not recurrence of the deformity. More SS K wires had greater than 100 CFU/mL bacteria than Ti K wires. For K wires with a bacterial count greater than 100 CFU/mL, toes with Ti K wires had a lower recurrence rate, less pain, and less swelling than toes with SS K wires. Ti K wires showed superior clinical outcomes to SS K wires. This appears to be attributable to reduced infection rates. Although additional study is needed, we currently recommend the use of Ti K wires for the transfixation of toe deformities. Level II, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  5. Detection of group a streptococcal pharyngitis by quantitative PCR.

    PubMed

    Dunne, Eileen M; Marshall, Julia L; Baker, Ciara A; Manning, Jayne; Gonis, Gena; Danchin, Margaret H; Smeesters, Pierre R; Satzke, Catherine; Steer, Andrew C

    2013-07-11

    Group A streptococcus (GAS) is the most common bacterial cause of sore throat. School-age children bear the highest burden of GAS pharyngitis. Accurate diagnosis is difficult: the majority of sore throats are viral in origin, culture-based identification of GAS requires 24-48 hours, and up to 15% of children are asymptomatic throat carriers of GAS. The aim of this study was to develop a quantitative polymerase chain reaction (qPCR) assay for detecting GAS pharyngitis and assess its suitability for clinical diagnosis. Pharyngeal swabs were collected from children aged 3-18 years (n = 91) and adults (n = 36) located in the Melbourne area who presented with sore throat. Six candidate PCR assays were screened using a panel of reference isolates, and two of these assays, targeting speB and spy1258, were developed into qPCR assays. The qPCR assays were compared to standard culture-based methods for their ability to detect GAS pharyngitis. GAS isolates from culture positive swabs underwent emm-typing. Clinical data were used to calculate McIsaac scores as an indicator of disease severity. Twenty-four of the 127 samples (18.9%) were culture-positive for GAS, and all were in children (26%). The speB qPCR had 100% sensitivity and 100% specificity compared with gold-standard culture, whereas the spy1258 qPCR had 87% sensitivity and 100% specificity. Nine different emm types were found, of which emm 89, 3, and 28 were most common. Bacterial load as measured by qPCR correlated with culture load. There were no associations between symptom severity as indicated by McIsaac scores and GAS bacterial load. The speB qPCR displayed high sensitivity and specificity and may be a useful tool for GAS pharyngitis diagnosis and research.

  6. Chlorine stabilizer T-128 enhances efficacy of chlorine against cross-contamination by E. coli O157:H7 and Salmonella in fresh-cut lettuce processing.

    PubMed

    Nou, Xiangwu; Luo, Yaguang; Hollar, LaVonda; Yang, Yang; Feng, Hao; Millner, Patricia; Shelton, Daniel

    2011-04-01

    During fresh-cut produce processing, organic materials released from cut tissues can rapidly react with free chlorine in the wash solution, leading to the potential survival of foodborne bacterial pathogens, and cross-contamination when the free chlorine is depleted. A reported chlorine stabilizer, T-128, has been developed to address this problem. In this study, we evaluated the ability of T-128 to stabilize free chlorine in wash solutions in the presence of high organic loads generated by the addition of lettuce extract or soil. Under conditions used in this study, T-128 significantly (P<0.001) decreased the rate of free chlorine depletion at the presence of soil. T-128 also slightly decreased the rate of free chlorine depletion caused by the addition of lettuce extract in wash solution. Application of T-128 significantly reduced the survival of bacterial pathogens in wash solutions with high organic loads and significantly reduced the potential of cross-contamination, when contaminated and uncontaminated produce were washed together. However, T-128 did not enhance the efficacy of chlorinated wash solutions for microbial reduction on contaminated iceberg lettuce. Evaluation of several produce quality parameters, including overall visual appearance, package headspace O2 and CO2 composition, and lettuce electrolyte leakage, during 15 d of storage indicated that iceberg lettuce quality and shelf life were not negatively impacted by washing fresh-cut lettuce in chlorine solutions containing 0.1% T-128.   Reported chlorine stabilizer is shown to enhance chlorine efficacy against potential bacterial cross-contamination in the presence of high organic loads without compromising product quality and shelf life.

  7. Usefulness of Cellular Analysis of Bronchoalveolar Lavage Fluid for Predicting the Etiology of Pneumonia in Critically Ill Patients

    PubMed Central

    Hong, Hyo-Lim; Kim, Sung-Han; Huh, Jin Won; Sung, Heungsup; Lee, Sang-Oh; Kim, Mi-Na; Jeong, Jin-Yong; Lim, Chae-Man; Kim, Yang Soo; Woo, Jun Hee; Koh, Younsuck

    2014-01-01

    Background The usefulness of bronchoalveolar lavage (BAL) fluid cellular analysis in pneumonia has not been adequately evaluated. This study investigated the ability of cellular analysis of BAL fluid to differentially diagnose bacterial pneumonia from viral pneumonia in adult patients who are admitted to intensive care unit. Methods BAL fluid cellular analysis was evaluated in 47 adult patients who underwent bronchoscopic BAL following less than 24 hours of antimicrobial agent exposure. The abilities of BAL fluid total white blood cell (WBC) counts and differential cell counts to differentiate between bacterial and viral pneumonia were evaluated using receiver operating characteristic (ROC) curve analysis. Results Bacterial pneumonia (n = 24) and viral pneumonia (n = 23) were frequently associated with neutrophilic pleocytosis in BAL fluid. BAL fluid median total WBC count (2,815/µL vs. 300/µL, P<0.001) and percentage of neutrophils (80.5% vs. 54.0%, P = 0.02) were significantly higher in the bacterial pneumonia group than in the viral pneumonia group. In ROC curve analysis, BAL fluid total WBC count showed the best discrimination, with an area under the curve of 0.855 (95% CI, 0.750–0.960). BAL fluid total WBC count ≥510/µL had a sensitivity of 83.3%, specificity of 78.3%, positive likelihood ratio (PLR) of 3.83, and negative likelihood ratio (NLR) of 0.21. When analyzed in combination with serum procalcitonin or C-reactive protein, sensitivity was 95.8%, specificity was 95.7%, PLR was 8.63, and NLR was 0.07. BAL fluid total WBC count ≥510/µL was an independent predictor of bacterial pneumonia with an adjusted odds ratio of 13.5 in multiple logistic regression analysis. Conclusions Cellular analysis of BAL fluid can aid early differential diagnosis of bacterial pneumonia from viral pneumonia in critically ill patients. PMID:24824328

  8. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens.

    PubMed

    Shaikh, Sibhghatulla; Rizvi, Syed Mohd Danish; Shakil, Shazi; Hussain, Talib; Alshammari, Thamir M; Ahmad, Waseem; Tabrez, Shams; Al-Qahtani, Mohammad H; Abuzenadah, Adel M

    2017-09-01

    Multidrug-resistance due to "β lactamases having the expanded spectrum" (ESBLs) in members of Enterobacteriaceae is a matter of continued clinical concern. CTX-M is among the most common ESBLs in Enterobacteriaceae family. In the present study, a nanoformulation of cefotaxime was prepared using gold nanoparticles to combat drug-resistance in ESBL producing strains. Here, two CTX-M-15 positive cefotaxime resistant bacterial strains (i.e., one Escherichia coli and one Klebsiella pneumoniae strain) were used for testing the efficacy of "cefotaxime loaded gold-nanoparticles." Bromelain was used for both reduction and capping in the process of synthesis of gold-nanoparticles. Thereafter, cefotaxime was conjugated onto it with the help of activator 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide. For characterization of both unconjugated and cefotaxime conjugated gold nanoparticles; UV-Visible spectroscopy, Scanning, and Transmission type Electron Microscopy methods accompanied with Dynamic Light Scattering were used. We used agar diffusion method plus microbroth-dilution method for the estimation of the antibacterial-activity and determination of minimum inhibitory concentration or MIC values, respectively. MIC values of cefotaxime loaded gold nanoparticles against E. coli and K. pneumoniae were obtained as 1.009 and 2.018 mg/L, respectively. These bacterial strains were completely resistant to cefotaxime alone. These results reinforce the utility of conjugating an old unresponsive antibiotic with gold nanoparticles to restore its efficacy against otherwise resistant bacterial pathogens. J. Cell. Biochem. 118: 2802-2808, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Hand Hygiene – Evaluation of Three Disinfectant Hand Sanitizers in a Community Setting

    PubMed Central

    Babeluk, Rita; Jutz, Sabrina; Mertlitz, Sarah; Matiasek, Johannes; Klaus, Christoph

    2014-01-01

    Hand hygiene is acknowledged as the single most important measure to prevent nosocomial infections in the healthcare setting. Similarly, in non-clinical settings, hand hygiene is recognised as a key element in helping prevent the spread of infectious diseases. The aim of this study was to evaluate the efficacy of three different disinfectant hand sanitizers in reducing the burden of bacterial hand contamination in 60 healthy volunteers in a community setting, both before and after education about the correct use of hand sanitizers. The study is the first to evaluate the efficacy and ease of use of different formulations of hand rubs used by the general population. The products tested were: Sterillium (perfumed, liquid), desderman pure gel (odorless, gel) and Lavit (perfumed, spray). Sterillium and desderman are EN1500 (hygienic hand rub) certified products (available in pharmacy) and Lavit is non EN1500 certified and available in supermarkets. The two EN1500 certified products were found to be significantly superior in terms of reducing bacterial load. desderman pure gel, Sterillium and Lavit reduced the bacterial count to 6.4%, 8.2% and 28.0% respectively. After education in the correct use of each hand rub, the bacterial load was reduced even further, demonstrating the value of education in improving hand hygiene. Information about the testers' perceptions of the three sanitizers, together with their expectations of a hand sanitizer was obtained through a questionnaire. Efficacy, followed by skin compatibility were found to be the two most important attributes of a hand disinfectant in our target group. PMID:25379773

  10. Bacteria survival probability in bactericidal filter paper.

    PubMed

    Mansur-Azzam, Nura; Hosseinidoust, Zeinab; Woo, Su Gyeong; Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2014-05-01

    Bactericidal filter papers offer the simplicity of gravity filtration to simultaneously eradicate microbial contaminants and particulates. We previously detailed the development of biocidal block copolymer micelles that could be immobilized on a filter paper to actively eradicate bacteria. Despite the many advantages offered by this system, its widespread use is hindered by its unknown mechanism of action which can result in non-reproducible outcomes. In this work, we sought to investigate the mechanism by which a certain percentage of Escherichia coli cells survived when passing through the bactericidal filter paper. Through the process of elimination, the possibility that the bacterial survival probability was controlled by the initial bacterial load or the existence of resistant sub-populations of E. coli was dismissed. It was observed that increasing the thickness or the number of layers of the filter significantly decreased bacterial survival probability for the biocidal filter paper but did not affect the efficiency of the blank filter paper (no biocide). The survival probability of bacteria passing through the antibacterial filter paper appeared to depend strongly on the number of collision between each bacterium and the biocide-loaded micelles. It was thus hypothesized that during each collision a certain number of biocide molecules were directly transferred from the hydrophobic core of the micelle to the bacterial lipid bilayer membrane. Therefore, each bacterium must encounter a certain number of collisions to take up enough biocide to kill the cell and cells that do not undergo the threshold number of collisions are expected to survive. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Bacterial and Fungal Counts of Dried and Semi-Dried Foods Collected from Dhaka, Bangladesh, and Their Reduction Methods.

    PubMed

    Feroz, Farahnaaz; Shimizu, Hiromi; Nishioka, Terumi; Mori, Miho; Sakagami, Yoshikazu

    2016-01-01

     Food is a basic necessity for human survival, but it is still the vehicle for the transmission of food borne disease. Various studies have examined the roles of spices, herbs, nuts, and semi-dried fruits, making the need for safe and convenient methods of decontamination a necessity. The current study determined the bacterial and fungal loads of 26 spices and herbs, 5 nuts, 10 semi-dried fruits and 5 other foods. Spices, herbs and semi-dried foods demonstrated the highest bacterial and fungal loads with the majority showing over 10 4 CFU/mL. Nuts and other foods showed growths ranging from 10 2 to 10 6 CFU/mL. The current study also attempted to determine the effects of heat and plasma treatment. The log reduction of bacterial growth after heat treatment (maximum: 120 min for 60℃) was between 0.08 to 4.47, and the log reduction after plasma treatment (maximum: 40 min) ranged from 2.37 to 5.75. Spices showed the lowest rates of reduction, whereas the semi-dried and other foods showed moderate to high levels of decrease after heat treatment. The log reduction of fungal growth after heat treatment ranged from 0.27 to 4.40, and log reduction after plasma treatment ranged from 2.15 to 5.91.Furthermore, we validated the sterilization effect of plasma treatment against Bacillus spp. and Staphylococcus spp. by using scanning electron microscopy. Both treatment methods could prove to be advantageous in the agriculture related fields, enhancing the quality of the foods.

  12. Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice

    PubMed Central

    Otto, Caitlin C.; Kilbourne, Jacquelyn

    2016-01-01

    Discoveries associated with antibacterial activity of hydrated clays necessitate assessments of in vivo efficacy, practical use and safety. Surface properties of clays can lead to variations in the composition and abundance of bound compounds or ions, thus affecting antibacterial activity. Since exchangeable metal ions released from the clay surface are responsible for in vitro antibacterial activity, we evaluated the in vivo antibacterial efficacy of four natural clays (one illite clay, two montmorillonite clays and one kaolinite clay) and three ion-exchanged, antibacterial clays against superficial, cutaneous meticillin-resistant Staphylococcus aureus (MRSA) infections in mice. Superficial, cutaneous wounds on the back of SKH1-Elite mice were generated and subsequently infected with MRSA. Following twice daily applications of a hydrated clay poultice to infected wounds for 7 days, we observed significant differences in the in vivo antibacterial efficacy between different types of clays. The natural and ion-exchanged illite clays performed best, as measured by bacterial load, inflammatory response and gross wound morphology with significant decreases in bacterial viability and dermatitis. Topical application of kaolinite clay was the least effective, resulting in the lowest decrease in bacterial load and exhibiting severe dermatitis. These data suggest that specific types of clays may offer a complementary and integrative strategy for topically treating MRSA and other cutaneous infections. However, since natural clays exhibit in vitro antibacterial variability and vary vastly in surface chemistries, adsorptive/absorptive characteristics and structural composition, the properties and characteristics of illite clays could aid in the development of standardized and customized aluminosilicates for topical infections. PMID:26508716

  13. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment.

    PubMed

    Inkinen, J; Jayaprakash, B; Ahonen, M; Pitkänen, T; Mäkinen, R; Pursiainen, A; Santo Domingo, J W; Salonen, H; Elk, M; Keinänen-Toivola, M M

    2018-02-01

    To study the stability of biofilms and water quality in pilot scale drinking water copper and PEX pipes in changing conditions (extra disinfection, magnetic water treatment, MWT). Next-generation sequencing (NGS) of 16S ribosomal RNA genes (rDNA) to describe total bacterial community and ribosomal RNA (rRNA) to describe active bacterial members in addition to traditional microbiological methods were applied. Biofilms from control copper and PEX pipes shared same most abundant bacteria (Methylobacterium spp., Sphingomonas spp., Zymomonas spp.) and average species diversities (Shannon 3·8-4·2) in rDNA and rRNA libraries, whereas few of the taxa differed by their abundance such as lower total Mycobacterium spp. occurrence in copper (<0·02%) to PEX (<0·2%) pipes. Extra disinfection (total chlorine increase from c. 0·5 to 1 mg l -1 ) affected total and active population in biofilms seen as decrease in many bacterial species and diversity (Shannon 2·7, P < 0·01, rRNA) and increase in Sphingomonas spp. as compared to control samples. Furthermore, extra-disinfected copper and PEX samples formed separate clusters in unweighted non-metric multidimensional scaling plot (rRNA) similarly to MWT-treated biofilms of copper (but not PEX) pipes that instead showed higher species diversity (Shannon 4·8, P < 0·05 interaction). Minor chlorine dose addition increased selection pressure and many species were sensitive to chlorination. Pipe material seemed to affect mycobacteria occurrence, and bacterial communities with MWT in copper but not in PEX pipes. This study using rRNA showed that chlorination affects especially active fraction of bacterial communities. Copper and PEX differed by the occurrence of some bacterial members despite similar community profiles. © 2017 The Society for Applied Microbiology.

  14. Key determinants of the fungal and bacterial microbiomes in homes.

    PubMed

    Kettleson, Eric M; Adhikari, Atin; Vesper, Stephen; Coombs, Kanistha; Indugula, Reshmi; Reponen, Tiina

    2015-04-01

    The microbiome of the home is of great interest because of its possible impact on health. Our goal was to identify some of the factors that determine the richness, evenness and diversity of the home's fungal and bacterial microbiomes. Vacuumed settled dust from homes (n=35) in Cincinnati, OH, were analyzed by pyrosequencing to determine the fungal and bacterial relative sequence occurrence. The correlation coefficients between home environmental characteristics, including age of home, Environmental Relative Moldiness Index (ERMI) values, occupant number, relative humidity and temperature, as well as pets (dog and cat) were evaluated for their influence on fungal and bacterial communities. In addition, linear discriminant analysis (LDA) was used for identifying fungal and bacterial genera and species associated with those housing determinants found to be significant. The fungal richness was found to be positively correlated with age of home (p=0.002), ERMI value (p=0.003), and relative humidity (p=0.015) in the home. However, fungal evenness and diversity were only correlated with the age of home (p=0.001). Diversity and evenness (not richness) of the bacterial microbiome in the homes were associated with dog ownership. Linear discriminant analysis showed total of 39 putative fungal genera/species with significantly higher LDA scores in high ERMI homes and 47 genera/species with significantly higher LDA scores in homes with high relative humidity. When categorized according to the age of the home, a total of 67 fungal genera/species had LDA scores above the significance threshold. Dog ownership appeared to have the most influence on the bacterial microbiome, since a total of 130 bacterial genera/species had significantly higher LDA scores in homes with dogs. Some key determinants of the fungal and bacterial microbiome appear to be excess moisture, age of the home and dog ownership. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Physicochemical properties of anti Vibrio harveyi egg yolk antibody (IgY) and its immunological influence in Indian white shrimp Fenneropenaeus indicus.

    PubMed

    Kumaran, Thankamani; Thirumalaikumar, Eswaramoorthy; Lelin, Chinnadurai; Palanikumar, Pandi; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu

    2018-03-01

    Edible antibodies specific to host pathogens is an attractive approach to establish protective immunity, especially against gastrointestinal pathogens both in humans and animals. The edible antibody of anti-Vibrio harveyi IgY (anti-V. h IgY) was produced by antigen mixed with immunoadjuvant Asparagus racemosus and Glycine max. Hens were immunized and eggs were collected five weeks after the immunization. Anti-V. harveyi IgY stability in different digestive enzymes such as trypsin and chymotrypsin were evaluated to determine its ability to withstand in the gastrointestinal tract of F. indicus. Specific binding activity and concentration (average 9.5% of total IgY content) of the anti-V. h IgY were determined by the ELISA using V. harveyi antigen. Further the anti-V. h IgY diets including V.h wo, V.h A, V.h G and control diets were fed to F. indicus for 60 days. After 30 and 60 of feeding, group of shrimps were challenged with virulent V. harveyi. After the respective days of feeding, haematological and immunological changes were studied. The parameters including total haemocyte count (THC), coagulase activity, oxyhaemocyanin level, prophenoloxidase, intracellular superoxide anion production, lysozyme, phagocytosis and bacterial agglutinin had significantly (P ≤ .001) increased in the experimental groups in comparission with the control diet fed shrimps. The anti-V. h IgY coated diets helped to reduce the Vibrio load and boosted the immune system in F. indicus's against V. harveyi challenge. The research work shows the potential applications of egg yolk antibodies as anti-bacterial prophylactic uses for infectious diseases and suggests an edible antibody concept as an alternative to conventional antibiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Macrotextured Breast Implants with Defined Steps to Minimize Bacterial Contamination around the Device: Experience in 42,000 Implants.

    PubMed

    Adams, William P; Culbertson, Eric J; Deva, Anand K; R Magnusson, Mark; Layt, Craig; Jewell, Mark L; Mallucci, Patrick; Hedén, Per

    2017-09-01

    Bacteria/biofilm on breast implant surfaces has been implicated in capsular contracture and breast implant-associated anaplastic large-cell lymphoma (ALCL). Macrotextured breast implants have been shown to harbor more bacteria than smooth or microtextured implants. Recent reports also suggest that macrotextured implants are associated with a significantly higher incidence of breast implant-associated ALCL. Using techniques to reduce the number of bacteria around implants, specifically, the 14-point plan, has successfully minimized the occurrence of capsular contracture. The authors hypothesize that a similar effect may be seen in reducing the risk of breast implant-associated ALCL. Pooled data from eight plastic surgeons assessed the use of macrotextured breast implants (Biocell and polyurethane) and known cases of breast implant-associated ALCL. Surgeon adherence to the 14-point plan was also analyzed. A total of 42,035 Biocell implants were placed in 21,650 patients; mean follow-up was 11.7 years (range, 1 to 14 years). A total of 704 polyurethane implants were used, with a mean follow-up of 8.0 years (range, 1 to 20 years). The overall capsular contracture rate was 2.2 percent. There were no cases of implant-associated ALCL. All surgeons routinely performed all 13 perioperative components of the 14-point plan; two surgeons do not routinely prescribe prophylaxis for subsequent unrelated procedures. Mounting evidence implicates the role of a sustained T-cell response to implant bacteria/biofilm in the development of breast implant-associated ALCL. Using the principles of the 14-point plan to minimize bacterial load at the time of surgery, the development and subsequent sequelae of capsular contracture and breast implant-associated ALCL may be reduced, especially with higher-risk macrotextured implants. Therapeutic, IV.

  17. Ammonia-oxidizing archaea versus bacteria in two soil aquifer treatment systems.

    PubMed

    Ding, Kun; Wen, Xianghua; Li, Yuyang; Shen, Bo; Zhang, Bing

    2015-02-01

    So far, the contribution of ammonia-oxidizing archaea (AOA) to ammonia oxidation in wastewater treatment processes has not been well understood. In this study, two soil aquifer treatment (SATs) systems were built up to treat synthetic domestic wastewater (column 1) and secondary effluent (column 4), accomplishing an average of 95% ammonia removal during over 550 days of operation. Except at day 322, archaeal amoA genes always outnumbered bacterial amoA genes in both SATs as determined by using quantitative polymerase chain reaction (q-PCR). The ratios of archaeal amoA to 16S rRNA gene averaged at 0.70 ± 0.56 and 0.82 ± 0.62 in column 1 and column 4, respectively, indicating that all the archaea could be AOA carrying amoA gene in the SATs. The results of MiSeq-pyrosequencing targeting on archaeal and bacterial 16S rRNA genes with the primer pair of modified 515R/806R indicated that Nitrososphaera cluster affiliated with thaumarchaeal group I.1b was the dominant AOA species, while Nitrosospira cluster was the dominant ammonia-oxidizing bacteria (AOB). The statistical analysis showed significant relationship between AOA abundance (compared to AOB abundance) and inorganic and total nitrogen concentrations. Based on the mathematical model calculation for microbial growth, AOA had much greater capacity of ammonia oxidation as compared to the specific influent ammonia loading for AOA in the SATs, implying that a small fraction of the total AOA would actively work to oxidize ammonia chemoautotrophically whereas most of AOA would exhibit some level of functional redundancy. These results all pointed that AOA involved in microbial ammonia oxidation in the SATs.

  18. Biodegradable Chitosan Coating Incorporated with Black Pepper Essential Oil for Shelf Life Extension of Common Carp (Cyprinus carpio) during Refrigerated Storage.

    PubMed

    Moosavi-Nasab, Marzieh; Shad, Ehsan; Ziaee, Esmaeil; Yousefabad, Seyyed Hossein Asadi; Golmakani, Mohammad Taghi; Azizinia, Mehdi

    2016-06-01

    Chitosan (Ch) coating incorporated with black pepper essential oil (Ch+BPEO) was studied to extend the shelf life of common carp (Cyprinus carpio) during refrigerated storage at 4 ± 1°C. The chemical composition of BPEO was characterized using gas chromatography-mass spectrometry (GC-MS). Antibacterial properties of BPEO were determined by disk diffusion agar, MIC, and MBC. Ch (2% [wt/vol]) and Ch+BPEO (2% [wt/vol] Ch with 1.5% [vol/vol] BPEO) were used for common carp fillet coating. The samples were analyzed periodically for chemical (pH, total volatile basic nitrogen) and microbiological (aerobic plate count, psychrophilic bacteria count, lactic acid bacteria, and Enterobacteriaceae bacterial counts) characteristics during 16 days. The GC-MS results indicated that main components in BPEO were carene, caryophyllene, limonene, β-pinene, and α-pinene. The samples coated with Ch and Ch+BPEO resulted in lower pH and total volatile basic nitrogen values in comparison with the control. The microbiological analysis of fish fillets during refrigerated storage clearly indicated that Ch+BPEO coating significantly reduced the fish fillet microbial load. The aerobic plate count, psychrophilic bacteria count, lactic acid bacteria count, and Enterobacteriaceae bacterial count of samples coated with Ch+BPEO were reduced approximately 4.1, 3.9, 2.3, and 2.8 log CFU/g, respectively, at the end of the storage period. Finally, Ch and Ch+BPEO effectively improved the quality of fish fillet during refrigerated storage and extended the shelf life of fish fillets from 8 to 16 days. Black pepper; Chitosan; Common carp; Essential oil.

  19. Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers.

    PubMed

    Trovatti, Eliane; Carvalho, Antonio J F; Ribeiro, Sidney J L; Gandini, Alessandro

    2013-08-12

    Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings.

  20. MICROBIOLOGICAL SAFETY ASSESSMENT AND RISK MITIGATION OF INDIAN ROJAK (DEEP FRIED READYTO-EAT FOOD) IN SINGAPORE.

    PubMed

    Aung, Kyaw Thu; Lo, Jerilyn Ann Chen Ying; Chau, Man Ling; Kang, Joanne Su Lin; Yap, Hooi Ming; Gutiérrez, Ramona Alikiiteaga; Yuk, Hyun-Gyun; Ng, Lee Ching

    2016-11-01

    We conducted a microbiological assessment of Indian Rojak, a popular deep fried food in Singapore to evaluate its overall microbial quality, assess the effectiveness of reheating and identify key food items that could contribute to the microbial load of the dish. In 2009, an outbreak of foodborne illness associated with this food led to 154 reported cases of acute gastroenteritis, 48 were hospitalized and 2 died. Vibrio parahaemolyticus was isolated from the patients. We evaluated 455 Indian Rojak ingredients from 35 stalls; no Salmonella spp, Vibrio cholerae/parahaemolyticus or Escherichia coli O157:H7 were recovered from the studied samples. The reheating by the food handlers significantly reduced the overall median Standard Plate Count (SPC) of food from 4.5 to 2.7 log colony forming units (CFU)/g (p<0.05). The cooked ingredients with the highest microbial loads were tofu and fish cake, with those purchased from wet markets having significantly higher bacterial loads than those purchased from supermarkets (p<0.05). The Rojak gravy had the lowest median bacterial load (1.9 log CFU/g). Raw, ready-to-eat vegetables, namely green chillis, cucumbers and onions had higher levels ranging from 5.9 to 6.1 log CFU/g. Contamination with E. coli, Staphylococcus aureus, and Bacillus cereus was seen with some of the ready-to-eat raw vegetables. Repeated education of food handlers with emphasis on good hygiene practices should be conducted to reduce the risk of foodborne illnesses.

  1. Aerosolized Antimicrobial Agents Based on Degradable Dextran Nanoparticles Loaded with Silver Carbene Complexes

    PubMed Central

    Ornelas-Megiatto, Cátia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Fréchet, Jean M. J.; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic): PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. PMID:23025592

  2. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes.

    PubMed

    Ornelas-Megiatto, Cátia; Shah, Parth N; Wich, Peter R; Cohen, Jessica L; Tagaev, Jasur A; Smolen, Justin A; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Fréchet, Jean M J; Cannon, Carolyn L

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.

  3. Disinfecting Effects of Rotary Instrumentation with Either 2.5% Sodium Hypochlorite or 2% Chlorhexidine as the Main Irrigant: A Randomized Clinical Study.

    PubMed

    Rôças, Isabela N; Provenzano, José Claudio; Neves, Mônica A S; Siqueira, José F

    2016-06-01

    This randomized clinical study compared the antibacterial effects of irrigation with either 2.5% sodium hypochlorite (NaOCl) or 2% chlorhexidine (CHX) during the preparation of infected root canals with rotary nickel-titanium instruments. The root canals of 50 single-rooted teeth with apical periodontitis were prepared by using BioRaCe rotary instruments (FKG Dentaire, La Chaux-de-Fonds, Switzerland) and irrigation with either 2.5% NaOCl (n = 25) or 2% CHX (n = 25). Samples were taken from the canal at baseline (S1) and after (S2) chemomechanical preparation. DNA was extracted from the clinical samples, and the reduction of the levels of total bacteria and streptococci was evaluated by means of a 16S ribosomal RNA gene-based quantitative polymerase chain reaction assay. All S1 samples were positive for the presence of bacteria. After chemomechanical preparation using either 2.5% NaOCl or 2% CHX, 44% and 40% of the root canals still had detectable bacteria, respectively. As for total bacterial counts, a mean number of 3.7 × 10(5) bacterial cell equivalents was present in S1 samples from the NaOCl group, with a substantial reduction in S2 to a mean of 5.49 × 10(2) cell equivalents (P < .001). In the CHX group, a mean bacterial load of 8.77 × 10(4) cell equivalents occurred in S1, with a significant reduction in S2 to a mean of 2.81 × 10(3) cells (P < .001). The differences in both the presence/absence and quantitative data were not statistically significant (P > .05). Both irrigation protocols were highly effective in reducing the levels of Streptococcus species (P < .001). No significant difference was observed for the clinical antibacterial effectiveness of rotary preparation using either 2.5% NaOCl or 2% CHX as the main irrigant. Copyright © 2016. Published by Elsevier Inc.

  4. Transient changes in milk production efficiency and bacterial community composition resulting from near-total exchange of ruminal contents between high- and low-efficiency Holstein cows

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to determine if milk production efficiency (MPE) is altered by near-total exchange of ruminal contents between high- (HE) and low-MPE (LE) cows and to characterize ruminal bacterial community composition (BCC) prior to exchange and over time post-exchange. Three pai...

  5. Molecular Detection of Leptospira in Two Returned Travelers: Higher Bacterial Load in Cerebrospinal Fluid versus Serum or Plasma

    PubMed Central

    Waggoner, Jesse J.; Soda, Elizabeth A.; Seibert, Ryan; Grant, Philip; Pinsky, Benjamin A.

    2015-01-01

    Leptospirosis is a potentially severe illness in returned travelers. Patients often present with fever, headache, and neck pain, which may lead to a workup for meningitis including the acquisition of cerebrospinal fluid (CSF). Although Leptospira DNA has been detected in CSF by polymerase chain reaction (PCR), little data exist regarding the utility of testing CSF in addition to serum or plasma obtained on presentation. In this report, we present two cases of leptospirosis in returned travelers presenting with fever and headache. Our first patient had neutrophilic meningitis, and Leptospira was detectable only in CSF obtained on admission. The second patient had a normal CSF profile, but Leptospira was detected in CSF at a bacterial load 5- to 10-fold higher than that in plasma. CSF is an important specimen for the diagnosis of Leptospira by molecular methods and may yield an actionable diagnosis in the absence of leptospiremia. PMID:26033024

  6. Assessment of microwave-based clinical waste decontamination unit.

    PubMed

    Hoffman, P N; Hanley, M J

    1994-12-01

    A clinical waste decontamination unit that used microwave-generated heat was assessed for operator safety and efficacy. Tests with loads artificially contaminated with aerosol-forming particles showed that no particles were detected outside the machine provided the seals and covers were correctly seated. Thermometric measurement of a self-generated steam decontamination cycle was used to determine the parameters needed to ensure heat disinfection of the waste reception hopper, prior to entry for maintenance or repair. Bacterial and thermometric test pieces were passed through the machine within a full load of clinical waste. These test pieces, designed to represent a worst case situation, were enclosed in aluminium foil to shield them from direct microwave energy. None of the 100 bacterial test pieces yielded growth on culture and all 100 thermal test pieces achieved temperatures in excess of 99 degrees C during their passage through the decontamination unit. It was concluded that this method may be used to render safe the bulk of of ward-generated clinical waste.

  7. Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity.

    PubMed

    Lin, Sha; Liu, Xiangmei; Tan, Lei; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin W K; Pan, Haobo; Wu, Shuilin

    2017-06-07

    Sustained drug release plays a critical role in targeting the therapy of local diseases such as bacterial infections. In the present work, porous iron-carboxylate metal-organic framework [MOF-53(Fe)] nanoparticles (NPs) were designed to entrap the vancomycin (Van) drugs. This system exhibited excellent chemical stability under acidic conditions (pH 7.4, 6.5, and 5.5) and much higher drug-loading capability because of the high porosity and large surface area of MOF NPs. The results showed that the drug-loading ratio of Van could reach 20 wt % and that the antibacterial ratio of the MOF-53(Fe)/Van system against Staphylococcus aureus could reach up to 90%. In addition, this MOF-53(Fe)/Van system exhibited excellent biocompatibility because of its chemical stability and sustained release of iron ions. Hence, these porous MOF NPs are a promising bioplatform not only for local therapy of bacterial infections but also for other biomedical therapies for tissue regeneration.

  8. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    PubMed

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings.

    PubMed

    Guo, Xiaohui; Wang, Cheng; Sun, Faqian; Zhu, Weijing; Wu, Weixiang

    2014-01-01

    Thermophilic and mesophilic anaerobic digestion reactors (TR and MR) using food waste as substrate were compared with emphasis on microbial responses to increasing organic loading rate (OLR). At OLR ranging from 1.0 to 2.5 g VS L(-1) d(-1), MR exhibited more stable performance compared to TR in terms of methane yield. Amplicons pyrosequencing results revealed the distinct microbial dynamics in the two reactors. Primarily, MR had greater richness and evenness of bacteria species. With OLR elevated, larger shifts of bacterial phylogeny were observed in MR; Methanosaeta dominated in archaeal community in MR while Methanothermobacter and Methanoculleus were favored in TR. The high functional redundancy in bacterial community integrated with acetoclastic methanogenesis in MR resulted in its better performance; whereas delicate interactions between hydrogen-producer and hydrogenotrophic methanogens in TR were much more prone to disruption. These results are conductive to understanding the microbial mechanisms of low methane yield during food waste anaerobic digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effects of ultraviolet light on biogenic amines and other quality indicators of chicken meat during refrigerated storage.

    PubMed

    Lázaro, C A; Conte-Júnior, C A; Monteiro, M L G; Canto, A C V S; Costa-Lima, B R C; Mano, S B; Franco, R M

    2014-09-01

    Radiation from UV-C has been demonstrated as a potential surface decontamination method in addition to several advantages over regular sanitation methods. However, UV-C radiation possibly affects the physicochemical properties of meat products. To determine the optimum exposure time for bacterial reduction, 39 chicken breasts, inoculated with a pool of Salmonella spp., were submitted to 3 levels of UV-C intensities (0.62, 1.13, and 1.95 mW/cm²) for up to 120 s. After the optimum exposure time of 90 s was determined, changes in the biogenic amines, total aerobic mesophilic bacteria, Enterobacteriaceae, lipid oxidation, pH, and instrumental color were evaluated in 84 chicken breasts that were irradiated (0.62, 1.13, and 1.95 mW/cm²) and stored at 4°C for 9 d. The groups treated with UV-C radiation exhibited an increase in tyramine, cadaverine, and putrescine contents (P < 0.05). The highest UV-C intensity (1.95 mW/cm²) promoted a decrease in the initial bacterial load, and extended the lag phase and the shelf life. The groups irradiated with 1.13 and 1.95 mW/cm² exhibited a more stable b* value than the other groups; similar trends for L*, a*, pH, and TBA reactive substance values were observed among all groups. The UV-C light was demonstrated to be an efficient alternative technology to improve the bacteriological quality of chicken meat without negatively affecting the physical and chemical parameters of chicken breast meat. Nonetheless, the increases on the biogenic amines content should be considered as an effect of the UV processing and not as an indicator of bacterial growth. © 2014 Poultry Science Association Inc.

  11. Effects of chlorhexidine preprocedural rinse on bacteremia in periodontal patients: a randomized clinical trial

    PubMed Central

    Balejo, Rodrigo Dalla Pria; Cortelli, José Roberto; Costa, Fernando Oliveira; Cyrino, Renata Magalhães; Aquino, Davi Romeiro; Cogo-Müller, Karina; Miranda, Taís Browne; Moura, Sara Porto; Cortelli, Sheila Cavalca

    2017-01-01

    Abstract Objective: Single dose of systemic antibiotics and short-term use of mouthwashes reduce bacteremia. However, the effects of a single dose of preprocedural rinse are still controversial. This study evaluated, in periodontally diseased patients, the effects of a pre-procedural mouth rinse on induced bacteremia. Material and Methods: Systemically healthy individuals with gingivitis (n=27) or periodontitis (n = 27) were randomly allocated through a sealed envelope system to: 0.12% chlorhexidine pre-procedural rinse (13 gingivitis and 13 periodontitis patients) or no rinse before dental scaling (14 gingivitis and 15 periodontitis patients). Periodontal probing depth, clinical attachment level, plaque, and gingival indices were measured and subgingival samples were collected. Blood samples were collected before dental scaling, 2 and 6 minutes after scaling. Total bacterial load and levels of P. gingivalis were determined in oral and blood samples by real-time polymerase chain reaction, while aerobic and anaerobic counts were determined by culture in blood samples. The primary outcome was the antimicrobial effect of the pre-procedural rinse. Data was compared by Mann-Whitney and Signal tests (p<0.05). Results: In all sampling times, polymerase chain reaction revealed higher blood bacterial levels than culture (p<0.0001), while gingivitis patients presented lower bacterial levels in blood than periodontitis patients (p<0.0001). Individuals who experienced bacteremia showed worse mean clinical attachment level (3.4 mm vs. 1.1 mm) and more subgingival bacteria (p<0.005). The pre-procedural rinse did not reduce induced bacteremia. Conclusions: Bacteremia was influenced by periodontal parameters. In periodontally diseased patients, pre-procedural rinsing showed a discrete effect on bacteremia control. PMID:29211279

  12. Nitrification denitrification enhanced biological phosphorous removal (NDEBPR) occurs in a lab-scale alternating hypoxic/oxic membrane bioreactor.

    PubMed

    Sibag, Mark; Kim, Han-Seung

    2012-01-01

    Strict anaerobic or anoxic maintenance of the system and process susceptibility to low organic loading are major concerns in nitrification denitrification enhanced biological phosphorous removal (NDEBPR). The study has initiated NDEBPR in a lab-scale alternating hypoxic/oxic membrane bioreactor by developing an enhanced mixed microbial culture capable of removing 97±2% COD, 99±0.84% NH(3)-N, 90±3% TN, and 96±1% TP-PO(4)(3-) with 20-day SRT. The viable cells ranging from 1.6×10(8) to 2.0×10(8)cells/ml estimated from the total bacterial genomic DNA (6.43-7.83 μg DNA/ml) represented only 5% of the MLVSS indicating low microbial biomass concentration. Reducing the organic load from 1250 to 750 mg COD/ml as glucose did not deteriorate the effluent quality (3.77±1.0 mg N-TN/l; 0.08±0.24 mg NH(3)-N/l; and 0.32±0.10 mg PO(4)(3-)-P/l). These observations are characteristics of activated sludge that harbors denitrifying polyphosphate accumulating organisms (DPAOs). The results showed that NDEBPR can be achieved under alternating hypoxic/oxic conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. A retrospective cross-sectional quantitative molecular approach in biological samples from patients with syphilis.

    PubMed

    Pinto, Miguel; Antelo, Minia; Ferreira, Rita; Azevedo, Jacinta; Santo, Irene; Borrego, Maria José; Gomes, João Paulo

    2017-03-01

    Syphilis is the sexually transmitted disease caused by Treponema pallidum, a pathogen highly adapted to the human host. As a multistage disease, syphilis presents distinct clinical manifestations that pose different implications for diagnosis. Nevertheless, the inherent factors leading to diverse disease progressions are still unknown. We aimed to assess the association between treponemal loads and dissimilar disease outcomes, to better understand syphilis. We retrospectively analyzed 309 DNA samples distinct anatomic sites associated with particular syphilis manifestations. All samples had previously tested positive by a PCR-based diagnostic kit. An absolute quantitative real-time PCR procedure was used to precisely quantify the number of treponemal and human cells to determine T. pallidum loads in each sample. In general, lesion exudates presented the highest T. pallidum loads in contrast with blood-derived samples. Within the latter, a higher dispersion of T. pallidum quantities was observed for secondary syphilis. T. pallidum was detected in substantial amounts in 37 samples of seronegative individuals and in 13 cases considered as syphilis-treated. No association was found between treponemal loads and serological results or HIV status. This study suggests a scenario where syphilis may be characterized by: i) heterogeneous and high treponemal loads in primary syphilis, regardless of the anatomic site, reflecting dissimilar duration of chancres development and resolution; ii) high dispersion of bacterial concentrations in secondary syphilis, potentially suggesting replication capability of T. pallidum while in the bloodstream; and iii) bacterial evasiveness, either to the host immune system or antibiotic treatment, while remaining hidden in privileged niches. This work highlights the importance of using molecular approaches to study uncultivable human pathogens, such as T. pallidum, in the infection process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Estimation of lactic acid bacterial cell number by DNA quantification.

    PubMed

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2018-01-01

    Lactic acid bacteria are provided by fermented foods, beverages, medicines, and supplements. Because the beneficial effects of medicines and supplements containing functional lactic acid bacteria are related to the bacterial cell number, it is important to establish a simple method for estimating the total number of lactic acid bacterial cells in the products for quality control. Almost all of the lactic acid bacteria in the products are dead, however, making it difficult to estimate the total number of lactic acid bacterial cells in the products using a standard colony-counting method. Here we estimated the total lactic acid bacterial cell number in samples containing dead bacteria by quantifying the DNA. The number of viable Enterococcus faecalis 0831-07 cells decreased to less than 1 × 10 -8 by 15 min of heat treatment at 80°C. The amount of extracted DNA from heat-treated cells was 78% that of non-heated cells. The number of viable Lactobacillus paraplantarum 11-1 cells decreased to 1 × 10 -4 after 4 days culture. The amount of extracted DNA of the long-cultured cells, however, was maintained at 97%. These results suggest that cell number of lactic acid bacteria killed by heat-treatment or long-term culture can be estimated by DNA quantification.

  15. Preclinical evaluation of bacterially produced RSV-G protein vaccine: Strong protection against RSV challenge in cotton rat model.

    PubMed

    Fuentes, Sandra; Klenow, Laura; Golding, Hana; Khurana, Surender

    2017-02-10

    In current study, we evaluated the safety and protective efficacy of recombinant unglycosylated RSV G protein ectodomain produced in E. coli (in presence and absence of oil-in-water adjuvant) in a preclinical RSV susceptible cotton rat challenge model compared to formaldehyde inactivated RSV (FI-RSV) and live RSV experimental infection. The adjuvanted G protein vaccine induced robust neutralization antibody responses comparable to those generated by live RSV infection. Importantly, adjuvanted G protein significantly reduced viral loads in both the lungs and nose at early time points following viral challenge. Antibody kinetics determined by Surface Plasmon Resonance showed that adjuvanted G generated 10-fold higher G-binding antibodies compared to non-adjvuanted G vaccine and live RSV infection, which correlated strongly with both neutralization titers and viral load titers in the nose and lungs post-viral challenge. Antibody diversity analysis revealed immunodominant antigenic sites in the N- and C-termini of the RSV-G protein, that were boosted >10-fold by adjuvant and inversely correlated with viral load titers. Enhanced lung pathology was observed only in animals vaccinated with FI-RSV, but not in animals vaccinated with unadjuvanted or adjuvanted RSV-G vaccine after viral challenge. The bacterially produced unglycosylated G protein could be developed as a protective vaccine against RSV disease.

  16. N-acetylcysteine prevents the development of gastritis induced by Helicobacter pylori infection.

    PubMed

    Jang, Sungil; Bak, Eun-Jung; Cha, Jeong-Heon

    2017-05-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen, causing various gastric diseases ranging from gastritis to gastric adenocarcinoma. It has been reported that combining N-acetylcysteine (NAC) with conventional antibiotic therapy increases the success rate of H. pylori eradication. We evaluated the effect of NAC itself on the growth and colonization of H. pylori, and development of gastritis, using in vitro liquid culture system and in vivo animal models. H. pylori growth was evaluated in broth culture containing NAC. The H. pylori load and histopathological scores of stomachs were measured in Mongolian gerbils infected with H. pylori strain 7.13, and fed with NAC-containing diet. In liquid culture, NAC inhibited H. pylori growth in a concentration-dependent manner. In the animal model, 3-day administration of NAC after 1 week from infection reduced the H. pylori load; 6-week administration of NAC after 1 week from infection prevented the development of gastritis and reduced H. pylori colonization. However, no reduction in the bacterial load or degree of gastritis was observed with a 6-week administration of NAC following 6-week infection period. Our results indicate that NAC may exert a beneficial effect on reduction of bacterial colonization, and prevents the development of severe inflammation, in people with initial asymptomatic or mild H. pylori infection.

  17. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean.

    PubMed

    Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji

    2011-06-01

    Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms.

  18. Differing Growth Responses of Major Phylogenetic Groups of Marine Bacteria to Natural Phytoplankton Blooms in the Western North Pacific Ocean ▿ †

    PubMed Central

    Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji

    2011-01-01

    Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms. PMID:21515719

  19. Microbiological changes associated with dental prophylaxis.

    PubMed

    Goodson, J Max; Palys, Michael D; Carpino, Elizabeth; Regan, Elizabeth O; Sweeney, Michael; Socransky, Sigmund S

    2004-11-01

    Despite the common application of dental prophylaxis as part of patient therapy, there is little reported that describes the microbiological impact of this treatment. The authors gave 20 healthy college-aged subjects three dental prophylaxes with a fluoride-containing prophylaxis paste during a two-week period and instructed them in oral hygiene. They evaluated the microbiological composition of dental plaque samples collected before and after treatment using DNA probe analysis. They analyzed 40 representative bacterial species in seven bacterial complexes by checkerboard DNA-DNA hybridization assay techniques. After three dental prophylaxes, the patients' mean Gingival Index score decreased from 0.82 to 0.77, the mean Plaque Index score decreased from 0.72 to zero, and the total number of bacteria per tooth decreased to approximately one-third of the original number. The authors computed two different measures of bacterial presence. The reduction in bacterial numbers was statistically significant and occurred in many species. Bacterial proportion (DNA percentage or percentage of the bacteria per tooth) did not change significantly. Greater reductions in bacterial count occurred in species that showed high numbers before treatment. The total bacterial count decreased by approximately 72 percent of its original level before prophylaxis was initiated. Professional dental prophylaxis did not target any particular bacteria or bacterial groups but removed bacteria nonspecifically and in proportion to their initial numbers. Repeated dental prophylaxes effect a reduction in bacterial amount that is commensurate with the initial amount, but they do does not alter composition. This suggests that mild gingivitis may be a bacterially nonspecific effect of plaque accumulation and emphasizes the need for regular plaque removal to maintain optimal gingival health.

  20. Determination and Variation of Core Bacterial Community in a Two-Stage Full-Scale Anaerobic Reactor Treating High-Strength Pharmaceutical Wastewater.

    PubMed

    Ma, Haijun; Ye, Lin; Hu, Haidong; Zhang, Lulu; Ding, Lili; Ren, Hongqiang

    2017-10-28

    Knowledge on the functional characteristics and temporal variation of anaerobic bacterial populations is important for better understanding of the microbial process of two-stage anaerobic reactors. However, owing to the high diversity of anaerobic bacteria, close attention should be prioritized to the frequently abundant bacteria that were defined as core bacteria and putatively functionally important. In this study, using MiSeq sequencing technology, the core bacterial community of 98 operational taxonomic units (OTUs) was determined in a two-stage upflow blanket filter reactor treating pharmaceutical wastewater. The core bacterial community accounted for 61.66% of the total sequences and accurately predicted the sample location in the principal coordinates analysis scatter plot as the total bacterial OTUs did. The core bacterial community in the first-stage (FS) and second-stage (SS) reactors were generally distinct, in that the FS core bacterial community was indicated to be more related to a higher-level fermentation process, and the SS core bacterial community contained more microbes in syntrophic cooperation with methanogens. Moreover, the different responses of the FS and SS core bacterial communities to the temperature shock and influent disturbance caused by solid contamination were fully investigated. Co-occurring analysis at the Order level implied that Bacteroidales, Selenomonadales, Anaerolineales, Syneristales, and Thermotogales might play key roles in anaerobic digestion due to their high abundance and tight correlation with other microbes. These findings advance our knowledge about the core bacterial community and its temporal variability for future comparative research and improvement of the two-stage anaerobic system operation.

  1. Contribution of bacterial respiration to plankton respiration from 50°N to 44°S in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    García-Martín, E. E.; Aranguren-Gassis, M.; Hartmann, M.; Zubkov, M. V.; Serret, P.

    2017-11-01

    Marine bacteria play an important role in the global cycling of carbon and therefore in climate regulation. However, the paucity of direct measurements means that our understanding of the magnitude and variability of bacterial respiration in the ocean is poor. Estimations of respiration in the 0.2-0.8 μm size-fraction (considered as bacterial respiration), total plankton community respiration, and the contribution of bacterial respiration to total plankton community respiration were made along two latitudinal transects in the Atlantic Ocean (ca. 50°N-44°S) during 2010 and 2011. Two different methodologies were used: determination of changes in dissolved O2 concentration after standard 24 h dark bottle incubations, and measurements of in vivo reduction of 2-(ρ-iodophenyl)-3-(ρ-nitrophenyl)-5phenyl tetrazolium salt (INT). There was an overall significant correlation (r = 0.44, p < 0.0001, n = 90) between the rates of community respiration estimated by both methods. Depth-integrated community respiration varied as much as threefold between regions. Maximum rates occurred in waters of the western European shelf and Patagonian shelf, and minimum rates in the North and South oligotrophic gyres. Depth-integrated bacterial respiration followed the same pattern as community respiration. There was a significantly higher cell-specific bacterial respiration in the northern subtropical gyre than in the southern subtropical gyre which suggests that bacterial carbon turnover is faster in the northern gyre. The relationships between plankton respiration and physicochemical and biological variables were different in different years. In general, INTT was correlated to both chlorophyll-a and bacterial abundance, while INT0.2-0.8 was only correlated with bacterial abundance. However, in 2010 INTT and INT0.2-0.8 were also correlated with temperature and primary production while in 2011 they were correlated with nitrate + nitrite concentration. The bacterial contribution to depth integrated community respiration was highly variable within provinces (4-77%). Results from this study suggest that the proportion of total community respiration attributable to bacteria is similar between the 6 oceanographic regions studied.

  2. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    PubMed

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  3. Bacterial Magnetosome: A Novel Biogenetic Magnetic Targeted Drug Carrier with Potential Multifunctions

    PubMed Central

    Sun, Jianbo; Li, Ying; Liang, Xing-Jie; Wang, Paul C.

    2012-01-01

    Bacterial magnetosomes (BMs) synthesized by magnetotactic bacteria have recently drawn great interest due to their unique features. BMs are used experimentally as carriers for antibodies, enzymes, ligands, nucleic acids, and chemotherapeutic drugs. In addition to the common attractive properties of magnetic carriers, BMs also show superiority as targeting nanoscale drug carriers, which is hardly matched by artificial magnetic particles. We are presenting the potential applications of BMs as drug carriers by introducing the drug-loading methods and strategies and the recent research progress of BMs which has contributed to the application of BMs as drug carriers. PMID:22448162

  4. Efficacy of an automated ultraviolet C device in a shared hospital bathroom.

    PubMed

    Cooper, Jesse; Bryce, Elizabeth; Astrakianakis, George; Stefanovic, Aleksandra; Bartlett, Karen

    2016-12-01

    Toilet flushing can contribute to disease transmission by generating aerosolized bacteria and viruses that can land on nearby surfaces or follow air currents. Aerobic and anaerobic bacterial bioaerosol loads, and bacterial counts on 2 surfaces in a bathroom with a permanently installed, automated ultraviolet C (UVC) irradiation device, were significantly lower than in a comparable bathroom without the UVC device. Permanently installed UVC lights may be a useful supplementary decontamination tool in shared patient bathrooms. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  5. The bacterial contamination rate of glucose meter test strips in the hospital setting

    PubMed Central

    Al-Rubeaan, Khalid A.; Saeb, Amr T. M.; AlNaqeb, Dhekra M.; AlQumaidi, Hamed M.; AlMogbel, Turki A.

    2016-01-01

    Objectives: To assess the rate of bacterial contamination of the multi-use vial and single-use packed glucose meter strips, and to identify the type and frequency of various bacterial contamination in different hospital wards. Methods: This prospective observational study was conducted by a team from the Strategic Center for Diabetes Research in 7 general hospitals in the Central region of Saudi Arabia during the period from August to September 2014 to assess the bacterial contamination rate of the unused strips. A total of 10,447 strips were cultured using proper agar media and incubated both aerobically and anaerobically. Results: The total bacterial contamination rate for the multi-use vials glucose strips was 31.7%, while single-use packed strips were not contaminated at all. Ministry of Health hospitals had the highest contamination rates compared with other hospitals. Critical, obstetric, and surgical wards had the highest bacterial isolates number, where most were in the risk group 3 according to the National Institute of Health guidelines. Staphylococcus species were the most common bacteria found. Conclusion: Glucose meter strips should be recognized as a source of bacterial contamination that could be behind serious hospital acquired infections. The hospital infection control team should adopt proper measures to implement protocols for glucose meter cleaning and glucose strips handling. PMID:27570855

  6. Characteristics of aquatic bacterial community and the influencing factors in an urban river.

    PubMed

    Wang, Peng; Chen, Bo; Yuan, Ruiqiang; Li, Chuangqiong; Li, Yan

    2016-11-01

    Bacteria play a critical role in environmental and ecological processes in river ecosystems. We studied the bacterial community in the Ganjiang River, a major tributary of the Yangtze River, as it flowed through Nanchang, the largest city in the Ganjiang River basin. Water was sampled at five sites monthly during the wet season, and the bacterial community was characterized using Illumina high-throughput sequencing. A total of 811 operational taxonomic units (OTUs) were observed for all samples, ranging from 321 to 519 for each sample. The bacterial communities were maintained by a core of OTUs that persisted longitudinally and monthly. Actinobacteria (41.17% of total sequences) and Proteobacteria (31.80%) were the dominant phyla, while Firmicutes (mostly genus Lactococcus) became most abundant during flooding. Temperature and flow rate, rather than water chemistry, were the main factors influencing the bacterial community in river water. Temperature was the best individual parameter explaining the variations in OTU abundance, while flow rate was the best individual parameter explaining the variations in phylum abundance. Except for Proteobacteria, the relative abundance of bacterial phyla did not differ significantly between sites, and the degrees of influence of urban landscape on the bacterial community were estimated to be 17%-34%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway.

    PubMed

    Hansen, Aviaja A; Herbert, Rodney A; Mikkelsen, Karina; Jensen, Lars Liengård; Kristoffersen, Tommy; Tiedje, James M; Lomstein, Bente Aa; Finster, Kai W

    2007-11-01

    The viable and non-viable fractions of the bacterial community in a 2347-year-old permafrost soil from Spitsbergen were subjected to a comprehensive investigation using culture-independent and culture-dependent methods. LIVE/DEAD BacLight staining revealed that 26% of the total number of bacterial cells were viable. Quantitatively, aerobic microcolonies, aerobic colony-forming units and culturable anaerobic bacteria comprised a minor fraction of the total number of viable bacteria, which underlines the necessity for alternative cultivation approaches in bacterial cryobiology. Sulfate reduction was detected at temperatures between -2 degrees C and 29 degrees C while methanogenesis was not detected. Bacterial diversity was high with 162 operational taxonomic units observed from 800 16S rDNA clone sequences. The 158 pure cultures isolated from the permafrost soil affiliated with 29 different bacterial genera, the majority of which have not previously been isolated from permafrost habitats. Most of the strains isolated were affiliated to the genera Cellulomonas and Arthrobacter and several of the pure cultures were closely related to bacteria reported from other cryohabitats. Characterization of viable bacterial communities in permafrost soils is important as it will enable identification of functionally important groups together with the as yet undescribed adaptations that bacteria have evolved for surviving subzero temperatures for millennia.

  8. Carbon fibers with a nano-hydroxyapatite coating as an excellent biofilm support for bioreactors

    NASA Astrophysics Data System (ADS)

    Liu, Qijie; Zhang, Chao; Bao, Yanling; Dai, Guangze

    2018-06-01

    A biofilm support with high biocompatibility is needed for bioreactors. A nano-hydroxyapatite (HA) coating on carbon fibers (CFs) was prepared by electrochemical deposition (ECD). The sludge immobilization assays, bacterial cells adhesion assays and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory were used to evaluate the capacity of CF supports to immobilize activated sludge and bacterial cells. The sludge immobilization and bacterial cells adhesion assays illustrated that HA coating could enhance the capacity of CFs to immobilize microorganisms. SEM images showed that HA and bacterial cells formed a dense film on CFs surface. In addition, HA, acting as a glue, could combine CFs with bacterial cells or between cells, which helped CFs capture more bacterial cells. DLVO theory illustrated that CFs with HA coating had a lower total interaction energy than CFs without handling, explaining the higher capacity of CFs with HA coating to immobilize bacterial cells. This result was owning to the less negative zeta potential and higher hydrophilicity of CFs with HA coating, and the hydrophilicity made a greater contribution to the lower total interaction energy. Experiments and theory reveal that HA coating could enhance the biocompatibility of CFs, and CFs with HA coating could be used as an excellent biofilm support for bioreactors.

  9. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities.

    PubMed

    Sauret, Caroline; Tedetti, Marc; Guigue, Catherine; Dumas, Chloé; Lami, Raphaël; Pujo-Pay, Mireille; Conan, Pascal; Goutx, Madeleine; Ghiglione, Jean-François

    2016-03-01

    We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (<2 km from the shore). By using direct multivariate statistical analysis, we confirmed the significant effect of PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables.

  10. Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype.

    PubMed

    De Lisle, Robert C; Mueller, Racquel; Roach, Eileen

    2010-09-15

    Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Cftr(tm1UNC) (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion.

  11. Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype

    PubMed Central

    2010-01-01

    Background Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Methods Cftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Results Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. Conclusions These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion. PMID:20843337

  12. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  13. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis

    PubMed Central

    Armingohar, Zahra; Jørgensen, Jørgen J.; Kristoffersen, Anne Karin; Abesha-Belay, Emnet; Olsen, Ingar

    2014-01-01

    Background Several studies have reported an association between chronic periodontitis (CP) and cardiovascular diseases. Detection of periodontopathogens, including red complex bacteria (RCB), in vascular lesions has suggested these bacteria to be involved in the pathogenesis of atherosclerosis and abdominal aortic aneurysms. Objective In this study, we investigate bacteria and their DNA in vascular biopsies from patients with vascular diseases (VD; i.e. abdominal aortic aneurysms, atherosclerotic carotid, and common femoral arteries), with and without CP. Methods DNA was extracted from vascular biopsies selected from 40 VD patients: 30 with CP and 10 without CP. The V3-V5 region of the 16S rDNA (V3-V5) was polymerase chain reaction (PCR)-amplified, and the amplicons were cloned into Escherichia coli, sequenced, and classified (GenBank and the Human Oral Microbiome database). Species-specific primers were used for the detection of Porphyromonas gingivalis. In addition, 10 randomly selected vascular biopsies from the CP group were subjected to scanning electron microscopy (SEM) for visualization of bacteria. Checkerboard DNA–DNA hybridization was performed to assess the presence of RCB in 10 randomly selected subgingival plaque samples from CP patients. Results A higher load and mean diversity of bacteria were detected in vascular biopsies from VD patients with CP compared to those without CP. Enterobacteriaceae were frequently detected in vascular biopsies together with cultivable, commensal oral, and not-yet-cultured bacterial species. While 70% of the subgingival plaque samples from CP patients showed presence of RCB, only P. gingivalis was detected in one vascular biopsy. Bacterial cells were seen in all 10 vascular biopsies examined by SEM. Conclusions A higher bacterial load and more diverse colonization were detected in VD lesions of CP patients as compared to patients without CP. This indicated that a multitude of bacterial species both from the gut and the oral cavity, rather than exclusively periodontopathogens, may be involved as additional risk factors in the pathogenesis of VD. PMID:25006361

  14. Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone.

    PubMed

    Wu, Fan; Xu, Tingting; Zhao, Guangyao; Meng, Shuangshuang; Wan, Mimi; Chi, Bo; Mao, Chun; Shen, Jian

    2017-05-30

    Silicone catheter has been widely used in peritoneal dialysis. The research missions of improving blood compatibility and the ability of resisting bacterial adhesion of silicone catheter have been implemented for the biomedical requirements. However, most of modification methods of surface modification were only able to develop the blood-contacting biomaterials with good hemocompatibility. It is difficult for the biomaterials to resist bacterial adhesion. Here, agarose was selected to resist bacterial adhesion, and heparin was chosen to improve hemocompatibility of materials. Both of them were loaded into mesoporous silica nanoparticles (MSNs), which were successfully modified on the silicone film surface via electrostatic interaction. Structures of the mesoporous coatings were characterized in detail by dynamic light scattering, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscope, and water contact angle. Platelet adhesion and aggregation, whole blood contact test, hemolysis and related morphology test of red blood cells, in vitro clotting time tests, and bacterial adhesion assay were performed to evaluate the anticoagulant effect and the ability of resisting bacterial adhesion of the modified silicone films. Results indicated that silicone films modified by MSNs had a good anticoagulant effect and could resist bacterial adhesion. The modified silicone films have potential as blood-contacting biomaterials that were attributed to their biomedical properties.

  15. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), andmore » measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.« less

  16. Effects of household washing on bacterial load and removal of Escherichia coli from lettuce and "ready-to-eat" salads.

    PubMed

    Uhlig, Elisabeth; Olsson, Crister; He, Jiayi; Stark, Therese; Sadowska, Zuzanna; Molin, Göran; Ahrné, Siv; Alsanius, Beatrix; Håkansson, Åsa

    2017-11-01

    Customer demands for fresh salads are increasing, but leafy green vegetables have also been linked to food-borne illness due to pathogens such as Escherichia coli O157:H7. As a safety measure, consumers often wash leafy vegetables in water before consumption. In this study, we analyzed the efficiency of household washing to reduce the bacterial content. Romaine lettuce and ready-to-eat mixed salad were washed several times in flowing water at different rates and by immersing the leaves in water. Lettuce was also inoculated with E. coli before washing. Only washing in a high flow rate (8 L/min) resulted in statistically significant reductions ( p  < .05), "Total aerobic count" was reduced by 80%, and Enterobacteriaceae count was reduced by 68% after the first rinse. The number of contaminating E. coli was not significantly reduced. The dominating part of the culturable microbiota of the washed lettuce was identified by rRNA 16S sequencing of randomly picked colonies. The majority belonged to Pseudomonadaceae , but isolates from Enterobacteriaceae and Staphylococcaceaceae were also frequently found. This study shows the inefficiency of tap water washing methods available for the consumer when it comes to removal of bacteria from lettuce. Even after washing, the lettuce contained high levels of bacteria that in a high dose and under certain circumstances may constitute a health risk.

  17. Synthesis, characterization, and light-controlled antibiotic application of a composite material derived from polyurethane and silica xerogel with embedded photoactive manganese nitrosyl.

    PubMed

    Heilman, Brandon J; Halpenny, Genevieve M; Mascharak, Pradip K

    2011-11-01

    The synthesis of a light-sensitive polyurethane-based composite material (PUX-NO) is described. In its polyurethane medium, PUX-NO contains entrapped silica xerogel particles in which a photoactive manganese nitrosyl has been incorporated. Green flexible films of PUX-NO readily release nitric oxide (NO) only when exposed to low power (mW) visible light. Incorporation of the nitrosyl in the xerogel not only retains the nitrosyl (NO donor) within the composite material but also provides the right extent of hydration. Pre-swelled films of PUX-NO have water content close to 30 Wt % and such films can be stored for months under slightly moist condition without loss in NO-delivering capacity. The NO-releasing parameters of the film have been determined. The NO-releasing capacity of PUX-NO films can be conveniently altered by changing the amount of the nitrosyl as well as the thickness of the films. Patches of PUX-NO film have been successfully employed to reduce drastically bacterial loads of both gram-positive and gram-negative bacteria including methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii under the total control of light. Effective control of infections by these bacterial pathogens via delivery of proper doses of NO only to the sites of infection appears feasible with PUX-NO films. 2011 Wiley Periodicals, Inc.

  18. Watershed Effects on Streamflow Quantity and Quality in Six Watersheds of Gwinnett County, Georgia

    USGS Publications Warehouse

    Landers, Mark N.; Ankcorn, Paul D.; McFadden, Keith W.

    2007-01-01

    Watershed management is critical for the protection and enhancement of streams that provide multiple benefits for Gwinnett County, Georgia, and downstream communities. Successful watershed management requires an understanding of how stream quality is affected by watershed characteristics. The influence of watershed characteristics on stream quality is complex, particularly for the nonpoint sources of pollutants that affect urban watersheds. The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources (formerly known as Public Utilities), established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. Between 1996 and 2003, more than 10,000 analyses were made for more than 430 water-quality samples. Continuous-flow and water-quality data have been collected since 1998. Loads have been computed for selected constituents from 1998 to 2003. Changing stream hydrology is a primary driver for many other water-quality and aquatic habitat effects. Primary factors affecting stream hydrology (after watershed size and climate) within Gwinnett County are watershed slope and land uses. For the six study watersheds in Gwinnett County, watershedwide imperviousness up to 12 percent does not have a well-defined influence on stream hydrology, whereas two watersheds with 21- and 35-percent impervious area are clearly impacted. In the stream corridor, however, imperviousness from 1.6 to 4.4 percent appears to affect baseflow and stormflow for all six watersheds. Relations of concentrations to discharge are used to develop regression models to compute constituent loads using the USGS LOAD ESTimator model. A unique method developed in this study is used to calibrate the model using separate baseflow and stormflow sample datasets. The method reduced model error and provided estimates of the load associated with the baseflow and stormflow parts of the hydrograph. Annual load of total suspended sediment is a performance criterion in Gwinnett County's Watershed Protection Plan. Median concentrations of total suspended solids in stormflow range from 30 to 180 times greater than in baseflow. This increase in total suspended solids concentration with increasing discharge has a multiplied effect on total suspended solids load, 97 to 99 percent of which is transported during stormflow. Annual total suspended solids load is highly dependent on annual precipitation; between 1998 and 2003 load for the wettest year was up to 28 times greater than for the driest year. Average annual total suspended solids yield from 1998-2003 in the six watersheds increased with high-density and transportation/utility land uses, and generally decreased with low-density residential, estate/park, and undeveloped land uses. Watershed characteristics also were related to annual loads of total phosphorus, dissolved phosphorus, total nitrogen, total dissolved solids, biochemical oxygen demand, and total zinc, as well as stream alkalinity. Flow-adjusted total suspended solids, total phosphorus, and total zinc stormflow concentrations between 1996 and 2003 have a seasonal pattern in five of the six watersheds. Flow-adjusted concentrations typically peak during late summer, between July and August. The seasonal pattern is stronger for more developed watersheds and may be related to seasonal land-disturbance activities and/or to seasonal rainfall intensity, both of which increase in summer. Adjusting for seasonality in the computation of constituent load caused the standard error of annual total suspended solids load to improve by an average of 11 percent, and increased computed summer total suspended solids loads by an average of 45 percent and decreased winter total suspended solids loads by an average of 40 percent. Total annual loads changed by less than 5 percent on the average. Graphical and statistical analyses do not indicate a time tre

  19. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom

    PubMed Central

    Qian, J; Hospodsky, D; Yamamoto, N; Nazaroff, W W; Peccia, J

    2012-01-01

    The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12–2700 times for bacterial genomes, and 1.5–5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 106 genome copies, and 7.3 × 106 genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. Practical Implications Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants. PMID:22257156

  20. Determination of the nano-scaled contact area of staphylococcal cells.

    PubMed

    Spengler, Christian; Thewes, Nicolas; Jung, Philipp; Bischoff, Markus; Jacobs, Karin

    2017-07-20

    Bacterial adhesion is a crucial step during the development of infections as well as the formation of biofilms. Hence, fundamental research of bacterial adhesion mechanisms is of utmost importance. So far, less is known about the size of the contact area between bacterial cells and a surface. This gap will be filled by this study using a single-cell force spectroscopy-based method to investigate the contact area between a single bacterial cell of Staphylococcus aureus and a solid substrate. The technique relies on the strong influence of the hydrophobic interaction on bacterial adhesion: by incrementally crossing a very sharp hydrophobic/hydrophilic interface while performing force-distance curves with a single bacterial probe, the bacterial contact area can be determined. Assuming circular contact areas, their radii - determined in our experiments - are in the range from tens of nanometers to a few hundred nanometers. The contact area can be slightly enlarged by a larger load force, yet does not resemble a Hertzian contact, rather, the enlargement is a property of the individual bacterial cell. Additionally, Staphylococcus carnosus has been probed, which is less adherent than S. aureus, yet both bacteria exhibit a similar contact area size. This corroborates the notion that the adhesive strength of bacteria is not a matter of contact area, but rather a matter of which and how many molecules of the bacterial species' cell wall form the contact. Moreover, our method of determining the contact area can be applied to other microorganisms and the results might also be useful for studies using nanoparticles covered with soft, macromolecular coatings.

Top