NASA Astrophysics Data System (ADS)
Irwin, M.; Broda, K.; Olfert, J. S.; Schill, G. P.; McMeeking, G. R.; Schnitzler, E.; Jäger, W.
2016-12-01
Refractory black carbon (rBC) has important atmospheric impacts due to its ability to absorb light, and its interactions with light are partly governed by the acquisition of coatings or other mixing processes. Here, a novel inversion method is presented which derives the mass fraction of coated rBC using a coupled centrifugal particle mass analyzer (CPMA) and single particle soot photometer (SP2). The CPMA selects particles of a known mass-to-charge ratio, and the SP2 detects the mass of rBC in each individual particle. The results of the inversion are the simultaneous number distributions of both rBC mass and total particle mass. Practically, the distribution can be integrated to find properties of the total aerosol population, for example, i) mass fraction of coating and ii) mass of coating on a particle of known total mass. This was demonstrated via smog chamber experiments. Initially, particles in the chamber were pure rBC, produced from a methane burner and passed through a diffusion dryer and thermal denuder. An organic (non-rBC) coating was then grown onto the aerosol over several hours via photooxidation with p-xylene. The CPMA-SP2 coupled system sampled the aerosol over the reaction period as the coating grew. The CPMA was sequentially stepped over a mass range from 0.3 to 28 fg and the SP2 measured the mass of rBC in each individual CPMA-classified particle. The number and mass distributions were constructed using the inversion. As expected, the mass and number distributions of rBC and total mass were equivalent for uncoated particles. As the non-rBC coating thickness increased over time, a shift in the number distribution towards higher total mass was observed. At the end of the experiment, fresh rBC (i.e. uncoated, bare particles) was injected into the chamber, creating an external mixture of coated and uncoated particles. This external mixture was clearly resolved in the number distribution of rBC and total particle mass. It is expected that the CPMA-SP2 methodology and inversion technique would be useful for field measurements where the rBC mass fraction, and mixing state of rBC-containing particles, could be accurately measured continuously. This methodology is not limited to evaluating coating mass—unlike SP2 only methods, it gives an unambiguous measure of any non-rBC material mixed with the particle.
Characteristics and source apportionment of black carbon aerosols over an urban site.
Rajesh, T A; Ramachandran, S
2017-03-01
Aethalometer based source apportionment model using the measured aerosol absorption coefficients at different wavelengths is used to apportion the contribution of fossil fuel and wood burning sources to the total black carbon (BC) mass concentration. Temporal and seasonal variabilities in BC mass concentrations, equivalent BC from fossil fuel (BC f f ), and wood burning (BC w b ) are investigated over an urban location in western India during January 2014 to December 2015. BC, BC f f , and BC w b mass concentrations exhibit strong diurnal variation and are mainly influenced by atmospheric dynamics. BC f f was higher by a factor of 2-4 than BC w b and contributes maximum to BC mass throughout the day, confirming consistent anthropogenic activities. Diurnal contribution of BC f f and BC w b exhibits opposite variation due to differences in emission sources over Ahmedabad. Night time BC values are about a factor of 1.4 higher than day time BC values. The annual mean percentage contributions of day time and night time are 42 and 58 %, respectively. BC, BC f f , and BC w b mass concentrations exhibit large and significant variations during morning, afternoon, evening, and night time. During afternoon, mass concentration values are minimum throughout the year because of the fully evolved boundary layer and reduced anthropogenic activities. BC exhibits a strong seasonal variability with postmonsoon high (8.3 μg m -3 ) and monsoon low (1.9 μg m -3 ). Annual mean BC f f and BC w b contributions are 80 and 20 %, respectively, to total BC, which suggests that major contribution of BC in Ahmedabad comes from fossil fuel emissions. The results show that the study location is dominated by fossil fuel combustion as compared to the emissions from wood burning. The results obtained represent a regional value over an urban regime which can be used as inputs on source apportionment to model BC emissions in regional and global climate models.
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.
2011-09-01
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.
Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.
2011-05-01
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.
NASA Astrophysics Data System (ADS)
Singh, A. K.; Srivastava, M. K.; Dumka, U. C.; Singh, R. K.; Singh, R. S.; Tiwari, S.; Mehrotra, B. J.; Srivastava, A. K.
2017-12-01
Black carbon particles (BC: also called Soot) are formed by incomplete combustion of hydrocarbon based fuels (fossil fuel: coal, diesel, petrol, etc.) as well as due to burning of biomass and bio-fuels (wood, shrubs, dry leaves, etc.). Soot particles are warming agent to the atmosphere that gained wide attention in recent years due to their direct and indirect impacts on local, regional as well as global climate. The climatic effects due to soot are not well understood as indicated by large uncertainties in their climate forcing estimation, particularly in South and East Asian region, possibly due to unavailability of adequate database and information about the source. Measurement of wintertime BC mass concentrations for urban site in central IGP, `Varanasi' (25.30 N, 83.00 E), using a seven wavelength Aethalometer is reported in this work. Delta-C (=BC370 - BC880), which is an indicator of biomass/bio-fuels or residential coal burning is used to understand the source. Aethalometer based source apportionment model "Aethalometer model" was used to apportion the fossil fuel/traffic and wood/biomass burning mass concentration to the total BC mass. The preliminary results for representative month (January-2015) show that daily-average BC mass ranged from 4.47 to 20.70 μg m-3 (Average: 9.45 ± 4.15 μg m-3). The daily Absorption Ångström Exponent (AAE) and the ratio of BCff/BC and BCff/BCwb varied between 1.09 - 1.32, 0.67 - 0.92 and 2 - 40, respectively, due to the changes in BC emissions rates. The total BC, BC from fossil fuel (BCff) and BC from wood/biomass burning (BCwb) behaved in the remarkable diurnal pattern, behaving opposite to the mixing layer heights (MLHs). During daytime, MLHs are higher due to surface based solar warming and causes more volume of atmosphere for the BC dispersion. This phenomenon causes the surface measurement of lower BC mass during the daytime. The data is, however, still being processed for multi-year wintertime observations and the detailed discussions will be shown during the presentation.
Hadley, Odelle L; Corrigan, Craig E; Kirchstetter, Thomas W
2008-11-15
This study presents a method for analyzing the black carbon (BC) mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration on the basis of derived mass attenuation efficiencies (MAEs) of BC and char. The fractions of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO2) at temperatures higher than 480 degrees C. This method was applied to measure the BC concentration in precipitation samples collected in northern California. The uncertainty in the measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12% to 100%, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 microg of BC, and the uncertainty approached 20% for BC mass loading greater than 1.0 microg of BC.
Yigitbasi, Turkan; Calibasi-Kocal, Gizem; Buyukuslu, Nihal; Atahan, Murat Kemal; Kupeli, Hakan; Yigit, Seyran; Tarcan, Ercument; Baskin, Yasemin
2018-03-01
Breast cancer (BC) is the most frequently diagnosed cancer that affects women worldwide. Early detection of BC is important to improve survival rates and decrease mortality. The aim of the present study was to investigate serum biomarkers using surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) to distinguish patients with BC from the healthy population and patients with benign breast diseases (BBDs). A total of 62 patients with invasive ductal carcinoma, as confirmed by histopathology, and 47 non-cancerous individuals (NCIs) [16 healthy controls (HCs) and 31 patients with BBD] were enrolled in the present study. Serum protein profiles were determined by SELDI-TOF-MS using an immobilized metal affinity capture array. Serum from patients with BC were compared with that from the HC group using univariate and multivariate statistical analyses. A total of 118 clusters were generated from the individual serum. Univariate analysis revealed that 5 peaks were significantly downregulated (m/z 1,452, 2,670, 3,972, 5,354 and 5,523; P<0.001) and 4 were upregulated (m/z 6,850, 7,926, 8,115 and 8,143; P<0.001) in patients with BC compared with the HC group. A comparison of patients with BC and patients with BBD revealed an additional 9 protein peaks. Among these, 3 peaks (m/z 3,972, 5,336 and 11,185) were significantly downregulated and 6 peaks (m/z 4,062, 4,071, 4,609, 6,850, 8,115 and 8,133) were significantly upregulated. A total of 3 peaks [mass-to-change ratio (m/z) 3,972, 6,850 and 8,115 (BC2)] were common in both sets. The results of the present study suggest that a 4 protein peak set [m/z 3,972, 6,850 and 8,115 (BC2) and 8,949 (BC3)] could be used to distinguish patients with BC from NCI.
Global Civil Aviation Black Carbon Particle Mass and Number Emissions
NASA Astrophysics Data System (ADS)
Stettler, M. E. J.
2015-12-01
Black carbon (BC) is a product of incomplete combustion emitted by aircraft engines. In the atmosphere, BC particles strongly absorb incoming solar radiation and influence cloud formation processes leading to highly uncertain, but likely net positive warming of the earth's atmosphere. At cruise altitude, BC particle number emissions can influence the concentration of ice nuclei that can lead to contrail formation, with significant and highly uncertainty climate impacts. BC particles emitted by aircraft engines also degrade air quality in the vicinity of airports and globally. A significant contribution to the uncertainty in environmental impacts of aviation BC emissions is the uncertainty in emissions inventories. Previous work has shown that global aviation BC mass emissions are likely to have been underestimated by a factor of three. In this study, we present an updated global BC particle number inventory and evaluate parameters that contribute to uncertainty using global sensitivity analysis techniques. The method of calculating particle number from mass utilises a description of the mobility of fractal aggregates and uses the geometric mean diameter, geometric standard deviation, mass-mobility exponent, primary particle diameter and material density to relate the particle number concentration to the total mass concentration. Model results show good agreement with existing measurements of aircraft BC emissions at ground level and at cruise altitude. It is hoped that the results of this study can be applied to estimate direct and indirect climate impacts of aviation BC emissions in future studies.
You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D
2016-08-02
Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, R.; Barth, M. C.; Nair, V. S.
This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March-May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore » sites. In general, the model underestimates the observed BC mass concentrations. However, the model-observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average +/- standard deviation (representing spatial and temporal variability) BC mass concentration (1341 +/- 2353 ng m(-3)) in South Asia. BC emissions from residential (61 %) and industrial (23 %) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, R.; Barth, M. C.; Nair, V. S.
This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore » sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m -3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less
Brown carbon and internal mixing in biomass burning particles
Lack, Daniel A.; Langridge, Justin M.; Bahreini, Roya; Cappa, Christopher D.; Middlebrook, Ann M.; Schwarz, Joshua P.
2012-01-01
Biomass burning (BB) contributes large amounts of black carbon (BC) and particulate organic matter (POM) to the atmosphere and contributes significantly to the earth’s radiation balance. BB particles can be a complicated optical system, with scattering and absorption contributions from BC, internal mixtures of BC and POM, and wavelength-dependent absorption of POM. Large amounts of POM can also be externally mixed. We report on the unique ability of multi-wavelength photo-acoustic measurements of dry and thermal-denuded absorption to deconstruct this complicated wavelength-dependent system of absorption and mixing. Optical measurements of BB particles from the Four Mile Canyon fire near Boulder, Colorado, showed that internal mixtures of BC and POM enhanced absorption by up to 70%. The data supports the assumption that the POM was very weakly absorbing at 532 nm. Enhanced absorption at 404 nm was in excess of 200% above BC absorption and varied as POM mass changed, indicative of absorbing POM. Absorption by internal mixing of BC and POM contributed 19( ± 8)% to total 404-nm absorption, while BC alone contributed 54( ± 16)%. Approximately 83% of POM mass was externally mixed, the absorption of which contributed 27( ± 15)% to total particle absorption (at 404 nm). The imaginary refractive index and mass absorption efficiency (MAE) of POM at 404 nm changed throughout the sampling period and were found to be 0.007 ± 0.005 and 0.82 ± 0.43 m2 g-1, respectively. Our analysis shows that the MAE of POM can be biased high by up to 50% if absorption from internal mixing of POM and BC is not included. PMID:22927381
Brown carbon and internal mixing in biomass burning particles.
Lack, Daniel A; Langridge, Justin M; Bahreini, Roya; Cappa, Christopher D; Middlebrook, Ann M; Schwarz, Joshua P
2012-09-11
Biomass burning (BB) contributes large amounts of black carbon (BC) and particulate organic matter (POM) to the atmosphere and contributes significantly to the earth's radiation balance. BB particles can be a complicated optical system, with scattering and absorption contributions from BC, internal mixtures of BC and POM, and wavelength-dependent absorption of POM. Large amounts of POM can also be externally mixed. We report on the unique ability of multi-wavelength photo-acoustic measurements of dry and thermal-denuded absorption to deconstruct this complicated wavelength-dependent system of absorption and mixing. Optical measurements of BB particles from the Four Mile Canyon fire near Boulder, Colorado, showed that internal mixtures of BC and POM enhanced absorption by up to 70%. The data supports the assumption that the POM was very weakly absorbing at 532 nm. Enhanced absorption at 404 nm was in excess of 200% above BC absorption and varied as POM mass changed, indicative of absorbing POM. Absorption by internal mixing of BC and POM contributed 19( ± 8)% to total 404-nm absorption, while BC alone contributed 54( ± 16)%. Approximately 83% of POM mass was externally mixed, the absorption of which contributed 27( ± 15)% to total particle absorption (at 404 nm). The imaginary refractive index and mass absorption efficiency (MAE) of POM at 404 nm changed throughout the sampling period and were found to be 0.007 ± 0.005 and 0.82 ± 0.43 m(2) g(-1), respectively. Our analysis shows that the MAE of POM can be biased high by up to 50% if absorption from internal mixing of POM and BC is not included.
Kumar, R.; Barth, M. C.; Nair, V. S.; ...
2015-05-19
This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore » sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m -3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less
Changes in Body Composition in Anorexia Nervosa: Predictors of Recovery and Treatment Outcome
Arcelus, Jon; Sánchez, Isabel; Riesco, Nadine; Jiménez-Murcia, Susana; González-Gómez, Jana; Granero, Roser; Custal, Nuria; Montserrat-Gil de Bernabé, Monica; Tárrega, Salomé; Baños, Rosa M.; Botella, Cristina; de la Torre, Rafael; Fernández-García, José C.; Fernández-Real, José M.; Frühbeck, Gema; Gómez-Ambrosi, Javier; Tinahones, Francisco J.; Crujeiras, Ana B.; Casanueva, Felipe F.; Menchón, José M.; Fernández-Aranda, Fernando
2015-01-01
The restoration of body composition (BC) parameters is considered to be one of the most important goals in the treatment of patients with anorexia nervosa (AN). However, little is known about differences between AN diagnostic subtypes [restricting (AN-R) and binge/purging (AN-BP)] and weekly changes in BC during refeeding treatment. Therefore, the main objectives of our study were twofold: 1) to assess the changes in BC throughout nutritional treatment in an AN sample and 2) to analyze predictors of BC changes during treatment, as well as predictors of treatment outcome. The whole sample comprised 261 participants [118 adult females with AN (70 AN-R vs. 48 AN-BP), and 143 healthy controls]. BC was measured weekly during 15 weeks of day-hospital treatment using bioelectrical impedance analysis (BIA). Assessment measures also included the Eating Disorders Inventory-2, as well as a number of other clinical indices. Overall, the results showed that AN-R and AN-BP patients statistically differed in all BC measures at admission. However, no significant time×group interaction was found for almost all BC parameters. Significant time×group interactions were only found for basal metabolic rate (p = .041) and body mass index (BMI) (p = .035). Multiple regression models showed that the best predictors of pre-post changes in BC parameters (namely fat-free mass, muscular mass, total body water and BMI) were the baseline values of BC parameters. Stepwise predictive logistic regressions showed that only BMI and age were significantly associated with outcome, but not with the percentage of body fat. In conclusion, these data suggest that although AN patients tended to restore all BC parameters during nutritional treatment, only AN-BP patients obtained the same fat mass values as healthy controls. Put succinctly, the best predictors of changes in BC were baseline BC values, which did not, however, seem to influence treatment outcome. PMID:26600309
Changes in Body Composition in Anorexia Nervosa: Predictors of Recovery and Treatment Outcome.
Agüera, Zaida; Romero, Xandra; Arcelus, Jon; Sánchez, Isabel; Riesco, Nadine; Jiménez-Murcia, Susana; González-Gómez, Jana; Granero, Roser; Custal, Nuria; Montserrat-Gil de Bernabé, Monica; Tárrega, Salomé; Baños, Rosa M; Botella, Cristina; de la Torre, Rafael; Fernández-García, José C; Fernández-Real, José M; Frühbeck, Gema; Gómez-Ambrosi, Javier; Tinahones, Francisco J; Crujeiras, Ana B; Casanueva, Felipe F; Menchón, José M; Fernández-Aranda, Fernando
2015-01-01
The restoration of body composition (BC) parameters is considered to be one of the most important goals in the treatment of patients with anorexia nervosa (AN). However, little is known about differences between AN diagnostic subtypes [restricting (AN-R) and binge/purging (AN-BP)] and weekly changes in BC during refeeding treatment. Therefore, the main objectives of our study were twofold: 1) to assess the changes in BC throughout nutritional treatment in an AN sample and 2) to analyze predictors of BC changes during treatment, as well as predictors of treatment outcome. The whole sample comprised 261 participants [118 adult females with AN (70 AN-R vs. 48 AN-BP), and 143 healthy controls]. BC was measured weekly during 15 weeks of day-hospital treatment using bioelectrical impedance analysis (BIA). Assessment measures also included the Eating Disorders Inventory-2, as well as a number of other clinical indices. Overall, the results showed that AN-R and AN-BP patients statistically differed in all BC measures at admission. However, no significant time×group interaction was found for almost all BC parameters. Significant time×group interactions were only found for basal metabolic rate (p = .041) and body mass index (BMI) (p = .035). Multiple regression models showed that the best predictors of pre-post changes in BC parameters (namely fat-free mass, muscular mass, total body water and BMI) were the baseline values of BC parameters. Stepwise predictive logistic regressions showed that only BMI and age were significantly associated with outcome, but not with the percentage of body fat. In conclusion, these data suggest that although AN patients tended to restore all BC parameters during nutritional treatment, only AN-BP patients obtained the same fat mass values as healthy controls. Put succinctly, the best predictors of changes in BC were baseline BC values, which did not, however, seem to influence treatment outcome.
NASA Astrophysics Data System (ADS)
Zheng, Xuan; Wu, Ye; Zhang, Shaojun; Baldauf, Richard W.; Zhang, K. Max; Hu, Jingnan; Li, Zhenhua; Fu, Lixin; Hao, Jiming
2016-09-01
The black carbon (BC) emitted from heavy-duty diesel vehicles (HDDVs) is an important source of urban atmospheric pollution and creates strong climate-forcing impacts. The emission ratio of BC to total particle mass (PM) (i.e., BC/PM ratio) is an essential variable used to estimate total BC emissions from historical PM data; however, these ratios have not been measured using portable emission measurement systems (PEMS) in order to obtain real-world measurements over a wide range of driving conditions. In this study, we developed a PEMS platform by integrating two Aethalometers and an electric low pressure impactor to realize the joint measurement of real-world BC and PM emissions for ten HDDVs in China. Test results showed that the average BC/PM ratio for five HDDVs equipped with mechanical fuel injection (MI) engines was 0.43 ± 0.06, significantly lower (P < 0.05) than another five HDDVs equipped with electronically-controlled fuel injection (EI) engines (0.56 ± 0.12). Traffic conditions also affected the BC/PM ratios with higher ratios on freeway routes than on local roads. Furthermore, higher ratios were observed for HDDVs equipped with EI engines than for the MI engines for the highway and local road routes. With an operating mode binning approach, we observed that the instantaneous BC/PM ratios of EI engine vehicles were above those of the MI engine vehicles in all operating modes except for the braking mode (i.e., Bin 0). Therefore, the complex impacts from engine technology and traffic conditions on BC/PM ratios should be carefully considered when estimating real-world BC emissions from HDDVs based on overall PM emissions data.
Body composition in paediatric intestinal failure patients receiving long-term parenteral nutrition.
Pichler, Judith; Chomtho, Sirinuch; Fewtrell, Mary; Macdonald, Sarah; Hill, Susan
2014-02-01
Outcome of children with intestinal failure (IF) has improved on treatment with parenteral nutrition (PN). The effects of PN and IF on body composition (BC) are unknown. The aim was to review BC in PN-treated children and those weaned off and to compare with reference data. Children on long-term/home PN underwent measurement of regional fat mass (FM) and lean mass (LM) using dual energy X-ray absorptiometry. Underlying diseases were intestinal enteropathy, n=15, short bowel syndrome (SBS), n=8 and intestinal dysmotility, n=11. PN duration was median 10 years. Fat Mass Index (FMI) and Lean Mass Index (LMI) were compared in children with and without intestinal inflammation, steroid treatment and according to PN dependency. 34 children aged 5-20 years were studied. They were short, mean height SD score (SDS) -1.8 (p<0.001) and light (mean weight SDS -0.86, p<0.001) with high body mass index (BMI) SDS: mean 0.4 (p=0.04) and low Limb LMI SDS -0.9 (p<0.001). Children with SBS had low FMI SDS -0.8 (p=0.01). BC did not significantly differ between diagnostic groups or with steroid treatment. Patients with intestinal inflammation (n=20) had higher BMI SDS than those without, p=0.007. Totally, PN-dependent children, n=11 had higher BMI SDS, p=0.004, total body FMI SDS, p=0.008 and trunk FMI SDS, p=0.001 compared with patients partially dependent and off PN. Significantly low limb LM was seen in all patient groups with high FM in children on total PN. Children with IF requiring PN treatment >27 days may benefit from BC monitoring and PN adjustment according to results in order to maximise linear growth and health in later life.
Assessment of Particle Pollution from Jetliners: from Smoke Visibility to Nanoparticle Counting.
Durdina, Lukas; Brem, Benjamin T; Setyan, Ari; Siegerist, Frithjof; Rindlisbacher, Theo; Wang, Jing
2017-03-21
Aviation is a substantial and a fast growing emissions source. Besides greenhouse gases, aircraft engines emit black carbon (BC), a climate forcer and air pollutant. Aviation BC emissions have been regulated and estimated through exhaust smoke visibility (smoke number). Their impacts are poorly understood because emission inventories lack representative data. Here, we measured BC mass and number-based emissions of the most popular airliner's engines according to a new emission standard. We used a calibrated engine performance model to determine the emissions on the ground, at cruise altitude, and over entire flight missions. Compared to previous estimates, we found up to a factor of 4 less BC mass emitted from the standardized landing and takeoff cycle and up to a factor of 40 less during taxiing. However, the taxi phase accounted for up to 30% of the total BC number emissions. Depending on the fuel composition and flight distance, the mass and number-based emission indices (/kg fuel burned) were 6.2-14.7 mg and 2.8 × 10 14 - 8.7 × 10 14 , respectively. The BC mass emissions per passenger-km were similar to gasoline vehicles, but the number-based emissions were relatively higher, comparable to old diesel vehicles. This study provides representative data for models and will lead to more accurate assessments of environmental impacts of aviation.
A contribution of black and brown carbon to the aerosol light absorption
NASA Astrophysics Data System (ADS)
Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin
2017-04-01
Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of absorption coefficients from CLAP and COSMOS measurements, increases with increasing thermal OC mass concentration. Monthly variation of BC and BrC absorption coefficients estimated from in-situ measurements and GEOS-Chem model simulation are generally well agreed, even though GEOS-Chem simulation overestimates BC absorption coefficient while underestimates BrC absorption coefficient. Here, we note that MAC of 5.4 m2 g-1 and3.8 m2 g-1 (taken from Alexander et al., 2008) are used to calculate aerosol absorption coefficient of BC and BrC, respectively. The contribution of BC to aerosol light absorption is estimated to be about 70˜75%, while BrC accounts for about 25˜30% of total aerosol light absorption, having a significant climatic implication in East Asia.
1 Mixing state and absorbing properties of black carbon during Arctic haze
NASA Astrophysics Data System (ADS)
Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi
2016-04-01
The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass concentration from SP2, a mass absorption cross section of 6.0 m2 g-1 was found at a wavelength of 880 nm. Concerning mixing, rBC cores with a dimeter between 170 nm and 280 nm were found to be covered by a layer of non-absorbing material having a median thickness of 50 nm. From Mie calculation, such mixing would lead to an enhancement of absorption of 46% compared to a bare BC core. The aforementioned absorption enhancement would lead to a net decrease of single scattering albedo of the total aerosol of less than 1%. The reliability of Mie approach was confirmed by agreement with observations, while MAC values commonly used in radiative forcing models might lead to discrepancies up to 80%. Our work provides all the major optical properties of total aerosol and BC to minimize the uncertainty of radiative estimations based on a priori assumptions.
Diano, Danila; Ponti, Federico; Guerri, Sara; Mercatelli, Daniele; Amadori, Michele; Aparisi Gómez, Maria Pilar; Battista, Giuseppe; Guglielmi, Giuseppe; Bazzocchi, Alberto
2017-09-18
The detection of changes in lean mass (LM) distribution can help to prevent disability. This study assessed the degree of association between anthropometric measurements and dual-energy X-ray absorptiometry (DXA) body composition (BC) parameters of the upper and lower limbs in a healthy general population and collected DXA age- and sex-specific values of BC that can be useful to build a reference standard. The primary aim of this study was to investigate the reliability of some widely available anthropometric measurements in the assessment of body composition (BC) at the limbs, especially in terms of muscle mass, in a large sample of healthy subjects of different age bands and sex, using fat mass (FM) and lean mass (LM) parameters derived by dual-energy X-ray absorptiometry (DXA) as the gold standard. The secondary aim was to collect DXA age- and sex-specific values of BC of left and right limbs (upper and lower) in a healthy Italian population to be used as reference standards. Two hundred fifty healthy volunteers were enrolled. Arm circumference (AC) and thigh circumference (ThC) were measured, and total and regional BC parameters were obtained by a whole-body DXA scan (Lunar iDXA, Madison, WI, USA; enCORE™ 2011 software version 13.6). FM/LM showed only fair correlation with AC and ThC in females (r = 0.649 and 0.532, respectively); in males and in the total population, the correlation was low (r = 0.360 or lower, and p non-statistically significant). AC and ThC were not well representative of arms LM in both genders (females r = 0.452, males r = 0.530) independently of age. In general, men of all age groups showed higher values of LM and lean mass index (LMI) in both total and segmental upper and lower limbs. In males, the maximum LM and LMI were achieved in the fifth decade in both upper and lower limbs and then started to decrease with aging. In females, no significant modification with aging was identified in LM and LMI. According to our results, anthropometry is not well representative of LM of arms in both genders, independently of age; therefore, a densitometric examination should be considered for a correct assessment of BC at limbs.
Black carbon vertical profiles strongly affect its radiative forcing uncertainty
NASA Astrophysics Data System (ADS)
Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.
2012-11-01
The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.
Black carbon vertical profiles strongly affect its radiative forcing uncertainty
NASA Astrophysics Data System (ADS)
Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.
2013-03-01
The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.
Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty
NASA Technical Reports Server (NTRS)
Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.;
2013-01-01
The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.
40 CFR 63.4761 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...
40 CFR 63.4761 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...
40 CFR 63.4761 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...
40 CFR 63.4761 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...
40 CFR 63.4761 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...
Joint measurements of black carbon and particle mass for ...
The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate total BC emissions from historical PM data; however, theseratios have not been measured using portable emission measurement systems(PEMS) in order to obtain real-world measurements over a wide range ofdriving conditions. In this study, we developed a PEMS platform byintegrating two Aethalometers and an electric low pressure impactor torealize the joint measurement of real-world BC and PM emissions for tenHDDVs in China. Test results showed that the average BC/PM ratio for fiveHDDVs equipped with mechanical fuel injection (MI) engines was 0.43±0.06,significantly lower (P<0.05) than another five HDDVs equipped withelectronically-controlled fuel injection (EI) engines (0.56±0.12).Traffic conditions also affected the BC/PM ratios with higher BC/PMratios on freeway routes than on local roads. Further, higher ratios wereobserved for HDDVs equipped with EI engines than for the MI engines forthe highway and local road routes. With an operating mode binningapproach, we observed that the instantaneous BC/PM ratios of EI enginevehicles were above those of the MI engine vehicles in all operatingmodes except for the braking mode (i.e., Bin 0). Therefore, the compleximpacts from engine technology and
NASA Astrophysics Data System (ADS)
Valenzuela, A.; Arola, A.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.
2017-07-01
This paper provides an account of observed variations in Black carbon (BC) aerosol concentrations and their induced radiative forcing for the first time over Granada a measurement site in Southeastern Iberian Peninsula. Column-integrated BC concentrations were retrieved for the period 2005-2012. Monthly averages of BC concentrations (± one standard deviation) ranged from higher values in January and December with 4.0 ± 2.5 and 4 ± 3 mg/m2, respectively, to lower values in July and August with 1.6 ± 1.2 and 2.0 ± 0.5 mg/m2, respectively. This reduction is not only observed in the average values, but also in the median, third and first quartiles. The average BC concentration in winter (3.8 ± 0.6 mg/m2) was substantially higher than in summer (1.9 ± 0.3 mg/m2), being the eight-year average of 2.9 ± 0.9 mg/m2. The reduction in the use of fossil fuels during the economic crisis contributed significantly to reduced atmospheric loadings of BC. According to our analysis this situation persisted until 2010. BC concentration values were analyzed in terms of air mass influence using cluster analysis. BC concentrations for cluster 1 (local and regional areas) showed high correlations with air masses frequency in winter and autumn. In these seasons BC sources were related to the intense road traffic and increased BC emissions from domestic heating. High BC concentrations were found in autumn just when air mass frequencies for cluster 3 (Mediterranean region) were more elevated, suggesting that air masses coming from that area transport biomass burning particles towards Granada. BC aerosol optical properties were retrieved from BC fraction using aerosol AERONET size volume distribution and Mie theory. A radiative transfer model (SBDART) was used to estimate the aerosol radiative forcing separately for composite aerosol (total aerosols) and exclusively for BC aerosols. The mean radiative forcing for composite aerosol was + 23 ± 6 W/m2 (heating rate of + 0.21 ± 0.06 K/day) and + 15 ± 6 W/m2 for BC aerosol (heating rate of + 0.15 ± 0.06 K/day). These values of radiative forcing and heating rate for BC aerosol represent about 70% of their values for composite aerosol, which highlights the crucial role that BC aerosols play in modifying the radiation budget and climate.
NASA Astrophysics Data System (ADS)
Tiwari, S.; Srivastava, A. K.; Bisht, D. S.; Parmita, P.; Srivastava, Manoj K.; Attri, S. D.
2013-05-01
Black carbon (BC), which is one of the highly absorbing capacities of solar radiation, reduces albedo of atmospheric aerosol. BC along with fine particulate matters (PM2.5), which play crucial role in climate and health, was monitored online for an entire year of 2011 at an urban megacity of Delhi, situated in the northern part of India. Daily mass concentration of BC varies from 0.9 to 25.5 μg m- 3, with an annual mean of 6.7 ± 5.7 μg m- 3 displayed clear monsoon minima and winter maxima; however, PM2.5 concentration was ranging from 54.3 to 338.7 μg m- 3, with an annual mean of 122.3 ± 90.7 μg m- 3. BC typically peaked between 0800 and 1000 LST and again between 2100 and 2300 LST, corresponding to the morning and evening traffic combined with the ambient meteorological effect. During summer and monsoon, the BC concentrations were found less than 5 μg m- 3; however, the highest concentrations occurred during winter in segments from < 5 to > 10 μg m- 3. In over all study, the BC mass concentration was accounted for ~ 6% of the total PM2.5 mass, with a range from 1.0% to 14.3%. The relationship between meteorological parameters and BC mass concentrations was studied and a clear inverse relationship (r = - 0.53) between BC and wind speed was observed. Relation between visibility and BC mass concentrations was also significantly negative (- 0.81), having relatively higher correlation during post-monsoon (- 0.85) and winter (- 0.78) periods and lower during summer (- 0.45) and monsoon (- 0.54) periods. The mixed layer depths (MLDs) were found to be shallower during post monsoon (379 m) and winter (335 m) as compared during summer (1023 m) and monsoon (603 m). The study indicated that during post-monsoon season, the impact of biomass burning is higher as compared to combustion of fossil fuels. Results are well associated with the rapid growth of anthropogenic emissions and ambient meteorological conditions over the station.
Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch
NASA Astrophysics Data System (ADS)
Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.
2007-04-01
The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (droplets and ice particles) as well as interstitial (unactivated) aerosol particles; an interstitial inlet which collected only interstitial aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the condensed phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~5-10% in mixed-phase clouds with IMF>0.2. This can be explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.
Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch
NASA Astrophysics Data System (ADS)
Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.
2006-11-01
The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (drops and ice particles) as well as interstitial aerosol particles; an interstitial inlet which collected only interstitial (unactivated) aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the cloud phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~10% in mixed-phase clouds with IMF>0.2. This is explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.
Body Composition of Elite Female Players in Five Different Sports Games
Mala, Lucia; Maly, Tomas; Zahalka, František; Bunc, Vaclav; Kaplan, Ales; Jebavy, Radim; Tuma, Martin
2015-01-01
The goal of this study was to identify and compare body composition (BC) variables in elite female athletes (age ± years): volleyball (27.4 ± 4.1), softball (23.6 ± 4.9), basketball (25.9 ± 4.2), soccer (23.2 ± 4.2) and handball (24.0 ± 3.5) players. Fat-free mass (FFM), fat mass, percentage of fat mass (FMP), body cell mass (BCM), extracellular mass (ECM), their ratio, the percentage of BCM in FFM, the phase angle (α), and total body water, with a distinction between extracellular (ECW) and intracellular water, were measured using bioimpedance analysis. MANOVA showed significant differences in BC variables for athletes in different sports (F60.256 = 2.93, p < 0.01, η2 = 0.407). The results did not indicate any significant differences in FMP or α among the tested groups (p > 0.05). Significant changes in other BC variables were found in analyses when sport was used as an independent variable. Soccer players exhibited the most distinct BC, differing from players of other sports in 8 out of 10 variables. In contrast, the athletes with the most similar BC were volleyball and basketball players, who did not differ in any of the compared variables. Discriminant analysis revealed two significant functions (p < 0.01). The first discriminant function primarily represented differences based on the FFM proportion (volleyball, basketball vs. softball, soccer). The second discriminant function represented differences based on the ECW proportion (softball vs. soccer). Although all of the members of the studied groups competed at elite professional levels, significant differences in the selected BC variables were found. The results of the present study may serve as normative values for comparison or target values for training purposes. PMID:25964823
Body composition of elite female players in five different sports games.
Mala, Lucia; Maly, Tomas; Zahalka, František; Bunc, Vaclav; Kaplan, Ales; Jebavy, Radim; Tuma, Martin
2015-03-29
The goal of this study was to identify and compare body composition (BC) variables in elite female athletes (age ± years): volleyball (27.4 ± 4.1), softball (23.6 ± 4.9), basketball (25.9 ± 4.2), soccer (23.2 ± 4.2) and handball (24.0 ± 3.5) players. Fat-free mass (FFM), fat mass, percentage of fat mass (FMP), body cell mass (BCM), extracellular mass (ECM), their ratio, the percentage of BCM in FFM, the phase angle (α), and total body water, with a distinction between extracellular (ECW) and intracellular water, were measured using bioimpedance analysis. MANOVA showed significant differences in BC variables for athletes in different sports (F60.256 = 2.93, p < 0.01, η2 = 0.407). The results did not indicate any significant differences in FMP or α among the tested groups (p > 0.05). Significant changes in other BC variables were found in analyses when sport was used as an independent variable. Soccer players exhibited the most distinct BC, differing from players of other sports in 8 out of 10 variables. In contrast, the athletes with the most similar BC were volleyball and basketball players, who did not differ in any of the compared variables. Discriminant analysis revealed two significant functions (p < 0.01). The first discriminant function primarily represented differences based on the FFM proportion (volleyball, basketball vs. softball, soccer). The second discriminant function represented differences based on the ECW proportion (softball vs. soccer). Although all of the members of the studied groups competed at elite professional levels, significant differences in the selected BC variables were found. The results of the present study may serve as normative values for comparison or target values for training purposes.
NASA Astrophysics Data System (ADS)
Hu, Limin; Shi, Xuefa; Bai, Yazhi; Fang, Yin; Chen, Yingjun; Qiao, Shuqing; Liu, Shengfa; Yang, Gang; Kornkanitnan, Narumol; Khokiattiwong, Somkiat
2016-03-01
The coastal margins around Southeast Asia (SE Asia) may serve as an ideal location to study the source-sink process of sedimentary black carbon (BC) because SE Asia has been identified as one of the major BC emission source regions in the world. This study provides an extensive picture of recent regional-scale sedimentary BC sequestration in the Gulf of Thailand (GOT), a tropical marine system in SE Asia. Generally, the sedimentary BC concentrations (0.07-3.99 mg/g) were in the low to moderate ranges of those obtained in other coastal sediments around the world. Regional variability of the BC and its correlation with the sediment grain size and total organic carbon (TOC) content indicated a general hydrodynamic constraint on BC occurrence in the lower Gulf in contrast to the upper Gulf with a more source dependence due to the direct land-based input. BC/TOC% values and the varied BC components (char and soot), as well as their correlations suggested that char was the predominant constituents of sedimentary BC both in the upper and lower Gulf, which could be mainly derived from biomass burning and entered into the nearshore region through direct fluvial transport and surface run-off. The estimated BC burial flux (∼212 μg/cm2/y) and mass inventory (∼200 Gg/y) in the GOT on the hundred-year timescale were of the same order of magnitude compared with other oceanic margins, and thus the tropical shelf sediments from SE Asia could serve as an important sink of land-emitted BC.
Impact of Canadian wildfire smoke on air quality at two rural sites in NY State
NASA Astrophysics Data System (ADS)
Dutkiewicz, Vincent A.; Husain, Liaquat; Roychowdhury, Utpal K.; Demerjian, Kenneth L.
2011-04-01
We report high concentrations of black carbon aerosols (BC), present at two rural sites in New York during the last week in May 2010, that are linked to wildfire activity. At Mayville BC from wood smoke was recorded for a total of 20 h from three separate episodes, mean concentration was 1400 ng m -3. These three short events contributed 13% of the BC burden during the month of May. At Whiteface Mountain high concentrations of BC, carbon monoxide gas (CO), and fine particulate matter mass (PM 2.5) are reported from a heavy smoke event that impacted the Adirondack region of the State on May 31, 2010. PM 2.5 mass recorded at the Lodge site (600 m above mean sea level) was 150 μg m -3 at 8:30 am EST and the 24-h mean was almost twice the USEPA limits while CO concentration exceeded 1000 ppb and BC concentration reached 9600 ng m -3. The event was delayed several hours at the Summit site (1500 m above mean sea level) but at 5:45 pm BC concentration reached 1600 ng m -3 and CO was 317 ppbv. Detailed temporal profiles and correlations are presented.
NASA Astrophysics Data System (ADS)
Khan, Alia L.; McMeeking, Gavin R.; Schwarz, Joshua P.; Xian, Peng; Welch, Kathleen A.; Berry Lyons, W.; McKnight, Diane M.
2018-03-01
Measurements of light-absorbing particles in the boundary layer of the high southern latitudes are scarce, particularly in the McMurdo Dry Valleys (MDV), Antarctica. During the 2013-2014 austral summer near-surface boundary layer refractory black carbon (rBC) aerosols were measured in air by a single-particle soot photometer (SP2) at multiple locations in the MDV. Near-continuous rBC atmospheric measurements were collected at Lake Hoare Camp (LH) over 2 months and for several hours at more remote locations away from established field camps. We investigated periods dominated by both upvalley and downvalley winds to explore the causes of differences in rBC concentrations and size distributions. Snow samples were also collected in a 1 m pit on a glacier near the camp. The range of concentrations rBC in snow was 0.3-1.2 ± 0.3 μg-rBC/L-H2O, and total organic carbon was 0.3-1.4 ± 0.3 mg/L. The rBC concentrations measured in this snow pit are not sufficient to reduce surface albedo; however, there is potential for accumulation of rBC on snow and ice surfaces at low elevation throughout the MDV, which were not measured as part of this study. At LH, the average background rBC mass aerosol concentrations were 1.3 ng/m3. rBC aerosol mass concentrations were slightly lower, 0.09-1.3 ng/m3, at the most remote sites in the MDV. Concentration spikes as high as 200 ng/m3 were observed at LH, associated with local activities. During a foehn wind event, the average rBC mass concentration increased to 30-50 ng/m3. Here we show that the rBC increase could be due to resuspension of locally produced BC from generators, rocket toilets, and helicopters, which may remain on the soil surface until redistributed during high wind events. Quantification of local production and long-range atmospheric transport of rBC to the MDV is necessary for understanding the impacts of this species on regional climate.
NASA Astrophysics Data System (ADS)
Schreiter, Inga J.; Wefer-Roehl, Annette; Graber, Ellen R.; Schüth, Christoph
2017-04-01
Biochar (BC) is increasingly deemed a potential sorbent for contaminants in soil and water remediation, and brownfield restoration. In this study, sorption and extraction experiments were performed to assess the potential of three different BCs to sorb and retain the chlorinated hydrocarbons trichloroethylene (TCE) and tetrachloroethylene (PCE). BCs studied were produced from wood chips, grain husk, and cattle manure at 450 °C. A commercially available activated carbon (AC) served as a reference. The sorption behaviour was studied in batch experiments in single solute and bi-solute systems. Resulting isotherms were fitted to the Freundlich model. To assess the desorption behaviour, a five-step extraction scheme (water at 40°C, water at 80°C, methanol at 50°C, toluene at 50°C, and n-hexane at 50°) was developed, utilizing Accelerated Solvent Extraction. Isotherms revealed distinct differences in sorption behaviour depending on BC feedstock. Sorption capacity ranked as follows: wood chip BC > grain husk BC > cattle manure BC for both contaminants. This sequence could be attributable to an increasing specific surface area, an increasing amount of carbon, and a decreasing ash content of the sorbents. It is noteworthy that all three BCs were more effective in adsorbing TCE, which is surprising, given the higher logKow of PCE. The reverse was observed for the AC. Here, sorption is purely driven by the hydrophobicity of the compound rather than sorbent properties. In bi-solute experiments, PCE sorbed as good as or stronger than TCE, yet the total mass of sorbed compounds increased slightly. In contrast, AC showed a significant decrease of TCE sorption and no significant changes in the total mass sorbed. Extraction experiments revealed that for all BCs a large fraction of the contaminants could not be readily desorbed. In all cases, water remobilized < 5 % of the total contaminant mass and up to 70 % could not be extracted by any of the solvents. The findings suggest that BC is a promising sorbent for mixed contaminant systems as it offers a diverse nature of sorption sites and is more effective in long-term immobilization than AC.
NASA Technical Reports Server (NTRS)
Schwartz, J. P.; Gao, R. S.; Fahey, D. W.; Thomson, D. S.; Watts, L. A.; Wilson, J. C.; Reeves, J. M.; Darbeheshti, M.; Baumgardner, D. G.; Kok, G. L.;
2006-01-01
A single-particle soot photometer (SP2) was flown on a NASA WB-57F high-altitude research aircraft in November 2004 from Houston, Texas. The SP2 uses laser-induced incandescence to detect individual black carbon (BC) particles in an air sample in the mass range of approx.3-300 fg (approx.0.15-0.7 microns volume equivalent diameter). Scattered light is used to size the remaining non-BC aerosols in the range of approx.0.17-0.7 microns diameter. We present profiles of both aerosol types from the boundary layer to the lower stratosphere from two midlatitude flights. Results for total aerosol amounts in the size range detected by the SP2 are in good agreement with typical particle spectrometer measurements in the same region. All ambient incandescing particles were identified as BC because their incandescence properties matched those of laboratory-generated BC aerosol. Approximately 40% of these BC particles showed evidence of internal mixing (e.g., coating). Throughout profiles between 5 and 18.7 km, BC particles were less than a few percent of total aerosol number, and black carbon aerosol (BCA) mass mixing ratio showed a constant gradient with altitude above 5 km. SP2 data was compared to results from the ECHAM4/MADE and LmDzT-INCA global aerosol models. The comparison will help resolve the important systematic differences in model aerosol processes that determine BCA loadings. Further intercomparisons of models and measurements as presented here will improve the accuracy of the radiative forcing contribution from BCA.
NASA Astrophysics Data System (ADS)
Cho, C.; Kim, S. W.; Lee, M.; Gustafsson, O.; Fang, W.
2017-12-01
Black carbon (BC) is a major contributor to the atmospheric heating by absorbing the solar radiation. According to recent studies, the solar absorption of brown carbon (BrC) is not negligible and even comparable to that of BC at visible to UV wavelengths, but most optical instruments that quantify light absorption are unable to distinguish each other. Thus, light absorption properties of BC or BrC usually have been studied through modeling researches by using mass absorption cross-section (MAC). Although MAC has a large spatial and temporal variability, most modeling studies have used a specific value of BC MAC and even the absorption by BrC is seldom considered in most chemical and climate models. The generalization of modeling research can lead to serious errors of radiative forcing by BC and BrC. In this study, MAC of BC and BrC are separately determined and the contribution of BC and BrC on aerosol light absorption are estimated from co-located simultaneous in-situ measurements, COSMOS, CLAP and Sunset EC/OC analyzer, at Gosan climate observatory, Korea during Gosan Pollution Experiment in January 2014 (GoPoEx 2014). At 565 nm, MAC of BC is found to be about 6.4±1.5 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements. This value is similar to those from previous studies in China (Cui et al., STE, 2016), but lower than those observed to be ranged 10-18 m2 g-1 in America or Europe (Lack et al., PNAS, 2012). Aerosol absorption coefficient (AAC) and BC mass concentration from COSMOS, meanwhile, are approximately 15-20% lower than those of CLAP. This difference can be attributable to the contribution of BrC. The MAC of BrC was calculated using the absorption coefficient of BrC and by the following three methods: (1) the difference of mass concentration from Aethalometer and COSMOS applied new BC MAC of this study, (2) The mass concentration of water-soluble organic carbon, (3) a method using the mass concentration of organic carbon suggested by Chung et al. (ACP, 2012). The MAC of BrC values obtained from the three methods ranged from 1.0 m2 g-1 to 1.5 m2 g-1 at 565 nm which is slightly higher than those from previous studies (Srinivas et al., AE, 2016). The contribution of BC to AAC is estimated to be about 85-90%, while BrC accounts for about 10-15% of total AAC, having increases about 1% of BrC contribution when the BrC MAC value increases 10%.
The Multiple-component Binary Hyad, vA 351 - a Progress Report
NASA Astrophysics Data System (ADS)
Benedict, George Fritz; Franz, Otto G.; Wasserman, Lawrence H.
2017-06-01
We extend results first announced by Franz et al. (1998) in the abstract, http://adsabs.harvard.edu/abs/1998AAS...19310207F ,that identified vA 351 = H346 in the Hyades as a multiple star system containing a white dwarf. With HST/FGS fringe tracking and scanning, spanning four years, we establish a parallax, relative orbit, and mass fraction for the A-B components, with a period, P~5.47y. With ground-based radial velocities from the McDonald Observatory Struve 2.1m telescope and Sandiford Spectrograph, spanning 14 years, we find that component B consists of BC, two M dwarf stars orbiting with a very short period (P(BC)~0.75 days), having a mass ratio C/B~0.94. We confirm that the total mass of the system can only be reconciled with the distance and component photometry by including a fainter, higher mass component, proposed to be a ~0.8Msun white dwarf. Thus, the quadruple system consists of three M dwarfs (A,B,C) and one white dwarf (D). The M dwarf masses and absolute magnitudes are consistent with the Benedict et al. (2016, http://adsabs.harvard.edu/abs/2016AJ....152..141B) lower Main Sequence Mass-Luminosity Relation. The radial velocity signal has so far yielded a signature only for the short-period BC orbital motion. Velocities from H-α and He I emission lines confirm the BC period from absorption lines, with similar (He I) and higher (H-α) velocity amplitudes.
Shin, Jihye; Kim, Gamin; Lee, Jong Won; Lee, Ji Eun; Kim, Yoo Seok; Yu, Jong-Han; Lee, Seung-Taek; Ahn, Sei Hyun; Kim, Hoguen; Lee, Cheolju
2016-06-01
Cancer cell secretomes are considered a potential source for the discovery of cancer markers. In this study, the secretomes of four breast cancer (BC) cell lines (Hs578T, MCF-7, MDA-MB-231, and SK-BR-3) were profiled with liquid chromatography-tandem mass spectrometry analysis. A total of 1410 proteins were identified with less than 1% false discovery rate, of which approximately 55% (796 proteins) were predicted to be secreted from cells. To find BC-specific proteins among the secreted proteins, data of immunohistochemical staining compiled in the Human Protein Atlas were investigated by comparing the data of BC tissues with those of normal tissues. By applying various criteria, including higher expression level in BC tissues, higher predicted potential of secretion, and sufficient number of tandem mass spectra, 12 biomarker candidate proteins including ganglioside GM2 activator (GM2A) were selected for confirmation. Western blot analysis and ELISA for plasma samples of healthy controls and BC patients revealed elevation of GM2A in BC patients, especially those who were estrogen receptor-negative. Additionally, siRNA-mediated knockdown of GM2A in BC cells decreased migration in vitro, whereas the overexpression of GM2A led to an increase in cell migration. Although GM2A as a diagnostic and prognostic marker in BC should be carefully verified further, this study has established the potential role of GM2A in BC progression. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)
NASA Astrophysics Data System (ADS)
Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.
2013-12-01
The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources at lower-latitudes (with a maximum of about 5%, considering upper bound estimates for transport). In the BAU and HiG scenarios, the total BC deposition averaged north of 60N from Arctic shipping remains small, increasing to only 0.4% and 0.7%, respectively. Several mitigation strategies confirmed that extra-Arctic sources other than shipping contribute significantly more to BC deposition than Arctic shipping, and that regulation solely aimed at the Arctic shipping industry is an insufficient control on high-latitude BC deposition. An exception is the impact of local shipping near the vulnerable Greenland ice-sheet. Over Greenland the deposited BC mass attributable to high-growth shipping emissions in 2050 is significantly higher (10-15%) than over Arctic sea-ice. The increase in local BC deposition over Greenland can be mitigated by a 10% decrease in North American BC emissions, but additional controls over distant stationary sources should be considered alongside international agreements controlling shipping emissions to achieve desired Arctic BC deposition reductions.
Song, Dali; Xi, Xiangyin; Huang, Shaomin; Liang, Guoqing; Sun, Jingwen; Zhou, Wei; Wang, Xiubin
2016-01-01
Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass) and urea (U) application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC), TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility. PMID:27589265
Mo, Dan; Hsieh, Peishan; Yu, Hongrong; Zhou, Lining; Gong, Jichun; Xu, Lin; Liu, Peng; Chen, Gang; Chen, Zhao; Deng, Qiongying
2017-06-01
To investigate the ethnic differences in osteoporosis (OP) and body composition (BC) and their relationship in the Maonan, Mulam, Hmong, and Yao minorities in China. A total of 860 Maonan, Mulam, Hmong, and Yao women were included in this cross-sectional study. Demographic, health history, and lifestyle information was collected using questionnaires. BC was measured through bioelectrical impedance analysis, and bone mineral density (BMD) was assessed via calcaneal quantitative ultrasound. Compared with premenopausal women, postmenopausal women exhibited a lower fat-free mass (FFM), muscle mass (MM), limb muscle mass, and T-score but a higher waist-to-hip ratio and prevalence of OP in each minority (p < .05). After adjustment for age, Hmong women displayed the highest body mass index, fat mass, percentage of body fat, visceral fat, and subcutaneous fat contents, while Yao women presented the highest T-scores and lowest prevalence of OP among the four minorities (p < .05). Having a greater number of children and an older age were significant risk factors for OP in all ethnic groups (p < .05, OR > 1). In addition, our results revealed that FFM and MM exhibited exactly the same weak positive relationship with the T-score (r = 0.081, p < .05) after adjusting for menopausal status and age in all of the participants. Furthermore, significant ethnic differences in the relationship between BC and the T-score existed in the four minorities studied here. BC and OP prevalence varied by menopausal status and ethnic group, and ethnic-specific relationships between BC and BMD were present in the four minorities. More research is needed to further investigate the ethnic differences in BC, OP, and risk factors for lower BMD to develop targeted prevention strategies to reduce the burden of OP across different ethnic groups in China.
Evaluations of the Method to Measure Black Carbon Particles Suspended in Rainwater and Snow Samples
NASA Astrophysics Data System (ADS)
Ohata, S.; Moteki, N.; Schwarz, J. P.; Fahey, D. W.; Kondo, Y.
2012-12-01
The mass concentrations and size distributions of black carbon (BC) particles in rainwater and snow are important parameters for improved understanding of the wet deposition of BC, is a key process in quantifying the impacts of BC on climate. In this study, we have evaluated a new method to measure these parameters. The approach consists of an ultrasonic nebulizer (USN) used in conjunction with a Single Particle Soot Photometer (SP2). The USN converts sample water into micron-size droplets at a constant rate and then extracts airborne BC particles by dehydrating the water droplets. The mass of individual BC particles is measured by the SP2, based on the laser-induced incandescence technique. The combination of the USN and SP2 enabled the measurement of BC particles using only small amount of sample water, typically 10 ml (Ohata et al., 2011). However, the loss of BC during the extraction process depends on their size. We determined the size-dependent extraction efficiency using polystyrene latex spheres (PSLs) with twelve different diameters between 100-1050 nm. The PSL concentrations in water were determined by the light extinction of at 532nm. The extraction efficiency of the USN showed broad maximum in the diameter range of 200-500nm, and decreased substantially at larger sizes. The extraction efficiency determined using the PSL standards agreed to within ±40% with that determined using laboratory-generated BC concentration standards. We applied this method to the analysis of rainwater collected in Tokyo and Okinawa over the East China Sea. Measured BC size distributions in all rainwater samples showed negligible contribution of the BC particles larger than 600nm to the total BC amounts. However, for BC particles in surface snow collected in Greenland and Antarctica, size distributions were sometimes shifted to much larger size ranges.
Hadronic production of the doubly heavy baryon {Xi}{sub bc} at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jiawei; Wu Xinggang; Zhong Tao
We investigate the hadronic production of the doubly heavy baryon {Xi}{sub bc} at the Large Hadron Collider (LHC), where contributions from the four (bc)-diquark states (bc){sub 3,6}[{sup 1}S{sub 0}] and (bc){sub 3,6}[{sup 3}S{sub 1}] have been taken into consideration. Numerical results show that under the condition of p{sub T}>4 GeV and |y|<1.5, sizable {Xi}{sub bc} events about 1.7x10{sup 7} and 3.5x10{sup 9} per year can be produced for the center-of-mass energy {radical}(S)=7 TeV and {radical}(S)=14 TeV, respectively. For experimental usage, the total and the interested differential cross sections are estimated under some typical p{sub T} and y cuts for themore » LHC detectors CMS, ATLAS, and LHCb. The main uncertainties are discussed and a comparative study on the hadronic production of {Xi}{sub cc}, {Xi}{sub bc}, and {Xi}{sub bb} at the LHC are also presented.« less
Mielgo-Ayuso, Juan; Zourdos, Michael C; Calleja-González, Julio; Urdampilleta, Aritz; Ostojic, Sergej M
2015-08-01
The purpose of this study was to assess dietary intake of elite female volleyball players (EFVPs, n = 22) during the first 11 weeks of the competitive season. Further, we compared findings for total energy intake and specific macronutrient distribution with the established recommendations for high-intensity athletes. Subjects also engaged in periodized training and we assessed changes in body composition (BC) and strength. Twenty-two EFVPs had dietary intake (7-day dietary recall and food-frequency questionnaire), BC (body mass index (BMI), body fat percentage, fat mass, muscle mass), and 1-repetition maximum (1RM) strength (bench press, military press, back squat, power clean, clean and jerk, pull-over) assessed at baseline (T0, before preseason) and 11 weeks later (T11). Athletes consumed less total kilocalories and carbohydrates (CHO) compared with established recommendations (total kilocalories: 40.7 ± 5.2 kcal/(kg · day)(-1) vs. 50-80 kcal/(kg · day)(-1); CHO: 4.3 ± 0.6 g/(kg · day)(-1) vs. 5-8 g/(kg · day)(-1)). Further, subjects consumed greater protein (2.1 ± 0.4 g/(kg · day)(-1)) compared with recommendations (1.6-1.8 g/(kg · day)(-1)) and greater fat (36.1 ± 4.6% of total kilocalories) than recommendations (20%-35% of total kilocalories). There were improvements (p < 0.05) in BC from T0-T11 (body fat percentage: 17.9% ± 4.2%-16.8% ± 3.6%, -4.7% ± 7.4%; fat mass: 12.7 ± 4.2-11.9 ± 3.8 kg, -4.0% ± 9.2%; muscle mass: 42.8% ± 3.4%-43.3% ± 3.0%, +1.3 ± 3.1%) and 1RM strength (bench press: 39.1 ± 4.5-43.4 ± 4.9 kg; +11.4% ± 9.3%; clean and jerk: 29.7 ± 6.3-34 ± 5.8 kg; +17.7% ± 23.8%); however, there was no change (p > 0.05) in BMI or military press and pull-over. Back squat (p = 0.054; +33.0% ± 83.7%) and power clean (p = 0.056; +26.2% ± 49.0%) increases approached significance. Our findings indicate that EFVPs improved BC and strength despite a dietary intake different from recommendations. This is possibly due to different substrate utilization during exercise in females versus males, thus new recommendations should be considered for high-intensity athletes, which are sex-specific.
Enhanced light absorptivity of black carbon with air pollution development in urban Beijing, China
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zhang, Q.; Cheng, Y.; Su, H.; He, K.
2017-12-01
The impacts of black carbon (BC) aerosols on air quality and climate are dependent on BC light absorptivity. However, the light absorptivity of ambient BC-containing particles remains conflicting. In this work, we investigated the evolution of BC light absorptivity with pollution development in urban Beijing, China. We found that the mass absorption cross-section (MAC) of ambient BC-containing particles measured during the campaign increased with BC mass concentration, which can be attributed to more coating materials on BC surface with pollution development. A single-particle soot photometer (SP2) measurement showed that the coating thickness (CT) of BC-containing particles increased by 48% with PM1 and BC mass concentration increasing from 10 μg m-3 and 0.3 μg m-3 to 230 μg m-3 and 12 μg m-3. Based on Mie calculation, the CT increase could led to light absorption enhancement (Eab) of BC-containing particles increasing by 22%, consistent with the increase of measured MAC. The relationship between growth rate of BC light absorptivity (kEab) and that of PM1 or rBC concentration (kPM1 or krBC) showed that kEab ≈ 4.8% kPM1 or kEab ≈ 2.5% krBC. The analysis of effective emission intensity (EEI) for BC revealed that the enhancement of BC light absorptivity with increasing pollution levels was dominated by regional transport. During the pollution period, 63% of BC over Beijing originated from regional sources. The aging of these regional BC during atmospheric transport controlled the increase of coating materials for BC-containing particles observed in Beijing. As a result of enhanced light absorptivity with pollution development, BC forcing efficiency could increase by 20% during polluted period. Our work identified the importance of BC on radiative forcing under polluted environment, which is determined by not only the increase of BC mass concentration, but also the enhancement of BC forcing efficiency due to more coating materials.
NASA Astrophysics Data System (ADS)
Garg, S.; Sinha, B.; Sinha, V.; Chandra, P.; Sarda Esteve, R.; Gros, V.
2015-12-01
Determining the contribution of different sources to the total BC is necessary for targeted mitigation. Absorption Angstrom exponent (αabs) measurements of black carbon (BC) have recently been introduced as a novel tool to apportion the contribution of biomass burning sources to BC. Two-component Aethalometer model for apportioning BC to biomass burning sources and fossil fuel combustion sources, which uses αabs as a generic indicator of the source type, is widely used for determining the contribution of the two types of sources to the total BC. Our work studies BC emissions in the highly-populated, anthropogenic emissions-dominated Indo-Gangetic Plain and demonstrates that the αabs cannot be used as a generic tracer for biomass burning emissions in a complex environment. Simultaneously collected high time resolution data from a 7-wavelength Aethalometer (AE 42, Magee Scientific, USA) and a high sensitivity Proton Transfer Reaction- Quadrupole Mass Spectrometer (PTR-MS) installed at a sub-urban site in Mohali (Punjab), India, were used to identify a number of biomass combustion plumes during which BC enhancements correlated strongly with an increase in acetonitrile (a well-established biomass burning tracer) mixing ratio. Each type of biomass combustion is classified and characterized by distinct emission ratios of aromatic compounds and oxygenated VOCs to acetonitrile. The identified types of biomass combustion include two different types of crop residue burning (paddy and wheat), burning of leaf-litter, and garbage burning. Traffic (fossil-fuel burning) plumes were also selected for comparison. We find that the two-component Aethalometer source-apportionment method cannot be extrapolated to all types of biomass combustion and αabs of traffic plumes can be >1 in developing countries like India, where use of adulterated fuel in vehicles is common. Thus in a complex environment, where multiple anthropogenic BC sources and air masses of variable photochemical age impact a receptor site, the angstrom exponent is not representative of the combustion type and therefore, cannot be used as a generic tracer to constrain source contributions.
NASA Astrophysics Data System (ADS)
Pan, Xiaole; Kanaya, Yugo; Taketani, Fumikazu; Miyakawa, Takuma; Inomata, Satoshi; Komazaki, Yuichi; Tanimoto, Hiroshi; Wang, Zhe; Uno, Itsushi; Wang, Zifa
2017-11-01
The emission characteristics of refractory black carbon (rBC) from biomass burning are essential information for numerical simulations of regional pollution and climate effects. We conducted combustion experiments in the laboratory to investigate the emission ratio and mixing state of rBC from the burning of wheat straw and rapeseed plants, which are the main crops cultivated in the Yangtze River Delta region of China. A single particle soot photometer (SP2) was used to measure rBC-containing particles at high temporal resolution and with high accuracy. The combustion state of each burning case was indicated by the modified combustion efficiency (MCE), which is calculated using the integrated enhancement of carbon dioxide and carbon monoxide concentrations relative to their background values. The mass size distribution of the rBC particles showed a lognormal shape with a mode mass equivalent diameter (MED) of 189 nm (ranging from 152 to 215 nm), assuming an rBC density of 1.8 g cm-3. rBC particles less than 80 nm in size (the lower detection limit of the SP2) accounted for ˜ 5 % of the total rBC mass, on average. The emission ratios, which are expressed as ΔrBC / ΔCO (Δ indicates the difference between the observed and background values), displayed a significant positive correlation with the MCE values and varied between 1.8 and 34 ng m-3 ppbv-1. Multi-peak fitting analysis of the delay time (Δt, or the time of occurrence of the scattering peak minus that of the incandescence peak) distribution showed that rBC-containing particles with rBC MED = 200 ± 10 nm displayed two peaks at Δt = 1.7 µs and Δt = 3.2 µs, which could be attributed to the contributions from both flaming and smoldering combustion in each burning case. Both the Δt values and the shell / core ratios of the rBC-containing particles clearly increased as the MCE decreased from 0.98 (smoldering-dominant combustion) to 0.86 (flaming-dominant combustion), implying the great importance of the rapid condensation of semi-volatile organics. This laboratory study found that the mixing state of rBC particles from biomass burning strongly depends on its combustion processes, and overall MCE should be taken carefully into consideration while the climate effect of rBC particles from open biomass burning is simulated.
NASA Astrophysics Data System (ADS)
Takahama, S.; Russell, L. M.; Shores, C. A.; Marr, L. C.; Zheng, J.; Levy, M.; Zhang, R.; Castillo, E.; Rodriguez-Ventura, J. G.; Quintana, P. J. E.; Subramanian, R.; Zavala, M.; Molina, L. T.
2014-05-01
Black carbon (BC) was characterized by three complementary techniques - incandescence (single particle soot photometer, SP2, at Parque Morelos), light absorption (cavity ringdown spectrometer with integrating nephelometer, CRDS-Neph, at Parque Morelos and Aethalometers at seven locations), and volatility (volatility tandem differential mobility analyzer, V-TDMA) during the Cal-Mex 2010 campaign. SP2, CRDS-Neph, and Aethalometer measurements characterized the BC mass, and SP2 and V-TDMA measurements also quantified BC-containing particle number, from which mass-mean BC diameters were calculated. On average, the mass concentrations measured in Tijuana (1.8 ± 2.6 μg m-3 at Parque Morelos and 2.6 μg m-3 in other regions of Tijuana) were higher than in San Diego or the international border crossing (0.5 ± 0.6 μg m-3). The observed BC mass concentrations were attributable to nighttime urban burning activities and diesel vehicles, both from the local (Baja California) and transported (Southern California) diesel vehicle fleets. Comparisons of the SP2 and co-located Aethalometers indicated that the two methods measured similar variations in BC mass concentrations (correlation coefficients greater than 0.85), and the mass concentrations were similar for the BC particles identified from nighttime urban burning sources. When the BC source changed to diesel vehicle emissions, the SP2 mass concentrations were lower than the Aethalometer mass concentrations by about 50%, likely indicating a change in the mass absorption efficiency and quantification by the Aethalometers. At Parque Morelos there were up to three different-sized modes of BC mass in particles: one mode below 100 nm, one near 100 nm, and another between 200 and 300 nm. The mode between 200 and 300 nm was associated with urban burning activities that influenced the site during evening hours. When backtrajectories indicated that airmasses came from the south to the Parque Morelos site, BC mass in particles was also larger (mass median diameter of 170 nm rather than 155 nm), consistent with the higher fraction of older diesel vehicles in the Tijuana fleet compared to the vehicles found in southern California.
NASA Astrophysics Data System (ADS)
Joshi, Rutambhara; Liu, Dantong; Allan, James; Coe, Hugh; Flynn, Michael; Broda, Kurtis; Olfert, Jason; Irwin, Martin; Sun, Yele; Fu, Pingqing; Wang, Junfeng; Ge, Xinlei; Langford, Ben; Nemitz, Eiko; Mullinger, Neil
2017-04-01
BC is generated by the incomplete combustion of carbonaceous fuels and it is an important component of fine PM2.5. In the atmosphere BC particles have a complex structure and its mixing state has crucial impact on optical properties. Quantifying the sources and emissions of black carbon in urban environments is important and presently uncertain, particularly in megacities undergoing rapid growth and change in emissions. During the winter of 2016 (10th Nov-10th Dec) the BC was characterised as part of a large joint UK-China field experiment in Beijing. This paper focuses on understanding the mixing state of BC as well as identification and quantification of BC sources. We used a combination of a Centrifugal Particle Mass Analyser (CPMA) and a Single Particle Soot Photometer (SP2) to uniquely quantify the morphology independent mass of single refractory BC particles and their coating content. The CPMA allows us to select pre-charged aerosol particles according to their mass to charge ratio and the SP2 provides information on the mass of refractory BC through a laser-induced incandescence method. Furthermore, another SP2 was used to measure the BC flux at 100m height using the Eddy Covariance method. We have successfully gathered 4 weeks of continuous measurements which include several severe pollution events in Beijing. Here we present preliminary results, characterising the distribution of coating mass on BC particles in Beijing and linking this to the main sources of BC in the city. We will provide initial estimates of the BC flux over a several kilometre footprint. Such analysis will provide important information for the further investigation of source distribution, emission, lifetime and optical properties of BC under complex environments in Beijing.
Using radiocarbon to constrain black and organic carbon aerosol sources in Salt Lake City
NASA Astrophysics Data System (ADS)
Mouteva, Gergana O.; Randerson, James T.; Fahrni, Simon M.; Bush, Susan E.; Ehleringer, James R.; Xu, Xiaomei; Santos, Guaciara M.; Kuprov, Roman; Schichtel, Bret A.; Czimczik, Claudia I.
2017-09-01
Black carbon (BC) and organic carbon (OC) aerosols are important components of fine particulate matter (PM2.5) in polluted urban environments. Quantifying the contribution of fossil fuel and biomass combustion to BC and OC concentrations is critical for developing and validating effective air quality control measures and climate change mitigation policy. We used radiocarbon (14C) to measure fossil and contemporary biomass contributions to BC and OC at three locations in Salt Lake City, Utah, USA, during 2012-2014, including during winter inversion events. Aerosol filters were analyzed with the Swiss_4S thermal-optical protocol to isolate BC. We measured fraction modern (fM) of BC and total carbon in PM2.5 with accelerator mass spectrometry and derived the fM of OC using isotope mass balance. Combined with 14C information of end-member composition, our data set of 31 14C aerosol measurements provided a baseline of the fossil and contemporary biomass components of carbonaceous aerosol. We show that fossil fuels were the dominant source of carbonaceous aerosol during winter, contributing 88% (80-98%) of BC and 58% (48-69%) of OC. While the concentration of both BC and OC increased during inversion events, the relative source contributions did not change. The sources of BC also did not vary throughout the year, while OC had a considerably higher contemporary biomass component in summer at 62% (49-76%) and was more variable. Our results suggest that in order to reduce PM2.5 levels in Salt Lake City to meet national standards, a more stringent policy targeting mobile fossil fuel sources may be necessary.
NASA Astrophysics Data System (ADS)
Bhat, Mudasir Ahmad; Romshoo, Shakil Ahmad; Beig, Gufran
2017-09-01
Black carbon (BC) mass concentration was measured first-time at a high altitude urban site-Srinagar (1600 m asl), in northwestern Himalaya, India using an Aethalometer during 2013 to study temporal variations (monthly, diurnal and seasonal), meteorological influences, source and its radiative forcing. Diurnal variations with two peaks (at 8-10 h and 20-23 h) and two dips (at 13-17 h and 0-3 h) were observed throughout the year with varying magnitude. November and April showed the highest (13.6 μg/m3) and the lowest (3.4 μg/m3) mean monthly BC concentration respectively. Seasonally, autumn displayed the highest (9.2 μg/m3) and spring the lowest (3.5 μg/m3) mean BC concentration. Annual average BC concentration was quite higher (6 μg/m3) than those reported for other high altitude stations. Wind speed, Minimum temperature and total precipitation showed a clear negative correlation with BC (r = -0.63, -0.51 and -0.55 respectively), while as, the evening relative humidity showed positive correlation (r = 0.56). During autumn, spring and winter seasons, the main source of BC at Srinagar is the biomass burning, while during summer season, equal contribution of BC is from fossil fuel and biomass burning. Back trajectory simulations revealed that, except summer, westerly air masses are the dominant winds, transporting BC from central Asia, west Asia, south Asia, Africa and some parts of Europe to Srinagar adding to its local sources. Clear-sky short wave radiative forcing of atmosphere due to BC was highest (58.2 W m-2) during autumn which leads to the increase in lower atmospheric heating rate by 1.6 K/d. The high concentration of BC observed over the high-altitude Himalayan Kashmir region has serious implications for the regional climate, hydrology and cryosphere which needs to be investigated.
Wet Removal of Organic and Black Carbon Aerosols
NASA Astrophysics Data System (ADS)
Torres, A.; Bond, T. C.; Lehmann, C.
2012-12-01
Organic carbon (OC) and black carbon (BC) aerosols derived from the combustion of fossil fuels and biomass are significant atmospheric pollutants that alter the Earth's radiation balance and affect human health. Carbonaceous aerosol lifetime and extent of its effects are mainly controlled by its wet removal, especially by rain. Limited work has been done to measure both BC and OC from rain events even though these aerosols are co-emitted and exist together in the atmosphere. The choices of analytical techniques for measuring OC and BC in water are limited, and researchers often employ the same techniques used for measuring atmospheric carbon particles. There is no agreement in the methods employed for monitoring carbon concentration in precipitation. As part of the method development, the Single Particle Soot Photometer (SP2), Thermal-Optical Analysis (TOA), Ultraviolet/Visible (UV/VIS) Spectrophotometer, and the Total Organic Carbon (TOC) Analyzer were evaluated for measuring BC suspended in water, water insoluble OC (WIOC) and dissolved OC (DOC). The study also monitored the concentration of BC, WIOC, and DOC in rainwater collected at Bondville (Illinois) for 18 months. Results indicated that 34% (±3%) of the BC mass was lost in the SP2 analysis, most probably during the nebulization process. Filtration required for TOA also had large losses (>75%) because quartz fiber filters were ineffective for capturing BC particles from water. Addition of NH4H2PO4 as a coagulant improved (>95%) the capture efficiency of the filters. UV/VIS spectrophotometry had good linearity, but the sensitivity for detecting BC particles (±20 μg/L) suspended in water was inadequate. TOC analysis was a robust technique for measuring both DOC and total carbon (BC + OC). The chosen techniques were TOC analysis for DOC, and TOA with an optimized filtration procedure for BC and WIOC. The mean concentrations in rainwater were 8.72 (±9.84) μg/L of BC, 88.97 (±62.64) μg/L of WIOC, and 1,320 (1,380) μg/L of DOC. DOC contributed, mostly with anions, to the ion balance of rain samples. The total carbon concentration (BC+WIOC+DOC) decreased with increasing precipitation volume and directly correlated with the concentrations of SO42-, NO3-, Ca2+, NH4+, Mg2+, and K+ in rainwater.
Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide.
Lyu, Honghong; Gong, Yanyan; Tang, Jingcshun; Huang, Yao; Wang, Qilin
2016-07-01
Electroplating sludge (ES) containing large quantities of heavy metals is regarded as a hazardous waste in China. This paper introduced a simple method of treating ES using environmentally friendly fixatives biochar (BC) and iron sulfide (FeS), respectively. After 3 days of treatment with FeS at a FeS-to-ES mass ratio of 1:5, the toxicity characteristic leaching procedure (TCLP)-based leachability of total Cr (TCr), Cu(II), Ni(II), Pb(II), and Zn(II) was decreased by 59.6, 100, 63.8, 73.5, and 90.5 %, respectively. After 5 days of treatment with BC at a BC-to-ES mass ratio of 1:2, the TCLP-based leachability was declined by 35.1, 30.6, 22.3, 23.1, and 22.4 %, respectively. Pseudo first-order kinetic model adequately simulated the sorption kinetic data. Structure and morphology analysis showed that adsorption, electrostatic attraction, surface complexation, and chemical precipitation were dominant mechanisms for heavy metals immobilization by BC, and that chemical precipitation (formation of metal sulfide and hydroxide precipitates), iron exchange (formation of CuFeS2), and surface complexation were mainly responsible for heavy metals removal by FeS. Economic costs of BC and FeS were 500 and 768 CNY/t, lower than that of Na2S (940 CNY/t). The results suggest that BC and FeS are effective, economic, and environmentally friendly fixatives for immobilization of heavy metals in ES before landfill disposal.
Measurement of the Bc± production cross section in p p ¯ collisions at √{s }=1.96 TeV
NASA Astrophysics Data System (ADS)
Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration
2016-03-01
We describe a measurement of the ratio of the cross sections times branching fractions of the Bc+ meson in the decay mode Bc+→J /ψ μ+ν to the B+ meson in the decay mode B+→J /ψ K+ in proton-antiproton collisions at center-of-mass energy √{s }=1.96 TeV . The measurement is based on the complete CDF Run II data set, which comes from an integrated luminosity of 8.7 fb-1. The ratio of the production cross sections times branching fractions for Bc+ and B+ mesons with momentum transverse to the beam greater than 6 GeV /c and rapidity magnitude smaller than 0.6 is 0.211 ±0.012 (stat)-0.020 +0.021(syst ) . Using the known B+→J /ψ K+ branching fraction, the known B+ production cross section, and a selection of the predicted Bc+→J /ψ μ+ν branching fractions, the range for the total Bc+ production cross section is estimated.
Characteristics of black carbon emissions from in-use light-duty passenger vehicles.
Zheng, Xuan; Zhang, Shaojun; Wu, Ye; Zhang, K Max; Wu, Xian; Li, Zhenhua; Hao, Jiming
2017-12-01
Mitigating black carbon (BC) emissions from various combustion sources has been considered an urgent policy issue to address the challenges of climate change, air pollution and health risks. Vehicles contribute considerably to total anthropogenic BC emissions and urban BC concentrations. Compared with heavy-duty diesel vehicles, there is much larger uncertainty in BC emission factors for light-duty passenger vehicles (LDPVs), in particular for gasoline LDPVs, which warrants further studies. In this study, we employed the dynamometer and the Aethalometer (AE-51) to measure second-by-second BC emissions from eight LDPVs by engine technology and driving cycle. The average BC emission factors under transient cycles (e.g., ECE-15, New European Driving Cycle, NEDC, Worldwide Harmonized Light Vehicles Test Cycle, WLTC) are 3.6-91.5 mg/km, 7.6 mg/km and 0.13-0.58 mg/km, respectively, for diesel (N = 3), gasoline direct injection (GDI) (N = 1) and gasoline port-fuel injection (PFI) engine categories (N = 4). For gasoline PFI LDPVs, the instantaneous emission profiles show a strong association of peak BC emissions with cold-start and high-speed aggressive driving. Such impacts lead to considerable BC emission contributions in cold-start periods (e.g., the first 47 s-94 s) over the entire cycle (e.g., 18-76% of the NEDC and 13-36% of the WLTC) and increased BC emission factors by 80-440% under the WLTC compared to the NEDC. For diesel BC emissions, the size distribution exhibits a typical unimodal pattern with one single peak appearing approximately from 120 to 150 nm, which is largely consistent with previous studies. Nevertheless, the average mass ratios of BC to particle mass (PM) range from 0.38 to 0.54 for three diesel samples, representing substantial impacts from both driving and engine conditions. The significant discrepancy between gasoline BC emission factors obtained from tailpipe exhaust versus ambient conditions suggest that more comparative measurements and fine-grained simulations should be designed and implemented to address this discrepancy. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schreiter, I. J.; Wefer-Roehl, A.; Graber, E. R.; Schueth, C.
2016-12-01
Biochar (BC) is increasingly deemed a potential sorbent for contaminants in soil and water remediation, and brownfield restoration. In this study, sorption and extraction experiments were performed to assess the potential of three different BCs to sorb and retain the chlorinated hydrocarbons TCE and PCE. BCs studied were produced from wood chips, grain husk, and cattle manure at 450 °C. A commercially available activated carbon (AC) served as a reference. The sorption behaviour was studied in batch experiments in single solute and bi-solute systems. Resulting isotherms were fitted to the Freundlich model. To assess the desorption behaviour, a five step extraction scheme (water at 40°C, water at 80°C, methanol at 50°C, toluene at 50°C, and n-hexane at 50°) was developed utilizing Accelerated Solvent Extraction. Isotherms revealed distinct differences in sorption behaviour depending on BC feedstock. Sorption capacity ranked as follows: wood chip BC > grain husk BC > cattle manure BC for both contaminants. This sequence could be attributable to an increasing specific surface area and a decreasing ash content of the sorbents. It is noteworthy that all three BCs were more effective in adsorbing TCE, which is surprising, given the higher logKOWof PCE. The reverse trend was observed for the AC. In bi-solute experiments, PCE sorbed as good as or stronger than TCE, yet the total mass of sorbed compounds was higher. In contrast, AC showed a significant decrease of TCE sorption. Extraction experiments revealed that for all BCs a large fraction of the contaminants could not be readily desorbed. In all cases, water remobilized < 5 % of the total contaminant mass and up to 70 % could not be extracted by any of the solvents. The findings suggest that BC is a promising sorbent for mixed contaminant systems as it offers a diverse nature of sorption sites and is more effective in long-term stabilization than AC.
Magnetic dipole transitions of Bc and Bc* mesons in the relativistic independent quark model
NASA Astrophysics Data System (ADS)
Patnaik, Sonali; Dash, P. C.; Kar, Susmita; Patra, Sweta P.; Barik, N.
2017-12-01
We study M1-transitions involving mesons: Bc(1 s ), Bc*(1 s ), Bc(2 s ), Bc*(2 s ), Bc(3 s ), and Bc*(3 s ) in the relativistic independent quark (RIQ) model based on a flavor independent average potential in the scalar-vector harmonic form. The transition form factor for Bc*→Bcγ is found to have analytical continuation from spacelike to physical timelike region. Our predicted coupling constant gBc*Bc=0.34 GeV-1 and decay width Γ (Bc*→Bcγ )=23 eV agree with other model predictions. In view of possible observation of Bc and Bc* s-wave states at LHC and Z-factory and potential use of theoretical estimate on M1-transitions, we investigate the allowed as well as hindered transitions of orbitally excited Bc-meson states and predict their decay widths in overall agreement with other model predictions. We consider the typical case of Bc*(1 s )→Bc(1 s )γ , where our predicted decay width which is found quite sensitive to the mass difference between Bc* and Bc mesons may help in determining the mass of Bc* experimentally.
Observation of the decay Bc+/--->J/psipi+/- and measurement of the Bc+/- mass.
Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S
2008-05-09
The Bc+/- meson is observed through the decay Bc+/--->J/psipi+/-, in data corresponding to an integrated luminosity of 2.4 fb(-1) recorded by the Collider Detector at Fermilab II detector at the Fermilab Tevatron. A signal of 108+/-15 candidates is observed, with a significance that exceeds 8sigma. The mass of the Bc+/- meson is measured to be 6275.6+/-2.9(stat)+/-2.5(syst) MeV/c2.
Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; ...
2016-04-14
The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less
Campbell, Wayne W; Kim, Jung Eun; Amankwaah, Akua F; Gordon, Susannah L; Weinheimer-Haus, Eileen M
2015-09-01
Studies assessing the effects of protein supplementation on changes in body composition (BC) and health rarely consider the impact of total protein intake (TPro) or the change in TPro (CTPro) from participants' usual diets. This secondary data analysis assessed the impact of TPro and CTPro on changes in BC and metabolic syndrome (MetS) indexes in overweight and obese middle-aged adults who participated in an exercise training program. Men and women [n = 117; age: 50 ± 0.7 y, body mass index (BMI; in kg/m(2)): 30.1 ± 0.3; means ± SEs] performed resistance exercise 2 d/wk and aerobic exercise 1 d/wk and consumed an unrestricted diet along with 200-kcal supplements (0, 10, 20, or 30 g whey protein) twice daily for 36 wk. Protein intake was assessed via 4-d food records. Multiple linear regression model and stratified analysis were applied for data analyses. Among all subjects, TPro and CTPro were inversely associated (P < 0.05) with changes in body mass, fat mass (FM), and BMI. Changes in BC were different (P < 0.05) among groups that consumed <1.0 (n = 43) vs. ≥1.0 to <1.2 (n = 29) vs. ≥1.2 g · kg(-1) · d(-1) (n = 45). The TPro group with ≥1.0 to <1.2 g ·: kg(-1) ·: d(-1) reduced FM and %FM and increased percentage of LM (%LM) compared with the lowest TPro group, whereas the TPro group with ≥1.2 g ·: kg(-1) ·: d(-1) presented intermediate responses on changes in FM, %FM, and %LM. The gain in LM was not different among groups. In addition, MetS indexes were not influenced by TPro and CTPro. In conjunction with exercise training, higher TPro promoted positive changes in BC but not in MetS indexes in overweight and obese middle-aged adults. Changes in TPro from before to during the intervention also influenced BC responses and should be considered in future research when different TPro is achieved via diet or supplements. This trial was registered at clinicaltrials.gov as NCT00812409. © 2015 American Society for Nutrition.
Schneiderhan, Wilhelm; Grundt, Alexander; Wörner, Stefan; Findeisen, Peter; Neumaier, Michael
2013-11-01
Because sepsis has a high mortality rate, rapid microbiological diagnosis is required to enable efficient therapy. The effectiveness of MALDI-TOF mass spectrometry (MALDI-TOF MS) analysis in reducing turnaround times (TATs) for blood culture (BC) pathogen identification when available in a 24-h hospital setting has not been determined. On the basis of data from a total number of 912 positive BCs collected within 140 consecutive days and work flow analyses of laboratory diagnostics, we evaluated different models to assess the TATs for batch-wise and for immediate response (real-time) MALDI-TOF MS pathogen identification of positive BC results during the night shifts. The results were compared to TATs from routine BC processing and biochemical identification performed during regular working hours. Continuous BC incubation together with batch-wise MALDI-TOF MS analysis enabled significant reductions of up to 58.7 h in the mean TATs for the reporting of the bacterial species. The TAT of batch-wise MALDI-TOF MS analysis was inferior by a mean of 4.9 h when compared to the model of the immediate work flow under ideal conditions with no constraints in staff availability. Together with continuous cultivation of BC, the 24-h availability of MALDI-TOF MS can reduce the TAT for microbial pathogen identification within a routine clinical laboratory setting. Batch-wise testing of positive BC loses a few hours compared to real-time identification but is still far superior to classical BC processing. Larger prospective studies are required to evaluate the contribution of rapid around-the-clock pathogen identification to medical decision-making for septicemic patients.
Observation of an excited Bc(±) meson state with the ATLAS detector.
Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le, B T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonhardt, K; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moraes, A; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L
2014-11-21
A search for excited states of the Bc(±) meson is performed using 4.9 fb(-1) of 7 TeV and 19.2 fb(-1) of 8 TeV pp collision data collected by the ATLAS experiment at the LHC. A new state is observed through its hadronic transition to the ground state, with the latter detected in the decay Bc(±)→J/ψπ(±). The state appears in the m(Bc(±)π(+)π(-))-m(Bc(±))-2m(π(±)) mass difference distribution with a significance of 5.2 standard deviations. The mass of the observed state is 6842±4±5 MeV, where the first error is statistical and the second is systematic. The mass and decay of this state are consistent with expectations for the second S-wave state of the Bc(±) meson, Bc(±)(2S).
Gomes-Rochette, Neuza Felix; Souza, Letícia Soncini; Tommasi, Bruno Otoni; Pedrosa, Diego França; Fin, Irani do Carmo Francischetto; Vieira, Fernando Luiz Herkenhoff; Graceli, Jones Bernardes; Rangel, Letícia Batista Azevedo; Silva, Ian Victor
2017-01-01
Estrogen is a steroidal hormone involved in several physiological functions in the female body including regulation of serum lipid metabolism and breast cancer (BC). Estrogen actions on serum lipids mostly occur through its binding to intracellular Estrogen Receptor alpha (ERalpha) isoform, expressed in most of tissues. This gene (ESR1) exhibit many polymorphic sites (SNPs) located either on translated and non-translated regions that regulate ERalpha protein expression and function. This paper aimed to investigate the association of two intronic SNPs of ESR1 gene, namely c454-397T>C (PvuII) and c454-351A>G (XbaI) to alterations in serum levels of total cholesterol (T-chol), total lipid (TL), low density lipoprotein cholesterol (LDL), high density lipoprotein (HDL), and triglycerides (TG) in a cohort of post-menopausal women. In addition, we aimed to associate presence of these SNPs to development of BC along 5 years period. To do so, a group of healthy 499, highly miscigenated, post-menopausal Brazilian women, were carried using PCR-FRLP technique and further confirmed by automatic sequence analysis as well followed through 5 years for BC incidence. Measurements of serum lipid profile by standard commercial methods were carried individually whereas Dual Energy X-ray Absorciometry (DXA) measured Body Mass Indexes (BMI), Fat Mass (FM), Lean Body Mass (LBM), and Body Water Content (BWC). No effects of PvuII SNP on ESR1 gene were observed on patient´s serum T-chol, TL, LDL, HDL, and TG. However, c454-397T>C PvuII SNP is associated to lower body fat and higher levels of lean mass and body water and lower incidence of BC. On the other hand, statistically significant effect of XbaI c454-351A>G SNP on serum TG and TL levels. Patients homozygous for X allele were followed up from 2010–2015. They showed higher incidence of breast cancer (BC) when compared to either heterozygous and any P allele combination. Moreover, the increasing of TG and TL serum concentrations associated to SNP XbaI c454-351A>G on ESR1 gene is enhanced in both obese (higher BMI) and elder women. Taken together, these results suggested that XbaI c454-351A>G SNP is associated to changes in lipid profile, particularly in serum TG and TL, in this cohort of post-menopausal woman. Also, this paper shows another link between obesity and BC corroborating the current thesis that both diseases are interlinked. PMID:28199328
Gomes-Rochette, Neuza Felix; Souza, Letícia Soncini; Tommasi, Bruno Otoni; Pedrosa, Diego França; Eis, Sérgio Ragi; Fin, Irani do Carmo Francischetto; Vieira, Fernando Luiz Herkenhoff; Graceli, Jones Bernardes; Rangel, Letícia Batista Azevedo; Silva, Ian Victor
2017-01-01
Estrogen is a steroidal hormone involved in several physiological functions in the female body including regulation of serum lipid metabolism and breast cancer (BC). Estrogen actions on serum lipids mostly occur through its binding to intracellular Estrogen Receptor alpha (ERalpha) isoform, expressed in most of tissues. This gene (ESR1) exhibit many polymorphic sites (SNPs) located either on translated and non-translated regions that regulate ERalpha protein expression and function. This paper aimed to investigate the association of two intronic SNPs of ESR1 gene, namely c454-397T>C (PvuII) and c454-351A>G (XbaI) to alterations in serum levels of total cholesterol (T-chol), total lipid (TL), low density lipoprotein cholesterol (LDL), high density lipoprotein (HDL), and triglycerides (TG) in a cohort of post-menopausal women. In addition, we aimed to associate presence of these SNPs to development of BC along 5 years period. To do so, a group of healthy 499, highly miscigenated, post-menopausal Brazilian women, were carried using PCR-FRLP technique and further confirmed by automatic sequence analysis as well followed through 5 years for BC incidence. Measurements of serum lipid profile by standard commercial methods were carried individually whereas Dual Energy X-ray Absorciometry (DXA) measured Body Mass Indexes (BMI), Fat Mass (FM), Lean Body Mass (LBM), and Body Water Content (BWC). No effects of PvuII SNP on ESR1 gene were observed on patient´s serum T-chol, TL, LDL, HDL, and TG. However, c454-397T>C PvuII SNP is associated to lower body fat and higher levels of lean mass and body water and lower incidence of BC. On the other hand, statistically significant effect of XbaI c454-351A>G SNP on serum TG and TL levels. Patients homozygous for X allele were followed up from 2010-2015. They showed higher incidence of breast cancer (BC) when compared to either heterozygous and any P allele combination. Moreover, the increasing of TG and TL serum concentrations associated to SNP XbaI c454-351A>G on ESR1 gene is enhanced in both obese (higher BMI) and elder women. Taken together, these results suggested that XbaI c454-351A>G SNP is associated to changes in lipid profile, particularly in serum TG and TL, in this cohort of post-menopausal woman. Also, this paper shows another link between obesity and BC corroborating the current thesis that both diseases are interlinked.
NASA Astrophysics Data System (ADS)
Chan, T. W.; Huang, L.; Leaitch, R.; Sharma, S.; Brook, J.; Slowik, J.; Abbatt, J.
2008-05-01
Carbonaceous species (organic carbon (OC) and elemental carbon (EC)) contribute a large portion of atmospheric fine particle mass and influence air quality, human health, and climate forcing. However, their emission sources and atmospheric aging processes are not well understood. The OM/OC ratio, defined as the organic mass per unit OC mass, is useful to understand the degree of oxidation of aerosol particles in atmospheric processes. We define the modified BC/EC (mod BC/EC) ratio as the ratio of the non-scattering corrected absorption coefficient per unit mass of EC. The mod BC/EC ratio has a similar meaning as the site specific attenuation coefficient, which is an important parameter used to convert light absorption measurements to black carbon mass. The mod BC/EC ratio can vary due to light scattering effect on absorption measurements, in which the oxygenated organics may play a role. The pyrolysis organic carbon (POC) is defined as the carbon mass fraction obtained at T= 870°C under a pure helium environment using the thermal separation method [Huang et al., 2006]. Since POC mass is generally proportional to the amount of oxygenated OC, studying the relationships among OC, EC, POC, as well as OM/OC and mod BC/EC ratios may help us understand the mechanisms of aerosol aging from different emission sources. Two 1-month field studies were conducted at a rural site in southern Ontario (NW of Toronto) during fall 2005 and spring 2007. Quartz filter samples were collected and analyzed for OC, POC, and EC concentrations using a thermal/optical method [Huang et al., 2006]. Together with the total organic matter measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and the absorption coefficient obtained from a Particle Soot Absorption Photometer (PSAP), the OM/OC and mod BC/EC ratios for ambient aerosols were obtained. Our results show that when air mass was mainly from south, OC, POC, and EC were relatively high, with average ratios of OC/EC, OM/OC, and POC/EC as 1.94, 1.41, and 0.52, respectively; this indicates significant anthropogenic impacts and relatively large portion of oxygenated OC, which might be due to either primary emissions or photo-chemical reactions occurred in a short period of time. When air mass was mainly from north, OC, POC, and EC were much lower, with average ratios of OC/EC, OM/OC, and POC/EC as 3.10, 1.20, and 0.79, respectively; this suggests less influence from anthropogenic emissions and relatively aged air mass from biogenic-source dominated clean air. Using POC, we estimate the specific attenuation at the site to be 5.8 m2 g-1 independent of the air mass origin. The relationships among OM/OC, mod BC/EC, and POC will be further discussed. References: Huang, L., Brook, J.R., Zhang, W., Li, S.M., Graham, L., Ernst, D., Chivulescu, A., and Lu, G. (2006) Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: a new dimension for source characterization and apportionment, Atmospheric Environment, 40, 2690-2705.
First Observation of a Baryonic Bc+ Decay
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration
2014-10-01
A baryonic decay of the Bc+ meson, Bc+→J/ψpp ¯π+, is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb-1 taken at center-of-mass energies of 7 and 8 TeV. With the Bc+→J/ψπ+ decay as the normalization channel, the ratio of branching fractions is measured to be B(Bc+→J/ψpp ¯π+)/B(Bc+→J/ψπ+)=0.143-0.034+0.039(stat)±0.013(syst). The mass of the Bc+ meson is determined as M(Bc+)=6274.0±1.8(stat)±0.4(syst) MeV/c2, using the Bc+→J/ψpp ¯π+ channel.
Song, Dongjian; Yue, Lifang; Zhan, Yuxiao; Zhang, Junjie; Yan, Zechen; Fan, Yingzhong; Yang, Heying; Zhang, Da; Liu, Qiuliang; Xia, Ziqiang; Qin, Pan; Jia, Jia; Yue, Ming; Yu, Jiekai; Zheng, Shu; Yang, Fuquan; Wang, Jiaxiang
2017-05-01
Breast cancer (BC) is the second-leading cause of cancer mortality after lung cancer in women owing partly to a lack of specific and sensitive tests for early screening and monitoring. The detection of novel specific BC serum indicators for screening purposes is an essential clinical need. A total of 437 serum specimens from 310 BC patients that were divided into mining and testing sets were collected in this study. In contrast with the conventional BC indicators through receiver operating characteristic, survival and hazard function curves, and multivariate Cox regression analyses, we intended to hunt for stable protein indicators from serum specimens and identify their diagnostic and prognostic potential for BC. We identified a unique serum peptide located at 6648 Da originated from apoC-III with a validated correlation with BC tumorigenesis with confirmation in a substantive testing set and minimization of systematic bias by pre-analytical parameters. We found that the diagnostic efficacy of this peptide is better than the present conventional BC diagnostic indicators either alone or in combination with conventional indicators in distinguishing BC patients from control volunteers. Moreover, this peptide denotes a stronger prognostic factor for BC patients than conventional indicators. In light of these findings, we speculate that this peptide is a potential diagnostic and prognostic indicator and a supplement to conventional indicators in monitoring BC. The detection of this peptide located at 6648 Da in sera could enhance early screening and assessment of the postoperative survival opportunity for BC patients.
Chen, Yanting; Du, Wenjiao; Chen, Jinsheng; Hong, Youwei; Zhao, Jinping; Xu, Lingling; Xiao, Hang
2017-02-01
Particulate matter (PM 10 ) associated with the fractions of organic macromolecules, including humic acid (HA), kerogen + black carbon (KB), and black carbon (BC), was determined during summer and winter at urban and suburban sites in a coastal city of southeast China. The organic macromolecules were characterized by elemental analysis (EA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR), and their sources were identified by using stable carbon/nitrogen isotope (δ 13 C/δ 15 N) and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model. The results showed that HA, kerogen (K), and BC accounted for the range of 3.89 to 4.55 % in PM 10 , while they were the dominant fractions of total organic carbon (TOC), ranging from 64.70 to 84.99 %. SEM analysis indicated that BC particles were porous/nonporous and consisted of spherical and non-spherical (i.e., cylindrical and elongate) structures. The FTIR spectra of HA, KB, and BC exhibited similar functional groups, but the difference of various sites and seasons was observed. HA in PM 10 contained a higher fraction of aliphatic structures, such as long-chain fatty and carbohydrates with a carboxylic extremity. The C/N ratio, SEM, and δ 13 C/δ 15 N values provided reliable indicators of the sources of HA, K, and BC in PM 10 . The results suggested that HA and K majorly originated from terrestrial plants, and BC came from the mixture of combustion of terrestrial plants, fossil fuel, and charcoal. The air masses in winter originated from Mongolia (4 %), the northern area of China (48 %), and northern adjacent cities (48 %), suggesting the influence of anthropogenic sources through long-range transport, while the air masses for the summer period came from South China Sea (34 %) and Western Pacific Sea (66 %), representing clean marine air masses with low concentrations of organic macromolecules.
A New Method to Obtain the Black Carbon Mixing State of Biomass and Combustion Aerosols
NASA Astrophysics Data System (ADS)
Irwin, M.; Liu, D.; Joshi, R.; Allan, J. D.; Coe, H.; Flynn, M.; Olfert, J. S.; Broda, K.; Fu, P.; Sun, Y.; Ge, X.; Wang, J.
2017-12-01
Black carbon particles (BC) significantly contribute to warming effects in the atmosphere, altering weather systems, and pose significant health risks. These impacts are especially efficient at regional hotspots with high emissions of pollutants, such as in fast-developing megacities. These urban environments have the most population exposure, and improving the understanding of the sources and the processing of pollutants in these environments is critical in guiding policy making. Here we present the results of BC characterization in Beijing during the winter of 2016 (10th Nov-10th Dec), as part of a large joint UK-China field experiment. During this experiment, we successfully gathered 4 weeks of continuous measurements, including several severe pollution events in Beijing. MethodologyThe mixing state of BC, which is how BC is associated with non-BC material (its coating) within a particle, is crucial to determine its lifetime in the atmosphere and also its optical properties. However precisely quantifying the BC mixing state has posed a challenge, in part due to complex particle morphology. We have applied morphology-independent measurements of BC mixing state on a single-particle basis throughout this experiment: mono-dispersed particle mass (MP) is selected using a Centrifugal Particle Mass Analyser (CPMA, Cambustion Ltd) and a single particle soot photometer (SP2, DMT inc.) was used downstream of the CPMA to measure the refractory BC mass (MrBC). The full scan of CPMA masses (21 mass bins covering most of MP) are performed every half hour, following polydispersed particles measured without running CPMA.
Macdonald, H M; Kontulainen, S A; Petit, M A; Beck, T J; Khan, K M; McKay, H A
2008-10-01
The effects of physical activity on bone strength acquisition during growth are not well understood. In our cluster randomized trial, we found that participation in a novel school-based physical activity program enhanced bone strength acquisition and bone mass accrual by 2-5% at the femoral neck in girls; however, these benefits depended on teacher compliance with intervention delivery. Our intervention also enhanced bone mass accrual by 2-4% at the lumbar spine and total body in boys. We investigated the effects of a novel school-based physical activity program on femoral neck (FN) bone strength and mass in children aged 9-11 yrs. We used hip structure analysis to compare 16-month changes in FN bone strength, geometry and bone mineral content (BMC) between 293 children who participated in Action Schools! BC (AS! BC) and 117 controls. We assessed proximal femur (PF), lumbar spine (LS) and total body (TB) BMC using DXA. We compared change in bone outcomes between groups using linear regression accounting for the random school effect and select covariates. Change in FN strength (section modulus, Z), cross-sectional area (CSA), subperiosteal width and BMC was similar between control and intervention boys, but intervention boys had greater gains in BMC at the LS (+2.7%, p = 0.05) and TB (+1.7%, p = 0.03) than controls. For girls, change in FN-Z tended to be greater (+3.5%, p = 0.1) for intervention girls than controls. The difference in change increased to 5.4% (p = 0.05) in a per-protocol analysis that included girls whose teachers reported 80% compliance. AS! BC benefits bone strength and mass in school-aged children; however, our findings highlight the importance of accounting for teacher compliance in classroom-based physical activity interventions.
The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor
Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Derived mass absorption cross-sections using light absorptioin coefficients at three wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing organic aerosols (e.g., brown carbon), most pronounced in June. A filter-based estimate of single-scattering-albedo increases systematically from August to October, also apparent in 2017. Boundary-layermore » aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present in the free-troposphere in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Back trajectories indicate the boundary layer transport was directly westward from the African continent, which is unusual in August.« less
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Bernsten, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.;
2013-01-01
As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period.We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores indicates a strong influence from Western Europe, but the modeled BC increases in that period are consistent with the emission changes in Eastern Europe, the Middle East, South and East Asia. At the Alps site, the simulated BC suggests a strong influence from Europe, which agrees with the Alps ice core observations. At Zuoqiupu on the Tibetan Plateau, models successfully simulate the higher BC concentrations observed during the non-monsoon season compared to the monsoon season but overpredict BC in both seasons. Despite a large divergence in BC deposition at two Antarctic ice core sites, some models with a BC lifetime of less than 7 days are able to capture the observed concentrations. In 2000 relative to 1850, globally and annually averaged BC surface albedo forcing from the offline simulations ranges from 0.014 to 0.019Wm-2 among the ACCMIP models. Comparing offline and online BC albedo forcings computed by some of the same models, we find that the global annual mean can vary by up to a factor of two because of different aerosol models or different BC-snow parameterizations and snow cover. The spatial distributions of the offline BC albedo forcing in 2000 show especially high BC forcing (i.e., over 0.1W/sq. m) over Manchuria, Karakoram, and most of the Former USSR. Models predict the highest global annual mean BC forcing in 1980 rather than 2000, mostly driven by the high fossil fuel and biofuel emissions in the Former USSR in 1980.
NASA Astrophysics Data System (ADS)
Orlando, P. J.; Bennett, B. A.; George, L. A.
2016-12-01
Diesel particulate matter (DPM) is a hazardous air pollutant linked to mortality and morbidity outcomes including cancer, cardiovascular disease, and adverse respiratory effects. The EPA's Air Toxics Assessment indicated that more than 50% of Oregonians are exposed to 10 times the ambient benchmark concentration (ABC) of 0.1 μgm-3 for DPM. These model estimates have not been verified with measurements, potentially limiting policy action. We developed a mobile monitoring platform to ground-truth model predictions and characterize DPM spatial variation. Using black carbon (BC) as a marker, concentrations within five urban microenvironments (a construction site, an arterial, a bus mall, a city park, and an indoor workspace) were sampled within Portland, OR. The mobile monitoring platform consisted of a bicycle and trailer equipped with an aethalometer measuring BC mass, a Data Ram 4 measuring total PM2.5 mass, and a Q-Starz GPS recording location; each instrument was monitoring in 1 second intervals. Concentrations of BC were used as an indicator of DPM. The construction site had the highest DPM concentration (7 μg m-3). The indoor workspace and the park had the lowest DPM (0.3 μg m-3). Near the construction site, DPM constituted approximately 50% of the total PM2.5. However, at the park, DPM was attributed to only 6% of the total PM2.5, while the indoor space constituted 15%. Concentrations of BC near construction sites were observed to exceed 67 times the state ABC of 0.1 μg m-3 (Figure). These results signify the need to better characterize the urban exposure to DPM, as even the cleanest microenvironments may be 3 times above the ABC. Our mobile monitoring platform will help further elucidate how local-scale sources contribute to the broader distribution of DPM within Portland, while providing a tool for both residents and DEQ to effectively mitigate the health impacts from DPM exposure.
Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto
2014-05-20
Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C).
NASA Astrophysics Data System (ADS)
Miyakawa, Takuma; Oshima, Naga; Taketani, Fumikazu; Komazaki, Yuichi; Yoshino, Ayako; Takami, Akinori; Kondo, Yutaka; Kanaya, Yugo
2017-05-01
Ground-based measurements of black carbon (BC) were performed near an industrial source region in the early summer of 2014 and at a remote island in Japan in the spring of 2015. Here, we report the temporal variations in the transport, size distributions, and mixing states of the BC-containing particles. These particles were characterized using a continuous soot monitoring system, a single particle soot photometer, and an aerosol chemical speciation monitor. The effects of aging on the growth of BC-containing particles were examined by comparing the ground-based observations between the near-source and remote island sites. Secondary formation of sulfate and organic aerosols strongly affected the increases in BC coating (i.e., enhancement of cloud condensation nuclei activity) with air mass aging from the source to the outflow regions. The effects of wet removal on BC microphysics were elucidated by classifying the continental outflow air masses depending on the enhancement ratios of BC to CO (ΔBC / ΔCO), which were used as an indicator of the transport efficiency of BC. It was found that ΔBC / ΔCO ratios were controlled mainly by the wet removal during transport in the planetary boundary layer (PBL) on the timescale of 1-2 days. The meteorological conditions and backward trajectory analyses suggested that air masses strongly affected by wet removal originated mainly from a region in southern China (20-35° N) in the spring of 2015. Removal of large and thickly coated BC-containing particles was detected in the air masses that were substantially affected by the wet removal in the PBL, as predicted by Köhler theory. The size and water solubility of BC-containing particles in the PBL can be altered by the wet removal as well as the condensation of non-BC materials.
NASA Astrophysics Data System (ADS)
Ma, Yan; Li, Shizheng; Zheng, Jun; Khalizov, Alexei; Wang, Xing; Wang, Zhen; Zhou, Yaoyao
2017-09-01
An integrated aerosol analytical system was deployed in Nanjing, a megacity in the Yangtze River Delta, to measure size-resolved aerosol mixing states, effective densities, cloud condensation nucleus (CCN) activities, and chemical composition in August 2013. It was found that aerosols were predominantly internally mixed. The average effective densities were 1.38 ± 0.09, 1.48 ± 0.08, and 1.53 ± 0.07 g cm-3 for 50, 80, and 120 nm particles, respectively. Although black carbon (BC) represented only 0.3%, 1.6%, and 3.3% of the particle mass, on average, it was present in 7%, 38%, and 47% of the total particle number concentration at 50, 80, and 120 nm, respectively, indicating that BC particles may contribute significantly to the total atmospheric aerosol population. Externally mixed BC was only occasionally observed with an effective density of 0.67-0.97 g cm-3. Aerosols sampled generally exhibited a relatively high CCN activity and hygroscopicity (
The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate t...
A cellphone based system for large-scale monitoring of black carbon
NASA Astrophysics Data System (ADS)
Ramanathan, N.; Lukac, M.; Ahmed, T.; Kar, A.; Praveen, P. S.; Honles, T.; Leong, I.; Rehman, I. H.; Schauer, J. J.; Ramanathan, V.
2011-08-01
Black carbon aerosols are a major component of soot and are also a major contributor to global and regional climate change. Reliable and cost-effective systems to measure near-surface black carbon (BC) mass concentrations (hereafter denoted as [BC]) globally are necessary to validate air pollution and climate models and to evaluate the effectiveness of BC mitigation actions. Toward this goal we describe a new wireless, low-cost, ultra low-power, BC cellphone based monitoring system (BC_CBM). BC_CBM integrates a Miniaturized Aerosol filter Sampler (MAS) with a cellphone for filter image collection, transmission and image analysis for determining [BC] in real time. The BC aerosols in the air accumulate on the MAS quartz filter, resulting in a coloration of the filter. A photograph of the filter is captured by the cellphone camera and transmitted by the cellphone to the analytics component of BC_CBM. The analytics component compares the image with a calibrated reference scale (also included in the photograph) to estimate [BC]. We demonstrate with field data collected from vastly differing environments, ranging from southern California to rural regions in the Indo-Gangetic plains of Northern India, that the total BC deposited on the filter is directly and uniquely related to the reflectance of the filter in the red wavelength, irrespective of its source or how the particles were deposited. [BC] varied from 0.1 to 1 μg m -3 in Southern California and from 10 to 200 μg m -3 in rural India in our field studies. In spite of the 3 orders of magnitude variation in [BC], the BC_CBM system was able to determine the [BC] well within the experimental error of two independent reference instruments for both indoor air and outdoor ambient air. Accurate, global-scale measurements of [BC] in urban and remote rural locations, enabled by the wireless, low-cost, ultra low-power operation of BC_CBM, will make it possible to better capture the large spatial and temporal variations in [BC], informing climate science, health, and policy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.
2010-01-12
Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain atmore » a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.« less
Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions
NASA Astrophysics Data System (ADS)
Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.
2017-12-01
Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.
NASA Astrophysics Data System (ADS)
Moorthy, K. Krishna; Babu, S. Suresh; Badarinath, K. V. S.; Sunilkumar, S. V.; Kiranchand, T. R.; Ahmed, Y. Nazeer
2007-04-01
During a land campaign to characterise the spatial distribution of aerosols over peninsular India during the winter season, extensive, collocated, and spatially resolved measurements of mass concentration of the composite aerosols (MT) as well as that (MB) of aerosol Black Carbon (BC) were made over different environments (coastal, industrial, urban, village, remote, semiarid) of the western peninsular India. High concentrations of BC, >2.5 μg m-3, were observed along the west coast, from ~8°N up to 14.5°N, and moderate values (1.0 to 2.5 μg m-3) over inland regions from 15 to 18°N. Latitudinally, BC concentration decreased from south to north, @~160 ng m-3 for every degree increase in latitude. The spatial pattern of BC mass fraction differed from that of MB, with regions of high (8 to 16%) ratios spreading more interior, implying higher fractional load of BC at locations where the BC concentrations remain lower.
NASA Astrophysics Data System (ADS)
Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.
2017-07-01
Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment. This finding has implications for future policies aiming to improve air quality in urban environments where fuel composition changes as a function of season.
NASA Astrophysics Data System (ADS)
Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.
2014-11-01
The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in residual layers but still originating in northern Italy, while a substantial fraction (41%) was due to the most aged aerosols imported from transalpine areas. The different meteorological regimes also affected the BC mixing state: in periods of enhanced stagnation and recirculation of pollutants, the number fraction of the BC-containing particles determined by ATOFMS was 75% of the total, while in the days of enhanced ventilation of the planetary boundary layer (PBL), such fraction was significantly lower (50%) because of the relative greater influence of non-BC-containing aerosol local sources in the Po Valley. Overall, a full internal mixing between BC and the non-refractory aerosol chemical components was not observed during the experiment in this environment.
Size distribution and coating thickness of black carbon from the Canadian oil sands operations
NASA Astrophysics Data System (ADS)
Cheng, Yuan; Li, Shao-Meng; Gordon, Mark; Liu, Peter
2018-02-01
Black carbon (BC) plays an important role in the Earth's climate system. However, parameterizations of BC size and mixing state have not been well addressed in aerosol-climate models, introducing substantial uncertainties into the estimation of radiative forcing by BC. In this study, we focused on BC emissions from the oil sands (OS) surface mining activities in northern Alberta, based on an aircraft campaign conducted over the Athabasca OS region in 2013. A total of 14 flights were made over the OS source area, in which the aircraft was typically flown in a four- or five-sided polygon pattern along flight tracks encircling an OS facility. Another 3 flights were performed downwind of the OS source area, each of which involved at least three intercepting locations where the well-mixed OS plume was measured along flight tracks perpendicular to the wind direction. Comparable size distributions were observed for refractory black carbon (rBC) over and downwind of the OS facilities, with rBC mass median diameters (MMDs) between ˜ 135 and 145 nm that were characteristic of fresh urban emissions. This MMD range corresponded to rBC number median diameters (NMDs) of ˜ 60-70 nm, approximately 100 % higher than the NMD settings in some aerosol-climate models. The typical in- and out-of-plume segments of a flight, which had different rBC concentrations and photochemical ages, showed consistent rBC size distributions in terms of MMD, NMD and the corresponding distribution widths. Moreover, rBC size distributions remained unchanged at different downwind distances from the source area, suggesting that atmospheric aging would not necessarily change rBC size distribution. However, aging indeed influenced rBC mixing state. Coating thickness for rBC cores in the diameter range of 130-160 nm was nearly doubled (from ˜ 20 to 40 nm) within 3 h when the OS plume was transported over a distance of 90 km from the source area.
NASA Astrophysics Data System (ADS)
Moore, R.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Hudgins, C.; Martin, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.
2014-12-01
Light absorbing carbonaceous aerosols are known to be an important climatic driver with a global radiative forcing of about half (IPCC, 2013) to two-thirds (Bond et al., 2013) that of the dominant greenhouse gas, carbon dioxide. While the mass absorption coefficient of pure black carbon (BC) is fairly well known, observational evidence suggests that BC rapidly mixes with other aerosol chemical components within hours of emission (Moffet and Prather, 2009; Moteki et al., 2007). These other components may include predominantly scattering organic, sulfate, and nitrate species, as well as light-absorbing, so-called "brown carbon" (BrC). It has been suggested that the presence of these BC-mixed components may induce mixing-state-dependent lensing effects that could potentially double the BC direct radiative forcing (Jacobson, 2001). The key to better understanding how BC-rich aerosols are distributed in the atmosphere is to examine an unbiased set of measurements covering broad spatial and temporal coverage; however, many past airborne field campaigns have specifically targeted source plumes or other scientifically-relevant emissions sources. The recent NASA DISCOVER-AQ campaign is unique in that approximately the same flight pattern was performed over a month-long period in each of four different U.S. metropolitan areas, ensuring an unbiased, or at least less biased, data set with both wide horizontal and vertical (surface to 5 km altitude) coverage. We present a statistical analysis of BC-rich particle mixing state measured during DISCOVER-AQ by a DMT Single Particle Soot Photometer (SP2). The SP2 measures the BC mass distribution via laser incandescence, and the non-BC coating thickness is inferred from the light scattering signal of particles greater than 200 nm in diameter (Gao et al., 2007; Moteki and Kondo, 2008). The SP2-derived size distributions are compared to optical scattering size distributions measured by an UHSAS in order determine 1) the externally mixed fraction of particles containing BC across the optically-active region of the size distribution (200-1000 nm) and 2) the internally mixed volume fraction of BC relative to the total particle volume assuming spherical particles. Vertical profiles of these variables are discussed in the context of remotely sensing aerosol mixing state.
Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng
2012-05-30
Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced bymore » factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism driven by diffusive vapor transfer likely proceeds too slowly to alter the mass of internal BC while it is radiatively active, but neglected processes like wind pumping and convection may play much larger roles. These results suggest that a large portion of BC in surface snowpack may reside within ice grains and increase BC/snow radiative forcing, although measurements to evaluate this are lacking. Finally, previous studies of BC/snow forcing that neglected this absorption enhancement are not necessarily biased low, because of application of absorption-enhancing sulfate coatings to hydrophilic BC, neglect of coincident absorption by dust in snow, and implicit treatment of cloud-borne BC resulting in longer-range transport.« less
NASA Astrophysics Data System (ADS)
Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun
2009-02-01
Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.
NASA Astrophysics Data System (ADS)
Singh, S.; Tiwari, S.; Dumka, U. C.; Kumar, R.; Singh, P. K.
2017-11-01
Black carbon (BC) aerosols affect the Earth's climate directly by interacting with the solar radiation and indirectly by modifying the lifetime and optical properties of clouds. However, our understanding of BC aerosols and their impacts on the climate are limited by lack of in situ measurements of BC, especially in the developing world. This study reports measurements of BC from Dhanbad, a coalfields area of eastern India, we analyze BC data at 370 and 880 nm during 2013 to gain insight into the emission sources affecting the study area. Our analysis indicates significantly higher absorption at the lower wavelength (ultraviolet). We estimate that 33% of BC at Dhanbad comes from biomass/biofuel combustion and the remaining 67% from the fossil fuel combustion. Higher concentrations of BC370 nm (> 12 μg m- 3) were observed when the air masses affecting Dhanbad originated far away in countries like Iran, Afghanistan, Pakistan, Oman, United Arab Emirates and passed over the Indo-Gangetic Plains (IGP) prior to arriving at the observation site. The source regions affecting BC880 nm were localized over the IGP but BC880 nm concentrations are 33% lower ( 8 μg m- 3) than BC370 nm. The cluster analysis showed that the largest fraction (35 and 29%) of the air masses arriving at Dhanbad passed through the boundary layer of the central IGP and north-west IGP region during the post-monsoon season. Average values of BC370 nm (16.0 and 20.0 μg m- 3) and BC880 nm (9.5 and 10.0 μg m- 3) in the IGP influenced air masses were significantly higher than those arriving from other source regions. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) model were applied to understand the relative importance of different sources affecting Dhanbad. The variability of observed BC mass concentrations was captured fairly well by WRF-Chem with minor deviations from the measured values. Model results indicate that anthropogenic emissions account for more than 75% of the surface BC at Dhanbad. Biomass burning contribution peaks in March-April and October-November but remains less than 25%. Long-range transport estimated in terms of inflow from domain boundaries does not affect BC concentrations at Dhanbad significantly.
Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mo; Xu, Baiqing; Wang, Ninglian
Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations showawinter (November–February) high (413.2 ng m $-$3) and spring (March–June) low(139.1 ng m $-$3) at Ranwu, but in contrast awinter lowand spring high at Beiluhe (204.8 and 621.6 ng m $-$3, respectively). By examining the meteorological conditions at various scales, we found that themonthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation atmore » both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. Thewinter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwusampling site showed a significant diurnal cyclewith a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct.« less
Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site.
Kupiszewski, Piotr; Zanatta, Marco; Mertes, Stephan; Vochezer, Paul; Lloyd, Gary; Schneider, Johannes; Schenk, Ludwig; Schnaiter, Martin; Baltensperger, Urs; Weingartner, Ernest; Gysel, Martin
2016-10-27
Ice residual (IR) and total aerosol properties were measured in mixed-phase clouds (MPCs) at the high-alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC-containing particles were determined using single-particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10 -4 to 10 -3 for 100 nm (diameter) particles to 0.2 to 0.3 for 1 μm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC-free and BC-containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC-containing particles also increased with total particle size, in a similar manner as for the BC-free particles, but on a level 1 order of magnitude lower. Furthermore, BC-containing IR were found to have a thicker coating than the BC-containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.
Light-absorbing Aerosol Properties in the Kathmandu Valley during SusKat-ABC Field Campaign
NASA Astrophysics Data System (ADS)
Kim, S.; Yoon, S.; Kim, J.; Cho, C.; Jung, J.
2013-12-01
Light-absorbing aerosols, such as black carbon (BC), are major contributors to the atmospheric heating and the reduction of solar radiation reaching at the earth's surface. In this study, we investigate light-absorption and scattering properties of aerosols (i.e., BC mass concentration, aerosol solar-absorption/scattering efficiency) in the Kathmandu valley during Sustainable atmosphere for the Kathmandu valley (SusKat)-ABC campaign, from December 2012 to February 2013. Kathmandu City is among the most polluted cities in the world. However, there are only few past studies that provide basic understanding of air pollution in the Kathmandu Valley, which is not sufficient for designing effective mitigation measures (e.g., technological, financial, regulatory, legal and political measures, planning strategies). A distinct diurnal variation of BC mass concentration with two high peaks observed during wintertime dry monsoon period. BC mass concentration was found to be maximum around 09:00 and 20:00 local standard time (LST). Increased cars and cooking activities including substantial burning of wood and other biomass in the morning and in the evening contributed to high BC concentration. Low BC concentrations during the daytime can be explain by reduced vehicular movement and cooking activities. Also, the developmements of the boundary layer height and mountain-valley winds in the Kathmandu Valley paly a crucial role in the temproal variation of BC mass concentrations. Detailed radiative effects of light-absorbing aerosols will be presented.
NASA Astrophysics Data System (ADS)
Zhang, Guohua; Lin, Qinhao; Peng, Long; Bi, Xinhui; Chen, Duohong; Li, Mei; Li, Lei; Brechtel, Fred J.; Chen, Jianxin; Yan, Weijun; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen
2017-12-01
In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single-particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a. s. l. ) in southern China. The measured BC-containing particles were extensively internally mixed with sulfate and were scavenged into cloud droplets (with number fractions of 0.05-0.45) to a similar (or slightly lower) extent as all the measured particles (0.07-0.6) over the measured size range of 0.1-1.6 µm. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were scavenged less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Our results would improve the knowledge on the concentration, mixing state, and cloud scavenging of BC in the free troposphere.
Global civil aviation black carbon emissions.
Stettler, Marc E J; Boies, Adam M; Petzold, Andreas; Barrett, Steven R H
2013-09-17
Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.
P-wave excited {B}_{c}^{* * } meson photoproduction at the LHeC
NASA Astrophysics Data System (ADS)
Kai, He; Huan-Yu, Bi; Ren-You, Zhang; Xiao-Zhou, Li; Wen-Gan, Ma
2018-05-01
As an important sequential work of the S-wave {B}c(* ) ({}1{S}0({}3{S}1) ) meson production at the large hadron electron collider (LHeC), we investigate the production of the P-wave excited {B}c* * states (1 P 1 and 3 P J with J = 0, 1, 2) via photoproduction mechanism within the framework of nonrelativistic QCD at the LHeC. Generally, the {e}-+P\\to γ +g\\to {B}c* * +b+\\bar{c} process is considered as the main production mechanism at an electron–proton collider due to the large luminosity of the gluon. However, according to our experience on the S-wave {B}c(* ) meson production at the LHeC, the extrinsic production mechanism, i.e., {e}-+P\\to γ +c\\to {B}c* * +b and {e}-+P\\to γ +\\bar{b} \\to {B}c* * +\\bar{c}, could also provide dominating contributions at low p T region. A careful treatment between these channels is performed and the results on total and differential cross sections, together with main uncertainties are discussed. Taking the quark masses m b = 4.90 ± 0.40 GeV and m c = 1.50 ± 0.20 GeV into account and summing up all the production channels, we expect to accumulate ({2.48}-1.75+3.55)× {10}4 {B}c* * ({}1{P}1), ({1.14}-0.82+1.49)× {10}4 {B}c* * ({}3{P}0),({2.38}-1.74+3.39)× {10}4 {B}c* * ({}3{P}1) and ({5.59}-3.93+7.84)× {10}4 {B}c* * ({}3{P}2) events at the \\sqrt{S}=1.30 {{T}}{{e}}{{V}} LHeC in one operation year with luminosity { \\mathcal L }={10}33 cm‑2 s‑1. With such sizable events, it is worth studying the properties of excited P-wave {B}c* * states at the LHeC.
NASA Astrophysics Data System (ADS)
Nair, Vijayakumar S.; Moorthy, K. Krishna; Alappattu, Denny P.; Kunhikrishnan, P. K.; George, Susan; Nair, Prabha R.; Babu, S. Suresh; Abish, B.; Satheesh, S. K.; Tripathi, Sachchida Nand; Niranjan, K.; Madhavan, B. L.; Srikant, V.; Dutt, C. B. S.; Badarinath, K. V. S.; Reddy, R. Ramakrishna
2007-07-01
The Indo-Gangetic Plain (IGP) encompasses a vast area, (accounting for ˜21% of the land area of India), which is densely populated (accommodating ˜40% of the Indian population). Highly growing economy and population over this region results in a wide range of anthropogenic activities. A large number of thermal power plants (most of them coal fed) are clustered along this region. Despite its importance, detailed investigation of aerosols over this region is sparse. During an intense field campaign of winter 2004, extensive aerosol and atmospheric boundary layer measurements were made from three locations: Kharagpur (KGP), Allahabad (ALB), and Kanpur (KNP), within the IGP. These data are used (1) to understand the regional features of aerosols and BC over the IGP and their interdependencies, (2) to compare it with features at locations lying at far away from the IGP where the conditions are totally different, (3) to delineate the effects of mesoscale processes associated with changes in the local atmospheric boundary layer (ABL), (4) to investigate the effects of long-range transport or moving weather phenomena in modulating the aerosol properties as well as the ABL characteristics, and (5) to examine the changes as the season changes over to spring and summer. Our investigations have revealed very high concentrations of aerosols along the IGP, the average mass concentrations (MT) of total aerosols being in the range 260 to 300 μg m-3 and BC mass concentrations (MB) in the range 20 to 30 μg m-3 (both ˜5 to 8 times higher than the values observed at off-IGP stations) during December 2004. Despite, BC constituted about 10% to the total aerosol mass concentration, a value quite comparable to those observed elsewhere over India for this season. The dynamics of the local atmospheric boundary layer (ABL) as well as changes in local emissions strongly influence the diurnal variations of MT and MB, both being inversely correlated with the mixed layer height (Zi) and the ventilation coefficient (Vc). The share of BC to total aerosols is highest (˜12%) during early night and lowest (˜4%) in the early morning hours. While an increase in the Vc results in a reduction in the concentration almost simultaneously, an increase in Zimax has its most impact on the concentration after ˜1 day. Accumulation mode aerosols contributed ˜90% to the aerosol concentration at ALB, ˜77 % at KGP and 74% at KNP. The BC mass mixing ratio was ˜10% over all three locations and is comparable to the value reported for Trivandrum, a tropical coastal location in southern India. This indicates presence of submicron aerosols species other than BC (such as sulfate) over KGP and KNP. A cross-correlation analysis showed that the changes in MB at KGP is significantly correlated with those at KNP, located ˜850 km upwind, and ALB after a delay of ˜7 days, while no such delay was seen between ALB and KNP. Back trajectory analyses show an enhancement in MB associated with trajectories arriving from west, the farther from to the west they arrive, the more is the increase. This, along with the ABL characteristics, indicate two possibilities: (1) advection of aerosols from the west Asia and northwest India and (2) movement of a weather phenomena (such as cold air mass) conducive for build up of aerosols from the west to east. As the winter gives way to summer, the change in the wind direction and increased convective mixing lead to a rapid decrease in MB.
Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations
NASA Astrophysics Data System (ADS)
Garland, Charity; Delapena, Samantha; Prasad, Rajendra; L'Orange, Christian; Alexander, Donee; Johnson, Michael
2017-11-01
Black carbon (BC) emissions from household cookstoves consuming solid fuel produce approximately 25 percent of total anthropogenic BC emissions. The short atmospheric lifetime of BC means that reducing BC emissions would result in a faster climate response than mitigating CO2 and other long-lived greenhouse gases. This study presents the results of optical BC measurements of two new cookstove emissions field assessments and 17 archived cookstove datasets. BC was determined from attenuation of 880 nm light, which is strongly absorbed by BC, and linearly related between 1 and 125 attenuation units. A relationship was experimentally determined correlating BC mass deposition on quartz filters determined via thermal optical analysis (TOA) and on PTFE and quartz filters using transmissometry, yielding an attenuation cross-section (σATN) for both filter media types. σATN relates TOA measurements to optical measurements on PTFE and quartz (σATN(PTFE) = 13.7 cm-2 μg, R2 = 0.87, σATN(Quartz) = 15.6 cm-2 μg, R2 = 0.87). These filter-specific σATN, optical measurements of archived filters were used to determine BC emission factors and the fraction of particulate matter (PM) in the form of black carbon (BC/PM). The 19 stoves measured fell into five stove classes; simple wood, rocket, advanced biomass, simple charcoal, and advanced charcoal. Advanced biomass stoves include forced- and natural-draft gasifiers which use wood or biomass pellets as fuel. Of these classes, the simple wood and rocket stoves demonstrated the highest median BC emission factors, ranging from 0.051 to 0.14 g MJ-1. The lowest BC emission factors were seen in charcoal stoves, which corresponds to the generally low PM emission factors observed during charcoal combustion, ranging from 0.0084 to 0.014 g MJ-1. The advanced biomass stoves generally showed an improvement in BC emissions factors compared to simple wood and rocket stoves, ranging from 0.0031 to 0.071 g MJ-1. BC/PM ratios were highest for the advanced and rocket stoves. Potential relative climate impacts were estimated by converting aerosol emissions to CO2-equivalent, and suggest that some advanced stove/fuel combinations could provide substantial climate benefits.
Dong, Haoran; Deng, Junmin; Xie, Yankai; Zhang, Cong; Jiang, Zhao; Cheng, Yujun; Hou, Kunjie; Zeng, Guangming
2017-06-15
Three types of modified biochar (BC) were produced respectively with acid (HCl) treatment (HCl-BC), base (KOH) treatment (KOH-BC) and oxidation (H 2 O 2 ) treatment (H 2 O 2 -BC) of raw biochar. Both the raw biochar and modified biochars supported zero valent iron nanopartilces (nZVI) (i.e. nZVI@BC, nZVI@HCl-BC, nZVI@KOH-BC and nZVI@H 2 O 2 -BC) were synthesized and their capacities for Cr(VI) removal were compared. The results showed that the nZVI@HCl-BC exhibited the best performance and the underlying mechanisms were discussed. The surface elemental distribution maps of the nZVI@HCl-BC after reaction with Cr(VI) showed that Fe, Cr and O elements were deposited on the surface of HCl-BC evenly, indicating that the formed Cr(III)/Fe(III) could settle on the surface of HCl-BC uniformly rather than coated only on the nZVI surface. This reveals that the supporter HCl-BC could also play a role in alleviating the passivation of nZVI. Besides, the effects of mass ratio (nZVI/HCl-BC), pH, and initial Cr(VI) concentration on Cr(VI) removal were examined. At lower mass of HCl-BC, nZVI aggregation cannot be fully inhibited on the surface of HCl-BC, whereas excessive biochar can block the active sites of nZVI. Additionally, it was found that Cr(VI) removal by nZVI@HCl-BC was dependent on both pH and initial Cr(VI) concentration. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nazeer Hussain, S.; Chakradhar Rao, T.; Balakrishnaiah, G.; Rama Gopal, K.; Raja Obul Reddy, K.; Siva Kumar Reddy, N.; Lokeswara Reddy, T.; Pavan Kumari, S.; Ramanjaneya Reddy, P.; Ramakrishna Reddy, R.
2018-01-01
We conducted the campaign studies on Black Carbon (BC) aerosol measured at two different locations such as semi-arid rural, Anantapur (ATP) and tropical wet and dry urban, Tirupati (TPTY) of Andhra Pradesh. The campaign took place from June 1 to June 30, 2015. We studied diurnal variations and weekdays/weekends differences of BC mass Concentration and its correlations with meteorological parameters for two sites. BC exhibits a strong weekly cycle in which weekend concentrations are significantly lower than weekday concentrations by ∼14 and 31% for ATP and TPTY due to the decrease in the local traffic volumes during weekends due to a well-known 'weekend effect'. An estimation of percentage of contribution of BC indicates the main sources of BC as fossil fuel combustion and which is dominantly observed at TPTY than at ATP. Finally, the influence of the transported air masses has also been discussed with the help of HYSPLIT air mass backward trajectories.
First observation of a baryonic Bc+ decay.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2014-10-10
A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel.
Wang, Junfeng; Zhang, Qi; Chen, Mindong; Collier, Sonya; Zhou, Shan; Ge, Xinlei; Xu, Jianzhong; Shi, Jinsen; Xie, Conghui; Hu, Jianlin; Ge, Shun; Sun, Yele; Coe, Hugh
2017-12-19
Refractory black carbon (rBC) aerosol is an important climate forcer, and its impacts are greatly influenced by the species associated with rBC cores. However, relevant knowledge is particularly lacking at the Tibetan Plateau (TP). Here we report, for the first time, highly time-resolved measurement results of rBC and its coating species in central TP (4730 m a.s.l), using an Aerodyne soot particle aerosol mass spectrometer (SP-AMS), which selectively measured rBC-containing particles. We found that the rBC was overall thickly coated with an average mass ratio of coating to rBC (R BC ) of ∼7.7, and the coating species were predominantly secondarily formed by photochemical reactions. Interestingly, the thickly coated rBC was less oxygenated than the thinly coated rBC, mainly due to influence of the transported biomass burning organic aerosol (BBOA). This BBOA was relatively fresh but formed very thick coating on rBC. We further estimated the "lensing effect" of coating semiquantitatively by comparing the measurement data from a multiangle absorption photometer and SP-AMS, and found it could lead to up to 40% light absorption enhancement at R BC > 10. Our findings highlight that BBOA can significantly affect the "lensing effect", in addition to its relatively well-known role as light-absorbing "brown carbon."
Black Carbon Particle Number Distribution Measurements during the ATHENS-2013 Winter Campaign
NASA Astrophysics Data System (ADS)
Gkatzelis, Georgios; Papanastasiou, Dimitris; Florou, Kalliopi; Kaltsonoudis, Christos; Louvaris, Eyaggelos; Bezentakos, Spiridon; Biskos, Georgios; Pandis, Spuros
2014-05-01
Black Carbon (BC) particles emitted by anthropogenic sources play an important role both in climate change and in air quality degradation. Open burning in forests and savannas, combustion of diesel and solid fuels for cooking and heating in homes represent the majority of BC emissions. Earlier work has focused on the BC atmospheric direct radiative forcing that is mostly related to its mass concentration and optical properties of the corresponding particles. A variety of measurement techniques are used to measure the mass concentration of BC by taking advantage of its optical or physical properties. Moreover, the carbonaceous particles containing BC are also important for the indirect forcing of climate. This effect is mostly related to the number concentration of BC particles. The number distribution of BC particles especially below 100 nm is quite uncertain due to limitations of the existing measurement techniques. In this work we employed a thermodenuder-based method as an approach for the measurement of the BC number distribution. More specifically, we combined a thermodenuder (TD) operating at temperatures up to 300 ° C, with a Scanning Mobility Particle Sizer (SMPS) and a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF AMS). Aerosol size and composition measurements were carried out both at ambient and at elevated TD temperatures in Athens field campaign during January and February of 2013. In parallel, a Multi-Angle Absorption Photometer (MAAP) provided information about the BC mass concentration while a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) measured the mixing state and the hygroscopicity of the particles as a function of their size. These measurements were then combined to estimate the number concentration of BC particles. Our analysis focused on different periods during the study. During some of them one source dominated the carbonaceous aerosol concentration. Such periods included rush hour traffic, nighttime wood burning, clean air transported from other areas, mixed sources, etc. The number fraction remaining after heating at 300 ° C for approximately 15 s during wood burning events was 80-90%, suggesting that practically all particles contained nonvolatile material. Combining the SMPS, MAAP, AMS, and HTDMA measurements we show that most of the sampled material was BC. On the contrary, during rush hour traffic the number fraction remaining was only 50-60% suggesting that more than half of the particles did not contain BC.
Pasikanti, Kishore Kumar; Esuvaranathan, Kesavan; Hong, Yanjun; Ho, Paul C; Mahendran, Ratha; Raman Nee Mani, Lata; Chiong, Edmund; Chan, Eric Chun Yong
2013-09-06
Cystoscopy is the gold standard clinical diagnosis of human bladder cancer (BC). As cystoscopy is expensive and invasive, it compromises patients' compliance toward surveillance screening and challenges the detection of recurrent BC. Therefore, the development of a noninvasive method for the diagnosis and surveillance of BC and the elucidation of BC progression become pertinent. In this study, urine samples from 38 BC patients and 61 non-BC controls were subjected to urinary metabotyping using two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Subsequent to data preprocessing and chemometric analysis, the orthogonal partial least-squares discriminant analysis (OPLS-DA, R2X=0.278, R2Y=0.904 and Q2Y (cumulative)=0.398) model was validated using permutation tests and receiver operating characteristic (ROC) analysis. Marker metabolites were further screened from the OPLS-DA model using statistical tests. GC×GC-TOFMS urinary metabotyping demonstrated 100% specificity and 71% sensitivity in detecting BC, while 100% specificity and 46% sensitivity were observed via cytology. In addition, the model revealed 46 metabolites that characterize human BC. Among the perturbed metabolic pathways, our clinical finding on the alteration of the tryptophan-quinolinic metabolic axis in BC suggested the potential roles of kynurenine in the malignancy and therapy of BC. In conclusion, global urinary metabotyping holds potential for the noninvasive diagnosis and surveillance of BC in clinics. In addition, perturbed metabolic pathways gleaned from urinary metabotyping shed new and established insights on the biology of human BC.
Abrahamson, Joseph P; Zelina, Joseph; Andac, M Gurhan; Vander Wal, Randy L
2016-11-01
The first order approximation (FOA3) currently employed to estimate BC mass emissions underpredicts BC emissions due to inaccuracies in measuring low smoke numbers (SNs) produced by modern high bypass ratio engines. The recently developed Formation and Oxidation (FOX) method removes the need for and hence uncertainty associated with (SNs), instead relying upon engine conditions in order to predict BC mass. Using the true engine operating conditions from proprietary engine cycle data an improved FOX (ImFOX) predictive relation is developed. Still, the current methods are not optimized to estimate cruise emissions nor account for the use of alternative jet fuels with reduced aromatic content. Here improved correlations are developed to predict engine conditions and BC mass emissions at ground and cruise altitude. This new ImFOX is paired with a newly developed hydrogen relation to predict emissions from alternative fuels and fuel blends. The ImFOX is designed for rich-quench-lean style combustor technologies employed predominately in the current aviation fleet.
NASA Astrophysics Data System (ADS)
Tiwari, S.; Dumka, U. C.; Hopke, P. K.; Tunved, P.; Srivastava, A. K.; Bisht, D. S.; Chakrabarty, R. K.
2016-09-01
Black carbon (BC) aerosols are one of the most uncertain drivers of global climate change. The prevailing view is that BC mass concentrations are low in rural areas where industrialization and vehicular emissions are at a minimum. As part of a national research program called the "Ganga Basin Ground Based Experiment-2014 under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Phase-III" of Ministry of Earth Sciences, Government of India, the continuous measurements of BC and particulate matter (PM) mass concentrations, were conducted in a rural environment in the highly-polluted Indo-Gangetic Plain region during 16th June to 15th August (monsoon period), 2014. The mean mass concentration of BC was 4.03 (± 0.85) μg m- 3 with a daily variability between 2.4 and 5.64 μg m- 3, however, the mean mass PM concentrations [near ultrafine (PM1.0), fine (PM2.5) and inhalable (PM10)] were 29.1(± 16.2), 34.7 (± 19.9) and 43.7 (± 28.3) μg m- 3, respectively. The contribution of BC in PM1.0 was approximately 13%, which is one of the highest being recorded. Diurnally, the BC mass concentrations were highest (mean: 5.89 μg m- 3) between 20:00 to 22:00 local time (LT) due to the burning of biofuels/biomass such as wood, dung, straw and crop residue mixed with dung by the local residents for cooking purposes. The atmospheric direct radiative forcing values due to the composite and BC aerosols were determined to be + 78.3, + 44.9, and + 45.0 W m- 2 and + 42.2, + 35.4 and + 34.3 W m- 2 during the months of June, July and August, respectively. The corresponding atmospheric heating rates (AHR) for composite and BC aerosols were 2.21, 1.26 and 1.26; and 1.19, 0.99 and 0.96 K day- 1 for the month of June, July and August, respectively, with a mean of 1.57 and 1.05 K day- 1 which was 33% lower AHR (BC) than for the composite particles during the study period. This high AHR underscores the importance of absorbing aerosols such as BC contributed by residential cooking using biofuels in India. Our study demonstrates the need for immediate, effective regulations and policies that mitigate the emission of BC particles from domestic cooking in rural areas of India.
Black carbon aerosol characterization in a remote area of Qinghai-Tibetan Plateau, western China.
Wang, Qiyuan; Schwarz, J P; Cao, Junji; Gao, Rushan; Fahey, D W; Hu, Tafeng; Huang, R-J; Han, Yongming; Shen, Zhenxing
2014-05-01
The concentrations, size distributions, and mixing states of refractory black carbon (rBC) aerosols were measured with a ground-based Single Particle Soot Photometer (SP2), and aerosol absorption was measured with an Aethalometer at Qinghai Lake (QHL), a rural area in the Northeastern Tibetan Plateau of China in October 2011. The area was not pristine, with an average rBC mass concentration of 0.36 μg STP-m(-3) during the two-week campaign period. The rBC concentration peaked at night and reached the minimal in the afternoon. This diurnal cycle of concentration is negatively correlated with the mixed layer depth and ventilation. When air masses from the west of QHL were sampled in late afternoon to early evening, the average rBC concentration of 0.21 μg STP-m(-3) was observed, representing the rBC level in a larger Tibetan Plateau region because of the highest mixed layer depth. A lognormal primary mode with mass median diameter (MMD) of ~175 nm, and a small secondary lognormal mode with MMD of 470-500 nm of rBC were observed. Relative reduction in the secondary mode during a snow event supports recent work that suggested size dependent removal of rBC by precipitation. About 50% of the observed rBC cores were identified as thickly coated by non-BC material. A comparison of the Aethalometer and SP2 measurements suggests that non-BC species significantly affect the Aethalometer measurements in this region. A scaling factor for the Aethalometer data at a wavelength of 880 nm is therefore calculated based on the measurements, which may be used to correct other Aethalometer datasets collected in this region for a more accurate estimate of the rBC loading. The results present here significantly improve our understanding of the characteristics of rBC aerosol in the less studied Tibetan Plateau region and further highlight the size dependent removal of BC via precipitation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chan, T. W.; Brook, J. R.; Smallwood, G. J.; Lu, G.
2011-10-01
In this study a photoacoustic spectrometer (PA), a laser-induced incandescence instrument system (LII) and an Aerosol Mass Spectrometer were operated in parallel for in-situ measurements of black carbon (BC) light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by the presence of non-refractory material thus providing true atmospheric BC mass concentrations. In contrast, the PA response is enhanced when the non-refractory material is internally mixed with the BC particles. Through concurrent measurements using the LII and PA the specific absorption cross-section (SAC) can be quantified with high time resolution (1 min). Comparisons of ambient PA and LII measurements from four different locations (suburban Toronto; a street canyon with diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario), show that different impacts from emission sources and/or atmospheric processes result in different particle light absorption enhancements and hence variations in the SAC. The diversity of measurements obtained, including those with the thermodenuder, demonstrated that it is possible to identify measurements where the presence of externally-mixed non-refractory particles obscures direct observation of the effect of coating material on the SAC, thus allowing this effect to be measured with more confidence. Depending upon the time and location of measurement (urban, rural, close to and within a lake breeze frontal zone), 30 min average SAC varies between 9 ± 2 and 43 ± 4 m2 g-1. Causes of this variation, which were determined through the use of meteorological and gaseous measurements (CO, SO2, O3), include the particle emission source, airmass source region, the degree of atmospheric processing. Observations from this study also show that the active surface area of the BC aggregate, which is measured by the LII as the PPS, is an important parameter for inferring the degree of particle collapse of a BC particle. In addition, PPS could be a useful measurement for indicating the importance of recently emitted BC (e.g. from gasoline or diesel engines) relative to the total measured BC in the atmosphere.
Enhanced light absorption due to the mixing state of black carbon in fresh biomass burning emissions
NASA Astrophysics Data System (ADS)
Wang, Qiyuan; Cao, Junji; Han, Yongming; Tian, Jie; Zhang, Yue; Pongpiachan, Siwatt; Zhang, Yonggang; Li, Li; Niu, Xinyi; Shen, Zhenxing; Zhao, Zhuzi; Tipmanee, Danai; Bunsomboonsakul, Suratta; Chen, Yang; Sun, Jian
2018-05-01
A lack of information on the radiative effects of refractory black carbon (rBC) emitted from biomass burning is a significant gap in our understanding of climate change. A custom-made combustion chamber was used to simulate the open burning of crop residues and investigate the impacts of rBC size and mixing state on the particles' optical properties. Average rBC mass median diameters ranged from 141 to 162 nm for the rBC produced from different types of crop residues. The number fraction of thickly-coated rBC varied from 53 to 64%, suggesting that a majority of the freshly emitted rBC were internally mixed. By comparing the result of observed mass absorption cross-section to that calculated with Mie theory, large light absorption enhancement factors (1.7-1.9) were found for coated particles relative to uncoated cores. These effects were strongly positively correlated with the percentage of coated particles but independent of rBC core size. We suggest that rBC from open biomass burning may have strong impact on air pollution and radiative forcing immediately after their production.
Ahern, Adam T.; Subramanian, Ramachandran; Saliba, Georges; ...
2016-12-22
Biomass burning is a large source of light-absorbing refractory black carbon (rBC) particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV) ablation LAAPTOF and the IRmore » vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA) from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC) mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahern, Adam T.; Subramanian, Ramachandran; Saliba, Georges
Biomass burning is a large source of light-absorbing refractory black carbon (rBC) particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV) ablation LAAPTOF and the IRmore » vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA) from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC) mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.« less
SP2 Deployment at Boston College—Aerodyne-Led Coated Black Carbon Study (BC4) Final Campaign Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onasch, T. B.; Sedlacek, A. J.
The main objective of the Boston College-Aerodyne led laboratory study (BC4) was to measure the optical properties of black carbon (BC) particles from a diffusion flame directly and after being coated with secondary organic and inorganic material and to achieve optical closure with model predictions. The measurements of single particle BC mass and population mixing states provided by a single particle soot photometer (SP2) was central to achieving the laboratory-based study’s objective. Specifically, the DOE ARM SP2 instrument participated in the BC4 project to address the following scientific questions: 1. What is the mass-specific absorption coefficient as a function ofmore » secondary organic and inorganic material coatings? 2. What is the spread in the population mixing states within our carefully generated laboratory particles? 3. How does the SP2 instrument respond to well-characterized, internally mixed BC-containing particles?« less
Black Carbon Emissions from Associated Natural Gas Flaring.
Weyant, Cheryl L; Shepson, Paul B; Subramanian, R; Cambaliza, Maria O L; Heimburger, Alexie; McCabe, David; Baum, Ellen; Stirm, Brian H; Bond, Tami C
2016-02-16
Approximately 150 billion cubic meters (BCM) of natural gas is flared and vented in the world annually, emitting greenhouse gases and other pollutants with no energy benefit. About 7 BCM per year is flared in the United States, and half is from North Dakota alone. There are few emission measurements from associated gas flares and limited black carbon (BC) emission factors have been previously reported from the field. Emission plumes from 26 individual flares in the Bakken formation in North Dakota were sampled. Methane, carbon dioxide, and BC were measured simultaneously, allowing the calculation of BC mass emission factors using the carbon balance method. Particle optical absorption was measured using a three-wavelength particle soot absorption photometer (PSAP) and BC particle number and mass concentrations were measured with a single particle soot photometer. The BC emission factors varied over 2 orders of magnitude, with an average and uncertainty range of 0.14 ± 0.12 g/kg hydrocarbons in associated gas and a median of 0.07 g/kg which represents a lower bound on these measurements. An estimation of the BC emission factor derived from PSAP absorption provides an upper bound at 3.1 g/kg. These results are lower than previous estimations and laboratory measurements. The BC mass absorption cross section was 16 ± 12 m(2)/g BC at 530 nm. The average absorption Ångström exponent was 1.2 ± 0.8, suggesting that most of the light absorbing aerosol measured was black carbon and the contribution of light absorbing organic carbon was small.
Datta Banik, Sudip; Andrade Olalde, Ana Carolina; Rodriguez, Luis; Dickinson, Federico
2014-01-01
Intake pattern of macronutrients (protein, lipid, carbohydrate) and socioeconomic status (SES) are major causes of high child and adolescent overweight and obesity prevalences in Mexico. An evaluation was done of the relationship between body mass index (BMI)-based nutritional status and body composition (BC), macronutrient intake rates (MIR) and SES indicators in 127 boys and 156 girls aged 12 to 16 years attending schools in Merida, Mexico. Anthropometric variables included height, weight, and BMI. The BC (body fat mass, fat-free mass, dry lean mass) was estimated by bioelectrical impedance (Bodystat 1500 MDD). The MIR were estimated following FAO/WHO/UNO standard (1985). Proxy socioeconomic indicators included parents' age (as a maturity indicator) and education, fathers' occupation, school type and monthly household food expenditure per capita. Excess weight (overweight + obesity) assessed by BMI, was higher in boys (40.16 %) than in girls (33.97 %). Boys had higher BMI, less fat mass and higher fat-free mass than girls. The MIR did not vary significantly in response to age, sex, BC or SES. Participants with higher SES were taller and heavier, had higher fat-free mass and lower fat mass. In the studied adolescents, anthropometric and BC values, and overweight and obesity rates were more associated with SES than MIR.
Paiva, Carlos Eduardo; Rezende, Fabiana Faria; Paiva, Bianca Sakamoto Ribeiro; Mauad, Edmundo Carvalho; Zucca-Matthes, Gustavo; Carneseca, Estela Cristina; Syrjänen, Kari Juhani; Schover, Leslie R
2016-11-01
Sexual dysfunction is a common and distressing consequence of breast cancer (BC) treatment. In the present study, we investigated the sexual functioning of BC patients and its association with women's personal characteristics and cancer treatments. In this cross-sectional study, sexual function was assessed using the Female Sexual Function Index (FSFI). The health-related quality of life (HRQOL) was measured using the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 and its breast module BR-23. Of the 235 participants approached, 216 participants were included in the study. Of these, 63 patients reported no sexual activity in the last month and thus were analyzed only in relation to the sexual desire domain of FSFI. A total of 154 (71.3 %) patients were classified with hypoactive sexual desire disorder (HSDD). From those patients reporting sexual activity in the last month, 63.3 % (97 out of 153) were classified with sexual dysfunction. Using hierarchical logistic regression, the variance explained (change in R 2 ) by the addition of body mass index (BMI) and mild to moderate physical activity in the prediction models of sexual dysfunction and HSDD were 6.8 and 7.2 %, respectively. Age, BMI, and physical activity were independently associated with sexual dysfunction and HSDD. Additionally, BC patients with sexual dysfunction reported lower scores on global HRQOL, role functioning, and fatigue. Based on our findings, BC survivors should be encouraged to practice regular physical activity and to lose weight in order to avoid sexual dysfunction. However, future clinical trials are needed to confirm these findings.
NASA Astrophysics Data System (ADS)
Lan, Zijuan
2013-04-01
The effects of black carbon (BC) aerosol on climate warming have been the study focus in the recent decade, the regional effect of BC light absorption is more significant. The reduction of BC is now expected to have significant near-term climate change mitigation. Mass absorption efficient (MAE) was one of the important optical properties of BC aerosol for evaluating the BC on its radiative forcing effect, while BC mixing state is one main influencing factor for MAE. Models have estimated that BC radiative forcing can be increased by a factor of ~2 for internally versus externally mixed BC. On the other hand, some organic carbon had been found to significantly absorb light at UV or shorter wavelengths in the most recent studies, with strong spectral dependence. But large uncertainties still remain in determining the positive forcing effect of BC on global clime change due to the technical limitations. In this study, advanced instrumentation (a three-wavelength photoacoustic soot spectrometer (PASS-3) and a single particle soot photometer (SP2)) were used to measure black carbon aerosol and analyze its optical properties in a megacity in South China, Shenzhen, during the summer of 2011. It is in the southeast corner of the Pearl River Delta (PRD) region, neighboring Hong Kong to the south. During the campaign, the average BC mass concentration was 4.0±3.1 μg m-3, accounting for about 11% of PM2.5 mass concentration, which mainly came from fossil fuel combustion rather than biomass burning. The MAE of BC ranged from 5.0 to 8.5 m2 g-1, with an average value of 6.5±0.5 m2 g-1. The percentage of internally mixed BC was averagely 24.3±7.9% and positively correlated with the MAE. It is estimated that the internally mixed BC amplified MAE by about 7% during the campaign, suggesting that the BC absorption enhancement due to internal mixing in the real atmosphere is relatively low in comparison with the predictions by theoretical models, which stands in accordance with the new finding of a very recent Science magazine paper by Cappa.
NASA Astrophysics Data System (ADS)
Gong, Xianda; Zhang, Ci; Chen, Hong; Nizkorodov, Sergey A.; Chen, Jianmin; Yang, Xin
2016-04-01
A Single Particle Aerosol Mass Spectrometer (SPAMS), a Single Particle Soot Photometer (SP2) and various meteorological instruments were employed to investigate the chemical and physical properties of black carbon (BC) aerosols during a regional air pollution episode in urban Shanghai over a 5-day period in December 2013. The refractory black carbon (rBC) mass concentrations measured by SP2 averaged 3.2 µg m-3, with the peak value of 12.1 µg m-3 at 04:26 LT on 7 December. The number of BC-containing particles captured by SPAMS in the size range 200-1200 nm agreed very well with that detected by SP2 (R2 = 0.87). A cluster analysis of the single particle mass spectra allowed for the separation of BC-containing particles into five major classes: (1) Pure BC; (2) BC attributed to biomass burning (BBBC); (3) K-rich BC-containing (KBC); (4) BC internally mixed with OC and ammonium sulfate (BCOC-SOx); (5) BC internally mixed with OC and ammonium nitrate (BCOC-NOx). The size distribution of internally mixed BC particles was bimodal. Detected by SP2, the condensation mode peaked around ˜ 230 nm and droplet mode peaked around ˜ 380 nm, with a clear valley in the size distribution around ˜ 320 nm. The condensation mode mainly consisted of traffic emissions, with particles featuring a small rBC core (˜ 60-80 nm) and a relatively thin absolute coating thickness (ACT, ˜ 50-130 nm). The droplet mode included highly aged traffic emission particles and biomass burning particles. The biomass burning particles had a larger rBC core (˜ 80-130 nm) and a thick ACT (˜ 110-300 nm). The highly aged traffic emissions had a smaller core (˜ 60-80 nm) and a very thick ACT (˜ 130-300 nm), which is larger than reported in any previous literature. A fast growth rate (˜ 20 nm h-1) of rBC with small core sizes was observed during the experiment. High concentrations pollutants like NO2 likely accelerated the aging process and resulted in a continuous size growth of rBC-containing particles from traffic emission.
NASA Astrophysics Data System (ADS)
Schulz, H.; Zanatta, M.; Stefanie, W.; Herber, A. B.
2016-12-01
Black carbon (BC) is an important contributor to climate change in the Arctic region. Due to its light absorption behavior, BC leads to a direct warming of the corresponding aerosol layer. Nevertheless, the net Arctic warming induced by BC strongly depends on its vertical distribution. At present, the low level of knowledge in BC vertical variability in the Arctic region may introduce a strong source of uncertainty in radiative forcing estimations. Vertical distribution of refractory black carbon (rBC) was investigated in spring 2015 during an aircraft campaign, as part of the NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) project. A single particle soot photometer was deployed on the research aircraft POLAR-6 during nine flights over the European and Canadian high Arctic. In the European Arctic, a decreasing vertical trend of rBC mass concentration was observed, with an average of 40 ng m-3 below 1000 m asl, and less than 10 ng m-3 above 3000 m asl. Combining potential temperature trends and number fraction of rBC particles, plume events were isolated from background conditions. At the Canadian site of Alert, low and high altitude background conditions were characterized by an average rBC number fraction below 10%, while higher values (17%) were observed during plume events. rBC mass concentration was found to decrease by a factor of five from low altitude background (27 ng m-3) to high altitude background (5.4 ng m-3). The plume event, located between 2500 and 3000 m asl, represented a discontinuity point in the decreasing vertical trend showing a rBC concentration of 25 ng m-3. Moreover, background conditions were characterized by a rBC mass mean diameter of 230 nm, while during plume events the observed mean size distribution was peaking at 180 nm only. Our work provides new insights on vertical variability of rBC properties and plume outbreaks in the high Arctic. This information is of actual interest for decreasing the high uncertainty of radiative forcing and atmospheric warming estimations in the Arctic region.
NASA Astrophysics Data System (ADS)
Kaspari, S.; Painter, T. H.; Gysel, M.; Skiles, M.; Schwikowski, M.
2014-12-01
Black carbon (BC) and dust deposited on snow and glacier surfaces can reduce the surface albedo, accelerate melt, and trigger albedo feedback. Assessing BC and dust concentrations in snow and ice in the Himalaya is of interest because this region borders large BC and dust sources, and seasonal snow and glacier ice in this region are an important source of water resources. Snow and ice samples were collected from crevasse profiles and snowpits at elevations between 5400 and 6400 m asl from Mera glacier located in the Solu-Khumbu region of Nepal. The samples were measured for Fe concentrations (used as a dust proxy) via ICP-MS, total impurity content gravimetrically, and BC concentrations using a Single Particle Soot Photometer (SP2). BC and Fe concentrations are substantially higher at elevations < 6000 m due to post-depositional processes including melt and sublimation and greater loading in the lower troposphere. Because the largest areal extent of snow and ice resides at elevations < 6000 m, the higher BC and dust concentrations at these elevations can reduce the snow and glacier albedo over large areas, accelerating melt, affecting glacier mass-balance and water resources, and contributing to a positive climate forcing. Radiative transfer modeling constrained by measurements at 5400 m at Mera La indicates that BC concentrations in the winter-spring snow/ice horizons are sufficient to reduce albedo by 6-10% relative to clean snow, corresponding to localized instantaneous radiative forcings of 75-120 W m-2. The other bulk impurity concentrations, when treated separately as dust, reduce albedo by 40-42% relative to clean snow and give localized instantaneous radiative forcings of 488 to 525 W m-2. Adding the BC absorption to the other impurities results in additional radiative forcings of 3 W m-2. While these results suggest that the snow albedo and radiative forcing effect of dust is considerably greater than BC, there are several sources of uncertainty.
Teleka, Stanley; Häggström, Christel; Nagel, Gabriele; Bjørge, Tone; Manjer, Jonas; Ulmer, Hanno; Liedberg, Fredrik; Ghaderi, Sara; Lang, Alois; Jonsson, Håkan; Jahnson, Staffan; Orho-Melander, Marju; Tretli, Steinar; Stattin, Pär; Stocks, Tanja
2018-05-14
Previous studies on metabolic factors and bladder cancer (BC) risk have shown inconsistent results and have commonly not investigated associations separately by sex, smoking, and tumor invasiveness. Among 811 633 participants in six European cohorts, we investigated sex-specific associations between body mass index (BMI), mid-blood pressure (BP, [systolic+diastolic]/2), plasma glucose, triglycerides, total cholesterol and risk of BC overall, non-muscle invasive BC (NMIBC) and muscle invasive BC (MIBC). Among men, we additionally assessed additive interactions between metabolic factors and smoking on BC risk. During follow-up, 2 983 men and 754 women were diagnosed with BC. Among men, triglycerides and BP were positively associated with BC risk overall (hazard ratio [HR] per standard deviation [SD]: 1.17 [95% CI 1.06-1.27] and 1.09 [1.02-1.17], respectively), and among women, BMI was inversely associated with risk (HR: 0.90 [0.82-0.99]). The associations for BMI and BP differed between men and women (P interaction ≤0.005). Among men, BMI, cholesterol and triglycerides were positively associated with risk for NMIBC (HRs: 1.09 [95% CI 1.01-1.18], 1.14 [1.02-1.25], and 1.30 [1.12-1.48] respectively), and BP was positively associated with MIBC (HR: 1.23 [1.02-1.49]). Among women, glucose was positively associated with MIBC (HR: 1.99 [1.04-3.81]). Apart from cholesterol, HRs for metabolic factors did not significantly differ between MIBC and NMIBC, and there were no interactions between smoking and metabolic factors on BC. This study supports an involvement of metabolic aberrations in BC risk. Whilst some associations were significant only in certain sub-groups, there were generally no significant differences in associations by smoking or tumor invasiveness. This article is protected by copyright. All rights reserved. © 2018 UICC.
George, M Anne; Jin, Andrew; Brussoni, Mariana; Lalonde, Christopher E; McCormick, Rod
2015-12-01
Children and youth worldwide are at high risk of injury resulting in morbidity, disability or mortality. Disparities in risk exist between and within countries, and by sex and ethnicity. Our aim is to contribute data on disparities of injury rates for Aboriginal children and youth compared with those of the general population in British Columbia (BC), Canada, by examining risks for the two populations, utilizing provincial administrative data over a 24-year period. Hospital discharge records from the provincial health care database for children and youth were used to identify injury for the years 1986 to 2009. Within the total BC population, the Aboriginal population was identified. Crude rates and standardized relative risks (SRR) of hospitalization were calculated, by year and category of injury type and external cause, and compared to the total BC population for males and females under age 25 years. Over the 24-year period, substantive decreases were found in hospitalization injury risks for children and youth in both Aboriginal and total populations, for both sexes, and for most categories and types of injuries. Risk in overall injury dropped by 69% for the Aboriginal population and by 66% for the total BC population, yet in every year, the Aboriginal population had a higher risk than the total BC population. There were over 70% declines in risks among females of intentionally inflicted injury by another, among both the Aboriginal and total BC populations. Risk of injury caused by transport vehicles has decreased by an overwhelming 83% and 72% for the Aboriginal male population and for the total BC male population, respectively. The over 70% declines in risks for females of intentionally inflicted injury by another, among both the Aboriginal and total BC populations is excellent news. Risk of injury caused by transport vehicles for males decreased overwhelmingly for both populations. Disparities in rates between the Aboriginal population and total BC population remain because of similarity in the proportional reductions among the two populations. Since the Aboriginal population started at a much higher risk, in absolute terms, the gap between the two populations is shrinking.
Body Composition Predicts Growth in Infants and Toddlers With Chronic Liver Disease.
Hurtado-López, Erika F; Vásquez-Garibay, Edgar M; Trujillo, Xóchitl; Larrosa-Haro, Alfredo
2017-12-01
This cross-sectional study was conducted on 15 infants and toddlers with chronic liver disease to validate arm anthropometry as an accurate measure of body composition (BC) compared to dual-energy x-ray absorptiometry and to predict growth from BC. The z score means of the anthropometric indicators were <-2 standard deviation, except for body fat index and subscapular skinfold, which were between -2 and +2 standard deviation. Fat mass was predicted by arm adiposity indicators and fat-free mass by arm muscle area. Bone mineral content explained 87% of variation in length. Two multiple regression models predicted length: 1 with fat mass plus fat-free mass; and the second with fat mass and bone mineral content. These observations suggest that arm anthropometry is a useful tool to estimate BC and the nutritional status in infants and toddlers with chronic liver disease. Length and head circumference can be predicted by fat mass, fat-free mass, and bone mineral content.
Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.
Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C
2016-05-20
Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids
Nichols, S. N.; Hofmann, R. W.; Williams, W. M.; van Koten, C.
2016-01-01
Background and aims Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC1) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Methods Two white clover cultivars, two T. uniflorum accessions and two BC1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Key Results Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100–200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC1 than ‘Crusader’. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50–100 mm deep than the other entries, and more of its fine root mass at 400–500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400–500 mm than most entries, and a smaller decrease in root length density with depth. Conclusions These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. PMID:27208735
Parametric uncertainties in global model simulations of black carbon column mass concentration
NASA Astrophysics Data System (ADS)
Pearce, Hana; Lee, Lindsay; Reddington, Carly; Carslaw, Ken; Mann, Graham
2016-04-01
Previous studies have deduced that the annual mean direct radiative forcing from black carbon (BC) aerosol may regionally be up to 5 W m-2 larger than expected due to underestimation of global atmospheric BC absorption in models. We have identified the magnitude and important sources of parametric uncertainty in simulations of BC column mass concentration from a global aerosol microphysics model (GLOMAP-Mode). A variance-based uncertainty analysis of 28 parameters has been performed, based on statistical emulators trained on model output from GLOMAP-Mode. This is the largest number of uncertain model parameters to be considered in a BC uncertainty analysis to date and covers primary aerosol emissions, microphysical processes and structural parameters related to the aerosol size distribution. We will present several recommendations for further research to improve the fidelity of simulated BC. In brief, we find that the standard deviation around the simulated mean annual BC column mass concentration varies globally between 2.5 x 10-9 g cm-2 in remote marine regions and 1.25 x 10-6 g cm-2 near emission sources due to parameter uncertainty Between 60 and 90% of the variance over source regions is due to uncertainty associated with primary BC emission fluxes, including biomass burning, fossil fuel and biofuel emissions. While the contributions to BC column uncertainty from microphysical processes, for example those related to dry and wet deposition, are increased over remote regions, we find that emissions still make an important contribution in these areas. It is likely, however, that the importance of structural model error, i.e. differences between models, is greater than parametric uncertainty. We have extended our analysis to emulate vertical BC profiles at several locations in the mid-Pacific Ocean and identify the parameters contributing to uncertainty in the vertical distribution of black carbon at these locations. We will present preliminary comparisons of emulated BC vertical profiles from the AeroCom multi-model ensemble and Hiaper Pole-to-Pole (HIPPO) observations.
Andreoli, A; Celi, M; Volpe, S L; Sorge, R; Tarantino, U
2012-01-01
The aim of this retrospective study was to determine the long-term effect of exercise on bone mineral density (BMD), bone mineral content (BMC) and body composition (BC) in post-menopausal women who were elite athletes during their youth compared with sedentary controls. It is a retrospective study and carried out in an outpatient clinic. A total of 48 post-menopausal women (54-73 years of age) were enrolled. Ex-elite athletes with long-term (>20 years) histories of significant training and performance were divided into two groups: weight-bearing sports (runners, n=12) and non-weight-bearing sports (swimmers, n=12). The athletes were age matched with sedentary controls (n=24). BMD, BMC and BC were measured using dual-energy X-ray absorptiometry. Healthcare and sport activity histories were evaluated using a questionnaire. No significant differences were found with regard to body weight, height, body mass index and hours of activity between the two groups of athletes. There were no significant differences in activity levels between athletes and controls at the time of this study. BMD and BMC were not significantly different between athletes; they were significantly higher in athletes than in controls (P<0.001). Although the ex-athletes did not significantly differ in BC, left and right lean arm mass and arm BMD were significantly higher in swimmers than in runners (P<0.0001). The high level of physical activity observed in female athletes is associated with improved muscle mass, BMD and BMC, and physical activity during youth seems to have a beneficial effect on bone mass and helps to prevent bone loss due to aging.
Atlan, Philippe; Bayar, Mohamed Amine; Lanoy, Emilie; Besse, Benjamin; Planchard, David; Ramon, Jordy; Raynard, Bruno; Antoun, Sami
2017-11-01
Advanced non-small cell lung cancer (NSCLC) is associated with weight loss which may reflect skeletal muscle mass (SMM) and/or total adipose tissue (TAT) depletion. This study aimed to describe changes in body composition (BC) parameters and to identify the factors unrelated to the tumor which modulate them. SMM, TAT, and the proportion of SMM to SMM + TAT were assessed with computed tomography. Estimates of each BC parameter at follow-up initiation and across time were derived from a mixed linear model of repeated measurements with a random intercept and a random slope. The same models were used to assess the independent effect of gender, age, body mass index (BMI), and initial values on changes in each BC parameter. Sixty-four patients with stage III or IV NSCLC were reviewed. The mean ± SD decreases in body weight and SMM were respectively 59 ± 3 g/week (P < 0.03) and 7 mm 2 /m 2 /week (P = 0.0003). During follow-up, no changes were identified in TAT nor in muscle density or in the proportion of SMM to SMM + TAT, estimated at 37 ± 2% at baseline. SMM loss was influenced by initial BMI (P < 0.0001) and SMM values (P = 0.0002): the higher the initial BMI or SMM values, the greater the loss observed. Weight loss was greater when the initial weight was heavier (P < 0.0001). Our results demonstrate that SMM wasting in NSCLC is lower when initial SMM and BMI values are low. These exploratory findings after our attempt to better understand the intrinsic factors associated with muscle mass depletion need to be confirmed in larger studies.
NASA Astrophysics Data System (ADS)
Yu, Jianhua; Guinot, Benjamin; Yu, Tong; Wang, Xin; Liu, Wenqing
2005-06-01
Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.
Seasonal Progression of the Deposition of Black Carbon by Snowfall at Ny-Ålesund, Spitsbergen
NASA Astrophysics Data System (ADS)
Sinha, P. R.; Kondo, Y.; Goto-Azuma, K.; Tsukagawa, Y.; Fukuda, K.; Koike, M.; Ohata, S.; Moteki, N.; Mori, T.; Oshima, N.; Førland, E. J.; Irwin, M.; Gallet, J.-C.; Pedersen, C. A.
2018-01-01
Deposition of black carbon (BC) aerosol in the Arctic lowers snow albedo, thus contributing to warming in the region. However, the processes and impacts associated with BC deposition are poorly understood because of the scarcity and uncertainties of measurements of BC in snow with adequate spatiotemporal resolution. We sampled snowpack at two sites (11 m and 300 m above sea level) at Ny-Ålesund, Spitsbergen, in April 2013. We also collected falling snow near the surface with a windsock from September 2012 to April 2013. The size distribution of BC in snowpack and falling snow was measured using a single-particle soot photometer combined with a characterized nebulizer. The BC size distributions did not show significant variations with depth in the snowpack, suggesting stable size distributions in falling snow. The BC number and mass concentrations (
Determination of PM mass emissions from an aircraft turbine engine using particle effective density
NASA Astrophysics Data System (ADS)
Durdina, L.; Brem, B. T.; Abegglen, M.; Lobo, P.; Rindlisbacher, T.; Thomson, K. A.; Smallwood, G. J.; Hagen, D. E.; Sierau, B.; Wang, J.
2014-12-01
Inventories of particulate matter (PM) emissions from civil aviation and air quality models need to be validated using up-to-date measurement data corrected for sampling artifacts. We compared the measured black carbon (BC) mass and the total PM mass determined from particle size distributions (PSD) and effective density for a commercial turbofan engine CFM56-7B26/3. The effective density was then used to calculate the PM mass losses in the sampling system. The effective density was determined using a differential mobility analyzer and a centrifugal particle mass analyzer, and increased from engine idle to take-off by up to 60%. The determined mass-mobility exponents ranged from 2.37 to 2.64. The mean effective density determined by weighting the effective density distributions by PM volume was within 10% of the unit density (1000 kg/m3) that is widely assumed in aircraft PM studies. We found ratios close to unity between the PM mass determined by the integrated PSD method and the real-time BC mass measurements. The integrated PSD method achieved higher precision at ultra-low PM concentrations at which current mass instruments reach their detection limit. The line loss model predicted ∼60% PM mass loss at engine idle, decreasing to ∼27% at high thrust. Replacing the effective density distributions with unit density lead to comparable estimates that were within 20% and 5% at engine idle and high thrust, respectively. These results could be used for the development of a robust method for sampling loss correction of the future PM emissions database from commercial aircraft engines.
Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris
NASA Astrophysics Data System (ADS)
Healy, R. M.; Sciare, J.; Poulain, L.; Kamili, K.; Merkel, M.; Müller, T.; Wiedensohler, A.; Eckhardt, S.; Stohl, A.; Sarda-Estève, R.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.
2012-02-01
An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150-1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65-0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.
NASA Astrophysics Data System (ADS)
Cheng, Siyang; Wang, Yaqiang; An, Xingqin
2017-12-01
Black carbon (BC) is a component of fine particulate matter (PM2.5), associated with climate, weather, air quality, and people's health. However, studies on temporal variation of atmospheric BC concentration at background stations in China and its source area identification are lacking. In this paper, we use 2-yr BC observations from two background stations, Lin'an (LAN) and Longfengshan (LFS), to perform the investigation. The results show that the mean diurnal variation of BC has two significant peaks at LAN while different characteristics are found in the BC variation at LFS, which are probably caused by the difference in emission source contributions. Seasonal variation of monthly BC shows double peaks at LAN but a single peak at LFS. The annual mean concentrations of BC at LAN and LFS decrease by 1.63 and 0.26 μg m-3 from 2009 to 2010, respectively. The annual background concentration of BC at LAN is twice higher than that at LFS. The major source of the LAN BC is industrial emission while the source of the LFS BC is residential emission. Based on transport climatology on a 7-day timescale, LAN and LFS stations are sensitive to surface emissions respectively in belt or approximately circular area, which are dominated by summer monsoon or colder land air flows in Northwest China. In addition, we statistically analyze the BC source regions by using BC observation and FLEXible PARTicle dispersion model (FLEXPART) simulation. In summer, the source regions of BC are distributed in the northwest and south of LAN and the southwest of LFS. Low BC concentration is closely related to air mass from the sea. In winter, the source regions of BC are concentrated in the west and south of LAN and the northeast of the threshold area of s tot at LFS. The cold air mass in the northwest plays an important role in the purification of atmospheric BC. On a yearly scale, sources of BC are approximately from five provinces in the northwest/southeast of LAN and the west of LFS. These findings are helpful in reducing BC emission and controlling air pollution.
Bogdal, Christian; Bucheli, Thomas D; Agarwal, Tripti; Anselmetti, Flavio S; Blum, Franziska; Hungerbühler, Konrad; Kohler, Martin; Schmid, Peter; Scheringer, Martin; Sobek, Anna
2011-05-01
Historical records of total organic carbon (TOC), black carbon (BC), and polycyclic aromatic hydrocarbons (PAHs) were reconstructed in dated sediment cores from four nearby lakes in central Switzerland. In the sub-Alpine Lake Thun, located at 558 m a.s.l., the proximity to anthropogenic emission sources is reflected in higher input of BC and PAHs into sediments with fluxes only slightly decreasing during the last decades. PAH/BC ratios are relatively high and correlation between levels of total PAHs and BC is almost inexistent in Lake Thun, probably due to the presence of less condensed forms of the BC spectrum (char BC) that is underestimated with the chemothermal oxidation method applied in this study. The sediment profiles of TOC, BC, and PAHs are noticeably different in the mountain lakes located around 2000 m a.s.l. In Lake Engstlen, the PAH/BC ratios, as well as the correlation between PAHs and BC, point towards appreciable amounts of predominantly light soot particles. Light soot particles have higher mobility and can, therefore, be efficiently transported to this remote site. The proglacial Lake Oberaar is shown to be a receptor of BC and PAHs released by the fast melting adjacent glacier acting as a secondary source for these conservative species temporarily stored in the glacier ice. Finally, Lake Stein is in strong contrast to all other lakes. High flux of BC into Lake Stein, combined with constant temporal evolutions of BC and PAHs, and in particular BC/TOC ratios approaching 100% are all strong indications for a geogenic presence of graphite in its catchment area.
New Evidence for a Substellar Luminosity Problem: Dynamical Mass for the Brown Dwarf Binary Gl 417BC
NASA Astrophysics Data System (ADS)
Dupuy, Trent J.; Liu, Michael C.; Ireland, Michael J.
2014-08-01
We present new evidence for a problem with cooling rates predicted by substellar evolutionary models that implies that model-derived masses in the literature for brown dwarfs and directly imaged planets may be too high. Based on our dynamical mass for Gl 417BC (L4.5+L6) and a gyrochronology system age from its young, solar-type host star, commonly used models predict luminosities 0.2-0.4 dex lower than we observe. This corroborates a similar luminosity-age discrepancy identified in our previous work on the L4+L4 binary HD 130948BC, which coincidentally has nearly identical component masses (≈50-55 M Jup) and age (≈800 Myr) as Gl 417BC. Such a luminosity offset would cause systematic errors of 15%-25% in model-derived masses at this age. After comparing different models, including cloudless models that should not be appropriate for mid-L dwarfs like Gl 417BC and HD 130948BC but actually match their luminosities better, we speculate the observed overluminosity could be caused by opacity holes (i.e., patchy clouds) in these objects. Moreover, from hybrid substellar evolutionary models that account for cloud disappearance, we infer the corresponding phase of overluminosity may extend from a few hundred million years up to a few gigayears and cause masses to be overestimated by up to 25%, even well after clouds disappear from view entirely. Thus, the range of ages and spectral types affected by this potential systematic shift in luminosity evolution would encompass most known directly imaged gas-giants and field brown dwarfs. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Sahu, L. K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Vay, S. A.; Diskin, G. S.; Wisthaler, A.; Huey, L. G.
2009-12-01
Measurements of black carbon (BC) and other chemical species were made from the NASA DC-8 aircraft during the CARB campaign conducted over California in June 2008. We operated an SP2 system that measured BC and scattering particles. The vertical profiles of BC and scattering particles show enhancements in the lower troposphere. We have used relations of CO-CH3CN-SO2 to identify the sources of major plumes. The plumes originating from anthropogenic activities, mainly due to the use of fossil fuels (FF), were observed near the surface. However, the influence of smoke plumes from wild fire or biomass-burning (BB) sources was observed up to 3 km. Overall, the 1-minute average BC mass concentrations were in the ranges of about 90-500 ng/m3 and 300-700 ng/m3 in FF and BB plumes, respectively. The shell/core diameter ratios were much lagerer in BB plumes than those in FF plumes. Namely, the median shell/core ratios were 1.2-1.4 for FF plumes, while they were 1.4-1.7 for BB plumes. In both FF and BB plumes, the mass-size distributions of BC were single mode lognormal. However, the mass median diameters FF plumes were considerably smaller. The BC-CO2 regression slopes were 19±9 ng m-3/ppmv and 270±90 ng m-3/ppmv for FF and BB plumes, respectively. On the other hand the regression slopes of BC-CO were about 3.3 ng m-3/ppbv in both the plumes. Conversely, the regression slopes of BC with other co-emitted combustions products can be used to estimate the contributions of emissions from different sources.
NASA Astrophysics Data System (ADS)
Wang, Qiyuan; Cao, Junji; Han, Yongming; Tian, Jie; Zhu, Chongshu; Zhang, Yonggang; Zhang, Ningning; Shen, Zhenxing; Ni, Haiyan; Zhao, Shuyu; Wu, Jiarui
2018-04-01
Black carbon (BC) aerosol has important effects on the climate and hydrology of the Tibetan Plateau (TP). An intensive measurement campaign was conducted at Lulang (˜ 3300 m a.s.l. - above sea level), southeastern TP, from September to October 2015, to investigate the sources and physicochemical characteristics of refractory BC (rBC) aerosol. The average rBC mass concentration was 0.31 ± 0.55 µg m-3, which is higher than most prior results for BC on the TP. A clear diurnal cycle in rBC showed high values in the morning and low values in the afternoon. A bivariate polar plot showed that rBC loadings varied with wind speed and direction, which also reflected the dominant transport direction. The estimated net surface rBC transport intensity was +0.05 ± 0.29 µg s-1 m-2, indicating stronger transport from outside the TP compared with its interior. Cluster analysis and a concentration-weighted trajectory model connected emissions from north India to the high rBC loadings, but the effects of internal TP sources should not be overlooked. The average mass median diameter (MMD) of rBC was 160 ± 23 nm, with smaller MMDs on rainy days (145 nm) compared with non-rainy days (164 nm). The average number fraction of thickly coated rBC (FrBC) was 39 ± 8 %, and it increased with the O3 mixing ratios from 10:00 to 14:00 LT, indicating that photochemical oxidation played a role in forming rBC coatings. The average rBC absorption enhancement (Eabs) was estimated to be 1.9, suggesting that light absorption by coated rBC particles was greater than for uncoated ones. The Eabs was strongly positively correlated with the FrBC, indicating an amplification of light absorption for internally mixed rBC. For rBC cores < 170 nm, Eabs was negatively correlated with MMD, but it was nearly constant for rBC cores > 170 nm. Our study provides insight into the sources and evolution of rBC aerosol on the TP, and the results should be useful for improving models of the radiative effects of carbonaceous aerosols in this area.
The Ascension Island boundary layer in the remote southeast Atlantic is often smoky
Zuidema, Paquita; Sedlacek III, Arthur J.; Flynn, Connor; ...
2018-03-31
Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing aerosols (e.g., brown carbon), most pronounced in June. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly-means of 0.78±0.02 (August), 0.81±0.03 (September) andmore » 0.83±0.03 (October) at the green wavelength. Boundary-layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Also, backtrajectories indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.« less
The Ascension Island boundary layer in the remote southeast Atlantic is often smoky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuidema, Paquita; Sedlacek III, Arthur J.; Flynn, Connor
Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing aerosols (e.g., brown carbon), most pronounced in June. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly-means of 0.78±0.02 (August), 0.81±0.03 (September) andmore » 0.83±0.03 (October) at the green wavelength. Boundary-layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Also, backtrajectories indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.« less
NASA Astrophysics Data System (ADS)
Hanna, Sarah J.; Xu, Jun-Wei; Schroder, Jason C.; Wang, Qiaoqiao; McMeeking, Gavin R.; Hayden, Katherine; Leaitch, W. Richard; Macdonald, AnneMarie; von Salzen, Knut; Martin, Randall V.; Bertram, Allan K.
2018-05-01
Measurements of black carbon at remote and high altitude locations provide an important constraint for models. Here we present six months of refractory black carbon (rBC) data collected in July-August of 2009, June-July of 2010, and April-May of 2012 using a single particle soot photometer (SP2) at the remote Whistler High Elevation Research Site in the Coast Mountains of British Columbia (50.06°N, 122.96°W, 2182 m a.m.s.l). In order to reduce regional boundary layer influences, only measurements collected during the night (2000-0800 PST) were considered. Times impacted by local biomass burning were removed from the data set, as were periods of in-cloud sampling. Back trajectories and back trajectory cluster analysis were used to classify the sampled air masses as Southern Pacific, Northern Pacific, Western Pacific/Asian, or Northern Canadian in origin. The largest rBC mass median diameter (182 nm) was seen for air masses in the Southern Pacific cluster, and the smallest (156 nm) was seen for air masses in the Western Pacific/Asian cluster. Considering all the clusters, the median mass concentration of rBC was 25.0 ± 7.6 ng/m3-STP. The Northern Pacific, Southern Pacific, Western Pacific/Asian, and Northern Canada clusters had median mass concentrations of 25.0 ± 7.6, 21.3 ± 6.9, 25.0 ± 7.9, and 40.6 ± 12.9 ng/m3-STP, respectively. We compared these measurements with simulations from the global chemical transport model GEOS-Chem. The default GEOS-Chem simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.2-2.2. The largest difference was observed for the Northern Pacific cluster (factor of 2.2) and the smallest difference was observed for the Northern Canada cluster (factor of 1.2). A sensitivity simulation that excluded Vancouver emissions still overestimated the median rBC mass concentrations for the different clusters by a factor of 1.1-2.0. After implementation of a revised wet scavenging scheme, the simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.0-2.0.
NASA Astrophysics Data System (ADS)
Pochanart, Pakpong; Kato, Shungo; Katsuno, Takao; Akimoto, Hajime
The roles of Eurasian/Siberian continental air masses transport and the impact of large-scale East Asian anthropogenic emissions on tropospheric ozone and carbon monoxide levels in northeast Asia were investigated. Seasonal behaviors of O 3 and CO mixing ratios in background continental (BC) air masses and regionally polluted continental (RPC) air masses were identified using trajectory analyses of Eurasian continental air masses and multi-year O 3 and CO data observed at Happo, a mountain site in Japan. RPC air masses show significantly higher O 3 and CO mixing ratios (annual average of 53.9±6.0 and 200±41 ppb, respectively) than BC air masses (44.4±3.6 and 167±17 ppb, respectively). Large scale anthropogenic emissions in East Asia are suggested to contribute about 10 ppb of photochemical O 3 and 32 ppb of CO at Happo. A comparative study of O 3 and CO observed at other sites, i.e., Oki Islands and Mondy in northeast Asia, showed similarities suggesting that O 3 mixing ratios in BC air masses at Happo could be representative for remote northeast Asia. However, CO mixing ratios in BC air masses at Happo are higher than the background level in Siberia. The overestimate is probably related to an increase in the CO baseline gradient between Siberia and the East Asia Pacific rim, and perturbations by sub-grid scale pollution transport and regional-scale boreal forest fires in Siberia when the background continental air masses are transported to Japan.
Marinoni, A; Cristofanelli, P; Laj, P; Duchi, R; Putero, D; Calzolari, F; Landi, T C; Vuillermoz, E; Maione, M; Bonasoni, P
2013-08-01
To study the influence of polluted air-mass transport carrying ozone (O3) and black carbon (BC) in the high Himalayas, since March 2006 the Nepal Climate Observatory at Pyramid (NCO-P) GAW-WMO global station (Nepal, 5079 m a.s.l.) is operative. During the first 5-year measurements, the O3 and BC concentrations have shown a mean value of 48 +/- 12 ppb (+/- standard deviation) and 208 +/- 374 ng/m3, respectively. Both O3 and BC showed well defined seasonal cycles with maxima during pre-monsoon (O3: 61.3 +/- 7.7 ppbV; BC: 444 +/- 433 ng/m3) and minima during the summer monsoon (O3: 40.1 +/- 12.4 ppbV; BC: 64 +/- 101 ng/m3). The analysis of the days characterised by the presence of a significant BC increase with respect to the typical seasonal cycle identified 156 days affected by "acute" pollution events, corresponding to 9.1% of the entire data-set. Such events mostly occur in the pre-monsoon period, when the O3 diurnal variability is strongly related to the transport of polluted air-mass rich on BC. On average, these "acute" pollution events were characterised by dramatic increases of BC (352%) and O3 (29%) levels compared with the remaining days.
Internally mixed black carbon in the Indo-Gangetic Plain and its effect on absorption enhancement
NASA Astrophysics Data System (ADS)
Thamban, Navaneeth M.; Tripathi, S. N.; Moosakutty, Shamjad P.; Kuntamukkala, Pavan; Kanawade, V. P.
2017-11-01
We present the systematic analysis of individual black carbon (BC) mixing state and its impact on radiative forcing from an urban Indian city, Kanpur, located in Indo-Gangetic Plain (IGP). Simultaneous measurements using Single Particle Soot Photometer (SP2), Photo-Acoustic Soot Spectrometer (PASS-3) and High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) were conducted from 8 January 2015 to 28 February 2015 at Kanpur. BC mass and number concentrations varied between 0.7 and 17 μg/m3 and 277-5866 #/cm3 with a mean of 4.06 μg/m3 and 1314 #/cm3, respectively. The diurnal variation of BC mass concentration showed a traffic hour peak during both the morning and late night. The mean fraction of "thickly coated BC" particles (fTCBC) was found to be 61.6%, indicating that a large fraction of BC particles was internally mixed. The fTCBC increased after sunrise with a peak at about noontime, indicating that the formation of secondary organic aerosol under active photochemistry can enhance organic coating on a core of black carbon. High-resolution positive matrix factorization (HR-PMF) factors showed distinct characteristics with fTCBC. While primary organic aerosols like cooking organic aerosols (COA) and biomass burning organic aerosols (BBOA) were negatively correlated with fTCBC (r = - 0.78 and - 0.51, respectively), aged low volatile oxygenated organic aerosol (LVOOA) was forming a coating over BC (r = 0.6). Similar positive correlation of fTCBC with inorganic species like ammonium (r = 0.58) and nitrate (r = 0.47) further suggested that BC appears to be largely coated with LVOOA, ammonium, and nitrate. A positive correlation between the fTCBC and the mass absorption cross-section at 781 nm (MAC781) was also observed (r = 0.58). Our results suggest that the observed fTCBC could amplify the MAC781 approximately by a factor of 1.8, which may catalyze the positive radiative forcing in the IGP.
Paunescu, A-C; Attoui, M; Bouallala, S; Sunyer, J; Momas, I
2017-07-01
This study aimed to measure in French children personal exposure concentrations of black carbon (BC) and ultrafine particles (UFP) and to quantify the contribution of different microenvironments (home, school, places of extracurricular activities, transport) to their total exposure. It was conducted on 96 9-year-old children from the PARIS birth cohort. BC and UFP were continuously measured by portable devices (microAeth ® AE51 and DiSCmini ® ) for a minimum of 24 hours, while participating families simultaneously filled in a space-time-activities-budget questionnaire. BC exposure concentration was higher during trips (principally metro/train and bus), while UFP exposure concentration was higher during indoor activities (mainly eating at restaurants) and in trips. The most important UFP peaks were measured at home, especially during cooking. Home and school together accounted for much of the total exposure, 83.8% for BC and 85.3% for UFP. The contribution of transport to total exposure was 12.4% for BC and 9.7% for UFP, while extracurricular activities were responsible for 3.8% and 5% of the total exposure to BC and UFP, respectively. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Czimczik, Claudia; Mouteva, Gergana; Simon, Fahrni; Guaciara, Santos; James, Randerson
2014-05-01
Increased fossil fuel consumption and biomass burning are contributing to significantly larger emissions of black carbon (BC) aerosols to the atmosphere. Together with organic carbon (OC), BC is a major constituent of fine particulate matter in urban air, contributes to haze and has been linked to a broad array of adverse health effects. Black carbon's high light absorption capacity and role in key (in-)direct climate feedbacks also lead to a range of impacts in the Earth system (e.g. warming, accelerated snow melt, changes in cloud formation). Recent work suggests that regulating BC emissions can play an important role in improving regional air quality and reducing future climate warming. However, BC's atmospheric transport pathways, lifetime and magnitudes of emissions by sector and region, particularly emissions from large urban centers, remain poorly constrained by measurements. Contributions of fossil and modern sources to the carbonaceous aerosol pool (corresponding mainly to traffic/industrial and biomass-burning/biogenic sources, respectively) can be quantified unambiguously by measuring the aerosol radiocarbon (14C) content. However, accurate 14C-based source apportionment requires the physical isolation of BC and OC, and minimal sample contamination with extraneous carbon or from OC charring. Compound class-specific 14C analysis of BC remains challenging due to very small sample sizes (5-15 ug C). Therefore, most studies to date have only analyzed the 14C content of the total organic carbonaceous aerosol fraction. Here, we present time-series 14C data of BC and OC from the Los Angeles (LA) metropolitan area in California - one of two megacities in the United States - and from Salt Lake City (SLC), UT. In the LA area, we analyzed 48h-PM10 samples near the LA port throughout 2007 and 2008 (with the exception of summer). We also collected monthly-PM2.5 samples at the University of California - Irvine, with shorter sampling periods during regional wildfire activity and Santa Ana winds from March to August 2013. In SLC, we seasonally collected 48h-PM2.5 samples from October 2012 to February 2014. We isolated and quantified BC and OC using a thermo-optical analyzer (RT 3080, Sunset Laboratory, Tigard, OR, USA) with the Swiss_4S protocol, and measured the 14C content of BC and OC with accelerator mass spectrometry at UCI's KCCAMS facility. We also measured the concentration and stable isotope composition of total (organic) carbon and nitrogen on the aerosol filters with EA-IRMS (Carlo Erba coupled to Finnigan DeltaPlus). Preliminary results suggest that in LA, PM10-BC concentrations are on the order of 2-8 ug C/m3. Black carbon is 14C-depleted (FM 0.04-0.21) - indicating that fossil sources dominate emissions. In comparison, OC concentrations were higher (12-17 ugC/m3) and more enriched in 14C (FM 0.54-0.83). In SLC, PM2.5-BC concentrations range from <1 to 3 ug C/m3, with the highest concentrations observed during wintertime inversions. The BC fraction is strongly 14C -depleted (FM 0.06 to 0.12) - indicating a dominance of fossil BC emissions throughout the year. Together, our measurements contribute to a comprehensive quantification of temporal and spatial variations in urban BC, a key uncertainty in constraining BC sources and transport in western North America.
Factors Controlling Black Carbon Deposition in Snow in the Arctic
NASA Astrophysics Data System (ADS)
Qi, L.; Li, Q.; He, C.; Li, Y.
2015-12-01
This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to the representation of BC scavenging efficiency. More measurements are needed to better understand the BC-cloud interaction and to constrain the model.
Ferro- and antiferro-magnetism in (Np, Pu)BC
NASA Astrophysics Data System (ADS)
Klimczuk, T.; Shick, A. B.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Falmbigl, M.; Wastin, F.; Rogl, P.
2015-04-01
Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of {Np,Pu}BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below TN = 44 K, whereas ferromagnetic ordering was found for NpBC below TC = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.
Goswami, Ipsita; Rochow, Niels; Fusch, Gerhard; Liu, Kai; Marrin, Michael L.; Heckmann, Matthias; Nelle, Mathias; Fusch, Christoph
2016-01-01
Objective: Postnatal tissue accretion in preterm infants differs from those in utero, affecting body composition (BC) and lifelong morbidity. Length normalized BC data allows infants with different body lengths to be compared and followed longitudinally. This study aims to analyze BC of preterm and term infants during the first six months of life. Methods: The BC data, measured using dual energy X-ray absorptiometry, of 389 preterm and 132 term infants from four longitudinal studies were combined. Fat-mass/length2 (FMI) and fat-free mass/length2 (FFMI) for postmenstrual age were calculated after reaching full enteral feeding, at term and two further time points up to six months corrected age. Results: Median FMI (preterm) increased from 0.4 kg/m2 at 30 weeks to 2.5, 4.3, and 4.8 kg/m2 compared to 1.7, 4.7, and 6 kg/m2 in term infants at 40, 52, and 64 weeks, respectively. Median FFMI (preterm) increased from 8.5 kg/m2 (30 weeks) to 11.4 kg/m2 (45 weeks) and remained constant thereafter, whereas term FFMI remained constant at 11 kg/m2 throughout the tested time points. Conclusion: The study provides a large dataset of length normalized BC indices. Followed longitudinally, term and preterm infants differ considerably during early infancy in the pattern of change in FMI and FFMI for age. PMID:27399768
Bräunig, Jennifer; Tang, Janet Y M; Warne, Michael St J; Escher, Beate I
2016-08-01
In sediments several binding phases dictate the fate and bioavailability of organic contaminants. Black carbon (BC) has a high sorptive capacity for organic contaminants and can limit their bioavailability, while the fraction bound to organic carbon (OC) is considered to be readily desorbable and bioavailable. We investigated the bioavailability and mixture toxicity of sediment-associated contaminants by combining different extraction techniques with in vitro bioanalytical tools. Sediments from a harbour with high fraction of BC, and sediments from remote, agricultural and urban areas with lower BC were treated with exhaustive solvent extraction, Tenax extraction and passive sampling to estimate total, bioaccessible and bioavailable fractions, respectively. The extracts were characterized with cell-based bioassays that measure dioxin-like activity (AhR-CAFLUX) and the adaptive stress response to oxidative stress (AREc32). Resulting bioanalytical equivalents, which are effect-scaled concentrations, were applied in an effect-balance model, consistent with a mass balance-partitioning model for single chemicals. Sediments containing BC had most of the bioactivity associated to the BC fraction, while the OC fraction played a role for sediments with lower BC. As effect-based sediment-water distribution ratios demonstrated, most of the bioactivity in the AhR-CAFLUX was attributable to hydrophobic chemicals while more hydrophilic chemicals activated AREc32, even though bioanalytical equivalents in the aqueous phase remained negligible. This approach can be used to understand the fate and effects of mixtures of diverse organic contaminants in sediments that would not be possible if single chemicals were targeted by chemical analysis; and make informed risk-based decisions concerning the management of contaminated sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Artíñano, B; Gómez-Moreno, F J; Díaz, E; Amato, F; Pandolfi, M; Alonso-Blanco, E; Coz, E; García-Alonso, S; Becerril-Valle, M; Querol, X; Alastuey, A; van Drooge, B L
2017-09-01
A large and uncontrolled fire of a tire landfill started in Seseña (Toledo, Spain) on May 13, 2016. An experimental deployment was immediately launched in the area for measuring regulated and non-standard air quality parameters to assess the potential impact of the plume at local and regional levels. Outdoor and indoor measurements of different parameters were carried out at a near school, approximately 700m downwind the burning tires. Real time measurements of ambient black carbon (BC) and total number particle concentrations were identified as good tracers of the smoke plume. Simultaneous peaks allowed us to characterize situations of the plume impact on the site. Outdoor total particle number concentrations reached in these occasions 3.8×10 5 particlescm -3 (on a 10min resolution) whereas the indoor concentration was one order of magnitude lower. BC mass concentrations in ambient air were in the range of 2 to 7μgm -3 , whereas concentrations<2μgm -3 were measured indoor. Indoor and outdoor deposited inhalable dust was sampled and chemically characterized. Both indoor and outdoor dust was enriched in tire components (Zn, sulfate) and PAHs associated to the tire combustion process. Infiltration processes have been documented for BC and particle number concentrations causing increases in indoor concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.
Carbon dioxide scrubbing capabilities of two new nonpowered technologies.
Norfleet, William; Horn, Wayne
2003-01-01
Current guidance for survivors aboard a disabled submarine (DISSUB) recommends the use of the "stir-and-fan" method of carbon dioxide (CO2) scrubbing in which the contents of canisters of lithium hydroxide (LiOH) are dispersed onto horizontal surfaces. This technique is objectionable because it releases large quantities of fine, caustic LiOH dust and it utilizes LiOH inefficiently. This report presents the results of laboratory studies of the CO2 scrubbing capabilities of two new products that might improve on "stir-and-fan": the Battelle Curtain (BC) and the Micropore Reactive Plastic Curtain (RPC). Experiments took place within a sealed hyperbaric chamber. CO2 was added to the chamber at a known mass flow that reproduced what might be encountered in a "worst-case" DISSUB scenario. Natural convection alone circulated gas within the chamber. The mass of BCs or RPCs necessary to limit CO2 to 3% for about 2 days was determined. The total scrubbing capacity (mass of CO2 scrubbed per unit mass of agent) of the BC was 0.756 +/- 0.012 (mean +/- SD), and the comparable value for the RPC was 0.808 +/- 0.007. Both products provided a scrubbing capacity that is close to the stoichiometric limit of the reaction (0.919). Neither product released sufficient caustic dust to prevent handling by a trained individual wearing no personal protective equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.
The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less
Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; ...
2014-12-18
The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less
Zhang, Wenjie; Liu, Xiaoning; Wang, Dunqiu; Jin, Yue
2017-11-01
Membrane fouling is a problem in full-scale membrane bioreactors. In this study, bamboo charcoal (BC) was evaluated for its efficacy in alleviating membrane fouling in flat-sheet membrane bioreactors treating municipal wastewater. The results showed that BC addition markedly improved treatment performance based on COD, NH 4 + -N, total nitrogen, and total phosphorus levels. Adding BC slowed the increase in the trans-membrane pressure rate and resulted in lower levels of soluble microbial products and extracellular polymeric substances detected in the flat-sheet membrane bioreactor. BC has a porous structure, and a large quantity of biomass was detected using scanning electron microscopy. The microbial community analysis results indicated that BC increased the microbial diversity and Aminomonas, Anaerofustis, uncultured Anaerolineaceae, Anaerolinea, and Anaerotruncus were found in higher abundances in the reactor with BC. BC addition is an effective method for reducing membrane fouling, and can be applied to full-scale flat-sheet membrane bioreactors to improve their function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oliveira, Paula Duarte de; Wehrmeister, Fernando C; Pérez-Padilla, Rogelio; Gonçalves, Helen; Assunção, Maria Cecília F; Horta, Bernardo Lessa; Gigante, Denise P; Barros, Fernando C; Menezes, Ana Maria Baptista
Overweight/obesity has been reported to worsen pulmonary function (PF). This study aimed to examine the association between PF and several body composition (BC) measures in two population-based cohorts. We performed a cross-sectional analysis of individuals aged 18 and 30 years from two Pelotas Birth Cohorts in southern Brazil. PF was assessed by spirometry. Body measures that were collected included body mass index, waist circumference, skinfold thickness, percentages of total and segmented (trunk, arms and legs) fat mass (FM) and total fat-free mass (FFM). FM and FFM were measured by air-displacement plethysmography (BODPOD) and by dual-energy x-ray absorptiometry (DXA). Associations were verified through linear regressions stratified by sex, and adjusted for weight, height, skin color, and socioeconomic, behavioral, and perinatal variables. A total of 7347 individuals were included in the analyses (3438 and 3909 at 30 and 18 years, respectively). Most BC measures showed a significant positive association between PF and FFM, and a negative association with FM. For each additional percentage point of FM, measured by BOD POD, the forced vital capacity regression coefficient adjusted by height, weight and skin color, at 18 years, was -33 mL (95% CI -38, -29) and -26 mL (95% CI -30, -22), and -30 mL (95% CI -35, -25) and -19 mL (95% CI -23, -14) at 30 years, in men and women, respectively. All the BOD POD regression coefficients for FFM were the same as for the FM coefficients, but in a positive trend (p<0.001 for all associations). All measures that distinguish FM from FFM (skinfold thickness-FM estimation-BOD POD, total and segmental DXA measures-FM and FFM proportions) showed negative trends in the association of FM with PF for both ages and sexes. On the other hand, FFM showed a positive association with PF.
A travel mode comparison of commuters' exposures to air pollutants in Barcelona
NASA Astrophysics Data System (ADS)
de Nazelle, Audrey; Fruin, Scott; Westerdahl, Dane; Martinez, David; Ripoll, Anna; Kubesch, Nadine; Nieuwenhuijsen, Mark
2012-11-01
Daily commutes may contribute disproportionately to overall daily inhalations of urban air contaminants. Understanding factors that explain variability of exposures during travel, and especially differences across transportation modes, is essential to accurately assess health impacts of traffic emissions and to develop effective mitigating measures. We evaluated exposures and inhaled doses of air pollution and assessed factors that contributed to their variability in different travel modes in Barcelona. Black carbon (BC), ultrafine particles (UFP), carbon monoxide (CO), fine particle mass (PM2.5) and carbon dioxide (CO2) were measured and compared across walk, bike, bus, and car modes for a total of 172 trips made on two different round trip routes. On average, the car mode experienced highest concentrations for all contaminants. In pairwise t-tests between concurrent mode runs, statistically significant differences were found for cars compared to walking and biking. Car-to-walk or car-to-bike concentration ratios ranged from 1.3 for CO2 to 25 for CO and were 2-3 for PM2.5, BC, and UFP. In multivariate analyses, travel mode explained the greatest variability in travel exposures, from 8% for PM2.5 to 70% for CO. Different modal patterns emerged when estimating daily inhaled dose, with active commuters' two to three times greater total inhalation volume during travel producing about equal UFP and BC daily inhaled doses to car commuters and 33-50% higher UFP and BC doses compared to bus commuters. These findings, however, are specific to the bike and pedestrian lanes in this study being immediately adjacent to the roadways measured. Dedicated bike or pedestrian routes away from traffic would lead to lower active travel doses.
Comparison and evaluation of in situ and filter carbon measurements at the Fresno Supersite
NASA Astrophysics Data System (ADS)
Watson, John G.; Chow, Judith C.
2002-11-01
The Fresno Supersite in Fresno, California, USA, acquires in situ 5- to 60-min average PM2.5 organic carbon (OC), elemental carbon (EC), and total carbon (TC) measurements by the following methods: (1) thermal evolution carbon analyzer for organic, elemental, and total carbon; (2) single-wavelength and seven-color aethalometer for black carbon (BC); and (3) photoionization for particle-bound polycyclic aromatic hydrocarbons. Twenty-four-hour average PM2.5 filter-based measurements include (1) nondenuded quartz filters with no backup filter in a PM2.5 Federal Reference Method (FRM) sampler; (2) quartz filters behind an organic carbon denuder with a quartz backup filter in a Reference Ambient Aerosol Sampler (RAAS); (3) nondenuded quartz filters with backup filter in a RAAS; and (4) nondenuded quartz filters with no backup filter in a sequential filter sampler. Filter samples are analyzed after sampling by the Interagency Monitoring of Protected Visual Environments (IMPROVE) thermal/optical reflectance carbon analysis protocol. Collocated measurements are examined for year 2000. Measurement equivalence is found for PM2.5 mass, light transmission, and TC between the FRM and RAAS speciation samplers. The average ratios of front filter carbon between the denuded and nondenuded channels in the RAAS sampler are 0.83 ± 0.19 for TC, 0.81 ± 0.20 for OC, and 1.01 ± 0.33 for EC. The average differences for TC and OC are low (1.2 to 1.4 μg m-3) and are comparable to the measurement uncertainties. Continuous thermal evolution carbon measurements are not comparable to filter measurements. Aethalometer BC and filter EC are highly correlated, but filter EC is consistently 20-25% higher than continuous aethalometer BC. Pairwise comparisons show filter EC measurements acquired in this study are predictable from aethalometer BC measurements.
Cattaneo, Raffaela; Rouviere, Christian; Rassoulzadegan, Fereidoun; Weinbauer, Markus G
2010-11-01
Black carbon (BC), the product of incomplete combustion of fossil fuels and biomass, constitutes a significant fraction of the marine organic carbon pool. However, little is known about the possible interactions of BC and marine microorganisms. Here, we report the results of experiments using a standard reference BC material in high concentrations to investigate basic principles of the dynamics of natural bacterial and viral communities with BC particles. We assessed the attachment of viral and bacterial communities using scanning electron, epifluorescence and confocal laser scanning microscopy and shifts in bacterial community composition using 16S rRNA gene denaturing gradient gel electrophoresis (DGGE). In 24-h time-course experiments, BC particles showed a strong potential for absorbing viruses and bacteria. Total viral abundance was reduced, whereas total bacterial abundance was stimulated in the BC treatments. Viral and bacterial abundance on BC particles increased with particle size, whereas the abundances of BC-associated viruses and bacteria per square micrometer surface area decreased significantly with BC particle size. DGGE results suggested that BC has the potential to change bacterial community structure and favour phylotypes related to Glaciecola sp. Our study indicates that BC could influence processes mediated by bacteria and viruses in marine ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Improved perturbative QCD formalism for Bc meson decays
NASA Astrophysics Data System (ADS)
Liu, Xin; Li, Hsiang-nan; Xiao, Zhen-Jun
2018-06-01
We derive the kT resummation for doubly heavy-flavored Bc meson decays by including the charm quark mass effect into the known formula for a heavy-light system. The resultant Sudakov factor is employed in the perutrbative QCD study of the "golden channel" Bc+→J /ψ π+. With a reasonable model for the Bc meson distribution amplitude, which maintains approximate on-shell conditions of both the partonic bottom and charm quarks, it is observed that the imaginary piece of the Bc→J /ψ transition form factor appears to be power suppressed, and the Bc+→J /ψ π+ branching ratio is not lower than 10-3. The above improved perturbative QCD formalism is applicable to Bc meson decays to other charmonia and charmed mesons.
Broers, Natascha J H; Martens, Remy J H; Cornelis, Tom; Diederen, Nanda M P; Wabel, Peter; van der Sande, Frank M; Leunissen, Karel M L; Kooman, Jeroen P
2015-03-01
The assessment of body composition (BC) in dialysis patients is of clinical importance given its role in the diagnosis of malnutrition and sarcopenia. Bioimpedance techniques routinely express BC as a 2-compartment (2-C) model distinguishing fat mass (FM) and fat-free mass (FFM), which may be influenced by the hydration of adipose tissue and fluid overload (OH). Recently, the BC monitor was introduced which applies a 3-compartment (3-C) model, distinguishing OH, adipose tissue mass, and lean tissue mass. The aim of this study was to compare BC between the 2-C and 3-C models and assess their relation with markers of functional performance (handgrip strength [HGS] and 4-m walking test), as well as with biochemical markers of nutrition. Forty-seven dialysis patients (30 males and 17 females) (35 hemodialysis, 12 peritoneal dialysis) with a mean age of 64.8 ± 16.5 years were studied. 3-C BC was assessed by BC monitor, whereas the obtained resistivity values were used to calculate FM and FFM according to the Xitron Hydra 4200 formulas, which are based on a 2-C model. FFM (3-C) was 0.99 kg (95% confidence interval [CI], 0.27 to 1.71, P = .008) higher than FFM (2-C). FM (3-C) was 2.43 kg (95% CI, 1.70-3.15, P < .001) lower than FM (2-C). OH was 1.4 ± 1.8 L. OH correlated significantly with ΔFFM (FFM 3-C - FFM 2-C) (r = 0.361; P < .05) and ΔFM (FM 3-C - FM 2-C) (r = 0.387; P = .009). HGS correlated significantly with FFM (2-C) (r = 0.713; P < .001), FFM (3-C) (r = 0.711; P < .001), body cell mass (2-C) (r = 0.733; P < .001), and body cell mass (3-C) (r = 0.767; P < .001). Both physical activity (r = 0.456; P = .004) and HGS (r = 0.488; P = .002), but not BC, were significantly related to walking speed. Significant differences between 2-C and 3-C models were observed, which are partly explained by the presence of OH. OH, which was related to ΔFFM and ΔFM of the 2-C and 3-C models, is therefore an important parameter for the differences in estimation of BC parameters of the 2-C and 3-C models. Both FFM (3-C) and FFM (2-C) were significantly related to HGS. Bioimpedance, HGS, and the 4-m walking test may all be valuable tools in the multidimensional nutritional assessment of both hemodialysis and peritoneal dialysis patients. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Brem, Benjamin T; Durdina, Lukas; Siegerist, Frithjof; Beyerle, Peter; Bruderer, Kevin; Rindlisbacher, Theo; Rocci-Denis, Sara; Andac, M Gurhan; Zelina, Joseph; Penanhoat, Olivier; Wang, Jing
2015-11-17
Aircraft engines emit particulate matter (PM) that affects the air quality in the vicinity of airports and contributes to climate change. Nonvolatile PM (nvPM) emissions from aircraft turbine engines depend on fuel aromatic content, which varies globally by several percent. It is uncertain how this variability will affect future nvPM emission regulations and emission inventories. Here, we present black carbon (BC) mass and nvPM number emission indices (EIs) as a function of fuel aromatic content and thrust for an in-production aircraft gas turbine engine. The aromatics content was varied from 17.8% (v/v) in the neat fuel (Jet A-1) to up to 23.6% (v/v) by injecting two aromatic solvents into the engine fuel supply line. Fuel normalized BC mass and nvPM number EIs increased by up to 60% with increasing fuel aromatics content and decreasing engine thrust. The EIs also increased when fuel naphthalenes were changed from 0.78% (v/v) to 1.18% (v/v) while keeping the total aromatics constant. The EIs correlated best with fuel hydrogen mass content, leading to a simple model that could be used for correcting fuel effects in emission inventories and in future aircraft engine nvPM emission standards.
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Kreidenweis, S. M.; Yokelson, R. J.; Sullivan, A. P.; Lee, T.; Collett, J. L.; Fortner, E.; Onasch, T. B.; Akagi, S. K.; Taylor, J.; Coe, H.
2012-12-01
Black carbon (BC) aerosol emitted from fires absorbs light, leading to visibility degradation as well as regional and global climate impacts. Fires also emit a wide range of trace gases and particulates that can interact with emitted BC and alter its optical properties and atmospheric lifetime. Non-BC particulate species emitted by fires can also scatter and absorb light, leading to additional effects on visibility. Recent work has shown that certain organic species can absorb light strongly at shorter wavelengths, giving it a brown or yellow color. This material has been classified as brown carbon, though it is not yet well defined. Land managers must find a balance between the negative impacts of prescribed fire emissions on visibility and air quality and the need to prevent future catastrophic wildfire as well as manage ecosystems for habitat restoration or other purposes. This decision process requires accurate assessments of the visibility impacts of fire emissions, including BC and brown carbon, which in turn depend on their optical properties. We present recent laboratory and aircraft measurements of black carbon and aerosol optical properties emitted from biomass burning. All measurement campaigns included a single particle soot photometer (SP2) instrument capable of providing size-resolved measurements of BC mass and number distributions and mixing state, which are needed to separate the BC and brown carbon contributions to total light absorption. The laboratory experiments also included a three-wavelength photoacoustic spectrometer that provided accurate measurements of aerosol light absorption. The laboratory systems also characterized emissions after they had been treated with a thermal denuder to remove semi-volatile coatings, allowing an assessment of the role of non-BC coatings on bulk aerosol optical properties. Emissions were also aged in an environmental smog chamber to examine the role of secondary aerosol production on aerosol optical properties.
The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky
NASA Astrophysics Data System (ADS)
Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor; Springston, Stephen; Delgadillo, Rodrigo; Zhang, Jianhao; Aiken, Allison C.; Koontz, Annette; Muradyan, Paytsar
2018-05-01
Observations from June to October 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. The rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass are approximately double that calculated from black carbon in lab studies. A spectrally-flat absorption angstrom exponent suggests most of the light absorption is from lens-coated black carbon. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly means of 0.78 ± 0.02 (August), 0.81 ± 0.03 (September), and 0.83 ± 0.03 (October) at the green wavelength. Boundary layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August 2016, is investigated further. Backtrajectories that indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.
Cheng, Yu-Hsiang; Yang, Li-Sing
2016-07-08
Information on the effect of open-field burning of agricultural residues on ambient black carbon (BC) mass and size-resolved particle number concentrations is scarce. In this study, to understand the effect of such open-field burning on short-term air quality, real-time variations of the BC mass and size-resolved particle number concentrations were monitored before and during a corn straw open-field burning episode at a rural site. Correlations between the BC mass and size-resolved particle number concentrations during the episode were investigated. Moreover, the particle number size distribution and absorption Ångström exponent were determined for obtaining the characteristics of aerosol emissions from the corn straw open-field burning. The results can be used to address public health concerns and as a reference for managing similar episodes of open-field burning of agricultural residues.
Black Carbon Emissions from In-use Ships: Results from CalNex 2010
NASA Astrophysics Data System (ADS)
Buffaloe, Gina Marise
Black carbon (BC) mass emission factors (EFBC; g-BC (kg-fuel)--1) from a variety of ocean going vessels have been determined from measurements of BC and CO2 concentrations in ship plumes intercepted by the R/V Atlantis during the 2010 California Nexus (CalNex) campaign. The ships encountered were all operating within 24 nautical miles of the California coast and were utilizing relatively low sulphur fuels. Black carbon concentrations within the plumes, from which EFBC values are determined, were measured using four independent instruments: a photoacoustic spectrometer and a particle soot absorption photometer, which measure light absorption, and a single particle soot photometer and soot particle aerosol mass spectrometer, which measure the mass concentration of refractory BC directly. The measured EFBC have been divided into vessel type categories and engine type categories, from which averages have been determined. The geometric average EFBC, determined from over 71 vessels and 135 plumes encountered, was 0.31 g-BC (kg-fuel)--1. The most frequent engine type encountered was the slow speed diesel (SSD), and the most frequent SSD vessel type was the cargo ship sub-category. Average and median EF BC values from these two categories are compared to previous observations from the Texas Air Quality Study (TexAQS) in 2006, in which the ships encountered were predominately operating high sulphur fuels. There is some indication that the EFBC values for SSD vessels during CalNex were lower than during TexAQS, although ship-to-ship variability in these data sets makes it difficult to draw firm conclusions about the influence of fuel quality on EFBC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onasch, Timothy B; Sedlacek, Arthur J
The scientific focus of this study was to investigate and quantify the mass loadings, chemical compositions, and optical properties of biomass burning particulate emissions generated in the laboratory from Western U.S. fuels using a similar instrument suite to the one deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study (Kleinman and Sedlacek, 2013). We deployed the single-particle soot photometer (SP2) to make measurements of biomass burning refractory black carbon (rBC) mass loadings and size distributions to correlate with non-refractory particulate mattermore » (NR-PM; i.e., HR-AMS) and rBC (SP-AMS) measurements as a function of photo-oxidation processes in an environmental chamber. With these measurements, we will address the following scientific questions: 1. What are the emission indices (g/kg fuel) of rBC from various wildland fuels from the Pacific Northwest (i.e., relevant to BBOP analysis) as a function of combustion conditions and simulated atmospheric processing in an environmental chamber? 2. What are the optical properties (e.g., mass-specific absorption cross-section [MAC], single-scattering albedo [SSA], and absorption Angstrom exponent [AAE)] of rBC emitted from various wildland fuels and how are they impacted by atmospheric processing? 3. How does the mixing state of rBC in biomass-burning plumes relate to the optical properties? 4. How does the emitted rBC affect radiative forcing?« less
Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J
2015-06-01
Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating conditions. During specific idle engine operation without EGR and adjusted fueling conditions, brown carbon can be formed in significant amounts, requiring careful management tactics. Control technologies for particulate matter are very effective for light-absorbing carbon, reducing black carbon emissions to near zero for modern engines equipped with a DPF. Efforts to control atmospheric brown carbon need to focus on other sources other than modern diesel engines, such as biomass burning.
Correlation of mammographic density and serum calcium levels in patients with primary breast cancer.
Hack, Carolin C; Stoll, Martin J; Jud, Sebastian M; Heusinger, Katharina; Adler, Werner; Haeberle, Lothar; Ganslandt, Thomas; Heindl, Felix; Schulz-Wendtland, Rüdiger; Cavallaro, Alexander; Uder, Michael; Beckmann, Matthias W; Fasching, Peter A; Bayer, Christian M
2017-06-01
Percentage mammographic breast density (PMD) is one of the most important risk factors for breast cancer (BC). Calcium, vitamin D, bisphosphonates, and denosumab have been considered and partly confirmed as factors potentially influencing the risk of BC. This retrospective observational study investigated the association between serum calcium level and PMD. A total of 982 BC patients identified in the research database at the University Breast Center for Franconia with unilateral BC, calcium and albumin values, and mammogram at the time of first diagnosis were included. PMD was assessed, using a semiautomated method by two readers. Linear regression analyses were conducted to investigate the impact on PMD of the parameters of serum calcium level adjusted for albumin level, and well-known clinical predictors such as age, body mass index (BMI), menopausal status and confounder for serum calcium like season in which the BC was diagnosed. Increased calcium levels were associated with reduced PMD (P = 0.024). Furthermore, PMD was inversely associated with BMI (P < 0.001) and age (P < 0.001). There was also an association between PMD and menopausal status (P < 0.001). The goodness-of-fit of the regression model was moderate. This is the first study assessing the association between serum calcium level and PMD. An inverse association with adjusted serum calcium levels was observed. These findings add to previously published data relating to vitamin D, bisphosphonates, denosumab, and the RANK/RANKL signaling pathway in breast cancer risk and prevention. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Jacobson, Mark Z.
2012-03-01
This study examines modeled properties of black carbon (BC), tar ball (TB), and soil dust (SD) absorption within clouds and aerosols to understand better Cloud Absorption Effects I and II, which are defined as the effects on cloud heating of absorbing inclusions in hydrometeor particles and of absorbing aerosol particles interstitially between hydrometeor particles at their actual relative humidity (RH), respectively. The globally and annually averaged modeled 550 nm aerosol mass absorption coefficient (AMAC) of externally mixed BC was 6.72 (6.3-7.3) m2/g, within the laboratory range (6.3-8.7 m2/g). The global AMAC of internally mixed (IM) BC was 16.2 (13.9-18.2) m2/g, less than the measured maximum at 100% RH (23 m2/g). The resulting AMAC amplification factor due to internal mixing was 2.41 (2-2.9), with highest values in high RH regions. The global 650 nm hydrometeor mass absorption coefficient (HMAC) due to BC inclusions was 17.7 (10.6-19) m2/g, ˜9.3% higher than that of the IM-AMAC. The 650 nm HMACs of TBs and SD were half and 1/190th, respectively, that of BC. Modeled aerosol absorption optical depths were consistent with data. In column tests, BC inclusions in low and mid clouds (CAE I) gave column-integrated BC heating rates ˜200% and 235%, respectively, those of interstitial BC at the actual cloud RH (CAE II), which itself gave heating rates ˜120% and ˜130%, respectively, those of interstitial BC at the clear-sky RH. Globally, cloud optical depth increased then decreased with increasing aerosol optical depth, consistent with boomerang curves from satellite studies. Thus, CAEs, which are largely ignored, heat clouds significantly.
NASA Astrophysics Data System (ADS)
Kompalli, Sobhan Kumar; Suresh Babu, S.; Krishna Moorthy, K.; Nair, Vijayakumar S.; Gogoi, Mukunda M.; Chaubey, Jai Prakash
2013-01-01
Synthesizing data from several cruise experiments over the Bay of Bengal (BoB), the seasonal characterization of aerosol black carbon (BC) mass concentration was made. The study indicated that the BC mass concentration (MBC) showed significant seasonal variation over the oceanic region with MBC being the highest during the winter season (˜2407 ± 1756 ng m-3) and lowest in summer monsoon (˜765 ± 235 ng m-3). The seasonal changes in the BC mass concentration were more prominent over the northern BoB (having an annual amplitude of ˜4) compared to southern BoB (amplitude ˜ 2). Significant spatial gradients in MBC, latitudinal as well as longitudinal, existed in all the seasons. Latitudinal gradients, despite being consistently increasing northwards, were found to be sharper during winter and weakest during summer monsoon with e-fold scaling distances of ˜7.7° and ˜15.6° during winter and summer monsoon seasons respectively. Longitudinally, BC concentrations tend to increase toward east during winter and premonsoon seasons, but an opposite trend was seen in monsoon season highlighting the seasonally changing source impacts on BC loading over BoB. Examination of the results in light of possible role of transport from adjoining landmasses, using airmass back trajectory cluster analysis, also supported spatially and temporally varying source influence on oceanic region.
Solitary waves in dimer binary collision model
NASA Astrophysics Data System (ADS)
Ahsan, Zaid; Jayaprakash, K. R.
2017-01-01
Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.
Waqas, Muhammad; Kim, Yoon-Ha; Khan, Abdul Latif; Shahzad, Raheem; Asaf, Sajjad; Hamayun, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Lee, In-Jung
2017-01-01
We studied the effects of hardwood-derived biochar (BC) and the phytohormone-producing endophyte Galactomyces geotrichum WLL1 in soybean (Glycine max (L.) Merr.) with respect to basic, macro-and micronutrient uptakes and assimilations, and their subsequent effects on the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging activity. The assimilation of basic nutrients such as nitrogen was up-regulated, leaving carbon, oxygen, and hydrogen unaffected in BC+G. geotrichum-treated soybean plants. In comparison, the uptakes of macro-and micronutrients fluctuated in the individual or co-application of BC and G. geotrichum in soybean plant organs and rhizospheric substrate. Moreover, the same attribute was recorded for the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and DPPH-scavenging activity. Collectively, these results showed that BC+G. geotrichum-treated soybean yielded better results than did the plants treated with individual applications. It was concluded that BC is an additional nutriment source and that the G. geotrichum acts as a plant biostimulating source and the effects of both are additive towards plant growth promotion. Strategies involving the incorporation of BC and endophytic symbiosis may help achieve eco-friendly agricultural production, thus reducing the excessive use of chemical agents. PMID:28124840
Composition and Sources of Fine and Coarse Particles Collected during 2002–2010 in Boston, MA
Masri, Shahir; Kang, Choong-Min; Koutrakis, Petros
2016-01-01
Identifying the sources, composition, and temporal variability of fine (PM2.5) and coarse (PM2.5-10) particles is a crucial component in understanding PM toxicity and establishing proper PM regulations. In this study, a Harvard Impactor was used to collect daily integrated fine and coarse particle samples every third day for nine years at a single site in Boston, MA. A total of 1,960 filters were analyzed for elements, black carbon (BC), and total PM mass. Positive Matrix Factorization (PMF) was used to identify source types and quantify their contributions to ambient PM2.5 and PM2.5-10. BC and 17 elements were identified as the main constituents in our samples. Results showed that BC, S, and Pb were associated exclusively with the fine particle mode, while 84% of V and 79% of Ni were associated with this mode. Elements mostly found in the coarse mode, over 80%, included Ca, Mn (road dust), and Cl (sea salt). PMF identified six source types for PM2.5 and three source types for PM2.5-10. Source types for PM2.5 included regional pollution, motor vehicles, sea salt, crustal/road dust, oil combustion, and wood burning. Regional pollution contributed the most, accounting for 48% of total PM2.5 mass, followed by motor vehicles (21%) and wood burning (19%). Source types for PM2.5-10 included crustal/road dust (62%), motor vehicles (22%), and sea salt (16%). A linear decrease in PM concentrations with time was observed for both fine (−5.2%/yr) and coarse (−3.6%/yr) particles. The fine-mode trend was mostly related to oil combustion and regional pollution contributions. Average PM2.5 concentrations peaked in summer (10.4 μg/m3) while PM2.5-10 concentrations were lower and demonstrated little seasonal variability. The findings of this study show that PM25 is decreasing more sharply than PM2.5-10 over time. This suggests the increasing importance of PM2.5-10 and traffic-related sources for PM exposure and future policies. PMID:25947125
Global emission of black carbon from motor vehicles from 1960 to 2006.
Wang, Rong; Tao, Shu; Shen, Huizhong; Wang, Xilong; Li, Bengang; Shen, Guofeng; Wang, Bin; Li, Wei; Liu, Xiaopeng; Huang, Ye; Zhang, Yanyan; Lu, Yan; Ouyang, Huiling
2012-01-17
Black carbon (BC) is a key short-lived climate change forcer. Motor vehicles are important sources of BC in the environment. BC emission factors (EF(BC)), defined as BC emitted per mass of fuel consumed, are critical in the development of BC emission inventories for motor vehicles. However, measured EF(BC) for motor vehicles vary in orders of magnitude, which is one of the major sources of uncertainty in the estimation of emissions. In this study, the main factors affecting EF(BC) for motor vehicles were investigated based on 385 measured EF(BC) collected from the literature. It was found that EF(BC) for motor vehicles of a given year in a particular country can be predicted using gross domestic product per capita (GDP(c)), temperature, and the year a country's GDP(c) reached 3000 USD (Y(3000)). GDP(c) represents technical progress in terms of emission control, while Y(3000) suggest the technical transfer from developed to developing countries. For global BC emission calculations, 87 and 64% of the variation can be eliminated for diesel and gasoline vehicles by using this model. In addition to a reduction in uncertainty, the model can be used to develop a global on-road vehicle BC emission inventory with spatial and temporal resolution.
HD-SP2 Measurements of Black Carbon Containing Aerosols in South Korea during KORUS-AQ
NASA Astrophysics Data System (ADS)
Lamb, K. D.; Perring, A. E.; Ahn, J.; Schwarz, J. P.
2016-12-01
Black carbon (BC) is a light-absorbing aerosol with strong anthropogenic sources that has important climatic and health impacts, both regionally and globally. Materials internally mixed with BC, including water, affect its optical properties and lifetime in the atmosphere, and thus are critical to determining BC's ultimate impacts. The NASA KORUS-AQ campaign during the spring/summer of 2016 was a multi-platform research campaign focused on air quality over South Korea, in a region with particularly high BC emissions and loadings. The NOAA Humidified-Dual Single Particle Soot Photometer (HD-SP2) was deployed on the NASA DC-8 aircraft to measure the optical size and refractory BC content of individual particles under dry and humidified conditions as well as the BC mass mixing ratio. We focus on evaluating BC MMR in the free troposphere up to 400 hPa in the context of previous measurements; assessing the optical impacts of observed internal mixtures with BC at different times of day; and evaluating the contribution of water uptake on BC absorption and atmospheric lifetime over Korea in ambient conditions.
NASA Astrophysics Data System (ADS)
Kuhlbusch, T. A. J.; John, A. C.; Fissan, H.
PM10, PM2.5, and Black Carbon (BC) mass concentrations as well as number size distributions were measured quasi-online at a rural sampling site from 18 September to 17 October 1997. Average PM10, PM2.5, and BC mass concentrations were 37 ± 25, 25 ± 23, and 2 ± 1 μgm -3, respectively. All determined aerosol characteristics showed significant diurnal variations with generally higher concentrations during daytime compared to nights. Maxima in mass concentrations were around 11 AM and 8 PM during weekdays, most likely caused by commuter traffic. Decreased mass concentrations, changes in chemical composition and size distribution have been observed for the time from 12 to 5 PM. Diurnal variations of the BC/PM2.5 mass ratio revealed a minimum between 12 and 4 PM. The ratio of particle volume (0.5-2.5 μm) to particle mass (PM2.5) called 'potential density' also showed significant diurnal changes. These changes could be attributed to increasing in mixing height and windspeed. The determined diurnal variations in particle mass, composition, and size distribution may be relevant for epidemiological studies. We propose that diurnally weighted averages of relevant aerosol characteristics, which take diurnal patterns of human activities into account, should be used in epidemiological studies.
Gracia-Marco, L; Vicente-Rodríguez, G; Borys, J M; Le Bodo, Y; Pettigrew, S; Moreno, L A
2011-04-01
To review child and adolescent obesity prevention programmes to determine whether they have included the Social Marketing Benchmark Criteria (BC). In addition, we analysed whether there was a relationship between the presence of the criteria and the effectiveness of the programme. Interventions had to be aimed at preventing obesity through behaviour changes relating to diet, physical activity, lifestyle and social support, separately or in combination. A total of 41 interventions were identified in PubMed and Embase that fulfilled the inclusion criteria. The more recent the studies, the greater the number of the BC that seem to have been used. However, regarding behaviour changes, we found the most effective period to be 1997-2002, with 100% of the interventions resulting in behaviour changes (9/9). In addition, almost all interventions resulted in improvements in body composition variables: 5 of 6 for body mass index or overweight/obesity prevalence and 6 of 6 for skin-folds. The presence of a higher number of BC does not assure higher effectiveness. Further research is required in this field. At the moment, studies aimed at preventing obesity in children and adolescents have not included social marketing aspects in their interventions in a comprehensive manner.
Ferreira, L; Sánchez-Juanes, F; Porras-Guerra, I; García-García, M I; García-Sánchez, J E; González-Buitrago, J M; Muñoz-Bellido, J L
2011-04-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows a fast and reliable bacterial identification from culture plates. Direct analysis of clinical samples may increase its usefulness in samples in which a fast identification of microorganisms can guide empirical treatment, such as blood cultures (BC). Three hundred and thirty BC, reported as positive by the automated BC incubation device, were processed by conventional methods for BC processing, and by a fast method based on direct MALDI-TOF MS. Three hundred and eighteen of them yield growth on culture plates, and 12 were false positive. The MALDI-TOF MS-based method reported that no peaks were found, or the absence of a reliable identification profile, in all these false positive BC. No mixed cultures were found. Among these 318 BC, we isolated 61 Gram-negatives (GN), 239 Gram-positives (GP) and 18 fungi. Microorganism identifications in GN were coincident with conventional identification, at the species level, in 83.3% of BC and, at the genus level, in 96.6%. In GP, identifications were coincident with conventional identification in 31.8% of BC at the species level, and in 64.8% at the genus level. Fungaemia was not reliably detected by MALDI-TOF. In 18 BC positive for Candida species (eight C. albicans, nine C. parapsilosis and one C. tropicalis), no microorganisms were identified at the species level, and only one (5.6%) was detected at the genus level. The results of the present study show that this fast, MALDI-TOF MS-based method allows bacterial identification directly from presumptively positive BC in a short time (<30 min), with a high accuracy, especially when GN bacteria are involved. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.
How shorter black carbon lifetime alters its climate effect.
Hodnebrog, Øivind; Myhre, Gunnar; Samset, Bjørn H
2014-09-25
Black carbon (BC), unlike most aerosol types, absorbs solar radiation. However, the quantification of its climate impact is uncertain and presently under debate. Recently, attention has been drawn both to a likely underestimation of global BC emissions in climate models, and an overestimation of BC at high altitudes. Here we show that doubling present day BC emissions in a model simulation, while reducing BC lifetime based on observational evidence, leaves the direct aerosol effect of BC virtually unchanged. Increased emissions, together with increased wet removal that reduces the lifetime, yields modelled BC vertical profiles that are in strongly improved agreement with recent aircraft observations. Furthermore, we explore the consequences of an altered BC profile in a global circulation model, and show that both the vertical profile of BC and rapid climate adjustments need to be taken into account in order to assess the total climate impact of BC.
Baumgartner, Jill; Zhang, Yuanxun; Schauer, James J; Huang, Wei; Wang, Yuqin; Ezzati, Majid
2014-09-09
Air pollution in China and other parts of Asia poses large health risks and is an important contributor to global climate change. Almost half of Chinese homes use biomass and coal fuels for cooking and heating. China's economic growth and infrastructure development has led to increased emissions from coal-fired power plants and an expanding fleet of motor vehicles. Black carbon (BC) from incomplete biomass and fossil fuel combustion is the most strongly light-absorbing component of particulate matter (PM) air pollution and the second most important climate-forcing human emission. PM composition and sources may also be related to its human health impact. We enrolled 280 women living in a rural area of northwestern Yunnan where biomass fuels are commonly used. We measured their blood pressure, distance from major traffic routes, and daily exposure to BC (pyrolytic biomass combustion), water-soluble organic aerosol (organic aerosol from biomass combustion), and, in a subset, hopane markers (motor vehicle emissions) in winter and summer. BC had the strongest association with systolic blood pressure (SBP) (4.3 mmHg; P < 0.001), followed by PM mass and water-soluble organic mass. The effect of BC on SBP was almost three times greater in women living near the highway [6.2 mmHg; 95% confidence interval (CI), 3.6 to 8.9 vs. 2.6 mmHg; 95% CI, 0.1 to 5.2]. Our findings suggest that BC from combustion emissions is more strongly associated with blood pressure than PM mass, and that BC's health effects may be larger among women living near a highway and with greater exposure to motor vehicle emissions.
NASA Astrophysics Data System (ADS)
Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.
2003-10-01
During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T>550ºC) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) mass concentrations were on average respectively 1.19±0.56 and 3.62±1.08 mgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 mgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope=1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these two methods for determining BC brings here new insights on the origin of carbonaceous aerosols in a complex mixture of different sources. It brings also to our attention that important deviations in BC levels are observed using three widely used EGA's techniques and most probably none of the EGA tested here are well adapted to fully characterize this aerosol mixture. Spherical, smooth and silico-aluminated fly-ash observed by an Analytical Scanning Electron Microscope (ASEM) confirm the influence of coal combustion on the carbonaceous aerosol load throughout the campaign. A rough calculation based on a BC/nss-SO4 mass ratio suggests that biomass burning could be responsible for half of the BC concentration recorded during the MINOS campaign. From the plot of BC as a function of TC, two linear correlations were observed corresponding to 2 times series (before and after 12 August). Such good correlations suggest, from a first look, that both BC and OC have similar origin and atmospheric transport. On the other hand, the plot of BC as a function of TC obtained from the 2-step thermal method applied to DEKATI Low Pressure Cascade Impactor samples does not show a similar correlation and points out a non conservative distribution of this ratio with 2 super micron modes enriched in OC, correlated with sea salt aerosols and probably originating from gas-to-particle conversion.
Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; ...
2016-04-05
Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (d me), enabling application for microphysical studies. However, the removal of particles ≤100 nm d me is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less
Vierkant, Robert A; Degnim, Amy C; Radisky, Derek C; Visscher, Daniel W; Heinzen, Ethan P; Frank, Ryan D; Winham, Stacey J; Frost, Marlene H; Scott, Christopher G; Jensen, Matthew R; Ghosh, Karthik; Manduca, Armando; Brandt, Kathleen R; Whaley, Dana H; Hartmann, Lynn C; Vachon, Celine M
2017-01-31
Atypical hyperplasia (AH) and mammographic breast density (MBD) are established risk factors for breast cancer (BC), but their joint contributions are not well understood. We examine associations of MBD and BC by histologic impression, including AH, in a subcohort of women from the Mayo Clinic Benign Breast Disease Cohort. Women with a diagnosis of BBD and mammogram between 1985 and 2001 were eligible. Histologic impression was assessed via pathology review and coded as non-proliferative disease (NP), proliferative disease without atypia (PDWA) and AH. MBD was assessed clinically using parenchymal pattern (PP) or BI-RADS criteria and categorized as low, moderate or high. Percent density (PD) was also available for a subset of women. BC and clinical information were obtained by questionnaires, medical records and the Mayo Clinic Tumor Registry. Women were followed from date of benign biopsy to BC, death or last contact. Standardized incidence ratios (SIRs) compared the observed number of BCs to expected counts. Cox regression estimated multivariate-adjusted MBD hazard ratios. Of the 6271 women included in the study, 1132 (18.0%) had low MBD, 2921 (46.6%) had moderate MBD, and 2218 (35.4%) had high MBD. A total of 3532 women (56.3%) had NP, 2269 (36.2%) had PDWA and 470 (7.5%) had AH. Over a median follow-up of 14.3 years, 528 BCs were observed. The association of MBD and BC risk differed by histologic impression (p-interaction = 0.03), such that there was a strong MBD and BC association among NP (p < 0.001) but non-significant associations for PDWA (p = 0.27) and AH (p = 0.96). MBD and BC associations for AH women were not significant within subsets defined by type of MBD measure (PP vs. BI-RADS), age at biopsy, number of foci of AH, type of AH (lobular vs. ductal) and body mass index, and after adjustment for potential confounding variables. Women with atypia who also had high PD (>50%) demonstrated marginal evidence of increased BC risk (SIR 4.98), but results were not statistically significant. We found no evidence of an association between MBD and subsequent BC risk in women with AH.
Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G
2015-02-01
A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated that emission of soot particles may be localized to fossil fuel combustion, whereas wood/biomass burning emission of black carbon is due to transportation from farther distances. Regression analysis between eBCff and CO (r = 0.44) indicated a similar source as vehicular emissions. The very high loading of PM2.5 along with eBC over Delhi suggests that urgent action is needed to mitigate the emissions of carbonaceous aerosol in the northern part of India.
Gong, Wenwen; Liu, Xinhui; Xia, Shuhua; Liang, Baocui; Zhang, Wei
2016-06-05
Dinitroaniline herbicides such as trifluralin and pendimethalin are persistent bioaccumulative toxins to aquatic organisms. Thus, in-situ remediation of contaminated sediments is desired. This study investigated whether black carbons (BCs), including apple wood charcoal (BC1), rice straw biochar (BC2), and activated carbon (BC3), could facilitate abiotic reduction of trifluralin and pendimethalin by sulfides of environmentally-relevant concentrations in anoxic coastal sediments. The reduction rates of trifluralin and pendimethalin increased substantially with increasing BC dosages in the sediments. This enhancing effect was dependent on BC type with the greatest for BC3 followed by BC1 and BC2, which well correlated with their specific surface area. The pseudo-first order reduction rate constants (kobs) for BC3-amended sediment (2%) were 13- and 14 times the rate constants in the BC-free sediment. The reduction rates increased with increasing temperature from 8 to 25°C in the BC-amended sediment, following the Arrhenius relationship. Finally, through molecular modeling by density functional theory and reaction species identification from mass spectra, molecular pathways of trifluralin and pendimethalin reduction were elucidated. In contrary to the separate sequential reduction of each nitro group to amine group, both nitro groups, first reduced to nitroso, then eventually to amine groups. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Subba, T.; Pathak, B.
2016-12-01
The North-East Indian Region (NER) (22-30ºN, 89-98ºE) in south Asia sandwiched between two global biodiversity hotspots namely, Himalaya and Indo-Burma, assumes significance owing to its unique topography with mountains in the north, east and south and densely populated Indo Gangetic plains (IGP) towards the west resulting in complex aerosol system. Multi-year (2010-2014) concurrent measurements of aerosol properties and the shortwave radiation budget are examined over four geographically distinct stations of NER operational under Indian Space Research organization's ARFINET (Aerosol Radiative Forcing over India NETwork). An attempt has been made to lessen the ambiguity of forcing estimation by validating the radiative transfer modelled ARF with the CNR4 net radiometer measured values (r2 0.98). The Normalized Difference Vegetation Index and its dependence on the extinction of the photosynthetically active radiation (PAR) due to aerosol are assessed. The spring time enhancement of aerosols in the column has shown significant surface cooling (ARF = -48 ± 5 Wm-2) over the region, while the very high Black Carbon (BC) mass concentrations near the surface (SSA > 0.8) leads to significant atmospheric warming (ARF = +41 ± 7 Wm-2) in the shortwave range. Radiative forcing estimates reveal that the atmospheric forcing by BC could be as high as +30Wm-2 over the western part, which are significantly higher than the eastern part with a consequent heating rate of 1.5 K day-1 revealing an east-west asymmetry over NER. The impact of BC aerosols on the photosynthetic rate varies among different locations ranging from -5±2 Wm-2 to -25±3 Wm-2. Almost 70% of the total atmospheric shortwave radiative absorption is attributed to just 10% contribution of Black Carbon (BC) to total mass concentration and causes a reduction of more than 30% of PAR reaching the surface over Brahmaputra valley due to direct radiative effect. Comparison of previous and the present study shows highest surface dimming is observed in west-Asia followed by IGP and west-India. Surface radiative reduction over NER is comparable to south-India standing on the third place which is still higher than that of the Himalayan and Oceanic regions.
NASA Astrophysics Data System (ADS)
Taketani, F.; Miyakawa, T.; Takigawa, M.; Yamaguchi, M.; Kanaya, Y.; Komazaki, Y.; Takashima, H.; Mordovskoi, P.; Tohjima, Y.
2017-12-01
Black carbon (BC), formed through the incomplete combustion of fossil fuels, biofuels, and biomass, is a major component of light-absorbing particulate matter in the atmosphere, causing positive radiative forcing. Also, BC deposition on the surface reduces the Earth's albedo and accelerates snow/ice melting by absorbing the sunlight. Therefore, the impact of BC on the Arctic climate needs to be assessed; however, observational information has been still insufficient. Over the Arctic Ocean, we have been conducting ship-based BC observations using a single particle soot photometer (SP2) on R/V Mirai every summer since 2014. To estimate the transport pathways of BC, we have also conducted model simulations during the period of cruise using a regional transport model (WRF-Chem 3.8.1). Here we focus on observations conducted on-board the R/V Mirai from 22 August to 5 October 2016 in a round trip to the Arctic Ocean through the Bering Strait from a port of Hachinohe (40.52N, 141.51E), Japan. We captured relatively high BC mass concentration events in this observation. The observed average BC mass concentration during 2016 was 0.8 ± 1.4 ng/m3 in >70N, similar to the levels ( 1.0ng/m3) recorded during our previous observations in the Arctic during 2014 and 2015. The variations in the observed concentrations in 2016 were qualitatively well reproduced by the regional chemical transport model. Quantitatively, however, the model tended to overestimate the BC levels, suggesting the possibilities that the emission rates were overestimated and/or the removal rates were underestimated. We will present further analysis on the size distribution, coating, and possible sources.
Maertens, J.; Bueselinck, K.; Lagrou, K.
2016-01-01
Infection is an important complication in patients with hematologic malignancies or solid tumors undergoing intensive cytotoxic chemotherapy. In only 20 to 30% of the febrile neutropenic episodes, an infectious agent is detected by conventional cultures. In this prospective study, the performance of broad-range PCR coupled with electrospray ionization time of flight mass spectrometry (PCR/ESI-MS) technology was compared to conventional blood cultures (BC) in a consecutive series of samples from high-risk hematology patients. In 74 patients, BC and a whole-blood sample for PCR/ESI-MS (Iridica BAC BSI; Abbott, Carlsbad, CA, USA) were collected at the start of each febrile neutropenic episode and, in case of persistent fever, also at day 5. During 100 different febrile episodes, 105 blood samples were collected and analyzed by PCR/ESI-MS. There was evidence of a bloodstream infection (BSI) in 36/105 cases (34%), based on 14 cases with both PCR/ESI-MS and BC positivity, 17 cases with BC positivity only, and 5 cases with PCR/ESI-MS positivity only. The sensitivity of PCR/ESI-MS was 45%, specificity was 93%, and the negative predictive value was 80% compared to blood culture. PCR/ESI-MS detected definite pathogens (Fusobacterium nucleatum and Streptococcus pneumoniae) missed by BC, whereas it missed both Gram-negative and Gram-positive organisms detected by BC. PCR/ESI-MS testing detected additional microorganisms but showed a low sensitivity (45%) compared to BC in neutropenic patients. Our results indicate a lower concordance between BC and PCR/ESI-MS in the neutropenic population than what has been previously reported in other patient groups with normal white blood cell distribution, and a lower sensitivity than other PCR-based methods. PMID:27440820
Black carbon's contribution to aerosol absorption optical depth over S. Korea
NASA Astrophysics Data System (ADS)
Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.
2017-12-01
Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.
Maintenance of order in a moving strong condensate
NASA Astrophysics Data System (ADS)
Whitehouse, Justin; Costa, André; Blythe, Richard A.; Evans, Martin R.
2014-11-01
We investigate the conditions under which a moving condensate may exist in a driven mass transport system. Our paradigm is a minimal mass transport model in which n - 1 particles move simultaneously from a site containing n > 1 particles to the neighbouring site in a preferred direction. In the spirit of a zero-range process the rate u(n) of this move depends only on the occupation of the departure site. We study a hopping rate u(n) = 1 + b/nα numerically and find a moving strong condensate phase for b > bc(α) for all α > 0. This phase is characterised by a condensate that moves through the system and comprises a fraction of the system's mass that tends to unity. The mass lost by the condensate as it moves is constantly replenished from the trailing tail of low occupancy sites that collectively comprise a vanishing fraction of the mass. We formulate an approximate analytical treatment of the model that allows a reasonable estimate of bc(α) to be obtained. We show numerically (for α = 1) that the transition is of mixed order, exhibiting a discontinuity in the order parameter as well as a diverging length scale as b\\searrow bc .
Effects of the Wegener-Bergeron-Findeisen process on global black carbon distribution
NASA Astrophysics Data System (ADS)
Qi, Ling; Li, Qinbin; He, Cenlin; Wang, Xin; Huang, Jianping
2017-06-01
We systematically investigate the effects of Wegener-Bergeron-Findeisen process (hereafter WBF) on black carbon (BC) scavenging efficiency, surface BCair, deposition flux, concentration in snow (BCsnow, ng g-1), and washout ratio using a global 3-D chemical transport model (GEOS-Chem). We differentiate riming- versus WBF-dominated in-cloud scavenging based on liquid water content (LWC) and temperature. Specifically, we implement an implied WBF parameterization using either temperature or ice mass fraction (IMF) in mixed-phase clouds based on field measurements. We find that at Jungfraujoch, Switzerland, and Abisko, Sweden, where WBF dominates in-cloud scavenging, including the WBF effect strongly reduces the discrepancies of simulated BC scavenging efficiency and washout ratio against observations (from a factor of 3 to 10 % and from a factor of 4-5 to a factor of 2). However, at Zeppelin, Norway, where riming dominates, simulation of BC scavenging efficiency, BCair, and washout ratio become worse (relative to observations) when WBF is included. There is thus an urgent need for extensive observations to distinguish and characterize riming- versus WBF-dominated aerosol scavenging in mixed-phase clouds and the associated BC scavenging efficiency. Our model results show that including the WBF effect lowers global BC scavenging efficiency, with a higher reduction at higher latitudes (8 % in the tropics and up to 76 % in the Arctic). The resulting annual mean BCair increases by up to 156 % at high altitudes and at northern high latitudes because of lower temperature and higher IMF. Overall, WBF halves the model-observation discrepancy (from -65 to -30 %) of BCair across North America, Europe, China and the Arctic. Globally WBF increases BC burden from 0.22 to 0.29-0.35 mg m-2 yr-1, which partially explains the gap between observed and previous model-simulated BC burdens over land. In addition, WBF significantly increases BC lifetime from 5.7 to ˜ 8 days. Additionally, WBF results in a significant redistribution of BC deposition in source and remote regions. Specifically, it lowers BC wet deposition (by 37-63 % at northern mid-latitudes and by 21-29 % in the Arctic), while it increases dry deposition (by 3-16 % at mid-latitudes and by 81-159 % in the Arctic). The resulting total BC deposition is lower at mid-latitudes (by 12-34 %) but higher in the Arctic (by 2-29 %). We find that WBF decreases BCsnow at mid-latitudes (by ˜ 15 %) but increases it in the Arctic (by 26 %) while improving model comparisons with observations. In addition, WBF dramatically reduces the model-observation discrepancy of washout ratios in winter (from a factor of 16 to 4). The remaining discrepancies in BCair, BCsnow and BC washout ratios suggest that in-cloud removal in mixed-phased clouds is likely still excessive over land.
NASA Astrophysics Data System (ADS)
Zhang, Tianran; Wooster, Martin J.; Green, David C.; Main, Bruce
2015-11-01
Despite policy attempts to limit or prevent agricultural burning, its use to remove crop residues either immediately after harvest (e.g. field burning of wheat stubble) or after subsequent crop processing (e.g. ;bonfires; of rice straw and rapeseed residues) appears to remain widespread across parts of China. Emission factors for these types of small but highly numerous fire are therefore required to fully assess their impact on atmospheric composition and air pollution. Here we describe the design and deployment of a new smoke measurement system for the close-range sampling of key gases and particles within smoke from crop residue fires, using it to assess instantaneous mixing ratios of CO and CO2 and mass concentrations of black carbon (BC) and PM2.5 from wheat stubble, rice straw, and rapeseed residue fires. Using data of our new smoke sampling system, we find a strong linear correlation between the PM2.5 mass and BC, with very high PM2.5 to BC emission ratios found in the smouldering phase (up to 80.7 mg m-3.(mg m-3)-1) compared to the flaming phase (2.0 mg m-3.(mg m-3)-1). We conclude that the contribution of BC to PM2.5 mass was as high as 50% in the flaming phase of some burns, whilst during smouldering it sometimes decreased to little over one percent. A linear mixing model is used to quantify the relative contribution of each combustion phase to the overall measured smoke composition, and we find that flaming combustion dominated the total emission of most species assessed. Using time series of trace gas concentrations from different fire cases, we calculated 'fire integrated' trace gas emission factors (EFs) for wheat, rice and rapeseed residue burns as 1739 ± 19 g kg-1, 1761 ± 30 g kg-1and 1704 ± 27 g kg-1 respectively for CO2, and 60 ± 12 g kg-1, 47 ± 19 g kg-1 and 82 ± 17 g kg-1 respectively for CO. Where comparisons were possible, our EFs agreed well with those derived via a simultaneously-deployed open path Fourier transform infrared (OP-FTIR) spectrometer. These EFs, and the linear best fit relationships between both PM2.5 and BC mass and the CO2 and CO measurements, were used to generate particulate EFs, which varied over the 5.8-20.3 g kg-1 and 0.25-2.89 g kg-1 range respectively. We note a particularly high 2.89 g kg-1 BC emission factor for the rapeseed bonfires, reflective of intense flaming combustion that gave off visible clouds of soot. These field-measured EFs offer a different perspective than is obtained when burning in laboratory combustion chambers, and are suitable for combining with landscape-scale fuel consumption estimates to provide atmospheric modelling inputs of emissions from these types of crop residue fires.
Yan, Jingchun; Han, Lu; Gao, Weiguo; Xue, Song; Chen, Mengfang
2015-01-01
Biochar (BC) supported nanoscale zerovalent iron (nZVI) composite was synthesized and used as an activator for persulfate to enhance the trichloroethylene (TCE) removal in aqueous solutions. The degradation efficiency of TCE (0.15mmolL(-1)) was 99.4% in the presence of nZVI/BC (4.5mmolL(-1), nZVI to BC mass ratio was 1:5) and persulfate (4.5mmolL(-1)) within 5min, which was significantly higher than that (56.6%) in nZVI-persulfate system under the same conditions. Owing to large specific surface area and oxygen-containing functional groups of BC, nZVI/BC enhanced the SO4(-) generation and accelerated TCE degradation. On the basis of the characterization and analysis data, possible activation mechanisms of the Fe(2+)/Fe(3+) (Fe(II)/Fe(III)) redox action and the electron-transfer mediator of the BC oxygen functional groups promoting the generation of SO4(-) in nZVI/BC-persulfate system were clarified. Copyright © 2014 Elsevier Ltd. All rights reserved.
Preble, Chelsea V; Hadley, Odelle L; Gadgil, Ashok J; Kirchstetter, Thomas W
2014-06-03
Cooking in the developing world generates pollutants that endanger the health of billions of people and contribute to climate change. This study quantified pollutants emitted when cooking with a three-stone fire (TSF) and the Berkeley-Darfur Stove (BDS), the latter of which encloses the fire to increase fuel efficiency. The stoves were operated at the Lawrence Berkeley National Laboratory testing facility with a narrow range of fuel feed rates to minimize performance variability. Fast (1 Hz) measurements of pollutants enabled discrimination between the stoves' emission profiles and development of woodsmoke-specific calibrations for the aethalometer (black carbon, BC) and DustTrak (fine particles, PM2.5). The BDS used 65±5% (average±95% confidence interval) of the wood consumed by the TSF and emitted 50±5% of the carbon monoxide emitted by the TSF for an equivalent cooking task, indicating its higher thermal efficiency and a modest improvement in combustion efficiency. The BDS reduced total PM2.5 by 50% but achieved only a 30% reduction in BC emissions. The BDS-emitted particles were, therefore, more sunlight-absorbing: the average single scattering albedo at 532 nm was 0.36 for the BDS and 0.47 for the TSF. Mass emissions of PM2.5 and BC varied more than emissions of CO and wood consumption over all tests, and emissions and wood consumption varied more among TSF than BDS tests. The international community and the Global Alliance for Clean Cookstoves have proposed performance targets for the highest tier of cookstoves that correspond to greater reductions in fuel consumption and PM2.5 emissions of approximately 65% and 95%, respectively, compared to baseline cooking with the TSF. Given the accompanying decrease in BC emissions for stoves that achieve this stretch goal and BC's extremely high global warming potential, the short-term climate change mitigation from avoided BC emissions could exceed that from avoided CO2 emissions.
Nagrani, R; Mhatre, S; Rajaraman, P; Soerjomataram, I; Boffetta, P; Gupta, S; Parmar, V; Badwe, R; Dikshit, R
2016-10-01
Current evidence suggests that the relationship between obesity and breast cancer (BC) risk may vary between ethnic groups. A total of 1633 BC cases and 1504 controls were enrolled in hospital-based case-control study in Mumbai, India, from 2009 to 2013. Along with detailed questionnaire, we collected anthropometric measurements on all participants. We used unconditional logistic regression models to estimate odds ratios (ORs) and 95% confidence interval (CI) for BC risk associated with anthropometry measurements, stratified on tumour subtype and menopausal status. Waist-to-hip ratio (WHR) of ≥0.95 was strongly associated with risk of BC compared to WHR ≤0.84 in both premenopausal (OR = 4.3; 95% CI: 2.9-6.3) and postmenopausal women (OR = 3.4; 95% CI: 2.4-4.8) after adjustment for body mass index (BMI). Premenopausal women with a BMI ≥30 were at lower risk compared to women with normal BMI (OR = 0.5; 95% CI: 0.4-0.8). A similar protective effect was observed in women who were postmenopausal for <10 years (OR = 0.6; 95% CI: 0.4-0.9) but not in women who were postmenopausal for ≥10 years (OR = 1.8; 95% CI: 1.1-3.3). Overweight and obese women (BMI: 25-29.9 and ≥ 30 kg/m(2), respectively) were at increased BC risk irrespective of menopausal status if their WHR ≥0.95. Central obesity (measured in terms of WC and WHR) increased the risk of both premenopausal and postmenopausal BCs irrespective of hormone receptor (HR) status. Central obesity appears to be a key risk factor for BC irrespective of menopausal or HR status in Indian women with no history of hormone replacement therapy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Jumelet, Julien; David, Christine; Bekki, Slimane; Keckhut, Philippe
2009-01-01
The determination of stratospheric particle microphysical properties from multiwavelength lidar, including Rayleigh and/or Raman detection, has been widely investigated. However, most lidar systems are uniwavelength operating at 532 nm. Although the information content of such lidar data is too limited to allow the retrieval of the full size distribution, the coupling of two or more uniwavelength lidar measurements probing the same moving air parcel may provide some meaningful size information. Within the ORACLE-O3 IPY project, the coordination of several ground-based lidars and the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) space-borne lidar is planned during measurement campaigns called MATCH-PSC (Polar Stratospheric Clouds). While probing the same moving air masses, the evolution of the measured backscatter coefficient (BC) should reflect the variation of particles microphysical properties. A sensitivity study of 532 nm lidar particle backscatter to variations of particles size distribution parameters is carried out. For simplicity, the particles are assumed to be spherical (liquid) particles and the size distribution is represented with a unimodal log-normal distribution. Each of the four microphysical parameters (i.e. log-normal size distribution parameters, refractive index) are analysed separately, while the three others are remained set to constant reference values. Overall, the BC behaviour is not affected by the initial values taken as references. The total concentration (N0) is the parameter to which BC is least sensitive, whereas it is most sensitive to the refractive index (m). A 2% variation of m induces a 15% variation of the lidar BC, while the uncertainty on the BC retrieval can also reach 15%. This result underlines the importance of having both an accurate lidar inversion method and a good knowledge of the temperature for size distribution retrieval techniques. The standard deviation ([sigma]) is the second parameter to which BC is most sensitive to. Yet, the impact of m and [sigma] on BC variations is limited by the realistic range of their variations. The mean radius (rm) of the size distribution is thus the key parameter for BC, as it can vary several-fold. BC is most sensitive to the presence of large particles. The sensitivity of BC to rm and [sigma] variations increases when the initial size distributions are characterized by low rm and large [sigma]. This makes lidar more suitable to detect particles growing on background aerosols than on volcanic aerosols.
NASA Astrophysics Data System (ADS)
Chan, T. W.; Brook, J. R.; Smallwood, G. J.; Lu, G.
2010-08-01
In this study a photoacoustic spectrometer (PA), a laser-induced incandescence instrument system (LII) and an aerosol mass spectrometer were operated in parallel for in situ measurements of black carbon (BC) light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by particle coating while the PA response is enhanced and also that the nature of this enhancement is influenced by particle morphology. Comparisons of ambient PA and LII measurements at four different locations (suburban Toronto; a street canyon with heavy diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario), show that the different meteorological conditions and atmospheric processes result in different particle light absorption enhancement and hence the specific attenuation coefficient (SAC). Depending upon location of measurement and the BC spherule diameter (primary particle size - PPS) measurement from the LII, the SAC varies from 2.6±0.04 to 22.5±0.7 m2 g-1. Observations from this study also show the active surface area of the BC aggregate, inferred from PPS, is an important parameter for inferring the degree of particle collapse of a BC particle. The predictability of the overall BC light absorption enhancement in the atmosphere depends not only on the coating mass but also on the source of the BC and on our ability to predict or measure the change in particle morphology as particles evolve.
Dragon Boat training exerts a positive effect on myocardial function in breast cancer survivors.
Stefani, Laura; Galanti, Giorgio; Di Tante, Valentina; Klika, Riggs J; Maffulli, Nicola
2015-07-01
Dragon Boat training is often suggested to control upper limb edema in breast cancer (BC) survivors, but little information is available regarding the cardiac impact of such activity. The present study evaluates this aspect during a 4-year follow-up of BC survivors. From 2006 to 2010, 55 women diagnosed with BC in 2005, treated with adjuvant therapy without evidence of metastases, were enrolled for competitive Dragon Boat training. They underwent ergometric tests yearly, and 2D echocardiography to evaluate hemodynamic, morphological and functional cardiac parameters. The data were compared with those from a group of 36 healthy women (HW). Both groups maintained normal systolic function throughout the period, with Cardiac Mass index, Body Mass Index and Ejection Fraction values being higher in HW. At the onset of the study, the diastolic function of BC survivors was normal though compatible with initial diastolic dysfunction when compared to the diastolic function of HW. After 4 years of competitive activity, the diastolic parameters improved in both groups and particularly in BC survivors (A peak: from 68.5 ± 15.1 cm/s to 50 ± 14.1 cm/s, p < 0.05; Ea: from 9.3 ± 2 cm/s to 11.89 ± 1.7 cm/s, p < 0.001). BC survivors experienced a significant improvement in diastolic function after 4 years of Dragon Boat training. Dragon Boat training impacts favorably on the myocardial performance in patients previously treated with chemotherapy. These results support the positive role of sport activity in myocardial function of BC survivors.
Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru
NASA Astrophysics Data System (ADS)
Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.
2015-02-01
Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in temperature, increases in light-absorbing particles deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light-absorbing particles sampled from glaciers during three surveys in the Cordillera Blanca Mountains in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, 240 snow samples were collected from 15 mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the 3 years and some mountains were sampled multiple times during the same year. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particles on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective black carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the LAHM analysis and the SP2 refractory black carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light-absorbing particles in the more polluted regions were likely BC. The 3 years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.
Measurements of light absorbing particulates on the glaciers in the Cordillera Blanca, Peru
NASA Astrophysics Data System (ADS)
Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.
2014-10-01
Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in air temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light absorbing particulates sampled from glaciers during three surveys in the Cordillera Blanca in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, two hundred and forty snow samples were collected from fifteen mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the three expeditions and some mountains were sampled multiple times during the same expedition. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particulates on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective Black Carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the filter analysis and the SP2 refractory Black Carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light absorbing particulates in the more polluted areas were likely BC. The three years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.
Binary Star Orbits. V. The Nearby White Dwarf/Red Dwarf Pair 40 Eri BC
NASA Astrophysics Data System (ADS)
Mason, Brian D.; Hartkopf, William I.; Miles, Korie N.
2017-11-01
A new relative orbit solution with new dynamical masses is determined for the nearby white dwarf-red dwarf pair 40 Eri BC. The period is 230.09 ± 0.68 years. It is predicted to close slowly over the next half-century, getting as close as 1.″32 in early 2066. We determine masses of 0.575 ± 0.018 {{ M }}⊙ for the white dwarf and 0.2041 ± 0.0064 {{ M }}⊙ for the red dwarf companion. The inconsistency of the masses determined by gravitational redshift and dynamical techniques, due to a premature orbit calculation, no longer exists.
Characteristics of breast cancer in Central China, literature review and comparison with USA.
Chen, Chuang; Sun, Si; Yuan, Jing-Ping; Wang, Yao-Huai; Cao, Tian-Ze; Zheng, Hong-Mei; Jiang, Xue-Qing; Gong, Yi-Ping; Tu, Yi; Yao, Feng; Hu, Ming-Bai; Li, Juan-Juan; Sun, Sheng-Rong; Wei, Wen
2016-12-01
This work was to analyze characteristics of breast cancer (BC) in Central China, summarize main characteristics in China and compare with USA. BC main characteristics from four hospitals in Central China from 2002 to 2012 were collected and analyzed. All the single and large-scale clinical reports covering at least ten years were selected and summarized to calculate the BC characteristics of China. BC Characteristics in USA were selected based on the database from Surveillance, Epidemiology, and End Results (SEER) Program. Age distribution in Central China was normal with one age peak at 45-49 years, displaying differences from USA and Chinese American with two age peaks. BC characteristics in Central China displayed distinct features from USA and Chinese American, including significant younger onset age, lower proportion of patients with stage I, lymph node negative, small tumor size and ER positive. A total ten long-term and large-scale clinical reports were selected for BC characteristics of Mainland China analysis. A total of 53,571 BC patients were enrolled from 1995 to 2012. The main characteristics of BC in Mainland China were similar as that in Central China, but were significant different from developed regions of China (Hong Kong and Taiwan), USA and Chinese American. BC characteristics in Central China displayed representative patterns of Mainland China, while showed distinct patterns from Chinese patients in other developed areas and USA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Black carbon surface oxidation and organic composition of beech-wood soot aerosols
NASA Astrophysics Data System (ADS)
Corbin, J. C.; Lohmann, U.; Sierau, B.; Keller, A.; Burtscher, H.; Mensah, A. A.
2015-10-01
Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC) or organic particulate matter (OM) which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS). The dual-vaporizer SP-AMS provided information on the OM and BC components of the soot as well as on refractory components internally mixed with BC. By switching the SP-AMS laser vaporizer off and using only the AMS thermal vaporizer (at 600 °C), information on the OM component only was obtained. In both modes, OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis and was only present in large amounts when new wood was added to the stove. In SP-AMS mode, BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C1-5+), oxygenated carbonaceous ions (CO1-2+), potassium (K+), and water (H2O+ and related fragments). The C4+ : C3+ ratio, but not the C1+ : C3+ ratio, was consistent with the BC-structure trends of Corbin et al. (2015c). The CO1-2+ signals likely originated from BC surface groups: upon aging, both CO+ and CO2+ increased relative to C1-3+ while CO2+ simultaneously increased relative to CO+. Factor analysis (positive matrix factorization) of SP-AMS and AMS data, using a modified error model to address peak-integration uncertainties, indicated that the surface composition of the BC was approximately constant across all stages of combustion for both fresh and aged samples. These results represent the first time-resolved measurements of in situ BC surface aging and suggest that the surface of beech-wood BC may be modelled as a single chemical species.
NASA Astrophysics Data System (ADS)
Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D.
2014-06-01
Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil fuel and biomass burning BC. In addition we develop a global simulation of Brown Carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of two. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in Absorption Aerosol Optical Depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 W m-2 (0.08 W m-2 from anthropogenic sources and 0.05 W m-2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 W m-2, with an additional +0.11 W m-2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of -80% / +140%. Our estimates are at the lower end of the 0.2-1.0 W m-2 range from previous studies, and substantially less than the +0.6 W m-2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime and the incorrect attribution of BrC absorption to BC.
NASA Astrophysics Data System (ADS)
Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D.
2014-10-01
Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil-fuel and biomass-burning BC. In addition we develop a global simulation of brown carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of 2. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in absorption aerosol optical depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with the largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 Wm-2 (0.08 Wm-2 from anthropogenic sources and 0.05 Wm-2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 Wm-2, with an additional +0.11 Wm-2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of -80%/+140%. Our estimates are at the lower end of the 0.2-1.0 Wm-2 range from previous studies, and substantially less than the +0.6 Wm-2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime (including the effect on the vertical profile) and the incorrect attribution of BrC absorption to BC.
Radiative Forcing of the Direct Aerosol Effect from AeroCom Phase II Simulations
NASA Technical Reports Server (NTRS)
Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.;
2013-01-01
We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m(sup-2), with a mean of -0.27 W m(sup-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 W m(sup-2). Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study.We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results
NASA Astrophysics Data System (ADS)
Pokhrel, Rudra P.; Beamesderfer, Eric R.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.
2017-04-01
A wide range of globally significant biomass fuels were burned during the fourth Fire Lab at Missoula Experiment (FLAME-4). A multi-channel photoacoustic absorption spectrometer (PAS) measured dry absorption at 405, 532, and 660 nm and thermally denuded (250 °C) absorption at 405 and 660 nm. Absorption coefficients were broken into contributions from black carbon (BC), brown carbon (BrC), and lensing following three different methodologies, with one extreme being a method that assumes the thermal denuder effectively removes organics and the other extreme being a method based on the assumption that black carbon (BC) has an Ångström exponent of unity. The methodologies employed provide ranges of potential importance of BrC to absorption but, on average, there was a difference of a factor of 2 in the ratio of the fraction of absorption attributable to BrC estimated by the two methods. BrC absorption at shorter visible wavelengths is of equal or greater importance to that of BC, with maximum contributions of up to 92 % of total aerosol absorption at 405 nm and up to 58 % of total absorption at 532 nm. Lensing is estimated to contribute a maximum of 30 % of total absorption, but typically contributes much less than this. Absorption enhancements and the estimated fraction of absorption from BrC show good correlation with the elemental-carbon-to-organic-carbon ratio (EC / OC) of emitted aerosols and weaker correlation with the modified combustion efficiency (MCE). Previous studies have shown that BrC grows darker (larger imaginary refractive index) as the ratio of black to organic aerosol (OA) mass increases. This study is consistent with those findings but also demonstrates that the fraction of total absorption attributable to BrC shows the opposite trend: increasing as the organic fraction of aerosol emissions increases and the EC / OC ratio decreases.
NASA Astrophysics Data System (ADS)
Wang, Qiyuan; Huang, Rujin; Zhao, Zhuzi; Cao, Junji; Ni, Haiyan; Tie, Xuexi; Zhu, Chongshu; Shen, Zhenxing; Wang, Meng; Dai, Wenting; Han, Yongming; Zhang, Ningning; Prévôt, André S. H.
2017-04-01
The relationship between the refractory black carbon (rBC) aerosol mixing state and the atmospheric oxidation capacity was investigated to assess the possible influence of oxidants on the particles’ light absorption effects at two large cities in China. The number fraction of thickly-coated rBC particles (F rBC) was positively correlated with a measure of the oxidant concentrations (OX = O3 + NO2), indicating an enhancement of coated rBC particles under more oxidizing conditions. The slope of a linear regression of F rBC versus OX was 0.58% ppb-1 for Beijing and 0.84% ppb-1 for Xi’an, and these relationships provide some insights into the evolution of rBC mixing state in relation to atmospheric oxidation processes. The mass absorption cross-section of rBC (MACrBC) increased with OX during the daytime at Xi’an, at a rate of 0.26 m2 g-1 ppb-1, suggesting that more oxidizing conditions lead to internal mixing that enhances the light-absorbing capacity of rBC particles. Understanding the dependence of the increasing rates of F rBC and MACrBC as a function of OX may lead to improvements of climate models that deal with the warming effects, but more studies in different cities and seasons are needed to gauge the broader implications of these findings.
Frantzi, Maria; Zoidakis, Jerome; Papadopoulos, Theofilos; Zürbig, Petra; Katafigiotis, Ioannis; Stravodimos, Konstantinos; Lazaris, Andreas; Giannopoulou, Ioanna; Ploumidis, Achilles; Mischak, Harald; Mullen, William; Vlahou, Antonia
2013-09-06
Improvement in bladder cancer (BC) management requires more effective diagnosis and prognosis of disease recurrence and progression. Urinary biomarkers attract special interest because of the noninvasive means of urine collection. Proteomic analysis of urine entails the adoption of a fractionation methodology to reduce sample complexity. In this study, we applied immobilized metal affinity chromatography in combination with high-resolution LC-MS/MS for the discovery of native urinary peptides potentially associated with BC aggressiveness. This approach was employed toward urine samples from patients with invasive BC, noninvasive BC, and benign urogenital diseases. A total of 1845 peptides were identified, corresponding to a total of 638 precursor proteins. Specific enrichment for proteins involved in nucleosome assembly and for zinc-finger transcription factors was observed. The differential expression of two candidate biomarkers, histone H2B and NIF-1 (zinc finger 335) in BC, was verified in independent sets of urine samples by ELISA and by immunohistochemical analysis of BC tissue. The results collectively support changes in the expression of both of these proteins with tumor progression, suggesting their potential role as markers for discriminating BC stages. In addition, the data indicate a possible involvement of NIF-1 in BC progression, likely as a suppressor and through interactions with Sox9 and HoxA1.
Age at diagnosis of female breast cancer in Oman: Issues and implications.
Mehdi, Itrat; Monem, Essam Abdul; Al Bahrani, Bassim Jaffar; Al Kharusi, Suad; Nada, Ayman Mohammad; Al Lawati, Jawad; Al Lawati, Najla
2014-04-01
Female breast cancer (BC) is the most frequent malignancy diagnosed globally, about 23% of the diagnosed cancers. BC incidence varies geographically, highest in Western Europe and lowest in Africa. BC in females is strongly correlated to age, the highest incidence rate amongst older women reinforcing the importance of hormonal status. BC in young females has an aggressive phenotype. There is a shared observation amongst practicing oncologists that BC in Middle East and the developing world presents at an earlier age. The aims of this study are to evaluate the age at presentation of female BC in Oman, and to compare our data with international and regional published data. It discusses the impact of young age Breast Cancer. All diagnosed female BC cases registered from 1996-2010 all over the country, were retrieved from the National Cancer Registry, Ministry of Health. BC cases were analyzed with respect to age at presentation. The data were compared with regional and international data. A total of 14,109 cancer cases were recorded during the period of study. BC was the leading malignancy as 1,294 cases (9.1%). Female BC patients were 1,230; denoting 19.2% of all female cancers. 53.5% of female BC presented below 50 years of age. Male BC constituted 5% of total, with 67% of male BC occurring over 50 years of age. Compared with data from Oman, the highest rates in UK and other Western countries are above 50 years of age. These rates are four to 10 times higher than local in different age groups. Interestingly, these rates increase with increasing age in UK from 40-45 to up to 85+, keep on increasing and go up to four times higher with higher age. This phenomenon, of increasing incidence rates with age, is not observed in our local population. BC is significantly correlated to age as reported from Western population. BC is reported at a younger age from developing and Arab World, which need to be further studied and validated. This phenomenon of BC in younger age may have significant implications and effects ranging from screening, diagnosis, management, prognosis, and cost of treatment. The impact on young women diagnosed with BC is enormous, ranging from psychosocial to healthcare services and economics. There is a need to study it further in depth in developing World.
Body weight and composition in users of levonorgestrel-releasing intrauterine system.
Dal'Ava, Natália; Bahamondes, Luis; Bahamondes, M Valeria; de Oliveira Santos, Allan; Monteiro, Ilza
2012-10-01
There is little information about body weight and body composition (BC) among users of the levonorgestrel-releasing intrauterine system (LNG-IUS). The aim of this study was to evaluate body weight and BC in LNG-IUS users compared to users of the TCu380A intrauterine device (IUD). A prospective study was done with 76 new users of both contraceptive methods. Women were paired by age (±2 years) and body mass index (BMI, kg/m², ±2). Body weight and BC (% lean mass and % fat mass) were evaluated by a trained professional at baseline and at 1 year of contraceptive use. The BC measurements were obtained using Lunar DXA equipment. Weight and BC were evaluated in each woman at baseline and at 12 months and analyzed as the mean change within each woman. Then, the changes in weight and BC for each woman were calculated and then compared between LNG-IUS and TCu380A IUD users (paired data for each woman). The central-to-peripheral fat ratio was calculated by dividing trunk fat by the upper and lower limb fat. There were no significant differences at time of IUD insertion between LNG-IUS and TCu380A IUD users regarding age (mean±SD) (34.4±7.5 vs. 33.9±8.0 years), BMI (25.3±4.1 vs. 25.9±4.1) and number of pregnancies (1.9±0.2 vs. 1.7±0.2), respectively. Mean body weight gain of 2.9 kg was observed among LNG-IUS users at 12 months (p=.0012), whereas the body weight of TCu380A IUD users only increased by 1.4 kg (p=.067). There was no significant difference in body weight change between the two groups of users at 12 months. The variation in the central-to-peripheral fat ratio was the same between the two groups (-1.6% vs. -0.2%; p=.364). LNG-IUS users showed a 2.5% gain in fat mass (p=.0009) and a 1.4% loss of lean mass, whereas TCu380A IUD users showed a loss of 1.3% of fat mass (p=.159) and gain of 1.0% of lean mass (p=.120). TCu380A IUD users gained more lean mass than LNG-IUS users (p=.0270), although there was no significant difference between the two groups after 12 months of use. Although an increase in mean fat mass among LNG-IUS users at 12 months of use was observed, it should be noted that an increase of body weight was also observed in both groups after 1 year of insertion of the device. However, a study with a larger number of women and long-term evaluation is necessary to evaluate these body changes. Copyright © 2012 Elsevier Inc. All rights reserved.
Low-level (submicromole) environmental 14C metrology
NASA Astrophysics Data System (ADS)
Currie, L. A.; Kessler, J. D.; Marolf, J. V.; McNichol, A. P.; Stuart, D. R.; Donoghue, J. C.; Donahue, D. J.; Burr, G. S.; Biddulph, D.
2000-10-01
Accelerator mass spectrometry (AMS) measurements of environmental 14C have been employed during the past decade at the several micromole level (tens of μg carbon), but advanced research in the atmospheric and marine sciences demands still higher (μg) sensitivity, an extreme example being the determination of 14C in elemental or "black" carbon (BC) at levels of 2-10 μg per kg of Greenland snow and ice (Currie et al., 1998). A fundamental limitation for 14C AMS is Poisson counting statistics, which sets in at about 1 μg modern-C. Using the small sample (25 μg) AMS target preparation facility at NOSAMS (Pearson et al., 1998), and the microsample combustion-dilution facility at NIST, we have demonstrated an intrinsic modern-C quantification limit ( mQ) of ca. 0.9 μg, based on a 1-parameter fit to the empirical AMS variance function. (For environmental 14C, the modern carbon quantification limit is defined as that mass ( mQ) corresponding to 10% relative standard deviation (rsd) for the fraction of modern carbon, σ( fM)/ fM.) Stringent control, required for quantitative dilution factors (DL), is achieved with the NIST on-line manometric/mass spectrometry facility that compensates also for unsuspected trace impurities from vigorous chemical processing (e.g., acid digestion). Our current combustion blank is trivial (mean: 0.16 ± 0.02 μg C, n=13) but lognormally distributed (dispersion [σ]: 0.07 ± 0.01 μg). An iterative numerical expression is introduced to assess the quantitative impacts of fossil and modern carbon blank components on mQ; and a new "clean chemistry" BC processing system is described for the minimization of such blanks. For the assay of soot carbon in Greenland snow/ice, the overall processing blank has been reduced from nearly 7 μg total carbon to less than 1 μg, and is undetectable for BC.
Time-resolved characterization of primary emissions from residential wood combustion appliances.
Heringa, M F; DeCarlo, P F; Chirico, R; Lauber, A; Doberer, A; Good, J; Nussbaumer, T; Keller, A; Burtscher, H; Richard, A; Miljevic, B; Prevot, A S H; Baltensperger, U
2012-10-16
Primary emissions from a log wood burner and a pellet boiler were characterized by online measurements of the organic aerosol (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and of black carbon (BC). The OA and BC concentrations measured during the burning cycle of the log wood burner, batch wise fueled with wood logs, were highly variable and generally dominated by BC. The emissions of the pellet burner had, besides inorganic material, a high fraction of OA and a minor contribution of BC. However, during artificially induced poor burning BC was the dominating species with ∼80% of the measured mass. The elemental O:C ratio of the OA was generally found in the range of 0.2-0.5 during the startup phase or after reloading of the log wood burner. During the burnout or smoldering phase, O:C ratios increased up to 1.6-1.7, which is similar to the ratios found for the pellet boiler during stable burning conditions and higher than the O:C ratios observed for highly aged ambient OA. The organic emissions of both burners have a very similar H:C ratio at a given O:C ratio and therefore fall on the same line in the Van Krevelen diagram.
Rea, Alethea; Hepworth, Anna R.; Ward, Leigh C.; Lai, Ching T.; Hartmann, Peter E.; Geddes, Donna T.
2018-01-01
Breastfeeding has been implicated in the establishment of infant appetite regulation, feeding patterns and body composition (BC). A holistic approach is required to elucidate relationships between infant and maternal BC and contributing factors, such as breastfeeding parameters. Associations between maternal and breastfed term infant BC (n = 20) and feeding parameters during first 12 months of lactation were investigated. BC was measured at 2, 5, 9 and/or 12 months postpartum with ultrasound skinfolds (US; infants only) and bioimpedance spectroscopy (infants and mothers). 24-h milk intake (MI) and feeding frequency (FFQ) were measured. Higher FFQ was associated with larger 24-h MI (p ≤ 0.003). Higher 24-h MI was associated with larger infant fat mass (FM) (US: p ≤ 0.002), greater percentage FM (US: p ≤ 0.008), greater FM index (FMI) (US: p ≤ 0.001) and lower fat-free mass index (FFMI) (US: p = 0.015). Lower FFQ was associated with both larger FFM (US: p ≤ 0.001) and FFMI (US: p < 0.001). Greater maternal adiposity was associated with smaller infant FFM measured with US (BMI: p < 0.010; %FM: p = 0.004; FMI: p < 0.011). Maternal BC was not associated with FFQ or 24-h MI. These results reinforce that early life is a critical window for infant programming and that breastfeeding may influence risk of later disease via modulation of BC. PMID:29303992
NASA Astrophysics Data System (ADS)
Ruppel, Meri M.; Soares, Joana; Gallet, Jean-Charles; Isaksson, Elisabeth; Martma, Tõnu; Svensson, Jonas; Kohler, Jack; Pedersen, Christina A.; Manninen, Sirkku; Korhola, Atte; Ström, Johan
2017-10-01
The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition, which causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition is essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. Furthermore, according to the model ca. 99 % BC mass is wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends. Consequently, Arctic BC deposition trends should not directly be inferred based on atmospheric BC measurements, and more observational BC deposition data are required to assess the climate impact of BC in Arctic snow.
NASA Astrophysics Data System (ADS)
Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.
2016-10-01
Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed regional pollution. Pollution episodes were mostly encountered under low winds and had a low level of α, implying aerosol absorption should be largely attributed to freshly emitted BC from local sources under such conditions. Extensive field campaigns and long-term chemical and optical measurements of light-absorbing aerosols are needed in the future to further advance our understanding on optical properties of light-absorbing aerosols and their radiative forcing in this region.
The effect of black carbon (BC) on climate forcing is potentially important, but its estimates have large uncertainties due to a lack of sufficient observational data. The BC mass concentration in the southeastern US was measured at a regionally representative site, Mount Gibb...
NASA Astrophysics Data System (ADS)
Katich, J. M.; Schwarz, J. P.
2016-12-01
The NASA Atmospheric Tomography Mission (ATom) provides a first opportunity to obtain vertical profiles of refractory black carbon (rBC) mass mixing ratios over global scale ( 65S - 85 N latitude) in the remote atmosphere over both the Pacific and Atlantic basins. A NOAA single-particle soot photometer (SP2) will fly on the NASA DC-8 research aircraft over July/August of 2016, obtaining near- continuous vertical profiling ( 0.3 to 12 km) over most of the Earth's latitude range, akin to the NSF HIPPO campaign that occurred only over the Pacific basin during 2009-2011. HIPPO analysis suggested both that high altitude rBC mass mixing ratios (MMRs) were likely zonally well mixed, and that global model estimates of remote rBC MMR throughout the upper troposphere globally, and not just over the Pacific, were likely biased high. Here we will present an initial analysis of the new, more complete data set in which Atlantic rBC profiles will be used to assess these prior suppositions.
Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa
2012-08-07
The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.
RNA recognition by a human antibody against brain cytoplasmic 200 RNA
Jung, Euihan; Lee, Jungmin; Hong, Hyo Jeong; Park, Insoo; Lee, Younghoon
2014-01-01
Diverse functional RNAs participate in a wide range of cellular processes. The RNA structure is critical for function, either on its own or as a complex form with proteins and other ligands. Therefore, analysis of the RNA conformation in cells is essential for understanding their functional mechanisms. However, no appropriate methods have been established as yet. Here, we developed an efficient strategy for panning and affinity maturation of anti-RNA human monoclonal antibodies from a naïve antigen binding fragment (Fab) combinatorial phage library. Brain cytoplasmic 200 (BC200) RNA, which is also highly expressed in some tumors, was used as an RNA antigen. We identified MabBC200-A3 as the optimal binding antibody. Mutagenesis and SELEX experiments showed that the antibody recognized a domain of BC200 in a structure- and sequence-dependent manner. Various breast cancer cell lines were further examined for BC200 RNA expression using conventional hybridization and immunoanalysis with MabBC200-A3 to see whether the antibody specifically recognizes BC200 RNA among the total purified RNAs. The amounts of antibody-recognizable BC200 RNA were consistent with hybridization signals among the cell lines. Furthermore, the antibody was able to discriminate BC200 RNA from other RNAs, supporting the utility of this antibody as a specific RNA structure-recognizing probe. Intriguingly, however, when permeabilized cells were subjected to immunoanalysis instead of purified total RNA, the amount of antibody-recognizable RNA was not correlated with the cellular level of BC200 RNA, indicating that BC200 RNA exists as two distinct forms (antibody-recognizable and nonrecognizable) in breast cancer cells and that their distribution depends on the cell type. Our results clearly demonstrate that anti-RNA antibodies provide an effective novel tool for detecting and analyzing RNA conformation. PMID:24759090
Investigating the variability in brown carbon light-absorption properties
NASA Astrophysics Data System (ADS)
Saleh, R.; Cheng, Z.; Atwi, K.
2017-12-01
Combustion of biomass fuels contributes a significant portion of brown carbon (BrC), the light-absorbing fraction of organic aerosols. BrC exhibits highly variable light-absorption properties, with imaginary part of the refractive indices (k) reported in the literature varying over two orders of magnitude. This high variability in k is attributed to the chaotic nature of combustion; however, there is a major gap in the fundamental understanding of this variability. To address this gap, we hypothesize that BrC is comprised of black carbon (BC) precursors whose transformation to BC has not seen fruition. Depending on the combustion conditions, these BC precursors exhibit different maturity levels which dictate their light-absorption properties (k). The more mature are the precursors, the more absorptive (or BC-like) they are. Therefore, k of BrC obtained from a certain measurement depends on the specific combustion conditions associated with the measurement, leading to the aforementioned variability in the literature. To test this hypothesis, we performed controlled combustion experiments in which the combustion conditions (temperature and air/fuel ratio) were varied and k was retrieved from real-time multi-wavelength light-absorption measurements at each condition. We used benzene, the inception of which during combustion is the initial critical step leading to BC formation, as a model fuel. By varying the combustion conditions from relatively inefficient (low temperature and/or air/fuel ratio) to relatively efficient (high temperature and/or air/fuel ratio), we isolated BrC components with progressively increasing k, spanning the wide range reported in the literature. We also performed thermodenuder measurements to constrain the volatility of the BrC, as well as laser desorption ionization mass spectrometry analysis to constrain its molecular mass. We found that as the combustion conditions approached the BC-formation threshold, the increase in k was associated with an increase in molecular mass and decrease in volatility. This confirms our hypothesis, since the BC precursors are expected to grow in size and become less volatile as they mature. These results provide the first correlation between the BrC physical, chemical, and consequent light-absorption properties.
Ray, Sharmila; Khillare, Pandit Sudan; Kim, Ki-Hyun; Brown, Richard J.C.
2012-01-01
Abstract Soil samples were collected over a year-long period along a background–urban–rural transect in Delhi, India for the analysis of polycyclic aromatic hydrocarbons (PAHs), black carbon (BC), and total organic carbon (TOC) in five grain size fractions, x, in μm of 0≤x<53 (I), 53≤x<250 (II), 250≤x<500 (III), 500≤x<2000 (IV), and their sum (total: T). Maximum concentrations of PAH, BC, and TOC were observed in the smallest fraction (I) comprising silt and clay, irrespective of site or season. Results of the molecular diagnostic ratios and principal component analysis (PCA) identified coal, wood, biomass burning, and vehicular emissions as major sources of PAHs at all the three sites, while BC/TOC ratios pointed toward biomass combustion as the chief source of carbonaceous species. This work presents the first such rural-urban transect study considering PAH, BC, and TOC in soil. PMID:23133309
Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium
NASA Astrophysics Data System (ADS)
Zhu, Ruilin
2018-06-01
We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.
Observation of Bc+→D0K+ Decays
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kosmyntseva, A.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration
2017-03-01
Using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb-1, recorded by the LHCb detector at center-of-mass energies of 7 and 8 TeV, the Bc+→D0K+ decay is observed with a statistical significance of 5.1 standard deviations. By normalizing to B+→D¯ 0 π+ decays, a measurement of the branching fraction multiplied by the production rates for Bc+ relative to B+ mesons in the LHCb acceptance is obtained, RD0K=(fc/fu)×B (Bc+→D0K+)=(9. 3-2.5+2.8±0.6 )×10-7 , where the first uncertainty is statistical and the second is systematic. This decay is expected to proceed predominantly through weak annihilation and penguin amplitudes, and is the first Bc+ decay of this nature to be observed.
Impacts of regional transport on black carbon in Huairou, Beijing, China.
Wang, Yuqin; de Foy, Benjamin; Schauer, James J; Olson, Michael R; Zhang, Yang; Li, Zhengqiang; Zhang, Yuanxun
2017-02-01
The 22 nd Asia-Pacific Economic Cooperation (APEC) Conference was held near Yanqi Lake, Huairou, in Beijing, China during November 10-11, 2014. To guarantee haze-free days during the APEC Conference, the Beijing government and the governments of the surrounding provinces implemented a series of controls. Three months of Aethalometer 880 nm black carbon (BC) measurements were examined to understand the hourly fluctuations in BC concentrations that resulted from emission controls and meteorology changes. Measurements were collected at the University of Chinese Academy of Sciences near the APEC Conference site and in Central Beijing at the Institute of Remote Sensing and Digital Earth of the Chinese Academy of Sciences. Synoptic conditions are successfully represented through analysis of backward trajectories in six cluster groups. The clusters are identified based on air mass transport from various areas such as Inner Mongolia, Russia, three northeastern provinces, and Hebei industrial areas, to the measurement sites. Air pollution control measures during the APEC Conference significantly reduced BC at the conference site (Huairou) and in Central Beijing, with greater reductions in BC concentrations at the conference site than in Central Beijing. The highest BC concentrations in Huairou were associated with air masses originating from Central Beijing rather than from the Hebei industrial region. The success of the control measures implemented in Beijing and the surrounding regions demonstrates that BC concentrations can be effectively reduced to protect human health and mitigate regional climate forcing. This study also demonstrates the need for regional strategies to reduce BC concentrations, since urban areas like Beijing are sources as well as downwind receptors of emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Body Mass Index and Breast Cancer Risk among Thai Premenopausal Women: a Case-Control Study
Chaveepojnkamjorn, Wisit; Thotong, Rungsinoppadol; Sativipawee, Pratana; Pitikultang, Supachai
2017-01-01
Background: Breast cancer (BC) is the leading malignancy in women with high incidence and mortality worldwide. Obesity is one of several established risk factors for chronic diseases including cancer. The objective of this research was to determine the association of body mass index (BMI) with BC among Thai premenopausal women (TPW). Materials and Methods: A case-control study was conducted among TPW attending the National Cancer Institute in Bangkok, with 257 cases and 257 controls in 2013-2014. Cases and controls were matched by age (± 5 years), residential area and duration of attending. Data were collected with a questionnaire comprising 2 parts: part 1 socio-demographic characteristics, and part 2 health risk behavior and reproductive factors and BMI. The obtained data were analyzed using descriptive and analytic statistics with a computerized statistical package. Results: The study participants were mainly 40-44 years old (60 %) with an average age of 39 years. The major type of BC was the invasive ductal carcinoma (91.8%). On univariate analysis, risk factors for BC among the TPW were family history of BC, history of benign breast tumors, younger age at menarche, parity, miscarriage, contraceptive use, passive smoking, multivitamin use, and BMI (p<0.05). Multivariable conditional logistic regression analysis, controlling for possible confounding factors, revealed that a BMI 25-29.9 and ≥ 30 kg/m2 increased the risk of BC by a factor of 2.09 and 2.37 times, respectively (OR=2.09, 95%CI =1.09-3.97; OR=2.37, 95%CI =1.24-10.06). Conclusions: A surveillance system of obesity should be conducted in cooperation with information regarding physical activities and weight control among TPW as an essential measure to reduce BC risk. PMID:29172285
Emissions from prescribed burning of agricultural fields in the Pacific Northwest
NASA Astrophysics Data System (ADS)
Holder, A. L.; Gullett, B. K.; Urbanski, S. P.; Elleman, R.; O'Neill, S.; Tabor, D.; Mitchell, W.; Baker, K. R.
2017-10-01
Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide a current and comprehensive set of emissions data for air quality models, climate models, and emission inventories. Batch measurements of PM2.5, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs), and continuous measurements of black carbon (BC), particle mass by size, CO, CO2, CH4, and aerosol characteristics were taken at ground level, on an aerostat-lofted instrument package, and from an airplane. Biomass samples gathered from the field were burned in a laboratory combustion facility for comparison with these ground and aerial field measurements. Emission factors for PM2.5, organic carbon (OC), CH4, and CO measured in the field study platforms were typically higher than those measured in the laboratory combustion facility. Field data for Kentucky bluegrass suggest that biomass residue loading is directly proportional to the PM2.5 emission factor; no such relationship was found with the limited wheat data. CO2 and BC emissions were higher in laboratory burn tests than in the field, reflecting greater carbon oxidation and flaming combustion conditions. These distinctions between field and laboratory results can be explained by measurements of the modified combustion efficiency (MCE). Higher MCEs were recorded in the laboratory burns than from the airplane platform. These MCE/emission factor trends are supported by 1-2 min grab samples from the ground and aerostat platforms. Emission factors measured here are similar to other studies measuring comparable fuels, pollutants, and combustion conditions. The size distribution of refractory BC (rBC) was single modal with a log-normal shape, which was consistent among fuel types when normalized by total rBC mass. The field and laboratory measurements of the Angstrom exponent (α) and single scattering albedo (ω) exhibit a strong decreasing trend with increasing MCEs in the range of 0.9-0.99. Field measurements of α and ω were consistently higher than laboratory burns, which is likely due to less complete combustion. When VOC emissions are compared with MCE, the results are consistent for both fuel types: emission factors increase as MCE decreases.
Chang, M-C Oliver; Shields, J Erin
2017-06-01
To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards. Solid particle number and black carbon were suggested in place of PM mass for the California LEV III 1-mg/mile FTP standard. Their equivalence, proportionality, and emission variability in comparison to PM mass, based on a large light-duty vehicle fleet examined, are dependent on engine technologies and driving cycles. Such empirical derived correlations exhibit the limitation of using these metrics for enforcement and certification standards as vehicle combustion and after-treatment technologies advance.
NASA Astrophysics Data System (ADS)
Tripathi, S. N.; Thamban, N.
2017-12-01
Indo-Gangetic Plain (IGP) is one of the most populated and polluted regions in northern India. Even though IGP is a well-known "absorbing aerosol hotspot", information of BC mixing state in IGP is mostly unknown. Our calculation on size resolved mixing state in IGP shown that the mixing state of BC changes with the core diameter of BC. The majority of BC particle were thickly coated ( 80%) at lower diameter (75-125 nm) and the externally mixed BC fraction was gradually increased at higher core diameter of BC (125-250 nm). The mean fraction of "thickly coated BC" particles (fTCBC) was found to be 61.6% for a BC core diameter of 70 to 450 nm, indicating that a large fraction of BC particles was internally mixed in IGP. The fTCBC increased after sunrise with a peak at about noontime, indicating that the formation of secondary organic aerosol under active photochemistry can enhance organic coating on a core of black carbon. A positive correlation between the fTCBC and the mass absorption cross-section at 781nm (MAC781) was also observed (r=0.58). Our results identify that the observed fTCBC in IGP could amplify the MAC781 approximately by a factor of 1.8, which may catalyze the positive radiative forcing.
Double network bacterial cellulose hydrogel to build a biology-device interface.
Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang
2014-01-21
Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.
Double network bacterial cellulose hydrogel to build a biology-device interface
NASA Astrophysics Data System (ADS)
Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang
2013-12-01
Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.
Source sector and region contributions to BC and PM 2.5 in Central Asia
Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; ...
2015-02-18
Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM 2.5 concentrations (annual mean value ~10 μg m −3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the wintermore » (hourly values from 2 to 90 μg m −3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m −3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM 2.5, PM 10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM 2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM 2.5 and BC concentrations in the region increase, with BC growing more than PM 2.5 on a relative basis. This indicates that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less
Fabricate BC/Fe3O4@PPy 3D nanofiber film as flexible electrode for supercapacitor application
NASA Astrophysics Data System (ADS)
Lv, Xvdan; Li, Guohui; Pang, Zengyuan; Li, Dawei; Lei, Luo; Lv, Pengfei; Mushtaq, Muhammad; Wei, Qufu
2018-05-01
For flexible film supercapacitor, high areal capacitance is a main evaluating indicator. In this paper, bacterial cellulose (BC) with special three-dimensional structure was used as the natural flexible base material. Fe3O4 nanoparticles with average diameter of 20 nm were synthesized on the surface of BC fibers. The conductive path polypyrrole (PPy) was introduced as shell of BC/Fe3O4 fibers to further improve the pseudo capacitance in 1 mol/L H2SO4 solution. Besides, the BC/Fe3O4@PPy was used for supercapacitor application in acid electrolyte, and delivered higher areal capacitance compared to other Fe3O4 composites in previous reports. The obtained BC/Fe3O4@PPy film showed excellent mechanical strength (tensile strength reached 11 MPa), high areal specific capacitance (5.4 F cm-2 at active mass of 8.4 mg cm-2), and long cycle life (1.95 F cm-2 over 3500 cycles).
NASA Astrophysics Data System (ADS)
Agustian Permadi, Didin; Oanh, Nguyen Thi Kim; Vautard, Robert
2018-02-01
This is part of a research study addressing the potential co-benefits associated with selected black carbon (BC) emission reduction measures on mitigation of air pollution and climate forcing in Southeast Asia (SEA). This paper presents details of emission inventory (EI) results and WRF-CHIMERE model performance evaluation. The SEA regional emissions for 2007 were updated with our EI results for Indonesia, Thailand, and Cambodia and used for the model input. WRF-CHIMERE-simulated 2007 PM10, PM2.5, and BC over the SEA domain (0.25° × 0.25°) and the results were evaluated against the available meteorology and air quality monitoring data in the domain. WRF hourly simulation results were evaluated using the observed data at eight international airport stations in five SEA countries and showed a satisfactory performance. WRF-CHIMERE results for PM10 and PM2.5 showed strong seasonal influence of biomass open burning while the BC distribution showed the influence of urban activities in big SEA cities. Daily average PM10 constructed from the hourly concentrations were obtained from the automatic monitoring stations in three large SEA cities, i.e., Bangkok, Kuala Lumpur, and Surabaya, for model evaluation. The daily observed PM2.5 and BC concentrations obtained from the Improving Air Quality in Asian Developing Countries (AIRPET) project for four cities (i.e., Bangkok, Hanoi, Bandung, and Manila) were also used for model evaluation. In addition, hourly BC concentrations were taken from the measurement results of the Asian Pacific Network (APN) project at a suburban site in Bangkok. The modeled PM10 and BC satisfactorily met all suggested statistical criteria for PM evaluation. The modeled PM2.5/PM10 ratios estimated for four AIRPET sites ranged between 0.47 and 0.59, lower than observed values of 0.6-0.83. Better agreement was found for BC/PM2.5 ratios with the modeled values of 0.05-0.33 as compared to the observation values of 0.05-0.28. AODEM (extended aerosol optical depth module) was used to calculate the total columnar aerosol optical depth (AOD) and BC AOD up to the top of the domain at 500 hPa (˜ 5500 m), which did not include the free-tropospheric long-range transport of the pollution. The model AOD results calculated using the internal mixing assumption were evaluated against the observed AOD by both AERONET and MODIS satellite in 10 countries in the domain. Our model results showed that the BC AOD contributed 7.5-12 % of the total AOD, which was in the same range reported by other studies for places with intensive emissions. The results of this paper are used to calculate the regional aerosol direct radiative forcing under different emission reduction scenarios to explore potential co-benefits for air quality improvement, reduction in the number of premature deaths, and climate forcing mitigation in SEA in 2030 (Permadi et al., 2017a).
Rethinking the distinction between black and brown carbon
NASA Astrophysics Data System (ADS)
Adler, G. A.; Franchin, A.; Lamb, K. D.; Manfred, K.; Middlebrook, A. M.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.
2017-12-01
Aerosol radiative properties contribute large uncertainty to modeling of the earth's radiative budget. Black carbon (BC) aerosols originate from combustion processes and substantially contribute to warming and uncertainty - ongoing efforts are focused on reducing their anthropogenic emissions even as their emissions from biomass burning sources, such as wildfire, may increase in the future. Quantifying the radiative effect of BC is challenging, in part due to its association with other light absorbing materials including Brown carbon organic aerosol (BrC) that absorbs primarily blue and ultraviolet light while BC absorbs broadly across the visible. Conventionally BrC is thought of a low volatility spherical particles, distinguishing it from BC, which has a distinctive agglomerate morphology and is refractory at high temperatures. However, the separation of BC and BrC is often operationally defined and dependent on the measurement method. Using measurements of aerosol morphology, mass, absorption, and refractory BC mass content we were able to identify a light absorbing contribution from biomass burning aerosol that does not correspond to either BC or BrC as conventionally defined. Our measurements were collected from realistic biomass burning fires at the Missoula Fire Sciences Laboratory as part of the NOAA FIREX project (2016) and from extensive natural wildfire sampled aloft during NASA SEAC4RS field study (2013). We coin the term Dark Brown Carbon (DBrC) to describe this material, which absorbs broadly across the visible and survives thermal denuding at 250°C but does not incandesce in laser induced incandesce (LII) measurements. DBrC may be an intermediate burning stage product between polycyclic aromatic hydrocarbons (PAHs) and the mature soot. DBrC deserves further study to quantify its abundance and aging in ambient biomass burning plumes, and its relationship to tar balls. Our findings show that more than half of the light absorption in biomass burning smoke could be potentially contributed to DBC, which may provide an explanation for some of the persistent inconsistencies in measurements of BC from biomass burning by different methods.
da Cunha, Patrícia Amorim; de Carlos Back, Lia Kubelka; Sereia, Aline Fernanda Rodrigues; Kubelka, Clara; Ribeiro, Maria Cecíia Menks; Fernandes, Bráulio Leal; de Souza, Ilíada Rainha
2013-12-01
Breast cancer (BC) is a complex disease and obesity is a well-known risk factor for its development, especially after menopause. Several studies have shown Single Nucleotide Polymorphisms (SNPs) linked to overweight and obesity, such as: rs1121980 (T/C) and rs9939609 (A/T) in Fat Mass and Obesity Associated gene (FTO) and rs17782313 (T/C) in Melanocortin 4 Receptor gene (MC4R). Thus, we aimed to investigate the association between these obesity-related SNPs and BC risk. One hundred BC patients and 148 healthy women from Santa Catarina, Brazil entered the study. SNPs were genotyped using Taqman assays. For statistical analyses SNPStats and SPSS softwares were used. Association analyses were performed by logistic regression and were adjusted for age and Body mass index (BMI). Multiple SNPs inheritance models (log-additive, dominant, recessive, codominant) were performed to determine odds ratios (ORs), assuming 95 % confidence interval (CI) and P value = 0.05 as the significance limit. When analyzed alone, FTO rs1121980 and rs9939609 did not show significant associations with BC development, however MC4R rs17782313 showed increased risk for BC even after adjustments (P-value = 0.032). Interestingly, the interaction of FTO and MC4R polymorphisms showed a powerful association with BC. We observed a 4.59-fold increased risk for woman who have the allele combination C/T/C (FTO rs1121980/FTO rs9939609/MC4R rs17782313) (P-value = 0.0011, adjusted for age and BMI). We found important and unpublished associations between these obesity-related genes and BC risk. These associations seem to be independent of their effect on BMI, indicating a direct role of the interaction between FTO and MC4R polymorphisms in BC development.
Desmet, S; Maertens, J; Bueselinck, K; Lagrou, K
2016-10-01
Infection is an important complication in patients with hematologic malignancies or solid tumors undergoing intensive cytotoxic chemotherapy. In only 20 to 30% of the febrile neutropenic episodes, an infectious agent is detected by conventional cultures. In this prospective study, the performance of broad-range PCR coupled with electrospray ionization time of flight mass spectrometry (PCR/ESI-MS) technology was compared to conventional blood cultures (BC) in a consecutive series of samples from high-risk hematology patients. In 74 patients, BC and a whole-blood sample for PCR/ESI-MS (Iridica BAC BSI; Abbott, Carlsbad, CA, USA) were collected at the start of each febrile neutropenic episode and, in case of persistent fever, also at day 5. During 100 different febrile episodes, 105 blood samples were collected and analyzed by PCR/ESI-MS. There was evidence of a bloodstream infection (BSI) in 36/105 cases (34%), based on 14 cases with both PCR/ESI-MS and BC positivity, 17 cases with BC positivity only, and 5 cases with PCR/ESI-MS positivity only. The sensitivity of PCR/ESI-MS was 45%, specificity was 93%, and the negative predictive value was 80% compared to blood culture. PCR/ESI-MS detected definite pathogens (Fusobacterium nucleatum and Streptococcus pneumoniae) missed by BC, whereas it missed both Gram-negative and Gram-positive organisms detected by BC. PCR/ESI-MS testing detected additional microorganisms but showed a low sensitivity (45%) compared to BC in neutropenic patients. Our results indicate a lower concordance between BC and PCR/ESI-MS in the neutropenic population than what has been previously reported in other patient groups with normal white blood cell distribution, and a lower sensitivity than other PCR-based methods. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.
Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R
2015-07-21
Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.
NASA Astrophysics Data System (ADS)
Huang, K.; Fu, J. S.
2015-12-01
Black carbon plays a unique role in the Arctic climate system due to its multiple effects. It causes Arctic warming by directly absorbing sunlight from space and by darkening the surface albedo of snow and ice, which indirectly leads to further warming and melting, thus inducing an Arctic amplification effect. BC depositions over the Arctic are more sensitive to regions in close proximity. In this study, we reconstruct BC emissions for Russian Federation, which is the country that occupies the largest area in the Arctic Circle. Local Russia information such as activity data, emission factors and other emission source data are used. In 2010, total anthropogenic BC emission of Russia is estimated to be around 254 Gg. Gas flaring, a commonly ignored black carbon source, contributes a dominant 43.9% of Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 22.0%, 17.8%, 11.5%, and 4.8%, respectively. BC simulations were conducted using the hemispheric version of CMAQ with polar projection. Emission inputs are from a global emissions database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulations using the new Russian BC emission inventory could improve 46 - 61% of the Absorption Aerosol Optical Depth (AAOD) measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four air monitoring sites (Zeppelin, Barrow, Alert, and Tiksi) in the Arctic Circle, surface BC simulations are improved the most during the Arctic haze periods (October - March). Emission perturbation studies show that Russia's BC emissions contribute over 50% of the surface BC concentrations over the Arctic during the cold seasons. This study demonstrates the good capability of H-CMAQ in simulating the transport of BC particles to the Arctic and suggests that the impact of Russian emissions on the Arctic haze has likely been underestimated, which is one of the causes that previous modeling works struggled in reproducing the BC levels in the Arctic region.
NASA Astrophysics Data System (ADS)
Jiang, Yu; Yang, Jiacheng; Gagné, Stéphanie; Chan, Tak W.; Thomson, Kevin; Fofie, Emmanuel; Cary, Robert A.; Rutherford, Dan; Comer, Bryan; Swanson, Jacob; Lin, Yue; Van Rooy, Paul; Asa-Awuku, Akua; Jung, Heejung; Barsanti, Kelley; Karavalakis, Georgios; Cocker, David; Durbin, Thomas D.; Miller, J. Wayne; Johnson, Kent C.
2018-06-01
Knowledge of black carbon (BC) emission factors from ships is important from human health and environmental perspectives. A study of instruments measuring BC and fuels typically used in marine operation was carried out on a small marine engine. Six analytical methods measured the BC emissions in the exhaust of the marine engine operated at two load points (25% and 75%) while burning one of three fuels: a distillate marine (DMA), a low sulfur, residual marine (RMB-30) and a high-sulfur residual marine (RMG-380). The average emission factors with all instruments increased from 0.08 to 1.88 gBC/kg fuel in going from 25 to 75% load. An analysis of variance (ANOVA) tested BC emissions against instrument, load, and combined fuel properties and showed that both engine load and fuels had a statistically significant impact on BC emission factors. While BC emissions were impacted by the fuels used, none of the fuel properties investigated (sulfur content, viscosity, carbon residue and CCAI) was a primary driver for BC emissions. Of the two residual fuels, RMB-30 with the lower sulfur content, lower viscosity and lower residual carbon, had the highest BC emission factors. BC emission factors determined with the different instruments showed a good correlation with the PAS values with correlation coefficients R2 >0.95. A key finding of this research is the relative BC measured values were mostly independent of load and fuel, except for some instruments in certain fuel and load combinations.
NASA Astrophysics Data System (ADS)
Xiao, Yang; Li, Yunkai; Ning, Zigong; Li, Pengxiang; Yang, Peiling; Liu, Chengcheng; Liu, Zhongwei; Xu, Feipeng; Hynds, Paul Dylan
2018-03-01
Wastewater reclamation now represents an effective measure for sustainable water resource management in arid regions, however wastewater components (organic micropollutants) may potentially impact local ecological and/or human health. Previous studies have shown that sodium bentonite/natural clay (BC) mixes may be used to effectively reduce riverbed infiltration in regions characterized by excessively high hydraulic conductivity. Accordingly, the current study sought to investigate the contaminant removal efficiency (Re) of several BC mass ratios in simulated dry riverbeds. Results indicate that the measured Re of NH4+-N, CODcr and BOD5 increased in concurrence with an increasing sodium bentonite ratio, up to a maximum Re of 97.4% (NH4+-N), 55.2% (CODcr), and 51.5% (BOD5). The primary contaminant removal site was shown to be the infiltration-reducing (BC) layer, accounting for approximately 40%, 60%, and 70% of NH4+-N, CODcr and BOD5 removal, respectively. Conversely, the removal efficiency of NO3-N was found to be low (<15%), while total phosphorous (TP) was found to actively leach from the infiltration-reduction layer, resulting in measured TP discharges 2.4-4.8 times those of initial infiltration values. The current study provides a technical baseline for the efficacy of sodium bentonite as an effective bi-functional material in areas utilizing reclaimed water i.e. concurrent reduction of infiltration rates (Function 1) and decontamination of reclaimed wastewater infiltration/recharge (Function 2). Findings indicate that sodium bentonite-clay mixes may represent a feasible alternative for managing recharge of non-potable aquifers with reclaimed wastewater.
When black carbon (bc) and biologically derived organic carbon (bioc) phases are present in sediments or suspended particulates, both forms of carbon act additively to sorb organic chemicals but the bc phase has more sorption capacity per unit mass. . . .
Age at diagnosis of female breast cancer in Oman: Issues and implications
Mehdi, Itrat; Monem, Essam Abdul; Al Bahrani, Bassim Jaffar; Al Kharusi, Suad; Nada, Ayman Mohammad; Al Lawati, Jawad; Al Lawati, Najla
2014-01-01
Introduction: Female breast cancer (BC) is the most frequent malignancy diagnosed globally, about 23% of the diagnosed cancers. BC incidence varies geographically, highest in Western Europe and lowest in Africa. BC in females is strongly correlated to age, the highest incidence rate amongst older women reinforcing the importance of hormonal status. BC in young females has an aggressive phenotype. There is a shared observation amongst practicing oncologists that BC in Middle East and the developing world presents at an earlier age. Aim and Objective: The aims of this study are to evaluate the age at presentation of female BC in Oman, and to compare our data with international and regional published data. It discusses the impact of young age Breast Cancer. Materials and Methods: All diagnosed female BC cases registered from 1996-2010 all over the country, were retrieved from the National Cancer Registry, Ministry of Health. BC cases were analyzed with respect to age at presentation. The data were compared with regional and international data. Results: A total of 14,109 cancer cases were recorded during the period of study. BC was the leading malignancy as 1,294 cases (9.1%). Female BC patients were 1,230; denoting 19.2% of all female cancers. 53.5% of female BC presented below 50 years of age. Male BC constituted 5% of total, with 67% of male BC occurring over 50 years of age. Compared with data from Oman, the highest rates in UK and other Western countries are above 50 years of age. These rates are four to 10 times higher than local in different age groups. Interestingly, these rates increase with increasing age in UK from 40-45 to up to 85+, keep on increasing and go up to four times higher with higher age. This phenomenon, of increasing incidence rates with age, is not observed in our local population. Discussion: BC is significantly correlated to age as reported from Western population. BC is reported at a younger age from developing and Arab World, which need to be further studied and validated. This phenomenon of BC in younger age may have significant implications and effects ranging from screening, diagnosis, management, prognosis, and cost of treatment. Conclusion: The impact on young women diagnosed with BC is enormous, ranging from psychosocial to healthcare services and economics. There is a need to study it further in depth in developing World. PMID:24818104
NASA Astrophysics Data System (ADS)
Schulz, H.; Kok, G. L.; Zanatta, M.; Schwarz, J. P.; Herber, A. B.
2016-12-01
Black carbon (BC) aerosol is an important contributor to climate change due to its ability to very efficiently absorb solar radiation. The Single Particle Soot Photometer (SP2) is an instrument that quantifies the refractory mass of individual BC-containing particles with a laser-induced incandescence method. The SP2 has been deployed on ships, at ground based sites, and on research aircraft to quantify BC's mass loadings and microphysical properties. However, the SP2's particle detection range is generally limited to 70-700 nm volume-equivalent diameter for ambient BC. Ambient air typically contains substantial number concentrations below and mass concentrations above the limits of this range. To account for the unquantified particles, it is common to fit a log-normal distribution to the measured size distributions — an approach that leaves the BC community with uncertain results, and a need to learn about the occurrence of very small particles or very large BC aggregates. The SP2 is also large and heavy enough to limit its usability for aircraft and unmanned or towed airborne vehicles. We have developed a miniaturized SP2 to dramatically extend the range of applications for which the SP2 technique can be used. This new instrument, with the additional target of an extended measurement range, has been named the SP2-XR, and incorporates a newly designed optical block with updated electronics for signal recording and on-the-fly processing (gain stitching and peak analysis). The optical block improves the light-collection of both scattered and incandescent light from sampled particles. The target measurement range is 40-1000 nm. At the same time, the SP2-XR weighs less than half of an SP2 (15 kg for the complete system), and about 1/4 the volume ( 20 cm x 20 cm x 40 cm). The instrument software is designed to produce ready to use particle mass and binned size distributions or full particle trace records, according to different scientific needs. Thus, an SP2-XR may produce a much slimmer data set while deployed in the field, compared to the SP2. We have compared the size-resolved detection efficiency and performance of the SP2-XR to two classic SP2 system using a DMA/CPC system. Measurements covered different BC standards (Aquadag and Fullerene Soot), PSL particles, and ambient aerosol. Test results will be presented.
NASA Astrophysics Data System (ADS)
Mendez, M.; Lebègue, P.; Visez, N.; Fèvre-Nollet, V.; Crenn, V.; Riffault, V.; Petitprez, D.
2016-03-01
The European emission Adaptation SYstem for the WRF-Chem model (EASYWRF-Chem) has been developed to generate chemical information supporting the WRF-Chem requirements from any emission inventory based on the CORINAIR methodology. Using RADM2 and RACM2 mechanisms, "emission species" are converted into "model species" thanks to the SAPRC methodology for gas phase pollutant and the PM10 and PM2.5 fractions. Furthermore, by adapting US EPA PM2.5 profiles, the processing of aerosol chemical speciation profiles separates the unspeciated PM2.5 emission into five chemical families: sulfates, nitrates, elemental carbon, organic aerosol and unspeciated aerosol. The evaluation of the model has been performed by separately comparing model outcomes with (i) meteorological measurements; (ii) NO2, O3, PM10 and PM2.5 mass concentrations from the regional air quality monitoring network; (iii) hourly-resolved data from four field campaign measurements, in winter and in summer, on two sites in the French northern region. In the latter, a High Resolution - Time of Flight - Aerosol Mass Spectrometer (HR-ToF-AMS) provided non-refractory PM1 concentrations of sulfate, nitrate and ammonium ions as well as organic matter (OM), while an aethalometer provided black carbon (BC) concentrations in the PM2.5 fraction. Meteorological data (temperature, wind, relative humidity) are well simulated for all the time series data except for specific events as wind direction changes or rainfall. For particulate matter, results are presented by considering firstly the total mass concentration of PM2.5 and PM10. EASYWRF-Chem simulations overestimated the PM10 mass concentrations by + 22% and + 4% for summer and winter periods respectively, whereas for the finer PM2.5 fraction, mass concentrations were overestimated by + 20% in summer and underestimated by - 13% in winter. Simulated sulfate concentrations were underestimated and nitrate concentrations were overestimated but hourly variations were well represented. Ammonium particulate matter was well simulated for all seasons. Although simulated particulate OM concentrations in PM2.5 were underestimated, their hourly variations were well reproduced by the model. At least BC measurements revealed that EASYWRF-Chem forecast performance was higher in winter than during summer when BC concentrations were very low.
Wang, Ji-Guang; Zhang, Yi; Chen, Han-E; Li, Yan; Cheng, Xiao-Guang; Xu, Li; Guo, Zhe; Zhao, Xing-Shan; Sato, Tetsuya; Cao, Qi-Yun; Chen, Ke-Min; Li, Biao
2013-01-01
We compared a 4-limb bioelectrical impedance analysis (BIA) system, HBF 359 (Omron), and a 2-limb foot-to-foot device, BC 532 (Tanita), with the standard dual energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) methods for the measurement of body fat percentage (BF), skeletal muscle mass percentage (SMM, or fat-free mass [FFM] for BC 532), and visceral fat level (VF). Body composition was measured in 200 healthy volunteers (100 men and 100 women, mean age 48 years) by HBF 359 and BC 532 and by DXA and MRI. The agreement was assessed by correlation analysis and paired t-test. The correlation coefficients between BIA and DXA or MRI ranged from 0.71 to 0.89 for BF, SMM, and VF by HBF 359 and from 0.77 to 0.90 for BF, FFM, and VF by BC 532 in all subjects and in men and women separately (p < 0.001 for all). Compared with DXA, HBF 359 significantly (p < 0.001) underestimated BF by -5.8% in men and -9.6% in women. Compared with MRI, the corresponding underestimatons (negative) or overestimations (positive) by HBF 359 in men and women were, respectively, +1.9% (p = 0.02) and +1.7% (p = 0.10) for SMM, and +13.3% (p < 0.001) and -8.5% (p = 0.006), for VF. The corresponding values by BC 532 in men and women were -10.7 and -6.2% for BF, -1.4 and -2.5% for FFM, and +20.4 and -18.0% for VF. The BIA devices are accurate in the estimation of body composition, especially skeletal muscle mass or FFM.
Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings
NASA Astrophysics Data System (ADS)
Freedman, Andrew; Renbaum-Wollf, Lindsay; Forestieri, Sara; Lambe, Andrew; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy
2015-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. Important in quantifying the direct radiative impacts of soot in climate models, and specifically of black carbon (BC), is the assumed BC refractive index and shape-dependent interaction of light with BC particles. The latter assumption carries significant uncertainty because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet many optical models such as Mie theory in particular, typically assume a spherical particle morphology. It remains unclear under what conditions this is an acceptable assumption. To investigate the ability of various optical models to reproduce observed BC optical properties, we obtained measurements of light absorption, scattering and extinction coefficients and thus single scattering albedo (SSA) of size-resolved soot particles. Measurements were made on denuded soot particles produced using both methane and ethylene as fuels. In addition, these soot particles were coated with dioctyl sebacate or sulfuric acid and the enhancement in the apparent mass absorption coefficient determined. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm. Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The results will be interpreted in light of both Mie theory which assumes spherical and uniform particles and Rayleigh-Debye-Gans (RDG) theory, which assumes that the absorption properties of soot are dictated by the individual spherules. For denuded soot, effective refractive indices will be determined.
Baumgartner, Jill; Zhang, Yuanxun; Schauer, James J.; Huang, Wei; Wang, Yuqin; Ezzati, Majid
2014-01-01
Air pollution in China and other parts of Asia poses large health risks and is an important contributor to global climate change. Almost half of Chinese homes use biomass and coal fuels for cooking and heating. China’s economic growth and infrastructure development has led to increased emissions from coal-fired power plants and an expanding fleet of motor vehicles. Black carbon (BC) from incomplete biomass and fossil fuel combustion is the most strongly light-absorbing component of particulate matter (PM) air pollution and the second most important climate-forcing human emission. PM composition and sources may also be related to its human health impact. We enrolled 280 women living in a rural area of northwestern Yunnan where biomass fuels are commonly used. We measured their blood pressure, distance from major traffic routes, and daily exposure to BC (pyrolytic biomass combustion), water-soluble organic aerosol (organic aerosol from biomass combustion), and, in a subset, hopane markers (motor vehicle emissions) in winter and summer. BC had the strongest association with systolic blood pressure (SBP) (4.3 mmHg; P < 0.001), followed by PM mass and water-soluble organic mass. The effect of BC on SBP was almost three times greater in women living near the highway [6.2 mmHg; 95% confidence interval (CI), 3.6 to 8.9 vs. 2.6 mmHg; 95% CI, 0.1 to 5.2]. Our findings suggest that BC from combustion emissions is more strongly associated with blood pressure than PM mass, and that BC’s health effects may be larger among women living near a highway and with greater exposure to motor vehicle emissions. PMID:25157159
Black carbon emissions from diesel sources in Russia. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kholod, Nazar; Evans, Meredydd
This report presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this report analyzes BC emissions from diesel on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the report also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators.more » The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC in 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.
2011-06-03
Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations.more » The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.« less
NASA Astrophysics Data System (ADS)
Shen, Z.; Liu, J.; Horowitz, L. W.; Henze, D. K.; Fan, S.; Levy, H., II; Mauzerall, D. L.; Lin, J.-T.; Tao, S.
2014-06-01
Long-range transport of black carbon (BC) is a growing concern as a result of the efficiency of BC in warming the climate and its adverse impact on human health. We study transpacific transport of BC during HIPPO-3 using a combination of inverse modeling and sensitivity analysis. We use the GEOS-Chem chemical transport model and its adjoint to constrain Asian BC emissions and estimate the source of BC over the North Pacific. We find that different sources of BC dominate the transport to the North Pacific during the southbound (29 March 2010) and northbound (13 April 2010) measurements in HIPPO-3. While biomass burning in Southeast Asia (SE) contributes about 60% of BC in March, more than 90% of BC comes from fossil fuel and biofuel combustion in East Asia (EA) during the April mission. GEOS-Chem simulations generally resolve the spatial and temporal variation of BC concentrations over the North Pacific, but are unable to reproduce the low and high tails of the observed BC distribution. We find that the optimized BC emissions derived from inverse modeling fail to improve model simulations significantly. This failure indicates that uncertainties in BC removal as well as transport, rather than in emissions, account for the major biases in GEOS-Chem simulations of BC over the North Pacific. The aging process, transforming BC from hydrophobic into hydrophilic form, is one of the key factors controlling wet scavenging and remote concentrations of BC. Sensitivity tests on BC aging (ignoring uncertainties of other factors controlling BC long range transport) suggest that in order to fit HIPPO-3 observations, the aging timescale of anthropogenic BC from EA may be several hours (faster than assumed in most global models), while the aging process of biomass burning BC from SE may occur much slower, with a timescale of a few days. To evaluate the effects of BC aging and wet deposition on transpacific transport of BC, we develop an idealized model of BC transport. We find that the mid-latitude air masses sampled during HIPPO-3 may have experienced a series of precipitation events, particularly near the EA and SE source region. Transpacific transport of BC is sensitive to BC aging when the aging rate is fast; this sensitivity peaks when the aging timescale is in the range of 1-1.5 d. Our findings indicate that BC aging close to the source must be simulated accurately at a process level in order to simulate better the global abundance and climate forcing of BC.
NASA Astrophysics Data System (ADS)
Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.
2015-05-01
Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global carbon cycle.
Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China
NASA Astrophysics Data System (ADS)
Huang, X.
2015-12-01
X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the brown carbon contribution to the aerosol light absorption at shorter wavelengths is not negligible in the PRD region, with a rough magnitude of 10%. Key words: Light absorption, Absorption Angstrom Exponent (AAE), Brown carbon (BrC), Black carbon (BC)
Effects of wet deposition on the abundance and size distribution of black carbon in East Asia
NASA Astrophysics Data System (ADS)
Kondo, Y.; Moteki, N.; Oshima, N.; Ohata, S.; Koike, M.; Shibano, Y.; Takegawa, N.; Kita, K.
2016-05-01
An improved understanding of the variations in the mass concentration and size distribution of black carbon (BC) in the free troposphere (FT) over East Asia, where BC emissions are very high, is needed to reliably estimate the radiative forcing of BC in climate models. We measured these parameters and the carbon monoxide (CO) concentration by conducting the Aerosol Radiative Forcing in East Asia (A-FORCE) 2013W aircraft campaign in East Asia in winter 2013 and compared these data with measurements made in the same region in spring 2009. The median BC concentrations in the FT originating from North China (NC) and South China (SC) showed different seasonal variations, which were primarily caused by variations in meteorological conditions. CO concentrations above the background were much higher in SC than in NC in both seasons, suggesting a more active upward transport of CO. In SC, precipitation greatly increased from winter to spring, leading to an increased wet deposition of BC. As a result, the median BC concentration in the FT was highest in SC air in winter. This season and region were optimal for the effective transport of BC from the planetary boundary layer to the FT. The count median diameters of the BC size distributions generally decreased with altitude via wet removal during upward transport. The altitude dependence of the BC size distributions was similar in winter and spring, in accord with the similarity in the BC mixing state. The observed BC concentrations and microphysical properties will be useful for evaluating the performance of climate models.
Ear surgery techniques results on hearing threshold improvement
Mokhtarinejad, Farhad; Pour, Saeed Soheili; Nilforoush, Mohammad Hussein; Sepehrnejad, Mahsa; Mirelahi, Susan
2013-01-01
Background: Bone conduction (BC) threshold depression is not always by means of sensory neural hearing loss and sometimes it is an artifact caused by middle ear pathologies and ossicular chain problems. In this research, the influences of ear surgeries on bone conduction were evaluated. Materials and Methods: This study was conducted as a clinical trial study. The ear surgery performed on 83 patients classified in four categories: Stapedectomy, tympanomastoid surgery and ossicular reconstruction partially or totally; Partial Ossicular Replacement Prosthesis (PORP) and Total Ossicular Replacement Prosthesis (TORP). Bone conduction thresholds assessed in frequencies of 250, 500, 1000, 2000 and 4000 Hz pre and post the surgery. Results: In stapedectomy group, the average of BC threshold in all frequencies improved approximately 6 dB in frequency of 2000 Hz. In tympanomastoid group, BC threshold in the frequency of 500, 1000 and 2000 Hz changed 4 dB (P-value < 0.05). Moreover, In the PORP group, 5 dB enhancement was seen in 1000 and 2000 Hz. In TORP group, the results confirmed that BC threshold improved in all frequencies especially at 4000 Hz about 6.5 dB. Conclusion: In according to results of this study, BC threshold shift was seen after several ear surgeries such as stapedectomy, tympanoplasty, PORP and TORP. The average of BC improvement was approximately 5 dB. It must be considered that BC depression might happen because of ossicular chain problems. Therefore; by resolving middle ear pathologies, the better BC threshold was obtained, the less hearing problems would be faced. PMID:24381615
Torres, Diogo; Myers, John A; Eshraghi, Leah W; Riley, Elizabeth C; Soliman, Pamela T; Milam, Michael R
2015-01-01
Our study compares breast cancer survivors without a secondary diagnosis of uterine cancer (BC) to breast cancer survivors with a diagnosis of uterine cancer (BUC) to determine clinical characteristics that increase the odds of developing uterine cancer. A total of 7,228 breast cancer survivors were surveyed. A case-control study was performed with 173 BUC patients matched by age and race in a 1:5 ratio to 865 BC patients. Multivariable logistic regression examined which factors influence the odds of developing uterine cancer. A total of 5,980 (82.3 %) women did not have a previous hysterectomy at the time of breast cancer diagnosis, of which 173 (2.9 %) subsequently developed uterine cancer. There was no significant difference in body mass index (BMI) (34.4 vs. 34.1, p = 0.388) or age (52.3 vs. 52.3 years, p = 0.999) between the two groups. Increased odds for developing uterine cancer were found in patients with a personal history of hypertension [odds ratio (OR) = 1.62, 95 % confidence interval (CI) 1.45-2.70, p < 0.001], gallbladder disease (OR = 1.30, 95 % CI 1.14-1.55, p = 0.005), and thyroid disease (OR = 1.55, 95 % CI 1.37-1.69, p < 0.001). More than 80 % of women in both groups expressed a desire for a blood test to estimate the risk of uterine cancer (80.4 % BUC vs. 91.2 % BC, p < 0.001). Hypertension, gallbladder disease, and thyroid disease in breast cancer survivors increase the odds of developing uterine cancer. Breast cancer survivors also express significant interest in potential serum tests to assess the risk of developing uterine cancer.
NASA Astrophysics Data System (ADS)
Ham, Walter; Vijayan, Abhilash; Schulte, Nico; Herner, Jorn D.
2017-10-01
This study was designed to estimate and compare the air pollution exposures experienced by commuters in six common transportation modes utilized by California residents, and to evaluate the impact of practical exposure mitigation strategies in reducing commute exposures. We measured concentrations of fine particle matter (PM2.5), black carbon (BC), and ultrafine particles (UFP) for 161 commutes between April 2014 and November 2015 in Sacramento, CA. We collected measurements for six modes including single occupancy vehicles, high occupancy vehicles (multiple occupants), buses, light rail, train, and bicycling. The largest average concentrations for most pollutants were measured during train commutes and the lowest average concentrations were observed during light-rail commutes. Mitigation options were explored for personal vehicles, bicycling, and train commute modes. We found that ventilation settings of personal vehicles can reduce in-vehicle PM2.5, BC, and UFP concentrations by up to 75%. Similarly, bicycle route choice can reduce exposures by 15-75% with the lowest concentrations observed during commutes on dedicated bicycle paths away from traffic sources. Train commuters experienced UFP concentrations an order of magnitude greater when the locomotive engine was pulling the rail cars versus pushing the rail cars. We found that UFP concentrations during bus, bicycling, and train commutes were 1.6-5.3 times greater than personal vehicle commutes, while light rail commutes had 30% lower UFP concentrations than personal vehicle commutes. The largest exposure per mile occurred during bicycle commutes with PM2.5, BC, and UFP exposures of 1.312 μg/mile, 0.097 μg/mile, and 3.0 × 109 particles/mile, respectively. Train commutes experienced the largest exposure per mile of all of the combustion-derived transportation commute modes. BC accounted for 5-20% of total PM mass across all commute modes with an average fraction of ∼7% of PM2.5.
NASA Astrophysics Data System (ADS)
Matsui, H.; Koike, M.; Kondo, Y.; Fast, J. D.; Takigawa, M.
2014-09-01
Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimations of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated the Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can explicitly represent these parameters by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol sizes (12 bins) and BC mixing states (10 bins) for a total of 120 bins. The particles with diameters between 1 and 40 nm are resolved using additional eight size bins to calculate NPF. The ATRAS module is implemented in the WRF-Chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging, and SOA processes over East Asia during the spring of 2009. The BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10-20% over northern East Asia and 20-35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. The application of ATRAS in East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA processes under different meteorological conditions and emissions.
Assessing the Extent of Black Carbon Absorption Enhancements from Field Observations
NASA Astrophysics Data System (ADS)
Cappa, C. D.; Zhang, X.; Metcalf, A. R.; Kim, H.; Zhang, Q.; Zimmermann, K.; Bertram, T. H.; Corrigan, A. L.; Russell, L. M.
2013-12-01
Black carbon (BC) and brown carbon (BrC) play important roles as short-lived climate forcers (SLCFs) as a result of their short atmospheric lifetimes and ability to absorb solar radiation. The direct impacts of BC on climate depend on just how efficiently a given BC particle absorbs solar radiation, while the impacts of BrC depend on the specific properties of the BrC. The addition of 'coatings' to BC particles can theoretically increase the absorption by a given particle, and this theoretical 'lensing' enhancement has been confirmed through laboratory experiments. However, recent field observations (from the CalNex and CARES studies; Cappa et al. 2012), using a novel thermodenuder-absorption method, have suggested that the actual enhancement for ambient particles is substantially less than theoretically expected. Here, we will discuss results from similar measurements made during two recent field studies, the 2013 DISCOVER-AQ Fresno study and the 2013 SOAS Look Rock study. DISCOVER-AQ took place in Jan/Feb 2013 in Fresno, CA. This region is severely impacted by particulate matter from local and regional residential biomass burning, and thus provides a sharp contrast to the previous CalNex and CARES studies. SOAS took place during June/July 2013 at Look Rock National Park, TN, a relatively remote region strongly impacted by biogenic emissions (predominately isoprene) and located approximately 30 miles away from Knoxville, TN. The difference in absorption for dry, ambient particles will be compared with absorption measured for particles that have been passed through a thermodenuder. Additionally, variations in the mass absorption coefficient, determined from comparison of the measured light absorption and refractory black carbon concentrations, will be examined. The relative contributions of BrC and BC to total absorption at 405 nm, 532 nm and 870 nm will be discussed. The overall measurements suggest a relatively small role for lensing-induced absorption enhancements for ambient particles in these regions.
Analysis of the physical properties of black carbon coatings from near-road to remote aging scales
NASA Astrophysics Data System (ADS)
Krasowsky, T. S.; McMeeking, G. R.; Sioutas, C.; Ban-Weiss, G. A.
2017-12-01
As black carbon (BC) particles are transported in the atmosphere, they acquire soluble coatings with important environmental implications. However, there is still vast uncertainty associated with "how" and "when" coatings accumulate on BC particles, including at rapid time-scales (e.g., adjacent to major roadways) and at more remote locations. A Single-Particle Soot Photometer (SP2) was used to measure refractory BC during the summer months in Los Angeles, California. BC physical properties were compared near a major freeway and at a remote receptor site in Redlands, California, approximately 100 km east of the downtown Los Angeles area. We have attempted to reduce uncertainty associated with the mechanisms that govern the procurement of soluble coatings on BC by investigating various meteorological regimes and comparing weekday to weekend BC properties. BC coatings were quantified using the "Lag-Time" and "Leading-Edge-Only" methods. Results reported here show an increased fraction of thickly-coated BC particles up to 115 meters from the roadway where competing partial pressure and vapor pressure causes various species to condense on BC as distance from the roadway increases. However, the median coating thickness for all BC particles measured near the roadway on August 4, 2016 was approximately 0 nm indicating BC particles near major roads are mostly uncoated. Despite ever-changing meteorological regimes at the receptor site, BC at the receptor site exhibited remarkably similar properties to BC measured 115 meters from the roadway. Although the overall mixing states were not vastly different at the roadway source and receptor sites, there were systematic mixing state dependencies based on changes in meteorological regimes and the day of week measured. On weekends, a higher relative portion of gasoline vehicles than diesel trucks may be leading to relatively more secondary organic aerosols to coat proportionately less BC mass.
Radiative absorption enhancement from coatings on black carbon aerosols.
Cui, Xinjuan; Wang, Xinfeng; Yang, Lingxiao; Chen, Bing; Chen, Jianmin; Andersson, August; Gustafsson, Örjan
2016-05-01
The radiative absorption enhancement of ambient black carbon (BC), by light-refractive coatings of atmospheric aerosols, constitutes a large uncertainty in estimates of climate forcing. The direct measurements of radiative absorption enhancement require the experimentally-removing the coating materials in ambient BC-containing aerosols, which remains a challenge. Here, the absorption enhancement of the BC core by non-absorbing aerosol coatings was quantified using a two-step removal of both inorganic and organic matter coatings of ambient aerosols. The mass absorption cross-section (MAC) of decoated/pure atmospheric BC aerosols of 4.4±0.8m(2)g(-1) was enhanced to 9.6±1.8m(2)g(-1) at 678-nm wavelength for ambiently-coated BC aerosols at a rural Northern China site. The enhancement of MAC (EMAC) rises from 1.4±0.3 in fresh combustion emissions to ~3 for aged ambient China aerosols. The three-week high-intensity campaign observed an average EMAC of 2.25±0.55, and sulfates were primary drivers of the enhanced BC absorption. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Yongjoo; Ghim, Young Sung
2016-11-01
Columnar concentrations of absorbing and scattering components of fine mode aerosols were estimated using Aerosol Robotic Network (AERONET) data for a site downwind of Seoul. The study period was between March 2012 and April 2013 including the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia campaign in March to May 2012. The Maxwell Garnett mixing rule was assumed for insoluble components embedded in a host solution, while the volume average mixing rule was assumed for the aqueous solution of soluble components. During the DRAGON-Asia campaign the surface concentrations of major components of fine particles were measured. The columnar mass fractions of black carbon (BC), organic carbon (OC), mineral dust (MD), and ammonium sulfate (AS) were 1.5, 5.9, 6.6, and 52%, respectively, which were comparable to the mass fractions measured at the surface for BC, OC, and secondary inorganic aerosols at 2.3, 18, and 55%. The vertical distributions of BC and AS were investigated by employing the concept of a column height. While the column height for BC was similar to the planetary boundary layer (PBL) height, that for AS was 4.4 times higher than the PBL height and increased with air temperature from March to May. The monthly variations of the columnar mass concentrations during the study period were generally well explained in term of meteorology and emission characteristics. However, certain variations of MD were different from those typically observed primarily because only fine mode aerosols were considered.
Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua
2015-09-01
Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlacek, Arthur J
One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. However given the pronounced sensitivity of the polar regions to radiative balance perturbations, it is incumbent upon our community to better understand and quantify these perturbations, and their unique feedbacks, so that robust model predictions of this region can be realized. One class of under-measured radiative forcing agents inmore » the polar region is the absorbing aerosol—black carbon and brown carbon. Black carbon (BC; also referred to as light-absorbing carbon [LAC], refractory black carbon [rBC], and soot) is second only to CO2 as a positive forcing agent. Roughly 60% of BC emissions can be attributed to anthropogenic sources (fossil fuel combustion and open-pit cooking), with the remaining fraction being due to biomass burning. Brown carbon (BrC), a major component of biomass burning, collectively refers to non-BC carbonaceous aerosols that typically possess minimal light absorption at visible wavelengths but exhibit pronounced light absorption in the near-ultraviolet (UV) spectrum. Both species can be sourced locally or be remotely transported to the Arctic region and are expected to perturb the radiative balance. The work conducted in this field campaign addresses one of the more glaring deficiencies currently limiting improved quantification of the impact of BC radiative forcing in the cryosphere: the paucity of data on the vertical and spatial distributions of BC. By expanding the Gulfstream aircraft (G-1) payload for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility-sponsored ACME-V campaign to include the Single-Particle Soot Photometer (SP2)) and leveraging the ACME-V campaign’s deployment within the Arctic Circle during the summer of 2015 (Deadhorse, Alaska [70° 12' 20" N, 148° 30' 42" W]), the truly unique opportunity presented itself to acquire profile data on BC loading at little additional cost. Since the SP2 is a particle-resolved measurement, the resulting data set provides refractory black carbon (rBC) mass loadings, size and mass distributions, and rBC-containing particle mixing state, all of which are expected to readily find value in the modeling community. As part of the ACME-V (http://www.arm.gov/campaigns/aaf2014armacmev) campaign, CO, CO2, and CH4 were also measured, providing the unique opportunity for carbon closure. We will also work closely with modelers who require such data and expect this collaboration will lead directly to a better understanding of the climate impacts of BC in the Arctic. The primary measurement objective was to acquire airborne data on the vertical and spatial distributions of refractory black carbon (rBC) loading, size and mass distribution, and particle mixing state. The primary scientific objective was to provide a targeted data set of rBC particle distributions to better understand and constrain the impact of black carbon radiative forcing in the cryosphere. The SP2-based data set during this campaign is available in the DOE-ARM archive (http://www.arm.gov/campaigns/aaf2015abclp).« less
Saile, Elke; Klee, Silke R.; Hoffmaster, Alex; Kannenberg, Elmar L.
2017-01-01
Bacillus anthracis (Ba) and human infection-associated Bacillus cereus (Bc) strains Bc G9241 and Bc 03BB87 have secondary cell wall polysaccharides (SCWPs) comprising an aminoglycosyl trisaccharide repeat: →4)-β-d-ManpNAc-(1→4)-β-d-GlcpNAc-(1→6)-α-d-GlcpNAc-(1→, substituted at GlcNAc residues with both α- and β-Galp. In Bc G9241 and Bc 03BB87, an additional α-Galp is attached to O-3 of ManNAc. Using NMR spectroscopy, mass spectrometry and immunochemical methods, we compared these structures to SCWPs from Bc biovar anthracis strains isolated from great apes displaying “anthrax-like” symptoms in Cameroon (Bc CA) and Côte d’Ivoire (Bc CI). The SCWPs of Bc CA/CI contained the identical HexNAc trisaccharide backbone and Gal modifications found in Ba, together with the α-Gal-(1→3) substitution observed previously at ManNAc residues only in Bc G9241/03BB87. Interestingly, the great ape derived strains displayed a unique α-Gal-(1→3)-α-Gal-(1→3) disaccharide substitution at some ManNAc residues, a modification not found in any previously examined Ba or Bc strain. Immuno-analysis with specific polyclonal anti-Ba SCWP antiserum demonstrated a reactivity hierarchy: high reactivity with SCWPs from Ba 7702 and Ba Sterne 34F2, and Bc G9241 and Bc 03BB87; intermediate reactivity with SCWPs from Bc CI/CA; and low reactivity with the SCWPs from structurally distinct Ba CDC684 (a unique strain producing an SCWP lacking all Gal substitutions) and non-infection-associated Bc ATCC10987 and Bc 14579 SCWPs. Ba-specific monoclonal antibody EAII-6G6-2-3 demonstrated a 10–20 fold reduced reactivity to Bc G9241 and Bc 03BB87 SCWPs compared to Ba 7702/34F2, and low/undetectable reactivity to SCWPs from Bc CI, Bc CA, Ba CDC684, and non-infection-associated Bc strains. Our data indicate that the HexNAc motif is conserved among infection-associated Ba and Bc isolates (regardless of human or great ape origin), and that the number, positions and structures of Gal substitutions confer unique antigenic properties. The conservation of this structural motif could open a new diagnostic route in detection of pathogenic Bc strains. PMID:28832613
Kamal, Nazia; Ganguly, Jhuma; Saile, Elke; Klee, Silke R; Hoffmaster, Alex; Carlson, Russell W; Forsberg, Lennart S; Kannenberg, Elmar L; Quinn, Conrad P
2017-01-01
Bacillus anthracis (Ba) and human infection-associated Bacillus cereus (Bc) strains Bc G9241 and Bc 03BB87 have secondary cell wall polysaccharides (SCWPs) comprising an aminoglycosyl trisaccharide repeat: →4)-β-d-ManpNAc-(1→4)-β-d-GlcpNAc-(1→6)-α-d-GlcpNAc-(1→, substituted at GlcNAc residues with both α- and β-Galp. In Bc G9241 and Bc 03BB87, an additional α-Galp is attached to O-3 of ManNAc. Using NMR spectroscopy, mass spectrometry and immunochemical methods, we compared these structures to SCWPs from Bc biovar anthracis strains isolated from great apes displaying "anthrax-like" symptoms in Cameroon (Bc CA) and Côte d'Ivoire (Bc CI). The SCWPs of Bc CA/CI contained the identical HexNAc trisaccharide backbone and Gal modifications found in Ba, together with the α-Gal-(1→3) substitution observed previously at ManNAc residues only in Bc G9241/03BB87. Interestingly, the great ape derived strains displayed a unique α-Gal-(1→3)-α-Gal-(1→3) disaccharide substitution at some ManNAc residues, a modification not found in any previously examined Ba or Bc strain. Immuno-analysis with specific polyclonal anti-Ba SCWP antiserum demonstrated a reactivity hierarchy: high reactivity with SCWPs from Ba 7702 and Ba Sterne 34F2, and Bc G9241 and Bc 03BB87; intermediate reactivity with SCWPs from Bc CI/CA; and low reactivity with the SCWPs from structurally distinct Ba CDC684 (a unique strain producing an SCWP lacking all Gal substitutions) and non-infection-associated Bc ATCC10987 and Bc 14579 SCWPs. Ba-specific monoclonal antibody EAII-6G6-2-3 demonstrated a 10-20 fold reduced reactivity to Bc G9241 and Bc 03BB87 SCWPs compared to Ba 7702/34F2, and low/undetectable reactivity to SCWPs from Bc CI, Bc CA, Ba CDC684, and non-infection-associated Bc strains. Our data indicate that the HexNAc motif is conserved among infection-associated Ba and Bc isolates (regardless of human or great ape origin), and that the number, positions and structures of Gal substitutions confer unique antigenic properties. The conservation of this structural motif could open a new diagnostic route in detection of pathogenic Bc strains.
Duarte, Ana Lúcia Almeida; do Rosário, Denes Kaic Alves; Oliveira, Syllas Borburema Silva; de Souza, Hygor Lendell Silva; de Carvalho, Raquel Vieira; Carneiro, Joel Camilo Souza; Silva, Pollyanna Ibrahim; Bernardes, Patrícia Campos
2018-03-23
The consumer's interest in ready-to-eat, fast-ready, nutritious and fresh foods is a major challenge for the food industry. Thus, studies on new sanitization methods are relevant. The effect of Sodium Hypochlorite (SH), Benzalkonium Chloride (BC), and Sodium Dichloroisocyanurate (SD) isolated or combined with Ultrasound (US) in purple cabbage quality over 7 days of storage at 8 ± 1 °C was evaluated. The natural microbiota (mesophilic aerobic bacteria, lactic acid bacteria and coliforms), intentionally inoculated Salmonella Typhimurium, physicochemical quality (anthocyanins, pH, total titratable acidity, instrumental color and mass loss) and sensorial quality (multiple comparison test and visual sensory acceptance) were analyzed. The best treatments for natural microbiota reduction were BC and US + BC, which in general reduced between 1.9 and 3.2 log cfu/g. US improved (p < .05) the effect of SD reducing almost 4 log cycles in the population of S. Typhimurium adhered to cabbage. The treatments with benzalkonium chloride resulted in important physicochemical changes in cabbage. The treatments SD and US + SD did not alter the physicochemical and sensorial characteristics of purple cabbage. Therefore, ultrasound combined with sodium dichloroisocyanurate is a promising alternative for the reduction of microbiological contaminants of purple cabbage without physicochemical, sensory and anthocyanin content loss. Copyright © 2018 Elsevier B.V. All rights reserved.
Branched chains support postoperative protein synthesis.
Cerra, F B; Upson, D; Angelico, R; Wiles, C; Lyons, J; Faulkenbach, L; Paysinger, J
1982-08-01
A blinded, prospective trial of the effects of branched-chain amino acid (BcAA)-enriched total parenteral nutrition (TPN) versus standard TPN was undertaken in nonseptic noncirrhotic abdominal surgery patients and patients with multiple traumatic injuries. The study reflected data from the immediate 7-day postoperative period. With isocaloric and isonitrogenous input, the BcAA-TPN patients achieved positive nitrogen balance on day 3. Although the urinary nitrogen output was decreased by day 3 in BcAA-TPN, the plasma BcAA levels did not increase until day 6. With no change in 3-methylhistidine urinary excretion, the early nitrogen retention with BcAA-TPN probably reflects a stimulation of protein synthesis. The ability to favorably modulate the metabolic stress response with alternate fuels has become a clinical reality.
NASA Astrophysics Data System (ADS)
Rinaldi, Matteo; Gilardoni, Stefania; Paglione, Marco; Sandrini, Silvia; Decesari, Stefano; Zanca, Nicola; Marinoni, Angela; Cristofanelli, Paolo; Bonasoni, Paolo; Ielpo, Piera; Fossum, Kirsten; Gobbi, Gian Paolo; Facchini, Maria Cristina
2017-04-01
The Mediterranean basin is characterized by elevated aerosol amounts and co-existence of different aerosol types, both natural and anthropogenic, while it is one of the most climatically sensitive areas. Therefore, it offers ideal conditions for studying aerosol processes and aerosol-climate interactions. An intensive aerosol physico-chemical characterization campaign was held at the Environmental-Climatic Observatory at Capo Granitola (Sicily; 37.5753° N, 12.6595° E) during April 2016, under the framework of the project Air-Sea Lab. The Observatory is located at the coast-line, facing the Strait of Sicily, and is part of the national I-AMICA network (http://www.i-amica.it/i-amica/?lang=en). Sub-micrometer aerosol chemical composition was measured by high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), for the first time at Capogranitola. Sea-salt concentration was estimated from AMS measurements following Ovadnevaite et al. (2012). For a complete mass closure of the submicron aerosol, black carbon (BC) concentration was derived from multiangle absorption photometer (MAAP) measurements. Positive matrix factorization was deployed to investigate organic aerosol (OA) sources at the site. Aerosol chemical composition confirms that Capogranitola is a representative background site, with generally low contribution of BC and nitrate and highly oxidized OA. In particular, aerosol sampled in the marine sector (130-310°) is less affected by local sources and it is likely representative of the central Mediterranean background. Aerosol in background conditions is dominated by sulfate and OA (37% and 31%), followed by ammonium (12%), sea-salt (10%), BC (6%) and nitrate (3%). The average reconstructed sub-micrometer aerosol mass in background conditions is 3.7±2.3 μg m-3. OA source apportionment shows a minor contribution from primary sources, with hydrocarbon-like OA (HOA), from fossil fuel combustion, contributing for 3% and biomass burning OA (BBOA) for 2%. Oxidized OA (OOA) dominates the rest of OA mass. In particular, OOA1 and OOA2 (70% in total, OM:OC ˜ 2.5) represent the result of prolonged atmospheric processing of OA, while OOA3 (25%, OM:OC ˜ 2.0) clearly represents fresher inputs of OOA from land. Investigation of HOA and BC time trends suggests that HOA in background conditions may be strongly contributed by ship traffic more than by land sources. The representativity of the background aerosol collected at Capogranitola will be discussed by comparing with measurements performed in parallel at the other I-AMICA southern Italy coastal stations and with those acquired in a subsequent cruise (May-June 2016) around the Italian Peninsula. Aerosol climate relevant properties, in relation with chemical composition, will be also presented and discussed. Ovadnevaite J. et al. (2012), J. Geophys. Res., 117, D16201.
2012-01-01
Introduction The Livial Intervention Following Breast Cancer: Efficacy, Recurrence and Tolerability Endpoints (LIBERATE: Clinical http://Trials.gov number NCT00408863), a randomized, placebo-controlled, double-blind trial that demonstrated that tibolone (Livial), a tissue-selective hormone-replacement therapy (HRT), increased breast cancer (BC) recurrence HR 1.40 (95% CI, 1.14 to 1.70; P = 0.001). A subgroup of women was entered into a study of bone mineral density (BMD). Methods Women with surgically excised primary BC (T1-3, N0-2, M-0) within the last 5 years, complaining of vasomotor symptoms, were assigned to tibolone, 2.5 mg daily, or placebo treatment for a maximum of 5 years. The BMD substudy enrolled 763 patients, using dual-energy X-ray absorptiometry (DXA) scanning at baseline and at 2 years. Results In the bone substudy, 699 of 763 women were eligible (345 allocated to tibolone, and 354, to placebo). After undergoing DXA scans, 300 (43%) women had normal BMD; 317 (45%), osteopenia; and 82 (11.7%), osteoporosis. Low body-mass index (P < 0.001), Asian race (P < 0.001), and late age at menarche (P < 0.04) predicted low bone mass at baseline. Tibolone increased BMD by 3.2% at the lumbar spine and 2.9% at the hip compared with placebo (both P < 0.001). The majority of fractures (55%) occurred in osteopenic patients. Women with normal BMD had increased recurrence with tibolone, 22 (15.6%) of 141 compared with placebo, 11 (6.9%) of 159 (P = 0.016), whereas no increased BC recurrence was seen in women with low BMD; 15 (7.4%) of 204 taking tibolone versus 13 (6.7%) of 195 taking placebo. Conclusions Tibolone is contraindicated after BC treatment, as it increases BMD and BC recurrence. Risk of BC recurrence was elevated in BC women with normal BMD (compared with low) who took tibolone. PMID:22251615
Physicochemical characteristics and toxic effects of ozone-oxidized black carbon particles
NASA Astrophysics Data System (ADS)
Li, Qian; Shang, Jing; Zhu, Tong
2013-12-01
Black carbon (BC) or soot particles formed by combustion are ubiquitous in the atmosphere and have a significant effect on climate and human health. Oxidation can change the physicochemical characteristics of BC, thereby increasing its toxicity. The physicochemical properties of BC and ozone-oxidized BC are investigated in this study through transmission electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, ultraviolet-visible spectrophotometry, and electron paramagnetic resonance. The contents of oxygen-containing functional groups, hydrophilicity, water-soluble organic compounds, and free radicals increased after ozone treatment. The redox capacity and cytotoxicity of BC particles were enhanced by ozone oxidation as detected by dithiothreitol (DTT) and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assays. The redox activities of different BC particles are compared. Particle phase contributed significantly to total redox activity as detected by the DTT assay. Results indicate that BC particles that have undergone aging in the atmosphere may be more toxic and harmful to human health.
Enhanced capture of elemental mercury by bamboo-based sorbents.
Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong
2012-11-15
To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO2 on gas-phase Hg0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO2 could inhibit Hg0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed. Copyright © 2012 Elsevier B.V. All rights reserved.
Dobson, Gary; McDougall, Gordon J; Stewart, Derek; Cubero, Miguel Ángel; Karjalainen, Reijo O
2017-01-01
The effects of juice matrix and pasteurization on the stability of total phenols and especially total and individual anthocyanins were examined in black currant (BC) juice and mixtures with apple, persimmon, and peach juices at 4 °C and 20 °C. Total phenol content decreased in all juices at both temperatures but there was a trend to lower levels in unpasteurized over pasteurized juices. Differences in the decline of total anthocyanins between pasteurized and unpasteurized juices varied according to the juice type and the storage temperature. At 4 °C storage, anthocyanins declined in all juices according to pseudo 1st-order kinetics and there were only small differences in the rates between pasteurized and unpasteurized juices. However, at 20 °C, although pasteurized and unpasteurized BC juices and pasteurized mixed juices followed pseudo 1st-order kinetics, there was a different pattern in unpasteurized mixed juices; a rapid initial decline was followed by a slowing down. The effect of the added juice on anthocyanin decline was also different at either temperature. At 4 °C, the anthocyanins decreased faster in mixed juices than BC juice alone, but at 20 °C, at least in pasteurized mixed juices, the decline was similar or even slower than in BC juice; there were only small differences among the 3 mixed juices. At 20 °C, in pasteurized and unpasteurized BC juices, the rate of decrease was essentially the same for all 4 individual anthocyanins but in the mixed juices the 2 glucosides decreased significantly faster than the 2 rutinosides. © 2016 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Olson, Michael R.
The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. Multiple methods were developed and applied to quantify the mass absorption cross-section (MAC) at multiple wavelengths of source and ambient samples. The MAC of BC was determined to be approximately 7.5 m2g-1 at 520nm. However, the MAC was highly variable with OC fraction and wavelength. The BrC MAC was similar for all sources, with the highest absorption in the UV at 370nm; the MAC quickly decreases at larger wavelengths. In the UV, the light absorption by BrC could exceed BC contribution by over 100 times, but only when the OC fraction is large (>90%) as compared to the total carbon. BrC was investigated by measuring the light absorption of solvent extracted fractions in water, dichloromethane, and methanol. Source emissions exhibited greater light absorption in methanol extractions as compared to water and DCM extracts. The BrC MAC was 2.4 to 3.7 m2g-1 at 370nm in methanol. Ambient samples showed similar MACs for the water and methanol extracts. Dichloromethane extracts did not have a significant light absorption characteristics for ambient samples. BrC and BC were measured in Beijing, China. Both were reduced significantly when restrictive air pollution controls were put in place. The industrial regions south and east of Beijing were the highest contributors to ambient BrC and BC. The controls reduced BrC more than BC as compared to observations during the regions heating period. Using the color characteristics of ambient PM, a model was developed to estimate elemental and organic carbon (EC/OC). The method will allow fast and cost effective quantification of PM composition in combination with large climate and health studies, especially in the developing world.
Factors controlling black carbon distribution in the Arctic
NASA Astrophysics Data System (ADS)
Qi, Ling; Li, Qinbin; Li, Yinrui; He, Cenlin
2017-01-01
We investigate the sensitivity of black carbon (BC) in the Arctic, including BC concentration in snow (BCsnow, ng g-1) and surface air (BCair, ng m-3), as well as emissions, dry deposition, and wet scavenging using the global three-dimensional (3-D) chemical transport model (CTM) GEOS-Chem. We find that the model underestimates BCsnow in the Arctic by 40 % on average (median = 11.8 ng g-1). Natural gas flaring substantially increases total BC emissions in the Arctic (by ˜ 70 %). The flaring emissions lead to up to 49 % increases (0.1-8.5 ng g-1) in Arctic BCsnow, dramatically improving model comparison with observations (50 % reduction in discrepancy) near flaring source regions (the western side of the extreme north of Russia). Ample observations suggest that BC dry deposition velocities over snow and ice in current CTMs (0.03 cm s-1 in the GEOS-Chem) are too small. We apply the resistance-in-series method to compute a dry deposition velocity (vd) that varies with local meteorological and surface conditions. The resulting velocity is significantly larger and varies by a factor of 8 in the Arctic (0.03-0.24 cm s-1), which increases the fraction of dry to total BC deposition (16 to 25 %) yet leaves the total BC deposition and BCsnow in the Arctic unchanged. This is largely explained by the offsetting higher dry and lower wet deposition fluxes. Additionally, we account for the effect of the Wegener-Bergeron-Findeisen (WBF) process in mixed-phase clouds, which releases BC particles from condensed phases (water drops and ice crystals) back to the interstitial air and thereby substantially reduces the scavenging efficiency of clouds for BC (by 43-76 % in the Arctic). The resulting BCsnow is up to 80 % higher, BC loading is considerably larger (from 0.25 to 0.43 mg m-2), and BC lifetime is markedly prolonged (from 9 to 16 days) in the Arctic. Overall, flaring emissions increase BCair in the Arctic (by ˜ 20 ng m-3), the updated vd more than halves BCair (by ˜ 20 ng m-3), and the WBF effect increases BCair by 25-70 % during winter and early spring. The resulting model simulation of BCsnow is substantially improved (within 10 % of the observations) and the discrepancies of BCair are much smaller during the snow season at Barrow, Alert, and Summit (from -67-47 % to -46-3 %). Our results point toward an urgent need for better characterization of flaring emissions of BC (e.g., the emission factors, temporal, and spatial distribution), extensive measurements of both the dry deposition of BC over snow and ice, and the scavenging efficiency of BC in mixed-phase clouds. In addition, we find that the poorly constrained precipitation in the Arctic may introduce large uncertainties in estimating BCsnow. Doubling precipitation introduces a positive bias approximately as large as the overall effects of flaring emissions and the WBF effect; halving precipitation produces a similarly large negative bias.
Luffa sponge offsets the negative effects of aeration on bacterial cellulose production.
Krusong, W; Kerdpiboon, S; Pornpukdeewattana, S; Jindaprasert, A
2016-12-01
To offset the negative effects of aeration on bacterial cellulose (BC) production by acetic acid bacteria using enmeshed cellulose microfibrils (CM) on luffa sponge matrices (LSM). The CM were enmeshed on LSM (LSM-CM). The optimal amount of LSM-CM was determined for BC production under aerated conditions. Without LSM-CM, no BC was produced in seven out of nine production cycles at the highest aeration rate (9 l min -1 ). However, with 0·5% LSM-CM and an aeration rate of 3 l min -1 , a satisfactory oxygen transfer coefficient was achieved, and also a good yield of BC (5·24 g l -1 ). Moreover, the LSM-CM was able to be recycled through nine consecutive BC production cycles. The highest BC yields (from 5·8 ± 0·4 to 6·6 ± 0·4 g l -1 ) were associated with high bacterial biomass and this was confirmed by scanning electron microscopy. We confirm that LSM-CM works well as a starter. Microenvironments low in dissolved oxygen within the matrices of LSM-CM are important for BC production under aeration conditions. The LSM-CM provides a microenvironment which offsets the negative effects of aeration on BC production. A sustainable, economic process for mass BC production is described using recycled LSM-CM with aeration. © 2016 The Society for Applied Microbiology.
Continuous measurement of carbon black in a densely populated area of Mexico City
NASA Astrophysics Data System (ADS)
Peralta, O.; Ortinez, A.; Castro, T.; Espinoza, M. D. L. L.; Saavedra, I.; Carabali-Sandoval, G. A., Sr.; Páramo, V. H.; Gavilán, A.; Martínez-Arroyo, A.
2014-12-01
The black carbon (BC) is a byproduct of burning fossil fuels and is an important short-lived climate forcer because it absorbs solar radiation altering the Earth's radiative budget and climate. It is also an atmospheric pollutant that promotes reactions of other compounds in the atmosphere. Despite its importance for health and climate, in Mexico there are very few studies on ambient concentrations of BC in urban areas and virtually no information of continuous measurements over long periods (more than a month of measurements). So, in order to develop more efficient local and regional mitigation strategies and policies that allow reducing ambient concentrations of BC, it is necessary to know BC seasonal evolution, contribution to radiative budget and impacts on health. This study shows continuous measurements (from July 2013 to July 2014) of BC to perform an analysis of seasonal variations. The selected monitoring site is located at Iztapalapa, a densely populated area with high traffic on the southeastern part of Mexico City. BC concentrations were obtained by two aethalometers (Magee Scientific Company, models AET31 and AET42) placed 15 meters above the ground. The aethalometers operate in the wavelength range of 370-950 nm and use a standard value of mass absorption coefficient MAC = 10.8 m2/g to calculate BC environmental concentration. To correct the aethalometers readings to the conditions of Mexico City, it was employed MAC = to 6.7 m2/g, which was determined for PM2.5 with a carbon analyzer (UIC, Inc.) and represents the mass absorption coefficient of soot emitted in Mexico City. The average value of the corrected concentration of BC in Mexico City during the period from July 2013 to July 2014 was 5.39 ± 1.89 μg/m3 (1.6 higher than readings recorded by aethalometers), which is greater than that measured in Shanghai in 2014 (annual average 2.33 μg/m3) and those reported for some U.S. cities; the value implies a potential danger to the health of inhabitants in Mexico City.
Real-time black carbon emission factors of light-duty vehicles tested on a chassis dynamometer
NASA Astrophysics Data System (ADS)
Forestieri, S. D.; Cappa, C. D.; Kuwayama, T.; Collier, S.; Zhang, Q.; Kleeman, M. J.
2012-12-01
Eight light-duty gasoline vehicles were tested on a Chassis dynamometer using the California Unified Driving Cycle (UDC) at the Haagen-Smit vehicle test facility at the California Air Resources Board (CARB) in El Monte, CA during September 2011. In addition, one light-duty gasoline vehicle, one ultra low-emission vehicle, one diesel passenger vehicle, and one gasoline direct injection vehicle were tested on a constant velocity driving cycle. Vehicle exhaust was diluted through CARB's CVS tunnel and a secondary dilution system in order to examine particulate matter (PM) emissions at atmospherically relevant concentrations (5-30 μg-m3). A variety of real-time instrumentation was used to characterize how the major PM components vary during a typical driving cycle, which includes a cold start phase followed by a hot stabilized running phase. Aerosol absorption coefficients were obtained at 532 nm and 405 nm with a time resolution of 2 seconds from a photo-acoustic spectrometer. These absorption coefficients were then converted to black carbon (BC) concentrations via a mass absorption coefficient. Non-refractory organic and inorganic PM and CO2 concentrations were quantified with a time resolution of 10 seconds using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Real-time BC and CO2 concentrations allowed for the determination of BC emission factors (EFs), providing insights into the variability of BC EFs during different phases of a typical driving cycle and aiding in the modeling BC emissions.
Jeon, Se Jeong; Lee, Jae Il; Jeon, Myung Jae; Lee, Maria
2016-04-01
Chemotherapy-induced amenorrhea (CIA) is a side effect that occurs in patients with breast cancer (BC) as a result of chemotherapy. These patients require special treatments to avoid infertility and menopause. However, the factors controlling CIA, resumption of menstruation (RM), and persistence of menstruation after chemotherapy are unknown. The long-term prognosis for premenopausal patients with BC and the prognostic factors associated with CIA and RM are subject to debate. We performed a retrospective study by reviewing the medical records of 249 patients with BC (stage I to stage III) who were treated with cytotoxic chemotherapy. The median patient age was 43 (range, 26-55 years) and the median duration of follow-up was 64 months (range, 28-100 months). The medical records indicated that 219 patients (88.0%) scored as positive for the hormone receptor (HR); the majority of these patients completed chemotherapy and then received additional therapy of tamoxifen. Our analyses revealed that 88.0% (n = 219) of patients experienced CIA, and the percentage of RM during follow-up was 48.6% (n = 121). A total of 30 patients (12.0%) did not experience CIA. Disease-free survival (DFS) was affected by several factors, including tumour size ≥2 cm, node positivity, HR negative status, and body mass index ≥23 kg/m. Multivariate analysis indicated that tumour size ≥2 cm remained as a significant factor for DFS (hazard ratio = 3.3, P = 0.034). In summary, this study finds that the majority of premenopausal patients with BC (stage I to stage III) who receive chemotherapy experience CIA and subsequent RM. Although tumour size ≥2 cm is negatively associated with DFS, RM after CIA is not associated with poor prognosis.
Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhre, G.; Samset, B. H.; Schulz, M.
2013-01-01
We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has amore » range from -0.58 to -0.02 Wm -2, with a mean of -0.27 Wm -2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm -2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.« less
Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
NASA Astrophysics Data System (ADS)
Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.
2013-02-01
We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.
Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
NASA Astrophysics Data System (ADS)
Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Luo, G.; Ma, X.; Penner, J. E.; Rasch, P. J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.
2012-08-01
We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 15 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 15 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m-2, with a mean of -0.30 W m-2 for the 15 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.39 W m-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.
Breast Cancer Knowledge Among Male High School Students in Saudi Arabia.
Al-Amoudi, Samia; AlHomied, Moaiad Tariq Abdul-Aziz; AlSayegh, Nasser Youssef Nasser; Radi, Osama Naseem Ismail; Zagzoog, Mohammed Majed Suliman; Aloufi, Omar Faisal Mubarak; Al-Harbi, Abdullah Abdulkarim Ali; Tayeb, Safwan; Hassanien, Mohammed; Al-Ahwal, Mahmoud; Eldeek, Basem; Harakeh, Steve
2016-12-01
Breast cancer (BC) accounts for 24 % of all women cancer cases diagnosed in Saudi Arabia each year. Awareness is extremely important in combating this disease. This study was undertaken to assess male high school students' response to BC. This cross-sectional survey was performed on male high school students across schools in Jeddah. A questionnaire gathered data on respondent demographics, beliefs about BC, BC risk factors, early screening methods, and role of men in BC. Statistical analysis was done using SPSS 20. A total of 824 students participated, with an average age of 17.0 years. There was more than 50 % agreement that early detection of BC enhances the chances of recovery, that BC is treatable, and that clinical breast examination and breastfeeding provide protection from BC. Around half the survey population thought that BC was fatal and contagious. Fewer than 50 % thought that BC was inherited and related to smoking, consumption of contraceptive pills, repeated exposure to radiation, obesity, and wearing a bra and that breast tumors were all malignant and spread to different parts of the body. Others knew that mammograms should be performed periodically. A high percentage persuaded their relatives to have mammograms and provided them with psychological support. Knowledge of BC among male high school students in Saudi Arabia is still limited, and, therefore, programs and activities need to be established to increase awareness among high school students.
Poulose, Anesh Manjaly; Elnour, Ahmed Yagoub; Anis, Arfat; Shaikh, Hamid; Al-Zahrani, S M; George, Justin; Al-Wabel, Mohammad I; Usman, Adel R; Ok, Yong Sik; Tsang, Daniel C W; Sarmah, Ajit K
2018-04-01
The application of biochar (BC) as a filler in polymers can be viewed as a sustainable approach that incorporates pyrolysed waste based value-added material and simultaneously mitigate bio-waste in a smart way. The overarching aim of this work was to investigate the electrical, mechanical, thermal and rheological properties of biocomposite developed by utilizing date palm waste-derived BC for the reinforcing of polypropylene (PP) matrix. Date palm waste derived BC prepared at (700 and 900°C) were blended at different proportions with polypropylene and the resultant composites (BC/PP) were characterized using an array of techniques (scanning electron microscope, energy-dispersive X-ray spectroscopy and Fourier transform infra-red spectroscopy). Additionally the thermal, mechanical, electrical and rheological properties of the BC/PP composites were evaluated at different loading of BC content (from 0 to15% w/w). The mechanical properties of BC/PP composites showed an improvement in the tensile modulus while that of electrical characterization revealed an enhanced electrical conductivity with increased BC loading. Although the BC incorporation into the PP matrix has significantly reduced the total crystallinity of the resulted composites, however; a positive effect on the crystallization temperature (T c ) was observed. The rheological characterization of BC/PP composites revealed that the addition of BC had minimal effect on the storage modulus (G') compared to the neat (PP). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sobhani, N.; Gregory, C.; Kulkarni, S.
2017-12-01
Long-range transport of atmospheric particulate matter (PM) from mid-latitude sources to the Arctic is the main contributor to the Arctic PM loadings and deposition. Light absorbing particles such as Black Carbon (BC) and dust are considered of great climatic importance and are the main absorbers of sunlight in the atmosphere. Wet and dry deposition of light absorbing particles (LAPs) on snow and ice cause reduction of snow and ice albedo. LAPs have significant radiative forcing and effect on snow albedo causing snow and ice to warm and melt more quickly. There are large uncertainties in estimating radiative forcing of LAPs. In this study, the potential impacts of LAPs from different emission source regions and sectors on snow albedo in the Arctic are studied. A modeling framework including Weather Research and Forecasting Model (WRF) and the University of Iowa's Sulfur Transport and dEpostion model (STEM) is used to simulate the seasonality and transport of LAPs from different geographical sources and sectors (i.e. transportation, residential, industry, biomass burning and power) to the Arctic. The main geographical source contributor to the Arctic BC annual deposition flux is China. However, there is a distinct seasonal variation for the contributions of geographical source emissions to BC deposition. During the spring, when the deposition flux is highest, the contribution of biomass burning attributes for up to 40% of total deposition at Alert and Barrow. However, during the winter, the anthropogenic sectors contribute up to 95% of total BC deposition. The simulated snow BC mixing ratios are evaluated using the observed BC snow concentration values from previous studies including Doherty et al., 2010. The simulations show the BC deposition causes 0.6% snow albedo decrease during spring 2008 over the Arctic.
NASA Astrophysics Data System (ADS)
Mari, X.; Thuoc, C. V.; Guinot, B. P.; Brune, J.; Lefebvre, J. P.; Raimbault, P.; Niggemann, J.; Dittmar, T.
2016-02-01
Black Carbon (BC) is an aerosol emitted during biomass burning and fossil fuel combustion. On a global scale, BC deposits on the ocean at a rate of 12-45 Tg per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of hotspots of atmospheric BC concentration. In the present study conducted in a coastal site located in a regional hotspot of atmospheric BC concentration, North Vietnam, we monitored the seasonal variations of atmospheric and marine BC during an annual cycle. Atmospheric BC followed a seasonal pattern characterized by high concentrations during the dry season, i.e. from October to April, and low concentrations during the wet season, i.e. from May to September. This trend is linked to a change in wind regime, with air masses originating from the North during the dry season and from the South during the wet season. On average, the contribution of BC to the particulate and the dissolved organic carbon pools was 43% and 3%, respectively. The concentration of particulate BC (PBC) was on average 50 times higher in the surface microlayer (SML) than in the water column. In the water column, the concentration of PBC was higher during the dry season than the wet season, which is consistent with variations of atmospheric BC concentrations. On the contrary, the concentration of dissolved BC (DBC) was lower during the dry season than the wet season. This seasonal pattern suggests that PBC concentration in coastal marine systems depends upon atmospheric BC concentration, while increased DBC concentration is linked to rainy conditions. The deposition of BC during the dry season was concomitant with a strong enrichment of organic phosphorus in the SML. During the annual cycle, the POC:DOC ratio was positively correlated with the concentration of PBC, suggesting adsorption of DOC onto BC particles and formation of POC via stimulation of aggregation processes.
NASA Astrophysics Data System (ADS)
PAN, X.; Kanaya, Y.; Taketani, F.; Miyakawa, T.; Inomata, S.; Komazaki, Y.; Tanimoto, H.; Uno, I.; Wang, Z.
2014-12-01
Open biomass burning (OBB) experiments were performed in the laboratory environment to investigate the mixing state of refractory black carbon (rBC) in fresh smoke and its dependence on combustion state. A Single-Particle Soot Photometer (SP2) was adopted to measure variation of number size distribution of rBC-containing particles in high temporal resolution. General combustion state of each OBB case was indicated by modified combustion efficiency (MCE) using accumulated enhancement of mixing ratios of carbon dioxide and carbon monoxide during the experiments. We found that mass equivalent diameter (MED) of rBC increased apparently with increase of MCE values, indicating the flaming-dominant combustion tend to produce the rBC particles with relative larger size, probably because of coagulation processes in high concentration condition. Coating thickness of rBC-containing particle was calculated by leading edge only fitting (LEO-fitting) method. In the present study we defined the rBC-containing particles with shell/core (S/C) ratio larger than 2 as "thickly coated" and that less then 1.5 as "thinly coated". As a result, thickly coated rBC particles normally had a relatively small core (MED of rBC less than 150 nm) and its number fraction showed an evident decrease as a function of MCE value, whereas, larger rBC particles (MED larger than 150 nm) were normally thinly coated. Number fraction of both thinly coated and uncoated rBC particles had an positive correlation with MCE value. Substantial amount of light scattering particles (LSP) observed in the smoldering-dominant OBB plumes could partially explain the increase of number fraction of coated rBC particles. ΔrBC/ΔCO ratio showed a good positive correlation with MCE with an average value of 16.8 (1.2 - 51.6) ng/m3/ppbv, and ΔrBC/ΔCO2 ratio was found 628.7 ng/m3/ppmv, generally consistent with previous studies.
Kadota, K; Walter, S; Claveria, F G; Igarashi, I; Taylor, D; Fujisaki, K
2003-11-01
The ultrastructure and characteristics of hemocytes of argasid tick species, Ornithodoros moubata, during the ecdysdial phase are herein presented. Hemocyte classes/populations characterized based on their affinity with Giemsa stain and ultrastructural differences comprised the prohemocytes, nongranular cells (Nc), eosinophilic granular cells (Ec), basophilic granular cells (Bc), and unidentified cells. Significant changes/shift in the ratio of hemocyte classes/population was apparent in ticks before and after the ecdysial phase. The granule-scant basophilic granular cells (sBc) constituted the most abundant hemocyte population in the ecdysial phase. Nymphs in ecdysis showed increases in Nc and sBc and decrease in Ec, a phenomenon that was reversed in unengorged nymphs and adults ticks. The significant increase in total Bc population in ecdysis relative to nonengorged ticks clearly point to blastogenesis of Bc taking place during the ecdysial phase and Bc's important role in the process of tissue remodeling.
Zhang, Yi; Zhang, Yunhua; Qiu, Dewen; Zeng, Hongmei; Guo, Lihua; Yang, Xiufen
2015-02-20
In this study, a necrosis-inducing protein was purified from the culture filtrate of the necrotrophic fungus Botrytis cinerea BC-98 strain. Secreted proteins were collected and fractionated by liquid chromatography. The fraction with the highest necrosis-inducing activity was further purified. A glycoprotein named BcGs1 was identified by 2D electrophoresis and mass spectrometry. The BcGs1 protein consisted of 672 amino acids with a theoretical molecular weight of 70.487 kDa. Functional domain analysis indicated that BcGs1 was a glucan 1,4-alpha-glucosidase, a cell wall-degrading enzyme, with a Glyco_hydro_15 domain and a CBM20_glucoamylase domain. The BcGs1 protein caused necrotic lesions that mimicked a typical hypersensitive response and H2O2 production in tomato and tobacco leaves. BcGs1-treated plants exhibited resistance to B. cinerea, Pseudomonas syringae pv. tomato DC3000 and tobacco mosaic virus in systemic leaves. In addition, BcGs1 triggered elevation of the transcript levels of the defence-related genes PR-1a, TPK1b and Prosystemin. This is the first report of a Botrytis glucan 1,4-alpha-glucosidase triggering host plant immunity as an elicitor. These results lay a foundation for further study of the comprehensive interaction between plants and necrotrophic fungi. Copyright © 2015 Elsevier Inc. All rights reserved.
Distribution and Sources of Black Carbon in the Arctic
NASA Astrophysics Data System (ADS)
Qi, Ling
The Arctic is warming at twice the global rate over recent decades. To slow down this warming trend, there is growing interest in reducing the impact from short-lived climate forcers, such as black carbon (BC), because the benefits of mitigation are seen more quickly relative to CO2 reduction. To propose efficient mitigation policies, it is imperative to improve our understanding of BC distribution in the Arctic and to identify the sources. In this dissertation, we investigate the sensitivity of BC in the Arctic, including BC concentrations in snow (BCsnow) and BC concentrations in air (BCair), to emissions, dry deposition and wet scavenging using a global 3-D chemical transport model (CTM) GEOS-Chem. By including flaring emissions, estimating dry deposition velocity using resistance-in-series method, and including Wegener-Bergeron-Findeisen (WBF) in wet scavenging, simulated BCsnow in the eight Arctic sub-regions agree with the observations within a factor of two, and simulated BCair fall within the uncertainty range of observations. Specifically, we find that natural gas flaring emissions in Western Extreme North of Russia (WENR) strongly enhance BCsnow (by up to ?50%) and BCair (by 20-32%) during snow season in the so-called 'Arctic front', but has negligible impact on BC in the free troposphere. The updated dry deposition velocity over snow and ice is much larger than those used in most of global CTMs and agrees better with observation. The resulting BCsnow changes marginally because of the offsetting of higher dry and lower wet deposition fluxes. In contrast, surface BCair decreases strongly due to the faster dry deposition (by 27-68%). WBF occurs when the environmental vapor pressure is in between the saturation vapor pressure of ice crystals and water drops in mixed-phase clouds. As a result, water drops evaporate and releases BC particles in them back into the interstitial air. In most CTMs, WBF is either missing or represented by a uniform and low BC scavenging efficiency. In this dissertation, we relate WBF with temperature and ice mass fraction based on long-term observations in mixed-phase clouds. We find that WBF reduces BC scavenging efficiency globally, with larger decrease at higher latitude and altitude (from 8% in the tropics to 76% in the Arctic). WBF slows down and reduces wet deposition of BC and leave more BC in the atmosphere. Higher BC air results in larger dry deposition. The resulting total deposition is lower in mid-latitudes (by 12-34%) and higher in the Arctic (2-29%). Globally, including WBF significantly reduces the discrepancy of BCsnow (by 50%), BCair (by 50%), and washout ratios (by a factor of two to four). The remaining discrepancies in these variables suggest that in-cloud removal is likely still excessive over land. In the last part, we identify sources of surface atmospheric BC in the Arctic in springtime, when radiative forcing is the largest due to the high insolation and surface albedo. We find a large contribution from Asian anthropogenic sources (40-43%) and open biomass burning emissions from forest fires in South Siberia (29-41%). Outside the Arctic front, BC is strongly enhanced by episodic, direct transport events from Asia and Siberia after 12 days of transport. In contrast, in the Arctic front, a large fraction of the Asian contribution is in the form of 'chronic' pollution on 1-2 month timescale. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic. Our results point toward an urgent need for better characterization of flaring emissions of BC (e.g. the emission factors, temporal and spatial distribution), extensive measurements of both the dry deposition of BC over snow and ice, and the scavenging efficiency of BC in mixed-phase clouds, particularly over Ocean. More measurements of 14C are needed to better understand sources of BC (fossil fuel combustion versus biomass burning) and to provide additional constrain on BC simulations.
A review on black carbon emissions, worldwide and in China.
Ni, Mingjiang; Huang, Jianxin; Lu, Shengyong; Li, Xiaodong; Yan, Jianhua; Cen, Kefa
2014-07-01
Black carbon (BC) produced from open burning (OB) and controlled combustion (CC) is a range of carbonaceous products of incomplete combustion of biomass and fossil fuel, and is deemed as one of the major contributors to impact global environment and human health. BC has a strong relationship with POPs, in waste combustion, BC promotes the formation of POPs, and then the transport of POPs in the environment is highly influenced by BC. However less is known about BC formation, measurement and emissions estimation especially in developing countries such as China. Different forms of BC are produced both in CC and OB. BC emission characteristics and combustion parameters which determine BC emissions from CC and OB are discussed. Recent studies showed a lack of common methodology and the resulting data for describing the mechanisms related to BC formation during combustion processes. Because BC is a continuum carbonaceous combustion product, different sampling and measuring methods are used for measuring their emissions with great quantitative uncertainty. We discuss the commonly used BC sampling and measuring methods along with the causes for uncertainty and measures to minimizing the uncertainty. Then, we discuss the estimations of BC emission factors and emission inventory for CC and OB sources. The total emissions of BC from CC and OB in China are also estimated and compared with previous BC emission inventories in this review and we find the inventories tend to be overestimated. As China becomes the largest contributor to global BC emissions, studies for characterizing BC emissions from OB and CC sources are absent in China. Finally, we comment on the current state of BC emission research and identify major deficiencies that need to overcome. Moreover, the advancement in research tools, measuring technique in particular, as discussed in this review is critical for researchers in developing countries to improve their capability to study BC emissions for addressing the growing climate change and public health concerns. Copyright © 2014 Elsevier Ltd. All rights reserved.
Measurement of the Ratio of Branching Fractions B (Bc+→J /ψ τ+ντ)/B (Bc+→J /ψ μ+νμ)
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Hu, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration
2018-03-01
A measurement is reported of the ratio of branching fractions R (J /ψ ) =B (Bc+→J /ψ τ+ντ)/B (Bc+→J /ψ μ+νμ) , where the τ+ lepton is identified in the decay mode τ+→μ+νμν¯τ. This analysis uses a sample of proton-proton collision data corresponding to 3.0 fb-1 of integrated luminosity recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. A signal is found for the decay Bc+→J /ψ τ+ντ at a significance of 3 standard deviations corrected for systematic uncertainty, and the ratio of the branching fractions is measured to be R (J /ψ ) =0.71 ±0.17 (stat ) ±0.18 (syst ) . This result lies within 2 standard deviations above the range of central values currently predicted by the standard model.
NASA Technical Reports Server (NTRS)
Yasunari, T. J.; Bonasoni, P.; Laj, P.; Fujita, K.; Vuillermoz, E.; Marinoni, A.; Cristofanelli, P.; Duchi, R.; Tartari, G.; Lau, K.-M.
2010-01-01
The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC) in the pre-monsoon period (March-May) was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory-Pyramid (NCO-P) sited at 5079 m a.s.l. in the Himalayan region. We estimated a total BC deposition rate of 2.89 g m-2 day-1 providing a total deposition of 266 micrograms/ square m for March-May at the site, based on a calculation with a minimal deposition velocity of 1.0 10(exp -4) m/s with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1-669.8 nm by correlation analysis between equivalent BC concentration and particulate size distribution in the atmosphere. We also estimated BC deposition from the size distribution data and found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0-68.2 microgram/kg assuming snow density variations of 195-512 kg/ cubic m of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0-5.2% albedo reductions. From a simple numerical calculations and if assuming these albedo reductions continue throughout the year, this would lead to a runoff increases of 70-204 mm of water drainage equivalent of 11.6-33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season can be considered comparable to those at similar altitude in the Himalayan region, where glaciers and perpetual snow region starts in the vicinity of NCO-P. Our estimates from only BC are likely to represent a lower bound for snow albedo reductions, since a fixed slower deposition velocity was used and atmospheric wind and turbulence effects, snow aging, dust deposition, and snow albedo feedbacks were not considered. This study represents the first investigation about BC deposition on snow from atmospheric aerosol data in Himalayas and related albedo effect is especially the first track at the southern slope of Himalayas.
NASA Astrophysics Data System (ADS)
Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C. A.; Craig, L.; Dhaniyala, S.; Dibb, J. E.; Hudgins, C. H.; Ismail, S.; Latham, T.; Nenes, A.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.
2010-12-01
Aerosols play a significant role in regulating Earth’s climate. Absorbing aerosols typically constitute a small fraction of ambient particle mass but can contribute significantly to direct and indirect climate forcing depending on size, mixing state, concentration, chemical composition, and vertical and spatial distribution. Aerosols may also significantly affect tropical storm/hurricane dynamics through direct light absorption and activation as cloud nuclei. An extensive suite of instrumentation measuring aerosol chemical, physical, and optical properties was deployed aboard the NASA DC-8 to characterize aerosol during the NASA GRIP (Genesis and Rapid Intensification Processes; August-September 2010) mission. The majority of flight time was spent at high altitude (greater than 9 km) and thus much of the sampling was done in the free troposphere, including extensive sampling in the vicinity of tropical storm systems and more diffuse cirrus clouds. With operations based in Fort Lauderdale, FL and St. Croix, U.S. Virgin Islands, a large geographic region was sampled including much of the Gulf of Mexico and tropical Atlantic Ocean. Observations are reported for light-absorbing carbon aerosol (mainly black carbon, BC) primarily using a single particle soot photometer (SP2). The SP2 employs single-particle laser-induced incandescence to provide a mass-specific measurement not subject to scattering interference that is optimal for the low concentration environments like those encountered during GRIP. BC mass concentrations, 100-500 nm size distributions, and mixing state (i.e. coating thickness of scattering material) are presented. Total and sub-micron aerosol absorption coefficients (principally from BC and dust aerosol) are reported using a particle soot absorption photometer (PSAP) along with comparisons with calculated absorption coefficients derived from SP2 observations in various conditions. In addition, dust aerosol is specifically identified using optical and aerodynamic size distributions obtained from an optical particle counter (OPC) and aerodynamic particle sizer (APS), respectively, as well as by filter-based analyses of chemical composition. BC and dust concentrations, size distribution, and optical properties are reported for clear-sky conditions and in the regions surrounding tropical storms to better understand the radial and vertical distribution of light-absorbing aerosol associated with hurricanes. Observations during GRIP are compared to an extensive characterization of the Saharan Air Layer (SAL) made during the 2006 NAMMA (NASA African Monsoon Multidisciplinary Analyses) mission to assess changes in concentration and aerosol size distribution during transport and cloud interaction.
NASA Astrophysics Data System (ADS)
Elser, Miriam; Bozzetti, Carlo; El-Haddad, Imad; Maasikmets, Marek; Teinemaa, Erik; Richter, Rene; Wolf, Robert; Slowik, Jay G.; Baltensperger, Urs; Prévôt, André S. H.
2016-06-01
Air pollution is one of the main environmental concerns in urban areas, where anthropogenic emissions strongly affect air quality. This work presents the first spatially resolved detailed characterization of PM2.5 (particulate matter with aerodynamic equivalent diameter daero ≤ 2.5 µm) in two major Estonian cities, Tallinn and Tartu. The measurements were performed in March 2014 using a mobile platform. In both cities, the non-refractory (NR)-PM2.5 was characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) using a recently developed lens which increases the transmission of super-micron particles. Equivalent black carbon (eBC) and several trace gases including carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were also measured. The chemical composition of PM2.5 was found to be very similar in the two cities. Organic aerosol (OA) constituted the largest fraction, explaining on average about 52 to 60 % of the PM2.5 mass. Four sources of OA were identified using positive matrix factorization (PMF): hydrocarbon-like OA (HOA, from traffic emissions), biomass burning OA (BBOA, from biomass combustion), residential influenced OA (RIOA, probably mostly from cooking processes with possible contributions from waste and coal burning), and oxygenated OA (OOA, related to secondary aerosol formation). OOA was the major OA source during nighttime, explaining on average half of the OA mass, while during daytime mobile measurements the OA was affected by point sources and dominated by the primary fraction. A strong increase in the secondary organic and inorganic components was observed during periods with transport of air masses from northern Germany, while the primary local emissions accumulated during periods with temperature inversions. Mobile measurements offered the identification of different source regions within the urban areas and the assessment of the extent to which pollutants concentrations exceeded regional background levels (urban increments). HOA, eBC, CO2, and CO showed stronger enhancements on busy roads during the morning and evening traffic rush hours; BBOA had its maximum enhancement in the residential areas during the evening hours and RIOA was enhanced in both the city center (emissions from restaurants) and in the residential areas (emissions from residential cooking). In contrast, secondary components (OOA, sulfate (SO4), nitrate (NO3), ammonium (NH4), and chloride (Cl)) had very homogeneous distributions in time and space. We were able to determine a total PM2.5 urban increment in Tartu of 6.0 µg m-3 over a regional background concentration of 4.0 µg m-3 (i.e., a factor of 2.5 increase). Traffic exhaust emissions were identified as the most important source of this increase, with eBC and HOA explaining on average 53.3 and 20.5 % of the total increment, respectively.
NASA Astrophysics Data System (ADS)
Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka
2016-03-01
The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the downwind areas of large emission sources of BC.
NASA Astrophysics Data System (ADS)
Ueda, S.; Nakayama, T.; Taketani, F.; Adachi, K.; Matsuki, A.; Iwamoto, Y.; Sadanaga, Y.; Matsumi, Y.
2015-09-01
The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory-BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a heater maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the heater and was found to be 22-23 %. The largest enhancements (> 30 %) were observed under high absorption coefficient conditions when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption coefficient events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high density electron beam. The majority of the soot in all samples was found as mixed particles with spherical sulfate or as clusters of sulfate spherules. For samples showing high enhancement (> 30 %) of BC light absorption, TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be embedded into the sulfate. The SP2 measurements also suggested that the proportion of thickly-coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the leeward areas of large emission sources of BC.
Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée
2017-11-01
Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data
NASA Astrophysics Data System (ADS)
McCoy, Daniel T.; Bender, Frida A.-M.; Grosvenor, Daniel P.; Mohrmann, Johannes K.; Hartmann, Dennis L.; Wood, Robert; Field, Paul R.
2018-02-01
Cloud droplet number concentration (CDNC) is the key state variable that moderates the relationship between aerosol and the radiative forcing arising from aerosol-cloud interactions. Uncertainty related to the effect of anthropogenic aerosol on cloud properties represents the largest uncertainty in total anthropogenic radiative forcing. Here we show that regionally averaged time series of the Moderate-Resolution Imaging Spectroradiometer (MODIS) observed CDNC of low, liquid-topped clouds is well predicted by the MERRA2 reanalysis near-surface sulfate mass concentration over decadal timescales. A multiple linear regression between MERRA2 reanalyses masses of sulfate (SO4), black carbon (BC), organic carbon (OC), sea salt (SS), and dust (DU) shows that CDNC across many different regimes can be reproduced by a simple power-law fit to near-surface SO4, with smaller contributions from BC, OC, SS, and DU. This confirms previous work using a less sophisticated retrieval of CDNC on monthly timescales. The analysis is supported by an examination of remotely sensed sulfur dioxide (SO2) over maritime volcanoes and the east coasts of North America and Asia, revealing that maritime CDNC responds to changes in SO2 as observed by the ozone monitoring instrument (OMI). This investigation of aerosol reanalysis and top-down remote-sensing observations reveals that emission controls in Asia and North America have decreased CDNC in their maritime outflow on a decadal timescale.
Association of plasma arginine with breast cancer molecular subtypes in women of Liaoning province.
Hu, Lu; Gao, Yu; Cao, Yunfeng; Zhang, Yinxu; Xu, Minghao; Wang, Yuanyuan; Jing, Yu; Guo, Shengnan; Jing, Fangyu; Hu, Xiaodan; Zhu, Zhitu
2016-12-01
Arginine is one of the human nonessential amino acids critical for the growth of human cancers. The aim of this study is to investigate the variation of arginine between breast cancer (BC) patients and benign mammary gland disease (control) patients to determine its value in predicting the risk of BC. We also explore the associations between arginine levels and breast cancer subtypes. Preoperative blood samples were obtained from 267 patients (102 BC and 165 controls) in 2015. Plasma arginine values were determined for all preoperative blood samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyse differences in arginine levels between BC patients and control patients and the correlations between arginine and clinicopathologic parameters in BC. The arginine levels of BC patients were significantly lower than those of control patients (5.96 [3.76-12.47] vs. 12.54 [7.14-24.94], P = 0.000). The area under the curve (AUC) for arginine was 0.721 (95% CI, 0.660-0.782, P < 0.0001). The concentration of arginine was significantly different among different molecular BC subtypes (P = 0.030). Our results suggested that plasma arginine was associated with breast cancer molecular subtypes. © 2016 IUBMB Life, 68(12):980-984, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Volatile metabolomic signature of human breast cancer cell lines
Silva, Catarina L.; Perestrelo, Rosa; Silva, Pedro; Tomás, Helena; Câmara, José S.
2017-01-01
Breast cancer (BC) remains the most prevalent oncologic pathology in women, causing huge psychological, economic and social impacts on our society. Currently, the available diagnostic tools have limited sensitivity and specificity. Metabolome analysis has emerged as a powerful tool for obtaining information about the biological processes that occur in organisms, and is a useful platform for discovering new biomarkers or make disease diagnosis using different biofluids. Volatile organic compounds (VOCs) from the headspace of cultured BC cells and normal human mammary epithelial cells, were collected by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography combined with mass spectrometry (GC–MS), thus defining a volatile metabolomic signature. 2-Pentanone, 2-heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were detected only in cultured BC cell lines. Multivariate statistical methods were used to verify the volatomic differences between BC cell lines and normal cells in order to find a set of specific VOCs that could be associated with BC, providing comprehensive insight into VOCs as potential cancer biomarkers. The establishment of the volatile fingerprint of BC cell lines presents a powerful approach to find endogenous VOCs that could be used to improve the BC diagnostic tools and explore the associated metabolomic pathways. PMID:28256598
NASA Astrophysics Data System (ADS)
Holanda, Bruna; Pöhlker, Mira; Klimach, Thomas; Saturno, Jorge; Ditas, Florian; Ditas, Jeannine; Ma, Nan; Zhang, Yuxuan; Cheng, Yafang; Wendisch, Manfred; Machado, Luiz; Barbosa, Henrique; Pöhlker, Christopher; Artaxo, Paulo; Pöschl, Ulrich; Andreae, Meinrat
2017-04-01
Black carbon (BC) particles are emitted directly into the atmosphere by processes of incomplete combustion and therefore can be used as a tracer of atmospheric pollution. BC is considered one of the drivers of global warming due to its efficient absorption of solar and infra-red radiation (Bond et al., 2013). Depending on abundance and size, aerosols can also modify the characteristics of clouds and enhance or suppress precipitation (Pöschl et al., 2010). The BC particles can gain surface coatings by condensation of low and semi-volatile compounds, coagulation, and cloud processing. The inclusion of a non-absorbing coating influences the way that BC particles act as cloud nuclei and may increase their absorption through the lensing effect (Fuller et al., 1999). These aging processes change significantly the optical, chemical and physical properties of the particles, as well as their atmospheric lifetime, making BC a source of large uncertainties in current atmospheric models. Taking into account the complex dynamics of BC particles in the atmosphere, we are analyzing data from the ACRIDICON-CHUVA aircraft campaign, which took place in the Amazon basin, Brazil, during the dry season of 2014 (Wendisch et al., 2016). A detailed characterization of BC particles was done using the Single Particle Soot Photometer (SP2) instrument, which directly measures the mass of individual refractory BC particles (rBC). Additionally, the SP2 provides information about the size distribution of rBC cores and their associated coatings. These properties were measured covering a wide geographic area with different pollution conditions and at several levels of the atmosphere at high time resolution. The rBC concentrations change significantly with altitude and with the source of pollution, being a few nanograms per cubic meter for altitudes higher that 5 km. In the surroundings of Manaus city, the mean BC concentration was 0.7 μg/m3, with core sizes peaking at 180 nm. The highest BC mass values were observed over fresh biomass burning plumes (6 μg/m3) with smaller core sizes ( 150 nm). Moreover, in a specific flight (AC19) we identified an extended layer of pollution at 4 km altitude. Backward trajectories calculated using FLEXPART suggest that this pollution layer originated in Africa and has aged few days during its travel over the Atlantic. Similarities in the properties of rBC particles within the pollution and boundary layers suggest that the long range transport of pollution from Africa can be an important source of BC to the Amazonian atmosphere. Here we present first results from our analyses that characterize the various pollution aerosols and their properties in the Amazon basin. References Bond, T.C. et al., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), pp.5380-5552. Fuller, K. A. et al., 1999. Effects of mixing on extinction by carbonaceous particles. Journal of Geophysical Research: Atmospheres, 104(D13), 15941-15954. Pöschl, U. et al., 2010. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329, 1513. Wendisch, M. et al., 2016. The ACRIDICON-CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Amer. Meteor. Soc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.
Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM 2.5 concentrations (annual mean value ~10 μg m −3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the wintermore » (hourly values from 2 to 90 μg m −3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m −3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM 2.5, PM 10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM 2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM 2.5 and BC concentrations in the region increase, with BC growing more than PM 2.5 on a relative basis. This indicates that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less
Long-range transport of black carbon to the Pacific Ocean and its dependence on aging timescale
NASA Astrophysics Data System (ADS)
Zhang, J.; Liu, J.; Tao, S.; Ban-Weiss, G. A.
2015-06-01
Improving the ability of global models to predict concentrations of black carbon (BC) over the Pacific Ocean is essential to evaluate the impact of BC on marine climate. In this study, we tag BC tracers from 13 source regions around the globe in a global chemical transport model MOZART-4. Numerous sensitivity simulations are carried out varying the aging timescale of BC emitted from each source region. The aging timescale for each source region is optimized by minimizing errors in vertical profiles of BC mass mixing ratios between simulations and HIAPER Pole-to-Pole Observations (HIPPO). For most HIPPO deployments, in the Northern Hemisphere, optimized aging timescales are less than half a day for BC emitted from tropical and mid-latitude source regions, and about 1 week for BC emitted from high latitude regions in all seasons except summer. We find that East Asian emissions contribute most to the BC loading over the North Pacific, while South American, African and Australian emissions dominate BC loadings over the South Pacific. Dominant source regions contributing to BC loadings in other parts of the globe are also assessed. The lifetime of BC originating from East Asia (i.e., the world's largest BC emitter) is found to be only 2.2 days, much shorter than the global average lifetime of 4.9 days, making East Asia's contribution to global burden only 36 % of BC from the second largest emitter, Africa. Thus, evaluating only relative emission rates without accounting for differences in aging timescales and deposition rates is not predictive of the contribution of a given source region to climate impacts. Our simulations indicate that lifetime of BC increases nearly linearly with aging timescale for all source regions. When aging rate is fast, the lifetime of BC is largely determined by factors that control local deposition rates (e.g. precipitation). The sensitivity of lifetime to aging timescale depends strongly on the initial hygroscopicity of freshly emitted BC. Our findings suggest that the aging timescale of BC varies significantly by region and season, and can strongly influence the contribution of source regions to BC burdens around the globe. Improving parameterizations of the aging process for BC is important for enhancing the predictive skill of air quality and climate models. Future observations that investigate the evolution of hygroscopicity of BC as it ages from different source regions to the remote atmosphere are urgently needed.
Long-range transport of black carbon to the Pacific Ocean and its dependence on aging timescale
NASA Astrophysics Data System (ADS)
Zhang, J.; Liu, J.; Tao, S.; Ban-Weiss, G. A.
2015-10-01
Improving the ability of global models to predict concentrations of black carbon (BC) over the Pacific Ocean is essential to evaluate the impact of BC on marine climate. In this study, we tag BC tracers from 13 source regions around the globe in a global chemical transport model, Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4). Numerous sensitivity simulations are carried out varying the aging timescale of BC emitted from each source region. The aging timescale for each source region is optimized by minimizing errors in vertical profiles of BC mass mixing ratios between simulations and HIAPER Pole-to-Pole Observations (HIPPO). For most HIPPO deployments, in the Northern Hemisphere, optimized aging timescales are less than half a day for BC emitted from tropical and midlatitude source regions and about 1 week for BC emitted from high-latitude regions in all seasons except summer. We find that East Asian emissions contribute most to the BC loading over the North Pacific, while South American, African and Australian emissions dominate BC loadings over the South Pacific. Dominant source regions contributing to BC loadings in other parts of the globe are also assessed. The lifetime of BC originating from East Asia (i.e., the world's largest BC emitter) is found to be only 2.2 days, much shorter than the global average lifetime of 4.9 days, making the contribution from East Asia to the global BC burden only 36 % of that from the second largest emitter, Africa. Thus, evaluating only relative emission rates without accounting for differences in aging timescales and deposition rates is not predictive of the contribution of a given source region to climate impacts. Our simulations indicate that the lifetime of BC increases nearly linearly with aging timescale for all source regions. When the aging rate is fast, the lifetime of BC is largely determined by factors that control local deposition rates (e.g., precipitation). The sensitivity of lifetime to aging timescale depends strongly on the initial hygroscopicity of freshly emitted BC. Our findings suggest that the aging timescale of BC varies significantly by region and season and can strongly influence the contribution of source regions to BC burdens around the globe. Therefore, improving parameterizations of the aging process for BC is important for enhancing the predictive skill of global models. Future observations that investigate the evolution of the hygroscopicity of BC as it ages from different source regions to the remote atmosphere are urgently needed.
Toward a mechanistic understanding of the effect of biochar addition on soil water retention
NASA Astrophysics Data System (ADS)
Yi, S.; Chang, N.; Guo, M.; Imhoff, P. T.
2014-12-01
Biochar (BC) is a carbon-rich product produced by thermal degradation of biomass in an oxygen-free environment, whose application to sediment is said to improve water retention. However, BC produced from different feedstocks and pyrolyzed at different temperatures have distinct properties, which may alter water retention in ways difficult to predict a priori. Our goal is to develop a mechanistic understanding of BC addition on water retention by examining the impact of BC from two feedstocks, poultry litter (PL) and hardwood (HW), on the soil-water retention curves (SWRC) of a uniform sand and a sandy loam (SL). For experiments with sand, BC and sand were sieved to the same particle size (~ 0.547 mm) to minimize effects of BC addition on particle size distribution. Experiments with SL contained the same sieved BC. PL and HW bicohars were added at 2 and 7% (w/w), and water retention was measured from 0 to -4.38 × 106 cm-H2O. Both BCs increased porosities for sand and SL, up to 39 and 13% for sand and SL, respectively, with 7% HW BC addition. The primary cause for these increases was the internal porosity of BC particles. While the matric potential for air-entry was unchanged with BC addition, BC amendment increased water retention for sand and SL in the capillary region (0 to -15,000 cm-H2O) by an average of 26 and 33 % for 7% PL and HW BC in sand, respectively, but only 7 and 14 % for 7% PL and HW BC in SL. The most dramatic influence of BC amendment on water retention occurred in the adsorption region (< -15,000 cm-H2O), where water retention increased by a factor of 11 and 22 for 7% PL and HW BC in sand, respectively, but by 140 and 190 % for 7% PL and HW BC in SL, respectively. The impact of BC on water retention in these sediments is explained primarily by the additional surface area and internal porosity of PL and HW BC particles. van Genuchten (VG) models were fitted to the water retention data. For SL where the impact of BC addition on water retention was less significant, a unimodal model fit water retention data well for unamended and BC-amended media: the addition of BC did not create a new class of small pores that could not be described with a unimodal VG model. While a unimodal model fitted the sand data well, a bimodal model was required for all BC-amended sand. The influence of BC type, mass fraction and sediment on water retention models will be discussed.
Heidemann, Malene; Holst, René; Schou, Anders J; Klakk, Heidi; Husby, Steffen; Wedderkopp, Niels; Mølgaard, Christian
2015-02-01
Overweight, physical inactivity and sedentary behaviour have become increasing problems during the past decade. Increased sedentary behaviour may change the body composition (BC) by increasing the fat mass relative to the lean mass (LM). These changes may influence bone health to describe how anthropometry and BC predict the development of the bone accruement. The longitudinal study is a part of The CHAMPS study-DK. Children were DXA scanned at baseline and at 2-year follow-up. BC (LM, BF %) and BMC, BMD and BA were measured. The relationship between bone traits, anthropometry and BC was analysed by multilevel regression analyses. Of the invited children, 742/800 (93%) accepted to participate. Of these, 682/742 (92%) participated at follow-up. Mean (range) of age at baseline was 9.5 years (7.7-12.1). Height, BMI, LM and BF % predicted bone mineral accrual and bone size positively and independently. Height and BMI are both positive predictors of bone accruement. LM is a more precise predictor of bone traits than BF % in both genders. The effects of height and BMI and LM on bone accruement are nearly identical in the two genders, while changes in BF % have different but positive effects on bone accretion in both boys and girls.
Black carbon in deep-sea sediments from the northeastern equatorial Pacific Ocean
NASA Astrophysics Data System (ADS)
Kim, D.; Lee, Y.; Hyeong, K.; Yoo, C.
2011-12-01
Deep-sea sediment core is a good archive for understanding the land-ocean interactions via atmosphere, due to it is little influenced by fluvial and continental shelf processes. This study dealt with black carbon(BC) in a 328 cm-long piston core collected from the northeastern equatorial Pacific Ocean (16°12'N, 125°59'W), covering the last 15 Ma (Hyeong at al., 2004). BC is a common name of carbon continuum formed by incomplete combustion of fossil fuels and plant materials. Though it may react with ozone and produce water-soluble organic carbon, BC has commonly refractory nature. Thus BC in preindustrial sediment can be a tracer of forest-fire events. BC is purely terrestrial in origin, and is transported to marine environments by atmospheric and fluvial processes. Therefore, distribution of BC in deep-sea sediments could be used to understand atmospheric circulation. Chemical oxidation was used to determine BC in this study following Lim and Cachier (1996). Concentration of BC varies from 0.010% to 0.233% of total sediments. Mass accumulation rate (MAR) of BC ranged between 0.077 mg/cm^2/1000 yrs and 47.49 mg/cm^21000 yrs. It is noted that MAR in sediments younger than 8 Ma (av. 9.0 mg/cm^2/1000 yrs) is higher than that in sediments older than 8 Ma (av. 3.2 mg/cm^2/1000 yrs). Stable carbon isotope value of BC increases with time from the low δ13C value near 13 Ma until it reaches the highest value near 4 Ma. Change of MAR seems to be related to the meridional migration of Intertropical Convergence Zone (ITCZ) at around 8 Ma in the study area (cf., Hyeong at al., 2004). Accordingly, higher BC content in sediment younger than 8 Ma seems to be accounted for by its derivation from the Northern Hemisphere compared to that from the Southern Hemisphere in older sediment. Increase of carbon isotope value with time seems to be related to expansion of C4 grassland. C4 grassland expansion might have been caused by change of atmosphreic cycle, which moved dry subtropical ridge. The migration of high pressure zone caused development of new arid region, resulting in C3 forest-fire, and expansion of C4 vegetation (Bond, W.J. et al. 2005). keywords : black carbon; northeastern equatorial Pacific Ocean; Intertropical Convergence Zone Hyeong, K., S.-H. Park, C.M. Yoo, and K-H. KIm, 2005, Mineralogical and geochemical compositions of the eolian dust from the northeast equatorial Pacific and their implications on paleolocation of Intertropical Convergence Zone, Paleoceanography, 20, PA1010, doi:10.1029/2004PA001053 Bond, W.J., Woodward, F.I. and Midgley, G.F., 2005, The global distribution of ecosystems in a world without fire. New Phytologist, v. 165, p. 525-538. Lim, B. and Cachier, H., 1996, Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays. Chemical Geology, 131, 143-154.
NASA Astrophysics Data System (ADS)
Schill, G. P.; DeMott, P. J.; Suski, K. J.; Emerson, E. W.; Rauker, A. M.; Kodros, J.; Levin, E. J.; Hill, T. C. J.; Farmer, D.; Pierce, J. R.; Kreidenweis, S. M.
2017-12-01
Black carbon (BC) has been implicated as a potential immersion-mode ice nucleating particle (INP) because of its relative abundance in the upper troposphere. Furthermore, several field and aircraft measurements have observed positive correlations between BC and INP concentrations. Despite this, the efficiency of BC to act as an immersion-mode INP is poorly constrained. Indeed, previous results from laboratory studies are in conflict, with estimates of BC's impact on INP ranging from no impact to being efficient enough to rival the well-known INP mineral dust. It is, however, becoming clear that the ice nucleation activity of BC may depend on both its fuel type and combustion conditions. For example, previous work has shown that diesel exhaust BC is an extremely poor immersion-mode INP, but laboratory burns of biomass fuels indicate that BC can contribute up to 70% of all INP for some fuel types. Given these dependencies, we propose that sampling from real-world biomass burning sources would provide the most useful new information on the contribution of BC to atmospheric INP. In this work, we will present recent results looking at the sources of INP from prescribed burns and wildfires. To determine the specific contribution of refractory black carbon (rBC) to INP concentrations, we utilized a new technique that couples the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. Furthermore, we have also used a filter-based technique for measuring INP, the Ice Spectrometer, which can employ pretreatments such as heating and digestion by H2O2 to determine the contribution of heat-labile and organic particles, respectively.
Park, Na-Jin; Kang, Duck-Hee
2013-09-01
To examine racial differences in inflammatory cytokine levels (interleukin [IL]-6 and interferon-gamma [IFN-γ]) and breast cancer (BC) risk factors between healthy Caucasian and African American women; to examine differences in relationships of inflammatory cytokine levels with BC risk factors between these groups of women; and to determine the independent contribution of race to IL-6 and IFN-γ after controlling for relevant covariates. Cross-sectional and correlational descriptive design. Community surrounding a state university health system in the southeastern United States. 113 healthy women (65 Caucasians and 48 African Americans) aged 20 years or older and not pregnant. Secondary analysis of data collected from self-report questionnaires and blood samples. Inflammatory cytokine levels, BC risk factors (age, age at menarche, age at first live birth, family history of BC, breast biopsy, breastfeeding history and duration, body mass index, and physical activity), and race. Significant racial differences were noted in IL-6 and IFN-γ levels, reproductive or hormonal and lifestyle BC risk factors, and relationships between African American and Caucasian women. Controlling for all other effects, race appeared to be a significant predictor for IL-6 and IFN-γ. Racial differences in inflammatory cytokines and BC risk factors may provide partial evidence for existing racial disparities in BC for African American and Caucasian women. Additional studies are needed to confirm that potential. Additional biobehavioral research in racial disparities in BC may help to inform nurses to target race-specific modifications of lifestyle and behavioral factors to reduce BC health disparity between African American and Caucasian women. Being an African American woman predicted a higher level of inflammatory cytokine production after controlling for selected BC risk factors. Great potential exists for inflammatory responses as one of the underlying biologic mechanisms for existing BC disparity and for culturally tailored lifestyle or behavioral modification interventions for reducing BC risk and racial disparity.
The online measured black carbon aerosol and source orientations in the Nam Co region, Tibet.
Zhang, Xin; Ming, Jing; Li, Zhongqin; Wang, Feiteng; Zhang, Guoshuai
2017-11-01
Equivalent black carbon (eBC) mass concentrations were measured by an aethalometer (AE-31) in the Nam Co, central Tibet from 2010 to 2014. Different from previous filter-sampling studies (Ming et al., J Environ Sci 22(11):1748-1756, 2010; Zhao et al., Environ Sci Pollut Res 20:5827-5838, 2013), the first high-resolution online eBC measurement conducted in central Tibet is reported here, allowing to discuss the diurnal variations as well as seasonal variabilities of eBC. Average daily eBC concentration was 74 ± 50 ng/m 3 , reflecting a global background level. Meteorological conditions influenced eBC concentrations largely at seasonal scale, which are higher in February-May but lower in June-January. The highest eBC concentrations (greater than 210 ng/m 3 ) were more associated with the W and WSW winds smaller than 6 m/s. The diurnal variations of eBC showed plateaus from 10:00 to 15:00 with seasonal variations, associated with local anthropogenic activities, such as indigenous Tibetan burning animal waste and tourism traffic. The PBLHs showed a co-variance with eBC concentrations, implicating close sources. The aerosol optical depths derived from the MODIS data over the Nam Co Observatory Station (NCOS)-included sub-area (30° N-40° N, 90° E-100° E) showed significant relationship with eBC concentrations. This suggests that nearby or short-distance sources other than long-distance transported pollutants could be important contributors to eBC concentrations at the NCOS, different from the conclusions suggested by previous studies.
Lasa, R; Williams, T
2017-12-05
Hydrolyzed protein lures are widely used to monitor fruit fly pests but are rapidly degraded by microbial activity and must be replaced frequently. To improve the stability of lures, the quaternary ammonium biocide, benzalkonium chloride (BC), was evaluated in mixtures with two hydrolyzed proteins commonly used to monitor Anastrepha spp. The mean number of Anastrepha obliqua adults captured during six consecutive weeks using Captor + borax with the addition of 240 mg BC/liter, not renewed during the test, was similar to Captor + borax that was replaced at weekly intervals and was more effective than Captor + borax without BC. Numbers of A. obliqua flies captured in 30% CeraTrap diluted in water containing 240 mg BC/liter were similar to those caught in traps baited with Captor + borax or 30% CeraTrap without BC in the first 9 d of evaluation but was significantly more effective than both lures after 56 d. After >2 mo of use, 30% CeraTrap containing 240 mg BC/liter remained as effective as newly prepared 30% CeraTrap. The addition of BC to lures reduced surface tension of liquid lures by ~40-50%. However, when BC was increased to 720 mg BC/liter, only a small additional reduction in surface tension was observed and higher concentrations of BC did not increase capture rates. These findings could contribute to reduced costs for trapping networks and the development of long-lasting formulations of liquid protein lures for bait stations and mass-trapping targeted at major tephritid pests. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rosa, Maria Jose; Yan, Beizhan; Chillrud, Steven N.; Acosta, Luis M.; Divjan, Adnan; Jacobson, Judith S.; Miller, Rachel L.; Goldstein, Inge F.; Perzanowski, Matthew S.
2015-01-01
Background Exposure to airborne black carbon (BC) has been associated with asthma development, respiratory symptoms and decrements in lung function. However, the mechanism through which BC may lead to respiratory symptoms has not been completely elucidated. Oxidative stress has been suggested as a potential mechanism through which BC might lead to adverse health outcomes. Exhaled breath condensate (EBC) allows for the non-invasive collection of airway lining fluid containing biomarkers of oxidative stress like 8-isoprostane, a stable by-product of lipid peroxidation. Therefore, we sought to characterize the association between domestic airborne BC concentrations and 8-isoprostane in EBC. Materials and methods Seven- and eight-year-old children participated in an asthma case–control study in New York City. During home visits, air samples and EBC were collected. Seven day averages of domestic levels of particulate matter <2.5 µm (PM2.5), BC and environmental tobacco smoke (ETS) were measured. Urea and 8-isoprostane were measured by liquid chromatography tandem mass spectrometry (LC/MS/MS) in EBC. Results In univariate models, PM2.5 and BC, but not ETS, were significantly associated with increases in 8-isoprostane in the EBC (β = 0.006 and β = 0.106 respectively, p < 0.05 for both). These associations remained statistically significant for both PM2.5 and BC after adjustment for covariates. In a co-pollutant model including PM2.5, BC and ETS, only BC remained a statistically significant predictor of 8-isoprostane (p < 0.05). Conclusions Our findings suggest the BC fraction of PM might contain exposure relevant to increased oxidative stress in the airways. PMID:25262082
NASA Astrophysics Data System (ADS)
Takahashi, Kei; Nansai, Keisuke; Tohno, Susumu; Nishizawa, Masato; Kurokawa, Jun-ichi; Ohara, Toshimasa
2014-11-01
This study determined the production-based emissions, the consumption-based emissions, and the consumption-based health impact of primary carbonaceous aerosols (black carbon: BC, organic carbon: OC) in nine countries and regions in Asia (Indonesia, Malaysia, the Philippines, Singapore, Thailand, China, Taiwan, South Korea, and Japan) in 2008. For the production-based emissions, sectoral emissions inventory of BC and OC for the year of 2008 based on the Asian international input-output tables (AIIOT) was compiled including direct emissions from households. Then, a multiregional environmental input-output analysis with the 2008 AIIOT which was originally developed by updating the table of 2000 was applied for calculating the consumption-based emissions for each country and region. For the production-based emissions, China had the highest BC and OC emissions of 4520 Gg-C in total, which accounted for 75% of the total emissions in the nine countries and regions. For consumption-based emissions, China was estimated to have had a total of 4849 Gg-C of BC and OC emissions, which accounted for 77% of the total emissions in the Asia studied. We also quantified how much countries and regions induced emissions in other countries and regions. Furthermore, taking account of the source-receptor relationships of BC and OC among the countries and regions, we converted their consumption-based emissions into the consumption-based health impact of each country and region. China showed the highest consumption-based health impact of BC and OC totaling 111 × 103 premature deaths, followed by Indonesia, Japan, Thailand and South Korea. China accounted for 87% of the sum total of the consumption-based health impacts of the countries/regions, indicating that China's contribution to consumption-based health impact in Asia was greater than its consumption-based emissions. By elucidating the health impacts that each country and region had on other countries and from which country the impacts were received, we demonstrated that the characteristics of the consumption-based health impact varied significantly by country and region. We also determined the difference in the health impacts to other countries and regions due to the domestic final demand of each country and region, and the health impact due to the domestic final demand of that country or region.
Digiacomo, L; Cardarelli, F; Pozzi, D; Palchetti, S; Digman, M A; Gratton, E; Capriotti, A L; Mahmoudi, M; Caracciolo, G
2017-11-16
Following exposure to biological milieus (e.g. after systemic administration), nanoparticles (NPs) get covered by an outer biomolecular corona (BC) that defines many of their biological outcomes, such as the elicited immune response, biodistribution, and targeting abilities. In spite of this, the role of BC in regulating the cellular uptake and the subcellular trafficking properties of NPs has remained elusive. Here, we tackle this issue by employing multicomponent (MC) lipid NPs, human plasma (HP) and HeLa cells as models for nanoformulations, biological fluids, and target cells, respectively. By conducting confocal fluorescence microscopy experiments and image correlation analyses, we quantitatively demonstrate that the BC promotes a neat switch of the cell entry mechanism and subsequent intracellular trafficking, from macropinocytosis to clathrin-dependent endocytosis. Nano-liquid chromatography tandem mass spectrometry identifies apolipoproteins as the most abundant components of the BC tested here. Interestingly, this class of proteins target the LDL receptors, which are overexpressed in clathrin-enriched membrane domains. Our results highlight the crucial role of BC as an intrinsic trigger of specific NP-cell interactions and biological responses and set the basis for a rational exploitation of the BC for targeted delivery.
Nutrient effects of broodstocks on the larvae in Patinopecten yessoensis
NASA Astrophysics Data System (ADS)
Bai, Yucen; Zhang, Tao; Qiu, Tianlong; Gao, Yan; Zhang, Xiaofang
2015-07-01
Patinopecten yessoensis is a commercial valuable species. This study deals with the effect of nutrient effects of the broodstock (mainly ovaries) on the larvae. Concentrations of total carbohydrate, total protein and total lipid in the gonads of P. yessoensis from three Hatcheries (Hatchery 1, Hatchery 2, and Hatchery 3) were determined before and after spawning. The relationship between the nutrient concentration in ovaries before spawning (BC) and that of larvae (LC) was assessed as well as the change in nutrient levels in ovaries after spawning (DC). Results indicate that the BC of total carbohydrate (7.66%) and total lipid (14.48%) in ovaries were significantly higher than in testes (5.20%, 5.20% respectively), whereas the BC of total protein in the ovaries was lower (61.76%) than in the testes (81.67%). The different gonadal composition suggests the different nutrient demands between male and female broodstocks in breeding season. Patinopecten yessoensis gonads contained a higher proportion of lipids, in comparison to other bivalves, which might be a response to the low ambient water temperatures. Further analysis of fatty acids showed that the concentrations of n-3PUFA, EPA and DHA in larvae (LC) were positively correlated with BC and DC, indicating the significant nutrient influence of broodstocks on the larvae. As these fatty acids are important in metabolism, and have been demonstrated to be influential to the viability of the larvae, larval growth and the settlement, spat growth, and juvenile survival in many bivalves, they could possibly be used as indexes to evaluate, and predict condition of broodstocks and larvae.
NASA Astrophysics Data System (ADS)
Roberts, P. T.; Brown, S. G.; Vaughn, D.; DeWinter, J. L.
2015-12-01
Black carbon (BC) is a short lived climate forcer and is associated with human health effects. We measured BC inside and outside at four schools in Salt Lake City during two studies in 2011-2014. In addition, PM2.5 was measured indoor and outdoor at one school, and gaseous air toxics outdoor at one school. The schools are within 500 m of a planned major freeway, and two of them will adjoin the freeway. The objectives included determining the outdoor and indoor concentrations of BC, the likely sources of BC, and once the freeway is built, the change in ambient BC at the schools. We determined the current state of air quality outdoors at these schools, to provide baseline data for comparison when the major freeway is operational, and indoors as a baseline before installing improved filtration to reduce BC in classrooms. Using MATES IV cancer risk values, we found that diesel particulate matter, as indicated by ambient, outdoor BC measurements, was responsible for 84% of the cancer risk at the schools. The HVAC system was moderately effective at filtrating PM mass (73% reduction), but very poor at filtering BC (7%-34% reduction), indicating that air toxics risk is similar indoors and outdoors. Improved filtration devices could potentially mitigate this risk, and improved filtration systems have been recommended for the schools. Lastly, we used the difference in absorption at two Aethalometer channels to determine that the majority of BC (> 90%) during the spring through fall is from fossil fuel emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ching, Ping Pui; Riemer, Nicole; West, Matthew
2016-05-27
Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcelmore » cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.« less
Russia's black carbon emissions: focus on diesel sources
NASA Astrophysics Data System (ADS)
Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa
2016-09-01
Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.
Russia's black carbon emissions: focus on diesel sources
Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa
2016-09-12
Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less
Russia's black carbon emissions: focus on diesel sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa
Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less
Russia's black carbon emissions: focus on diesel sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa
Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30% of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputermore » Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less
Bae, Sangok; Shoda, Makoto
2005-04-05
Culture conditions in a jar fermentor for bacterial cellulose (BC) production from A. xylinum BPR2001 were optimized by statistical analysis using Box-Behnken design. Response surface methodology was used to predict the levels of the factors, fructose (X1), corn steep liquor (CSL) (X2), dissolved oxygen (DO) (X3), and agar concentration (X4). Total 27 experimental runs by combination of each factor were carried out in a 10-L jar fermentor, and a three-dimensional response surface was generated to determine the effect of the factors and to find out the optimum concentration of each factor for maximum BC production and BC yield. The fructose and agar concentration highly influenced the BC production and BC yield. However, the optimum conditions according to changes in CSL and DO concentrations were predicted at almost central values of tested ranges. The predicted results showed that BC production was 14.3 g/L under the condition of 4.99% fructose, 2.85% CSL, 28.33% DO, and 0.38% agar concentration. On the other hand, BC yield was predicted in 0.34 g/g under the condition of 3.63% fructose, 2.90% CSL, 31.14% DO, and 0.42% agar concentration. Under optimized culture conditions, improvement of BC production and BC yield were experimentally confirmed, which increased 76% and 57%, respectively, compared to BC production and BC yield before optimizing the culture conditions. Copyright (c) 2005 Wiley Periodicals, Inc.
Fluxes of Soot Carbon to South Atlantic Sediments
Deep sea sediment samples from the South Atlantic Ocean were analyzed for soot black carbon (BC), total organic carbon (TOC), stable carbon isotope ratios (δ 13C), and polycyclic aromatic hydrocarbons (PAHs). Soot BC was present at low concentrations (0.04–0.17% dry weight), but ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinertsen, Kristin Valborg, E-mail: kvr@radiumhospitalet.n; Faculty Division the Norwegian Radium Hospital, University of Oslo, 0316 Oslo; Cancer Center, Ulleval University Hospital, Oslo
Purpose: A possible association between thyroid diseases (TD) and breast cancer (BC) has been debated. We examined prevalence and development of TD in women after multimodal treatment for Stage II/III BC compared with women from a general population. Secondarily, we explored the impact of two different radiotherapy (RT) techniques (standardized field arrangements vs. computed tomography [CT]-based dose planning) on TD in BC patients examined 35-120 months after primary BC treatment. Methods and Materials: A total of 403 BC patients completed a questionnaire about TD and had blood samples taken for analyses of thyroid function. All had undergone postoperative RT withmore » or without (2%) adjuvant systemic treatment. The results in the BC patients were compared with a cancer-free, age-matched control group from a general population (CGr). Results: There was higher prevalence of self-reported hypothyroidism in the BC patients as compared with the CGr (18% vs. 6%, p < 0.001). The raised prevalence was predominantly due to a substantial increase in the development of hypothyroidism after BC diagnosis, whereas the prevalence of hypothyroidism before BC diagnosis was similar to that observed in the CGr. Patients treated with CT-based RT showed a trend for increased post-BC development of hypothyroidism as compared with those treated with standardized field arrangements (p = 0.08). Conclusions: Hypothyroidism is significantly increased in women after multimodal treatment for Stage II/III BC. Radiation to the thyroid gland may be a contributing factor. BC patients should be routinely screened for hypothyroidism.« less
Biogenesis of the yeast cytochrome bc1 complex.
Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L
2009-01-01
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.
Thakkar, Sagar K; Huo, Tianyao; Maziya-Dixon, Bussie; Failla, Mark L
2009-02-25
We previously demonstrated that the quantity of beta-carotene (BC) partitioning in mixed micelles during simulated small intestinal digestion, i.e., the bioaccessibility, of boiled cassava is highly correlated with the BC content of different cultivars. However, cassava is also traditionally prepared by fermentation and roasting. These different methods of preparation have the potential to affect both the retention and bioaccessibility of BC. Here, we first compared retention of BC in boiled cassava, gari (fermentation followed by roasting), and fufu (fermentation followed by sieving and cooking into a paste) prepared from roots of three cultivars. BC content in unprocessed cultivars ranged from 6-8 microg/g wet weight, with cis isomers accounting for approximately one-third of total BC. Apparent retention of BC was approximately 90% for boiled cassava and fufu. In contrast, roasting fermented cassava at 195 degrees C for 20 min to prepare gari decreased BC content by 90%. Retention was increased to 63% when temperature was decreased to 165 degrees C and roasting was limited to 10 min. Processing was also associated with a decline in all-trans-BC and concomitant increase in 13-cis-BC. The efficiency of micellarization of all-trans and cis isomers of BC during simulated digestion was 25-30% for boiled cassava and gari and independent of cultivar. However, micellarization of BC isomers during digestion of fufu was only 12-15% (P < 0.05). These differences in retention and bioaccessibility of BC from cassava products prepared according to traditional processing methods suggest that gari and fufu may provide less retinol activity equivalents than isocaloric intake of boiled cassava.
Chinese Soot on a Vietnamese Soup
NASA Astrophysics Data System (ADS)
Mari, X.
2015-12-01
Black Carbon (BC) is an aerosol emitted as soot during biomass burning and fossil fuels combustion together with other carbonaceous aerosols such as organic carbon (OC) and polyaromatic hydrocarbons (PAHs). While the impacts of BC on health and climate have been studied for many years, studies about its deposition and impact on marine ecosystems are scares. This is rather surprising considering that a large fraction of atmospheric BC deposits on the surface of the ocean via dry or wet deposition. On a global scale, deposition on the ocean is about 45 Tg C per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of the hot-spots of concentration. In the present study conducted on shore, in Haiphong and Halong cities, North Vietnam, we measured the seasonal variations of atmospheric BC, OC and PAHs during a complete annual cycle. The presentation will discuss the atmospheric results in terms of seasonal variability and sources. Inputs to the marine system are higher during the dry season, concomitantly with the arrival of air masses enriched in BC coming from the North. However, the carbon fingerprint can significantly differ at shorter time periods depending on the air mass pathway and speed. Our work leads to the characterization and the determination of the relative contribution of more specific sources like local traffic, which includes tourism and fishing boats, coal dust emitted from the nearby mine, and long-range transported aerosols. This variable input of carbonaceous aerosols might have consequences for the cycling and the repartition of carbon and nutrients in the marine ecosystem of Halong Bay.
Mobility of black carbon in drained peatland soils
NASA Astrophysics Data System (ADS)
Leifeld, J.; Fenner, S.; Müller, M.
2007-06-01
Amount, stability, and distribution of black carbon (BC) were studied at four sites of a large peatland ("Witzwil") formerly used as a disposal for combustion residues from households to derive BC displacement rates in the profile. Possible artefacts from thermal oxidation with Differential Scanning Calorimetry (DSC) on BC quantification of C-rich deposits were inferred by choosing three sites from a second peatland with no historical record of waste disposal as a reference ("Seebodenalp"). All sites were under grassland at time of sampling, but were partially cropped in the past at Witzwil. Mean BC contents in topsoils of Witzwil ranged from 10.7 to 91.5 (0-30 cm) and from 0.44 to 51.3 (30-140 cm) mg BC g-1 soil, corresponding to BC/OC ratios of 0.04 to 0.3 (topsoil) and 0.02 to 0.18 (deeper soil). At three sites of Seebodenalp, BC was below the detection limit of 0.4 mg g-1 organic soil, indicating negligible formation of BC during thermal oxidation of peat. 13C NMR spectra corroborated the high BC contents at Witzwil. The data support a considerable vertical transport of BC given that soils were ploughed not deeper than 30 cm since abandonment of waste application about 50 years ago. The total amount of BC in the Witzwil profiles ranged from 3.2 to 7.5 kg BC m-2, with 21 to 69 percent of it stemming from below the former ploughing depth. Under the premise of negligible rates of BC consumption since abandonment of waste application, minimum BC transport rates in these peats are 0.6 to 1.2 cm a-1. The high mobility of BC might be explained by high macro-pore volumes in combination with occasional water saturation. By means of DSC peak temperatures, different types of BC could be distinguished, with deeper horizons containing BC of higher thermal stability. Application of combustion residues likely involved a mixture of various BC types, of which thermally more stable ones, most likely soots, were preferentially transported downwards.
Mobility of black carbon in drained peatland soils
NASA Astrophysics Data System (ADS)
Leifeld, J.; Fenner, S.; Müller, M.
2007-03-01
Amount, stability, and distribution of black carbon BC were studied at four sites of a large peatland ("Witzwil") formerly used as a disposal for combustion residues from households to derive BC displacement rates in the profile. Possible artefacts from thermal oxidation with Differential Scanning Calorimetry (DSC) on BC quantification of C-rich deposits were inferred by choosing three sites from a second peatland with no historical record of waste disposal as a reference ("Seebodenalp"). All sites were under grassland at time of sampling, but were partially cropped in the past at Witzwil. Mean BC contents in topsoils of Witzwil ranged from 10.7 to 91.5 (0-30 cm) and from 0.44 to 51.3 (30-140 cm) mg BC g-1 soil, corresponding to BC/OC ratios of 0.04 to 0.3 (topsoil) and 0.02 to 0.18 (deeper soil). At three sites of Seebodenalp, BC was below the detection limit of 0.4 mg g-1 organic soil, indicating negligible formation of BC during thermal oxidation of peat. 13C NMR spectra corroborated the high BC contents at Witzwil. The data refer to a considerable vertical transport of BC given that soils were ploughed not deeper than 30 cm since abandonment of waste application about 50 years ago. The total amount of BC in the Witzwil profiles ranged from 3.2 to 7.5 kg BC m-2, with 21 to 69 percent of it stemming from below the former ploughing depth. Under the premise of negligible rates of BC consumption since abandonment of waste application, minimum BC transport rates in these peats are 0.6 to 1.2 cm a-1. The high mobility of BC might be explained by high macro-pore volumes in combination with occasional water saturation. By means of DSC peak temperatures, different types of BC could be distinguished, with deeper horizons containing BC of higher thermal stability. Application of combustion residues likely involved a mixture of various BC types, of which thermally more stable ones, most likely soots, were preferentially transported downwards.
NASA Astrophysics Data System (ADS)
Fang, Y.; Chen, Y.; Tian, C.
2015-12-01
Black carbon (BC) derived from incomplete combustion of fossil fuels and biomass has received increasing attention due to their potential importance in a wide range of biogeochemical processes. China has been generally considered as the world's largest BC emitter. Due to a combination of the prevailing East Asia monsoon and large amounts of riverine outflow, BC released from China can be transported to the adjacent continental shelf seas, the Bohai Sea (BS) and Yellow Sea (YS). Based on measurements of BC in 191 surface sediments, 36 riverine water, and 2 seawater samples, as well as the reported BC data set of the aerosol samples in the Bohai Rim, the concentration, flux, and budget of BC in the BS and YS were investigated. The spatial distribution of the BC concentration in surface sediments was largely influenced by the regional hydrodynamic conditions, with high values mainly occurring in the central mud areas. The BC burial flux in the BS and YS ranged from 4 to 1100 μg/cm2/yr, and averaged 166 ± 200 μg/cm2/yr. The area-integrated sedimentary BC sink flux in the entire BS and YS was ~325 Gg/yr. The BC budget calculated in the BS showed that atmospheric deposition and riverine discharge played comparable importance in delivering BC to the BS, and sequestration to bottom sediments was the major BC output pattern, accounting for ~88% of the total input BC. Besides, we attempted to apportion the BC sources in the BS and YS surface sediments using PAHs (organic molecular proxies cogenerated with BC) and BC as an input data to the Positive Matrix Factorization (PMF) receptor model. Results showed that ~83% of the sediment BC was attributed to the combustion of fossil fuels, and the remaining ~17% was from biomass burning. Due to the differences in their production mechanisms and therefore physicochemical properties, the above distinction and quantification would help us better understand their different environmental behaviors in the complex continental shelf regimes.
G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe
2010-01-01
We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...
Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?
Erwin, Peter; Gadotti, Dimitri Alexei
2012-01-01
Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (MBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while MBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NC / M ⋆ , tot for NCs in spirals (at least those with Hubble types c and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ , bul of MBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both MBHs and NCs. We also discuss evidence for a break in the NC-host galaxy correlation, galaxies with Hubble types earlier than bc appear to host systematically more massive NCs than do types c and later.« less
NASA Astrophysics Data System (ADS)
Yang, Junhua; Kang, Shichang; Ji, Zhenming; Chen, Deliang
2018-01-01
Black carbon (BC) in snow/ice induces enhanced snow and glacier melting. As over 60% of atmospheric BC is emitted from anthropogenic sources, which directly impacts the distribution and concentration of BC in snow/ice, it is essential to assess the origin of anthropogenic BC transported to the Tibetan Plateau (TP) where there are few direct emissions attributable to local human activities. In this study, we used a regional climate-atmospheric chemistry model and a set of BC scenarios for quantitative evaluation of the impact of anthropogenic BC from various sources and its climate effects over the TP in 2013. The results showed that the model performed well in terms of climatology, aerosol optical properties, and near-surface concentrations, which indicates that this modeling framework is appropriate to characterize anthropogenic BC source-receptor relationships over the TP. The simulated surface concentration associated with the anthropogenic sources showed seasonal differences. In the monsoon season, the contribution of anthropogenic BC was less than in the nonmonsoon season. In the nonmonsoon season, westerly winds prevailed and transported BC from central Asia and north India to the western TP. In the monsoon season, BC aerosol was transported to the middle-upper troposphere over the Indo-Gangetic Plain and crossed the Himalayas via southwesterly winds. The majority of anthropogenic BC over the TP was transported from South Asia, which contributed to 40%-80% (mean of 61.3%) of surface BC in the nonmonsoon season, and 10%-50% (mean of 19.4%) in the monsoon season. For the northeastern TP, anthropogenic BC from eastern China accounted for less than 10% of the total in the nonmonsoon season but can be up to 50% in the monsoon season. Averaged over the TP, the eastern China anthropogenic sources accounted for 6.2% and 8.4% of surface BC in the nonmonsoon and monsoon seasons, respectively. The anthropogenic BC induced negative radiative forcing and cooling effects at the near surface over the TP.
Diurnal cycling of urban aerosols under different weather regimes
NASA Astrophysics Data System (ADS)
Gregorič, Asta; Drinovec, Luka; Močnik, Griša; Remškar, Maja; Vaupotič, Janja; Stanič, Samo
2016-04-01
A one month measurement campaign was performed in summer 2014 in Ljubljana, the capital of Slovenia (population 280,000), aiming to study temporal and spatial distribution of urban aerosols and the mixing state of primary and secondary aerosols. Two background locations were chosen for this purpose, the first one in the city center (urban background - KIS) and the second one in the suburban background (Brezovica). Simultaneous measurements of black carbon (BC) and particle number size distribution of submicron aerosols (PM1) were conducted at both locations. In the summer season emission from traffic related sources is expected to be the main local contribution to BC concentration. Concentrations of aerosol species and gaseous pollutants within the planetary boundary layer are controlled by the balance between emission sources of primary aerosols and gases, production of secondary aerosols, chemical reactions of precursor gases under solar radiation and the rate of dilution by mixing within the planetary boundary layer (PBL) as well as with tropospheric air. Only local emission sources contribute to BC concentration during the stable PBL with low mixing layer height, whereas during the time of fully mixed PBL, regionally transported BC and other aerosols can contribute to the surface measurements. The study describes the diurnal behaviour of the submicron aerosol at the urban and suburban background location under different weather regimes. Particles in three size modes - nucleation (< 25 nm, NUM), Aitken (25 - 90 nm, AIM) and accumulation mode (90 - 800 nm, ACM), as well as BC mass concentration were evaluated separately for sunny, cloudy and rainy days, taking into account modelled values of PBL height. Higher particle number and black carbon concentrations were observed at the urban background (KIS) than at the suburban background location (Brezovica). Significant diurnal pattern of total particle concentration and black carbon concentration was observed at both locations, with a distinct morning and late afternoon peak. As a consequence of different PBL dynamics and atmospheric processes (photochemical effects, humidity, wind speed and direction), diurnal profile differs for sunny, cloudy and rainy days. Nucleation mode particles were found to be subjected to lower daily variation and only slightly influenced by weather, as opposed to Aitken and accumulation mode particles. The highest correlation between BC and particle number concentration is observed during stable atmospheric conditions in the night and morning hours and is attributed to different particle size modes, depending on the distance to local BC emission sources. In sunny weather conditions, correlation between BC and particle number concentration decreases during the day due to mixing in the atmosphere and formation of secondary aerosols. Black carbon aging and mixing with secondary aerosols was additionally studied on the aerosol samples taken from the morning to the evening of a sunny day using SEM-EDX technique.
Evaluation of black carbon estimations in global aerosol models
NASA Astrophysics Data System (ADS)
Koch, D.; Schulz, M.; Kinne, S.; McNaughton, C.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, T. C.; Boucher, O.; Chin, M.; Clarke, A.; de Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, R.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, S.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevåg, A.; Klimont, Z.; Kondo, Y.; Krol, M.; Liu, X.; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J. E.; Perlwitz, J.; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, Ø.; Stier, P.; Takegawa, N.; Takemura, T.; Textor, C.; van Aardenne, J. A.; Zhao, Y.
2009-11-01
We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) retrievals from AERONET and Ozone Monitoring Instrument (OMI) and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.
Black carbon emissions in Russia: A critical review
NASA Astrophysics Data System (ADS)
Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; Denysenko, Artur; Smith, Steven J.; Staniszewski, Aaron; Hao, Wei Min; Liu, Liang; Bond, Tami C.
2017-08-01
This study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.
Black carbon emissions in Russia: A critical review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa
Russia has a particularly important role regarding black carbon (BC) emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. This study presents a comprehensive review of BC estimates from a range of studies. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russian associated petroleummore » gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 689 Gg in 2014, with an uncertainty range between (407-1,416), while OC emissions are 9,228 Gg (with uncertainty between 5,595 and 14,728). Wildfires dominated and contributed about 83% of the total BC emissions, however the effect on radiative forcing is mitigated by OC emissions. We also present an adjusted estimate of Arctic forcing from Russian OC and BC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less
Source attribution of black carbon and its direct radiative forcing in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Wang, Hailong; Smith, Steven J.
The source attributions for mass concentration, haze formation, transport and direct radiative forcing of black carbon (BC) in various regions of China are quantified in this study using the Community Earth System Model (CESM) with a source-tagging technique. Anthropogenic emissions are from the Community Emissions Data System that is newly developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Over north China where the air quality is often poor, about 90 % of near-surface BC concentration is contributed by local emissions. Overall, 35 % of BC concentration over south China in winter can be attributed to emissions from north China, andmore » 19 % comes from sources outside China in spring. For other regions in China, BC is largely contributed from nonlocal sources. We further investigated potential factors that contribute to the poor air quality in China. During polluted days, a net inflow of BC transported from nonlocal source regions associated with anomalous winds plays an important role in increasing local BC concentrations. BC-containing particles emitted from East Asia can also be transported across the Pacific. Our model results show that emissions from inside and outside China are equally important for the BC outflow from East Asia, while emissions from China account for 8 % of BC concentration and 29 % in column burden in the western United States in spring. Radiative forcing estimates show that 65 % of the annual mean BC direct radiative forcing (2.2 W m −2) in China results from local emissions, and the remaining 35 % is contributed by emissions outside of China. Efficiency analysis shows that a reduction in BC emissions over eastern China could have a greater benefit for the regional air quality in China, especially in the winter haze season.« less
NASA Astrophysics Data System (ADS)
Guo, Qingfeng; Hu, Min; Guo, Song; Wu, Zhijun; Peng, Jianfei; Wu, Yusheng
2017-09-01
East Asia is a densely populated region with a myriad of primary emissions of pollutants such as black carbon (BC) and carbon monoxide (CO). To characterize primary emissions over the eastern coast of China, a series of field campaigns were conducted in 2011, including measurements from a ship cruise, island, and coastal receptor sites. The relationship between BC and CO is presented here for the first ship cruise (C1), the second ship cruise (C2), an island site (Changdao Island, CD), and a coastal site (Wenling, WL). The average BC mass concentrations were 2.43, 2.73, 1.09, 0.94, and 0.77 µg m-3 for CD, WL, C1-YS (Yellow Sea), C1-ES (East China Sea), and C2-ES, respectively. For those locations, the average CO mixing ratios were 0.55, 0.48, 0.31, 0.36, and 0.27 ppm. The high loadings of both BC and CO imply severe anthropogenic pollution over the eastern coast of China. Additionally, the linear correlation between BC and CO was regressed for each location. The slopes, i.e., the ratios of ΔBC to ΔCO derived from their relationship, correlated well with the ratios of diesel consumption to gasoline consumption in each province/city, which reveals vehicular emission to be the common source for BC and CO and that there are distinct fuel structures between North and South China. The ΔBC/ΔCO values at coastal sites (Changdao Island and Wenling) were much higher than those over the Yellow Sea and East China Sea, and the correlation coefficients also showed a decreasing trend from the coast to the sea. Therefore, the quantity of ΔBC/ΔCO and the correlation coefficients are possible indicators for the aging and removal of BC.
Lin, Weiwei; Huang, Wei; Hu, Min; Brunekreef, Bert; Zhang, Yuanhang; Liu, Xingang; Cheng, Hong; Gehring, Ulrike; Li, Chengcai; Tang, Xiaoyan
2011-01-01
Background: Epidemiologic evidence for a causative association between black carbon (BC) and health outcomes is limited. Objectives: We estimated associations and exposure–response relationships between acute respiratory inflammation in schoolchildren and concentrations of BC and particulate matter with an aerodynamic diameter of ≤ 2.5 μm (PM2.5) in ambient air before and during the air pollution intervention for the 2008 Beijing Olympics. Methods: We measured exhaled nitric oxide (eNO) as an acute respiratory inflammation biomarker and hourly mean air pollutant concentrations to estimate BC and PM2.5 exposure. We used 1,581 valid observations of 36 subjects over five visits in 2 years to estimate associations of eNO with BC and PM2.5 according to generalized estimating equations with polynomial distributed-lag models, controlling for body mass index, asthma, temperature, and relative humidity. We also assessed the relative importance of BC and PM2.5 with two-pollutant models. Results: Air pollution concentrations and eNO were clearly lower during the 2008 Olympics. BC and PM2.5 concentrations averaged over 0–24 hr were strongly associated with eNO, which increased by 16.6% [95% confidence interval (CI), 14.1–19.2%] and 18.7% (95% CI, 15.0–22.5%) per interquartile range (IQR) increase in BC (4.0 μg/m3) and PM2.5 (149 μg/m3), respectively. In the two-pollutant model, estimated effects of BC were robust, but associations between PM2.5 and eNO decreased with adjustment for BC. We found that eNO was associated with IQR increases in hourly BC concentrations up to 10 hr after exposure, consistent with effects primarily in the first hours after exposure. Conclusions: Recent exposure to BC was associated with acute respiratory inflammation in schoolchildren in Beijing. Lower air pollution levels during the 2008 Olympics also were associated with reduced eNO. PMID:21642045
Source attribution of black carbon and its direct radiative forcing in China
Yang, Yang; Wang, Hailong; Smith, Steven J.; ...
2017-03-30
The source attributions for mass concentration, haze formation, transport and direct radiative forcing of black carbon (BC) in various regions of China are quantified in this study using the Community Earth System Model (CESM) with a source-tagging technique. Anthropogenic emissions are from the Community Emissions Data System that is newly developed for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Over north China where the air quality is often poor, about 90 % of near-surface BC concentration is contributed by local emissions. Overall, 35 % of BC concentration over south China in winter can be attributed to emissions from north China, andmore » 19 % comes from sources outside China in spring. For other regions in China, BC is largely contributed from nonlocal sources. We further investigated potential factors that contribute to the poor air quality in China. During polluted days, a net inflow of BC transported from nonlocal source regions associated with anomalous winds plays an important role in increasing local BC concentrations. BC-containing particles emitted from East Asia can also be transported across the Pacific. Our model results show that emissions from inside and outside China are equally important for the BC outflow from East Asia, while emissions from China account for 8 % of BC concentration and 29 % in column burden in the western United States in spring. Radiative forcing estimates show that 65 % of the annual mean BC direct radiative forcing (2.2 W m −2) in China results from local emissions, and the remaining 35 % is contributed by emissions outside of China. Efficiency analysis shows that a reduction in BC emissions over eastern China could have a greater benefit for the regional air quality in China, especially in the winter haze season.« less
Riederer, Kathleen; Cruz, Kristian; Shemes, Stephen; Szpunar, Susan; Fishbain, Joel T
2015-06-01
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry has dramatically altered the way microbiology laboratories identify clinical isolates. Direct blood culture (BC) detection may be hampered, however, by the presence of charcoal in BC bottles currently in clinical use. This study evaluates an in-house process for extraction and MALDI-TOF identification of Gram-negative bacteria directly from BC bottles containing charcoal. Three hundred BC aliquots were extracted by a centrifugation-filtration method developed in our research laboratory with the first 96 samples processed in parallel using Sepsityper® kits. Controls were colonies from solid media with standard phenotypic and MALDI-TOF identification. The identification of Gram-negative bacteria was successful more often via the in-house method compared to Sepsityper® kits (94.7% versus 78.1%, P≤0.0001). Our in-house centrifugation-filtration method was further validated for isolation and identification of Gram-negative bacteria (95%; n=300) directly from BC bottles containing charcoal. Copyright © 2015 Elsevier Inc. All rights reserved.
Phthalate exposure, flavonoid consumption and breast cancer risk among Mexican women.
Mérida-Ortega, Ángel; Hernández-Alcaraz, César; Hernández-Ramírez, Raúl U; García-Martínez, Angélica; Trejo-Valdivia, Belem; Salinas-Rodríguez, Aarón; Svensson, Katherine; Cebrián, Mariano E; Franco-Marina, Francisco; López-Carrillo, Lizbeth
2016-11-01
To evaluate if selected phthalate exposure and flavonoid intake interact on breast cancer (BC) risk. Interviews and urine samples were obtained from 233 women with histologically confirmed BC and 221 healthy controls matched by age and place of residence, from various states of northern Mexico. Urinary metabolites concentrations of diethyl phthalate (DEP), butyl benzyl phthalate (BBzP) and dioctyl phthalate (DOP) were determined by solid-phase extraction coupled with high-performance liquid chromatography/isotope dilution/tandem mass spectrometry. Using a semiquantitative food frequency questionnaire, consumption of five types of flavonoids (anthocyanidins, flavan-3-ols, flavanones, flavones and flavonols) was estimated according to three food groups: vegetables, fruits and legumes-oil seeds. A higher intake of anthocyanidins and flavan-3-ols (from vegetables), synergistically increased the negative association between BBzP and BC. No other significant flavonoid-phthalate multiplicative interactions on the risk for BC were found. The consumption of some flavonoids may interact with exposure to phthalates on the risk of BC. Epidemiological and underlying mechanisms information is still insufficient and requires further investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parada, Humberto; Gammon, Marilie D; Chen, Jia; Calafat, Antonia M; Neugut, Alfred I; Santella, Regina M; Wolff, Mary S; Teitelbaum, Susan L
2018-04-26
Phthalates, known endocrine disruptors, may play a role in breast carcinogenesis. Few studies have examined phthalates in relation to breast cancer (BC), and, to our knowledge, none have considered survival following BC. We examined 11 urinary phthalate metabolites, individually and as molar sum groupings, in association with BC incidence and subsequent survival. Our study includes 710 women diagnosed with first primary BC in 1996-1997 and 598 women without BC from Long Island, New York. Within 3 mo of diagnosis, participants provided spot urine samples. Nine phthalate metabolites were measured in all women; two [monocarboxyoctyl phthalate (MCOP) and monocarboxy-isononyl phthalate (MCNP)] were measured in 320 women with and 205 without BC. Women with BC were followed since diagnosis using the National Death Index; during follow-up (median=17.6 y), we identified 271 deaths (98 BC related). We examined creatinine-corrected metabolite concentrations in association with: BC, using logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) and all-cause/BC-specific mortality, using Cox regression to estimate hazard ratios (HRs) and 95% CIs. We also examined effect modification by body mass index (BMI) and estrogen receptor (ER) status. The highest (vs. lowest) quintiles of mono(3-carboxypropyl) phthalate (MCPP), monobenzyl phthalate (MBzP), MCNP, and MCOP were associated with BC ORs ranging from 0.71-0.73. The highest (vs. lowest) quintiles of mono(2-ethylhexyl) phthalate (MEHP) and MCOP were associated with BC-specific mortality HRs of 0.54 (95% CI: 0.28, 1.04) and 0.55 (95% CI: 0.23, 1.35), respectively. For BC-specific mortality, interactions were significant between BMI and mono(2-ethyl-5-oxyhexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), with positive associations among women with BMI<25 and inverse associations among women with BMI≥25.0 kg/m 2 . Consistent with laboratory evidence, we observed inverse associations between urinary concentrations of several phthalate metabolites and BC and subsequent survival; however, these results should be interpreted with caution given that biospecimen collection among women with BC occurred after diagnosis, which may be of particular concern for our case-control findings. https://doi.org/10.1289/EHP2083.
NASA Astrophysics Data System (ADS)
Ortiz Montalvo, D. L.; Kirchstetter, T. W.; Soto-García, L. L.; Mayol-Bracero, O. L.
2006-12-01
Combustion generated particles are a concern to both climate and public health due to their ability to scatter and absorb solar radiation and alter cloud properties, and because they are small enough to be inhaled and deposit in the lungs where they may cause respiratory and other health problems. Specific concern is focused on particles that originate from the combustion of diesel fuel. Diesels particles are composed mainly of carbonaceous material, especially in locations where diesel fuel sulfur is low. These particles are black due to the strongly light absorbing nature of the refractory carbon components, appropriately called black carbon (BC). This research project focuses on the uncertainty in the measurement of BC mass concentration, which is typically determined by analysis of particles collected on a filter using a thermal-optical analysis (TOA) method. Many studies have been conducted to examine the accuracy of the commonly used variations of the TOA method, which vary in their sample heating protocol, carrier gas, and optical measurement. These studies show that BC measurements are inaccurate due to the presence of organic carbon (OC) in the aerosols. OC may co-evolve with BC or char to form BC during analysis, both of which make it difficult to distinguish between the OC and BC in the sample. The goal of this study is to develop the capability of producing standard samples of known amounts of BC, either alone or mixed with other aerosol constituents, and then evaluate which TOA methods accurately determine the BC amount. An inverted diffusion flame of methane and air was used to produce particle samples containing only BC as well as samples of BC mixed with humic acid (HA). Our study found that HA is light absorbing and catalyzes the combustion of BC. It is expected that both of these attributes will challenge the ability of TOA methods in distinguishing between OC and BC, such as the simple two step TOA method which relies solely on temperature to distinguish between OC and BC. These samples were analyzed using two TOA methods to compare the estimates of BC concentration. Future work will focus on the preparation of a variety of BC standards and comparing measurements of the prepared samples using a range of other TOA methods.
McDonald, Brian C; Goldstein, Allen H; Harley, Robert A
2015-04-21
A fuel-based approach is used to assess long-term trends (1970-2010) in mobile source emissions of black carbon (BC) and organic aerosol (OA, including both primary emissions and secondary formation). The main focus of this analysis is the Los Angeles Basin, where a long record of measurements is available to infer trends in ambient concentrations of BC and organic carbon (OC), with OC used here as a proxy for OA. Mobile source emissions and ambient concentrations have decreased similarly, reflecting the importance of on- and off-road engines as sources of BC and OA in urban areas. In 1970, the on-road sector accounted for ∼90% of total mobile source emissions of BC and OA (primary + secondary). Over time, as on-road engine emissions have been controlled, the relative importance of off-road sources has grown. By 2010, off-road engines were estimated to account for 37 ± 20% and 45 ± 16% of total mobile source contributions to BC and OA, respectively, in the Los Angeles area. This study highlights both the success of efforts to control on-road emission sources, and the importance of considering off-road engine and other VOC source contributions when assessing long-term emission and ambient air quality trends.
Black carbon emissions from Russian diesel sources. Case study of Murmansk
Evans, M.; Kholod, N.; Malyshev, V.; ...
2015-07-27
Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less
Black carbon emissions from Russian diesel sources. Case study of Murmansk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, M.; Kholod, N.; Malyshev, V.
Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less
Arias-Moliz, M T; Ruiz-Linares, M; Cassar, G; Ferrer-Luque, C M; Baca, P; Ordinola-Zapata, R; Camilleri, J
2015-07-01
The aim of this study was to determine the antimicrobial and antibiofilm activities and physicochemical properties of AH Plus sealer mixed with different concentrations of benzalkonium chloride (BC). AH Plus was tested alone and mixed with 1%, 2% and 3% of BC. The antimicrobial and antibiofilm activities of the sealers against Enterococcus faecalis were evaluated by the direct contact test (DCT) and by confocal laser scanning microscopy, respectively. Setting time, flow and solubility were assessed according to ANSI/ADA specifications. Microhardness and contact angle tests were also performed. The chemical changes of the sealers were evaluated by X-ray diffraction analysis, and both Fourier transform infrared spectroscopy (FT-IR) and attenuated total reflectance Fourier transform infrared (ATR FT-IR). AH Plus+3% BC was the only sealer to promote total elimination of E. faecalis and the biovolume in this group was significantly lower than in the rest of the sealers (p>0.05). The physical properties of the sealers were according to the ANSI/ADA specifications. The microhardness decreased significantly when BC was added and a significant reduction in contact angle was obtained when incorporating 2% and 3% BC (p<0.05). No phase changes were observed with the modified sealers. The addition of 2% or higher concentrations BC to AH Plus showed antimicrobial and antibiofilm activities without affecting the properties specified in ANSI/ADA standards. However, additives to the root canal sealer altered other physical and chemical properties that are not commonly found in the literature to evaluate filling materials. The present study highlights that the antimicrobial properties of AH Plus can be significantly improved with the addition of BC. Testing beyond what is specified in standards may be indicated. Copyright © 2015 Elsevier Ltd. All rights reserved.
The costs of breast cancer in a Mexican public health institution
Gómez-Rico, Jacobo Alejandro; Altagracia-Martínez, Marina; Kravzov-Jinich, Jaime; Cárdenas-Elizalde, Rosario; Rubio-Poo, Consuelo
2008-01-01
Breast cancer (BC) is the second leading cause of death as a result of neoplasia in Mexico. This study aimed to identify the direct and indirect costs of treating female outpatients diagnosed with BC at a Mexican public hospital. A cross-sectional, observational, analytical study was conducted. A total of 506 medical records were analyzed and 102 were included in the cost analysis. The micro-costing process was used to estimate treatment costs. A 17-item questionnaire was used to obtain information on direct and indirect costs. Of the 102 women with BC included in the study, 92.2% (94) were at Stage II, and only 7.8% at Stage I. Total direct costs over six months for the 82 women who had modified radical mastectomy (MRM) surgury were US$733,821.15. Total direct costs for the 15 patients with conservative surgery (CS) were US$138,190.39. We found that the total economic burden in the study population was much higher for patients with MRM than for patients with CS. PMID:22312199
C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Sulentic, Jack W.; Bachev, Rumen; Marziani, Paola; Negrete, C. Alenka; Dultzin, Deborah
2007-09-01
We are exploring a spectroscopic unification for all types of broad-line emitting AGNs. The four-dimensional Eigenvector 1 (4DE1) parameter space organizes quasar diversity in a sequence primarily governed by Eddington ratio. This paper considers the role of C IV λ1549 measures as 4DE1 diagnostics. We use HST archival spectra for 130 sources with S/N high enough to permit reliable C IV λ1549 broad-component measures. We find a C IV λ1549BC profile blueshift that is strongly concentrated among (largely radio-quiet [RQ]) sources with FWHM(HβBC)<~4000 km s-1 (which we call Population A). Narrow-line Seyfert 1 (NLSy1; with FWHM Hβ<=2000 km s-1) sources belong to this population but do not emerge as a distinct class. The systematic blueshift, widely interpreted as arising in a disk wind/outflow, is not observed in broader line AGNs (including most radio-loud [RL] sources), which we call Population B. We find new correlations involving FWHM(C IV λ1549BC), C IV λ1549 line shift, and equivalent width only among Population A sources. Sulentic et al. suggested C IV λ1549 measures enhance an apparent dichotomy between sources with FWHM(HβBC) less and greater than 4000 km s-1, suggesting that it has more significance in the context of broad-line region structure than the more commonly discussed RL versus RQ dichotomy. Black hole masses computed from FWHM C IV λ1549BC for about 80 AGNs indicate that the C IV λ1549 width is a poor virial estimator. Comparison of mass estimates derived from HβBC and C IV λ1549 reveals that the latter show different and nonlinear offsets for Population A and B sources. A significant number of sources also show narrow-line C IV λ1549 emission that must be removed before C IV λ1549BC measures can be made and interpreted effectively. We present a recipe for C IV λ1549 narrow-component extraction.
Dey, Subhojit; Sharma, Surabhi; Mishra, Arti; Krishnan, Suneeta; Govil, Jyotsna; Dhillon, Preet K.
2016-01-01
BACKGROUND Globally, breast cancer (BC) has become the leading cause of mortality in women. Awareness and early detection can curb the growing burden of BC and are the first step in the battle against BC. The aim of this qualitative study was to explore the awareness and perceived barriers concerning the early detection of BC. METHODS A total of 20 focus group discussions (FGDs) were conducted during May 2013–March 2014. Pre-existing themes were used to conduct FGDs; each FGD group consisted of an average of ~10 women (aged ≥18–70 years) who came to participate in a BC awareness workshop. All FGDs were audio taped and transcribed verbatim. The transcripts were inductively analyzed using ATLAS.ti. Based on emerged codes and categories, thematic analysis was done, and theory was developed using the grounded theory approach. RESULTS Data were analyzed in three major themes: i) knowledge and perception about BC; ii) barriers faced by women in the early presentation of BC; and iii) healthcare-seeking behavior. The findings revealed that shyness, fear, and posteriority were the major behavioral barriers in the early presentation of BC. Erroneously, pain was considered as an initial symptom of BC by most women. Financial constraint was also mentioned as a cause for delay in accessing treatment. Social stigma that breast problems reflect bad character of women also contributed in hiding BC symptoms. CONCLUSIONS Lack of BC awareness was prevalent, especially in low socioeconomic class. Women’s ambivalence in prioritizing their own health and social and behavioral hurdles should be addressed by BC awareness campaigns appropriately suited for various levels of social class. PMID:27789957
Dey, Subhojit; Sharma, Surabhi; Mishra, Arti; Krishnan, Suneeta; Govil, Jyotsna; Dhillon, Preet K
2016-01-01
Globally, breast cancer (BC) has become the leading cause of mortality in women. Awareness and early detection can curb the growing burden of BC and are the first step in the battle against BC. The aim of this qualitative study was to explore the awareness and perceived barriers concerning the early detection of BC. A total of 20 focus group discussions (FGDs) were conducted during May 2013-March 2014. Pre-existing themes were used to conduct FGDs; each FGD group consisted of an average of ~10 women (aged ≥18-70 years) who came to participate in a BC awareness workshop. All FGDs were audio taped and transcribed verbatim. The transcripts were inductively analyzed using ATLAS.ti. Based on emerged codes and categories, thematic analysis was done, and theory was developed using the grounded theory approach. Data were analyzed in three major themes: i) knowledge and perception about BC; ii) barriers faced by women in the early presentation of BC; and iii) healthcare-seeking behavior. The findings revealed that shyness, fear, and posteriority were the major behavioral barriers in the early presentation of BC. Erroneously, pain was considered as an initial symptom of BC by most women. Financial constraint was also mentioned as a cause for delay in accessing treatment. Social stigma that breast problems reflect bad character of women also contributed in hiding BC symptoms. Lack of BC awareness was prevalent, especially in low socioeconomic class. Women's ambivalence in prioritizing their own health and social and behavioral hurdles should be addressed by BC awareness campaigns appropriately suited for various levels of social class.
NASA Astrophysics Data System (ADS)
Zaveri, R. A.; Arnott, W. P.; Atkinson, D. B.; Barnard, J.; Beranek, J.; Cappa, C. D.; Chand, D.; Dubey, M. K.; Easter, R. C.; Flowers, B. A.; Gyawali, M. S.; Jobson, B. T.; Pekour, M. S.; Riemer, N. S.; Subramanian, R.; Song, C.; Zelenyuk, A.
2011-12-01
Atmospheric black carbon (BC) particles readily absorb both upwelling and downwelling broadband radiation and are thought to be second only to CO2 in contributing to global warming. However large uncertainties still exist in the global estimates of BC radiative forcing, which depend not only on our ability to accurately simulate the global loading and distribution of BC, but also on the precise knowledge of the mixing state and morphology of BC particles due to aging. To this end, one of the objectives of the Carbonaceous Aerosols and Radiative Effects Study (CARES) conducted in Sacramento, CA, during June 2010 was to investigate the evolution of urban BC particles and the associated optical properties, with the overarching goal of improving their process-level model representations. The daytime Sacramento urban plume was routinely transported to the northeast into the Sierra Nevada foothills area rich in biogenic emissions, and the aged aerosols were often recirculated back into the urban area the next morning. The CARES campaign observational strategy was designed to take advantage of this flow pattern by setting up two observation supersites - one located within the Sacramento urban area, referred to as the "T0 site," and another located about 24 km to the northeast in Cool, CA, a small town in the rural foothills area, referred to as the "T1 site." BC size distribution and mixing state were measured at both the sites with single particle soot photometry (SP2). The single particle mass spectrometer SPLAT II was also deployed at the T0 site to characterize the size, composition (mixing state), density, and morphology of BC and non-BC containing particles. Non-refractory aerosol species were measured by Aerodyne aerosol mass spectrometer (AMS). Aerosol light absorption and scattering (or extinction) at multiple wavelengths were measured using several techniques, including photoacoustic, cavity ring-down, nephelometer as well as the filter-based particle/soot absorption photometer (PSAP). Other supporting measurements include aerosol size distribution and key trace gases (NOx, NOy, O3, and volatile organic compounds). The combined data thus provides a unique opportunity to characterize BC aging and its effect on optical properties. In this paper, we will present results from a local optical closure study for selected 10-minute samples at the T0 urban site using the particle-resolved version of the comprehensive aerosol model MOSAIC coupled to a shell/core Mie code. Sensitivity of the predicted optical properties to various measurements and model representations of particle composition, mixing state, size bin resolution, and refractive indices will be examined.
Meyer, Nanna L; Sundgot-Borgen, Jorunn; Lohman, Timothy G; Ackland, Timothy R; Stewart, Arthur D; Maughan, Ronald J; Smith, Suzanne; Müller, Wolfram
2013-11-01
Successful performers in weight-sensitive sports are characterised by low body mass (BM) and fat content. This often requires chronic energy restriction and acute weight loss practices. To evaluate current use of body composition (BC) assessment methods and identify problems and solutions with current BC approaches. A 40-item survey was developed, including demographic and content questions related to BC assessment. The survey was electronically distributed among international sporting organisations. Frequencies and χ(2) analyses were computed. 216 responses were received, from 33 countries, representing various institutions, sports and competitive levels. Of the sample, 86% of respondents currently assess BC, most frequently using skinfolds (International Society for the Advancement of Kinanthropometry (ISAK): 50%; non-ISAK, conventional: 40%; both: 28%), dual energy X-ray absorptiometry (38%), bioelectrical impedance (29%), air displacement plethysmography (17%) and hydrostatic weighing (10%). Of those using skinfolds, more at the international level used ISAK, whereas conventional approaches were more reported at regional/national level (p=0.006). The sport dietitian/nutritionist (57%) and physiologist/sports scientist (54%) were most frequently the professionals assessing BC, followed by MDs and athletic trainers, with some reporting coaches (5%). 36% of 116 respondents assessed hydration status and more (64%) did so at international than regional/national level (36%, p=0.028). Of 125 participants answering the question of whether they thought that BC assessment raised problems, 69% said 'yes', with most providing ideas for solutions. Results show high use of BC assessment but also a lack of standardisation and widespread perception of problems related to BM and BC in sport. Future work should emphasise standardisation with appropriate training opportunities and more research on BC and performance.
Zhou, Zhongqiang; Chen, Tingting; Wang, Mengrui; Jin, Ling; Zhao, Yongyi; Chen, Shangji; Wang, Congyao; Zhang, Guoshan; Wang, Qilin; Deng, Qiaoming; Liu, Yubo; Morgan, Ian G; He, Mingguang; Liu, Yizhi; Congdon, Nathan
2017-01-01
We sought to assess light characteristics and user acceptability of a prototype Bright Classroom (BC), designed to prevent children's myopia by exposing them to light conditions resembling the outdoors. Conditions were measured throughout the school year in the glass-constructed BC, a traditional classroom (TC) and outdoors. Teachers and children completed user questionnaires, and children rated reading comfort at different light intensities. A total of 230 children (mean age 10.2 years, 57.4% boys) and 13 teachers (36.8 years, 15.4% men) completed questionnaires. The median (Inter Quartile Range) light intensity in the BC (2,540 [1,330-4,060] lux) was greater than the TC (477 [245-738] lux, P < 0.001), though less than outdoors (19,500 [8,960-36,000] lux, P < 0.001). A prominent spectral peak at 490-560 nm was present in the BC and outdoors, but less so in the TC. Teachers and children gave higher overall ratings to the BC than TC, and light intensity in the BC in summer and on sunny days (>5,000 lux) was at the upper limit of children's comfort for reading. In summary, light intensity in the BC exceeds TC, and is at the practical upper limit for routine use. Children and teachers prefer the BC.
Characterization of Ambient Black Carbon Aerosols
NASA Astrophysics Data System (ADS)
Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.
2013-12-01
Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.
Resistance to quaternary ammonium compounds in food-related bacteria.
Sidhu, Maan Singh; Sørum, Henning; Holck, Askild
2002-01-01
Microbial resistance to antimicrobial agents continues to be a major problem. The frequent use and misuse of disinfectants based on quaternary ammonium compounds (QACs) in food-processing industries have imposed a selective pressure and may contribute to the emergence of disinfectant-resistant microorganisms. A total number of 1,325 Gram-negative isolates (Escherichia coli, other coliforms Vibrio spp., and Aeromonas spp.) and 500 Enterococcus spp. from food and food-processing industries and fish farming were screened for natural resistance to the QAC-based disinfectant benzalkonium chloride (BC). Of the 1,825 isolates, 16 strains, mainly from meat retail shops, showed low-level resistance to BC. None of the Enterococcus spp. from broiler, cattle, and pigs, the antibiotic-resistant E. coli from pig intestine and fish pathogens Vibrio spp. and Aeromonas spp. from the Norwegian fish farming industry were resistant to BC. The BC-resistant strains were examined for susceptibility to 15 different antibiotics, disinfectants, and dyes. No systematic cross-resistance between BC and any of the other antimicrobial agents tested was detected. Stable enhanced resistance in Enterobacter cloacae isolates was demonstrated by step-wise adaptation in increasing concentrations of BC. In conclusion, BC resistance among food-associated Gram-negative bacteria and Enterococcus spp. is not frequent, but resistance may develop to user concentrations after exposure to sublethal concentrations of BC.
Measurements and Analysis of Black Carbon Aerosols in the Eastern Mediterranean Megacity
NASA Astrophysics Data System (ADS)
Unal, A.; Ozdemir, H.; Kindap, T.; Demir, G.; Karaca, M.; Khan, M. N.
2010-12-01
In a world where at least 50 percent of the population is living in urban environments, air pollution and specifically particulate matter became one of the most critical issues. There have been many studies that focused on mass concentration measurements of PM10 and PM2.5. Recent studies suggest that chemical composition is critical in understanding the effects of PM on health as well as climate. For example, public health studies reveal that, components of the atmospheric aerosols have different impacts on human health. Smith et al. (2009) stated that; on the basis of the 1μg/m3 contrast, the percentage increase in all-cause mortality for PM2.5 was 0.58; sulfate effects were about twice those of PM2.5, and effects of elemental carbon (an indicator of black carbon mass) about ten times greater. To date, many studies and national inventories have been based on particulate matter (PM10 and PM2.5), and the major greenhouse pollutants, but not speciated emissions, especially in the developing world (Smith et al., 2009; Chow et al., 2010). But air quality standards will soon need to include particulate black carbon (BC), as it directly afffects climate, visibility, and human health. Anthropogenic emissions are increasing dramatically worldwide and recent estimates of global BC emissions range from 8 to 24 Tg (1012 g) per year. In this study, we investigated BC pollution for the first time in Istanbul, Turkey. Istanbul is a megacity of over 15 million inhabitants (OECD, 2008). On-road traffic is also increasing rapidly in the city (over 3 million vehicles on the road). Hence, the city has a potential to be an important source for both local and regional pollution in the Eastern Mediterranean. In our study, an Aethalometer (<0.1μg/m3 sensitivity) was used for continuous and real-time measurements of BC concentration. Measurements were carried out at the selected five different locations throughout the city. 1st and 2nd sites were near high-traffic streets; in the city center, and on the shore of the Bosphorus, respectively; 3rd was near a high way; 4th was located on an urban park (provided for recreational use); and 5th was on a low-traffic residential street. Mean BC aerosol mass concentrations were 5,500 ng/m3 and 7,600 ng/m3 during the study periods for 2009 (155 days), and 2010 (122 days), respectively. BC concentrations near dense traffic were found to reach higher values; average concentration at the 2nd site in 2010 was 8,400 ng/m3; at the 1st site in 2009 was 12,000 ng/m3. BC concentration measured in the urban park, which had very low traffic activity, was lower; 4,300 ng/m3, and 6,000 ng/m3 for 2009, and 2010, respectively. This paper will present findings on BC measurements and statistical analysis of temporal and spatial distributions of the BC concentrations to understand the origin of the BC problem in Istanbul. These findings will be essential in understanding the aerosol problem and developing mitigation measures to reduce public health risks associated with it.
Decomposition of hardwood leaves grown under elevated O[sub 3] and/or CO[sub 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boerner, R.E.J.; Rebbeck, J.
1993-06-01
We measured mass loss and N release from leaves of three hardwoods which varied in O[sub 3] sensitivity: O[sub 3]-tolerant sugar maple (Acer saccharum/SM), black cherry (Prunus serotina/BC), and putatively O[sub 3]-sensitive yellow poplar (Liriodendron tulipifera/YP), grown in pots in charcoal-filtered air (CF), ambient O[sub 3], or twice ambient O[sub 3] (2X) in open top chambers. Mass loss was not affected by the O[sub 3] regime in which the leaves were grown. k values averaged SM:-0.707, BC:-0.613, and YP:-0.859. N loss from ambient O[sub 3]-grown SM was significantly greater than from CF; N loss from BC did not differ amongmore » treatments. Significantly less N was released from CF-grown YP leaves than from O[sup 3]-treated leaves. YP leaves from plants grown in pots at 2X O[sub 3] and 350 ppm supplemental CO[sub 2] in CSTRs loss 40% as much mass and 27% as much N over one year as did leaves from YP grown in CF or 2X O[sub 3]. Thus, for leaves from plants grown in pots in fumigation chambers, the concentrations of both O[sub 3] and CO[sub 2] can affect N release from litter incubated in the field whereas mass loss rate was affected only by CO[sub 2].« less
Black Carbon Measurement Intercomparison during the 2017 Black Carbon Shootout
NASA Astrophysics Data System (ADS)
Shingler, T.; Moore, R.; Winstead, E.; Robinson, C. E.; Shook, M.; Crosbie, E.; Ziemba, L. D.; Thornhill, K. L., II; Sorooshian, A.; Anderson, B. E.
2017-12-01
The NASA Langley Aerosol Research Group (LARGE) provides multiple black carbon (BC) based aerosol particle measurements and engine emission factors for airborne and ground-based field campaigns and laboratory studies. These datasets are made available to the general public where accuracy is key to enable further use in environmental assessments, models, and validation studies. Studies are needed to establish the accuracy and precision of BC measurements of particles with varying physical properties using a variety of detection techniques. Work is also needed to develop calibration and correction schemes for new sensors and to link these measurements to heritage instruments on which our understanding of BC emissions and characteristics has been established. A BC measurement intercomparison was performed at Langley Research Center using particles generated from a mini-CAST (Jing) diffusion flame soot generator. The particles were passed to instruments measuring optical absorption, extinction, scattering and black carbon mass. Filter based measurements of optical absorption were performed using a PSAP (Radiance Research) and a TAP (BMI). Absorption was also measured using two photoacoustic based instruments: the MSS-plus (AVL) and PASS-3 (DMT). Measurements of aerosol extinction were performed using three CAPS PM-ex (Aerodyne Research) instruments at multiple wavelengths. Two Artium LII-300 units (standard and high-sensitivity) were used to measure black carbon mass via laser incandescence. Black carbon measurements were correlated to mass collected concurrently on a filter and analyzed by OC/EC analysis (Sunset Labs). Black carbon quantification measurements are analyzed between instruments to assess agreement between platforms using manufacturer's calibration settings as well as after calibrations performed to a single standard soot source (mini-CAST). Sampling was also performed from behind a Falcon aircraft at multiple thrust settings and downwind of runway at an international airport with commercial takeoffs and landings.
Study of Serum Total PSA and Free PSA as an Oncological Marker in Breast Tumour.
Jahir, Elteza Tahjiba; Devi, Runi; Borthakur, Bibhuti Bhushan
2017-03-01
Breast Cancer (BC) cases are rising alarmingly all over the world and India is not an exception. This rising trend is due to an increased age at first child birth, decreased breast feeding, and the changing lifestyle mostly in urban India. With the advent of more sensitive methodologies and research works in this field, it has been suggested that Prostate Specific Antigen (PSA) plays an important role in the pathogenesis of breast cancer besides other established tumour markers. To study the molecular forms of PSA-total and free PSA in benign and malignant tumours and to analyse their association with the tumour burden. The present study was conducted in collaboration with Gauhati Medical College and Hospital and Dr B Borooah Cancer Institute, Guwahati, Assam, India. Women in the age group of 18-65 years with recently diagnosed tumour (benign/malignant) in the breast were included in the study. Women taking Oral Contraceptive Pill (OCP), hormone replacement therapy, with past/present history of gynaecological/other malignancy and chronic endocrine disease like diabetes, thyroid disorders were excluded. The case group comprised of 50 female subjects with newly diagnosed Benign Breast Disease (BBD) and 50 subjects with BC, while 50 age matched healthy females without any signs and symptoms of breast discomfort were included in the control group. Laboratory tests done were Serum Total PSA (TPSA), Free PSA (FPSA), Fasting Blood Glucose (FBS), serum urea, serum creatinine and fasting lipid profile. TPSA and FPSA was measured again in both the test groups after 10-14 days of surgery/therapy. A fall in postoperative value of total and free PSA in BC case group was noticed. In Grade I tumours the mean value of total PSA (1.813 ng/ml) and free PSA (1.149 ng/ml) were higher than those with Grade III tumours (TPSA-1.07 ng/ml and FPSA-1.002 ng/ml). Mean value of Fasting Blood Sugar (FBG), total cholesterol and Low Density Lipoprotein (LDL) in BC case group was higher than the control group. From the study, we can conclude PSA as a possible new marker for diagnosis and prognosis of BC.
B.C. Indians Living Off Reserve: Some Economic Aspects.
ERIC Educational Resources Information Center
Stanbury, W. T.
The study examined the economic development of British Columbia (B.C.) Indians who have moved off-reserve. The discussion included: (1) obtaining the sample, (2) sample description, (3) reasons for living off-reserve, (4) employment opportunities, (5) income and poverty line, and (6) academic achievement. A total of 1,095 persons interviewed…
Climatic Effects of Black Carbon Aerosols Over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
He, Cenlin
Black carbon (BC), also known as soot, has been identified as the second most important anthropogenic emissions in terms of global climate forcing in the current atmosphere. Ample evidence has shown that BC deposition is an important driver of rapid snow melting and glacier retreat over the Tibetan Plateau, which holds the largest snow/ice mass outside polar regions. However, the climatic effects of BC over the Tibetan Plateau have not been thoroughly investigated in such a manner as to understand, quantify, and reduce large uncertainties in the estimate of radiative and hydrological effects. Thus, this Ph.D. study seeks to understand and improve key processes controlling BC life cycle in global and regional models and to quantify BC radiative effects over the Tibetan Plateau. First, the capability of a state-of-the-art global chemical transport model (CTM), GEOS-Chem, and the associated model uncertainties are systematically evaluated in simulating BC over the Tibetan Plateau, using in situ measurements of BC in surface air, BC in snow, and BC absorption optical depth. The effects of three key factors on the simulation are also delineated, including Asian anthropogenic emissions, BC aging process, and model resolution. Subsequently, a microphysics-based BC aging scheme that accounts for condensation, coagulation, and heterogeneous chemical oxidation processes is developed and examined in GEOS-Chem by comparing with aircraft measurements. Compared to the default aging scheme, the microphysical scheme reduces model-observation discrepancies by a factor of 3, particularly in the middle and upper troposphere. In addition, a theoretical BC aging-optics model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Results show large variations in BC optical properties caused by coating morphology and aging stages. Furthermore, a comprehensive intercomparison of the GOS approach, the superposition T-matrix method, and laboratory measurements is performed for optical properties of BC with complex structures during aging. Moreover, a new snow albedo model is developed for widely-observed close-packed snow grains internally mixed with BC. Results indicate that albedo simulations that account for snow close packing match closer to observations. Close packing enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, which suggests that BC-snow albedo forcing is underestimated in previous modeling studies without accounting for close packing. Finally, the snow albedo forcing and direct radiative forcing (DRF) of BC in the Tibetan Plateau are estimated using GEOS-Chem in conjunction with a stochastic snow model and a radiative transfer model. This, for the first time, accounts for realistic non-spherical snow grain shape and stochastic multiple inclusions of BC within snow in assessing BC-snow interactions. The annual mean BC snow albedo forcing is 2.9 W m-2 over snow-covered Plateau regions. BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. BC DRF at the top of the atmosphere is 2.3 W m-2 with uncertainties of -70% - +85% in the Plateau. The BC forcings are further attributed to emissions from different regions.
Linking Atmospheric Pollution to Cryospheric Changes over the Third Pole
NASA Astrophysics Data System (ADS)
Kang, S.; Zhang, Q.; Ji, Z.; Li, Y.; Chen, J.; Zhang, G.; Li, C.; Cong, Z.; Chen, P.; Guo, J.; Huang, J.; Tripathee, L.; Rupakheti, D.; Li, X.; Zhang, Y.; Panday, A. K.; Rupakheti, M.
2016-12-01
Known as "the Third Pole" (TP), the Tibetan Plateau and surrounding mountains hold the largest aggregate of glaciers outside the pole regions. Recent monitoring and projection indicated an accelerated glacier decline and increasing glacier runoff. The long-range transport of South Asian atmospheric pollutants, including light absorbing impurities (LAIs) such as black carbon (BC) and mineral dust (MD), can absorb the solar radiation in the atmosphere and reduce albedo after being deposited onto the cryosphere, thereby promoting glacier and snow melt. A coordinated atmospheric pollution monitoring network has been launched covering the TP with emphasis on trans-Himalayan transects since 2013. TSP were collected for 24h at an interval of 3-6 days. BC/OC, polycyclic aromatic hydrocarbons (PAHs) and heavy metals were measured. Results reveal a consistent decrease in almost all analyzed parameters from south to north across the Himalayas. Geochemical signatures of carbonaceous aerosols indicate dominant sources of biomass burning and vehicle exhaust, in line with results of PAHs. Integrated analysis of satellite images and air mass trajectories suggest that the trans-boundary air pollution occurred episodically and concentrated in pre-monsoon seasons via upper air circulation, through-valley wind, and local convection. Simulation results showed that carbonaceous aerosols produced positive/negative shortwave radiative forcing in the atmosphere/ground surface. Aerosols increased surface air temperatures by 0.1-0.5° over the TP and decreased temperatures in South Asia during the monsoon season. Surface snow/ice samples were collected from benchmark glaciers to estimate the impacts of LAIs on glacier melt with model assistance. BC (37%) and MD (32%) contribute to the summer melting of Laohugou Glacier in the northern TP. MD (38%) contributed more glacier melt than BC (11%) on Zhadang Glacier in the southern TP. In the southeastern TP, BC and MD contribute to 30% of the total glacier melt, up to 350 mm w.e. yr-1. The monitoring network and ongoing studies point to trans-boundary pollution as an increasing stressor for the TP environment, and highlighted the link between atmospheric pollution and cryospheric changes as well as other surface ecosystems over high mountain regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, H.; Koike, Makoto; Kondo, Yutaka
2014-09-30
Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 µm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particlesmore » with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 – 20% over northern East Asia and 20 – 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA processes under different meteorological conditions and emissions.« less
NLO QCD corrections to B c( B*c) production around the Z pole at an e + e - collider
NASA Astrophysics Data System (ADS)
Zheng, XuChang; Chang, ChaoHsi; Feng, TaiFu; Pan, Zan
2018-03-01
The production of B c and B*c mesons at a Z-factory (an e + e - collider operating at energies around the Z pole) is calculated up to the next-to-leading order (NLO) QCD accuracy. The results show that the dependence of the total cross sections on the renormalization scale μ is suppressed by the corrections, and the NLO corrections enhance the total cross sections of B c by 52% and of B*c by 33% when the renormalization scale is taken at μ = 2 m b . To observe the various behaviors of the production of the mesons B c and B*c, such as the differential cross section vs. the out-going angle, the forward-backward asymmetry, and the distribution vs. the energy fraction z up to NLO QCD accuracy as well as the relevant K-factor (NLO to LO) for the production, are calculated, and it is pointed out that some of the observables obtained in the present work may be used as a specific precision test of the standard model.
Body composition changes in female adolescents with anorexia nervosa.
Haas, Verena K; Kohn, Michael R; Clarke, Simon D; Allen, Jane R; Madden, Sloane; Müller, Manfred J; Gaskin, Kevin J
2009-04-01
Body weight provides limited information about nutritional status of patients with anorexia nervosa (AN). Our objectives were to determine body composition (BC) changes, to find clinical predictors and endocrine correlates of total body protein (TBPr) depletion, and to compare results on fat mass (FM) obtained with anthropometry (skinfold measurements) and dual-energy X-ray absorptiometry (DXA) in patients with AN. Body weight, body mass index (BMI; in kg/m(2)), BC (with DXA and skinfold measurements), and TBPr [with in vivo neutron activation analysis (IVNAA)] was assessed in 50 AN patients (15.2 y) and 40 healthy sex- and age-matched controls. In 47 AN patients and 22 controls, hormone concentrations were measured. In AN patients, body weight (44.4 +/- 5.5 kg), BMI (16.7 +/- 1.6), and FM(DXA) (7.0 +/- 3.4 kg) were lower than in controls. Lean tissue mass by DXA (LTM(DXA)) was similar in AN patients and controls (35.7 +/- 4.3 compared with 35.8 +/- 4.5 kg), but TBPr was 87% of that of controls (8.1 +/- 1.0 compared with 9.2 +/- 1.2 kg; P < 0.001). Cortisol was high, testosterone was unchanged, and estradiol and insulin-like growth factor I were low. Severe protein depletion measured by IVNAA seen in 17 AN patients could not be identified with simpler methods. All except 1 of 26 AN patients with a BMI > 16.5 had normal TBPr. The difference in individual percentage of body fat measured with DXA and skinfold measurements came up to 9%. The severe protein depletion in 34% of AN patients was not accurately identified by LTM(DXA) or simpler methods, but a BMI > 16.5 indicated normal TBPr. Future studies need to compare DXA and skinfold measurements with a reference technique to assess FM in AN patients.
Aerosol Size, CCN, and Black Carbon Properties at a Coastal Site in the Eastern U.S.
NASA Astrophysics Data System (ADS)
Royalty, T. M.; Petters, M. D.; Grieshop, A. P.; Meskhidze, N.; Reed, R. E.; Phillips, B.; Dawson, K. W.
2015-12-01
Atmospheric aerosols play an important role in regulating the global radiative budget through direct and indirect effects. To date, the role of sea spray aerosols in modulating climate remains poorly understood. Here we present results from measurements performed at the United States Army Corps of Engineers' Field Research Facility in Duck, North Carolina, USA. Aerosol mobility size distributions (10-600 nm), refractory black carbon (rBC) and scattering particle size distributions (200-620 nm), and size resolved cloud condensation nuclei distributions (.07% - .6% supersaturation) were collected at the end of a 560m pier. Aerosol characteristics associated with northerly, high wind speed (15+ m s-1) flow originating from an oceanic trajectory are contrasted with aerosol properties observed during a weak to moderate westerly flow originating from a continental trajectory. Both marine and continental air masses had aerosol with bi-modal number size distributions with modes centered at 30nm and 140nm. In the marine air-mass, the CCN concentration at supersaturation of 0.4%, total aerosol number, surface, and volume concentration were low. rBC number concentration (D > 200 nm) associated with the marine air-mass was an order of magnitude less than continental number concentration and indicative of relatively unpolluted air. These measurements are consistent with measurements from other coastal sites under marine influence. The relative proportion of Aitken mode size particles increased from 1:2 to 2:1 while aerosol surface area was < 25 μm2 cm-3, suggesting that conditions upwind were potentially conducive to new particle formation. Overall, these results will contribute a better understanding to composition and size variation of marine aerosols.
Mohamed, Mohamed H; Wilson, Lee D; Shah, Jaimin R; Bailey, Jon; Peru, Kerry M; Headley, John V
2015-10-01
Various sorbent materials were evaluated for the fractionation of naphthenic acid fraction components (NAFCs) from oil sand process-affected water (OSPW). The solid phase materials include activated carbon (AC), cellulose, iron oxides (magnetite and goethite), polyaniline (PANI) and three types of biochar derived from biomass (BC-1; rice husks, BC-2; acacia low temperature and BC-3; acacia high temperature). NAFCs were semi-quantified using electrospray ionization high resolution Orbitrap mass spectrometry (ESI-MS) and the metals were assessed by inductively coupled plasma optical emission spectrometry (ICP-OES). The average removal efficacy of NAFCs by AC was 95%. The removal efficacy decreased in the following order: AC, BC-1>BC-2, BC-3, goethite>PANI>cellulose, magnetite. The removal of metals did not follow a clear trend; however, there was notable leaching of potassium by AC and biochar samples. The bound NAFCs by AC were desorbed efficiently with methanol. Methanol regeneration and recycling of AC revealed 88% removal on the fourth cycle; a 4.4% decrease from the first cycle. This fractionation method represents a rapid, cost-effective, efficient, and green strategy for NAFCs from OSPW, as compared with conventional solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.
2003-07-01
During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T=550°C) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) concentrations were on average respectively 1.19±0.56 and 3.62±1.08 μgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 μgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope = 1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these two methods for determining BC brings here new insights on the origin of carbonaceous aerosols in a complex mixture of different sources. It brings also to our attention that important deviations in BC levels are observed using three widely used EGA techniques and most probably none of the EGA tested here are well adapted to fully characterize this aerosol mixture. Spherical, smooth and silico-aluminated fly-ash observed by Analytical Scanning Electron Microscope (ASEM) confirm the influence of coal combustion on the carbonaceous aerosol load throughout the campaign. A raw calculation based on BC/nss-SO4 mass ratio suggests that biomass burning could be responsible for half of the BC concentration recorded during the MINOS campaign. From the plot of BC as a function of TC, two linear correlations were observed corresponding to 2 times series (before and after 12 August). Such good correlations suggest, from a first look, that both BC and OC have similar origin and atmospheric transport. On the other hand, the plot of BC as a function of TC obtained from the 2-step thermal method applied to DEKATI Low Pressure Cascade Impactor samples does not show a similar correlation and points out a non conservative distribution of this ratio with 2 super micron modes enriched in OC, correlated with sea salt aerosols and probably originating from gas-to-particle conversion.
NASA Astrophysics Data System (ADS)
Xu, Xiaoming; Hong, Yuehui; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Lirong; Wang, Jianghai
2018-01-01
Black carbon (BC) has received increasing attention in the last 20 years because it is not only an absorbent of toxic pollutants but also a greenhouse substance, preserving fire-history records, and more importantly, acting as an indicator of biogeochemical cycles and global changes. By adopting an improved chemothermal oxidation method (WXY), this study reconstructed the century-scale high-resolution records of BC deposition from two fine-grained sediment cores collected from the Yellow Sea Cold Water Mass in the South Yellow Sea. The BC records were divided into five stages, which exhibited specific sequences with three BC peaks at approximately 1891, 1921, and 2007 AD, representing times at which the first heavy storms appeared just after the termination of long-term droughts. The significant correlation between the times of the BC peaks in the cores and heavy storms in the area of the Huanghe (Yellow) River demonstrated that BC peaks could result from markedly strengthened sedimentation due to surface runoff, which augmented the atmospheric deposition. Stable carbon isotope analysis indicated that the evident increase in carbon isotope ratios of BC in Stage 5 might have resulted from the input of weathered rock-derived graphitic carbon cardinally induced by the annual anthropogenic modulation of water-borne sediment in the Huanghe River since 2005 AD. Numerical calculations demonstrated that the input fraction of graphitic carbon was 22.97% for Stage 5, whereas no graphitic carbon entered during Stages 1 and 3. The obtained data provide new and important understanding of the source-sink history of BC in the Yellow Sea.
Sub-micron particle number size distribution characteristics at two urban locations in Leicester
NASA Astrophysics Data System (ADS)
Hama, Sarkawt M. L.; Cordell, Rebecca L.; Kos, Gerard P. A.; Weijers, E. P.; Monks, Paul S.
2017-09-01
The particle number size distribution (PNSD) of atmospheric particles not only provides information about sources and atmospheric processing of particles, but also plays an important role in determining regional lung dose. Owing to the importance of PNSD in understanding particulate pollution two short-term campaigns (March-June 2014) measurements of sub-micron PNSD were conducted at two urban background locations in Leicester, UK. At the first site, Leicester Automatic Urban Rural Network (AURN), the mean number concentrations of nucleation, Aitken, accumulation modes, the total particles, equivalent black carbon (eBC) mass concentrations were 2002, 3258, 1576, 6837 # cm-3, 1.7 μg m-3, respectively, and at the second site, Brookfield (BF), were 1455, 2407, 874, 4737 # cm-3, 0.77 μg m-3, respectively. The total particle number was dominated by the nucleation and Aitken modes, with both consisting of 77%, and 81% of total number concentrations at AURN and BF sites, respectively. This behaviour could be attributed to primary emissions (traffic) of ultrafine particles and the temporal evolution of mixing layer. The size distribution at the AURN site shows bimodal distribution at 22 nm with a minor peak at 70 nm. The size distribution at BF site, however, exhibits unimodal distribution at 35 nm. This study has for the first time investigated the effect of Easter holiday on PNSD in UK. The temporal variation of PNSD demonstrated a good degree of correlation with traffic-related pollutants (NOX, and eBC at both sites). The meteorological conditions, also had an impact on the PNSD and eBC at both sites. During the measurement period, the frequency of NPF events was calculated to be 13.3%, and 22.2% at AURN and BF sites, respectively. The average value of formation and growth rates of nucleation mode particles were 1.3, and 1.17 cm-3 s-1 and 7.42, and 5.3 nm h-1 at AURN, and BF sites, respectively. It can suggested that aerosol particles in Leicester originate mainly from traffic and domestic heating emissions.
Osterholz, Helena; Singer, Gabriel; Wemheuer, Bernd; Daniel, Rolf; Simon, Meinhard; Niggemann, Jutta; Dittmar, Thorsten
2016-01-01
Dissolved organic matter (DOM) is the main substrate and energy source for heterotrophic bacterioplankton. To understand the interactions between DOM and the bacterial community (BC), it is important to identify the key factors on both sides in detail, chemically distinct moieties in DOM and the various bacterial taxa. Next-generation sequencing facilitates the classification of millions of reads of environmental DNA and RNA amplicons and ultrahigh-resolution mass spectrometry yields up to 10 000 DOM molecular formulae in a marine water sample. Linking this detailed biological and chemical information is a crucial first step toward a mechanistic understanding of the role of microorganisms in the marine carbon cycle. In this study, we interpreted the complex microbiological and molecular information via a novel combination of multivariate statistics. We were able to reveal distinct relationships between the key factors of organic matter cycling along a latitudinal transect across the North Sea. Total BC and DOM composition were mainly driven by mixing of distinct water masses and presumably retain their respective terrigenous imprint on similar timescales on their way through the North Sea. The active microbial community, however, was rather influenced by local events and correlated with specific DOM molecular formulae indicative of compounds that are easily degradable. These trends were most pronounced on the highest resolved level, that is, operationally defined ‘species', reflecting the functional diversity of microorganisms at high taxonomic resolution. PMID:26800236
Silvestre, Ricardo; Kraemer, William J; West, Chris; Judelson, Daniel A; Spiering, Barry A; Vingren, Jakob L; Hatfield, Disa L; Anderson, Jeffrey M; Maresh, Carl M
2006-11-01
The purpose of this study was to examine changes in body composition (BC) and physical performance tests (PT) resulting from a competitive season in soccer. Twenty-five male collegiate players (age = 19.9 +/- 1.3 years; height = 177.6 +/- 6.4 cm; body mass = 77.6 +/- 8.6 kg, and percentage body fat = 12.8 +/- 5.2%) were tested before (PRE) and after (POST) the 2003-2004 National Collegiate Athletic Association season. The following tests were performed: BC (anthropometric and dual energy x-ray absorptiometry measurements), vertical jump (VJ), 9.1-m (9 m) and 36.5-m (36 m) sprint, lower-body power (LP), total body power (TP), and cardiorespiratory endurance (VO(2)max). Training was divided into soccer-specific training: field warm-up drills, practices, games, and additional conditioning sessions. A daily, unplanned, nonlinear periodization model was used to assign session volume and intensity for strength sessions (total repetitions < or =96 and workload was > or =80% of 1 repetition maximum). For the entire team, body mass significantly increased by 1.5 +/- 0.4 kg from PRE to POST due to a significant increase in total lean tissue (0.9 +/- 0.2 kg). Regionally, lean tissue mass significantly increased in the legs (0.4 +/- 0.0 kg) and trunk (0.3 +/- 0.1 kg). Physical performance variables were very similar for the entire team at PRE and POST; VJ (cm) = 61.9 +/- 7.1 PRE vs. 63.3 +/- 8.0 POST, 9.1-m (s) = 1.7 +/- 0.1 PRE and POST, 36.5-m (s) = 5.0 +/- 0.2 PRE and POST, predicted VO(2)max (ml.kg.min(-1))= 59.8 +/- 3.3 PRE vs. 60.9 +/- 3.4 POST. The only significant improvements across the season were for TP (17.3%) and for LP (10.7%). In conclusion, soccer athletes who begin a season with a high level of fitness can maintain, and in some cases improve, body composition and physical performance from before to after a competitive season. A correct combination of soccer-specific practices and strength and conditioning programs can maintain and develop physical performance, allowing a soccer athlete to perform optimally throughout pre-, in-, and postseason play.
Arsenic methylation capacity is associated with breast cancer in northern Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Carrillo, Lizbeth; Hernández-Ramírez, Raúl Ulises; Gandolfi, A. Jay
Exposure to environmental contaminants, dietary factors and lifestyles may explain worldwide different breast cancer (BC) incidence. Inorganic arsenic (iAs) in the drinking water is a concern in many regions, such as northern Mexico. Studies in several countries have associated the proportion of urinary monomethylarsenic (%MMA) with increased risks for many As-related diseases, including cancer. To investigate the potential relationships between the risk of BC and the capacity to methylate iAs, a hospital-based case–control study (1016 cases/1028 controls) was performed in northern Mexico. Women were directly interviewed about their reproductive histories. The profile of As metabolites in urine was determined bymore » HPLC-ICP-MS and methylation capacity was assessed by metabolite percentages and indexes. Total urinary As, excluding arsenobetaine (TAs-AsB), ranged from 0.26 to 303.29 μg/L. Most women (86%) had TAs-AsB levels below As biological exposure index (35 μg/L). Women with higher %MMA and/or primary methylation index (PMI) had an increased BC risk (%MMA OR{sub Q5vs.Q1} = 2.63; 95%CI 1.89,3.66; p for trend < 0.001; PMI OR{sub Q5vs.Q1} = 1.90; 95%CI 1.39,2.59, p for trend < 0.001). In contrast, women with higher proportion of urinary dimethylarsenic (%DMA) and/or secondary methylation index (SMI) had a reduced BC risk (%DMA OR{sub Q5vs.Q1} = 0.63; 95%CI 0.45,0.87, p for trend 0.006; SMI OR{sub Q5vsQ1} = 0.42, 95%CI 0.31,0.59, p for trend < 0.001). Neither %iAs nor total methylation index was associated to BC risk. Inter-individual variations in iAs metabolism may play a role in BC carcinogenesis. Women with higher capacity to methylate iAs to MMA and/or a lower capacity to further methylate MMA to DMA were at higher BC risk. - Highlights: • Arsenic methylation capacity is associated to an increased breast cancer (BC) risk. • Women with higher capacity to methylate arsenic to MMA were at higher BC risk. • Women with higher capacity to methylate arsenic to DMA were at lower BC risk. • Associations occurred at urinary As levels near the biological exposure index.« less
Measurement of Bc+ Production in Proton-Proton Collisions at √[s]=8 TeV.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L
2015-04-03
Production of Bc+ mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of 2.0 fb-1 recorded by the LHCb experiment. The ratio of production cross sections times branching fractions between the Bc+→J/ψπ+ and B+→J/ψK+ decays is measured as a function of transverse momentum and rapidity in the regions 0
Higher Atmosphere Heating due to black carbon Over the Northern Part of India
NASA Astrophysics Data System (ADS)
Tiwari, S.; Singh, S., , Dr
2017-12-01
Light-absorbing, atmospheric particles have gained greater attention in recent years because of their direct and indirect impacts on regional and global climate. Atmospheric black carbon (BC) aerosol (also called soot particle) is a leading climate warming agent, yet uncertainties in the global direct aerosol radiative forcing remain large. Based on a year of aerosol absorption measurements at seven wavelengths, BC concentrations were investigated in Dhanbad, the coal capital of India. Coal is routinely burned for cooking and residential heat as well as in small industries. The mean daily concentrations of ultraviolet-absorbing black carbon measured at 370 nm (UVBC) and black carbon measured at 880 nm (BC) were 9.8 ± 5.7 and 6.5 ± 3.8 μg m-3, respectively. The difference between UVBC and BC, Delta-C, is an indicator of biomass or residential coal burning and averaged 3.29 ± 4.61 μg m-3. An alternative approach uses the calculation of the Angstrom Exponent (AE) to estimate the amounts of biomass/coal and traffic BC. Biomass/coal burning contributed 87% and fossil fuel combustion contributed 13% to the annual average BC concentration. In the post-monsoon season, potential source contribution function analysis showed that air masses came from the central and northwestern Indo-Gangetic Plains resulting in mean UVBC values of 10.9 μg m-3 and BC of 7.2 μg m-3. The mean winter UVBC and BC concentrations were 15.0 and 10.1 μg m-3, respectively. These highest values were largely driven by local sources under conditions of poor dispersion. The direct radiative forcing (DRF) due to UVBC and BC at the surface (SFC) and the top of the atmosphere (TOA) were calculated. The mean atmospheric heating rates due to UVBC and BC were estimated to be 1.40°K day-1 and 1.18°K day-1, respectively. This high heating rate may affect the monsoon circulation in this region.
Zhang, Rudong; Wang, Hailong; Hegg, D. A.; ...
2015-11-18
The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source–receptor relationships for atmospheric BC and its deposition to snow over western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over northwestern USA and westernmore » Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based positive matrix factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. Furthermore, while CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less
Cao, Lei; Tian, Ye; Jiang, Yi; Zhang, Ge-Juan; Lei, Hui; Di, Zheng-Li
2015-01-01
Homer is a family of post synaptic density proteins functionally and physically attached to target proteins at proline-rich sequences. Reducing Homer1b/c expression has been shown in previous studies to be protective against excitotoxic insults, implicating Homer1b/c in the physiological regulation of aberrant neuronal excitability. To test the efficacy of a Homer1b/c reducing therapy for disorders with a detrimental hyperexcitability profile in mice, we used small interfere RNA (siRNA) to decrease endogenous Homer1b/c expression in mouse hippocampus. The baseline motor and cognitive behavior was measured by sensorimotor tests, Morris water maze and elevated plus maze tasks. The anti-epileptic effects of Homer1b/c knockdown were determined in two chemically induced seizure models induced by Picrotoxin (PTX) or pentylenetetrazole (PTZ) administration. The results of sensorimotor tests, Morris water maze and elevated plus maze tasks showed that Homer1b/c reduction had no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced Homerb/c protein had less severe seizures than control mice. Total Homer1b/c protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of Homer1b/c. In addition, the phosphorylation of mammalian target of rapamycin (mTOR) and its target protein S6 was significantly inhibited in Homer1b/c down-regulated mice. Homer1b/c knockdown-induced inhibition of mTOR pathway was partially ablated by the metabotropic glutamate receptor 5 (mGluR5) agonist CHPG. Our results demonstrate that endogenous Homer1b/c is integral for regulating neuronal hyperexcitability in adult animals and suggest that reduction of Homer1b/c could protect against chemically induced seizures through inhibition mTOR pathway. © 2015 S. Karger AG, Basel.
Black carbon emissions in Russia: A critical review
Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; ...
2017-05-18
Here, this study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data onmore » Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less
Black carbon emissions in Russia: A critical review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa
Here, this study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data onmore » Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less
Oberaigner, W; Geiger-Gritsch, Sabine; Edlinger, M; Daniaux, M; Knapp, R; Hubalek, M; Siebert, U; Marth, C; Buchberger, W
2017-06-01
We analysed all female breast cancer (BC) cases in Tyrol/Austria regarding the shift in cancer characteristics, especially the shift in advanced BC, for the group exposed to screening as compared to the group unexposed to screening. The analysis was based on all BC cases diagnosed in women aged 40-69 years, resident in Tyrol, and diagnosed between 2009 and 2013. The data were linked to the Tyrolean mammography screening programme database to classify BC cases as "exposed to screening" or "unexposed to screening". Age-adjusted relative risks (RR) were estimated by relating the exposed to the unexposed group. In a total of about 145,000 women aged 40-69 years living in Tyrol during the study period, 1475 invasive BC cases were registered. We estimated an age-adjusted relative risk (RR) for tumour size ≥ 21 mm of 0.72 (95% confidence interval (CI) 0.60 to 0.86), for metastatic BC of 0.27 (95% CI 0.17 to 0.46) and for advanced BC of 0.83 (95% CI 0.71 to 0.96), each comparing those exposed to those unexposed to screening, respectively. In our population-based registry analysis we observed that participation in the mammography screening programme in Tyrol is associated with a 28% decrease in risk for BC cases with tumour size ≥ 21 mm and a 17% decrease in risk for advanced BC. We therefore expect the Tyrolean mammography programme to show a reduction in BC mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of Wegener-Bergeron-Findeisen Process to Black Carbon Simulation
NASA Astrophysics Data System (ADS)
Qi, Ling; Li, Qinbin; He, Cenlin; Wang, Xin; Huang, Jianping
2016-04-01
We systematically investigated the effect of Wegener-Bergeron-Findeisen (WBF) process to black carbon (BC) simulation by a global 3D chemical transport model GEOS-Chem constrained by measurements of BC scavenging efficiencies, concentration in air, deposition fluxes, concentration in snow and washout ratios. Including effect of WBF process reduces the annual mean BC scavenging efficiencies (the ratio of BC in cloud droplets to total BC) at all altitudes by 43-76% in the Arctic. For mid latitude BC scavenging efficiencies decrease by 8-22%, 23-39%, and 41-50% in lower (0-2 km), middle (2-5 km) and upper troposphere (5-10 km), respectively. Simulated BC in air in the Arctic and at mid altitude (˜4 km) in mid latitude increases by ˜40%, and the discrepancy reduces from -65% to -30%. Simulated median BC in snow decreases from 25.7 to 22.4 ng g-1, by 15% in mid latitude and increases from 8.7 to 11.0 ng g-1, by 26% in the Arctic and the comparison with observations improves. The model overestimates washout ratios (ratio of BC in fresh snow/rain to BC in surface air) at most of the sites by up to a factor of 165. With effect of WBF process included, the discrepancy decreases to a factor of 72. The simulated BC burden increases from 0.22 to 0.35 mg m-2 yr-1 when effect of WBF process is included, partly explains the scaled up of BC burden in Bond et al., 2013. Moreover, burden above 5 km increases from 22% to 27% when WBF process is included, indicating a higher forcing efficiency. We also found that BC simulation is insensitive to the temperature criteria between mixed phase clouds and ice clouds. The simulated BC burden is the same when the temperature is set as -15° C and -25° C. This study also suggests that more observations are needed to better distinguish riming dominated and WBF dominated conditions and better parameterize BC scavenging efficiency under the two conditions.
Hao, Yanni; Li, Nanxin; Fang, Anna P; Koo, Valerie; Peeples, Miranda; Kageleiry, Andrew; Wu, Eric Q; Guérin, Annie
2016-06-01
The objective of this study was to analyze medical costs and healthcare resource utilization (HRU) associated with everolimus-based therapy or chemotherapy among elderly women with hormone-receptor-positive, human-epidermal-growth-factor-receptor-2-negative (HR+/HER2-) metastatic breast cancer (mBC). Elderly women (≥65 years) with HR+/HER2- mBC who failed a non-steroidal-aromatase-inhibitor and subsequently began a new line of treatment with everolimus-based therapy or chemotherapy for mBC (index therapy) during July 20, 2012 to March 31, 2014 were identified from two large commercial claims databases. All-cause, BC-, and adverse event (AE)-related medical costs (2014 USD), and all-cause and AE-related HRU per patient per month (PPPM) were compared between patients treated with everolimus-based therapy and chemotherapy across their first four lines of therapy for mBC. Adjusted costs and HRU differences were estimated by pooling all lines and using multivariable models adjusted for differences in patient characteristics. In total, 925 elderly patients (mean age approximately 73 years) with HR+/HER2- mBC met the inclusion criteria; 230 received everolimus-based therapy (240 lines) and 737 received chemotherapy (939 lines). Compared with chemotherapy, everolimus-based therapy was associated with significantly lower total all-cause PPPM medical services costs (adjusted mean difference: $4007), driven by lower inpatient ($1994) and outpatient ($1402) costs; lower BC-related medical services costs ($3129), driven by both BC-related inpatient ($1883) and outpatient costs ($913); and lower AE-related medical services costs ($1873; all P < 0.01). Additionally, compared to patients treated with chemotherapy, patients treated with everolimus-based therapy had fewer all-cause outpatient visits (adjusted incidence rate ratio = 0.69), BC-related outpatient visits (0.66), other-medical-service visits (0.65), and AE-related HRU (0.59), which was driven by significantly fewer AE-related outpatient visits (0.56; all P < 0.01). Subgroup analyses comparing medical costs of everolimus-based therapy with capecitabine monotherapy showed consistent results overall. This retrospective claims database analysis of elderly women with HR+/HER2- mBC in the United States showed that everolimus-based therapy was associated with significantly lower all-cause, BC-related, and AE-related medical services costs and less use of healthcare resources compared with chemotherapy. Novartis.
Low-latitude ice cores and freshwater availability
NASA Astrophysics Data System (ADS)
Kehrwald, Natalie Marie
2009-12-01
Recent retreat of Tibetan Plateau glaciers affects at least half a billion people. Himalayan glaciers seasonally release meltwater into tributaries of the Indus, Ganges, and Brahmaputra Rivers and supply freshwater necessary to support agricultural and economic practices. Tibetan Plateau glaciers are retreating more rapidly than mountain glaciers elsewhere in the world, and this retreat is accelerating. The Naimona'nyi (30°27'N; 81°91'E, 6050 m a.s.l), Guliya (35°17'N; 81°29'E, 6710 m a.s.l.) and Dasuopu (28°23'N; 85°43'E, 7200 m a.s.l.) ice cores place this recent retreat into a longer time perspective through quantifying climate parameters such as past temperature, aridity, and atmospheric chemistry. Naimona'nyi has not accumulated mass since at least 1950, as evidenced by the virtual lack of radiogenic isotopes (36Cl, 3 H, and beta radioactivity) present in the ice core. These isotopes were produced by U.S. and Soviet atmospheric thermonuclear bomb tests conducted in the 1950s and 1960s and provide independent dating horizons for the ice cores. Lead-210 dates imply that the uppermost preserved glacial ice on Naimona'nyi formed during the 1940s. While this is the highest documented glacial thinning in the world other glaciers at elevations similar to that of Naimona'nyi, such as Kilimanjaro (3°4'S; 37°21'E, 5893 m a.s.l.), are also losing mass at their summits. The global scope of high-elevation glacial thinning suggests that ablation on the Earth's highest ice fields may be more prevalent as global mean temperatures continue to increase. Glacial thinning has not been taken into account in future projections of regional freshwater availability, and the net mass loss indicates that Himalayan glaciers currently store less freshwater than assumed in models. The acceleration of Tibetan Plateau glacial retreat has been hypothesized to be due in part to deposition of black carbon (BC) from biomass burning on to ice fields, thereby lowering the reflectivity of the glacier surface and melting the upper ice. The application of a novel technique of measuring and radiocarbon-dating ultra-small samples (< 100mug) of the BC and total organic carbon (TOC) fractions of Naimona'nyi demonstrates a decrease (˜12 to 14 ka versus ˜7 ka) in the composite age of BC in the upper 40 m and lowest 20 m of the 137 m ice core, suggesting the incorporation of radiocarbon-dead BC. Precambrian black shale in the Lesser Himalaya provide a natural source material which may be operationally defined as black carbon and which may incorporate radiocarbon-dead sediments into the bulk 14C measurements, yet as the mean 14C age is ˜10 ka, modern BC from biomass burning must also be incorporated into the ice core record. While the uppermost sample (5 m) contains 38% BC, 210 Pb dates show that this depth corresponds to an age before 1850 AD, or before the regional Industrial Revolution. As BC is a hydrophobic substance, the BC is unlikely to have migrated through the firn and glacial ice. Therefore, the high-elevation thinning on Naimona'nyi appears to be a response to increased temperatures rather than primarily driven by changes in surface albedo. This technique was applied to the annually-dated ice core from the accumulating summit of the Quleccaya ice cap, Peru (13'56'S; 70°50'W; 5670 m a.s.l.). A marked increase in modern BC and TOC was measured since 1880 AD. No increase in radiocarbon-dead (> 60,000 ka) BC or TOC was noted, suggesting that the source of the carbon was from biomass burning, with a possible contribution of Amazon slash and burn clearing, rather than the input of fossil fuel combustion. The age of the BC and TOC is thousands of years older than the age of the surrounding ice, and should not be used to date the ice core. Although Naimona'nyi provides challenges for constructing an ice core chronology due to its lack of independent horizons such as volcanic activity, methane gas measurements, 14C dates, 3H, 36Cl, or beta radioactivity, the oxygen isotopic record can be correlated with the neighboring Dasuopu and Guliya ice cores. Naimona'nyi contains a pronounced positive ˜10‰ shift in delta18O in the basal 37 m of the core which mimics similar isotopic shifts in regional speleothems, lacustrian sediments, and planktonic foraminifera proxy records. This distinct shift is attributed to amplified monsoon intensity caused by increased summer insolation at 30°N. This correlation between regional proxy records results in a basal age of ˜8.6 ka for Naimona'nyi, suggesting that the ice field grew as a response to tropical rather than polar climate forcings.
Gesselman, Amanda N.; Bigatti, Silvia M.; Garcia, Justin R.; Coe, Kathryn; Cella, David; Champion, Victoria L.
2016-01-01
Background The association between spirituality and emotional health has been well documented in healthy individuals. A small literature has shown that spirituality plays a role in well-being for some breast cancer (BC) survivors; however, this link is virtually unexplored in partners/spouses of survivors. The current study aimed to assess the relationship between spirituality, emotional distress, and post-traumatic growth for BC survivors and their partners using a dyadic analyses approach. Methods A total of 498 couples who were 3–8 years post-BC diagnosis were recruited from the Eastern Oncology Group database. Results For BC survivors and their partners, greater levels of spirituality were associated with increases in their own post-traumatic growth. There was no relation between BC and partner spirituality and their own emotional distress, but partner’s spirituality was associated with reduced occurrence of intrusive thoughts in the BC survivor. In contrast, BC survivors’ spirituality was found to be wholly unrelated to partner’s mental health and adjustment. Conclusions Following diagnosis and treatment, spirituality appears to associate with positive growth in BC survivors and their partners. However, BC survivor and partner spirituality seem to be ineffective at impacting the other’s post-traumatic growth or emotional distress, with the exception of intrusive thoughts. Dyadic analysis takes into account the reciprocal influence of close relationships on health and is an important and under-utilized methodology in behavioral oncology research and clinical practice. PMID:27280320
Fiori, Jessica; Andrisano, Vincenza
2014-03-01
A screening method based on liquid chromatography-electrospray mass spectrometry for the simultaneous determination of six corticosteroids (betamethasone 17-valerate BM 17-V, beclomethasone BC, beclomethasone dipropionate BCDP, methylprednisolone MP, budesonide BD, flunisolide FN) was developed in order to control their illegal use in cosmetic and natural products. Indeed, despite corticosteroids are banned in cosmetics, counterfeit products might be present on the market, representing a health hazard. Therefore, effective analytical methods are required to rapidly screen over the counter products in health care shops for counterfeit corticosteroids. The analytical method involves the employment of a Waters Synergy C18 column (150mm×2.0mm I.D.) by using the following mobile phase: A (0.1% formic acid in acetonitrile), B (0.1% formic acid in water) in a linear gradient (from A-B 25:75, v/v to A-B 95:5, v/v in 30min) at the flow rate of 0.3mL/min. The detection was performed with an ion trap (IT) mass spectrometer in positive polarity, total ion current (TIC) and tandem mass modalities for qualitative purpose; single ion monitoring (SIM) mode was used for quantitative analysis on the ESI generated most abundant ion for each steroid. The method was fully validated in terms of precision, detection and quantification limits, linearity, recovery, and it was applied to the identification and quantification of corticosteroids in pharmaceutical formulations and cosmetic products. The mean recovery of BM 17-V, BC, BCDP, MP, BD and FN were found to be 101.3, 101.5, 98.8, 98.9, 98.1, 99.0%, respectively. Limits of quantitation (LOQ) were comprised in the range 29-95ng/mL. To the best of our knowledge, for the first time this mix of glucocorticoids were simultaneously determined in cosmetic products by using a fully validated method. BMV, in its two isomeric forms BM 17-V and BM 21-V, was found to be illegally present in one cream sample (A) with the total concentration level of 0.036% (w/w). Copyright © 2014 Elsevier B.V. All rights reserved.
Cesh, Lillian S; Williams, Tony D; Garcelon, David K; Elliott, John E
2008-10-01
Patterns and trends of chlorinated hydrocarbons were assessed in bald eagle nestling plasma from sites along the west coast of North America. Eagle plasma was sampled from four areas in southwestern British Columbia (BC), a reference site in northern BC, and from Santa Catalina Island, off the coast of California. Sites were chosen to reflect variation in contaminant exposure due to differing recent and/or historic anthropogenic activities. Santa Catalina Island had significantly greater mean concentrations of p,p'-DDE, 41.3 microg/kg wet weight (ww), than other sites, and Nanaimo/Crofton, BC had the greatest mean concentration of total PCBs, 28.9 microg/kg ww. Contaminant levels measured in 2003 in BC were compared to levels measured in 1993; over that ten year span, concentrations and patterns of chlorinated hydrocarbons have not significantly changed. There were no significant differences in levels of p,p'-DDE or hexachlorobenzene between 1993 and 2003, but significant decreases were found for trans-nonachlor and PCBs at BC sites. Levels of total PCBs and trans-nonachlor in the central Fraser Valley and Nanaimo/Crofton area have significantly decreased. Mean concentrations of p,p'-DDE measured in bald eagle nestling plasma samples in 2003 exceeded published criteria for effects on bald eagle reproduction at Santa Catalina Island and Barkley Sound, more than 30 years since heavy usage restrictions were imposed.
NASA Astrophysics Data System (ADS)
He, Cenlin; Li, Qinbin; Liou, Kuo-Nan; Qi, Ling; Tao, Shu; Schwarz, Joshua P.
2016-03-01
We develop and examine a microphysics-based black carbon (BC) aerosol aging scheme that accounts for condensation, coagulation, and heterogeneous chemical oxidation processes in a global 3-D chemical transport model (GEOS-Chem) by interpreting the BC measurements from the HIAPER Pole-to-Pole Observations (HIPPO, 2009-2011) using the model. We convert aerosol mass in the model to number concentration by assuming lognormal aerosol size distributions and compute the microphysical BC aging rate (excluding chemical oxidation aging) explicitly from the condensation of soluble materials onto hydrophobic BC and the coagulation between hydrophobic BC and preexisting soluble particles. The chemical oxidation aging is tested in the sensitivity simulation. The microphysical aging rate is ˜ 4 times higher in the lower troposphere over source regions than that from a fixed aging scheme with an e-folding time of 1.2 days. The higher aging rate reflects the large emissions of sulfate-nitrate and secondary organic aerosol precursors hence faster BC aging through condensation and coagulation. In contrast, the microphysical aging is more than 5-fold slower than the fixed aging in remote regions, where condensation and coagulation are weak. Globally, BC microphysical aging is dominated by condensation, while coagulation contribution is largest over eastern China, India, and central Africa. The fixed aging scheme results in an overestimate of HIPPO BC throughout the troposphere by a factor of 6 on average. The microphysical scheme reduces this discrepancy by a factor of ˜ 3, particularly in the middle and upper troposphere. It also leads to a 3-fold reduction in model bias in the latitudinal BC column burden averaged along the HIPPO flight tracks, with largest improvements in the tropics. The resulting global annual mean BC lifetime is 4.2 days and BC burden is 0.25 mg m-2, with 7.3 % of the burden at high altitudes (above 5 km). Wet scavenging accounts for 80.3 % of global BC deposition. We find that, in source regions, the microphysical aging rate is insensitive to aerosol size distribution, condensation threshold, and chemical oxidation aging, while it is the opposite in remote regions, where the aging rate is orders of magnitude smaller. As a result, global BC burden and lifetime show little sensitivity (< 5 % change) to these three factors.
NASA Astrophysics Data System (ADS)
He, C.; Li, Q.; Liou, K. N.; Qi, L.; Tao, S.; Schwarz, J. P.
2015-11-01
We develop and examine a microphysics-based black carbon (BC) aerosol aging scheme that accounts for condensation and coagulation processes in a global 3-D chemical transport model (GEOS-Chem) by interpreting the BC measurements from the HIAPER Pole-to-Pole Observations (HIPPO, 2009-2011) using the model. We convert aerosol mass in the model to number concentration by assuming lognormal aerosol size distributions and compute the microphysical BC aging rate explicitly from the condensation of soluble materials onto hydrophobic BC and the coagulation between hydrophobic BC and preexisting soluble particles. The resulting aging rate is ∼ 4 times higher in the lower troposphere over source regions than that from a fixed aging scheme with an e-folding time of 1.2 days. The higher aging rate reflects the large emissions of sulfate-nitrate and secondary organic aerosol precursors hence faster BC aging through condensation and coagulation. In contrast, the microphysical aging is more than fivefold slower than the fixed aging in remote regions, where condensation and coagulation are weak. Globally BC microphysical aging is dominated by condensation, while coagulation contribution is largest over East China, India, and Central Africa. The fixed aging scheme results in an overestimate of HIPPO BC throughout the troposphere by a factor of 6 on average. The microphysical scheme reduces this discrepancy by a factor of ∼ 3, particularly in the middle and upper troposphere. It also leads to a threefold reduction in model bias in the latitudinal BC column burden averaged along the HIPPO flight tracks, with largest improvements in the tropics. The resulting global annual mean BC lifetime is 4.2 days and BC burden is 0.25 mg m-2, with 7.3 % of the burden at high altitudes (above 5 km). Wet scavenging accounts for 80.3 % of global BC deposition. We find that in source regions the microphysical aging rate is insensitive to aerosol size distribution, condensation threshold, and chemical oxidation aging, while it is the opposite in remote regions, where the aging rate is orders of magnitude smaller. As a result, global BC burden and lifetime show little sensitivity (< 5 % change) to these three factors.
Morbidity of breast cancer and cervico-uterine cancer in women from the occidental region of Mexico.
Ortega-Cervantes, Laura; Rojas-García, Aurora Elizabeth; Robledo-Marenco, María de Lourdes; Barrón-Vivanco, Briscia Socorro; Girón-Pérez, Manuel Iván; Vallejo-Ruiz, Verónica; López-Flores, Juan Fernando; Carrillo-Cortez, Agustín; Cantú-De León, David; Rodríguez-Trejo, Amelia; Medina-Díaz, Irma Martha
2013-01-01
The incidences of breast cancer (BC) and cervico-uterine cancer (CC) vary widely from country to country. In Mexico, BC mortality has doubled in the last 20 years to become the second leading cause of death for women aged 30 to 54 years. CC is the most common cause of death from neoplasia in women over 25 years old. In 2006, the state of Nayarit had one of the highest mortality rates for these types of cancers in Mexico. To analyze and characterize the current demographics and morbidities associated with BC and CC in the state of Nayarit. In this retrospective study, the clinical histories of patients who were diagnosed with BC or CC at the State Cancer Center from January 2006 to December 2010 were analyzed. A total of 406 patients with BC and 328 patients with CC were registered. The most common clinical stage for both cancer types was IIB. The municipalities of San Pedro Lagunillas and El Nayar presented the highest prevalences of BC and CC, respectively. Our results suggest that women living in poorer and more marginalized regions have a higher possibility of developing BC and CC. Because BC and CC are preventable and treatable in their early stages, demographic information from population records for these cancers is helpful in determining the incidence rates and patterns and improving decision-making processes.
Wang, Mengrui; Jin, Ling; Zhao, Yongyi; Chen, Shangji; Wang, Congyao; Zhang, Guoshan; Wang, Qilin; Deng, Qiaoming; Liu, Yubo; Morgan, Ian G.; He, Mingguang; Liu, Yizhi
2017-01-01
We sought to assess light characteristics and user acceptability of a prototype Bright Classroom (BC), designed to prevent children’s myopia by exposing them to light conditions resembling the outdoors. Conditions were measured throughout the school year in the glass-constructed BC, a traditional classroom (TC) and outdoors. Teachers and children completed user questionnaires, and children rated reading comfort at different light intensities. A total of 230 children (mean age 10.2 years, 57.4% boys) and 13 teachers (36.8 years, 15.4% men) completed questionnaires. The median (Inter Quartile Range) light intensity in the BC (2,540 [1,330–4,060] lux) was greater than the TC (477 [245–738] lux, P < 0.001), though less than outdoors (19,500 [8,960–36,000] lux, P < 0.001). A prominent spectral peak at 490–560 nm was present in the BC and outdoors, but less so in the TC. Teachers and children gave higher overall ratings to the BC than TC, and light intensity in the BC in summer and on sunny days (>5,000 lux) was at the upper limit of children’s comfort for reading. In summary, light intensity in the BC exceeds TC, and is at the practical upper limit for routine use. Children and teachers prefer the BC. PMID:28759614
NASA Astrophysics Data System (ADS)
Verma, S.; Reddy, D. Manigopal; Ghosh, S.; Kumar, D. Bharath; Chowdhury, A. Kundu
2017-10-01
We estimated the latest spatially and temporally resolved gridded constrained black carbon (BC) emissions over the Indian region using a strategic integrated modelling approach. This was done extracting information on initial bottom-up emissions and atmospheric BC concentration from a general circulation model (GCM) simulation in conjunction with the receptor modelling approach. Monthly BC emission (83-364 Gg) obtained from the present study exhibited a spatial and temporal variability with this being the highest (lowest) during February (July). Monthly BC emission flux was considerably high (> 100 kg km- 2) over the entire Indo-Gangetic plain (IGP), east and the west coast during winter months. This was relatively higher over the central and western India than over the IGP during summer months. Annual BC emission rate was 2534 Gg y- 1 with that over the IGP and central India respectively comprising 50% and 40% of the total annual BC emissions over India. A high relative increase was observed in modified BC emissions (more than five times the initial emissions) over the most part of the IGP, east coast, central/northwestern India. The relative predominance of monthly BC emission flux over a region (as depicted from z-score distribution maps) was inferred being consistent with the prevalence of region- and season-specific anthropogenic activity.
Swords, Douglas S; Hadley, Edmund D; Swett, Katrina R; Pranikoff, Thomas
2015-01-01
Total body surface area (TBSA) burned is a powerful descriptor of burn severity and influences the volume of resuscitation required in burn patients. The incidence and severity of TBSA overestimation by referring institutions (RIs) in children transferred to a burn center (BC) are unclear. The association between TBSA overestimation and overresuscitation is unknown as is that between TBSA overestimation and outcome. The trauma registry at a BC was queried over 7.25 years for children presenting with burns. TBSA estimate at RIs and BC, total fluid volume given before arrival at a BC, demographic variables, and clinical variables were reviewed. Nearly 20 per cent of children arrived from RIs without TBSA estimation. Nearly 50 per cent were overestimated by 5 per cent or greater TBSA and burn sizes were overestimated by up to 44 per cent TBSA. Average TBSA measured at BC was 9.5 ± 8.3 per cent compared with 15.5 ± 11.8 per cent as measured at RIs (P < 0.0001). Burns between 10 and 19.9 per cent TBSA were overestimated most often and by the greatest amounts. There was a statistically significant relationship between overestimation of TBSA by 5 per cent or greater and overresuscitation by 10 mL/kg or greater (P = 0.02). No patient demographic or clinical factors were associated with TBSA overestimation. Education efforts aimed at emergency department physicians regarding the importance of always calculating TBSA as well as the mechanics of TBSA estimation and calculating resuscitation volume are needed. Further studies should evaluate the association of TBSA overestimation by RIs with adverse outcomes and complications in the burned child.
Lisón, Juan Francisco; Bruñó-Soler, Alejandro; Torró, Isabel; Segura-Ortí, Eva; Alvarez-Pitti, Julio
2017-06-01
Few studies have evaluated the changes in physical fitness (PF) of obese children and adolescents of a physical activity program for the treatment of obesity, and even fewer have explored the modality of home-based physical exercise. The objective of this study is to evaluate the changes in PF and body composition (BC) of a home-based physical exercise for treating childhood obesity. Thirty-three overweight/obese children and adolescents participated for six months in a home-based intervention that combined aerobics and muscular strength exercises. The results were compared, before and after the intervention, for the different PF components (VO2 max , abdominal muscle resistance strength, and lower body explosive strength) and BC (body mass index Z-score (BMI-Z), percentage of body fat, and fat-free mass) variables. A significant reduction was observed in the percentage of body fat (4.7%) and the BMI- Z score (.23), and there was an increase in the fat-free mass of 2.9 kg ( p < .001). In addition, the VO2 max showed a significant increase ( p < .05). The results of the different strength tests also showed significant improvements ( p < .05). Our findings support the effectiveness of this program improving not only BC but also PF. However, our results should be interpreted with caution due to lack of control group.
Modesto, Waleska; Dal Ava, Natália; Monteiro, Ilza; Bahamondes, Luis
2015-12-01
There is scarce information about bone mineral density (BMD) and body composition (BC) among users of the etonogestrel (ENG)-releasing implant. To evaluate BC and BMD in ENG-releasing implant users as compared to copper intrauterine device (Cu-IUD)-users. A prospective study was conducted on 75 users of both contraceptive methods. BMD was evaluated at femoral neck (FN) and lumbar spine (LS) (L1-L4) and BC at baseline and at 12 months after insertion. The mean (±SD) age was 30.4 ± 6.8 and 29.8 ± 8.4 years and body mass index (kg/m(2)) was 24.9 ± 4.1 and 24.6 ± 3.5 in ENG-releasing implant- and Cu-IUD-users, respectively. ENG-releasing implant users did not show significant differences on BMD at the LS and FN at 12 months of use. Furthermore, ENG-implant users had an increase in body weight at 12 months (p < 0.001) and an increase of 2 % in the percentage of body fat, when compared with Cu-IUD users. There was a significant increase in lean mass in ENG-implant users at 12 months (p = 0.020). No significant changes of BMD were seen after the first year of use among the ENG-releasing implant-users, albeit an increase of weight and fat mass was seen when compared to Cu-IUD users.
NASA Astrophysics Data System (ADS)
Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin
2017-11-01
Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.
Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite.
Khataee, Alireza; Kayan, Berkant; Gholami, Peyman; Kalderis, Dimitrios; Akay, Sema
2017-11-01
TiO 2 -biochar (TiO 2 -BC) nanocomposite was synthesized by sol-gel method. The characteristics of the prepared nanocomposite were examined using X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and N 2 adsorption-desorption analysis. The performance of synthesized TiO 2 -BC nanocomposite as efficient sonocatalyst was studied for the degradation of Reactive Blue 69 (RB69). Sonocatalytic degradation of RB69 in the presence of TiO 2 -BC nanocomposite could be explained by the mechanisms of hot spots and sonoluminescence. The optimized values for main operational parameters were determined as pH of 7, TiO 2 -BC dosage of 1.5g/L, RB69 initial concentration of 20mg/L and ultrasonic power of 300W. Furthermore, the effect of OH, h + and O 2 - scavengers on the RB69 degradation efficiency was studied. Gas chromatography-mass spectroscopy analysis was used to identify intermediate compounds formed during the RB69 degradation. The results of repeated applications of TiO 2 -BC in the sonocatalytic process verified its stability in long-term usage. Copyright © 2017 Elsevier B.V. All rights reserved.
Jeon, Se Jeong; Lee, Jae Il; Jeon, Myung Jae; Lee, Maria
2016-01-01
Abstract Chemotherapy-induced amenorrhea (CIA) is a side effect that occurs in patients with breast cancer (BC) as a result of chemotherapy. These patients require special treatments to avoid infertility and menopause. However, the factors controlling CIA, resumption of menstruation (RM), and persistence of menstruation after chemotherapy are unknown. The long-term prognosis for premenopausal patients with BC and the prognostic factors associated with CIA and RM are subject to debate. We performed a retrospective study by reviewing the medical records of 249 patients with BC (stage I to stage III) who were treated with cytotoxic chemotherapy. The median patient age was 43 (range, 26–55 years) and the median duration of follow-up was 64 months (range, 28–100 months). The medical records indicated that 219 patients (88.0%) scored as positive for the hormone receptor (HR); the majority of these patients completed chemotherapy and then received additional therapy of tamoxifen. Our analyses revealed that 88.0% (n = 219) of patients experienced CIA, and the percentage of RM during follow-up was 48.6% (n = 121). A total of 30 patients (12.0%) did not experience CIA. Disease-free survival (DFS) was affected by several factors, including tumour size ≥2 cm, node positivity, HR negative status, and body mass index ≥23 kg/m2. Multivariate analysis indicated that tumour size ≥2 cm remained as a significant factor for DFS (hazard ratio = 3.3, P = 0.034). In summary, this study finds that the majority of premenopausal patients with BC (stage I to stage III) who receive chemotherapy experience CIA and subsequent RM. Although tumour size ≥2 cm is negatively associated with DFS, RM after CIA is not associated with poor prognosis. PMID:27057900
Loredo-Pozos, Gloria; Chiquete, Erwin; Oceguera-Villanueva, Antonio; Panduro, Arturo; Siller-López, Fernando; Ramos-Márquez, Martha E
2009-01-01
Low BRCA1 gene expression is associated with increased invasiveness and influences the response of breast carcinoma (BC) to chemotherapeutics. However, expression of BRCA1 and BRCA2 genes has not been completely characterized in premenopausal BC. We analyzed the clinical and immunohistochemical correlates of BRCA1 and BRCA2 expression in young BC women. We studied 62 women (mean age 38.8 years) who developed BC before the age of 45 years. BRCA1 and BRCA2 mRNA expression was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) and that of HER-2 and p53 proteins by immunohistochemistry. Body mass index (BMI) > or = 27 (52%) and a declared family history of BC (26%) were the main risk factors. Ductal infiltrative adenocarcinoma was found in 86% of the cases (tumor size >5 cm in 48%). Disease stages I-IV occurred in 2, 40, 55, and 3%, respectively (73% implicating lymph nodes). Women aged < or = 35 years (24%) had more family history of cervical cancer, stage III/IV disease, HER-2 positivity, and lower BRCA1 expression than older women (P < 0.05). BRCA1 and BRCA2 expression correlated in healthy, but not in tumor tissues (TT). Neither BRCA1 nor BRCA2 expression was associated with tumor histology, differentiation, nodal metastasis or p53 and HER-2 expression. After multivariate analysis, only disease stage explained BRCA1 mRNA levels in the lowest quartile. Premenopausal BC has aggressive clinical and molecular characteristics. Low BRCA1 mRNA expression is associated mainly with younger ages and advanced clinical stage of premenopausal BC. BRCA2 expression is not associated with disease severity in young BC women.
Meiry, M; Brenner, G; Markovitcs, A; Klement, E
2013-08-01
Bovine cysticercosis (BC) is an important disease because of its zoonotic nature. There is a significant variation in the prevalence of BC in different countries, ranging from <0.01% to more than 20%. In this study, we followed the changes of BC prevalence in Israel during the last four decades and examined its association with import of live cattle. During 1973-2007, 629,549 cattle were subjected to post-mortem inspection conducted in 'Marbek' slaughterhouse located in the south of Israel. A specific comparison was made between the prevalence of BC in local and imported cattle during 2003-2007. Of 629,549 cattle, 2568 were infected with Cysticercus bovis (0.4%). From 1980, there was a gradual decrease in the prevalence of BC (R(2) = 0.53) with exceptional peaks. Moreover, from 1973 to 1998, only 4% of the documented cases appeared in outbreaks as opposed to 38% after 1998 when mass importation of live cattle to Israel was initiated. All of these late outbreak cases appeared in imported cattle of which 95% originated from Australia. During the years 2002-2007, importation from Australia was found as a significant risk factor for infection with BC, with prevalence in these cattle reaching 1.8% in 2006. The time from importation to BC detection suggests that infection occurred either in Australia or during the transport into Israel. We conclude that despite a reduction in the prevalence of BC as a result of a possible improvement in sanitary conditions at the farms, meticulous meat inspection is still essential in Israel and possibly in other developed countries exporting and importing live cattle. © 2012 Blackwell Verlag GmbH.
NASA Technical Reports Server (NTRS)
Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.;
2011-01-01
Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.
Møller, U K; Við Streym, S; Mosekilde, L; Rejnmark, L
2012-04-01
In a controlled cohort study, bone mineral density (BMD) was measured in 153 women pre-pregnancy; during pregnancy; and 0.5, 4, 9, and 19 months postpartum. Seventy-five age-matched controls, without pregnancy plans, were followed in parallel. Pregnancy and breastfeeding cause a reversible bone loss, which, initially, is most pronounced at trabecular sites but also involves cortical sites during prolonged breastfeeding. Conflicting results have been reported on effects of pregnancy and breastfeeding on BMD and body composition (BC). In a controlled cohort study, we elucidate changes in BMD and BC during and following a pregnancy. We measured BMD and BC in 153 women planning pregnancy (n = 92 conceived), once in each trimester during pregnancy and 15, 129, and 280 days postpartum. Moreover, BMD was measured 19 months postpartum (n = 31). Seventy-five age-matched controls, without pregnancy plans, were followed in parallel. Compared with controls, BMD decreased significantly during pregnancy by 1.8 ± 0.5% at the lumbar spine, 3.2 ± 0.5% at the total hip, 2.4 ± 0.3% at the whole body, and 4.2 ± 0.7% at the ultra distal forearm. Postpartum, BMD decreased further with an effect of breastfeeding. At 9 months postpartum, women who had breastfed for <9 months had a BMD similar to that of the controls, whereas BMD at the lumbar spine and hip was decreased in women who were still breastfeeding. During prolonged breastfeeding, BMD at sites which consist of mostly trabecular bone started to be regained, whereas BMD at sites rich in cortical bone decreased further. At 19 months postpartum, BMD did not differ from baseline at any site. During pregnancy, fat- and lean-tissue mass increased by 19 ± 22% and 5 ± 6% (p < 0.001), respectively. Postpartum, changes in fat mass differed according to breastfeeding status with a slower decline in women who continued breastfeeding. Calcium and vitamin D intake was not associated with BMD changes. Pregnancy and breastfeeding cause a reversible bone loss. At 19 months postpartum, BMD has returned to pre-pregnancy level independently of breastfeeding length. Reversal of changes in fat mass depends on breastfeeding status.
Distribution of black carbon in Ponderosa pine litter and soils following the High Park wildfire
NASA Astrophysics Data System (ADS)
Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.
2014-12-01
Black carbon (BC), the heterogeneous product of burned biomass, is a critical component in the global carbon cycle, yet timescales and mechanisms for incorporation into the soil profile are not well understood. The High Park Fire, which took place in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire intenstiy and geomorphology on properties of carbon (C), nitrogen (N), and BC in the Cache La Poudre River drainage. We sampled montane Ponderosa pine litter, 0-5 cm soils, and 5-15 cm soils four months post-fire in order to examine the effects of slope and burn intensity on %C, C stocks, %N and black carbon (g kg-1 C, and g m-2). We developed and implemented the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes, but that there was no difference in black carbon content or stocks. BC content was greatest in the litter in burned sites (19 g kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g m-2). At the time of sampling, none of the BC deposited on the land surface post-fire had been incorporated into to either the 0-5 cm or 5-15 cm soil layers. The ratio of B5CA : B6CA (less condensed to more condensed BC) indicated there was significantly more older, more processed BC at depth. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely transported off the surface through erosion events. Future work examining mechanisms for BC transport will be required for understanding the role BC plays in the global carbon cycle.
NASA Astrophysics Data System (ADS)
He, C.; Li, Q.; Liou, K. N.; Qi, L.; Tao, S.; Schwarz, J. P.
2015-12-01
Black carbon (BC) aging significantly affects its distributions and radiative properties, which is an important uncertainty source in estimating BC climatic effects. Global models often use a fixed aging timescale for the hydrophobic-to-hydrophilic BC conversion or a simple parameterization. We have developed and implemented a microphysics-based BC aging scheme that accounts for condensation and coagulation processes into a global 3-D chemical transport model (GEOS-Chem). Model results are systematically evaluated by comparing with the HIPPO observations across the Pacific (67°S-85°N) during 2009-2011. We find that the microphysics-based scheme substantially increases the BC aging rate over source regions as compared with the fixed aging timescale (1.2 days), due to the condensation of sulfate and secondary organic aerosols (SOA) and coagulation with pre-existing hydrophilic aerosols. However, the microphysics-based scheme slows down BC aging over Polar regions where condensation and coagulation are rather weak. We find that BC aging is primarily dominated by condensation process that accounts for ~75% of global BC aging, while the coagulation process is important over source regions where a large amount of pre-existing aerosols are available. Model results show that the fixed aging scheme tends to overestimate BC concentrations over the Pacific throughout the troposphere by a factor of 2-5 at different latitudes, while the microphysics-based scheme reduces the discrepancies by up to a factor of 2, particularly in the middle troposphere. The microphysics-based scheme developed in this work decreases BC column total concentrations at all latitudes and seasons, especially over tropical regions, leading to large improvement in model simulations. We are presently analyzing the impact of this scheme on global BC budget and lifetime, quantifying its uncertainty associated with key parameters, and investigating the effects of heterogeneous chemical oxidation on BC aging.
Zhao, Shichen; Yan, Jingchun; Qian, Linbo; Chen, Mengfang
2015-01-01
The presence of organic contaminants in industrial effluents is an environmental concern of increasing global importance. One innovative technology for treating contaminated industrial effluents is nanoscale zero-valent iron supported on biochar (nZVI/BC). Based on Transmission Electron Microscopy, X-Ray Diffraction, and Brunauer-Emmett-Teller characterizations, the nZVI was well dispersed on the biochar and aggregation was dramatically reduced. Methyl orange (MO) served as the representative organic contaminant for verifying the effectiveness of the composite. Using decolorization efficiency as an indicator of treatment effectiveness, increasing doses of nZVI/BC yielded progressively better results with 98.51% of MO decolorized by 0.6 g/L of composite at an nZVI/BC mass ratio of 1:5. The superior decolorization efficiency of the nZVI/BC was attributed to the increase in the dispersion and reactivity of nZVI while biochar increasing the contact area with contaminant and the adsorption of composites. Additionally, the buffering function of acid-washed biochar could be in favor of maintaining the reactivity of nZVI. Furthermore, the aging nZVI/BC for 30 day was able to maintain the removal efficiency indicating that the oxidation of nZVI may be delayed in the presence of biochar. Therefore, the composite of nZVI/BC could represent an effective functional material for treating wastewater containing organic dyes in the future. PMID:26204523
Characterization of black carbon in an urban-rural fringe area of Beijing.
Ji, Dongsheng; Li, Liang; Pang, Bo; Xue, Peng; Wang, Lili; Wu, Yunfei; Zhang, Hongliang; Wang, Yuesi
2017-04-01
Measuring black carbon (BC) is critical to understand the impact of combustion aerosols on air quality and climate change. In this study, BC was measured in 2014 at a unique community formed with rapid economic development and urbanization in an urban-rural fringe area of Beijing. Hourly BC concentrations were 0.1-33.5 μg/m 3 with the annual average of 4.4 ± 3.7 μg/m 3 . BC concentrations had clear diurnal, weekly, and seasonal variations, and were closely related with atmospheric visibility. The absorption coefficient of aerosols increased while its contribution to extinction coefficient decreased with the enhancement of PM 2.5 concentration. The high mass absorption efficiency (MAE) of EC was attributed to a combination of coal combustion, vehicular emission and rapidly coating by water-soluble ions and organic carbon (OC). BC concentrations followed a typical lognormal pattern, with over 88% samples in 0.1-10.0 μg/m 3 . Low BC levels were mostly bounded up with winds from north and northwest. Coal combustion and biomass burning were closely associated with severe haze pollution events. Firework discharge had significant UV absorption contribution. During the Asia-Pacific Economic Cooperation (APEC) forum in November 2014, air quality obviously improved due to various control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yi, Yunqiang; Wu, Juan; Wei, Yufen; Fang, Zhanqiang; Tsang, Eric Pokeung
2017-07-01
Some problems exist in the current remediation of polybrominated diphenyl ethers (PBDEs) from aqueous solution by using iron-based nanoparticles. Our efforts have contributed to the synthesis of biochar-supported Ni/Fe bimetallic nanoparticle composites (BC@Ni/Fe). Under the optimum operating parameters of BC@Ni/Fe, the morphologic analysis revealed that biochar effectively solved the agglomeration of Ni/Fe nanoparticles and the removal efficiency of BDE209 obtained by BC@Ni/Fe (91.29%) was seven times higher than the sum of biochar (2.55%) and Ni/Fe (11.22%) in 10 min. The degradation products of BDE209 in the solution and absorbed on the BC@Ni/Fe were analyzed with gas chromatography-mass spectroscopy, which indicated that the degradation of BDE209 was mainly a process of stepwise debromination. Meanwhile, compared with Ni/Fe nanoparticles, the adsorption ability of the by-products of BDE209 by BC@Ni/Fe was greater, to a certain extent, which reduced the additional environmental burden. In addition, the concentration of nickle ion leaching from the Ni/Fe nanoparticles was 3.09 mg/L; conversely, the concentration of nickle leaching from BC@Ni/Fe was not detected. This excellent performance in our study indicates a possible means to enhance the reactivity and reduce the secondary risks of Ni/Fe nanoparticles.
Bacterial cellulose skin masks-Properties and sensory tests.
Pacheco, Guilherme; de Mello, Carolina Véspoli; Chiari-Andréo, Bruna Galdorfini; Isaac, Vera Lucia Borges; Ribeiro, Sidney José Lima; Pecoraro, Édison; Trovatti, Eliane
2017-09-29
Bacterial cellulose (BC) is a versatile material produced by microorganisms in the form of a membranous hydrogel, totally biocompatible, and endowed with high mechanical strength. Its high water-holding capacity based on its highly porous nanofibrillar structure allows BC to incorporate and to release substances very fast, thus being suitable for the preparation of skincare masks. The preparation and characterization of cosmetic masks based on BC membranes and active cosmetics. The masks were prepared by the simple incorporation of the cosmetic actives into BC membranes, used as a swelling matrix. The masks were characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), sensory tests, and skin moisture tests on volunteers. The results of sensory tests revealed the good performance of BC, being considered effective by the panel of volunteers, specially for adhesion to the skin (7.7 at the score scale), and improvement of the skin moisture (the hydration effect increased 76% in 75% of the volunteers that used vegetable extract mask formulation [VEM]), or a decrease in skin hydration (80% of the volunteers showed 32.6% decrease on skin hydration using propolis extract formulation [PEM] treatment), indicating the BC nanofiber membranes can be used to skincare applications. The results demonstrate the BC can be used as an alternative support for cosmetic actives for skin treatment. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kumar, S.; Fialho, P. J.; Mazzoleni, L. R.; Olsen, S. C.; Owen, R. C.; Helmig, D.; Hueber, J.; Dziobak, M.; Kramer, L. J.; Mazzoleni, C.
2012-12-01
The Pico Mountain Observatory is located in the summit caldera of the Pico mountain, an inactive volcano on the Pico Island in the Azores, Portugal (38.47°N, 28.40°W, Altitude 2225m asl). The Azores are often impacted by polluted outflows from the North American continent and local sources have been shown to have a negligible influence at the observatory. The value of the station stems from the fact that this is the only permanent mountaintop monitoring station in the North Atlantic that is typically located above the marine boundary layer (average MBL heights are below 1200 m and rarely exceed 1300 m) and often receives air characteristic of the lower free troposphere. Measurements of black carbon (BC) mass have been carried out at the station since 2001, mostly in the summer seasons. Here we discuss the BC decadal dataset (2001-2011) collected at the site by using a seven-wavelength AE31 Magee Aethalometer. Measured BC mass and computed Angstrom exponent (AE) values were analysed to study seasonal and diurnal variations. There was a large day-to-day variability in the BC values due to varied meteorological conditions that resulted in different diurnal patterns for different months. The daily mean BC at this location ranged between 0 and ~430 ngm-3, with the most frequently occurring value in the range 0-100 ngm-3. The overall mean for the 10 year period is ~24 ngm-3, with a coefficient of variation of 150%. The BC values exhibited a consistent annual trend being low in winter months and high in summer months, barring year to year variations. To differentiate between BC and other absorbing particles, we analyzed the wavelength dependence of aerosol absorption coefficient and determined a best-fit exponent i.e., the Ångström exponent, for the whole dataset. Visible Ångström exponent (AE: 470-520-590-660 nm) values ranged between 0 and 3.5, with most frequently occurring values in the range 0.85 to 1.25. By making use of the aethalometer light attenuation measurements at different wavelengths and Hysplit back trajectories, we divided the data into two categories. One for periods characterized by AE values close to 1; these periods are typically correlated with back trajectories originating from Canada, North America or northern Europe, indicating the dominance of BC on the light attenuation. Another characterized by AE values substantially different from 1; these periods correlated with back trajectories originating from dust-prone regions (e.g., the Sahara desert).The above measurements, with the aid of ancillary satellite and ground-based measurements will be employed in estimating the radiaitve effects of BC in the North Atlantic.ico Mountain Observatory
Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing
NASA Astrophysics Data System (ADS)
Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei
2017-04-01
Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.
Direct radiative effect by multicomponent aerosol over China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xin; Song, Yu; Zhao, Chun
The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO 2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM 10 and its components, andmore » aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m -2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m -2. BC was the leading radiative-heating component (+8.7 W m -2), followed by mineral aerosol (+1.1 W m -2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m -2), followed by sulfate (-1.4 W m -2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.« less
Aerosol Health Impact Source Attribution Studies with the CMAQ Adjoint Air Quality Model
NASA Astrophysics Data System (ADS)
Turner, M. D.
Fine particulate matter (PM2.5) is an air pollutant consisting of a mixture of solid and liquid particles suspended in the atmosphere. Knowledge of the sources and distributions of PM2.5 is important for many reasons, two of which are that PM2.5 has an adverse effect on human health and also an effect on climate change. Recent studies have suggested that health benefits resulting from a unit decrease in black carbon (BC) are four to nine times larger than benefits resulting from an equivalent change in PM2.5 mass. The goal of this thesis is to quantify the role of emissions from different sectors and different locations in governing the total health impacts, risk, and maximum individual risk of exposure to BC both nationally and regionally in the US. We develop and use the CMAQ adjoint model to quantify the role of emissions from all modeled sectors, times, and locations on premature deaths attributed to exposure to BC. From a national analysis, we find that damages resulting from anthropogenic emissions of BC are strongly correlated with population and premature death. However, we find little correlation between damages and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damages resulting from BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Additionally, emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. From a regional analysis, we find that emissions from outside each of six urban areas account for 7% to 27% of the premature deaths attributed to exposure to BC within the region. Within the region encompassing New York City and Philadelphia, reductions in emissions from large industrial combustion sources that are not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per unit emission of reductions to onroad diesel sectors, and provide similar benefits per unit of reduced emission to that of onroad gasoline emissions in the region. While a majority of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows the most efficient target for stricter controls is actually onroad gasoline emissions. From an analysis of the health impacts of BC emissions on specific demographic populations, we find that emissions in the southern half of the US tend to disproportionally affect persons with a below high school education and persons below 50% of the poverty level. Analysis of national risk (independent of population and mortality rates) shows that the largest risks are associated with drier climates, due to the increased atmospheric lifetime resulting from less wet removal of aerosols. Lastly, analysis of the impacts of BC emissions on maximum individual risk shows that contributions to maximum individual risk are weakly to strongly correlated with emissions (R2 ranging from 0.23 in the San Joaquin Valley to 0.93 in the Dallas region). Overall, this thesis shows the value of high-resolution, adjoint-based source attribution studies for determining the locations, seasons, and sectors that have the greatest estimated impact on human health in air quality models.
Willie, Megan; Esler, Daniel; Boyd, W Sean; Molloy, Philip; Ydenberg, Ronald C
2017-05-15
Barrow's goldeneyes are sea ducks that winter throughout coastal British Columbia (BC). Their diet consists primarily of intertidal blue mussels, which can accumulate PAHs; accordingly, goldeneyes may be susceptible to exposure through contaminated prey. In 2014/15, we examined total PAH concentrations in mussels from undeveloped and developed coastal areas of BC. At those same sites, we used EROD to measure hepatic CYP1A induction in goldeneyes. We found higher mussel PAH concentrations at developed coastal sites. Regionally, goldeneyes from southern BC, which has relatively higher coastal development, had higher EROD activity compared to birds from northern BC. Our results suggest goldeneyes wintering in coastal BC were exposed to PAHs through diet, with higher exposure among birds wintering in coastal areas with greater anthropogenic influence. These results suggest the mussel-goldeneye system is suitable as a natural, multi-trophic-level indicator of contemporary hydrocarbon contamination occurrence and exposure useful for establishing oil spill recovery endpoints. Copyright © 2017 Elsevier Ltd. All rights reserved.
Legenbauer, Tanja; Martin, Franziska; Blaschke, Ariane; Schwenzfeier, Anne; Blechert, Jens; Schnicker, Katja
2017-06-01
Body checking (BC) and avoidance behaviors (BA) are the dominant behavioral features of body image disturbances (BID) that characterize most individuals with eating disorders (EDs). Whereas BC can be reliably assessed, a valid assessment tool for BA is lacking, preventing an adequate assessment of BID differences across different EDs (anorexia nervosa, AN; bulimia nervosa, BN; binge eating disorder, BED). A total of 310 women with EDs and 112 nonclinical controls completed measures of BC-, BA- and ED-related symptoms. BA did not differentiate between EDs, whereas BC did: it was highest in AN and BN, and lowest in BED. Multivariate analyses also discriminated AN from BN based on BC. Given that results are of preliminary nature, evidence is promising that EDs can be discriminated from healthy controls and that differential BID profiles for the behavioral component among ED subgroups exist. However, replication of the factor structure remains open within ED subsamples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Willie, Megan; Esler, Daniel N.; Boyd, W. Sean; Molloy, Philip; Ydenberg, Ronald C.
2017-01-01
Barrow's goldeneyes are sea ducks that winter throughout coastal British Columbia (BC). Their diet consists primarily of intertidal blue mussels, which can accumulate PAHs; accordingly, goldeneyes may be susceptible to exposure through contaminated prey. In 2014/15, we examined total PAH concentrations in mussels from undeveloped and developed coastal areas of BC. At those same sites, we used EROD to measure hepatic CYP1A induction in goldeneyes. We found higher mussel PAH concentrations at developed coastal sites. Regionally, goldeneyes from southern BC, which has relatively higher coastal development, had higher EROD activity compared to birds from northern BC. Our results suggest goldeneyes wintering in coastal BC were exposed to PAHs through diet, with higher exposure among birds wintering in coastal areas with greater anthropogenic influence. These results suggest the mussel-goldeneye system is suitable as a natural, multi-trophic-level indicator of contemporary hydrocarbon contamination occurrence and exposure useful for establishing oil spill recovery endpoints.
Keller, D; Van Dinter, R; Cash, H; Farmer, S; Venema, K
2017-05-30
The aim of this study was to assess the potential of the probiotic Bacillus coagulans GBI-30, 6086 [GanedenBC 30 ] (BC30) to aid in protein digestion of alimentary plant proteins. To test this, three plant proteins, from pea, soy and rice, were digested in a validated in vitro model of the stomach and small intestine (TIM-1) in the absence and in the presence of BC30. Samples were taken from the TIM-1 fractions that mimic uptake of amino acids by the host and analysed for α-amino nitrogen (AAN) and total nitrogen (TN). Both were increased by BC30 for all three plant proteins sources. The ratio of TN/AAN indicated that for pea protein digestion was increased by BC30, but the degree of polymerisation of the liberated small peptides and free amino acids was not changed. For soy and rice, however, BC30 showed a 2-fold reduction in the TN/AAN ratio, indicating that the liberated digestion products formed during digestion in the presence of BC30 were shorter peptides and more free amino acids, than those liberated in the absence of BC30. As BC30 increased protein digestion and uptake in the upper gastrointestinal (GI) tract, it consequently also reduced the amount of protein that would be delivered to the colon, which could there be fermented into toxic metabolites by the gut microbiota. Thus, the enhanced protein digestion by BC30 showed a dual benefit: enhanced amino acid bioavailability from plant proteins in the upper GI tract, and a healthier environment in the colon.
The role of dietary factors in prevention and progression of breast cancer.
Rossi, Roberta Elisa; Pericleous, Marinos; Mandair, Dalvinder; Whyand, Tara; Caplin, Martyn Evan
2014-12-01
Breast cancer (BC) is the leading global cause of cancer-related death in women. There is growing evidence for a role for dietary factors in BC pathophysiology. The aim of the present review was to evaluate the impact of dietary factors in BC risk. Bibliographical searches were performed in PubMed, using the following terms: "nutrition and breast cancer", "nutrition and breast carcinoma", "dietary factors and breast cancer", "risk factors and breast cancer", "diet and breast cancer, "breast cancer epidemiology", "breast cancer and prevention". Consumption of well-done red meat appears to be associated with increased risk of BC, whereas fish may be protective. Total cholesterol, triglyceride levels and glycaemic load should be monitored and controlled in at risk populations because they may be associated with increased risk of BC, although the exact mechanisms involved are not clear. Alcohol intake should be minimized since it is a risk factor for BC. High intake of polyphenol/phyto-oestrogen -rich food (i.e. flavonoids, soya products), as well as fibres, fruits and vegetables, may have potential protective effects against BC occurrence but the results might vary according to hormonal status. Vitamin D supplements appear protective against BC development and similarly other vitamins and oligo-elements might decrease BC risk, although further large prospective studies are required. There exist increasing evidence that dietary factors can play an important role in both the development and prevention of BC. Large randomized clinical and epidemiological studies are required but are difficult to design due to the number of variable factors. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Anthropogenic Black Carbon Emission Increase during the Last 150 Years at Coastal Jiangsu, China
Bao, Kunshan; Shen, Ji; Wang, Guoping; Gao, Chuanyu
2015-01-01
Black carbon (BC) is one of the major drivers of climate change and a useful indicator of environmental pollution from industrialization, and thus it is essential to reconstruct the historical trend in BC flux to better understand its impact. The Yancheng coastal wetland reserve in Jiangsu province is an area sensitive to global sea level change and is also located in the most developed as well as most polluted region of China. We investigated the concentration and historical flux of BC over the past 150 years through geochemical analysis of two 210Pb-dated sediment cores from Yancheng coastal wetland. Measured BC contents ranged from 0.24 mg g-1 to 1.41 mg g-1 with average values of 0.51mg g-1-0.69 mg g-1, and BC fluxes ranged from 0.69 g m-2 yr-1 to 11.80 g m-2 yr-1 with averages of 2.94g m-2 yr-1-3.79 g m-2 yr-1. These values are consistent with other records worldwide. Both BC content and flux show a gradual and continuous increase over time and clearly reflect increased emissions from anthropogenic activities. The BC records have a significant peak in recent years (from 2000 to 2007), which is accompanied by the sharp increase of energy consumption and total carbon emission in the region. It is reasonable to conclude that changes in BC from increasing human activities have controlled BC fluxes during the last 150 years. Industrial contamination, especially BC emission, in the coastal region of eastern China should be taken into account when developing management strategies for protecting the natural environment. PMID:26200665
NASA Astrophysics Data System (ADS)
Yang, Weifeng; Guo, Laodong
2018-03-01
Black carbon (BC) has been recognized as a climate forcing and a major component in the global carbon budget. However, studies on BC in the Arctic Ocean remain scarce. We report here variations in the abundance, sources and burial fluxes of sedimentary soot black carbon (soot-BC) in the western Arctic Ocean. The soot-BC contents averaged 1.6 ± 0.3, 0.46 ± 0.04 and 0.56 ± 0.10 mg-C g-1 on the Mackenzie, Chukchi and Bering Shelves, respectively, accounting for 16.6%, 10.2% and 10.4% of the total organic carbon in surface sediment. Temporally, contents of soot-BC remained fairly stable before 1910, but increased rapidly after the 1970s on the Mackenzie Shelf, indicating enhanced source input related to warming. Comparable δ13C signatures of soot-BC (- 24.95‰ to - 24.57‰) to C3 plants pointed to a major biomass source of soot-BC to the Beaufort Sea. Soot-BC showed similar temporal patterns with large fluctuations in the Chukchi/Bering shelf regions, implying the same source terms for soot-BC in these areas. Two events with elevated soot-BC corresponded to a simultaneous increase in biomass combustion and fossil fuel (coal and oil) consumption in Asia. The similar temporal variability in sedimentary soot-BC between the Arctic shelves and Asian lakes and the comparable δ13C values manifested that anthropogenic emission from East Asia was an important source of soot-BC in the western Arctic and subarctic regions. The burial fluxes of soot-BC, estimated from both 137Cs- and 210Pb-derived sedimentation rates, were 2.43 ± 0.42 g-C m-2 yr-1 on the Mackenzie Shelf, representing an efficient soot-BC sink. Soot-BC showed an increase in buried fluxes from 0.56 ± 0.02 g-C m-2 yr-1 during 1963-1986 to 0.88 ± 0.05 g-C m-2 yr-1 after 1986 on the Chukchi Shelf, and from 1.00 ± 0.18 g-C m-2 yr-1 to 2.58 ± 1.70 g-C m-2 yr-1 on the Bering Shelf, which were consistent with recent anthropogenically enhanced BC input observed especially in Asia. Overall, the three Arctic shelves could bury more than 3000 Gg soot-BC each year, attesting to an important role of the Arctic and subarctic shelves in global BC budget and carbon cycle.
Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...
Arsenic methylation capacity is associated with breast cancer in northern Mexico.
López-Carrillo, Lizbeth; Hernández-Ramírez, Raúl Ulises; Gandolfi, A Jay; Ornelas-Aguirre, José Manuel; Torres-Sánchez, Luisa; Cebrian, Mariano E
2014-10-01
Exposure to environmental contaminants, dietary factors and lifestyles may explain worldwide different breast cancer (BC) incidence. Inorganic arsenic (iAs) in the drinking water is a concern in many regions, such as northern Mexico. Studies in several countries have associated the proportion of urinary monomethylarsenic (%MMA) with increased risks for many As-related diseases, including cancer. To investigate the potential relationships between the risk of BC and the capacity to methylate iAs, a hospital-based case-control study (1016 cases/1028 controls) was performed in northern Mexico. Women were directly interviewed about their reproductive histories. The profile of As metabolites in urine was determined by HPLC-ICP-MS and methylation capacity was assessed by metabolite percentages and indexes. Total urinary As, excluding arsenobetaine (TAs-AsB), ranged from 0.26 to 303.29μg/L. Most women (86%) had TAs-AsB levels below As biological exposure index (35μg/L). Women with higher %MMA and/or primary methylation index (PMI) had an increased BC risk (%MMA ORQ5vs.Q1=2.63; 95%CI 1.89,3.66; p for trend <0.001; PMI ORQ5vs.Q1=1.90; 95%CI 1.39,2.59, p for trend <0.001). In contrast, women with higher proportion of urinary dimethylarsenic (%DMA) and/or secondary methylation index (SMI) had a reduced BC risk (%DMA ORQ5vs.Q1=0.63; 95%CI 0.45,0.87, p for trend 0.006; SMI ORQ5vsQ1=0.42, 95%CI 0.31,0.59, p for trend <0.001). Neither %iAs nor total methylation index was associated to BC risk. Inter-individual variations in iAs metabolism may play a role in BC carcinogenesis. Women with higher capacity to methylate iAs to MMA and/or a lower capacity to further methylate MMA to DMA were at higher BC risk. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Nanxin; Hao, Yanni; Koo, Valerie; Fang, Anna; Peeples, Miranda; Kageleiry, Andrew; Wu, Eric Q; Guérin, Annie
2016-01-01
To analyze medical costs and healthcare resource utilization (HRU) associated with everolimus-based therapy or chemotherapy among post-menopausal women with hormone-receptor-positive, human-epidermal-growth-factor-receptor-2-negative (HR+/HER2-) metastatic breast cancer (mBC). Patients with HR+/HER2- mBC who discontinued a non-steroidal aromatase inhibitor and began a new line of treatment with everolimus-based therapy or chemotherapy (index therapy/index date) between July 20, 2012 and April 30, 2014 were identified from two large claims databases. All-cause, BC-related, and adverse event (AE)-related medical costs (in 2014 USD) and all-cause HRU per patient per month (PPPM) were analyzed for both treatment groups across patients' first four lines of therapies for mBC. Adjusted differences in costs and HRU between the everolimus and chemotherapy treatment group were estimated pooling all lines and using multivariable generalized linear models, accounting for difference in patient characteristics. A total of 3298 patients were included: 902 everolimus-treated patients and 2636 chemotherapy-treated patients. Compared to chemotherapy, everolimus was associated with significantly lower all-cause (adjusted mean difference = $3455, p < 0.01) and BC-related ($2510, p < 0.01) total medical costs, with inpatient ($1344, p < 0.01) and outpatient costs ($1048, p < 0.01) as the main drivers for cost differences. Everolimus was also associated with significantly lower AE-related medical costs ($1730, p < 0.01), as well as significantly lower HRU (emergency room incidence rate ratio [IRR] = 0.83; inpatient IRR = 0.74; inpatient days IRR = 0.65; outpatient IRR = 0.71; BC-related outpatient IRR = 0.57; all p < 0.01). This retrospective claims database analysis of commercially-insured patients with HR+/HER2- mBC in the US showed that everolimus was associated with substantial all-cause, BC-related, and AE-related medical cost savings and less utilization of healthcare resources relative to chemotherapy.
Costa, Andrea F. S.; Almeida, Fabíola C. G.; Vinhas, Glória M.; Sarubbo, Leonie A.
2017-01-01
Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC) is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin–Schramm (HS) medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose) and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL)]. A jeans laundry was also tested. None of the tested sources (beside CSL) worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The values obtained for the Young’s modulus in the mechanical tests in the hydrated samples indicated low values for the variable rigidity. The presence of water in the interior and between the nanofibers of the hydrated BC only favored the results for the elasticity, which was 56.37% higher when compared to the dry biomaterial. PMID:29089941
Jacob, Louis; Kalder, Matthias; Kostev, Karel
2017-10-01
To analyze the incidence of depression and anxiety among women newly diagnosed with breast or genital organ cancer (BC or GOC) in Germany. A total of 29 366 women initially diagnosed with BC or GOC between 2005 and 2014 were available for analysis. The main outcome measure was the incidence of depression and anxiety among women newly diagnosed with BC or GOC within 5 years after the first cancer diagnosis in German gynecologist practices. Demographic and clinical data included age, type of cancer, and presence of metastases at diagnosis. The incidence rate of depression and anxiety per 100 person-years was calculated. We performed a multivariate regression model to analyze the association between depression and the variables of interest. In total, 7994 women were diagnosed with depression/anxiety (81.3% had BC and 18.7% had GOC). The incidence of depression and anxiety was 8.8 per 100 person-years in women with BC. In individuals with GOC, the incidence of depression/anxiety was 5.9 per 100 person-years. Breast cancer was associated with a 1.41-fold increase in the risk of developing depression or anxiety as compared with GOC. Patients with metastases also had a higher risk of being depressed and anxious than others (odds ratio = 1.40). Finally, women in the age groups of 41 to 50, 51 to 60, and 61 to 70 years were at a higher risk of depression/anxiety than women in the age group of 71 to 80 years (odds ratios equal to 1.50, 1.38, and 1.22). Women diagnosed with BC were at a higher risk of developing depression or anxiety than women with GOC. Copyright © 2016 John Wiley & Sons, Ltd.
Jara, Lilian; Morales, Sebastian; de Mayo, Tomas; Gonzalez-Hormazabal, Patricio; Carrasco, Valentina; Godoy, Raul
2017-10-06
Breast cancer (BC) is the most common malignancy among women worldwide. A major advance in the understanding of the genetic etiology of BC was the discovery of BRCA1 and BRCA2 (BRCA1/2) genes, which are considered high-penetrance BC genes. In non-carriers of BRCA1/2 mutations, disease susceptibility may be explained of a small number of mutations in BRCA1/2 and a much higher proportion of mutations in ethnicity-specific moderate- and/or low-penetrance genes. In Central and South American populations, studied have focused on analyzing the distribution and prevalence of BRCA1/2 mutations and other susceptibility genes that are scarce in Latin America as compared to North America, Europe, Australia, and Israel. Thus, the aim of this review is to present the current state of knowledge regarding pathogenic BRCA variants and other BC susceptibility genes. We conducted a comprehensive review of 47 studies from 12 countries in Central and South America published between 2002 and 2017 reporting the prevalence and/or spectrum of mutations and pathogenic variants in BRCA1/2 and other BC susceptibility genes. The studies on BRCA1/2 mutations screened a total of 5956 individuals, and studies on susceptibility genes analyzed a combined sample size of 11,578 individuals. To date, a total of 190 different BRCA1/2 pathogenic mutations in Central and South American populations have been reported in the literature. Pathogenic mutations or variants that increase BC risk have been reported in the following genes or genomic regions: ATM, BARD1, CHECK2, FGFR2, GSTM1, MAP3K1, MTHFR, PALB2, RAD51, TOX3, TP53, XRCC1, and 2q35.
DuFour, Mark R.; Mayer, Christine M.; Kocovsky, Patrick; Qian, Song; Warner, David M.; Kraus, Richard T.; Vandergoot, Christopher
2017-01-01
Hydroacoustic sampling of low-density fish in shallow water can lead to low sample sizes of naturally variable target strength (TS) estimates, resulting in both sparse and variable data. Increasing maximum beam compensation (BC) beyond conventional values (i.e., 3 dB beam width) can recover more targets during data analysis; however, data quality decreases near the acoustic beam edges. We identified the optimal balance between data quantity and quality with increasing BC using a standard sphere calibration, and we quantified the effect of BC on fish track variability, size structure, and density estimates of Lake Erie walleye (Sander vitreus). Standard sphere mean TS estimates were consistent with theoretical values (−39.6 dB) up to 18-dB BC, while estimates decreased at greater BC values. Natural sources (i.e., residual and mean TS) dominated total fish track variation, while contributions from measurement related error (i.e., number of single echo detections (SEDs) and BC) were proportionally low. Increasing BC led to more fish encounters and SEDs per fish, while stability in size structure and density were observed at intermediate values (e.g., 18 dB). Detection of medium to large fish (i.e., age-2+ walleye) benefited most from increasing BC, as proportional changes in size structure and density were greatest in these size categories. Therefore, when TS data are sparse and variable, increasing BC to an optimal value (here 18 dB) will maximize the TS data quantity while limiting lower-quality data near the beam edges.
Melvin, Jennifer C; Garmo, Hans; Holmberg, Lars; Hammar, Niklas; Walldius, Göran; Jungner, Ingmar; Lambe, Mats; Van Hemelrijck, Mieke
2017-04-04
The lipid and glucose metabolisms are postulated as possible intermediary mechanisms in linking obesity and breast cancer (BC). Links between serum lipid and glucose biomarkers and BC risk has been observed in the Swedish Apolipoprotein MORtality RISk (AMORIS) cohort. We conducted a follow-up analysis including information on tumour characteristics. One thousand eight hundred twenty-four women diagnosed with BC, with serum biomarker levels of glucose, triglycerides, cholesterol (total, HDL, and LDL), and apolipoproteins A-1 and B recorded in a routine health check at baseline were included. BC severity was split into categories (good, moderate, and poor prognosis) based on ER status, TNM stage, and age at diagnosis. Proportional odds models were used to obtain odds ratios (ORs) and 95% confidence intervals (CI), with the interval time between baseline measurement and BC diagnosis accounted for. Serum glucose and the ApoB/ApoA-1 ratio showed a non-statistically significant positive association with BC severity (proportional OR: 1.25 (95%CI: 0.92-1.70) for glucose (≥ 5.60 mmol/L) and 1.31 (95%CI: 0.97-1.76) for ApoB/A-1 ratio (≥ 1). The proportion of severe and moderate BC was modestly greater across all abnormal serum biomarker groups. Despite the size and detail of data in AMORIS, we only found a modest positive association between serum levels of glucose, apoB/ApoA-1 and BC severity, suggesting that these factors are not the main players in linking obesity and BC aggressiveness.
Gesselman, Amanda N; Bigatti, Silvia M; Garcia, Justin R; Coe, Kathryn; Cella, David; Champion, Victoria L
2017-10-01
The association between spirituality and emotional health has been well documented in healthy individuals. A small literature has shown that spirituality plays a role in well-being for some breast cancer (BC) survivors; however, this link is virtually unexplored in partners/spouses of survivors. The current study aimed to assess the relationship between spirituality, emotional distress, and post-traumatic growth for BC survivors and their partners using a dyadic analyses approach. A total of 498 couples who were 3-8 years post-BC diagnosis were recruited from the Eastern Oncology Group database. For BC survivors and their partners, greater levels of spirituality were associated with increases in their own post-traumatic growth. There was no relation between BC and partner spirituality and their own emotional distress, but partner's spirituality was associated with reduced occurrence of intrusive thoughts in the BC survivor. In contrast, BC survivors' spirituality was found to be wholly unrelated to partner's mental health and adjustment. Following diagnosis and treatment, spirituality appears to associate with positive growth in BC survivors and their partners. However, BC survivor and partner spirituality seem to be ineffective at impacting the other's post-traumatic growth or emotional distress, with the exception of intrusive thoughts. Dyadic analysis takes into account the reciprocal influence of close relationships on health and is an important and under-utilized methodology in behavioral oncology research and clinical practice. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Reich, Richard R.; Paterson, Carly L.; Ramesar, Sophia; Park, Jong Y.; Alinat, Carissa; Johnson-Mallard, Versie; Moscoso, Manolete; Budhrani-Shani, Pinky; Miladinovic, Branko; Jacobsen, Paul B.; Cox, Charles E.; Goodman, Matthew; Kip, Kevin E.
2016-01-01
Purpose The purpose of this randomized trial was to evaluate the efficacy of the Mindfulness-Based Stress Reduction for Breast Cancer (MBSR[BC]) program in improving psychological and physical symptoms and quality of life among breast cancer survivors (BCSs) who completed treatment. Outcomes were assessed immediately after 6 weeks of MBSR(BC) training and 6 weeks later to test efficacy over an extended timeframe. Patients and Methods A total of 322 BCSs were randomly assigned to either a 6-week MBSR(BC) program (n = 155) or a usual care group (n = 167). Psychological (depression, anxiety, stress, and fear of recurrence) and physical symptoms (fatigue and pain) and quality of life (as related to health) were assessed at baseline and at 6 and 12 weeks. Linear mixed models were used to assess MBSR(BC) effects over time, and participant characteristics at baseline were also tested as moderators of MBSR(BC) effects. Results Results demonstrated extended improvement for the MBSR(BC) group compared with usual care in both psychological symptoms of anxiety, fear of recurrence overall, and fear of recurrence problems and physical symptoms of fatigue severity and fatigue interference (P < .01). Overall effect sizes were largest for fear of recurrence problems (d = 0.35) and fatigue severity (d = 0.27). Moderation effects showed BCSs with the highest levels of stress at baseline experienced the greatest benefit from MBSR(BC). Conclusion The MBSR(BC) program significantly improved a broad range of symptoms among BCSs up to 6 weeks after MBSR(BC) training, with generally small to moderate overall effect sizes. PMID:27247219
Daily black carbon emissions from fires in northern Eurasia for 2002-2015
NASA Astrophysics Data System (ADS)
Hao, Wei Min; Petkov, Alexander; Nordgren, Bryce L.; Corley, Rachel E.; Silverstein, Robin P.; Urbanski, Shawn P.; Evangeliou, Nikolaos; Balkanski, Yves; Kinder, Bradley L.
2016-12-01
Black carbon (BC) emitted from fires in northern Eurasia is transported and deposited on ice and snow in the Arctic and can accelerate its melting during certain times of the year. Thus, we developed a high spatial resolution (500 m × 500 m) dataset to examine daily BC emissions from fires in this region for 2002-2015. Black carbon emissions were estimated based on MODIS (Moderate Resolution Imaging Spectroradiometer) land cover maps and detected burned areas, the Forest Inventory Survey of the Russian Federation, the International Panel on Climate Change (IPCC) Tier-1 Global Biomass Carbon Map for the year 2000, and vegetation specific BC emission factors. Annual BC emissions from northern Eurasian fires varied greatly, ranging from 0.39 Tg in 2010 to 1.82 Tg in 2015, with an average of 0.71 ± 0.37 Tg from 2002 to 2015. During the 14-year period, BC emissions from forest fires accounted for about two-thirds of the emissions, followed by grassland fires (18 %). Russia dominated the BC emissions from forest fires (92 %) and central and western Asia was the major region for BC emissions from grassland fires (54 %). Overall, Russia contributed 80 % of the total BC emissions from fires in northern Eurasia. Black carbon emissions were the highest in the years 2003, 2008, and 2012. Approximately 58 % of the BC emissions from fires occurred in spring, 31 % in summer, and 10 % in fall. The high emissions in spring also coincide with the most intense period of ice and snow melting in the Arctic.
Proteomics analysis of human breast milk to assess breast cancer risk.
Aslebagh, Roshanak; Channaveerappa, Devika; Arcaro, Kathleen F; Darie, Costel C
2018-02-01
Detection of breast cancer (BC) in young women is challenging because mammography, the most common tool for detecting BC, is not effective on the dense breast tissue characteristic of young women. In addition to the limited means for detecting their BC, young women face a transient increased risk of pregnancy-associated BC. As a consequence, reproductively active women could benefit significantly from a tool that provides them with accurate risk assessment and early detection of BC. One potential method for detection of BC is biochemical monitoring of proteins and other molecules in bodily fluids such as serum, nipple aspirate, ductal lavage, tear, urine, saliva and breast milk. Of all these fluids, only breast milk provides access to a large volume of breast tissue, in the form of exfoliated epithelial cells, and to the local breast environment, in the form of molecules in the milk. Thus, analysis of breast milk is a non-invasive method with significant potential for assessing BC risk. Here we analyzed human breast milk by mass spectrometry (MS)-based proteomics to build a biomarker signature for early detection of BC. Ten milk samples from eight women provided five paired-groups (cancer versus control) for analysis of dysregulatedproteins: two within woman comparisons (milk from a diseased breast versus a healthy breast of the same woman) and three across women comparisons (milk from a woman with cancer versus a woman without cancer). Despite a wide range in the time between milk donation and cancer diagnosis (cancer diagnosis occurred from 1 month before to 24 months after milk donation), the levels of some proteins differed significantly between cancer and control in several of the five comparison groups. These pilot data are supportive of the idea that molecular analysis of breast milk will identify proteins informative for early detection and accurate assessment of BC risk, and warrant further research. Data are available via ProteomeXchange with identifier PXD007066. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Indoor air pollution from burning yak dung as a household fuel in Tibet
NASA Astrophysics Data System (ADS)
Xiao, Qingyang; Saikawa, Eri; Yokelson, Robert J.; Chen, Pengfei; Li, Chaoliu; Kang, Shichang
2015-02-01
Yak dung is widely used for cooking and heating in Tibet. We measured real-time concentrations of black carbon (BC) and fine particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) emitted by yak dung burning in six households with different living conditions and stove types in the Nam Co region, Tibet. We observed a much lower average BC/PM2.5 mass ratio (0.013, range 0.006-0.028) from dung combustion in this area than previously reported estimates, ranging between 0.05 and 0.11. Based on our measurements, estimated fuel use, and published emission factors of BC and PM2.5, about 0.4-1.7 Gg/year of BC is emitted by yak dung combustion in Tibet in addition to the previously estimated 0.70 Gg/year of BC for Tibetan residential sources. Our survey shows that most residents were aware of adverse health impacts of indoor yak dung combustion and approximately 2/3 of residents had already installed chimney stoves to mitigate indoor air pollution. However, our measurements reveal that, without adequate ventilation, installing a chimney may not ensure good indoor air quality. For instance, the 6-h average BC and PM2.5 concentrations in a stone house using a chimney stove were 24.5 and 873 μg/m3, respectively. We also observed a change in the BC/PM2.5 ratios before and after a snow event. The impact of dung moisture content on combustion efficiency and pollutant emissions needs further investigation.
Light absorption enhancement of black carbon from urban haze in Northern China winter.
Chen, Bing; Bai, Zhe; Cui, Xinjuan; Chen, Jianmin; Andersson, August; Gustafsson, Örjan
2017-02-01
Atmospheric black carbon (BC) is an important pollutant for both air quality and Earth's energy balance. Estimates of BC climate forcing remain highly uncertain, e.g., due to the mixing with non-absorbing components. Non-absorbing aerosols create a coating on BC and may thereby act as a lens which may enhance the light absorption. However, this absorption enhancement is poorly constrained. To this end a two-step solvent dissolution protocol was employed to remove both organic and inorganic coatings, and then investigate their effects on BC light absorption. Samples were collected at a severely polluted urban area, Jinan, in the North China Plain (NCP) during February 2014. The BC mass absorption cross-section (MAC) was measured for the aerosol samples before and after the solvent-decoating treatment, and the enhancement of MAC (E MAC ) from the coating effect was defined as the ratio. A distinct diurnal pattern for the enhancement was observed, with E MAC 1.3 ± 0.3 (1 S.D.) in the morning, increasing to 2.2 ± 1.0 in the afternoon, after that dropping to 1.5 ± 0.8 in the evening-night. The BC absorption enhancement primarily was associated with urban-scale photochemical production of nitrate and sulfate aerosols. In addition to that, regional-scale haze plume with increasing sulfate levels strengthened the absorption enhancement. These observations offer direct evidence for an increased absorption enhancement of BC due to severe air pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurements of Refractory Black Carbon (rBC) Aerosols in the McMurdo Dry Valleys, Antarctica
NASA Astrophysics Data System (ADS)
Khan, A. L.; McMeeking, G. R.; Lyons, W. B.; Schwarz, J. P.; Welch, K. A.; McKnight, D. M.
2015-12-01
Measurements of light absorbing particles in the boundary layer of the high southern latitudes are scarce. During the 2013-2014 austral summer field season refractory black carbon (rBC) aerosols were quantified by a single particle soot photometer (SP2) in the McMurdo Dry Valleys, Antarctica. The dark rBC particles absorb more radiation thereby increasing atmospheric heating, as well as reducing surface albedo and enhancing hydrologic melt when deposited on highly reflective surfaces such as snow and ice. Quantifying both local and long-range atmospheric transport of rBC to this region of a remote continent mostly covered by ice and snow would be useful in understanding meltwater generation as climate changes. Although the Dry Valleys are the largest ice-free region of Antarctica, they contain many alpine glaciers, some of which are fed from the East Antarctic Ice Sheet (EAIS). Continuous rBC measurements were collected at Lake Hoare Camp in the Taylor Valley for two months, along with shorter periods at more remote locations within the Dry Valleys. Conditions at the Lake Hoare Camp were dominated by up-valley winds from McMurdo Sound, however, winds also brought air down-valley from the EAIS polar plateau. Here we investigated periods dominated by both up and down-valley winds to explore differences in rBC concentrations, size distributions, and scattering properties. The average background rBC mass concentration was 1ng/m3, though concentrations as high as 50 ng/m3 were observed at times, likely due to local sources.
Cheng, M-F; Chen, Y-Y; Jang, T-R; Lin, W-L; Chen, J; Hsieh, K-C
2016-12-01
Standing-posture 8-electrode bioelectrical impedance analysis is a fast and practical method for evaluating body composition in clinical settings, which can be used to estimate percentage body fat (BF%) and skeletal muscle mass in a subject's total body and body segments. In this study, dual-energy X-ray absorptiometry (DXA) was used as a reference method for validating the standing 8-electrode bioelectrical impedance analysis device BC-418 (BIA 8 , Tanita Corp., Tokyo, Japan). Forty-eight Taiwanese male wrestlers aged from 17.9 to 22.3 years volunteered to participate in this study. The lean soft tissue (LST) and BF% in the total body and body segments were measured in each subject by the BIA 8 and DXA. The correlation coefficients between total body, arm, leg segments impedance index (BI, ht 2 /Z) and lean soft tissue mass measured from DXA were r = 0.902, 0.453, 0.885, respectively (p < 0.01). In addition, the total body and segmental LST estimated by the BIA 8 were highly correlated with the DXA data (r = 0.936, 0.466, 0.886, p < 0.01). The estimation of total body and segmental BF% measured by BIA 8 and DXA also showed a significant correlation (r > 0.820, p < 0.01). The estimated LST and BF% from BIA 8 in the total body and body segments were highly correlated with the DXA results, which indicated that the standing-posture 8-electrode bioelectrical impedance analysis may be used to derive reference measures of LST and BF% in Taiwanese male wrestlers.
Cheng, M-F; Chen, Y-Y; Jang, T-R; Lin, W-L; Chen, J
2015-01-01
Standing-posture 8-electrode bioelectrical impedance analysis is a fast and practical method for evaluating body composition in clinical settings, which can be used to estimate percentage body fat (BF%) and skeletal muscle mass in a subject’s total body and body segments. In this study, dual-energy X-ray absorptiometry (DXA) was used as a reference method for validating the standing 8-electrode bioelectrical impedance analysis device BC-418 (BIA8, Tanita Corp., Tokyo, Japan). Forty-eight Taiwanese male wrestlers aged from 17.9 to 22.3 years volunteered to participate in this study. The lean soft tissue (LST) and BF% in the total body and body segments were measured in each subject by the BIA8 and DXA. The correlation coefficients between total body, arm, leg segments impedance index (BI, ht2/Z) and lean soft tissue mass measured from DXA were r = 0.902, 0.453, 0.885, respectively (p < 0.01). In addition, the total body and segmental LST estimated by the BIA8 were highly correlated with the DXA data (r = 0.936, 0.466, 0.886, p < 0.01). The estimation of total body and segmental BF% measured by BIA8 and DXA also showed a significant correlation (r > 0.820, p < 0.01). The estimated LST and BF% from BIA8 in the total body and body segments were highly correlated with the DXA results, which indicated that the standing-posture 8-electrode bioelectrical impedance analysis may be used to derive reference measures of LST and BF% in Taiwanese male wrestlers. PMID:28090145
NASA Astrophysics Data System (ADS)
Bond, T. C.; Zarzycki, C.; Flanner, M. G.; Koch, D. M.
2011-02-01
Climatic effects of short-lived climate forcers (SLCFs) differ from those of long-lived greenhouse gases, because they occur rapidly after emission and because they depend upon the region of emission. The distinctive temporal and spatial nature of these impacts is not captured by measures that rely on global averages or long time integrations. Here, we propose a simple measure, the Specific Forcing Pulse (SFP), to quantify climate warming or cooling by these pollutants, where we define "immediate" as occurring primarily within the first year after emission. SFP is the amount of energy added to or removed from a receptor region in the Earth-atmosphere system by a chemical species, per mass of emission in a source region. We limit the application of SFP to species that remain in the atmosphere for less than one year. Metrics used in policy discussions, such as total forcing or global warming potential, are easily derived from SFP. However, SFP conveys purely physical information without incurring the policy implications of choosing a time horizon for the global warming potential. Using one model (Community Atmosphere Model, or CAM), we calculate values of SFP for black carbon (BC) and organic matter (OM) emitted from 23 source-region combinations. Global SFP for both atmosphere and cryosphere impacts is divided among receptor latitudes. SFP is usually greater for open-burning emissions than for energy-related (fossil-fuel and biofuel) emissions because of the timing of emission. Global SFP for BC varies by about 45% for energy-related emissions from different regions. This variation would be larger except for compensating effects. When emitted aerosol has larger cryosphere forcing, it often has lower atmosphere forcing because of less deep convection and a shorter atmospheric lifetime. A single model result is insufficient to capture uncertainty. We develop a best estimate and uncertainties for SFP by combining forcing results from 12 additional models. We outline a framework for combining a large number of simple models with a smaller number of enhanced models that have greater complexity. Adjustments for black carbon internal mixing and for regional variability are discussed. Emitting regions with more deep convection have greater model diversity. Our best estimate of global-mean SFP is +1.03 ± 0.52 GJ g-1 for direct atmosphere forcing of black carbon, +1.15 ± 0.53 GJ g-1 for black carbon including direct and cryosphere forcing, and -0.064 (-0.02, -0.13) GJ g-1 for organic matter. These values depend on the region and timing of emission. The lowest OM:BC mass ratio required to produce a neutral effect on top-of-atmosphere direct forcing is 15:1 for any region. Any lower ratio results in positive direct forcing. However, important processes, particularly cloud changes that tend toward cooling, have not been included here. Global-average SFP for energy-related emissions can be converted to a 100-year GWP of about 740 ± 370 for BC without snow forcing, and 830 ± 440 with snow forcing. 100-year GWP for OM is -46 (-18, -92). Best estimates of atmospheric radiative impact (without snow forcing) by black and organic matter are +0.47 ± 0.26 W m-2 and -0.17 (-0.07, -0.35) W m-2 for BC and OM, respectively, assuming total emission rates of 7.4 and 45 Tg yr-1. Anthropogenic forcing is +0.40 ± 0.18 W m-2 and -0.13 (-0.05, -0.25) W m-2 for BC and OM, respectively, assuming anthropogenic emission rates of 6.3 and 32.6 Tg yr-1. Black carbon forcing is only 18% higher than that given by the Intergovernmental Panel on Climate Change (IPCC), although the value presented here includes enhanced absorption due to internal mixing.
NASA Astrophysics Data System (ADS)
Kaneyasu, Naoki; Yamaguchi, Takashi; Noguchi, Izumi; Akiyama, Masayuki; Matsumoto, Kiyoshi
2013-04-01
The long-term trend of light absorbing carbonaceous aerosols (or black carbon: BC) or refractory carbonaceous aerosol (or elemental carbon: EC) concentration is reported at European background sites such as Mace Head, and that of aerosol absorption coefficient are monitored in many GAW sites. On the contrary, such long-term data are relatively scarce at around the western part of the North Pacific Ocean. Thus, to understand the long-term variation of in the area, BC in fine aerosol fraction has been measured at Chichi-jima Islands, Japan. Chichi-jima Island is located 1000 km south of the Japanese mainland, and 1800 km west of the coast line of the Asian continent. BC has been measured with an Aethalometer (Magee, AE-16 and AE-30) since December, 1998 with 1 hr time resolution. Mass flowmeter embedded inside the Aethalometer is calibrated with a rotational dry gas-meter once a year. Monthly averaged BC concentration shows an obvious seasonal variation, i.e. high concentration during late autumn-winter-spring period resulting from the transport from East Asia, with maximum daily concentration above 500 ng m-3. In summer, daily concentration was usually less than 20 ng m-3, due to the clean background airmass originating from the North Pacific Anticyclone. Decadal trend of the annual averaged BC concentration showed a increasing trend from 2000 to 2007 and started to decrease after 2008, which roughly coincides with the reported emission trend of SO2 in China (Lu et al., 2010). In addition, total (i.e., wet + dry) deposition record of refractory carbon at two sites in the northern Japan (Rishiri Island: a remote island site, and Sapporo City: an urban site) are retrieved. At these sites, the local government have been measuring the chemical components in precipitation water collected by deposition gauges. In the deposition gauge, a membrane filter made of cellulose-acetate is fixed at the bottom of the funnel to remove water-insoluble particles from the precipitated water. Those "used" membrane filters have been archived for almost two decades at Sapporo without interruption, and for 13 years at Rishiri Island intermittently. We developed a procedure to analyse particulate refractory carbon retained on the membrane filter. The analysis was conducted by thermal-optical transmittance (TOT) method with a Sunset Model-4 carbon analyser (IMPROVE protocol. In this study, we call the resultant analytical quantity as TOT-EC(I). In Sapporo, the annual total deposition of TOT-EC(I) in 2011 (80 mg m-2yr-1) decreased greatly from that in 2001 (208 mg m-2 yr-1) probably due to the strict emission control regulation for the exhaust of diesel powered vehicles that took effect in the 2000s in Japan. In Rishi Island, total deposition in 2011 (47 mg m-2 yr-1) also decreased from that of 2001(141 mg m-2 yr-1). However, the monthly variation of the total deposition in 2001 had pronounced springtime increase while that in 2011 is not obvious. Thus, there is a possibility that the data in 2001 at Rishiri Island were affected by the smoke from Siberian forest fire which becomes active typically during the spring to summer season. Reference Lu, Z. et al., ACP. 10, 6311-6331 (2010).
Derks, Marloes G M; Bastiaannet, Esther; Kiderlen, Mandy; Hilling, Denise E; Boelens, Petra G; Walsh, Paul M; van Eycken, Elizabeth; Siesling, Sabine; Broggio, John; Wyld, Lynda; Trojanowski, Maciej; Kolacinska, Agnieszka; Chalubinska-Fendler, Justyna; Gonçalves, Ana Filipa; Nowikiewicz, Tomasz; Zegarski, Wojciech; Audisio, Riccardo A; Liefers, Gerrit-Jan; Portielje, Johanneke E A; van de Velde, Cornelis J H
2018-06-07
Older patients are poorly represented in breast cancer research and guidelines do not provide evidence based recommendations for this specific group. We compared treatment strategies and survival outcomes between European countries and assessed whether variance in treatment patterns may be associated with variation in survival. Population-based study including patients aged ≥ 70 with non-metastatic BC from cancer registries from the Netherlands, Belgium, Ireland, England and Greater Poland. Proportions of local and systemic treatments, five-year relative survival and relative excess risks (RER) between countries were calculated. In total, 236,015 patients were included. The proportion of stage I BC receiving endocrine therapy ranged from 19.6% (Netherlands) to 84.6% (Belgium). The proportion of stage III BC receiving no breast surgery varied between 22.0% (Belgium) and 50.8% (Ireland). For stage I BC, relative survival was lower in England compared with Belgium (RER 2.96, 95%CI 1.30-6.72, P < .001). For stage III BC, England, Ireland and Greater Poland showed significantly worse relative survival compared with Belgium. There is substantial variation in treatment strategies and survival outcomes in elderly with BC in Europe. For early-stage BC, we observed large variation in endocrine therapy but no variation in relative survival, suggesting potential overtreatment. For advanced BC, we observed higher survival in countries with lower proportions of omission of surgery, suggesting potential undertreatment.
NASA Astrophysics Data System (ADS)
Ito, A.; Akimoto, H.
2006-12-01
We estimate the emissions of black carbon (BC) from open vegetation fires in southern hemisphere Africa from 1998 to 2005 using satellite information in conjunction with a biogeochemical model. Monthly burned areas at a 0.5-degree resolution are estimated from the Visible and Infrared Scanner (VIRS) fire count product and the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area data set associated with the MODIS tree cover imagery in grasslands and woodlands. The monthly fuel load distribution is derived from a 0.5- degree terrestrial carbon cycle model in conjunction with satellite data. The monthly maps of combustion factor and emission factor are estimated using empirical models that predict the effects of fuel conditions on these factors in grasslands and woodlands. Our annual averaged BC emitted per unit area burned is 0.17 g BC m-2 which is consistent with the product of fuel consumption and emission factor typically measured in southern Africa. The BC emissions from open vegetation burning in southern Africa ranged from 0.26 Tg BC yr-1 for 2002 to 0.42 Tg BC yr-1 for 1998. The peak in BC emissions is identical to that from previous top-down estimate using the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) data. The sum of monthly emissions during the burning season in 2000 is in good agreement between our estimate (0.38 Tg) and previous estimate constrained by numerical model and measurements (0.47 Tg).
NASA Astrophysics Data System (ADS)
Chen, Pengfei; Kang, Shichang; Bai, Jiankun; Sillanpää, Mika; Li, Chaoliu
2015-04-01
The study of the source areas of atmospheric pollutants in the Tibetan Plateau (TP) - one of the most remote regions in the world - has raised a great deal of concern. It is generally considered that the majority of pollutants in this region are transported from outside the TP. This research investigated the water soluble elements and carbonaceous matter from aerosols emitted from yak dung combustion by local residents and re-analyzed previous OC and BC data at Nam Co - a remote area of the TP. The compositions of the water soluble elements of the studied aerosols were similar to those in precipitation and snow samples of the region under investigation. Some heavy metal elements (e.g. Cd and As) even had higher enrichment factor (EF) values (1793 and 2355, respectively) compared to those in precipitation and snow samples, implying that previously reported high EF values for precipitation and snow did not completely reflect the long-range transported pollutants from outside the TP. Accordingly, the contributions of local sources needed to be considered. Organic carbon (OC) and black carbon (BC) accounted for 55.2% and 3.63% of the studied aerosol, respectively. The OC/BC ratio of the studied aerosols was close to the corresponding value for the outdoor aerosols, further indicating the influence of local sources on the atmosphere of Nam Co. It was proposed that air masses from South Asia cause high BC concentrations in the Nam Co region. It was, however, discovered that air masses from the TP itself also induce high BC concentrations, suggesting that not all the BC of Nam Co was transported from South Asia. Therefore, it is proposed that pollutants of atmospheric aerosols of the Nam Co region were derived from a variety of sources from both the TP and outside. In other words, the influence of yak dung burning by local residents on the atmosphere of the TP cannot be overlooked. Correspondingly, long-range transported pollutants can penetrate into the inland TP only when intensified pollution events occur in South Asia.
Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation
Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.; ...
2015-10-02
Development of reliable source emission inventories is needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This paper develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile.more » Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert, and Tiksi) in the Arctic Circle, surface BC simulations are improved the most during the Arctic haze periods (October–March). The poor performance of Arctic BC simulations in previous studies may be partly ascribed to the Russian BC emissions built on out-of-date and/or missing information, which could result in biases to both emission rates and the spatial distribution of emissions. Finally, this study highlights that the impact of Russian emissions on the Arctic haze has likely been underestimated, and its role in the Arctic climate system needs to be reassessed. The Russian black carbon emission source data generated in this study can be obtained via http://abci.ornl.gov/download.shtml or http://acs.engr.utk.edu/Data.php.« less
Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation
NASA Astrophysics Data System (ADS)
Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.; Storey, John M.; Romanov, Alexander; Hodson, Elke L.; Cresko, Joe; Morozova, Irina; Ignatieva, Yulia; Cabaniss, John
2015-11-01
Development of reliable source emission inventories is particularly needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This study develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile. Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30-65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert, and Tiksi) in the Arctic Circle, surface BC simulations are improved the most during the Arctic haze periods (October-March). The poor performance of Arctic BC simulations in previous studies may be partly ascribed to the Russian BC emissions built on out-of-date and/or missing information, which could result in biases to both emission rates and the spatial distribution of emissions. This study highlights that the impact of Russian emissions on the Arctic haze has likely been underestimated, and its role in the Arctic climate system needs to be reassessed. The Russian black carbon emission source data generated in this study can be obtained via http://abci.ornl.gov/download.shtml or http://acs.engr.utk.edu/Data.php.
Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.
Development of reliable source emission inventories is needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This paper develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile.more » Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert, and Tiksi) in the Arctic Circle, surface BC simulations are improved the most during the Arctic haze periods (October–March). The poor performance of Arctic BC simulations in previous studies may be partly ascribed to the Russian BC emissions built on out-of-date and/or missing information, which could result in biases to both emission rates and the spatial distribution of emissions. Finally, this study highlights that the impact of Russian emissions on the Arctic haze has likely been underestimated, and its role in the Arctic climate system needs to be reassessed. The Russian black carbon emission source data generated in this study can be obtained via http://abci.ornl.gov/download.shtml or http://acs.engr.utk.edu/Data.php.« less
The short-term safety of adjuvant paclitaxel plus trastuzumab - A single centre experience.
Ates, Ozturk; Sunar, Veli; Aslan, Alma; Karatas, Fatih; Sahin, Suleyman; Altundag, Kadri
2017-01-01
HER2-amplified breast cancer (BC) has a poor prognosis. The combination of trastuzumab with chemotherapy in the adjuvant setting decreases recurrence and improves overall survival in HER2-positive BC. However, the role of adjuvant treatment in patients with HER2-amplified small BC without lymph node involvement is still under debate. The purpose of this study was to investigate the safety of adjuvant paclitaxel and trastuzumab (APT) in this group of patients. A total of 87 operated early BC patients without lymph node involvement (N0) were treated with APT for 12 weeks followed by trastuzumab alone for a total of 9 months. Clinicopathological features and adverse events were analyzed. The median patient age was 50 years (range 28- 82), and 51% of them were postmenopausal. The median tumor diameter was 2.4 cm (range 0.5-6), with 51% of the patients having tumor size between 2 and 3 cm. Eighty-one percent of patients had invasive ductal carcinoma (IDC), and 64% had grade 3 tumors. Adjuvant hormone therapy and adjuvant radiotherapy were administered to 65 and 54% of patients, respectively. At a median follow up of 13 months (range 6-38), one patient (1.1%, 95% CI 0-3.4) experienced an asymptomatic decrease in left ventricular ejection fraction (LVEF) and 3 patients (3.4%, 95% CI 0-6.9) experienced grade 3 neuropathy. APT appears to be a safe combination in early-stage, HER2-amplified and node-negative BC.
Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition
NASA Astrophysics Data System (ADS)
Li, Chaoliu; Yan, Fangping; Kang, Shichang; Chen, Pengfei; Han, Xiaowen; Hu, Zhaofu; Zhang, Guoshuai; Hong, Ye; Gao, Shaopeng; Qu, Bin; Zhu, Zhejing; Li, Jiwei; Chen, Bing; Sillanpää, Mika
2017-10-01
Black carbon (BC) is the second most important warming component in the atmosphere after CO2. The BC in the Himalayas and the Tibetan Plateau (HTP) has influenced the Indian monsoon and accelerated the retreat of glaciers, resulting in serious consequences for billions of Asian residents. Although a number of related studies have been conducted in this region, the BC concentrations and deposition rates remain poorly constrained. Because of the presence of arid environments and the potential influence of carbonates in mineral dust (MD), the reported BC concentrations in the HTP are overestimated. In addition, large discrepancies have been reported among the BC deposition derived from lake cores, ice cores, snow pits and models. Therefore, the actual BC concentration and deposition values in this sensitive region must be determined. A comparison between the BC concentrations in acid (HCl)-treated and untreated total suspected particle samples from the HTP showed that the BC concentrations previously reported for the Nam Co station (central part of the HTP) and the Everest station (northern slope of the central Himalayas) were overestimated by approximately 52 ± 35 and 39 ± 24 %, respectively, because of the influence of carbonates in MD. Additionally, the organic carbon (OC) levels were overestimated by approximately 22 ± 10 and 22 ± 12 % for the same reason. Based on previously reported values from the study region, we propose that the actual BC concentrations at the Nam Co and Everest stations are 61 and 154 ng m-3, respectively. Furthermore, a comprehensive comparison of the BC deposition rates obtained via different methods indicated that the deposition of BC in HTP lake cores was mainly related to river sediment transport from the lake basin as a result of climate change (e.g., increases in temperature and precipitation) and that relatively little BC deposition occurred via atmospheric deposition. Therefore, previously reported BC deposition rates from lake cores overestimated the atmospheric deposition of BC in the HTP. Correspondingly, BC deposition derived from snow pits and ice cores agreed well with that derived from models, implying that the BC depositions of these two methods reflect the actual values in the HTP. Therefore, based on reported values from snow pits and ice cores, we propose that the BC deposition in the HTP is 17. 9 ± 5. 3 mg m-2 a-1, with higher and lower values appearing along the fringes and central areas of the HTP, respectively. These adjusted BC concentrations and deposition values in the HTP are critical for performing accurate evaluations of other BC factors, such as atmospheric distribution, radiative forcing and chemical transport in the HTP.
NASA Astrophysics Data System (ADS)
Evangeliou, N.; Balkanski, Y.; Hao, W. M.; Petkov, A.; Silverstein, R. P.; Corley, R.; Nordgren, B. L.; Urbanski, S. P.; Eckhardt, S.; Stohl, A.; Tunved, P.; Crepinsek, S.; Jefferson, A.; Sharma, S.; Nøjgaard, J. K.; Skov, H.
2016-06-01
In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002-2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory - northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (Moderate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were adopted from the MACCity (Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment) emission inventory.During the 12-year period, an average area of 250 000 km2 yr-1 was burned in northern Eurasia (FEI-NE) and the global emissions of BC ranged between 8.0 and 9.5 Tg yr-1 (FEI-NE+MACCity). For the BC emitted in the Northern Hemisphere (based on FEI-NE+MACCity), about 70 % originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NE+MACCity inventory, we found that 102 ± 29 kt yr-1 BC was deposited in the Arctic (defined here as the area north of 67° N) during the 12 years simulated, which was twice as much as when using the MACCity inventory (56 ± 8 kt yr-1). The annual mass of BC deposited in the Arctic from all sources (FEI-NE in northern Eurasia, MACCity elsewhere) is significantly higher by about 37 % in 2009 (78 vs. 57 kt yr-1) to 181 % in 2012 (153 vs. 54 kt yr-1), compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere thus represents 68 % of the BC deposited from all BC sources (the remaining being due to anthropogenic sources). Northern Eurasian vegetation fires (FEI-NE) contributed 85 % (79-91 %) to the BC deposited over the Arctic from all BB sources in the Northern Hemisphere.We estimate that about 46 % of the BC deposited over the Arctic from vegetation fires in northern Eurasia originated from Siberia, 6 % from Kazakhstan, 5 % from Europe, and about 1 % from Mongolia. The remaining 42 % originated from other areas in northern Eurasia. About 42 % of the BC released from northern Eurasian vegetation fires was deposited over the Arctic (annual average: 17 %) during spring and summer.
Lengacher, Cecile A; Reich, Richard R; Paterson, Carly L; Jim, Heather S; Ramesar, Sophia; Alinat, Carissa B; Budhrani, Pinky H; Farias, Jerrica R; Shelton, Melissa M; Moscoso, Manolete S; Park, Jong Y; Kip, Kevin E
2015-04-01
The purpose of this study was to investigate the effects of mindfulness-based stress reduction for breast cancer survivors (MBSR(BC)) on multiple measures of objective and subjective sleep parameters among breast cancer survivors (BCS). Data were collected using a two-armed randomized controlled design among BCS enrolled in either a 6-week MBSR(BC) program or a usual care (UC) group with a 12-week follow-up. The present analysis is a subset of the larger parent trial (ClinicalTrials.gov Identifier: NCT01177124). Seventy-nine BCS participants (mean age 57 years), stages 0-III, were randomly assigned to either the formal (in-class) 6-week MBSR(BC) program or UC. Subjective sleep parameters (SSP) (i.e., sleep diaries and the Pittsburgh Sleep Quality Index (PSQI)) and objective sleep parameters (OSP) (i.e., actigraphy) were measured at baseline, 6 weeks, and 12 weeks after completing the MBSR(BC) or UC program. Results showed indications of a positive effect of MBSR(BC) on OSP at 12 weeks on sleep efficiency (78.2% MBSR(BC) group versus 74.6% UC group, p = 0.04), percent of sleep time (81.0% MBSR(BC) group versus 77.4% UC group, p = 0.02), and less number waking bouts (93.5 in MBSR(BC) group versus 118.6 in the UC group, p < 0.01). Small nonsignificant improvements were found in SSP in the MBSR(BC) group from baseline to 6 weeks (PSQI total score, p = 0.09). No significant relationship was observed between minutes of MBSR(BC) practice and SSP or OSP. These data suggest that MBSR(BC) may be an efficacious treatment to improve objective and subjective sleep parameters in BCS. Copyright © 2014 John Wiley & Sons, Ltd.
Romieu, Isabelle; Ferrari, Pietro; Rinaldi, Sabina; Slimani, Nadia; Jenab, Mazda; Olsen, Anja; Tjonneland, Anne; Overvad, Kim; Boutron-Ruault, Marie-Christine; Lajous, Martin; Kaaks, Rudolf; Teucher, Birgit; Boeing, Heiner; Trichopoulou, Antonia; Naska, Androniki; Vasilopoulo, Effie; Sacerdote, Carlotta; Tumino, Rosario; Masala, Giovanna; Sieri, Sabina; Panico, Salvatore; Bueno-de-Mesquita, H Bas; Van-der-A, Daphne; van Gils, Carla H; Peeters, Petra H M; Lund, Eiliv; Skeie, Guri; Asli, Lene Angell; Rodriguez, Laudina; Navarro, Carmen; Amiano, Pilar; Sanchez, Maria-José; Barricarte, Aurelio; Buckland, Genevieve; Sonestedt, Emily; Wirfält, Elisabet; Hallmans, Göran; Johansson, Ingegerd; Key, Timothy J; Allen, Naomi E; Khaw, Kay-Tee; Wareham, Nicholas J; Norat, Teresa; Riboli, Elio; Clavel-Chapelon, Françoise
2012-08-01
The glycemic potential of a diet is associated with chronically elevated insulin concentrations, which may augment breast cancer (BC) risk by stimulating insulin receptor or by affecting insulin-like growth factor I (IGF-I)-mediated mitogenesis. It is unclear whether this effect differs by BC phenotype. The objective was to investigate the relation between glycemic index (GI), glycemic load (GL), and total carbohydrate intake with BC by using data from the European Prospective Investigation into Cancer and Nutrition (EPIC). We identified 11,576 women with invasive BC among 334,849 EPIC women aged 34-66 y (5th to 95th percentiles) at baseline over a median follow-up of 11.5 y. Dietary GI and GL were calculated from country-specific dietary questionnaires. We used multivariable Cox proportional hazards models to quantify the association between GI, GL, and carbohydrate intake and BC risk. BC tumors were classified by receptor status. Overall GI, GL, and carbohydrates were not related to BC. Among postmenopausal women, GL and carbohydate intake were significantly associated with an increased risk of estrogen receptor-negative (ER(-)) BC when extreme quintiles (Q) were compared [multivariable HR(Q5-Q1) (95% CI) = 1.36 (1.02, 1.82; P-trend = 0.010) and HR(Q5-Q1) = 1.41 (1.05, 1.89; P-trend = 0.009), respectively]. Further stratification by progesterone receptor (PR) status showed slightly stronger associations with ER(-)/PR(-) BC [HR(Q5-Q1) (95% CI) = 1.48 (1.07, 2.05; P-trend = 0.010) for GL and HR(Q5-Q1) = 1.62 (1.15, 2.30; P-trend = 0.005) for carbohydrates]. No significant association with ER-positive BC was observed. Our results indicate that a diet with a high GL and carbohydrate intake is positively associated with an increased risk of developing ER(-) and ER(-)/PR(-) BC among postmenopausal women.
Tsuchiya, Miyako; Horn, Sandra; Ingham, Roger
2015-01-01
Disclosing illness-related problems is the first step in help-seeking. The aim of this qualitative study was to explore Japanese breast cancer (BC) survivors' decision-making about disclosure of lymphoedema symptoms to people in their social networks. A total of ten women participated in group discussions in Japan. A dual analytic approach, thematic analysis and conceptual analysis, was applied to the transcripts. Two themes (perceived responsibility of social roles within the family and unsupportive reactions to BC from others) affected participants' decision-making. Support programs for Japanese BC survivors who feel unable to disclose lymphoedema symptoms to family members are suggested.
Ambient black carbon particulate matter in the coal region of Dhanbad, India.
Singh, S; Tiwari, S; Hopke, P K; Zhou, C; Turner, J R; Panicker, A S; Singh, P K
2018-02-15
Light-absorbing, atmospheric particles have gained greater attention in recent years because of their direct and indirect impacts on regional and global climate. Atmospheric black carbon (BC) aerosol is a leading climate warming agent, yet uncertainties in the global direct aerosol radiative forcing remain large. Based on a year of aerosol absorption measurements at seven wavelengths, BC concentrations were investigated in Dhanbad, the coal capital of India. Coal is routinely burned for cooking and residential heat as well as in small industries. The mean daily concentrations of ultraviolet-absorbing black carbon measured at 370nm (UVBC) and black carbon measured at 880nm (BC) were 9.8±5.7 and 6.5±3.8μgm -3 , respectively. The difference between UVBC and BC, Delta-C, is an indicator of biomass or residential coal burning and averaged 3.29±4.61μgm -3 . An alternative approach uses the Ǻngstrom Exponent (AE) to estimate the biomass/coal and traffic BC concentrations. Biomass/coal burning contributed ~87% and high temperature, fossil-fuel combustion contributed ~13% to the annual average BC concentration. The post-monsoon seasonal mean UVBC values were 10.9μgm -3 and BC of 7.2μgm -3 . Potential source contribution function analysis showed that in the post-monsoon season, air masses came from the central and northwestern Indo-Gangetic Plains where there is extensive agricultural burning. The mean winter UVBC and BC concentrations were 15.0 and 10.1μgm -3 , respectively. These higher values were largely produced by local sources under poor dispersion conditions. The direct radiative forcing (DRF) due to UVBC and BC at the surface (SUR) and the top of the atmosphere (TOA) were calculated. The mean atmospheric heating rates due to UVBC and BC were estimated to be 1.40°Kday -1 and 1.18°Kday -1 , respectively. This high heating rate may affect the monsoon circulation in this region. Copyright © 2017 Elsevier B.V. All rights reserved.
Zewenghiel, Luwam; Lindman, Henrik; Valachis, Antonis
2018-05-18
The aim of this study was to investigate the impact of body mass index (BMI) on the efficacy of endocrine therapy in postmenopausal women with metastatic hormone receptor breast cancer (HR+BC) as well as to identify if the potential difference in efficacy was associated with Fulvestrant only or both aromatase inhibitors (AIs) and Fulvestrant. A consecutive cohort of postmenopausal women with HR+metastatic breast cancer that have received endocrine therapy including Fulvestrant as a metastatic treatment strategy at the Departments of Oncology in Eskilstuna and Uppsala, Sweden, between 2008 and 2016 were identified. The primary outcome of the study was time to disease progression (TTP) during the treatment with Fulvestrant in overweight and obese women compared to patient with normal BMI. In total, 173 patients were enrolled in the study cohort, amongst these, 141 patients received both Fulvestrant and AIs and 32 received only Fulvestrant. No statistical significant association was observed between the three BMI categories and TTP, during Fulvestrant treatment (p = 0.136). The rates of objective response and clinical benefit due to Fulvestrant were similar among patients with normal weight, overweight and obesity, respectively. No difference in treatment efficacy was seen between normal, overweight and obese women with metastatic HR+BC, when treated with Fulvestrant. Until further research with prospective studies is available, there is no evidence to support any modification in how Fulvestrant treatment is used in patients with metastatic breast cancer in regard to BMI. Copyright © 2018 Elsevier Ltd. All rights reserved.
Long-term effect of weight loss on body composition and performance in elite athletes.
Garthe, Ina; Raastad, Truls; Sundgot-Borgen, Jorunn
2011-10-01
When weight loss (WL) is needed, it is recommended that athletes do it gradually by 0.5-1 kg/wk through moderate energy restriction. However, the effect of WL rate on long-term changes in body composition (BC) and performance has not been investigated in elite athletes. To compare changes in body mass (BM), fat mass (FM), lean body mass (LBM), and performance 6 and 12 mo after 2 different WL interventions promoting loss of 0.7% vs. 1.4% of body weight per wk in elite athletes. Twenty-three athletes completed 6- and 12-mo postintervention testing (slow rate [SR] n = 14, 23.5 ± 3.3 yr, 72.2 ± 12.2 kg; fast rate [FR] n = 9, 21.4 ± 4.0 yr, 71.6 ± 12.0 kg). The athletes had individualized diet plans promoting the predetermined weekly WL during intervention, and 4 strength-training sessions per wk were included. BM, BC, and strength (1-repetition maximum) were tested at baseline, postintervention, and 6 and 12 mo after the intervention. BM decreased by ~6% in both groups during the intervention but was not different from baseline values after 12 mo. FM decreased in SR and FR during the intervention by 31% ± 3% vs. 23% ± 4%, respectively, but was not different from baseline after 12 mo. LBM and upper body strength increased more in SR than in FR (2.0% ± 1.3% vs. 0.8% ± 1.1% and 12% ± 2% vs. 6% ± 2%) during the intervention, but after 12 mo there were no significant differences between groups in BC or performance. There were no significant differences between groups after 12 mo, suggesting that WL rate is not the most important factor in maintaining BC and performance after WL in elite athletes.
Dietary factors associated with bladder cancer.
Piyathilake, Chandrika
2016-06-01
It is biologically plausible for dietary factors to influence bladder cancer risk considering that beneficial as well as harmful components of a diet are excreted through the urinary tract and in direct contact with the epithelium of the bladder. However, studies that investigated the association between dietary factors and bladder cancer (BC) risk have largely reported inconsistent results. The macronutrient intake and risk of BC could have yield inconsistent results across studies because of lack of details on the type, source and the quantities of different dietary fatty acids consumed. There is evidence to suggest that consumption of processed meat may increase BC risk. Dietary carbohydrate intake does not appear to be directly associated with BC risk. Even though a large number of studies have investigated the association between fruit/vegetable consumption/micronutrients in those and BC risk, they have yielded inconsistent results. Gender-specific subgroup analysis, details of how fruits and vegetables are consumed (raw vs. cooked), adequate control for smoking status/aggressiveness of the cancer and consideration of genetic make-up may clarify these inconsistent results. There is no strong evidence to suggest that supplementation with any common micronutrient is effective in reducing BC risk. These limitations in published research however do not totally eclipse the observation that a diet rich in fruits and vegetables and low in processed meat along with especially smoking cessation may convey some protective effects against BC risk.
Next-generation sequencing in familial breast cancer patients from Lebanon.
Jalkh, Nadine; Chouery, Eliane; Haidar, Zahraa; Khater, Christina; Atallah, David; Ali, Hamad; Marafie, Makia J; Al-Mulla, Mohamed R; Al-Mulla, Fahd; Megarbane, Andre
2017-02-15
Familial breast cancer (BC) represents 5 to 10% of all BC cases. Mutations in two high susceptibility BRCA1 and BRCA2 genes explain 16-40% of familial BC, while other high, moderate and low susceptibility genes explain up to 20% more of BC families. The Lebanese reported prevalence of BRCA1 and BRCA2 deleterious mutations (5.6% and 12.5%) were lower than those reported in the literature. In the presented study, 45 Lebanese patients with a reported family history of BC were tested using Whole Exome Sequencing (WES) technique followed by Sanger sequencing validation. Nineteen pathogenic mutations were identified in this study. These 19 mutations were found in 13 different genes such as: ABCC12, APC, ATM, BRCA1, BRCA2, CDH1, ERCC6, MSH2, POLH, PRF1, SLX4, STK11 and TP53. In this first application of WES on BC in Lebanon, we detected six BRCA1 and BRCA2 deleterious mutations in seven patients, with a total prevalence of 15.5%, a figure that is lower than those reported in the Western literature. The p.C44F mutation in the BRCA1 gene appeared twice in this study, suggesting a founder effect. Importantly, the overall mutation prevalence was equal to 40%, justifying the urgent need to deploy WES for the identification of genetic variants responsible for familial BC in the Lebanese population.
Assessment of Residential Biomass Burning During Winter in Las Vegas, Nevada
NASA Astrophysics Data System (ADS)
Brown, S. G.; Lee, T.; Olson, D.; Norris, G.; Roberts, P. T.; Collett, J. L.
2011-12-01
Concentrations of organic matter (OM) and black carbon (BC) were measured at a site in a residential area of Las Vegas, Nevada, and multiple analytical methods were used to determine the amounts attributable to biomass burning. In January 2008, measurements of a wood burning tracer, levoglucosan, were made via gas chromatography-mass spectroscopy (n=17). In addition, an Aerodyne High Resolution Aerosol Mass Spectrometer (HR-AMS) measured OM and C2H4O2+, a levoglucosan-derived fragment. During 2007 and 2008, two-channel Aethalometer data were also collected; the difference between the 370 nm and 880 nm channels (UV-BC difference) was used to indicate the presence of wood smoke. Concentrations of OM, BC, C2H4O2+, and levoglucosan, as well as the UV-BC difference, were all highest during the evening hours (generally between 1800 and 0000 LST). Average OM concentrations were 3.3 μg/m3 during January but were 6.9 μg/m3 during the overnight hours (between 1700 and 0000 LST). Median levoglucosan concentrations were 0.14 μg/m3. The correlation of levoglucosan with C2H4O2+ was very high (r2=0.92). During the evening hours, correlation between BC and C2H4O2+ was good (r2=0.79); however, correlation was poor during other hours (r2<0.40), suggesting that other emissions such as mobile-source emissions were likely the dominant source of BC during those hours. C2H4O2+ showed modest correlation with UV-BC (e.g., r2=0.45). Using EPA's positive matrix factorization tool, EPA PMF, on the January HR-AMS data, we determined that biomass burning organic aerosol (BBOA) constituted 12% of the OM on average, but about 25% of the OM during evening hours. BBOA correlated well with levoglucosan (r2=0.82) and C2H4O2+ (r2=0.93). Levoglucosan measurements suggested that wood burning could constitute 38% of the OM during the overnight periods on average, although this number greatly depends on the assumed ratio of levoglucosan to OM in a source profile for residential biomass burning. The particle size distributions of mass for OM and m/z 60 (which includes other ions but is dominated by C2H4O2+) were quite broad, peaking between 100 nm and 450 nm for m/z 60 and between 200 nm and 450 nm for OM, suggesting relatively fresh aerosol. H/C ratios were highest (typically 1.57) and O/C ratios were lowest (typically 0.25) during evening hours, and the OM/OC ratio was, on average, 1.47, also indicating very fresh aerosol. Using levoglucosan and AMS markers, we can separate residential biomass burning influences from other sources of carbonaceous aerosol in the area.
Boraska, Vesna; Day-Williams, Aaron; Franklin, Christopher S; Elliott, Katherine S; Panoutsopoulou, Kalliope; Tachmazidou, Ioanna; Albrecht, Eva; Bandinelli, Stefania; Beilin, Lawrence J; Bochud, Murielle; Cadby, Gemma; Ernst, Florian; Evans, David M; Hayward, Caroline; Hicks, Andrew A; Huffman, Jennifer; Huth, Cornelia; James, Alan L; Klopp, Norman; Kolcic, Ivana; Kutalik, Zoltán; Lawlor, Debbie A; Musk, Arthur W; Pehlic, Marina; Pennell, Craig E; Perry, John R B; Peters, Annette; Polasek, Ozren; St Pourcain, Beate; Ring, Susan M; Salvi, Erika; Schipf, Sabine; Staessen, Jan A; Teumer, Alexander; Timpson, Nicholas; Vitart, Veronique; Warrington, Nicole M; Yaghootkar, Hanieh; Zemunik, Tatijana; Zgaga, Lina; An, Ping; Anttila, Verneri; Borecki, Ingrid B; Holmen, Jostein; Ntalla, Ioanna; Palotie, Aarno; Pietiläinen, Kirsi H; Wedenoja, Juho; Winsvold, Bendik S; Dedoussis, George V; Kaprio, Jaakko; Province, Michael A; Zwart, John-Anker; Burnier, Michel; Campbell, Harry; Cusi, Daniele; Smith, George Davey; Frayling, Timothy M; Gieger, Christian; Palmer, Lyle J; Pramstaller, Peter P; Rudan, Igor; Völzke, Henry; Wichmann, H-Erich; Wright, Alan F; Zeggini, Eleftheria
2012-01-01
Brachial circumference (BC), also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS) meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men) of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05) in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC.
Boraska, Vesna; Day-Williams, Aaron; Franklin, Christopher S.; Elliott, Katherine S.; Panoutsopoulou, Kalliope; Tachmazidou, Ioanna; Albrecht, Eva; Bandinelli, Stefania; Beilin, Lawrence J.; Bochud, Murielle; Cadby, Gemma; Ernst, Florian; Evans, David M.; Hayward, Caroline; Hicks, Andrew A.; Huffman, Jennifer; Huth, Cornelia; James, Alan L.; Klopp, Norman; Kolcic, Ivana; Kutalik, Zoltán; Lawlor, Debbie A.; Musk, Arthur W.; Pehlic, Marina; Pennell, Craig E.; Perry, John R. B.; Peters, Annette; Polasek, Ozren; Pourcain, Beate St; Ring, Susan M.; Salvi, Erika; Schipf, Sabine; Staessen, Jan A.; Teumer, Alexander; Timpson, Nicholas; Vitart, Veronique; Warrington, Nicole M.; Yaghootkar, Hanieh; Zemunik, Tatijana; Zgaga, Lina; An, Ping; Anttila, Verneri; Borecki, Ingrid B.; Holmen, Jostein; Ntalla, Ioanna; Palotie, Aarno; Pietiläinen, Kirsi H.; Wedenoja, Juho; Winsvold, Bendik S.; Dedoussis, George V.; Kaprio, Jaakko; Province, Michael A.; Zwart, John-Anker; Burnier, Michel; Campbell, Harry; Cusi, Daniele; Davey Smith, George; Frayling, Timothy M.; Gieger, Christian; Palmer, Lyle J.; Pramstaller, Peter P.; Rudan, Igor; Völzke, Henry; Wichmann, H. -Erich; Wright, Alan F.; Zeggini, Eleftheria
2012-01-01
Brachial circumference (BC), also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS) meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men) of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05) in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC. PMID:22479309
Blood based cell biopsy for early detection of cancer
NASA Astrophysics Data System (ADS)
Tang, Cha-Mei; Adams, Daniel; Adams, Diane; Alpaugh, R. Katherine; Cristofanilli, Massimo; Martin, Stuart; Chumsri, Saranya; Marks, Jeffrey
Early detection (ED) of cancer holds the promise for less aggressive treatments and better outcome. However, there are few accepted methods for ED. We report on a previously unknown blood cell found specifically in the peripheral blood of many solid tumors. They are defined as Cancer Associated Macrophage-Like cells (CAMLs) and are characterized by large size (25-300 μm) and expression of cancer markers. CAMLs were isolated on precision filters during blood filtration. We conducted prospective studies in breast cancer (BC) to ascertain CAML prevalence, specificity and sensitivity in relation to disease status at clinical presentation. We report on two related but separate studies: 1) the isolation of CAMLs from patients with known invasive BC, compared to healthy volunteers and, 2) a double blind study conducted on women undergoing core needle biopsy to evaluate suspicious breast masses. The studies show that CAMLs are found in all stages of BC and suggest that detection of CAMLs can differentiate patients with BC from those with benign breast conditions and healthy individuals. This non-invasive blood test can be potentially used for ED of BC and other malignancies after validation studies with the advantage of a minimally invasive procedure and longitudinal monitoring. This work was supported by Grants from Maryland TEDCO MTTCF, R01-CA154624 from NIH, KG100240 from Susan G. Komen Foundation, Era of Hope Scholar award from DoD (BC100675), and U01-CA084955 from NCI EDRN.
Kostev, Karel; Jacob, Louis; Kalder, Matthias
2017-10-01
Breast cancer (BC) and genital organ cancers (GOC) are known to have a major impact on the quality of life of patients. The aim of this study was to analyze the risk of depression, anxiety, and adjustment disorders in women in Germany with a suspected but unconfirmed diagnosis of BC or GOC in their medical history. This study included women who received a suspected diagnosis of BC or GOC and were followed between 2007 and 2015 (index date). These women were matched (1:1:1) by age to women with a confirmed diagnosis of BC or GOC and women without a cancer diagnosis. The main outcome measure of the study was the rate of depression, anxiety, and adjustment disorder diagnoses within 3 years of the index date. The present analysis included a total of 4,842 patients (mean age = 49.3 years). Within 3 years of the index date, 23.5% of women with a confirmed diagnosis of BC or GOC, 14.1% of those with a suspected diagnosis of BC or GOC, and 10.5% of those without a cancer diagnosis developed depression, anxiety, or an adjustment disorder (log-rank p value <0.001). Women with a suspected diagnosis of cancer were at a higher risk for these psychiatric conditions than those without a cancer diagnosis (BC and GOC: HR 1.32; BC: HR 1.21; GOC: HR 1.50). A suspected diagnosis of BC or GOC in a woman's medical history is associated with an increased risk of developing depression, anxiety, and adjustment disorders.
De Silva, Daswin; De Silva, M.V.C.; Ranasinghe, Tamra I J; Lawrentschuk, Nathan; Bolton, Damien; Persad, Raj
2012-01-01
Purpose To investigate the incidence of bladder cancer (BC) in Sri Lanka and to compare risk factors and outcomes with those of other South Asian nations and South Asian migrants to the United Kingdom (UK) and the United States (US). Materials and Methods The incidence of BC in Sri Lanka was examined by using two separate cancer registry databases over a 5-year period. Smoking rates were compiled by using a population-based survey from 2001 to 2009 and the relative risk was calculated by using published data. Results A total of 637 new cases of BC were diagnosed over the 5-year period. Sri Lankan BC incidence increased from 1985 but remained low (1.36 and 0.3 per 100,000 in males and females) and was similar to the incidence in other South Asian countries. The incidence was lower, however, than in migrant populations in the US and the UK. In densely populated districts of Sri Lanka, these rates almost doubled. Urothelial carcinoma accounted for 72%. The prevalence of male smokers in Sri Lanka was 39%, whereas Pakistan had higher smoking rates with a 6-fold increase in BC. Conclusions Sri Lankan BC incidence was low, similar to other South Asian countries (apart from Pakistan), but the actual incidence is likely higher than the cancer registry rates. Smoking is likely to be the main risk factor for BC. Possible under-reporting in rural areas could account for the low rates of BC in Sri Lanka. Any genetic or environmental protective effects of BC in South Asians seem to be lost on migration to the UK or the US and with higher levels of smoking, as seen in Pakistan. PMID:22670188
Wang, Xuejiang; Wu, Zhen; Wang, Yin; Wang, Wei; Wang, Xin; Bu, Yunjie; Zhao, Jianfu
2013-11-15
ZnO coupled TiO2/bamboo charcoal (ZnO-TiO2/BC) was prepared using the sol-gel method combined with microwave irradiation. The ZnO-TiO2/BC and TiO2/BC were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N2 adsorption (BET), and UV-vis diffuse reflectance spectroscopy (UV-vis-DRS). The ZnO dopant promoted the transformation of anatase TiO2 to rutile phase, and a significant red shift of absorption edge was brought out due to the interfacial coupling effect between ZnO and TiO2 particles. The BET specific surface area and total pore volume decreased with ZnO doping, indicating that some micropores were blocked. SEM studies indicated that ZnO was almost uniformly deposited on the surface of the ZnO-TiO2/BC. The adsorption and photocatalytic degradation experiments showed that the photo-degrade efficiency for Zno-TiO2/BC was higher than that of TiO2/BC, and for both composites, the removal efficiency of HA increased as pH decreased from 10.0 to 2.0. The degradation of HA by ZnO-TiO2/BC and TiO2/BC fitted well with the Langmuir-Hinshelwood kinetics model, and HA degradation was achieved through a synergistic mechanism of adsorption and photocatalysis. ZnO-TiO2/BC could be used as an effective and alternative photocatalyst for the treatment of water contaminated by organic pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.
Samuel, Cleo A; Pinheiro, Laura C; Reeder-Hayes, Katherine E; Walker, Jennifer S; Corbie-Smith, Giselle; Fashaw, Shekinah A; Woods-Giscombe, Cheryl; Wheeler, Stephanie B
2016-11-01
Compared with young White women, young Black women are more likely to present with aggressive breast cancer (BC) subtypes that are potentially linked to worse health-related quality of life (HRQOL); however, there is limited consensus regarding HRQOL needs among young Black BC survivors. Employing Ferrell's framework on QOL in BC (i.e., physical, psychological, social, and spiritual well-being), we conducted a systematic review on HRQOL among Black BC survivors aged <50 years and proposed recommendations for advancing HRQOL research and care for this population. Literature searches were conducted in MEDLINE/PubMed, EMBASE, CINAHL, and PsycINFO to identify relevant articles published from 1995 to 2015. Abstracts and full-text articles were screened using predetermined inclusion/exclusion criteria and evaluated for quality. A total of 2533 articles were identified, but six met eligibility criteria. Most studies examined multiple HRQOL domains, with the psychological domain most represented. Compared with their older, White, and BC-free counterparts, young Black BC survivors reported greater fear of dying, unmet supportive care needs, financial distress, and lower physical/functional well-being. However, spiritual well-being appeared favorable for young Black survivors. Research gaps include the absence of longitudinal studies and under-representation of studies examining physical, social, and particularly, spiritual HRQOL in young Black BC survivors. Young Black BC survivors generally experience suboptimal HRQOL after BC diagnosis. As few studies have reported on HRQOL among this group, future research and oncology care should prioritize young Black women in ways that recognize their unique concerns, in order to ensure better HRQOL outcomes both during and after treatment.
Estimate of the direct and indirect annual cost of bacterial conjunctivitis in the United States
2009-01-01
Background The aim of this study was to estimate both the direct and indirect annual costs of treating bacterial conjunctivitis (BC) in the United States. This was a cost of illness study performed from a U.S. healthcare payer perspective. Methods A comprehensive review of the medical literature was supplemented by data on the annual incidence of BC which was obtained from an analysis of the National Ambulatory Medical Care Survey (NAMCS) database for the year 2005. Cost estimates for medical visits and laboratory or diagnostic tests were derived from published Medicare CPT fee codes. The cost of prescription drugs was obtained from standard reference sources. Indirect costs were calculated as those due to lost productivity. Due to the acute nature of BC, no cost discounting was performed. All costs are expressed in 2007 U.S. dollars. Results The number of BC cases in the U.S. for 2005 was estimated at approximately 4 million yielding an estimated annual incidence rate of 135 per 10,000. Base-case analysis estimated the total direct and indirect cost of treating patients with BC in the United States at $ 589 million. One- way sensitivity analysis, assuming either a 20% variation in the annual incidence of BC or treatment costs, generated a cost range of $ 469 million to $ 705 million. Two-way sensitivity analysis, assuming a 20% variation in both the annual incidence of BC and treatment costs occurring simultaneously, resulted in an estimated cost range of $ 377 million to $ 857 million. Conclusion The economic burden posed by BC is significant. The findings may prove useful to decision makers regarding the allocation of healthcare resources necessary to address the economic burden of BC in the United States. PMID:19939250
Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2016-06-15
The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.
Yi, Jiang; Lam, Tina I; Yokoyama, Wallace; Cheng, Luisa W; Zhong, Fang
2014-09-03
Undesirable aggregation of nanoparticles stabilized by proteins may occur at the protein's isoelectric point when the particle has zero net charge. Stability against aggregation of nanoparticles may be improved by reacting free amino groups with reducing sugars by the Maillard reaction. β-Lactoglobulin (BLG)-dextran conjugates were characterized by SDS-PAGE and CD. Nanoparticles (60-70 nm diameter) of β-carotene (BC) encapsulated by BLG or BLG-dextran were prepared by the homogenization-evaporation method. Both BLG and BLG-dextran nanoparticles appeared to be spherically shaped and uniformly dispersed by TEM. The stability and release of BC from the nanoparticles under simulated gastrointestinal conditions were evaluated. Dextran conjugation prevented the flocculation or aggregation of BLG-dextran particles at pH ∼4-5 compared to very large sized aggregates of BLG nanoparticles. The released contents of BC from BLG and BLG-dextran nanoparticles under acidic gastric conditions were 6.2 ± 0.9 and 5.4 ± 0.3%, respectively. The release of BC from BLG-dextran nanoparticles by trypsin digestion was 51.8 ± 4.3% of total encapsulated BC, and that from BLG nanoparticles was 60.9 ± 2.9%. Neither BLG-BC nanoparticles nor the Maillard-reacted BLG-dextran conjugates were cytotoxic to Caco-2 cells, even at 10 mg/mL. The apparent permeability coefficient (Papp) of Caco-2 cells to BC was improved by nanoencapsulation, compared to free BC suspension. The results indicate that BC-encapsulated β-lactoglobulin-dextran-conjugated nanoparticles are more stable to aggregation under gastric pH conditions with good release and permeability properties.
Ganz, Patricia A.; Habel, Laurel A.; Weltzien, Erin K.; Caan, Bette J.; Cole, Steven W.
2011-01-01
There is increasing interest in the relationship between host lifestyle factors and the outcomes of cancer treatment. Behavioral factors, comorbid conditions, and non-cancer related pharmaceutical exposures may affect breast cancer (BC) outcomes. We used observational data from the LACE Study cohort (women with early stage BC from the Kaiser Permanente Northern California Cancer Registry) to examine the association between beta-blockers (BB) and/or angiotensin converting enzyme inhibitors (ACEi) and BC recurrence, BC-specific mortality, and overall mortality. Among 1,779 women, there were 292 BC recurrences, 174 BC deaths, and 323 total deaths. 23% were exposed to either a BB and/or an ACEi. These drugs were associated with older age, postmenopausal status, tamoxifen therapy, greater pre-diagnosis BMI, hypertension, and diabetes. In Cox proportional hazards models, ACEi exposure was associated with BC recurrence (HR 1.56, 95% CI 1.02, 2.39, p=0.04), but not cause-specific mortality or overall mortality. Combined ACEi and BB was associated with overall mortality (HR 1.94, 95% CI 1.22, 3.10, p=0.01). BB exposure was associated with lower hazard of recurrence and cause-specific mortality. However, there was no evidence of a dose response with either medication. For recurrence and cause-specific mortality, BB combined with ACEi was associated with a lower HR for the outcome than when ACEi alone was used. These hypothesis generating findings suggest that BC recurrence and survival were associated with exposure to two commonly used classes of anti-hypertensive medications. These observations need to be confirmed and suggest that greater attention should focus on the potential role of these commonly used medications in BC outcomes. PMID:21479924
Estimating fat mass in heart failure patients.
Trippel, Tobias Daniel; Lenk, Julian; Gunga, Hanns-Christian; Doehner, Wolfram; von Haehling, Stephan; Loncar, Goran; Edelmann, Frank; Pieske, Burkert; Stahn, Alexander; Duengen, Hans-Dirk
2016-01-01
Body composition (BC) assessments in heart failure (HF) patients are mainly based on body weight, body mass index and waist-to-hip ratio. The present study compares BC assessments by basic anthropometry, dual energy X-ray absorptiometry (DXA), bioelectrical impedance spectroscopy (BIS), and air displacement plethysmography (ADP) for the estimation of fat (FM) and fat-free mass (FFM) in a HF population. In this single-centre, observational pilot study we enrolled 52 patients with HF (33 HF with reduced ejection fraction (HFrEF), 19 HF with preserved ejection fraction (HFpEF); mean age was 67.7 ±9.9 years, 41 male) and 20 healthy controls. DXA was used as a reference standard for the measurement of FM and FFM. In the HF population, linear regression for DXA-FM and waist-to-hip ratio ( r = -0.05, 95% CI: (-0.32)-0.23), body mass index ( r = 0.47, 95% CI: 0.23-0.669), and body density ( r = -0.87, 95% CI: (-0.93)-(-0.87)) was obtained. In HF, Lin's concordance correlation coefficient of DXA-FM (%) with ADP-FM (%) was 0.76 (95% CI: 0.64-0.85) and DXA-FFM [kg] with DXA-ADP [kg] was 0.93 (95% CI: 0.88-0.96). DXA-FM (%) for BIS-FM (%) was 0.69 (95% CI: 0.54-0.80) and 0.73 (95% CI: 0.60-0.82) for DXA-FFM [kg] and BIS-FFM [kg]. Body density is a useful surrogate for FM. ADP was found suitable for estimating FM (%) and FFM [kg] in HF patients. BIS showed acceptable results for the estimation of FM (%) in HFrEF and for FFM [kg] in HFpEF patients. We encourage selecting a suitable method for BC assessment according to the compartment of interest in the HF population.
Effects of Wegener-Bergeron-Findeisen Process on Global Black Carbon Distribution
NASA Astrophysics Data System (ADS)
Qi, L.
2016-12-01
In mixed-phase clouds, the Wegener-Bergeron-Findeisen (WBF) process (ice crystals may grow while water drops evaporate, thereby releasing black carbon (BC) particles into the interstitial air) slows down wet scavenging of BC. Rimming (snowflakes fall and collect cloud water drops and the BC in them along their pathways), in contrast, results in more efficient wet scavenging. We systematically investigate the effects of WBF on BC scavenging efficiency, surface BCair, deposition flux, concentration in snow, and washout ratio using a global 3D chemical transport model. We differentiate riming- vs WBF-dominated in-cloud scavenging based on liquid water content and temperature. Specifically, we relate WBF to either temperature or ice mass fraction in mixed-phase clouds. We find that at Jungfraujoch, Switzerland and Abisko, Sweden, where WBF dominates, the discrepancies of simulated BC scavenging efficiency and washout ratio are significantly reduced (from a factor of 3 to 10% and from a factor of 4-5 to a factor of two). However, at Zeppelin, Norway, where riming dominates, simulation of BC scavenging efficiency, BCair, and washout ratio become worse (relative to observations) when WBF is included. There is thus an urgent need for extensive observations to distinguish and characterize riming- versus WBF-dominated aerosol scavenging in mixed-phase clouds and the associated BC scavenging efficiency. We find the reduction resulting from WBF to global BC scavenging efficiency varies substantially, from 8% in the tropics to 76% in the Arctic. The resulting annual mean BCair increases by up to 156% at high altitudes and at northern high latitudes. Overall, WBF halves the model-observation discrepancy (from -65% to -30%) of BCair across North America, Europe, China and the Arctic. Globally WBF increases BC burden from 0.22 to 0.29-0.35 mg m-2 yr-1, which partially explains the gap between observed and previous model simulated BC burdens over land (Bond et al., 2013). In addition, WBF significantly increases BC lifetime from 5.7 days to 8 days. We find that WBF decreases BCsnow at mid-latitudes (by 15%) but increases it in the Arctic (by 26%) while improving model comparisons with observations. In addition, WBF dramatically reduces the model-observation discrepancy of washout ratios in winter (from a factor of 16 to 4).
NASA Astrophysics Data System (ADS)
Evangeliou, Nikolaos; Thompson, Rona; Stohl, Andreas; Shevchenko, Vladimir P.
2016-04-01
Black carbon (BC) is the main light absorbing aerosol species and it has important impacts on air quality, weather and climate. The major source of BC is incomplete combustion of fossil fuels and the burning of biomass or bio-fuels (soot). Therefore, to understand to what extent BC affects climate change and pollutant dynamics, accurate knowledge of the emissions, distribution and variation of BC is required. Most commonly, BC emission inventory datasets are built by "bottom up" approaches based on activity data and emissions factors, but these methods are considered to have large uncertainty (Cao et al, 2006). In this study, we have used a Bayesian Inversion to estimate spatially resolved BC emissions. Emissions are estimated monthly for 2014 and over the domain from 180°W to 180°E and 50°N to 90°N. Atmospheric transport is modeled using the Lagrangian Particle Dispersion Model, FLEXPART (Stohl et al., 1998; 2005), and the inversion framework, FLEXINVERT, developed by Thompson and Stohl, (2014). The study domain is of particular interest concerning the identification and estimation of BC sources. In contrast to Europe and North America, where BC sources are comparatively well documented as a result of intense monitoring, only one station recording BC concentrations exists in the whole of Siberia. In addition, emissions from gas flaring by the oil industry have been geographically misplaced in most emission inventories and may be an important source of BC at high latitudes since a significant proportion of the total gas flared occurs at these high latitudes (Stohl et al., 2013). Our results show large differences with the existing BC inventories, whereas the estimated fluxes improve modeled BC concentrations with respect to observations. References Cao, G. et al. Atmos. Environ., 40, 6516-6527, 2006. Stohl, A. et al. Atmos. Environ., 32(24), 4245-4264, 1998. Stohl, A. et al. Atmos. Chem. Phys., 5(9), 2461-2474, 2005. Stohl, A. et al. Atmos. Chem. Phys., 13, 8833-8855, 2013. Thompson, R. L., and Stohl A. Geosci. Model Dev., 7, 2223-2242, 2014.
Properties of particulate pollution in the port city of Valparaiso, Chile
NASA Astrophysics Data System (ADS)
Marín, Julio C.; Raga, Graciela B.; Arévalo, Jorge; Baumgardner, Darrel; Córdova, Ana M.; Pozo, Diana; Calvo, Ana; Castro, Amaya; Fraile, Roberto; Sorribas, Mar
2017-12-01
The city of Valparaiso is home to one of the largest commercial ports on the west coast of South America. Port activities, that continue year-round, 24 h a day and seven days a week, produce emissions of pollutants, particularly aerosol particles composed of black and brown carbon (BC and BrC) that have serious impact on human population and the local environment. A measurement program was launched to document the magnitude of selected pollutants, to identify their sources and to evaluate the meteorological processes that enhance and transport these pollutants locally and regionally. In this study, we report the measurements made during four months: 25July - 25August 2014 (referred to as August 2014 throughout the manuscript), December 2014, January 2015 and March 2015. The daily mass concentrations of equivalent black carbon (eBC), derived from measurements of the light absorption coefficient, regularly exceed 5 μg m-3, a magnitude similar to values found in megacities such as Mexico City. The daily maximum number concentration of condensation nuclei (CN) is usually larger than 30000 cm-3. The Angstrom absorption exponent (AAE), derived from the absorption coefficients at 550 nm and 870 nm, is used to identify the primary sources of BC and BrC. In colder weather, emissions from the diesel fueled buses and trucks and the consumption of kerosene and wood for residential heating are the main sources of BC. In December, local wildfires contributed to the particle mass loading, but the day-to-day variability in boundary layer height and the presence of clouds and fog in occasions inhibited high concentrations. In March, the port activities reach a yearly peak during the seasonal export of agricultural products that translates into much more ship and truck traffic leading to very high eBC concentrations, comparable to values observed during August. The variability in weather patterns underscores the complexity of meteorological processes that drive the evolution and transport of pollution in Valparaiso.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan
2015-08-01
Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.
Liu, Rong; Ma, Lina; Mei, Jia; Huang, Shu; Yang, Shaoqiang; Li, Enyuan; Yuan, Guohui
2017-02-21
A flexible and freestanding supercapacitor electrode with a N,P-co-doped carbon nanofiber network (N,P-CNFs)/graphene (GN) composite loaded on bacterial cellulose (BC) is first designed and fabricated in a simple, low-cost, and effective approach. The porous structure and excellent mechanical properties make the BC paper an ideal substrate that shows a large areal mass of 8 mg cm -2 . As a result, the flexible N,P-CNFs/GN/BC paper electrode shows appreciable areal capacitance (1990 mF cm -2 in KOH and 2588 mF cm -2 in H 2 SO 4 electrolytes) without sacrificing gravimetric capacitance (248.8 F g -1 and 323.5 F g -1 ), exhibits excellent cycling ability (without capacity loss after 20 000 cycles), and remarkable tensile strength (42.8 MPa). By direct coupling of two membrane electrodes, the symmetric supercapacitor delivers a prominent areal capacitance of 690 mF cm -2 in KOH and 898 mF cm -2 in H 2 SO 4 , and remarkable power/energy density (19.98 mW cm -2 /0.096 mW h cm -2 in KOH and 35.01 mW cm -2 /0.244 mW h cm -2 in H 2 SO 4 ). Additionally, it shows stable behavior in both bent and flat states. These results promote new opportunities for N,P-CNFs/GN/BC paper electrodes as high areal performance, freestanding electrodes for flexible supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent N.; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn
2016-01-01
The direct aerosol radiative effects of biomass-burning (BB) aerosols over northern Indochina were estimated by using aerosol properties (physical, chemical, and optical) along with the vertical profile measurements from ground-based measurements with integration of an optical and a radiative transfer model during the Seven South East Asian Studies Biomass-Burning Aerosols Stratocumulus Environment: Lifecycles Interactions Experiment (7-SEASBASELInE) conducted in spring 2013. Cluster analysis of backward trajectories showed the air masses arriving at mountainous background site (Doi Ang Khang; 19.93degN, 99.05degE, 1536 m above mean sea level) in northern Indochina, mainly from near-source inland BB activities and being confined in the planetary boundary layer. The PM(sub10) and black carbon (BC)mass were 87 +/- 28 and 7 +/- 2 micrograms m(exp -3), respectively. The aerosol optical depth (AOD (sub 500) was found to be 0.26--1.13 (0.71 +/- 0.24). Finer (fine mode fraction is approximately or equal to 0.95, angstrom-exponent at 440-870 nm is approximately or equal to 1.77) and significantly absorbing aerosols(single scattering albedo is approximately or equal to 0.89, asymmetry-parameter is approximately or equal to 0.67, and absorption AOD 0.1 at 440 nm) dominated over this region. BB aerosols (water soluble and BC) were the main contributor to the aerosol radiative forcing (ARF), while others (water insoluble, sea salt and mineral dust) were negligible mainly due to their low extinction efficiency. BC contributed only 6 to the surface aerosol mass but its contribution to AOD was 12 (2 times higher). The overall mean ARF was 8.0 and -31.4 W m(exp -2) at top-of-atmosphere (TOA) and at the surface (SFC), respectively. Likely, ARF due to BC was +10.7 and -18.1 W m(exp -2) at TOA and SFC, respectively. BC imposed the heating rate of +1.4 K d(exp -1) within the atmosphere and highlighting its pivotal role in modifying the radiation budget. We propose that to upgrade our knowledge on BB aerosol radiative effects in BB source region, the long-term and extensive field measurements are needed.
Meza-Herrera, C A; Vargas-Beltran, F; Tena-Sempere, M; González-Bulnes, A; Macias-Cruz, U; Veliz-Deras, F G
2013-03-01
In early October 2010, adult goats (no.=22, 3.5 yr old, 7/8 Sannen-Alpine, 26° N, 103° W, at 1117 m), were randomly assigned to: i) beta-carotene group (BC) [no.=10; live weight (LW)=45.9±1.97 kg, body condition score (BCS) =3.04±0.08; orally supplemented with 50 mg of BC per goat per day]; ii) control group (CONT) (no.=12; LW=46.2±2.04 kg, BCS=3.0±0.08). Animals received a basal diet of alfalfa hay, corn silage, and corn grain, having free access to water, shade, and mineral salts. During the second half of October, estrus was synchronized by using intravaginal sponges. Thereafter, by mid-follicular phase, an intensive blood sampling (6 h × 60 min) was performed to evaluate serum insulin concentrations (INS) by radioimmunoassay. By the end of the luteal phase, an ultrasonographic scanning was performed to evaluate total ovarian activity (TOA) [TOA=total follicles (TF) + total corpus luteum (TCL)]. The whole experimental period consisted of 34 days pre- and 17 days post-ovulation, for a total of 52 days. Average LW and BCS did not differ (p>0.05) during the experimental period. Nonetheless, increases in TF no. (5.0 vs 3.4±0.6 units; p=0.05), TCL no. (3.4 vs 2.8±0.2 units; p=0.05), TOA (8.1 vs 6.2±0.6 units; p=0.05) and INS (4.6 vs 3.9±0.4 ng ml-1; p=0.05) favored to the BC-supplemented group. A positive correlation between LW (r(2)=0.42; p=0.04) and BCS (r(2)=0.47; p=0.02) with respect to ovulation rate, was detected. BC-supplementation increased ovarian activity in the female goat while positively affected the release pattern of insulin, suggesting a potential role of BC as a central and/or pancreas-activating molecule in adult goats; such results may hold not only physiologic but also clinical significance. ©2013, Editrice Kurtis
Costs and global impacts of black carbon abatement strategies
NASA Astrophysics Data System (ADS)
Rypdal, Kristin; Rive, Nathan; Berntsen, Terje K.; Klimont, Zbigniew; Mideksa, Torben K.; Myhre, Gunnar; Skeie, Ragnhild B.
2009-09-01
Abatement of particulate matter has traditionally been driven by health concerns rather than its role in global warming. Here we assess future abatement strategies in terms of how much they reduce the climate impact of black carbon (BC) and organic carbon (OC) from contained combustion. We develop global scenarios which take into account regional differences in climate impact, costs of abatement and ability to pay, as well as both the direct and indirect (snow-albedo) climate impact of BC and OC. To represent the climate impact, we estimate consistent region-specific values of direct and indirect global warming potential (GWP) and global temperature potential (GTP). The indirect GWP has been estimated using a physical approach and includes the effect of change in albedo from BC deposited on snow. The indirect GWP is highest in the Middle East followed by Russia, Europe and North America, while the total GWP is highest in the Middle East, Africa and South Asia. We conclude that prioritizing emission reductions in Asia represents the most cost-efficient global abatement strategy for BC because Asia is (1) responsible for a large share of total emissions, (2) has lower abatement costs compared to Europe and North America and (3) has large health cobenefits from reduced PM10 emissions.
Increased Leg Bone Mineral Density and Content During the Initial Years of College Sport.
Scerpella, John J; Buehring, Bjoern; Hetzel, Scott J; Heiderscheit, Bryan C
2018-04-01
Scerpella, JJ, Buehring, B, Hetzel, SJ, and Heiderscheit, BC. Increased leg bone mineral density and content during the initial years of college sport. J Strength Cond Res 32(4): 1123-1130, 2018-Bone mineral density (BMD) and bone mineral content (BMC) data are useful parameters for evaluating how training practices promote bone health. We used dual-energy X-ray absorptiometry (DXA) to longitudinally assess sport-specific growth in leg and total body BMD/BMC over the initial 2 years of collegiate training. Eighty-five Division 1 collegiate basketball, hockey, and soccer athletes (50 males and 35 females; age 19.0 [0.8] years) underwent annual DXA scans. Leg and total body BMD/BMC were compared within and across two 1-year intervals (periods 1 and 2) using repeated-measures analysis of variance, adjusting for age, sex, race, and sport. Leg BMD, leg BMC, and total body BMC all increased over period 1 (0.05 g·cm [p = 0.001], 0.07 kg [p = 0.002], and 0.19 kg [p < 0.001] respectively). Changes in period 2 compared with period 1 were smaller for leg BMD (p = 0.001), leg BMC (p < 0.001), leg fat mass (p = 0.028), and total BMC (p = 0.005). Leg lean mass increased more during period 2 than period 1 (p = 0.018). Sports participation was the only significant predictor of change in leg BMD. Significant increases in both leg BMD and BMC were demonstrated over both 2-year periods, with greater gains during period 1. These gains highlight the importance of attentive training procedures, capitalizing on attendant physical benefits of increased BMD/BMC. Additional research in young adults, evaluating bone mass acquisition, will optimize performance and decrease risk of bone stress injury among collegiate athletes.
Huang, Y; Zheng, J; Hu, J D; Wu, Y A; Zheng, X Y; Liu, T B; Chen, F L
2014-02-19
We performed whole-exome sequencing in samples representing accelerated phase (AP) and blastic crisis (BC) in a subject with chronic myeloid leukemia (CML). A total of 12.74 Gb clean data were generated, achieving a mean depth coverage of 64.45 and 69.53 for AP and BC samples, respectively, of the target region. A total of 148 somatic variants were detected, including 76 insertions and deletions (indels), 64 single-nucleotide variations (SNV), and 8 structural variations (SV). On the basis of annotation and functional prediction analysis, we identified 3 SNVs and 6 SVs that showed a potential association with CML progression. Among the genes that harbor the identified variants, GATA2 has previously been reported to play important roles in the progression from AP to BC in CML. Identification of these genes will allow us to gain a better understanding of the pathological mechanism of CML and represents a critical advance toward new molecular diagnostic tests for the development of potential therapies for CML.
Near-road sampling of PM2. 5, BC, and fine-particle chemical components in Kathmandu Valley, Nepal
NASA Astrophysics Data System (ADS)
Shakya, Kabindra M.; Rupakheti, Maheswar; Shahi, Anima; Maskey, Rejina; Pradhan, Bidya; Panday, Arnico; Puppala, Siva P.; Lawrence, Mark; Peltier, Richard E.
2017-06-01
Semicontinuous PM2. 5 and black carbon (BC) concentrations, and 24 h integrated PM2. 5 filter samples were collected near roadways in the Kathmandu Valley, Nepal. Instruments were carried by a group of volunteer traffic police officers in the vicinity of six major roadway intersections in the Kathmandu Valley across two sampling periods in 2014. Daily PM2. 5 filter samples were analyzed for water-soluble inorganic ions, elemental carbon (EC) and organic carbon (OC), and 24 elements. Mean PM2. 5 and BC concentrations were 124.76 µg m-3 and 16.74 µgC m-3 during the drier spring sampling period, and 45.92 µg m-3 and 13.46 µgC m-3 during monsoonal sampling. Despite the lower monsoonal PM2. 5 concentrations, BC and several elements were not significantly lower during the monsoon, which indicates an important contribution of vehicle-related emissions throughout both seasons in this region. During the monsoon, there was an enhanced contribution of chemical species (elements and water-soluble inorganic ions), except secondary inorganic ions, and BC to PM2. 5 (crustal elements: 19 %; heavy metals: 5 %; and BC: 39 %) compared to those in spring (crustal elements: 9 %; heavy metals: 1 %; and BC: 18 %). Silica, calcium, aluminum, and iron were the most abundant elements during both spring and the monsoon, with total concentrations of 12.13 and 8.85 µg m-3, respectively. PM2. 5 and BC showed less spatial variation compared to that for individual chemical species.
Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo
2006-06-01
Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications.
Diabetes, overweight and risk of postmenopausal breast cancer: a case-control study in Uruguay.
Ronco, Alvaro L; De Stefani, Eduardo; Deneo-Pellegrini, Hugo; Quarneti, Aldo
2012-01-01
Obese postmenopausal women increase their risk of developing breast cancer (BC), in particular if they display an android-type pattern of adiposity, which is also associated to increased risks of diabetes mellitus, hypertension and cardiovascular disease. In order to explore the associations among anthropometry (body mass index, body composition, somatotype), some specific items of medical history (diabetes, hypertension, dislypidemias, hyperuricemia) and the risk of BC in Uruguayan women, a case-control study was carried out between 2004-2009 at our Oncology Unit. 912 women of ages between 23-69 years (367 new BC cases and 545 non hospitalized, age-matched controls with a normal mammography) were interviewed. Twenty body measurements were taken in order to calculate body composition and somatotype. Patients were queried on socio-demographics, reproductive history, family history of cancer, a brief food frequency questionnaire and on personal history of diabetes, dislypidemias, hyperuricemia, hypertension and gallbladder stones. Uni- and multivariate analyses were done, generating odds ratios (ORs) as an expression of relative risks. A personal history of diabetes was positively associated to BC risk (OR=1.64, 95% CI 1.00-2.69), being higher among postmenopausal women (OR=1.92, 95% CI 1.04-3.52). The risks of BC for diabetes in postmenopausal women with overweight combined with dislypidemia (OR=9.33, 95% CI 2.10-41.5) and high fat/muscle ratio (OR=7.81, 95% CI 2.01-30.3) were significantly high. As a conclusion, a personal history of diabetes and overweight was strongly associated to BC. The studied sample had a subset of high-risk of BC featured by postmenopausal overweight and diabetic women, who also had a personal history of hypertension and/or dyslipidemia. The present results could contribute to define new high risk groups and individuals for primary as well as for secondary prevention, since this pattern linked to the metabolic syndrome is usually not considered for BC prevention.
NASA Astrophysics Data System (ADS)
Tasoglou, A.; Ramachandran, S.; Khlystov, A.; Saha, P.; Grieshop, A. P.; Pandis, S. N.
2015-12-01
Secondary organic aerosol (SOA) is a major contributor to the global aerosol burden. Black carbon (BC) is a significant climate warming agent, while light-absorbing organic carbon (brown carbon, BrC), also impacts the atmospheric radiative balance. The optical properties of ambient aerosols can be affected by biogenic SOA through the lensing effect (coating of BC cores by semivolatile SOA), and by the potential formation of BrC from biogenic sources influenced by anthropogenic sources. To evaluate these effects, measurements of ambient aerosol optical properties and BC concentrations were made in rural Centreville, AL (a remote site with little anthropogenic influence) in summer 2013 and at Duke Forest in Chapel Hill, NC (a site close to high density vehicular traffic and industrial sources), during summer 2015. Photoacoustic extinctiometers (PAX, 405 nm and 532 nm) measured particulate light absorption and a single particle soot photometer (SP2) measured BC mass at both locations. A seven-wavelength Aethalometer and a three-wavelength nephelometer were also deployed at Duke Forest. A third PAX (870 nm) was deployed at Centreville. For absorption and BC measurements, the sample was cycled between a dry line and a dry/thermally-denuded line. Hourly samples were collected with a steam jet aerosol collector (SJAC) for online (2013) and offline (2015) chemical composition analysis. BC concentrations were generally higher at Duke Forest compared to the rural Centreville site. The Aethalometer readings at Duke Forest show greater absorption at the shorter wavelengths (370 nm and 470 nm) than expected from the absorption at 880 nm coupled with an inverse wavelength dependence, suggesting the presence of brown carbon. This presentation will examine the evidence for brown carbon at the two sites, as well as the effect of non-BC coatings on BC light absorption (the lensing effect.)
Transport of regional pollutants through a remote trans-Himalayan valley in Nepal
NASA Astrophysics Data System (ADS)
Dhungel, Shradda; Kathayat, Bhogendra; Mahata, Khadak; Panday, Arnico
2018-01-01
Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo-Gangetic plains (IGP) from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC), ozone (O3), and associated meteorological conditions within the Kali Gandaki Valley (KGV), Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s-1) dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September). Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m-3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2-3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of pollutants from the IGP to the higher Himalaya.
Spectral Absorption By Particulate Impurities in Snow Determined By Photometric Analysis Of Filters
NASA Astrophysics Data System (ADS)
Grenfell, T. C.; Doherty, S. J.; Clarke, A. D.
2009-12-01
Our work is motivated by the 1983-84 survey by Clarke and Noone (Atmos. Environ., 1985) of soot in Arctic snow. Our objective is to resurvey the original area they covered and to extend the observations around the entire Arctic Basin under the auspices of the IPY program. We use the filtering and integrating sandwich techniques developed by Clarke and Noone to process the snow samples. Among the advantages of this method are that (a) it provides a direct measure of light absorption and the result is closely related to the actual absorption of sunlight in the snow or ice, (b) processing and filtering of the snow samples can be carried out in remote locations and (c) it is not necessary to transport large quantities of snow back to our home laboratory. Here we describe the construction, calibration, and some applications of an integrating sphere spectrophotometer system designed to take advantage of recent advances in instrumentation to improve the accuracy of measurements of absorption by particulate impurities collected on nuclepore filters used in our survey. Filter loading in terms of effective black carbon (BC) amount is determined together with the ratio of non-BC to BC concentrations using a set of reference filters with known loadings of Monarch 71 BC prepared by A. D. Clarke. The new spectrophotometer system has (a) system stability of approximately 0.5%; (b) precision relative to ADC standards of 3-4% for filter loadings greater than about 0.5 microgm Carbon/cm2. (c) We can distinguish BC from non-BC from relative spectral shapes of the energy absorption curves with an accuracy that depends on our knowledge of the spectral absorption curves of the non-BC components; and (d) by-eye estimates are consistent with spectrophotometric results. The major outstanding uncertainty is the appropriate value to use for the mass absorption efficiency for BC.
Kenawy, Mohamed A; Amer, Hanan S; Lotfy, Nadia M; Khamis, Nagwa; Abdel-Hamid, Yousrya M
2014-12-01
A study was planned to examine the insect fauna associated with two hospitals: urban (A) in Cairo and rural (B) in Banha, Egypt with varying hygienic levels and their adjacent residential areas (AC) and (BC), respectively and to investigate the effect of hygienic level on species composition and relative abundance. A total of 22 species belonging to 7 orders and 15 families were reported in the four study areas of which, Dipterous flies were the most common (8/22, 36.36% species). A total of 5257 adults were collected of which Dipterous flies were the abundant (3800, 72.28% insect) and Musca domestica was the most abundant species (3535, 67.24% insect) which was present in all areas where it was more common / predominant species (21.94%-90.91% insect). Moreover, higher densities of M domestica were in (B) and BC than in (A) or (AC). The heavily infested area was AC (54.55% species) followed by (A), (BC) and (B) however, the total number of the collected insects was higher in (BC) and (B) than in (AC) and (A). This was confirmed by finding maximum diversity indices in (AC) and minimum ones in B. In all areas, means of M domestica was more common during summer/autumn and spring than in the winter. Periplaneta americana collected oily during autumn in AC and was more common in autumn in (BC) while Blatella germanica collected only during summer in (AC) and was more common in autumn in (B). The prevalence and higher abundance of the medically important species mainly M domestica, P. americana and B. germanica in rural hospital than in urban one attribute mainly to the lower hygienic level of rural hospital This require a control program based mainly on sanitation supplemented by other measures to overcome the risk of disease transmission by such insects
The Trojan war dated by two solar eclipses.
NASA Astrophysics Data System (ADS)
Henriksson, Goran
The Trojan War was very significant for the ancient Greeks and they dated historical events according to the number of years after the fall of Troy. However, there was already in antiquity no consensus as to the exact date of the war when compared with different epochs. Even after the modern discovery of the ancient city, there has been disagreement among different excavators as to which layer corresponds to the city mentioned in the Iliad attributed to Homer. In this paper an attempt is made to identify the strange obscuration of the sun that occurred during the final battle of the Iliad as a total solar eclipse close to the southern border of the zone of totality. There exists only one solar eclipse that corresponds to the description in the text and this is the total solar eclipse of June 11, in 1312 BC. When I first presented this date in 1986, there was a difference of about 60 years compared with the most common archaeological dating at that time. My date is now fully supported by the latest results from the German-American excavation that identifies the fall of Homer's Troy with the destruction of the archaeological layer Troy VIh, dated to about 1300 BC. Further independent support is provided by another solar eclipse that dates the reign of the Hittite king Muwatalli II. This king wrote a letter to king Alaksandu in Wilusa, identified as the Hittite name for Ilios, the most frequently used name for Troy in the Iliad. Alexander was another name for Paris who abducted Helen, the crime that resulted in the war. Muwatalli II was king 1315-1297 BC, according to the chronology for the Hittite Kingdom based on a solar eclipse in 1335 BC, during the tenth year of King Mursili II (1345- 1315 BC), the father of Muwatalli II.
Melissant, Heleen C; Verdonck-de Leeuw, Irma M; Lissenberg-Witte, Birgit I; Konings, Inge R; Cuijpers, Pim; Van Uden-Kraan, Cornelia F
2018-02-16
Cancer survivors have to deal with symptoms related to cancer and its treatment. In Oncokompas, cancer survivors monitor their quality of life by completing patient reported outcome measures (PROMs), followed by personalized feedback, self-care advice, and supportive care options to stimulate patient activation. The aim of this study was to investigate feasibility and pretest-posttest differences of Oncokompas including a newly developed breast cancer (BC) module among BC survivors. A pretest-posttest design was used. Feasibility was investigated by means of adoption, usage, and satisfaction rates. Several socio-demographic and clinical factors, and health-related quality of life (HRQOL) were explored that might be associated with patient satisfaction. Barriers and facilitators of Oncokompas feasibility were investigated by evaluating nurse consultation reports. Differences in patient activation (Patient Activation Measure) and patient-physician interaction (Perceived Efficacy in Patient-Physician Interactions) before and after Oncokompas use were investigated. In total, 101 BC survivors participated. Oncokompas had an adoption rate of 75%, a usage rate of 75-84%, a mean satisfaction score of 6.9 (range 0-10) and a Net Promoter Score (NPS) of -36 (range -100-100) (N = 68). The BC module had a mean satisfaction score of 7.6. BC survivors who received surgery including chemotherapy and/or radiotherapy were significantly more satisfied with Oncokompas than BC survivors with surgery alone (p = .013). Six facilitators and 10 barriers of Oncokompas feasibility were identified. After using Oncokompas, BC survivors scored significantly higher on patient activation (p = .007; r = .24), but not on patient-physician interaction (p = .75). Oncokompas including a BC module is considered feasible, but needs further optimization to increase user satisfaction. This study shows the value of tailoring eHealth applications for cancer survivors to their specific tumor type. Oncokompas including the BC module seems to improve patient activation among BC survivors.
Yang, Y.; Mahler, B.J.; Van Metre, P.C.; Ligouis, B.; Werth, C.J.
2010-01-01
Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375??C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods. ?? 2010 Elsevier Ltd.
Shen, René L; Thymann, Thomas; Østergaard, Mette V; Støy, Ann Cathrine F; Krych, Łukasz; Nielsen, Dennis S; Lauridsen, Charlotte; Hartmann, Bolette; Holst, Jens J; Burrin, Douglas G; Sangild, Per T
2015-09-01
It is unclear when and how to start enteral feeding for preterm infants when mother's milk is not available. We hypothesized that early and slow advancement with either formula or bovine colostrum stimulates gut maturation and prevents necrotizing enterocolitis (NEC) in preterm pigs, used as models for preterm infants. Pigs were given either total parenteral nutrition (TPN, n = 14) or slowly advancing volumes (16-64 ml·kg(-1)·day(-1)) of preterm infant formula (IF, n = 15) or bovine colostrum (BC, n = 13), both given as adjunct to parenteral nutrition. On day 5, both enteral diets increased intestinal mass (27 ± 1 vs. 22 ± 1 g/kg) and glucagon-like peptide 2 release, relative to TPN (P < 0.05). The incidence of mild NEC lesions was higher in IF than BC and TPN pigs (60 vs. 0 and 15%, respectively, P < 0.05). Only the IF pigs showed reduced gastric emptying and gastric inhibitory polypeptide release, and increased tissue proinflammatory cytokine levels (IL-1β and IL-8, P < 0.05) and expression of immune-related genes (AOAH, LBP, CXCL10, TLR2), relative to TPN. The IF pigs also showed reduced intestinal villus-to-crypt ratio, lactose digestion, and some plasma amino acids (Arg, Cit, Gln, Tyr, Val), and higher intestinal permeability, compared with BC pigs (all P < 0.05). Colonic microbiota analyses showed limited differences among groups. Early feeding with formula induces intestinal dysfunction whereas bovine colostrum supports gut maturation when mother's milk is absent during the first week after preterm birth. A diet-dependent feeding guideline may be required for newborn preterm infants. Copyright © 2015 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giggleman, M.A.; Fitzpatrick, L.C.; Goven, A.J.
Earthworms, Lumbricus terrestris, exposed for 96 h to filter paper saturated with five nominal concentrations of pentachlorophenol, exhibited a 50% lethal concentration (LC50) of 25.0 {micro}g PCP/cm{sup 2} and corresponding whole worm body burden-based 50% lethal dose (LD50) of 877.7 {micro}g PCP/g dry mass. Linear regression modeling showed that worms increased body concentrations (BC = {micro}g PCP/g dry tissue mass) with increasing exposure concentrations (EC) according to BC = 113.5 + 29.5EC. Phagocytosis of yeast cells by immunoactive coelomocytes was suppressed only at body concentrations (863.3 {micro}g PCP/g dry mass) that approximated the calculated LD50 and overlapped those demonstrating lethality,more » indicating a sharp transition between sublethal and lethal toxicity. An exposure concentration of 15 {micro}g PCP/cm{sup 2} produced significant suppression of phagocytosis of yeast cells by immunoactive coelomocytes. However, the average measured body burden from this group approximated the estimated LD50, indicating a sharp toxic response slope. Exposure to 10 {micro}g PCP/cm{sup 2} with a corresponding body concentration of 501.3 {micro}g PCP/g dry mass did not affect phagocytosis. The importance of body burden data is emphasized.« less
Energetics and formation mechanism of borders between hexagonal boron nitride and graphene
NASA Astrophysics Data System (ADS)
Sawahata, Hisaki; Yamanaka, Ayaka; Maruyama, Mina; Okada, Susumu
2018-06-01
We studied the energetics of two-dimensional heterostructures consisting of hexagonal boron nitride (h-BN) and graphene with respect to the border structure and heterobond species using density functional theory. A BC heterobond is energetically preferable at the border between h-BN and graphene. We also found that the polarization at the zigzag border increases the total energy of the heterostructures. Competition between the bond formation energy and the polarization energy leads to chiral borders at which BC heterobonds are dominant. By taking the formation process of the heterostructures into account, the zigzag border with BC heterobonds is found to be preferentially synthesized from graphene edges under hydrogen-rich conditions.
Boylu, Sukru; Ok, Engin; Canturk, Nuh Zafer; Celik, Varol; Kapkac, Murat; Girgin, Sadullah; Tireli, Mustafa; Ihtiyar, Enver; Demircan, Orhan; Baskan, Mazhar Semih; Koyuncu, Ayhan; Tasdelen, Ismet; Dumanli, Esra; Ozdener, Fatih; Zaborek, Piotr
2015-01-01
Background: One of the most important factors in breast cancer (BC) mortality is treatment delay. The primary goal of this survey was to identify factors affecting the total delay time (TDT) in Turkish BC patients. Methods: A total of 1031 patients with BC were surveyed using a uniform questionnaire. The time between discovering the first symptom and signing up for the first medical visit (patient delay time; PDT) and the time between the first medical visit and the start of therapy (system delay time; SDT) were modelled separately with multilevel regression. Results: The mean PDT, SDT and TDT were 4.8, 10.5 and 13.8 weeks, respectively. In all, 42% of the patients had a TDT >12 weeks. Longer PDT was significantly correlated with disregarding symptoms and having age of between 30 and 39 years. Shorter PDT was characteristic of patients who: had stronger self-examination habits, received more support from family and friends and had at least secondary education. Predictors of longer SDT included disregard of symptoms, distrust in success of therapy and medical system and having PDT in excess of 4 weeks. Shorter SDT was linked to the age of >60 years. Patients who were diagnosed during a periodic check-up or opportunistic mammography displayed shorter SDT compared with those who had symptomatic BC and their first medical examination was by a surgeon. Conclusion: TDT in Turkey is long and remains a major problem. Delays can be reduced by increasing BC awareness, implementing organized population-based screening programmes and founding cancer centres. PMID:25096257
Ice Nucleation Activity of Black Carbon and Organic Aerosol Emitted from Biomass Burning
NASA Astrophysics Data System (ADS)
Rauker, A. M.; Schill, G. P.; Hill, T. C. J.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.
2017-12-01
Ice-nucleating particles (INPs) must be present in clouds warmer than approximately -36 °C for initial ice crystal formation to occur. Although rare, they modify the lifetime, albedo and precipitation rates of clouds. Black carbon (BC) particles are present in the upper troposphere, and have been implicated as possible INPs, but recent research has not led to a consensus on their importance as INPs. Biomass burning is known to be a source of INPs as well as a major contributor to BC concentrations. Preliminary research from both prescribed burns (Manhattan, Kanas) and wildfires (Boise, Idaho and Weldon, Colorado), using the Colorado State University Continuous Flow Diffusion Chamber (CSU-CFDC) coupled to a Single Particle Soot Photometer (SP2), suggest that BC contributed ≤ 10% to INP concentrations in biomass burning conditions. To evaluate the identity of non-BC as an INP, filters were collected downwind from the same prescribed burns and wildfires, and particles re-suspended in water were subjected to the immersion freezing method to quantify INP concentrations. The contributions of biological and total organic species to INP concentrations were determined through heat and hydrogen peroxide pre-treatments. Total INPs ranged from 0.88 - 31 L-1 air at -20 °C with 82 - 99 % of the INPs at that temperature being organic (i.e., deactivated by H2O2 digestion). Results are consistent with CSU-CFDC-SP2 derived rBC INP contributions from the same fires. The results from the study also support previous findings that prescribed burns and wildfires produce plumes enriched in INPs.