Evaluation of the mobile phone electromagnetic radiation on serum iron parameters in rats.
Çetkin, Murat; Demirel, Can; Kızılkan, Neşe; Aksoy, Nur; Erbağcı, Hülya
2017-03-01
Electromagnetic fields (EMF) created by mobile phones during communication have harmful effects on different organs. It was aimed to investigate the effects of an EMF created by a mobile phone on serum iron level, ferritin, unsaturated iron binding capacity and total iron binding capacity within a rat experiment model. A total of 32 male Wistar albino rats were randomly divided into the control, sham, mobile phone speech (2h/day) and stand by (12 h/day) groups. The speech and stand by groups were subjected to the EMF for a total of 10 weeks. No statistically significant difference was observed between the serum iron and ferritin values of the rats in the speech and stand by groups than the control and sham groups (p>0.05). The unsaturated iron binding capacity and total iron capacity values of the rats in the speech and stand by groups were significantly lower in comparison to the control group (p<0.01). It was found that exposure to EMF created by mobile phones affected unsaturated iron binding capacity and total iron binding capacity negatively.
Amah-Tariah, F S; Ojeka, S O; Dapper, D V
2011-12-20
Previous studies on the normal values of serum iron, unsaturated iron binding capacity, total iron binding capacity, serum transferrin, percent transferrin saturation, red cell distribution width, and various platelet indices: Platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio in pregnant subjects in Nigeria are relatively scanty. Present study aims to determine the values of these parameters in apparently healthy pregnant subjects residing in Port Harcourt south eastern Nigeria; and help establish normal reference ranges of these parameters for the population under reference. Cross sectional prospective study involving 220 female subjects attending for the first time, the ante-natal clinics of a tertiary health care facility in Port Harcourt. Subjects were divided into 73, 75 and 72 subjects in the first, second and third trimester of pregnancy respectively. Serum iron and unsaturated iron binding capacity, red cell distribution width, platelet count and platelet distribution width were determined by automated methods; total iron binding capacity, serum transferrin concentrations, percent transferrin saturation, mean platelet volume and plateletcrit were calculated using appropriate formulas. The values of serum iron, unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant variations between the various trimesters of pregnancy. However, while serum iron showed significant decreases during pregnancy; unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant increases during pregnancy amongst our subjects (p<0.05). By contrast the values of red cell distribution width, platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio did not show any significant differences at the different trimesters of pregnancy in our subjects (p>0.05). The present study reports, for the first time, normative values for these parameters in apparently healthy pregnant subjects in Port Harcourt south eastern Nigeria. Apparently, increases in unsaturated and total iron binding capacity and serum transferrin values seen amongst our subjects with increasing gestation may perhaps be a mechanism to ensure a fetal adequate iron delivery on account of the decreasing serum iron concentration with gestation in our subjects. The study suggests that values of serum transferrin are perhaps a more useful screening tool for iron deficiency anemia during pregnancy amongst our subjects.
Protein Binding Capacity of Different Forages Tannin
NASA Astrophysics Data System (ADS)
Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.
2018-02-01
Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.
Intravenous iron-dextran: studies on unsaturated iron-binding capacity
Cox, J. S. G.; Moss, G. F.; Bremner, I.; Reason, Janet
1968-01-01
A method is described for measuring the plasma unsaturated iron-binding capacity in the presence of very high concentrations of iron as iron-dextran. The procedure utilizes 59Fe to label the apotransferrin with subsequent separation of ionic iron from transferrin-bound iron on an ion exchange or Sephadex G.25 column. The unsaturated iron-binding capacity has been measured in rabbits and dogs after intravenous injection of iron-dextran and in human subjects after total dose infusion of iron-dextran. No evidence of saturation of the unsaturated iron-binding capacity was found even when the plasma iron values were greater than 40,000 μg Fe/100 ml. PMID:5697365
NASA Astrophysics Data System (ADS)
Porder, S.; Roy, E.; Willig, E.; Martinelli, L. A.; Pegorini, L.; Richards, P.; Spera, S. A.; Vazquez, F. F.
2016-12-01
Intensification of tropical agriculture is one way to meet increasing global food demand, but tropical soils often require more phosphorus (P) fertilizer than those in the world's traditional breadbaskets. Recent studies from Europe suggest that P fertilizer additions will eventually saturate soil P binding capacity, and can build a soil P bank upon which future crop production can draw. We tested this hypothesis in Mato Grosso, Brazil, where highly mechanized agriculture produces 9% of the world's soy harvest on soils with high P binding capacity. In this region, P fertilizer inputs typically exceed harvests by 10kg P/ha, and our expectation was that total P and available P would increase, and P binding capacity would decrease, with time in cultivation. To test this hypothesis, we measured P availability, binding, and accumulation on 31 fields ranging from 0-31 years in intensive production. We also estimated the number of years in production that would be required to saturate the soils with P, since after that time P additions could be reduced to equal harvest P removal. As expected, our data show increasing P availability, and decreasing P binding capacity, over time. A multiple regression including only soil [SiO2] (a proxy for both mineralogy and texture) and years in production explained 87, 63 and 91% of the observed variation in total P, Bray-extractable P, and P sorption capacity, respectively. However, the effect of [SiO2], and thus texture and mineralogy, was 1.7, 1.2, and 4.9 times more important in predicting our dependent variables than was years in production. Despite fertilizer inputs in excess of harvest removals, the reduction in P binding capacity is slow, and we estimate it will take between 50-160 years for fertilizer inputs to saturate the P binding capacity of these soils. These results suggest that the P tax imposed by high P binding soils in the tropics will impose substantial material costs to tropical farmers in the coming decades, and may influence their capacity to intensify food production to meet growing food demands.
The effect of prolonged intrauterine hyperinsulinemia on iron utilization in fetal sheep.
Georgieff, M K; Widness, J A; Mills, M M; Stonestreet, B S
1989-11-01
Newborn infants of poorly controlled insulin-dependent diabetic mothers demonstrate a redistribution of iron from serum and tissue stores into red blood cells. These changes may be due to increases in iron utilization during augmented Hb synthesis, which compensates for chronic intrauterine hypoxemia induced by prolonged fetal hyperinsulinemia. We tested this hypothesis by measuring plasma iron, total iron-binding capacity, percent iron-binding capacity saturation (total iron-binding capacity saturation), Hb concentration, total red cell Hb, and total red cell iron in the arterial blood of 11 chronically instrumented fetal sheep after 7-12 d of infusion with 15 U/day of insulin (n = 5) or placebo (n = 6). The insulin-infused fetal sheep had higher mean +/- SD plasma insulin concentrations (448 +/- 507 versus 11 +/- 8 mU/L; p less than 0.001) and lower arterial oxygen saturations (38 +/- 7 versus 54 +/- 9%; p less than 0.02). The insulin-infused group had a lower mean plasma iron concentration (20.8 +/- 10.9 versus 42.1 +/- 14.7 microM/L; p less than 0.02) and total iron-binding capacity saturation (36 +/- 20 versus 64 +/- 22%; p less than 0.02) and a higher total red cell Hb (45.4 +/- 8.7 versus 32.6 +/- 8.8 g; p less than 0.02) and total red cell iron content (154 +/- 29 versus 111 +/- 29 mg; p less than 0.02) when compared with the placebo group. Seven to 12 d of intrauterine hyperinsulinemia decreases serum iron and increases total red cell iron, most likely by stimulating increased Hb synthesis in response to low arterial oxygen saturation.(ABSTRACT TRUNCATED AT 250 WORDS)
Perusko, Marija; Al-Hanish, Ayah; Mihailovic, Jelena; Minic, Simeon; Trifunovic, Sara; Prodic, Ivana; Cirkovic Velickovic, Tanja
2017-10-01
Major green tea catechin, epigallocatechin-3-gallate (EGCG), binds non-covalently to numerous dietary proteins, including beta-lactoglobulin of cow's milk. The effects of glycation of proteins via Maillard reaction on the binding capacity for polyphenols and the antiradical properties of the formed complexes have not been studied previously. Binding constant of BLG glycated by milk sugar lactose to EGCG was measured by the method of fluorophore quenching. Binding of EGCG was confirmed by CD and FTIR. The antioxidative properties of the complexes were examined by measuring ABTS radical scavenging capacity, superoxide anion scavenging capacity and total reducing power assay. Glycation of BLG does not significantly influence the binding constant of EGCG for the protein. Conformational changes were observed for both native and glycated BLG upon complexation with EGCG. Masking effect of polyphenol complexation on the antioxidative potential of the protein was of the similar degree for both glycated BLG and native BLG. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vasilatos-Younken, R; Gray, K S; Bacon, W L; Nestor, K E; Long, D W; Rosenberger, J L
1990-07-01
The post-hatch ontogeny of hepatic GH binding and its relationship to GH plasma profile characteristics in male and female turkeys of slow- (RBC-2) and fast-growing (F; selected from RBC-2) genetic lines were determined. Specific binding of 125I-labelled recombinant chicken GH to crude hepatic membrane preparations (100,000 g pellet) was determined at 2, 4, 8, 14 and 24 weeks of age for both total (occupied plus free; 4 mol MgCl2/l pretreatment) and free (without MgCl2 pretreatment) binding sites. Characteristics of the plasma GH profile were measured at each age by serial blood sampling through indwelling jugular vein catheters. When specific binding to either free or total sites was expressed on a whole organ basis (i.e. hepatic GH-binding capacity/bird), binding increased dramatically (P less than 0.0001) with increasing age over both lines and sexes. Total binding capacity (free plus occupied sites) per bird was greater for females than for males at 24 weeks of age (P less than 0.04), as birds reached sexual maturity, but did not differ between fast- and slow-growing lines at any age. Available binding capacity (free sites) per bird was greater for the faster growing F than RBC-2 line at the older ages when body size was most divergent (14 and 24 weeks of age; P less than 0.01, P less than 0.06 respectively), but did not differ between sexes. Correlation analysis at individual ages revealed a progressive change in the nature of the relationship between hepatic GH binding, plasma GH and somatic growth.(ABSTRACT TRUNCATED AT 250 WORDS)
Relating saturation capacity to charge density in strong cation exchangers.
Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo
2017-07-21
In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization of [(3)H]harmane binding to rat whole brain membranes.
Anderson, N J; Robinson, E S J; Husbands, S M; Delagrange, P; Nutt, D J; Hudson, A L
2003-12-01
This study investigates the binding of [(3)H]harmane to rat whole brain homogenates. Saturation studies revealed [(3)H]harmane labels a single, saturable, high-capacity population with high affinity. All the test compounds displaced [(3)H]harmane completely and in an apparently monophasic manner. The displacement profile of the test ligands indicated labeling of MAO-A. Given the high level of MAO-A binding, it is unlikely that a low-capacity I(2) site would be distinguishable from the total [(3)H]harmane population.
Nsor-Atindana, John; Zhong, Fang; Mothibe, Kebitsamang Joseph
2012-10-01
Three dietary fiber (DF) powders; soluble dietary fiber (SDF), insoluble dietary fiber (IDF) and total dietary fiber (TDF) were prepared from cocoa bean shells (CBS) by enzymatic treatment. These DFs were evaluated for their effects on glucose adsorption, glucose diffusion, starch hydrolysis, cholesterol binding, sodium cholate binding and oil binding capacities using in vitro model systems by simulating gastric intestinal conditions. The results showed that SDF generally exhibited significantly (p < 0.05) higher glucose adsorption capacity (GAC), α-amylase inhibition activity, cholesterol and sodium cholate binding capacity, but less significant (>0.05) glucose dialysis retardation index (GDRI) and oil binding capacity, when compared with IDF and TDF which both showed similar effects. Moreover, it was discovered that the three CBS dietary fiber powders contained intrinsic antioxidants (phenolic compounds). The study suggested that CBS could be an alternative cheap source of DF with additional benefits. Thus, CBS fibers could be incorporated as low calorie bulk ingredients in high-fiber diet to reduce calorie and cholesterol levels and control blood glucose level.
Endocrine changes of Paralichthys olivaceus after oral administration with exogenous growth hormone
NASA Astrophysics Data System (ADS)
Liu, Zong-Zhu; Xu, De-Wu; Wang, Yong; Xu, Yong-Li; Zhang, Pei-Jun
2000-12-01
Recombinant salmon growth hormone contained in yeast was given for 5 months to flounder in its diet. Both free and total specific binding sites for the growth hormone were examined in liver membranes of control and treated fish. The association constants of both free and total specific binding sites were of the same order (1 nM-1), and no significant difference was found between any two groups in the capacity of their free binding sites. The capacity of total binding sites in the liver of treated fish increased significantly compared with that of control. Insulin-like growth factor I (IGF-I) levels in the plasma of treated fish increased by 22.61% (P<0.05), compared with that of control. While the T4 levels in plasma did not increase significantly (from 1.35±0.91 ng/ml to 2.29±1.13 ng/ml), T3 levels were elevated significantly (from 1.78±1.14 ng/ml to 4.87±1.22 ng/ml, P<0.01), as compared with that of control.
Histamine-binding capacities of different natural zeolites: a comparative study.
Selvam, Thangaraj; Schwieger, Wilhelm; Dathe, Wilfried
2018-06-07
Two different natural zeolites from Cuba and Mexico, which are already being used as contemporaneous drugs or dietary supplements in Germany and Mexico, respectively, are applied in a comparative study of their histamine-binding capacities as a function of their particle sizes. The zeolites are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N 2 -sorption measurements (BET surface areas). The Cuban zeolite contains clinoptilolite and mordenite as major phases (78% zeolite), whereas the Mexican one contains only clinoptilolite (65% zeolite). Both zeolites are apparently free from fibrous materials according to SEM. Both zeolites adsorb significant amount of histamine under the experimental conditions. Nevertheless, the results showed that the histamine-binding capacity of the Cuban zeolite is higher than the Mexican one and the smaller the particle size of zeolite, the higher the histamine-binding capacity. This difference could be due to the variation in their mineralogical compositions resulting in varied BET surface areas. Thus, the high histamine-binding capacities of Cuban zeolites seem to be due at least partly to the presence of the large-pore zeolite mordenite, providing high total pore volumes, which will be discussed in detail. For the first time, we have shown that the mineralogical compositions of natural zeolites and their particle sizes play a key role in binding histamine, which is one of the most important regulators in human physiology.
Çalışkantürk Karataş, Selen; Günay, Demet; Sayar, Sedat
2017-09-01
In vitro studies were conducted to evaluate the particular nutritional benefits of whole faba bean seed (WFB) and fava bean seed coat (FBSC). Total dietary fiber contents of WFB and FBSC were 27.5% and 82.3%, respectively. FBSC were contained much higher total phenolic substances, condensed tannins, and total antioxidant activity than WFB. Bile acid (BA)-binding capacities of in vitro digested samples and nutritionally important products produced by in vitro fermentation of digestion residues were also studied. The BA-binding capacities of WFB and FBSC were 1.94 and 37.50μmol/100mg, respectively. Total BA bound by FBSC was even higher than the positive standard cholestyramine. Lignin and other constituents of the Klason residue were found to influence BA-binding properties. Moreover, the extent of the in vitro fermentation process showed that, fermentability of FBSC residue was significantly lower than that of WFB residue. Overall, faba bean, especially its seed coat, has great potential as a functional food. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bilirubin Binding Capacity in the Preterm Neonate
Amin, Sanjiv B
2016-01-01
SYNOPSIS Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed. PMID:27235205
Revised Model of Calcium and Magnesium Binding to the Bacterial Cell Wall
Thomas, Kieth J.; Rice, Charles V.
2014-01-01
Metals bind to the bacterial cell wall yet the binding mechanisms and affinity constants are not fully understood. The cell wall of gram positive bacteria is characterized by a thick layer of peptidoglycan and anionic teichoic acids anchored in the cytoplasmic membrane (lipoteichoic acid) or covalently bound to the cell wall (wall teichoic acid). The polyphosphate groups of teichoic acid provide one-half of the metal binding sites for calcium and magnesium, contradicting previous reports that calcium binding is 100% dependent on teichoic acid. The remaining binding sites are formed with the carboxyl units of peptidoglycan. In this work we report equilibrium association constants and total metal binding capacities for the interaction of calcium and magnesium ions with the bacterial cell wall. Metal binding is much stronger and previously reported. Curvature of Scatchard plots from the binding data and the resulting two regions of binding affinity suggest the presence of negative cooperative binding, meaning that the binding affinity decreases as more ions become bound to the sample. For Ca2+, Region I has a KA = (1.0 ± 0.2) × 106 M−1 and Region II has a KA = (0.075 ± 0.058) × 106 M−1. For Mg2+, KA1 = (1.5 ± 0.1) × 106 and KA2 = (0.17 ± 0.10) × 106. A binding capacity (η) is reported for both regions. However, since binding is still occurring in Region II, the total binding capacity is denoted by η2, which are 0.70 ± 0.04 µmol/mg and 0.67 ± 0.03 µmol/mg for Ca2+ and Mg2+ respectively. These data contradict the current paradigm of there being a single metal affinity value that is constant over a range of concentrations. We also find that measurement of equilibrium binding constants is highly sample dependent, suggesting a role for diffusion of metals through heterogeneous cell wall fragments. As a result, we are able to reconcile many contradictory theories that describe binding affinity and the binding mode of divalent metal cations. PMID:25315444
Anemia, Iron Deficiency and Iodine Deficiency among Nepalese School Children.
Khatiwada, Saroj; Lamsal, Madhab; Gelal, Basanta; Gautam, Sharad; Nepal, Ashwini Kumar; Brodie, David; Baral, Nirmal
2016-07-01
To assess iodine and iron nutritional status among Nepalese school children. A cross-sectional, community based study was conducted in the two districts, Ilam (hilly region) and Udayapur (plain region) of eastern Nepal. A total of 759 school children aged 6-13 y from different schools within the study areas were randomly enrolled. A total of 759 urine samples and 316 blood samples were collected. Blood hemoglobin level, serum iron, total iron binding capacity and urinary iodine concentration was measured. Percentage of transferrin saturation was calculated using serum iron and total iron binding capacity values. The mean level of hemoglobin, serum iron, total iron binding capacity, transferrin saturation and median urinary iodine excretion were 12.29 ± 1.85 g/dl, 70.45 ± 34.46 μg/dl, 386.48 ± 62.48 μg/dl, 19.94 ± 12.07 % and 274.67 μg/L respectively. Anemia, iron deficiency and iodine deficiency (urinary iodine excretion <100 μg/L) were present in 34.5 %, 43.4 % and 12.6 % children respectively. Insufficient urinary iodine excretion (urinary iodine excretion <100 μg/L) was common in anemic and iron deficient children. Iron deficiency and anemia are common in Nepalese children, whereas, iodine nutrition is more than adequate. Low urinary iodine excretion was common in iron deficiency and anemia.
Bilirubin Binding Capacity in the Preterm Neonate.
Amin, Sanjiv B
2016-06-01
Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.
The Bilirubin Binding Panel: A Henderson-Hasselbalch Approach to Neonatal Hyperbilirubinemia.
Ahlfors, Charles E
2016-10-01
Poor plasma bilirubin binding increases the risk of bilirubin neurotoxicity in newborns with hyperbilirubinemia. New laboratory tests may soon make it possible to obtain a complete bilirubin binding panel when evaluating these babies. The 3 measured components of the panel are the plasma total bilirubin concentration (B Total ), which is currently used to guide clinical care; the bilirubin binding capacity (BBC); and the concentration of non-albumin bound or free bilirubin (B Free ). The fourth component is the bilirubin-albumin equilibrium dissociation constant, K D , which is calculated from B Total , BBC, and B Free The bilirubin binding panel is comparable to the panel of components used in the Henderson-Hasselbalch approach to acid-base assessment. Bilirubin binding population parameters (not prospective studies to determine whether the new bilirubin binding panel components are better predictors of bilirubin neurotoxicity than B Total ) are needed to expedite the clinical use of bilirubin binding. At any B Total , the B Free and the relative risk of bilirubin neurotoxicity increase as the K D /BBC ratio increases (ie, bilirubin binding worsens). Comparing the K D /BBC ratio of newborns with B Total of concern with that typical for the population helps determine whether the risk of bilirubin neurotoxicity varies significantly from the inherent risk at that B Total Furthermore, the bilirubin binding panel individualizes care because it helps to determine how aggressive intervention should be at any B Total , irrespective of whether it is above or below established B Total guidelines. The bilirubin binding panel may reduce anxiety, costs, unnecessary treatment, and the likelihood of undetected bilirubin neurotoxicity. Copyright © 2016 by the American Academy of Pediatrics.
Krupadam, Reddithota J; Patel, Govind P; Balasubramanian, Rajasekhar
2012-06-01
Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1 μg L(-1) for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources. Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH. The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64 μg mg(-1) which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300 mg L(-1) for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated contact with fresh lake water, and it was found that the adsorption capacity of the MIP did not change even after seven adsorption/desorption cycles. The contaminated water of MC-LR (1.0 μg L(-1)) of 3,640 L could be treated by 1 g of MIP with an estimated cost of US $1.5. The adsorption capacity of the MIP is 40% more than commercially used PAC and resins and also the polymer showed reusable potential which is one of the important criteria in selection of cyanotoxins remediation methods.
Transient chloride binding as a contributory factor to corneal stromal swelling in the ox.
Hodson, S; Kaila, D; Hammond, S; Rebello, G; al-Omari, Y
1992-01-01
1. Investigations were made of the cation exchange capacity of fresh isolated ox corneal stroma (Q, units: mequiv fixed stromal charge/kg stromal fluid) at pH 7.4 over a variety of stomal hydrations (H, units: kg stromal fluid/kg dry tissue) both above and below the physiological hydration of 3.2, whilst the stromas were immersed in a variety of sodium chloride solutions (range 5-1000 mM). 2. At any particular salt concentration, the product QH (dry tissue exchange capacity, units: mequiv/kg dry tissue) appeared constant, over all the hydrations investigated. 3. Dry tissue exchange capacity (QH) varied, however, when the bathing salt concentration was altered. It varied between 55 mequiv/kg dry tissue (e.g. Q = 17 mequiv at H = 3.2) in 5 mM-NaCl to 240 mequiv/kg dry tissue (e.g. Q = 75 mequiv/l at H = 3.2) in 1000 mM-NaCl. 4. The variation of stromal exchange capacity in NaCl solutions of different concentrations was similar when detected by three independent procedures: stromal gel pressure measurements, intrastromal sodium ion distributions, and intrastromal electrical potentials. 5. Intrastromal chloride ion distributions were anomalous. Total chloride (measured by radio-isotopes) was consistently higher than that predicted by Donnan theory. 6. The data were consistent with Elliott's hypothesis that a fraction of intrastromal chloride ions bind to the corneal stromal matrix and in so doing contribute to the fixed negative charge of the stroma. 7. Our observations may be explained by a model of the cation exchange capacity of ox cornea which has two types of components. On is (at constant pH) invariant, and has a dry tissue exchange capacity of about 50 mequiv/kg dry tissue, and is probably generated by the sulphonic and carboxylic acid groups of the glycosaminoglycans. The other is explained by supposing it to consist of a chloride binding ligand which exhibits first order binding, is half occupied at ambient chloride concentrations of 300 mM, and has a total capacity of 240 mequiv/kg dry tissue. 8. Partial stromal extraction with 4 M-guanidine HCl indicated that the chloride binding ligand is not associated with the collagen molecules in the corneal stromal fibrils. 9. It is suggested that such a stromal chloride ion binding ligand would help to stabilize the hydration and transparency of the living cornea when it is exposed to environments of varying tonicity (such as in river or sea bathing). PMID:1432722
... ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 12. Review Date 2/11/2016 Updated by: Todd Gersten, ... Oncology, Florida Cancer Specialists & Research Institute, Wellington, FL. Review provided by VeriMed Healthcare Network. Also reviewed by ...
Newborn Jaundice Technologies: Unbound Bilirubin and Bilirubin Binding Capacity In Neonates
Amin, Sanjiv B.; Lamola, Angelo A.
2011-01-01
Neonatal jaundice (hyperbilirubinemia), extremely common in neonates, can be associated with neurotoxicity. A safe level of bilirubin has not been defined in either premature or term infants. Emerging evidence suggest that the level of unbound (or “free”) bilirubin has a better sensitivity and specificity than total serum bilirubin for bilirubin-induced neurotoxicity. Although recent studies suggest the usefulness of free bilirubin measurements in managing high-risk neonates including premature infants, there currently exists no widely available method to assay the serum free bilirubin concentration. To keep pace with the growing demand, in addition to reevaluation of old methods, several promising new methods are being developed for sensitive, accurate, and rapid measurement of free bilirubin and bilirubin binding capacity. These innovative methods need to be validated before adopting for clinical use. We provide an overview of some promising methods for free bilirubin and binding capacity measurements with the goal to enhance research in this area of active interest and apparent need. PMID:21641486
Binding of [51Cr]ethylenediaminetetraacetate to proteins of human plasma.
Babiker, M M
1986-01-01
Binding of [51Cr]EDTA to human plasma proteins was investigated using chemical and chromatographic techniques of separation of the proteins and protein fractions. Total plasma proteins isolated with ethanol retained 12.95 +/- 0.46% of the initial plasma activity. Proteins separated by other precipitants retained about 16% of the initial radioactivity. Globulins exhibited the highest binding capacity for [51Cr]EDTA and retained about 11.7% of the initial plasma activity following chromatographic separation. This value represents about 70% of the radioactivity bound by the total proteins of the plasma. gamma-Globulins contributed most of the binding attributed to the globulins and retained about 8.7% of the initial [51Cr]EDTA activity. The repeatedly reported underestimation of the renal glomerular filtration rate when estimated as the clearance of [51Cr]EDTA could be adequately accounted for by the extent of binding of this marker to the plasma proteins. PMID:2427701
NASA Astrophysics Data System (ADS)
Melanie, Hakiki; Susilowati, Agustine; Maryati, Yati
2017-01-01
Inulin hydrolysate is a result of inulin hydrolysis by inulinase enzyme of Scopulariopsis sp.-CBS1 fungi isolated from dahlia tuber skin in the formation of fructooligosaccharides (FOS) as dietary fiber. Inulin hydrolysate fermented by Bifidobacterium breve has a potential as cholesterol binder in digestive system due to dietary fiber content in inulin. This study was conducted to evaluate the best cholesterol binding capacity by the variation of lactic acid bacteria (LAB) culture concentration of 10%, 20% and 30% (v/v), respectively. Fermentation process were conducted with inulin hydrolysate concentration of 25% (w/v), skim milk 7,5% (w/v) and various LAB culture concentration at 40 °C for 0, 12, 24, 36 and 48 hours. The results showed that the variation of LAB culture concentrations affect the cholesterol binding ability in fermented inulin hydrolysate. The fermentation process with 10% LAB culture concentration at 40°C for 48 hours resulted in the highest cholesterol binding capacity (CBC) of 13,69 mg/g at pH 7and 14,44 mg/g at pH 2 with composition of total acids of 0,787%, soluble dietary fiber of 0,396%, insoluble dietary fiber of 5,47%, total solids of 14,476%, total sugars of 472,484 mg/mL, reducing sugar of 92 mg/mL and total plate count (TPC) of 7,278 log CFU/mL, respectively.
ERIC Educational Resources Information Center
Cooter, G. Rankin; Mowbray, Kathy W.
1978-01-01
Research revealed that a four-month basketball training program did not significantly alter serum iron, total iron binding capacity, hemoglobin, and percent saturation levels in female basketball athletes. (JD)
Lee, Kelly A; Goetting, Valerie S; Tell, Lisa A
2015-10-01
Changes in inflammatory marker concentrations or activity can be used to monitor health and disease condition of domestic animals but have not been applied with the same frequency to wildlife. We measured concentrations or activity of six inflammatory markers (ceruloplasmin, haptoglobin, mannan-binding lectin-dependent complement [MBL/complement], unsaturated iron-binding capacity (UIBC) and total iron-binding capacity (TIBC), and plasma iron) in apparently healthy and sick or injured Red-tailed Hawks (Buteo jamaicensis). Haptoglobin and ceruloplasmin activities were consistently elevated in sick or injured hawks (2.1 and 2.5 times higher, respectively), and plasma iron concentrations decreased (0.46 times lower), relative to those of healthy birds. There were no differences between healthy and unhealthy hawks in TIBC and UIBC concentrations or MBL/complement activity. Therefore, haptoglobin, ceruloplasmin, and plasma iron would be useful inclusions in a panel of inflammatory markers for monitoring health in raptors.
Zhu, Feng-Mei; Du, Bin; Li, Jun
2014-01-01
Wine grape pomace dietary fiber powders were prepared by superfine grinding, whose effects were investigated on the composition, functional and antioxidant properties of the wine grape pomace dietary fiber products. The results showed that superfine grinding could effectively pulverize the fiber particles to submicron scale. As particle size decrease, the functional properties (water-holding capacity, water-retention capacity, swelling capacity, oil-binding capacity, and nitrite ion absorption capacity) of wine grape pomace dietary fiber were significantly (p < 0.05) decreased and a redistribution of fiber components from insoluble to soluble fractions was observed. The antioxidant activities of wine grape pomace and dietary fiber before and after grinding were in terms of DPPH radical scavenging activity, ABTS diammonium salt radical scavenging activity, ferric reducing antioxidant power, and total phenolic content. Compared with dietary fiber before and after grinding, micronized insoluble dietary fiber showed increased ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content yet decreased DPPH radical scavenging activity. Positive correlations were detected between ABTS radical scavenging activity, ferric reducing antioxidant power, and total phenolic content.
Down-modulation of receptors for phorbol ester tumor promoter in primary epidermal cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solanki, V.; Slaga, T.J.
1982-01-01
The specific (20-/sup 3/H)phorbol 12,13-dibutyrate ((/sup 3/H)PDBu) binding to intact epidermal cells displayed the phenomenon of down-modulation, i.e., the specific binding of (/sup 3/H)PDBu to its receptors on primary epidermal cells reached a maximum within 1 h and steadily declined thereafter. The apparent down-modulation of radiolabel resulted from a partial loss in the total number of receptors; the affinity of receptors for the ligand was essentially unchanged. A number of agents such as chloroquine, methylamine, or arginine which are known to prevent clustering, down-modulation, and/or internalization of several hormone receptors did not affect the down-modulation of phorbol ester receptors. Furthermore,more » cycloheximide had no effect either on down-modulation or on the binding capacity of cells. The surface binding capacity of down-modulated cells following a 90-min incubation with unlabeled ligand was almost returned to normal within 1 h. The effect of the antidepressant drug chlorpromazine, which is known to interact with calmodulin, on (/sup 3/H)PDBu binding was also investigated. Our data indicate that the effect of chlorpromazine on (/sup 3/H)PDBu binding is probably unrelated to its calmodulin-binding activity.« less
2011-03-15
management, toxicology/health risks (e.g., particulates nanomaterials, radiation, etc.), monitoring disease trends , other areas of preventive medicine...will include hematocrit, hemoglobin, mean corpuscle volume, iron, total iron binding capacity, Ferritin , and soluble transferring receptor. The
Hong, Mee Young; Hartig, Nicole; Kaufman, Katy; Hooshmand, Shirin; Figueroa, Arturo; Kern, Mark
2015-03-01
Cardiovascular disease (CVD) is the leading cause of death in the United States. Watermelon, rich in antioxidants and other bioactive components, may be a viable method to improve CVD risk factors through reduced oxidative stress. The purpose of the study was to determine the effects of watermelon powder consumption on lipid profiles, antioxidant capacity, and inflammation in dextran sodium sulfate (DSS)-treated rats fed an atherogenic diet. We hypothesized that watermelon would increase antioxidant capacity and reduce blood lipids and inflammation through modulation of related gene expression. Forty male-weanling (21 days old) Sprague-Dawley rats were divided into 4 groups (10 per group, total N = 40) in a 2 diets (control or 0.33% watermelon) × 2 treatments (with or without DSS) factorial design using an atherogenic diet. Watermelon-fed groups exhibited significantly lower serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol (P< .05). C-reactive protein levels were significantly lower in watermelon-fed rats than the control (P= .001). In addition, oxidative stress as measured by thiobarbituric acid reactive substances was significantly lower in watermelon groups (P= .001). Total antioxidant capacity, superoxide dismutase, and catalase activities were greater in watermelon groups (P< .05). Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase were significantly lower in DSS-treated rats when watermelon was consumed (P< .05). Fatty acid synthase, 3-hydroxy-3methyl-glutaryl-CoA reductase, sterol regulatory element-binding protein 1, sterol regulatory element-binding protein 2, and cyclooxygenase-2 gene expression was significantly downregulated in the watermelon group without DSS (P< .05). These findings indicate that watermelon improves risk factors for CVD in rats through better lipid profiles, lower inflammation, and greater antioxidant capacity by altering gene expression for lipid metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nojima, Y.; Terai, C.; Minota, S.
1985-01-01
Erythrocytes from 51 patients with systemic lupus erythematosus and 75 controls were tested for the capacity to bind aggregated human gamma-globulin labeled with radioiodine in the presence of complement. Both in patients and controls, a trimodal distribution of binding capacity was observed. Low (less than 9% of the added radioactivity), intermediate (9-17%), and high binding (more than 17%) were observed in 13, 58, and 29% in controls and in 49, 43 and 8% in lupus patients. The low binding capacity of erythrocytes persisted even after patients entered remission following steroid therapy. A genetic control of binding capacity was supported bymore » familial surveys. Prevalence of pathological proteinuria was significantly higher in patients with low binding capacity than those with intermediate or high binding capacity (16/25 vs 7/26, P less than 0.01). These results indicate that an impaired physiological disposal of immune complexes via the erythrocyte C3b receptor in lupus patients may contribute to the development of renal involvement.« less
Potential Functional Byproducts from Guava Purée Processing.
Lim, Si Yi; Tham, Paik Yean; Lim, Hilary Yi Ler; Heng, Wooi Shin; Chang, Ying Ping
2018-05-10
The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study. To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them. © 2018 Institute of Food Technologists®.
Verit, Fatma Ferda; Erel, Ozcan; Kocyigit, Abdurrahim
2007-08-01
To investigate whether total antioxidant capacity (TAC) could predict the response to ovulation induction to clomiphene citrate (CC) in nonobese women with polycystic ovary syndrome. Prospective longitudinal follow-up study. Academic hospital. Fifty-five nonobese, oligomenorrheic women with polycystic ovary syndrome and normal indices of insulin sensitivity. None. Standard clinical examinations and ultrasonographic and endocrine screening, including FSH, LH, E(2), P, total T, sex hormone-binding globulin, DHEAS, and TAC were performed before initiation of CC medication. Within the total group, 27 (49%) of the patients did not ovulate at the end of follow-up. TAC, free androgen index, and ovarian volume were all significantly different in CC nonresponders from those in responders. Total antioxidant capacity was found to be the best predictor in univariate analysis (odds ratio, 171.55; 95% confidence interval, 10.61-2,772.93), and it had the highest area in the receiver operating characteristics analysis (0.91). In a multivariate prediction model, TAC, free androgen index, and ovarian volume showed good predictive power, with Hosmer-Lemeshow goodness of fit test of 0.80. Total antioxidant capacity was the strongest predictor of ovarian response during CC induction of ovulation in these patients. It can be concluded that TAC can be used as a routine screening test.
Tait, Tara N; McGeer, James C; Smith, D Scott
2018-01-01
Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.
Pharmaceutical-grade albumin: impaired drug-binding capacity in vitro
Olsen, Harald; Andersen, Anders; Nordbø, Arve; Kongsgaard, Ulf E; Børmer, Ole P
2004-01-01
Background Albumin is the most abundant protein in blood plasma, and due to its ligand binding properties, serves as a circulating depot for endogenous and exogenous (e.g. drugs) compounds. Hence, the unbound drug is the pharmacologically active drug. Commercial human albumin preparations are frequently used during surgery and in critically ill patients. Recent studies have indicated that the use of pharmaceutical-grade albumin is controversial in critically ill patients. In this in vitro study we investigated the drug binding properties of pharmaceutical-grade albumins (Baxter/Immuno, Octapharma, and Pharmacia & Upjohn), native human serum, and commercially available human serum albumin from Sigma Chemical Company. Methods The binding properties of the various albumin solutions were tested in vitro by means of ultrafiltration. Naproxen, warfarin, and digitoxin were used as ligands. HPLC was used to quantitate the total and free drug concentrations. The data were fitted to a model of two classes of binding sites for naproxen and warfarin and one class for digitoxin, using Microsoft Excel and Graphpad Prism. Results The drugs were highly bound to albumin (95–99.5%). The highest affinity (lowest K1) was found with naproxen. Pharmaceutical-grade albumin solutions displayed significantly lower drug-binding capacity compared to native human serum and Sigma albumin. Thus, the free fraction was considerably higher, approximately 40 times for naproxen and 5 and 2 times for warfarin and digitoxin, respectively. The stabilisers caprylic acid and N-acetyl-DL-tryptophan used in the manufacturing procedure seem to be of importance. Adding the stabilisers to human serum and Sigma albumin reduced the binding affinity whereas charcoal treatment of the pharmaceutical-grade albumin from Octapharma almost restored the specific binding capacity. Conclusion This in vitro study demonstrates that the specific binding for warfarin and digitoxin is significantly reduced and for naproxen no longer detectable in pharmaceutical-grade albumin. It further shows that the addition of stabilisers may be of major importance for this effect. PMID:15046641
Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L
2018-05-01
Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.
Regeneration of Cation-Transport Capacity in HeLa Cell Membranes After Specific Blockade by Ouabain
Vaughan, Gerald L.; Cook, John S.
1972-01-01
The cardiac glycoside, ouabain, inhibits alkali-cation transport in HeLa cells. It binds to 0.75 × 106 sites per cell, and the half-time for its dissociation is 16 hr. After partial blockade by ouabain, the cell generates new ouabain-binding sites, with total restoration of transport in 10% of a cell cycle(∼3 hr). This recovery requires protein synthesis and appears to be a response to altered cell-electrolyte content, since growth of cells in media with low K+ concentration enhances the titer of the transport enzyme in a fashion similar to the effect of ouabain. Totally blocked cells do not recover. PMID:4506784
The productive cellulase binding capacity of cellulosic substrates.
Karuna, Nardrapee; Jeoh, Tina
2017-03-01
Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Easy preparation of dietary fiber with the high water-holding capacity from food sources.
Yamazaki, Eiji; Murakami, Kazumi; Kurita, Osamu
2005-03-01
Dietary fibers were prepared as alkali- and acid-insoluble fractions with chemical phosphorylation from Tossa jute (Corchorus olitorius), defatted soybean (Glycine max), and Shiitake (Lentinula edodes). The dietary fiber fractions treated with alkaline solution containing sodium metaphosphate had the lower protein content and higher total dietary fiber content than those of the preparations without phosphorylation. Alkaline extraction followed by phosphorylation led to a 1.5-fold increase in the water holding capacity of dietary fiber compared with no phosphorylation, whereas the binding capacity to bile acids of dietary fiber was almost the same. The alkali- and acid-insoluble extraction with phosphorylation provided an efficient preparation of water-insoluble dietary fiber with high-water holding capacity from various food sources.
Lou, Xiaowei; Yang, Qiuli; Sun, Yangying; Pan, Daodong; Cao, Jinxuan
2017-09-01
In order to investigate the influence of non-thermal effects of microwaves on the flavour of fish and meat products, the G-actin of grass carp in ice baths was exposed to different microwave powers (0, 100, 300 or 500 W); the surface hydrophobicity, sulfhydryl contents, secondary structures and adsorption capacity of G-actin to ketones were determined. As microwave power increased from 0 to 300 W, the surface hydrophobicity, total and reactive sulfhydryls increased; α-helix, β-sheet and random coil fractions turned into β-turn fractions. As microwave power increased from 300 to 500 W, however, hydrophobicity and sulfhydryl contents decreased; β-turn and random coil fractions turned into α-helix and β-sheet fractions. The tendencies of adsorbed capacity of ketones were similar to hydrophobicity and sulfhydryl contents. The increased adsorbing of ketones could be attributed to the unfolding of secondary structures by revealing new binding sites, including thiol groups and hydrophobic binding sites. The decreased binding capacity was related to the refolding and aggregation of protein. The results suggested that microwave powers had obvious effects on the flavour retention and proteins structures in muscle foods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Tea Dietary Fiber Improves Serum and Hepatic Lipid Profiles in Mice Fed a High Cholesterol Diet.
Guo, Wenxin; Shu, Yang; Yang, Xiaoping
2016-06-01
Tea dietary fiber (TDF) was prepared from tea residues and modified to get cellulose-modified TDF (CTDF) by cellulase or micronized TDF (MTDF) by ultrafine grinding. The in vitro lipid-binding capacities of the three fibers and their effects on serum and hepatic lipid profiles in mice fed a high cholesterol diet were evaluated. The results showed that the three fibers had excellent lipid-binding capacities, and the cholesterol- and sodium cholate-binding capacities of CTDF and MTDF were significantly higher than those of TDF. Animal studies showed that, compared to model control, the three fibers significantly decreased mice average daily gain, gain: feed, and liver index, reduced total cholesterol (TC), triglyceride, and low density lipoprotein-cholesterol of serum and liver, increased serum and hepatic high density lipoprotein-cholesterol to TC ratio, and promoted the excretion of fecal lipids, and they also significantly increased the activities of superoxide dismutase and glutathione peroxidase of serum and liver, and decreased lipid peroxidation; moreover, the effects of CTDF and MTDF were better than that of TDF. It was concluded that the three fibers could improve serum and hepatic lipid profiles in mice fed a high cholesterol diet and the mechanism of action might be due to the promotion of fecal excretion of lipids through their lipid-binding ability and the inhibition of lipid peroxidation. These findings suggest that tea dietary fiber has the potential to be used as a functional ingredient to control cardiovascular disease.
Al-Kuraishy, Hayder M; Al-Gareeb, Ali I
2017-01-01
Beta-thalassemias are a cluster of inherited (autosomal recessive) hematological disorders prevalent in the Mediterranean area due to defects in synthesis of β chains of hemoglobin. The aim of present study was to compare the effects of deferasirox and deferoxamine on iron overload and immunological changes in patients with blood transfusion-dependent β-thalassemia major and intermedia. This study involved 64 patients with known cases of β-thalassemia major or intermedia that has been treated with blood transfusion and iron chelators. Serum ferritin, serum iron, serum total iron binding, unsaturated iron-binding capacity (UIBC), and immunological parameters were assessed in deferoxamine and deferasirox-treated patients. In deferoxamine-treated patients, serum ferritin levels were high (8160.33 ± 233.75 ng/dL) compared to deferasirox-treated patients (3000.62 ± 188.23 ng/dL; P < 0.0001), also there were significant differences in serum iron, total iron-binding capacity and UIBC ( P < 0.0001) in deferasirox-treated patients compared to deferoxamine-treated patients. Immunological changes between two treated groups showed insignificant differences in levels of complements (C3 and C4) and immunoglobulin levels (IgM, IgG, and IgA) P > 0.05. This study indicated that deferasirox is more effective than deferoxamine regarding the iron overload but not in the immunological profile in patients with blood transfusion-dependent β-thalassemia.
Interaction between rose bengal and different protein components.
Tseng, S C; Zhang, S H
1995-07-01
Bindings of rose bengal to several proteins were determined by Sephadex G-75 chromatography. Their respective blocking effect against dye uptake was demonstrated in an assay using a rabbit corneal epithelial cell layer. The total binding capacity of nonmucin proteins was measured using fluorometry and Scatchard analysis. The results showed that albumin, lactoferrin, transferrin, and lysozyme could--but serum prealbumin, IgA, carboxymethyl cellulose (CMC), and Sepharose 4B-purified porcine stomach mucin (PSM) could not--bind rose bengal. Lysozyme formed precipitates with rose bengal. Sufficient concentrations of albumin, lactoferrin, transferrin, or lysozyme premixed with rose bengal could block dye uptake by cells, but IgA and serum prealbumin could not. Premixed PSM was not as effective as precoated PSM in blocking dye uptake. The dissociation constant (Kd) was 1.2 x 10(-7) M, 3.6 x 10(-7) M, 3.9 x 10(-7) M, and 1.6 x 10(-6) M for albumin, transferrin, lactoferrin, and lysozyme, respectively. Based on these values, the total maximal binding capacity of nonmucin proteins in normal 7-microliters tears was extrapolated to be 0.249 micrograms rose bengal, which is too small to explain the negative staining of rose bengal on the normal ocular surface. Rose bengal, but not fluorescein, could interact with carbohydrate-containing Sephadex, CMC, and PSM to slow down its elution via Sephadex column chromatography. Therefore, the normal negative staining to rose bengal might be caused by the blocking effect of preocular mucus tear layer, which serves as a diffusion barrier. Rose bengal remains a unique dye for detecting the protective function of the preocular mucus tear.
In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate
Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver
2011-01-01
Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500–180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent. PMID:21541043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavson, L.E.
Several aspects of the pharmacokinetics of the interconvertible glucocorticoids prednisone and prednisolone have been studied. The pharmacokinetics of prednisolone were examined in postmenopausal women taking conjugated estrogens and age-matched control women. The subjects received iv bolus doses of 0.14 and 0.55 mg/kg prednisolone. Expected increases in clearance and volume of distribution with increasing dose were observed for total prednisolone in all subjects. At both doses, significant decreases in total and unbound prednisolone clearance were observed in the women taking estrogen compared to the controls. Volume of distribution was unchanged. The decreases in clearance are smaller than those observed in youngmore » women taking oral contraceptives indicating that factors other than estrogen administration may influence prednisolone clearance in oral contraceptive users. While the protein binding of prednisolone is well characterized, little is known about the protein binding of prednisone. Equilibrium dialysis employing (/sup 3/H)prednisone was used to study the binding of prednisone in human plasma containing endogenous hydrocortisone. Plasma was obtained from volunteers with normal and elevated transcortin binding capacities (CAP/sub T/). Prednisolone binding exhibits marked concentration dependence and sensitivity to CAP/sub T/. In contrast, prednisone binding is independent of concentration and CAP/sub T/.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less
Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.; ...
2016-10-17
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less
Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A
2017-04-01
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases. Biotechnol. Bioeng. 2017;114: 740-750. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Distribution and Kinetics of Lipoprotein-Bound Lipoteichoic Acid
Levels, Johannes H. M.; Abraham, Philip R.; van Barreveld, Erik P.; Meijers, Joost C. M.; van Deventer, Sander J. H.
2003-01-01
Lipoteichoic acid (LTA), a major cell wall component of gram-positive bacteria, is an amphipathic anionic glycolipid with structural similarities to lipopolysaccharide (LPS) from gram-negative bacteria. LTA has been implicated as one of the primary immunostimulatory components that may trigger the systemic inflammatory response syndrome. Plasma lipoproteins have been shown to sequester LPS, which results in attenuation of the host response to infection, but little is known about the LTA binding characteristics of plasma lipid particles. In this study, we have examined the LTA binding capacities and association kinetics of the major lipoprotein classes under simulated physiological conditions in human whole blood (ex vivo) by using biologically active, fluorescently labeled LTA and high-performance gel permeation chromatography. The average distribution of an LTA preparation from Staphylococcus aureus in whole blood from 10 human volunteers revealed that >95% of the LTA was associated with total plasma lipoproteins in the following proportions: high-density lipoprotein (HDL), 68% ± 10%; low-density lipoprotein (LDL), 28% ± 8%; and very low density lipoprotein (VLDL), 4% ± 5%. The saturation capacity of lipoproteins for LTA was in excess of 150 μg/ml. The LTA distribution was temperature dependent, with an optimal binding between 22 and 37°C. The binding of LTA by lipoproteins was essentially complete within 10 min and was followed by a subsequent redistribution from HDL and VLDL to LDL. We conclude that HDL has the highest binding capacity for LTA and propose that the loading and redistribution of LTA among plasma lipoproteins is a specific process that closely resembles that previously described for LPS (J. H. M. Levels, P. R. Abraham, A. van den Ende, and S. J. H. van Deventer, Infect. Immun. 68:2821-2828, 2001). PMID:12761109
Biological variability of transferrin saturation and unsaturated iron binding capacity
Adams, PC; Reboussin, DM; Press, RD; Barton, JC; Acton, RT; Moses, GC; Leiendecker-Foster, C; McLaren, GD; Dawkins, FW; Gordeuk, VR; Lovato, L; Eckfeldt, JH
2007-01-01
Background Transferrin saturation is widely considered the preferred screening test for hemochromatosis. Unsaturated iron binding capacity has similar performance at lower cost. However, the within-person biological variability of both these tests may limit their ability at commonly used cut points to detect HFE C282Y homozygous patients. Methods The Hemochromatosis and Iron Overload Screening (HEIRS) Study screened 101,168 primary care participants for iron overload using tansferrin saturation, unsaturated iron binding capacity, ferritin and HFE C282Y and H63D genotyping. Transferrin saturation and unsaturated iron binding capacity were performed at initial screening and again when selected participants and controls returned for a clinical examination several months later. A missed case was defined as a C282Y homozygote who had transferrin saturation below cut point (45 % women, 50 % men) or unsaturated iron binding capacity above cut point (150 μmol/L women, 125 μmol/L men) at either the initial screening or clinical examination, or both, regardless of serum ferritin. Results There were 209 C282Y previously undiagnosed homozygotes with transferrin saturation and unsaturated iron binding capacity testing done at initial screening and clinical examination. Sixty-eight C282Y homozygotes (33%) would have been missed at these transferrin saturation cut points (19 men, 49 women, median SF 170 μg/L, first and third quartiles 50 and 474 μg/L), and 58 homozygotes (28 %) would have been missed at the unsaturated iron binding capacity cut points (20 men, 38 women, median SF 168 μg/L, quartiles 38 and 454 μg/L). There was no advantage to using fasting samples. Conclusions The within-person biological variability of transferrin saturation and unsaturated iron binding capacity limit their usefulness as an initial screening test for expressing C282Y homozygotes. PMID:17976429
MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing.
Menger, Marcus; Yarman, Aysu; Erdőssy, Júlia; Yildiz, Huseyin Bekir; Gyurcsányi, Róbert E; Scheller, Frieder W
2016-07-18
Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.
NASA Astrophysics Data System (ADS)
Ng, I.-Son; Yu, You-Jin; Yi, Ying-Chen; Tan, Shih-I.; Huang, Bo-Chuan; Han, Yin-Lung
2017-12-01
The proteomics strategy was utilized to analyze and identify the gold adsorption proteins from Tepidimonas fonticaldi AT-A2, due to its outstanding performance in gold-binding and recovery. The results showed that three small proteins, including histidine biosynthesis protein (HisIE), iron donor protein (CyaY) and hypothetical protein_65aa, have a higher ability to adsorb gold ions because of the negatively charged domains or metal binding sites. On the other hand, the Salmonella PmrA/PmrB two-component system first replaces the iron (III)-binding motif using the peptide sequence from hypothetical protein_65aa, and this is then used to reveal the sensing and responsiveness to gold metal ions, which is totally different from the performance of traditional gold binding peptide (GBP) on the crystals on the surface of gold (111). We have successfully demonstrated an integrative proteomics and bacterial two-component system to explore the novel gold binding peptide. Finally, the heterologous over-expression of gold binding peptide by E. coli and the equilibrium of binding capacity for Au(III) have been conducted.
In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols.
Yang, Isabelle; Jayaprakasha, Guddarangavvanahally K; Patil, Bhimanagouda
2018-02-21
Kale (Brassica oleracea) is a leafy green vegetable belonging to the Brassicaceae family, and kale leaves have large amounts of dietary fiber and polyphenolics. Dietary fiber can bind bile acids, thus potentially decreasing cholesterol levels; however, whether the polyphenols from kale contribute to in vitro bile acid binding capacity remains unclear. In the present study, kale was extracted with hexane, acetone, and MeOH : water and the dried extracts, as well as the fiber-rich residue, were tested for their bile acid binding capacity. The fiber-rich residue bound total bile acids in amounts equivalent to that bound by raw kale. The lyophilized acetone extract bound significantly more glycochenodeoxycholate and glycodeoxycholate and less of other bile acids. To test whether bile acid binding enhanced the bioaccessibility of polyphenolic compounds from kale, we used ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry to identify chemical constituents and measure their bioaccessibility in an in vitro digestion reaction. This identified 36 phenolic compounds in kale, including 18 kaempferol derivatives, 13 quercetin derivatives, 4 sinapoyl derivatives, and one caffeoylquinic acid. The bioaccessibility of these phenolics was significantly higher (69.4%) in digestions with bile acids. Moreover, bile acids enhanced the bioaccessibility of quercetin by 25 times: only 2.7% of quercetin derivatives were bioaccessible in the digestion without bile acids, but with bile acids, their accessibility increased to 69.5%. Bile acids increased the bioaccessibility of kaempferol from 37.7% to 69.2%. The extractability and biostability of total phenolics in the digested residue increased 1.8 fold in the digestions with bile acids. These results demonstrated the potential use of kale to improve human health.
Al-Kuraishy, Hayder M.; Al-Gareeb, Ali I.
2017-01-01
INTRODUCTION: Beta-thalassemias are a cluster of inherited (autosomal recessive) hematological disorders prevalent in the Mediterranean area due to defects in synthesis of β chains of hemoglobin. The aim of present study was to compare the effects of deferasirox and deferoxamine on iron overload and immunological changes in patients with blood transfusion-dependent β-thalassemia major and intermedia. PATIENTS AND METHODS: This study involved 64 patients with known cases of β-thalassemia major or intermedia that has been treated with blood transfusion and iron chelators. Serum ferritin, serum iron, serum total iron binding, unsaturated iron-binding capacity (UIBC), and immunological parameters were assessed in deferoxamine and deferasirox-treated patients. RESULTS: In deferoxamine-treated patients, serum ferritin levels were high (8160.33 ± 233.75 ng/dL) compared to deferasirox-treated patients (3000.62 ± 188.23 ng/dL; P < 0.0001), also there were significant differences in serum iron, total iron-binding capacity and UIBC (P < 0.0001) in deferasirox-treated patients compared to deferoxamine-treated patients. Immunological changes between two treated groups showed insignificant differences in levels of complements (C3 and C4) and immunoglobulin levels (IgM, IgG, and IgA) P > 0.05. CONCLUSION: This study indicated that deferasirox is more effective than deferoxamine regarding the iron overload but not in the immunological profile in patients with blood transfusion-dependent β-thalassemia. PMID:28316434
Effect of flash-heat treatment on immunoglobulins in breast milk.
Chantry, Caroline J; Israel-Ballard, Kiersten; Moldoveanu, Zina; Peerson, Jan; Coutsoudis, Anna; Sibeko, Lindiwe; Abrams, Barbara
2009-07-01
Heat-treated expressed breast milk is recommended by the World Health Organization as an option to reduce vertical HIV transmission in resource-poor regions. Flash-heat (FH) is a low technology pasteurization method developed for home use, but its effect on quantity and quality of breast milk immunoglobulins is unknown. To evaluate FH's effect on breast milk immunoglobulin levels and antigen-binding capacity. Fifty HIV+ mothers in South Africa provided breast milk. Part of each sample served as an unheated control; the remainder was flash-heated. Total and antigen-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) were measured by enzyme-linked immunosorbent assay. Paired t test was performed on log-transformed data. FH significantly decreased total IgA and IgG concentrations [geometric mean (geometric SD) 318.0 (1.9) vs. 398.2 (1.9) microg/mL and 89.1 (2.7) vs. 133.3 (2.5) microg/mL, P < 0.001 each]. Similar decreases in anti-HIV-1 gp120 IgG, anti-pneumococcal polysaccharide, and anti-poliovirus IgA occurred (P < 0.001 each). Although the latter was most affected, FH retained 66% of the antigen-binding ability. In contrast, binding capacity of IgA and IgG to influenza increased after FH (P = 0.029 and 0.025, respectively). Most breast milk immunoglobulin activity survives FH, suggesting flash-heated breast milk is immunologically superior to breast milk substitutes. Clinical significance of this decreased immunoglobulin activity needs evaluation in prospective trials.
Effect of Flash-heat Treatment on Immunoglobulins in Breastmilk
Chantry, Caroline J.; Israel-Ballard, Kiersten; Moldoveanu, Zina; Peerson, Jan; Coutsoudis, Anna; Sibeko, Lindiwe; Abrams, Barbara
2009-01-01
Background Heat-treated expressed breastmilk is recommended by WHO as an option to reduce vertical HIV transmission in resource poor regions. Flash-heat (FH) is a low technology pasteurization method developed for home use, but its effect on quantity and quality of breastmilk immunoglobulins is unknown. Objective To evaluate FH's effect on breastmilk immunoglobulin levels and antigen binding capacity. Design/Methods Fifty HIV+ mothers in South Africa provided breastmilk. Part of each sample served as an unheated (UH) control; the remainder was Flash-heated. Total and antigen-specific IgA and IgG were measured by ELISA. Paired t-test was performed on log transformed data. Results FH significantly decreased total IgA and IgG concentrations [geometric mean (geometric sd) 318.0 (1.9) vs. 398.2 (1.9) mcg/mL and 89.1 (2.7) vs. 133.3 (2.5) mcg/mL, p<0.001 each]. Similar decreases in anti-HIV-1 gp120 IgG, anti-pneumococcal polysaccharide and anti-poliovirus IgA occurred (p<0.001 each). Although the latter was most affected, FH retained 66% of the antigen binding ability. In contrast, binding capacity of IgA and IgG to influenza increased after FH (p=0.029 and 0.025 respectively). Conclusions Most breastmilk immunoglobulin activity survives FH, suggesting Flash-heated breastmilk is immunologically superior to breastmilk substitutes. Clinical significance of this decreased immunoglobulin activity needs evaluation in prospective trials. PMID:19421069
Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer
Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.
2011-01-01
The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051
Iron-binding antioxidant capacity is impaired in diabetes mellitus.
Van Campenhout, Ann; Van Campenhout, Christel; Lagrou, Albert R; Moorkens, Greta; De Block, Christophe; Manuel-y-Keenoy, Begoña
2006-05-15
Increased lipid peroxidation contributes to diabetic complications and redox-active iron is known to play an important role in catalyzing peroxidation reactions. We aimed to investigate if diabetes affects the capacity of plasma to protect against iron-driven lipid peroxidation and to identify underlying factors. Glycemic control, serum iron, proteins involved in iron homeostasis, plasma iron-binding antioxidant capacity in a liposomal model, and non-transferrin-bound iron were measured in 40 type 1 and 67 type 2 diabetic patients compared to 100 nondiabetic healthy control subjects. Iron-binding antioxidant capacity was significantly lower in the plasma of diabetic subjects (83 +/- 6 and 84 +/- 5% in type 1 and type 2 diabetes versus 88 +/- 6% in control subjects, p < 0.0005). The contribution of transferrin, ceruloplasmin, and albumin concentrations to the iron-binding antioxidant capacity was lost in diabetes (explaining only 4.2 and 6.3% of the variance in type 1 and type 2 diabetes versus 13.9% in control subjects). This observation could not be explained by differences in Tf glycation, lipid, or inflammatory status and was not associated with higher non-transferrin-bound iron levels. Iron-binding antioxidant capacity is decreased in diabetes mellitus.
Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.
Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C
2008-05-12
Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and drug products. Our results suggest that certain physiochemical properties affect the initial binding capacity and the overall binding capacity of PB APIs and drug products during conditions that simulated gastric and GI residence time. These physiochemical properties can be utilized as quality attributes to monitor and predict drug product quality under certain manufacturing and storage conditions and may be utilized to enhance the clinical efficacy of PB.
Liu, Jie; Jiang, Xiangang; Cao, Yu; Zhang, Chen; Zhao, Guangyao; Zhao, Maoshuang; Feng, Li
2018-05-07
Graphene oxide with different degrees of oxidation was prepared and selected as a model compound of lignite to study quantitatively, using both experiment and theoretical calculation methods, the effect on water-holding capacity of oxygen-containing functional groups. The experimental results showed that graphite can be oxidized, and forms epoxy groups most easily, followed by hydroxyl and carboxyl groups. The prepared graphene oxide forms a membrane-state as a single layer structure, with an irregular surface. The water-holding capacity of lignite increased with the content of oxygen-containing functional groups. The influence on the configuration of water molecule clusters and binding energy of water molecules of different oxygen-containing functional groups was calculated by density functional theory. The calculation results indicated that the configuration of water molecule clusters was totally changed by oxygen-containing functional groups. The order of binding energy produced by oxygen-containing functional groups and water molecules was as follows: carboxyl > edge phenol hydroxyl >epoxy group. Finally, it can be concluded that the potential to form more hydrogen bonds is the key factor influencing the interaction energy between model compounds and water molecules.
Lead biosorption of probiotic bacteria: effects of the intestinal content from laying hens.
Xing, Sicheng; Wang, Jie; Liang, Juan Boo; Jahromi, Mohammad Faseleh; Zhu, Cui; Shokryazdan, Parisa; Laudadio, Vito; Tufarelli, Vincenzo; Liao, Xindi
2017-05-01
This study investigated the effects and the possible mechanisms of intestinal content (IC) from laying hens on in vitro lead (Pb 2+ ) biosorption of four probiotic bacterial strains (Bifidobacterium longum BB79, Lactobacillus paracasei Kgl6, Lactobacillus pentosus ITA23, and Lactobacillus acidipiscis ITA44). The total Pb 2+ removal capacity of the four probiotic strains, with and without capsule polysaccharides (CPSs), increased in the presence of IC compared to the control (without IC). SEM imaging revealed certain unidentified particles from the IC adhered on the surface of bacterial cells sorted out using flow cytometry. Follow-up experiment showed an overall trend of increase in the Pb 2+ removal capacity of the sorted bacteria, but statistically significant for L. pentosus ITA23 and B. longum BB79 after incubation with IC, particularly with the suspended solid portion of the IC. In addition, the Fourier transform infrared spectrophotometer data showed that functional groups such as C-H, O-H, C=O, and C-O-C which possibly associated with Pb 2+ binding were mainly presented in the suspended solid portion of IC. Putting the above together, we postulated that the enhanced Pb 2+ binding capacity the probiotic bacteria incubated in IC is due to the adherence of the yet to be identified particles which could much exist in suspended solid portion of IC containing negatively charged functional groups which bind with the positive Pb 2+ ions.
Sun, Na; Cui, Pengbo; Jin, Ziqi; Wu, Haitao; Wang, Yixing; Lin, Songyi
2017-09-01
This study investigated the contributions of molecular size, charge distribution and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs), and further explored their iron-binding sites. It was demonstrated that enzyme type and degree of hydrolysis (DH) significantly influenced the iron-binding capacity of the SCOHs. The SCOHs produced by alcalase at a DH of 25.9% possessed the highest iron-binding capacity at 92.1%. As the hydrolysis time increased, the molecular size of the SCOHs decreased, the negative charges increased, and the hydrophilic amino acids were exposed to the surface, facilitating iron binding. Furthermore, the Fourier transform infrared spectra, combined with amino acid composition analysis, revealed that iron bound to the SCOHs primarily through interactions with carboxyl oxygen of Asp, guanidine nitrogen of Arg or nitrogen atoms in imidazole group of His. The formed SCOHs-iron complexes exhibited a fold and crystal structure with spherical particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebokova, E.; Wierzbicki, A.; Clandinin, M.T.
1988-10-01
The effect of prolactin (PRL) and human chorionic gonadotropin (hCG) administration for 7 days on the composition and function of rat testicular plasma membrane was investigated. Refractory state in Leydig cells desensitized by hCG decreased the binding capacity for {sup 125}I-labeled hCG and also luteinizing hormone (LH)-induced adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) and testosterone production. In testicular membranes of hCG-treated animals, a depletion of cholesterol and an increase in total phospholipid content was observed after gonadotropin injection, thereby decreasing the cholesterol-to-phospholipid ratio. Injection of high doses of PRL had no effect on the binding capacity or affinity of the LH-hCG receptormore » but decreased the response of Leydig cells to LH in terms of cAMP and testosterone synthesis. PRL also increased total and esterified cholesterol and decreased free cholesterol and membrane phospholipid content. The fatty acid composition of testicular lipids was significantly and selectively influenced by both hormonal treatments. These observations suggest that metabolism of cholesterol and long-chain polyunsaturated fatty acids in testicular tissue is affected by chorionic gonadotropin and PRL and may provide the mechanism for regulating steroidogenic functions.« less
Zhang, Chao; Guo, Xiaofei; Cai, Wenqian; Ma, Yue; Zhao, Xiaoyan
2015-04-01
The binding characteristics and protective capacity of cyanidin (Cy) and cyanidin-3-glucoside (C3G) to calf thymus DNA were explored for the first time. The Cy and C3G gave a bathochromic shift to the ultraviolet-visible spectra of the DNA, indicating the formation of the DNA-Cy and DNA-C3G complexes. The complexes were formed by an intercalative binding mode based on the results of the fluorescence spectra and competitive binding analysis. Meanwhile, the Cy and C3G protected the DNA from the damage induced by the hydroxyl radical. The binding capacity and protective capacity of the C3G were stronger than that of the Cy. Furthermore, the formation of the DNA-anthocyanin complexes was spontaneous when the hydrogen bond and hydrophobic force played a key role. Hence, the Cy and C3G could protect the DNA automatically from the damage induced by the hydroxyl radical. © 2015 Institute of Food Technologists®
Binding of human serum proteins to titanium dioxide particles in vitro.
Zaqout, Mazen S K; Sumizawa, Tomoyuki; Igisu, Hideki; Higashi, Toshiaki; Myojo, Toshihiko
2011-01-01
To determine the capacity of human serum proteins to bind to titanium dioxide (TiO(2)) particles of different polymorphs and sizes. TiO(2) particles were mixed with diluted human serum, purified human serum albumin (HSA) or purified human serum gamma-globulin (HGG) solutions. After incubation at 37°C for 1 h, the particles were sedimented by centrifugation, and proteins in the supernatant, as well as those bound to the particles, were analyzed. The total protein concentration in the supernatant was lowered by TiO(2), whereas the albumin/globulin ratio was elevated by the particles. Incubation with TiO(2) also lowered the immunoglobulin, pre-albumin, beta2-microglobulin, ceruloplasmin and retinol-binding protein levels, but not ferritin levels, in the supernatant. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), proteins in the supernatant, especially HGG, were observed to decrease, while those released from the particles (after adding 1% SDS and heating) increased, depending on the dose of TiO(2). Purified HGG and HSA were also bound to TiO(2), although the former appeared to have a higher affinity. All the proteins tested showed the highest binding potency to the amorphous particles (<50 nm) and the lowest to the rutile particles (<5,000 nm), while binding to anatase particles was intermediate. The affinity to the larger anatase was higher than that to smaller anatase particles in most cases. Human serum proteins, including the two major components, HSA and HGG, are bound by TiO(2) particles. The polymorph of the particles seems to be important for determining the binding capacity of the particles and it may affect distribution of the particles in the body.
Probiotic preparation has the capacity to hydrolyze proteins responsible for wheat allergy.
De Angelis, Maria; Rizzello, Carlo G; Scala, Enrico; De Simone, Claudio; Farris, Giovanni A; Turrini, Francesco; Gobbetti, Marco
2007-01-01
This study was aimed at showing the capacity of probiotic VSL#3 to hydrolyze wheat flour allergens. Hydrolysis was investigated either by the use of baker's yeast bread treated with digestive enzymes and VSL#3, an experimental design that mimicked the activity of probiotics during gut colonization, or by the use of VSL#3 as a starter for dough fermentation, an experimental design that mimicked the predigestion of wheat flour proteins during food processing. Albumins, globulins, and gliadins extracted from wheat flour and chemically acidified and started dough and total proteins extracted from breads were analyzed by immunoblotting with pooled sera from patients with an allergy to wheat. Hydrolysis of wheat flour proteins was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2DE). Mass spectrometry matrix-assisted laser desorption and ionization-time of flight was used to identify some immunoglobulin E (IgE)-binding proteins. As shown by immunoblotting with sera from allergic patients, several IgE-binding proteins persisted after treatment of baker's yeast bread by pepsin and pancreatin. The signal of all these IgE-binding proteins disappeared after further treatment by VSL#3. As shown by SDS-PAGE and related immunoblotting and 2DE analyses, when VSL#3 was used as a starter for bread making, it caused a marked degradation of wheat proteins, including some IgE-binding proteins such as the putative transcription factor APFI and wheat alpha-amylase inhibitors. Indeed, the IgE-binding profile of the bread manufactured by VSL#3 was largely different from that of baker's yeast bread. The IgE-binding proteins that persisted in the bread made with VSL#3 were completely degraded by pepsin and pancreatin.
Albumin as marker for susceptibility to metal ions in metal-on-metal hip prosthesis patients.
Facchin, F; Catalani, S; Bianconi, E; Pasquale, D De; Stea, S; Toni, A; Canaider, S; Beraudi, A
2017-04-01
Metal-on-metal (MoM) hip prostheses are known to release chromium and cobalt (Co), which negatively affect the health status, leading to prosthesis explant. Albumin (ALB) is the main serum protein-binding divalent transition metals. Its binding capacity can be affected by gene mutations or modification of the protein N-terminal region, giving the ischaemia-modified albumin (IMA). This study evaluated ALB, at gene and protein level, as marker of individual susceptibility to Co in MoM patients, to understand whether it could be responsible for the different management of this ion. Co was measured in whole blood, serum and urine of 40 MoM patients. A mutational screening of ALB was performed to detect links between mutations and metal binding. Finally, serum concentration of total ALB and IMA were measured. Serum total ALB concentration was in the normal range for all patients. None of the subjects presented mutations in the investigated gene. Whole blood, serum and urine Co did not correlate with serum total ALB or IMA, although IMA was above the normal limit in most subjects. The individual susceptibility is very important for patients' health status. Despite the limited results of this study, we provide indications on possible future investigations on the toxicological response to Co.
Studies on the erythron and the ferrokinetic responses in beagles adapted to hypergravity
NASA Technical Reports Server (NTRS)
Beckman, D. A.; Evans, J. W.; Oyama, J.
1978-01-01
Red cell survival, ferrokinetics, and hematologic parameters were investigated in beagle dogs exposed to chronic hypergravity (2.6 Gx). Ineffective erythropoiesis, red cell mass, plasma volume, and Cr-51-elution were significantly increased; maximum Fe-59 incorporation was decreased; and there was no change in the mean erythrocyte life span following autologous injection of Cr-51-labeled red cells and Fe-59-labeled transferrin. Red cell count, F(cells), total body hemoglobin (Hb), susceptability to osmotic lysis, and differential reticulocyte count were increased. White blood cell count, venous blood %Hb, mean cell volume, mean cell Hb, mean cell Hb concentration, and serum iron were decreased. No changes were observed for body mass, mg Fe per g Hb, iron binding capacity, percent saturation of iron carrying capacity, or the electrophoretic mobility of purified Hb. This study indicated that chronic exposure to hypergravity induced changes in red cell size, volume, total mass, and membrane permeability.
FAST TRACK COMMUNICATION: Finite-temperature magnetism in bcc Fe under compression
NASA Astrophysics Data System (ADS)
Sha, Xianwei; Cohen, R. E.
2010-09-01
We investigate the contributions of finite-temperature magnetic fluctuations to the thermodynamic properties of bcc Fe as functions of pressure. First, we apply a tight-binding total-energy model parameterized to first-principles linearized augmented plane-wave computations to examine various ferromagnetic, anti-ferromagnetic, and noncollinear spin spiral states at zero temperature. The tight-binding data are fit to a generalized Heisenberg Hamiltonian to describe the magnetic energy functional based on local moments. We then use Monte Carlo simulations to compute the magnetic susceptibility, the Curie temperature, heat capacity, and magnetic free energy. Including the finite-temperature magnetism improves the agreement with experiment for the calculated thermal expansion coefficients.
Effects of salts on protein-surface interactions: applications for column chromatography.
Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu
2007-07-01
Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.
Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur
2000-01-01
High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.
Large heat capacity change in a protein-monovalent cation interaction.
Guinto, E R; Di Cera, E
1996-07-09
Current views about protein-ligand interactions state that electrostatic forces drive the binding of charged species and that burial of hydrophobic and polar surfaces controls the heat capacity change associated with the reaction. For the interaction of a protein with a monovalent cation the electrostatic components are expected to be significant due to the ionic nature of the ligand, whereas the heat capacity change is expected to be small due to the size of the surface area involved in the recognition event. The physiologically important interaction of Na+ with thrombin was studied over the temperature range from 5 to 45 degrees C and the ionic strength range from 50 to 800 mM. These measurements reveal an unanticipated result that bears quite generally on studies of molecular recognition and protein folding. Binding of Na+ to thrombin is characterized by a modest dependence on ionic strength but a large and negative heat capacity change of -1.1 +/- 0.1 kcal mol-1 K-1. The small electrostatic coupling can be explained in terms of a minimal perturbation of the ionic atmosphere of the protein upon Na+ binding. The large heat capacity change, however, is difficult to reconcile with current views on the origin of this effect from surface area changes or large folding transitions coupled to binding. It is proposed that this change is linked to burial of a large cluster of water molecules in the Na+ binding pocket upon Na+ binding. Due to their reduced mobility and highly ordered structure, water molecules sequestered in the interior of a protein must have a lower heat capacity compared to those on the surface of a protein or in the bulk solvent. Hence, a binding or folding event where water molecules are buried may result in significant heat capacity changes independent of changes in exposed hydrophobic surface or coupled conformational transitions.
Steroid production and estrogen binding in flowers of Gladiolus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, J.H.; Wolfe, G.R.; Janik, J.R.
1987-04-01
The bioconversion of /sup 3/H-cholesterol to steroids was examined in excised tissue from the pistils and bracts of Gladiolus. Ovary-ovule and stigma-style tissues produce a compound with chromatographic properties on reverse phase HPLC similar to 17..beta..-estradiol (E/sub 2/). The stigma-style fraction also produced a compound that chromatographed similarly to progesterone. Bracts and the oxidation controls produced no radiolabeled compounds which were chromatographically similar to E/sub 2/. An endogenous E/sub 2/ binding protein was partially characterized from the ovules. The protein binds E/sub 2/, estriol, and diethylstilbesterol whereas testosterone and progesterone do not bind. The total specific binding capacities in themore » cytosolic and nuclear fractions are 1.6 and 2.2 femtomoles of estradiol per mg of tissue. The dissociation constant is 1.1 x 10/sup -9/ M/sup -1/ for both subcellular fractions. The protein-estradiol complex has a sedimentation coefficient of 4.7 +/- 0.1S. The tissue specific biosynthesis of estrogens and the presence of a steroid binding protein similar to a Type 1 estrogen receptor found in mammals is suggestive of a role for steroids in pistil ontogeny.« less
Camargo, Hendricka; Nusspaumer, Gretel; Abia, David; Briceño, Verónica; Remacha, Miguel; Ballesta, Juan P G
2011-05-01
The eukaryotic ribosomal proteins P1 and P2 bind to protein P0 through their N-terminal domain to form the essential ribosomal stalk. A mutational analysis points to amino acids at positions 2 and 3 as determinants for the drastic difference of Saccharomyces cerevisiae P1 and P2 half-life, and suggest different degradation mechanisms for each protein type. Moreover, the capacity to form P1/P2 heterodimers is drastically affected by mutations in the P2β four initial amino acids, while these mutations have no effect on P1β. Binding of P2β and, to a lesser extent, P1β to the ribosome is also seriously affected showing the high relevance of the amino acids in the first turn of the NTD α-helix 1 for the stalk assembly. The negative effect of some mutations on ribosome binding can be reversed by the presence of the second P1/P2 couple in the ribosome, indicating a stabilizing structural influence between the two heterodimers. Unexpectedly, some mutations totally abolish heterodimer formation but allow significant ribosome binding and, therefore, a previous P1 and P2 association seems not to be an absolute requirement for stalk assembly. Homology modeling of the protein complexes suggests that the mutated residues can affect the overall protein conformation. © The Author(s) 2011. Published by Oxford University Press.
Thongekkaew, Jantaporn; Ikeda, Hiroko; Iefuji, Haruyuki
2012-03-30
To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae (α factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 °C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization. Copyright © 2012 Elsevier Inc. All rights reserved.
Persson, Petra; Shrimpton, J. Mark; McCormick, Stephen D.; Bjornsson, Bjorn Thrandur
2000-01-01
High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol × mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol × mg protein−1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiberi, M.; Magnan, J.
The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, Rmore » = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thongekkaew, Jantaporn, E-mail: jantaporn_25@yahoo.com; Ikeda, Hiroko; Iefuji, Haruyuki
Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1)more » promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.« less
Darvishi-Khezri, Hadi; Salehifar, Ebrahim; Kosaryan, Mehrnoush; Karami, Hossein; Mahdavi, Mohammadreza; Alipour, Abbas; Aliasgharian, Aily
2018-03-01
This study aimed to determine the potential iron-chelating effects of silymarin in patients with β-thalassemia major receiving standard iron-chelation therapy. We evaluated whether addition of silymarin to standard iron-chelation therapy could improve iron burden markers and liver and cardiac function in these patients, via a placebo-controlled, crossover clinical study. Silymarin (140 mg) or placebo were administered thrice daily to all patients (n = 82) for 12 weeks, and after a 2-week washout period, patients were crossed over to the other groups. Silymarin efficacy was assessed by measuring serum iron level, ferritin level, total iron-binding capacity and liver and cardiac function on magnetic resonance imaging. Silymarin treatment resulted in a negative change in the serum iron and ferritin levels and a positive change in the total iron-binding capacity levels (treatment effect, p < .001, p = .06, and p = .05, respectively). Silymarin treatment led to positive changes in cardiac and liver function in both treatment sequences of study; however, this was not statistically significant. There was a negative change in liver iron concentration in both treatment sequences (treatment effect, p = .02). In conclusion, combined iron-chelation and silymarin therapy was effective for improving the iron-burden status in patients with β-thalassemia major. Copyright © 2017 John Wiley & Sons, Ltd.
Woo, Koan Sik; Kim, Hyun-Joo; Lee, Ji Hae; Ko, Jee Yeon; Lee, Byong Won; Lee, Byoung Kyu
2018-03-01
This study aimed to compare the phenolic compounds and antioxidant activity of barley at different proportion (0, 5, 10, 15, and 20%), and using different cooking methods. The grains used in this experiment are barley ( Hordeum vulgare L. cv. Huinchalssal) and Samkwang rice. The rice-barley mixture was cooked using general and high pressure cooking methods with and without fermented alcohol. The quality characteristics such as water binding capacity, pasting characteristic, water solubility, and swelling power of different proportions of barley were evaluated. The antioxidant characteristics evaluated are total polyphenol, flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azinobis(3-ethylbenothiazoline-6-sulphonic acid) (ABTS) diammonium salt radical scavenging activities. Results showed that peak [195.0~184.0 rapid visco units (RVU)], trough (130.0~116.2 RVU), final (252.0~221.8 RVU), and setback viscosity (57.0~37.5 RVU) decreased correspondingly with the increase in the amount of barley. Water binding capacity (187.31~136.01%) and swelling power (162.37~127.58%) decreased as amounts of barley increases, however the water solubility (5.35~6.89%) increased. Moreover, the total polyphenol and flavonoid, and the DPPH and ABTS radical scavenging activities contents increased as the amounts of barley in the mixture increases. This study generally aims to provide useful information for the manufacturing of processed products.
Alteration in iron status in pre eclampsia.
Basher, K; Deb, K
2006-01-01
The aim of the study is to compare and contrast serum iron status in pre eclamptic women with normal pregnant women which may help in the establishment of diagnosis of pre eclampsia before appearance of its clinical manifestation. A total of 82 women in the last half of pregnancy, between 17 to 40 years of age, who attended the model family planning clinic, out patient and in patient departments of Obstetrics and Gynecology unit of Mymensingh Medical College Hospital, Mymensingh were selected for this purpose before any treatment was given in present pregnancy. Out of them 32 pregnant women were taken as control because they did not show any evidence of complication during the time of selection and 50 pregnant women were randomly selected as cases on the basic of having pre eclampsia. Mean value of serum iron was significantly increased in the pre eclamptic women in comparison to controls whereas mean values of both total iron binding capacity (TIBC) and unsaturated iron binding capacity (UIBC) were significantly decreased in pre eclamptic women in contrast to controls. The results allude to the possible contribution of released iron free radicals from ischaemic placenta in pre eclampsia to its etiology. So, routine investigation of serum iron status of pregnant women as part of antenatal checkup may help in the establishment of diagnosis of pre eclampsia before appearance of its clinical manifestation.
Hong, Lian; Simon, John D.
2008-01-01
Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of understanding of this field. PMID:17580858
Sui, Dian-Peng; Fan, Hong-Tao; Li, Jing; Li, You; Li, Qiong; Sun, Ting
2013-09-30
A 0.050 mol L(-1) solution of poly (ethyleneimine) (PEI), had been used as a novel binding agent of diffusive gradients in thin-films (DGT) technique (PEI-DGT) for measuring the concentrations of labile Cu(2+), Cd(2+) and Pb(2+) in waters. The binding capacities of the PEI-DGT for Cu(2+), Cd(2+) and Pb(2+) were 11.8, 10.2 and 10.6 μmol L(-1), respectively. The performance of PEI-DGT was independence of pH in the range of 4-8 and ionic strength in the range from 1×10(-4) to 0.1 mol L(-1) (as NaNO3). PEI-DGT could measure 104.7±5.2% of the total concentration of Cd(2+) (0.500 mg L(-1)), 95.2±4.3% of the total Cu(2+) (0.500 mg L(-1)) and 99.2±3.4% of the total Pb(2+) (0.500 mg L(-1)) in synthetic solution. Effects of the ligands on the measurement of labile metals were also investigated in synthetic solutions containing the various concentrations of EDTA and humic acid. In EDTA solution, the concentrations of labile metals measured by PEI-DGT showed good agreement with the theoretical concentrations of free metal ions. In humic acid solution, the concentrations of labile metals measured by PEI-DGT decreased with the increase of the concentrations of humic acid. Several DGT devices with various binding agents, including PEI, sodium polyacrylate and poly(4-styrenesulfonate) solution, were used for the measurement of labile fractions of Cu(2+), Cd(2+) and Pb(2+) in the spiked waters and in mine wastewaters. The results showed that the concentrations of labile metal measured by DGT devices with different binding agents could be significantly different, indicating that the labile fractions of metals were dependent on the binding strength of the binding agents with metals. By choosing binding agents, the useful information on the speciation and bioavailability of the analytes can be provided. Copyright © 2013 Elsevier B.V. All rights reserved.
Assessment of the pollution and ecological risk of lead and cadmium in soils.
Wieczorek, Jerzy; Baran, Agnieszka; Urbański, Krzysztof; Mazurek, Ryszard; Klimowicz-Pawlas, Agnieszka
2018-03-27
The aim of the study was to assess the content, distribution, soil binding capacity, and ecological risk of cadmium and lead in the soils of Malopolska (South Poland). The investigation of 320 soil samples from differently used land (grassland, arable land, forest, wasteland) revealed a very high variation in the metal content in the soils. The pollution of soils with cadmium and lead is moderate. Generally, a point source of lead and cadmium pollution was noted in the study area. The highest content of cadmium and lead was found in the northwestern part of the area-the industrial zones (mining and metallurgical activity). These findings are confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. Among the different types of land use, forest soils had by far the highest mean content of bioavailable forms of both metals. The results showed a higher soil binding capacity for lead than for cadmium. However, for both metals, extremely high (class 5) accumulation capacities were dominant. Based on the results, the investigated soils had a low (Pb) and moderate (Cd) ecological risk on living components. Soil properties, such as organic C, pH, sand, silt, and clay content, correlated with the content of total and bioavailable forms of metals in the soils. The correlations, despite being statistically significant, were characterized by very low values of correlation coefficient (r = 0.12-0.20, at p ≤ 0.05). Therefore, the obtained data do not allow to define any conclusions as to the relationships between these soil properties. However, it must be highlighted that there was a very strong positive correlation between the total content of cadmium and lead and their bioavailable forms in the soils.
Skarpańska-Stejnborn, Anna; Basta, Piotr; Trzeciak, Jerzy; Michalska, Alicja; Kafkas, M Emin; Woitas-Ślubowska, Donata
2017-01-01
The aim of this study was to analyze the effect of supplementation with cranberry ( Vaccinum macrocarpon ) on the levels of pro-inflammatory cytokines, hepcidin and selected markers of iron metabolism in rowers subjected to exhaustive exercise. This double-blind study included 16 members of the Polish Rowing Team. The subjects were randomly assigned to the supplemented group ( n = 9), receiving 1200 mg of cranberry extract for 6 weeks, or to the placebo group ( n = 7). The participants performed a 2000-m test on a rowing ergometer at the beginning and at the end of the preparatory camp. Blood samples were obtained from the antecubital vein prior to each exercise test, one minute after completing the test, and after a 24-h recovery period. The levels of hepcidin, interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), ferritin, iron, soluble transferrin receptor (sTfR) and myoglobin were determined, along with total iron-binding capacity (TIBC), unbound iron-binding capacity (UIBC) and total antioxidant capacity (TAC). Both prior and after the supplementation, a significant post-exercise increase in the concentration of IL-6 was observed in both groups. At the end of the study period, cranberry-supplemented athletes presented with significantly higher resting, post-exercise and post-recovery levels of TAC than the controls. However, a significant exercise-induced increase in the concentrations of TNF-alpha, myoglobin and hepcidin was observed solely in the control group. Supplementation with cranberry extract contributed to a significant strengthening of antioxidant potential in individuals exposed to strenuous physical exercise. However, supplementation did not exert direct effects on other analyzed parameters: inflammatory markers and indices of iron metabolism (TNF-alpha, hepcidin and myoglobin).
Comparative study of thiophilic functionalised matrices for polyclonal F(ab')2 purification.
Kumpalume, Peter; Slater, Nigel K H
2004-01-02
Thiophilic adsorbents have been developed using divinyl sulfone or epoxy activated Streamline quartz base matrix. Their capacity and selectivity for binding polyclonal F(ab')2 fragments generated by whole serum proteolysis was tested. Except for epoxy activated guanidine, all the adsorbents displayed high selectivity for F(ab')2 with dynamic binding capacities ranging from 3 to 10 mg/ml of adsorbent. Thiol immobilised ligands adsorbed more F(ab')2 and the recovery was equal to or more than that from amino immobilised ligands. All adsorbents showed good selectivity for IgG and the dynamic binding capacities were better than for F(ab')2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponec, M.; Weerheim, A.; Havekes, L.
The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisonemore » stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity.« less
Bergander, Tryggve; Nilsson-Välimaa, Kristina; Oberg, Katarina; Lacki, Karol M
2008-01-01
Steadily increasing demand for more efficient and more affordable biomolecule-based therapies put a significant burden on biopharma companies to reduce the cost of R&D activities associated with introduction of a new drug to the market. Reducing the time required to develop a purification process would be one option to address the high cost issue. The reduction in time can be accomplished if more efficient methods/tools are available for process development work, including high-throughput techniques. This paper addresses the transitions from traditional column-based process development to a modern high-throughput approach utilizing microtiter filter plates filled with a well-defined volume of chromatography resin. The approach is based on implementing the well-known batch uptake principle into microtiter plate geometry. Two variants of the proposed approach, allowing for either qualitative or quantitative estimation of dynamic binding capacity as a function of residence time, are described. Examples of quantitative estimation of dynamic binding capacities of human polyclonal IgG on MabSelect SuRe and of qualitative estimation of dynamic binding capacity of amyloglucosidase on a prototype of Capto DEAE weak ion exchanger are given. The proposed high-throughput method for determination of dynamic binding capacity significantly reduces time and sample consumption as compared to a traditional method utilizing packed chromatography columns without sacrificing the accuracy of data obtained.
Identification and properties of steroid-binding proteins in nesting Chelonia mydas plasma.
Ikonomopoulou, M P; Bradley, A J; Whittier, J M; Ibrahim, K
2006-11-01
We report for the first time the presence of a sex steroid-binding protein in the plasma of green sea turtles Chelonia mydas, which provides an insight into reproductive status. A high affinity, low capacity sex hormone steroid-binding protein was identified in nesting C. mydas and its thermal profile was established. In nesting C. mydas testosterone and oestradiol bind at 4 degrees C with high affinity (K (a) = 1.49 +/- 0.09 x 10(9) M(-1); 0.17 +/- 0.02 x 10(7) M(-1)) and low binding capacity (B (max) = 3.24 +/- 0.84 x 10(-5) M; 0.33 +/- 0.06 x 10(-4) M). The binding affinity and capacity of testosterone at 23 and 36 degrees C, respectively were similar to those determined at 4 degrees C. However, oestradiol showed no binding activity at 36 degrees C. With competition studies we showed that oestradiol and oestrone do not compete for binding sites. Furthermore, in nesting C. mydas plasma no high-affinity binding was observed for adrenocortical steroids (cortisol and corticosterone) and progesterone. Our results indicate that in nesting C. mydas plasma temperature has a minimal effect on the high-affinity binding of testosterone to sex steroid-binding protein, however, the high affinity binding of oestradiol to sex steroid-binding protein is abolished at a hypothetically high (36 degrees C) sea/ambient/body temperature. This suggests that at high core body temperatures most of the oestradiol becomes biologically available to the tissues rather than remaining bound to a high-affinity carrier.
21 CFR 862.1415 - Iron-binding capacity test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Iron-binding capacity test system. 862.1415 Section 862.1415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...
Lukic, Ivana; Filipovic, Ana; Inic-Kanada, Aleksandra; Marinkovic, Emilija; Miljkovic, Radmila; Stojanovic, Marijana
2018-05-15
Oligoclonal combinations of several monoclonal antibodies (MAbs) are being considered for the treatment of various infectious pathologies. These combinations are less sensitive to antigen structural changes than individual MAbs; at the same time, their characteristics can be more efficiently controlled than those of polyclonal antibodies. The main goal of this study was to evaluate the binding characteristics of six biclonal equimolar preparations (BEP) of tetanus toxin (TeNT)-specific MAbs and to investigate how the MAb combination influences the BEPs' protective capacity. We show that a combination of TeNT-specific MAbs, which not only bind TeNT but also exert positive cooperative effects, results in a BEP with superior binding characteristics and protective capacity, when compared with the individual component MAbs. Furthermore, we show that a MAb with only partial protective capacity but positive effects on the binding of the other BEP component can be used as a valuable constituent of the BEP. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pérez, Sebastián Ezequiel; Gándola, Yamila; Carlucci, Adriana Mónica; González, Lorena
2015-03-01
Phosphatidylcholine-sodium cholate (SC)-based nanoparticles were designed, characterized, and evaluated as plausible oligonucleotides delivery systems. For this purpose, formulation of the systems was optimized to obtain low cytotoxic vehicles with high siRNA-loading capacity and acceptable transfection ability. Mixtures of soybean phosphatidylcholine (SPC) and SC were prepared at different molar ratios with 2 % w/v total concentration; distilled water and two different buffers were used as dispersion medium. Nanoparticles below 150 nm were observed showing spherical shape which turned smaller in diameter as the SC molar proportion increased, accounting for small unilamellar vesicles when low proportions of SC were present in the formulation, but clear mixed micellar solutions at higher SC percentages. Macroscopic characteristics along with physico-chemical parameters values supported the presence of these types of structures. SYBR green displacement assays demonstrated an important oligonucleotide binding that increased as bile salt relative content got higher. Within the same molar ratio, nanoparticles showed the following binding efficiency order: pH 7.4 > pH 5.0 > distilled water. siRNA-loading capacity assays confirmed the higher siRNA binding by the mixed micelles containing higher SC proportion; moreover, the complexes formed were smaller as the SC:SPC ratio increased. Considering cytotoxicity and siRNA-loading capacity, 1:2 and 1:4 SPC:SC formulations were selected for further biological assays. Nanoparticles prepared in any of the three media were able to induce dsRNA uptake and efficiently transfect RNA for gene silencing, for the compositions prepared in buffer pH 5.0 being the most versatile.
NASA Astrophysics Data System (ADS)
Pernet-Coudrier, Benoît; Companys, Encarnació; Galceran, Josep; Morey, Margalida; Mouchel, Jean-Marie; Puy, Jaume; Ruiz, Núria; Varrault, Gilles
2011-07-01
Dissolved organic matter (DOM) from the treated effluent of a wastewater treatment plant and from the river Seine under high human pressure has been separated into three fractions: hydrophobic (containing humic and fulvic substances), transphilic and hydrophilic using a two column array of XAD-8 and XAD-4 resins. The acid base properties and the binding characteristics with respect to Pb ions (using the new electroanalytical technique AGNES, Absence of Gradients and Nernstian Equilibrium Stripping) have been studied and fitted to NICA (Non-Ideal Competitive Isotherm). We evaluated the binding potential of each DOM fraction in order to better predict the speciation of Pb and, later, its bioavailability in the river. The total binding capacity of the different fractions to Pb, as well as the total titratable charge, reaches its maximum value at the most hydrophilic fraction from the treated effluent. Specific properties of the distribution of the complexing sites within each DOM fraction have been exposed by plotting the conditional affinity spectrum (CAS). The addition of these distributions, weighted according to the respective abundance of each organic fraction, allows for a full description of the Pb binding properties of the whole DOM of a sampling site. Despite its weak aromaticity, the hydrophilic fraction from the wastewater treatment plant effluent exhibits a high lead binding affinity, so that at typical environmental pH and free Pb levels (0.1 μg L -1), Pb is mainly bound to the most hydrophilic fraction of the treated effluent (49% of bound Pb at pH 7). This feature may greatly enhance the transport of Pb and highlights that Pb speciation should also consider other fractions apart from humic and/or fulvic acids when studying surface waters under high human pressure.
Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.
2013-01-01
Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081
Equilibrium binding behavior of magnesium to wall teichoic acid.
Thomas, Kieth J; Rice, Charles V
2015-10-01
Peptidoglycan and teichoic acids are the major cell wall components of Gram-positive bacteria that obtain and sequester metal ions required for biochemical processes. The delivery of metals to the cytoplasmic membrane is aided by anionic binding sites within the peptidoglycan and along the phosphodiester polymer of teichoic acid. The interaction with metals is a delicate balance between the need for attraction and ion diffusion to the membrane. Likewise, metal chelation from the extracellular fluid must initially have strong binding energetics that weaken within the cell wall to enable ion release. We employed atomic absorption and equilibrium dialysis to measure the metal binding capacity and metal binding affinity of wall teichoic acid and Mg2+. Data show that Mg2+ binds to WTA with a 1:2Mg2+ to phosphate ratio with a binding capacity of 1.27 μmol/mg. The affinity of Mg2+ to WTA was also found to be 41×10(3) M(-1) at low metal concentrations and 1.3×10(3) M(-1) at higher Mg2+ concentrations due to weakening electrostatic effects. These values are lower than the values describing Mg2+ interactions with peptidoglycan. However, the binding capacity of WTA is 4 times larger than peptidoglycan. External WTA initially binds metals with positive cooperativity, but metal binding switches to negative cooperativity, whereas interior WTA binds metals with only negative cooperativity. The relevance of this work is to describe changes in metal binding behavior depending on environment. When metals are sparse, chelation is strong to ensure survival yet the binding weakens when essential minerals are abundant. Copyright © 2015 Elsevier B.V. All rights reserved.
Ordway, Gregory A; Jia, Weihong; Li, Jing; Zhu, Meng-Yang; Mandela, Prashant; Pan, Jun
2005-04-30
Previous research has shown that exposure of norepinephrine transporter (NET)-expressing cells to desipramine (DMI) downregulates the norepinephrine transporter, although changes in the several transporter parameters do not demonstrate the same time course. Exposures to desipramine for <1 day reduces only radioligand binding and uptake capacity while transporter-immunoreactivity is unaffected. Recent demonstration of persistent drug retention in cells following desipramine exposures raises the possibility that previous reported changes in the norepinephrine transporter may be partly accountable by residual drug. In this study, potential effects of residual desipramine on norepinephrine transporter binding and uptake were re-evaluated following exposures of PC12 cells to desipramine using different methods to remove residual drug. Using a method that minimizes residual drug, exposure of intact PC12 cells to desipramine for 4h had no effect on uptake capacity or [(3)H]nisoxetine binding to the norepinephrine transporter, while exposures for > or =16 h reduced uptake capacity. Desipramine-induced reductions in binding to the transporter required >24 h or greater periods of desipramine exposure. This study confirms that uptake capacity of the norepinephrine transporter is reduced earlier than changes in radioligand binding, but with a different time course than originally shown. Special pre-incubation procedures are required to abolish effects of residual transporter inhibitor when studying inhibitor-induced transporter regulation.
Adsorption of plasmid DNA on anion exchange chromatography media.
Tarmann, Christina; Jungbauer, Alois
2008-08-01
Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.
Muller, François L L; Cuscov, Marco
2017-03-21
Blanket bogs contain vast amounts of Sphagnum-derived organic substances which can act as powerful chelators for dissolved iron and thus enhance its export to the coastal ocean. To investigate the variations in quantity and quality of these exports, adsorptive cathodic stripping voltammetry (CSV) was used to characterize the metal binding properties of molecular weight-fractionated dissolved organic matter (MW-fractionated DOM) in the catchment and coastal plume of a small peat-draining river over a seasonal cycle. Within the plume, both iron- and copper-binding organic ligands showed a linear, conservative distribution with increasing salinity, illustrating the high stability of peatland-derived humic substances (HS). Within the catchment, humic colloids lost up to 50% of their copper-binding capacity, expressed as a molar ratio to organic carbon, after residing for 1 week or more in the main reservoir of the catchment. Immediately downstream of the reservoir, the molar ratio [L 2 ]/[C org ], where L 2 was the second strongest copper-binding ligand, was 0.75 × 10 -4 when the reservoir residence time was 5 h but 0.34 × 10 -4 when it was 25 days. Residence time did not affect the carbon specific iron-binding capacity of the humic substances which was [L]/[C org ] = (0.80 ± 0.20) × 10 -2 . Our results suggest that the loss of copper-binding capacity with increasing residence time is caused by intracolloidal interactions between iron and HS during transit from peat soil to river mouth.
Garcia, Sandra; Sardar, Saima; Maldonado, Stephanie; Garcia, Velia; Tamez, C.; Parsons, J. G.
2014-01-01
The removal of arsenic(III) and arsenic(V) from an aqueous solution through adsorption on to Fe3O4, MnFe2O4, 50% Mn substituted Fe3O4, 75% Mn substituted Fe3O4, and Mn3O4 nanomaterials was investigated. Characterization of the nanomaterials using XRD showed only pure phases for Mn3O4, MnFe2O4, and Fe3O4. The 50% and 75% substituted nanomaterials were found to be mixtures of Mn3O4 and Fe3O4. From batch studies the optimum binding pH of arsenic(III) and arsenic(V) to the nanomaterials was determined to be pH 3. The binding capacity for As(III) and As(VI) to the various nanomaterials was determined using Isotherm studies. The binding capacity of Fe3O4 was determined to be 17.1 mg/g for arsenic(III) and 7.0 mg/g for arsenic(V). The substitution of 25% Mn into the Fe3O4 lattice showed a slight increase in the binding capacity for As(III) and As(VI) to 23.8 mg/g and 7.9 mg/g, respectively. The 50% substituted showed the maximum binding capacity of 41.5 mg/g and 13.9 mg/g for arsenic(III) and arsenic(V). The 75% Mn substituted Fe3O4 capacities were 16.7 mg/g for arsenic(III) and 8.2 mg/g for arsenic(V). The binding capacity of the Mn3O4 was determined to be 13.5 mg/g for arsenic(III) and 7.5 mg/g for arsenic(V). In addition, interference studies on the effects of SO2−4, PO3−4, Cl−, and NO−3 investigated. All the interferences had very minimal effects on the As(III) and As(V) binding never fell below 20% even in the presence of 1000 ppm interfering ions. PMID:25097269
Strzelak, Kamil; Rybkowska, Natalia; Wiśniewska, Agnieszka; Koncki, Robert
2017-12-01
The Multicommutated Flow Analysis (MCFA) system for the estimation of clinical iron parameters: Serum Iron (SI), Unsaturated Iron Binding Capacity (UIBC) and Total Iron Binding Capacity (TIBC) has been proposed. The developed MCFA system based on simple photometric detection of iron with chromogenic agent (ferrozine) enables a speciation of transferrin (determination of free and Fe-bound protein) in human serum. The construction of manifold was adapted to the requirements of measurements under changing conditions. In the course of studies, a different effect of proteins on SI and UIBC determination has been proven. That was in turn the reason to perform two kinds of calibration methods. For measurements in acidic medium for SI/holotransferrin determination, the calibration curve method was applied, characterized by limit of determination and limit of quantitation on the level of 3.4 μmol L -1 and 9.1 μmol L -1 , respectively. The determination method for UIBC parameter (related to apotransferrin level) in physiological medium of pH 7.4 forced the use of standard addition method due to the strong influence of proteins on obtaining analytical signals. These two different methodologies, performed in the presented system, enabled the estimation of all three clinical iron/transferrin parameters in human serum samples. TIBC corresponding to total transferrin level was calculated as a sum of SI and UIBC. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A
2016-01-01
Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.
Oxytocin and vasopressin: distinct receptors in myometrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillon, G.; Balestre, M.N.; Roberts, J.M.
1987-06-01
The binding characteristics of (/sup 3/H)oxytocin (( /sup 3/H)OT) and (/sup 3/H)lysine vasopressin (( /sup 3/H)LVP) to nonpregnant human myometrium were investigated. Binding of both radioligands was saturable, time dependent, and reversible. Whereas (/sup 3/H)OT was found to bind to a single class of sites with high affinity (Kd, 1.5 +/- 0.4 (+/- SEM) nM) and low capacity (maximum binding (Bmax), 34 +/- 6 fmol/mg protein), (/sup 3/H)LVP bound to two classes of sites, one with high affinity (Kd, 2.2 +/- 0.1 nM) and low capacity (Bmax, 198 +/- 7 fmol/mg protein) and another with low affinity (Kd, 655 +/-more » 209 nM) and high capacity (Bmax, 5794 +/- 1616 fmol/mg protein). The binding of the labeled peptides also displayed a marked difference in sensitivity to Mg2+ and guanine nucleotides. These differences in binding characteristics as well as the differences in potency of analogs in competing for (/sup 3/H)OT and (/sup 3/H)LVP binding indicate the presence of distinct receptors for OT and vasopressin in human myometrium. Pharmacological characterization of the high affinity binding sites for (/sup 3/H)LVP indicated that these are of the V1 subtype. Although, as suggested by others, vasopressin and OT can bind to the same sites, the presence of distinct receptors for both peptides provides an explanation for the previously reported difference in myometrial responsiveness to OT and vasopressin.« less
Binding and Utilization of Human Transferrin by Prevotella nigrescens
Duchesne, Pascale; Grenier, Daniel; Mayrand, Denis
1999-01-01
To survive and multiply within their hosts, pathogens must possess efficient iron-scavenging mechanisms. In the present study, we investigate the capacity of Prevotella nigrescens and Prevotella intermedia to use various sources of iron for growth and characterize the transferrin-binding activity of P. nigrescens. Iron-saturated human transferrin and lactoferrin, but not ferric chloride and the iron-free form of transferrin, could be used as sources of iron by P. nigrescens and P. intermedia. Neither siderophore activity nor ferric reductase activity could be detected in P. nigrescens and P. intermedia. However, both species showed transferrin-binding activity as well as the capacity to proteolytically cleave transferrin. To various extents, all strains of P. nigrescens and P. intermedia tested demonstrated transferrin-binding activity. The activity was heat and protease sensitive. The capacity of P. nigrescens to bind transferrin was decreased when cells were grown in the presence of hemin. Preincubation of bacterial cells with hemin, hemoglobin, lactoferrin, fibrinogen, immunoglobulin G, or laminin did not affect transferrin-binding activity. The transferrin-binding protein could be extracted from the cell surface of P. nigrescens by treatment with a zwitterionic detergent. Subjecting the cell surface extract to affinity chromatography on an agarose-transferrin column revealed that it contained a protein having an estimated molecular mass of 37 kDa and possessing transferrin-binding activity. The transferrin-binding activity of P. nigrescens and P. intermedia may permit the bacteria to obtain iron for survival and growth in periodontal pockets. PMID:9916061
Onder, Seda; David, Emilie; Tacal, Ozden; Schopfer, Lawrence M; Lockridge, Oksana
2017-01-01
Hupresin is a new affinity resin that binds butyrylcholinesterase (BChE) in human plasma and acetylcholinesterase (AChE) solubilized from red blood cells (RBC). Hupresin is available from the CHEMFORASE company. BChE in human plasma binds to Hupresin and is released with 0.1 M trimethylammonium bromide (TMA) with full activity and 10-15% purity. BChE immunopurified from plasma by binding to immobilized monoclonal beads has fewer contaminating proteins than the one-step Hupresin-purified BChE. However, when affinity chromatography on Hupresin follows ion exchange chromatography at pH 4.5, BChE is 99% pure. The membrane bound AChE, solubilized from human RBC with 0.6% Triton X-100, binds to Hupresin and remains bound during washing with sodium chloride. Human AChE is not released in significant quantities with non-denaturing solvents, but is recovered in 1% trifluoroacetic acid. The denatured, partially purified AChE is useful for detecting exposure to nerve agents by mass spectrometry. Our goal was to determine whether Hupresin retains binding capacity for BChE and AChE after Hupresin is washed with 0.1 M NaOH. A 2 mL column of Hupresin equilibrated in 20 mM TrisCl pH 7.5 was used in seven consecutive trials to measure binding and recovery of BChE from 100 mL human plasma. Between each trial the Hupresin was washed with 10 column volumes of 0.1 M sodium hydroxide. A similar trial was conducted with red blood cell AChE in 0.6% Triton X-100. It was found that the binding capacity for BChE and AChE was unaffected by washing Hupresin with 0.1 M sodium hydroxide. Hupresin could be washed with sodium hydroxide at least seven times without losing binding capacity.
Toninello, A; Via, L D; Di Noto, V; Mancon, M
1999-12-15
This study evaluated the effect of the anticancer drug methylglyoxal-bis(guanylhydrazone) (MGBG) on the binding of the polyamine spermine to the mitochondrial membrane and its transport into the inner compartment of this organelle. Spermine binding was studied by applying a new thermodynamic treatment of ligand-receptor interactions (Di Noto et al., Macromol Theory Simul 5: 165-181, 1996). Results showed that MGBG inhibited the binding of spermine to the site competent for the first step in polyamine transport; the interaction of spermine with this site, termed S1, also mediates the inhibitory effect of the polyamine on the mitochondrial permeability transition (Dalla Via et al., Biochim Biophys Acta 1284: 247-252, 1996). In the presence of 1 mM MGBG, the binding capacity and affinity of this site were reduced by about 2.6-fold; on the contrary, the binding capacity of the S2 site, which is most likely responsible for the internalization of cytoplasmic proteins (see Dalla Via et al., reference cited above), increased by about 1.3-fold, and its binding affinity remained unaffected. MGBG also inhibited the initial rate of spermine transport in a dose-dependent manner by establishing apparently sigmoidal kinetics. Consequently, the total extent of spermine accumulation inside mitochondria was inhibited. This inhibition in transport seems to reflect a conformational change at the level of the channel protein constituting the polyamine transport system, rather than competitive inhibition at the inner active site of the channel, thereby excluding the possibility that the polyamine and drug use the same transport pathway. Furthermore, it is suggested that, in the presence of MGBG, the S2 site is able to participate in residual spermine transport. MGBG also strongly inhibits deltapH-dependent spermine efflux, resulting in a complete block in the bidirectional flux of the polyamine and its sequestration inside the matrix space. The effects of MGBG on spermine accumulation are consistent with in vivo disruption of the regulator of energy metabolism and replication of the mitochondrial genome.
Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference
Wang, Fei; Qi, Jianxun; Bi, Yuhai; Zhang, Wei; Wang, Min; Zhang, Baorong; Wang, Ming; Liu, Jinhua; Yan, Jinghua; Shi, Yi; Gao, George F
2015-01-01
The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference. PMID:25940072
Dueck, Kevin J; Hu, YuanShen Sandy; Chen, Peter; Deschambault, Yvon; Lee, Jocelyn; Varga, Jessie; Cao, Jingxin
2015-05-01
Vaccinia E3 protein has the biochemical capacity of binding to double-stranded RNA (dsRNA). The best characterized biological functions of the E3 protein include its host range function, suppression of cytokine expression, and inhibition of interferon (IFN)-induced antiviral activity. Currently, the role of the dsRNA binding capacity in the biological functions of the E3 protein is not clear. To further understand the mechanism of the E3 protein biological functions, we performed alanine scanning of the entire dsRNA binding domain of the E3 protein to examine the link between its biochemical capacity of dsRNA binding and biological functions. Of the 115 mutants examined, 20 were defective in dsRNA binding. Although the majority of the mutants defective in dsRNA binding also showed defective replication in HeLa cells, nine mutants (I105A, Y125A, E138A, F148A, F159A, K171A, L182A, L183A, and I187/188A) retained the host range function to various degrees. Further examination of a set of representative E3L mutants showed that residues essential for dsRNA binding are not essential for the biological functions of E3 protein, such as inhibition of protein kinase R (PKR) activation, suppression of cytokine expression, and apoptosis. Thus, data described in this communication strongly indicate the E3 protein performs its biological functions via a novel mechanism which does not correlate with its dsRNA binding activity. dsRNAs produced during virus replication are important pathogen-associated molecular patterns (PAMPs) for inducing antiviral immune responses. One of the strategies used by many viruses to counteract such antiviral immune responses is achieved by producing dsRNA binding proteins, such as poxvirus E3 family proteins, influenza virus NS1, and Ebola virus V35 proteins. The most widely accepted model for the biological functions of this class of viral dsRNA binding proteins is that they bind to and sequester viral dsRNA PAMPs; thus, they suppress the related antiviral immune responses. However, no direct experimental data confirm such a model. In this study of vaccinia E3 protein, we found that the biological functions of the E3 protein are not necessarily linked to its biochemical capacity of dsRNA binding. Thus, our data strongly point to a new concept of virus modulation of cellular antiviral responses triggered by dsRNA PAMPs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Polat, Murat; Ozcan, Onder; Sahan, Leyla; Üstündag-Budak, Yasemin; Alisik, Murat; Yilmaz, Nigar; Erel, Özcan
2016-12-01
We aimed to investigate the short-term effect of laparoscopic surgery on serum thiol-disulfide homeostasis levels as a marker of oxidant stress of surgical trauma in elective laparoscopic cholecystectomy patients. Venous blood samples were collected, and levels of native thiols, total thiols, and disulfides were determined with a novel automated assay. Total antioxidant capacity (measured as the ferric-reducing ability of plasma) and serum ischemia modified albumin, expressed as absorbance units assayed by the albumin cobalt binding test, were determined. The major findings of the present study were that native thiol (283 ± 45 versus 241 ± 61 μmol/L), total thiol (313 ± 49 versus 263 ± 67 μmol/L), and disulfide (14.9 ± 4.6 versus 11.0 ± 6.1 μmol/L) levels were decreased significantly during operation and although they increased, they did not return to preoperation levels 24 hours after laparoscopic surgery compared to the levels at baseline. Disulfide/native thiol and disulfide/total thiol levels did not change during laparoscopic surgery. The decrease in plasma level of native and total thiol groups suggests impairment of the antioxidant capacity of plasma; however, the delicate balance between the different redox forms of thiols was maintained during surgery.
Bhuiyan, Tazul I; Tak, Jin K; Sessarego, Sebastian; Harfield, Don; Hill, Josephine M
2017-02-01
The impact of biochar properties on acid-extractable organics (AEO) adsorption from oil sands process-affected water (OSPW) was studied. Biochar from wheat straw with the highest ash content (14%) had the highest adsorption capacity (0.59 mg/g) followed by biochar from pulp mill sludge, switchgrass, mountain pine, hemp shives, and aspen wood. The adsorption capacity had no obvious trend with surface area, total pore volume, bulk polarity and aromaticity. The large impact of metal content was consistent with the carboxylates (i.e., naphthenate species) in the OSPW binding to the metals (mainly Al and Fe) on the carbon substrate. Although the capacity of biochar is still approximately two orders of magnitude lower than that of a commercial activated carbon, confirming the property (i.e., metal content) that most influenced AEO adsorption, may allow biochar to become competitive with activated carbon after normalizing for cost, especially if this cost includes environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.
Senczuk, Anna M; Klinke, Ralph; Arakawa, Tsutomu; Vedantham, Ganesh; Yigzaw, Yinges
2009-08-01
Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.
Bradley, A J; Stoddart, D M
1992-01-01
An investigation spanning two breeding seasons was carried out to examine endocrine changes associated with reproduction in a wild population of the marsupial sugar glider Petaurus breviceps, a small arboreal gliding possum. Using techniques of equilibrium dialysis and polyacrylamide gel electrophoresis at steady-state conditions, a high-affinity, low-capacity glucocorticoid-binding protein was demonstrated in the plasma of Petaurus breviceps. Equilibrium dialysis at 36 degrees C using cortisol gave a high-affinity binding constant of 95 +/- 5.2 litres/mumol for a presumed corticosteroid-binding globulin (CBG) while the binding constant for the cortisol-albumin interaction was 3.5 +/- 0.4 litres/mmol. There was no difference between the sexes in the affinity of binding of cortisol to CBG; however, the cortisol-binding capacity underwent seasonal variation in both sexes. Progesterone was bound strongly to the presumed CBG while neither oestradiol nor aldosterone appeared to be bound with high affinity to P. breviceps plasma. In the males, peaks in the plasma concentration of testosterone coincided with the July-September breeding season in both years. A significant inverse relationship was shown to exist between the plasma testosterone concentration and the CBG-binding capacity. In both sexes an increase occurred in the plasma concentration of free cortisol during the first breeding season, a pattern which was not repeated in the subsequent breeding season, possibly due to a lower population density in that year.
Rovira, X; Vivó, M; Serra, J; Roche, D; Strange, P G; Giraldo, J
2009-01-01
Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.
Wong, Ka-Hing; Cheung, Peter C K
2005-11-30
The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.
A streptavidin linker layer that functions after drying.
Xia, Nan; Shumaker-Parry, Jennifer S; Zareie, M Hadi; Campbell, Charles T; Castner, David G
2004-04-27
The ability of streptavidin (SA) to simultaneously bind four biotins is often used in linker layers, where a biotinylated molecule is linked to a biotin-functionalized surface via SA. For biosensor and array applications, it is desirable that the SA linker layer be stable to drying and rehydration. In this study it was observed that a significant decrease in binding capacity of a SA layer occurred when that layer was dried. For this study a SA linker layer was constructed by binding SA to a biotin-containing alkylthiolate monolayer (BAT/OEG) self-assembled onto gold. Its stability after drying was investigated using surface plasmon resonance (SPR). Approximately a quarter of the SA layer was removed from the BAT/OEG surface upon drying and rehydration, suggesting disruption of SA-biotin binding when dry. This resulted in the dried SA layer losing approximately 40% of its biotinylated ferritin (BF) binding capacity. Coating the layer with trehalose before drying was found to inhibit the loss of SA from the BAT/OEG surface. SPR showed that the trehalose-protected SA linker layer retained approximately 91% of its original BF binding capacity after drying and rehydration. Atomic force microscopy, which was used to image individual surface-bound SA and BF molecules, qualitatively confirmed these observations.
Lead-binding capacity of calcium pectates with different molecular weight.
Khotimchenko, Maksim; Makarova, Ksenia; Khozhaenko, Elena; Kovalev, Valeri
2017-04-01
Nowadays, heavy metal contamination of environment is considered as a serious threat to public health because of toxicity of these pollutants and the lack of effective materials with metal-binding properties. Some biopolymers such as pectins were proposed for removal of metal ions from industrial water disposals. Chemical structure of pectins is quite variable and substantially affects their metal binding properties. In this work, relationship between molecular weight and Pb(II)-binding capacity of calcium pectates was investigated in a batch sorption system. The results showed that all pectate samples are able to form complexes with Pb(II) ions. The effects of contact time, pH of the media and equilibrium metal concentration on metal-binding process were tested in experiments. The equilibrium time min required for uptake of Pb(II) by pectate compounds was found to be 60min. Langmuir and Freundlich models were applied for description of interactions between pectates and metal ions. Binding capacity of low molecular pectate was highest among all the samples tested. Langmuir model was figured out to be the best fit within the whole range of pH values. These results demonstrate that calcium pectate with low molecular weight is more promising agent for elimination of Pb(II) ions from contaminated wastewaters. Copyright © 2017 Elsevier B.V. All rights reserved.
Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats.
Aziza, Samy Ali Hussein; Azab, Mohammed El-Said; El-Shall, Soheir Kamal
2014-08-01
Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. Natural flavonoids, as rutin, are well-known antioxidants and could be efficient protective agents. Therefore, the present study was undertaken to evaluate the protective influence of rutin supplementation to improve rat antioxidant systems against IOL-induced hepatic oxidative stress. Sixty male albino rats were randomly divided to three equal groups. The first group, the control, the second group, iron overload group, the third group was used as iron overload+rutin group. Rats received six doses of ferric hydroxide polymaltose (100 mg kg(-1) b.wt.) as one dose every two days, by intraperitoneal injections (IP) and administrated rutin (50 mg kg(-1) b.wt.) as one daily oral dose until the sacrificed day. Blood samples for serum separation and liver tissue specimens were collected three times, after three, four and five weeks from the onset of the experiment. Serum iron profiles total iron, Total Iron Binding Capacity (TIBC), Unsaturated Iron Binding Capacity (UIBC), transferrin (Tf) and Transferrin Saturation% (TS%)}, ferritin, albumin, total Protein, total cholesterol, triacylglycerols levels and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were determined. Moreover, total iron in the liver, L-malondialdehyde (L-MDA), glutathione (GSH), Nitric Oxide (NO) and Total Nucleic Acid (TNA) levels and glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) activities were also determined. The obtained results revealed that, iron overload (IOL) resulted in significant increase in serum iron, TIBC, Tf, TS% and ferritin levels and AST and ALT activities and also increased liver iron, L-MDA and NO levels. Meanwhile, it decreased serum UIBC, total cholesterol, triacylglycerols, albumin, total protein and liver GSH, TNA levels and Gpx, CAT and SOD activities when compared with the control group. Rutin administration to iron-overloaded rats resulted in significant decrease in serum total iron, TIBC, Tf, TS%, ferritin levels and AST and ALT activities and liver total iron, L-MDA and NO levels with significant increases in serum UIBC, albumin, total protein and total cholesterol levels and in liver GSH, CAT and SOD activities compared with the IOL group. This study provides in vivo evidence that rutin administration can improve the antioxidant defense systems against IOL-induced hepatic oxidative stress in rats. This protective effect in liver of iron-loaded rats may be due to both antioxidant and metal chelation activities.
Serotonin and dopamine transporter binding in children with autism determined by SPECT.
Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M; Kuikka, Jyrki T
2008-08-01
Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8 y 8 mo [SD 3 y 10 mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9 y 10 mo [SD 2 y 8 mo]) using single-photon emission computed tomography (SPECT) with [123 I] nor-beta-CIT. The children, with autism were studied during light sedation. They showed reduced serotonin transporter (SERT) binding capacity in the medial frontal cortex, midbrain, and temporal lobe areas. However, after correction due to the estimated effect of sedation, the difference remained significant only in the medial frontal cortex area (p=0.002). In the individuals with autism dopamine transporter (DAT) binding did not differ from that of the comparison group. The results indicate that SERT binding capacity is disturbed in autism. The reduction is more evident in adolescence than in earlier childhood. The low SERT binding reported here and the low serotonin synthesis capacity shown elsewhere may indicate maturation of a lesser number of serotonergic nerve terminals in individuals with autism.
Chuderski, Adam; Andrelczyk, Krzysztof
2015-02-01
Several existing computational models of working memory (WM) have predicted a positive relationship (later confirmed empirically) between WM capacity and the individual ratio of theta to gamma oscillatory band lengths. These models assume that each gamma cycle represents one WM object (e.g., a binding of its features), whereas the theta cycle integrates such objects into the maintained list. As WM capacity strongly predicts reasoning, it might be expected that this ratio also predicts performance in reasoning tasks. However, no computational model has yet explained how the differences in the theta-to-gamma ratio found among adult individuals might contribute to their scores on a reasoning test. Here, we propose a novel model of how WM capacity constraints figural analogical reasoning, aimed at explaining inter-individual differences in reasoning scores in terms of the characteristics of oscillatory patterns in the brain. In the model, the gamma cycle encodes the bindings between objects/features and the roles they play in the relations processed. Asynchrony between consecutive gamma cycles results from lateral inhibition between oscillating bindings. Computer simulations showed that achieving the highest WM capacity required reaching the optimal level of inhibition. When too strong, this inhibition eliminated some bindings from WM, whereas, when inhibition was too weak, the bindings became unstable and fell apart or became improperly grouped. The model aptly replicated several empirical effects and the distribution of individual scores, as well as the patterns of correlations found in the 100-people sample attempting the same reasoning task. Most importantly, the model's reasoning performance strongly depended on its theta-to-gamma ratio in same way as the performance of human participants depended on their WM capacity. The data suggest that proper regulation of oscillations in the theta and gamma bands may be crucial for both high WM capacity and effective complex cognition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.
Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu
2017-09-01
Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.
Iron profile and dietary pattern of primary school obese Egyptian children.
Abd-El Wahed, Mohamed A; Mohamed, Maha H; Ibrahim, Samia S; El-Naggar, Wafaa A
2014-08-01
Poor iron status affects billions of people worldwide. The prevalence of obesity continues to rise in both the developed and developing nations. An association between iron status and obesity has been described in children and adults. The aim of the study was to assess the iron profile and dietary pattern in primary school-aged obese Egyptian children. A case-control study was conducted on 120 children, both obese (n=60) and control group (n=60), recruited from three primary governmental schools located in Dokki Sector, El-Giza Governorate, Egypt. Their ages ranged from 6 to 12 years. All children were subjected to full medical and dietetic history, anthropometric measurements, thorough clinical examination, and determination of complete blood count, serum iron, total iron-binding capacity, transferrin saturation (TS), and ferritin. Despite similar dietary iron intake in the two groups, obese children showed highly significantly decreased hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, serum iron, and TS, and increased mean corpuscular hemoglobin concentration and total iron-binding capacity when compared with the nonobese group. The obese group showed a highly significant increased rate of iron deficiency (ID) (TS<15% or mean corpuscular volume<76 fl) when compared with the nonobese group. Obesity was a significant risk factor for the development of ID (odds ratio: 7.09, 95% confidence interval: 3.16-15.92). The association between ID and obesity may have important public health and clinical implications. For primary school children with elevated BMIs, screening for ID should be considered. Increasing awareness of the importance of physical activity and carrying out nutritional education programs are required.
Effect of short term zinc supplementation on iron status of children with acute diarrhea.
Zaka-ur-Rab, Zeeba; Ahmad, Syed Moiz; Naim, Mohammed; Alam, Seema; Adnan, Mohammad
2015-05-01
To study the effect of short term (2 wk) zinc supplementation on hemoglobin and iron status of children with acute diarrhea. This study was a prospective, open label, single arm interventional trial conducted from June 2008 through October 2009 in a teaching hospital of North India. Three to sixty months old children presenting with acute diarrhea participated in the study. Subjects were supplemented with recommended doses of oral zinc gluconate for 2 wk. Changes in levels of hemoglobin, serum iron, total iron binding capacity, and serum ferritin were the main outcome measures. Sixty-two patients completed the study successfully. The prevalence of anemia before and after 2 wk of zinc supplementation remained unchanged. However, a small decline (p > 0.05) was observed in mean hemoglobin (from 8.95 ± 1.4 to 8.73 ± 1.43 g/dL), serum iron (79.56 ± 45.81 to 78.61 ± 44.41 μg/dL) and ferritin (84.77 ± 45.35 to 83.55 ± 44.10 ng/mL) levels. Total iron binding capacity increased from 331.60 ± 109.72 to 341.30 ± 119.90 μg/dL post supplementation (p > 0.05). Even though statistically insignificant, the small change observed in the levels of hemoglobin, and indicators of iron status following short term zinc supplementation might assume significance in some settings in developing countries where children receive short courses of zinc repeatedly for frequent diarrheal episodes.
Gruba, Piotr; Mulder, Jan
2015-04-01
Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oak
Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A
2009-09-01
A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.
Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.
2012-01-01
This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597
NASA Astrophysics Data System (ADS)
Li, Shaopeng; Yang, Mo; Zhou, Wenfei; Johnston, Trevor G.; Wang, Rui; Zhu, Jinsong
2015-11-01
The label-free and sensitive detection of small molecule drugs on SPRi is still a challenging task, mainly due to the limited surface immobilization capacity of the sensor. In this research, a dextran hydrogel-coated gold sensor chip for SPRi was successfully fabricated via photo-cross-linking for enhanced surface immobilization capacity. The density of the dextran hydrogel was optimized for protein immobilization and sensitive small molecule detection. The protein immobilization capacity of the hydrogel was 10 times greater than a bare gold surface, and 20 times greater than an 11-mercaptoundecanoic acid (MUA) surface. Such a drastic improvement in immobilization capacity allowed the SPRi sensor to detect adequate response signals when probing small molecule binding events. The binding signal of 4 nM liquid-phase biotin to streptavidin immobilized on the dextran surface reached 435 RU, while no response was observed on bare gold or MUA surfaces. The dextran hydrogel-coated SPRi sensor was also applied in a kinetic study of the binding between an immunosuppressive drug (FK506) and its target protein (FKBP12) in a high-throughput microarray format. The measured binding affinity was shown to be consistent with reported literature values, and a detection limit of 0.5 nM was achieved.
Improved purification of immunoglobulin G from plasma by mixed-mode chromatography.
Chai, Dong-Sheng; Sun, Yan; Wang, Xiao-Ning; Shi, Qing-Hong
2014-12-01
Efficient loading of immunoglobulin G in mixed-mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed-mode ligand, 4-(1H-imidazol-1-yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15-64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baumann, Pascal; Baumgartner, Kai; Hubbuch, Jürgen
2015-05-29
Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in biopharmaceutical industry. A major drawback of HIC, however, is the rather low dynamic binding capacity (DBC) obtained when compared to e.g. ion exchange chromatography (IEX). The typical purification procedure for HIC includes binding at neutral pH, independently of the proteins nature and isoelectric point. Most approaches to process intensification are based on resin and salt screenings. In this paper a combination of protein solubility data and varying binding pH leads to a clear enhancement of dynamic binding capacity. This is shown for three proteins of acidic, neutral, and alkaline isoelectric points. High-throughput solubility screenings as well as miniaturized and parallelized breakthrough curves on Media Scout RoboColumns (Atoll, Germany) were conducted at pH 3-10 on a fully automated robotic workstation. The screening results show a correlation between the DBC and the operational pH, the protein's isoelectric point and the overall solubility. Also, an inverse relationship of DBC in HIC and the binding kinetics was observed. By changing the operational pH, the DBC could be increased up to 30% compared to the standard purification procedure performed at neutral pH. As structural changes of the protein are reported during HIC processes, the applied samples and the elution fractions were proven not to be irreversibly unfolded. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlaghecke, R.
1983-02-01
Homogenates of maturing rainbow trout testes show specific binding sites for /sup 125/I-labeled hCG (. /sup 125/I-labeled hCG). The binding is competitively inhibited by unlabeled hCG and by a hypophyseal extract of rainbow trout. It could be demonstrated that the tissue /sup 125/I-hCG binding specificity is restricted to the gonadal preparation. The trout testis was characterized by determining affinity and capacity from Scatchard plot analysis giving a high constant of dissociation Kd 3.65 x 10(-10)/M and a low binding capacity of 0.88 x 10(-15) M/mg tissue. The test system is markedly dependent on temperature, incubation-time, and pH. The maximum bindingmore » was found at 37 degrees during 2 hr of incubation in a buffer of pH 7.5.« less
Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium.
Kyzioł-Komosińska, Joanna; Augustynowicz, Joanna; Lasek, Wojciech; Czupioł, Justyna; Ociński, Daniel
2018-05-15
The present study focused on the use of the dry mass of the macrophyte Callitriche cophocarpa as an effective biosorbent for chromium removal from concentrated solutions, typical for industrial effluents. In order to evaluate the usability of C. cophocarpa as the Cr(III) sorbent, its detailed physicochemical characterization has been performed as well as the preliminary adsorption studies. The biosorbent was characterized by specific surface area (SSA), porosity, total organic carbon (TOC), inorganic content as well as the cation exchange capacity (CEC), dominant exchangeable cations and anion exchange capacity (AEC), point of zero charge (pH pzc ) and buffering capacity. The effect of the initial chromium concentration, solution pH and co-existing anions on the sorption effectiveness have been investigated. Based on theoretical isotherm models, the maximum adsorption capacity of the dry C. cophocarpa has been determined as 77.1 mg Cr(III)/g. Finally, the strength of Cr-binding onto the plant biomass has been evaluated using the BCR extraction method, stating that chromium was strongly and - under environmental conditions - irreversibly bound to the plant biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin.
Nielsen, A D; Borch, K; Westh, P
2000-06-15
The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS) the measured binding curves could be rationalized as association to two classes (high affinity/low affinity) of sites comprising, respectively, three and six similar (i.e. thermodynamically equivalent), independent sites. Changes in the thermodynamic functions enthalpy, standard free energy, standard entropy and heat capacity could be discerned for each class of binding site, as well as for micelle formation. These data suggest that binding to low affinity sites (in analogy with micelle formation) exhibits energetic parameters; in particular, a large negative change in heat capacity, which is characteristic of hydrophobic interactions. The thermodynamics of high affinity binding, on the other hand, is indicative of other dominant forces; most likely electrostatic interactions. Other anionic ligands investigated (laurate and dodecyl benzylsulfonate) showed a behavior similar to SDS, the most significant difference being the high affinity binding of the alkylbenzyl sulfonate. For this ligand, the thermodynamic data is indicative of a more loosely associated complex than for SDS and laurate. BSA was found to bind one or two of the non-ionic surfactants (NIS) hepta- or penta(ethylene glycol) monododecyl ether (C12EO7 and C12EO5) with binding constants about three orders of magnitude lower than for SDS. Hence, the free energy of the surfactant in the weakly bound BSA-NIS complex is only slightly favored over the micellar state. The binding process is characterized by very large exothermic enthalpy changes (larger than for the charged surfactants) and a large, positive increment in heat capacity. These observations cannot be reconciled with a molecular picture based on simple hydrophobic condensation onto non-polar patches on the protein surface.
Purification and partial characterization of PfHRP-II protein of Plasmodium falciparum.
Ghimire, Prakash; Samantaray, J C; Mirdha, B R; Patra, A K; Panda, A K
2003-12-01
The human malarial parasite Plasmodium falciparum secretes various intra-and extra-cellular proteins during its asexual life cycle in human RBC. Histidine rich protein-II (HRP-II) is one of the most prominent proteins, found to be secreted by P. falciparum throughout the asexual cycle with the peak during mature schizont stage of the parasite development in human IRBC. The high histidine content (35% of the total amino acids in protein) of this protein suggested the potential to bind divalent metal ions. We have demonstrated by metal chelate chromatography, an extraordinary capacity of HRP-II to bind nickel ions (Ni++) and employed this characteristic to purify the extra-cellular HRP-II protein secreted by P. falciparum from culture supernatant. The identity of the purified protein was verified by the relative molecular weight on SDS-PAGE, by reacting with polyclonal antibodies directed against it using Western blot technique.
Bucak, Ibrahim H; Almis, Habip; Benli, Samet; Turgut, Mehmet
2017-03-01
Patients with β-thalassemia major (β-TM), a disease that emerges due to disorder of hemoglobin (Hb) synthesis, require life-long erythrocyte transfusion. The purpose of this study was to evaluate skin color and iron levels of patients with β-TM using a visual skin color chart. Each patient's skin color was matched on a skin color chart under a fluorescent lamp by the same physician on each occasion. Iron, iron binding capacity, ferritin and complete blood count (CBC) were studied for each patient enrolled. Colors marked on the visual skin color chart were compared with the laboratory results. Thirty-five patients being monitored at our hospital were included, 19 (54.3%) males and 16 (45.7%) females. The colors marked on the chart darkened as patients aged (p = 0.002, r = 0.49), the frequency of annual transfusions (p = 0.022, r = 0.385), ferritin levels (p < 0.001, r = 0.72) and iron levels increased (p = 0.001, r = 0.538) and as total iron binding capacity (TIBC) decreased (p < 0.001, r = -0.709). On the basis of this study, iron deposition in patients with β-TM was correlated with the colors on the chart.
Drug Design Relating Amebicides to Inhibition of Protein Synthesis.
1977-09-01
A study of the effect of emetine on protein synthesis in E. histolytica was made on log phase amebas as compared to stationary phase amebas ...Sensitivity to emetine was maintained independently of the rate of protein synthesis. Furthermore, both stages of amebas had the same capacity to bind emetine...elongation site. Finally, evidence was obtained that the capacity to bind emetine provides a basis for conferring drug resistance in amebas . A direct
Glove powder's carrying capacity for latex protein: analysis using the ASTM ELISA test.
Beezhold, D; Horton, K; Hickey, V; Daddona, J; Kostyal, D
2003-01-01
Glove donning powders carry latex proteins and disperse them into the workplace environment. We have used the ASTM D6499 ELISA to quantify the amount of latex antigen bound to and carried by glove powders. We could differentiate between a small amount of protein actually bound to the powders and a larger amount carried by the powder. Enhanced binding of a major allergen, Hev b 5, to the starch powders was demonstrated by Western blot. The D6499 ELISA is able to measure total latex antigen, soluble and powder bound, simultaneously without the need to centrifuge the samples.
Separation techniques: Chromatography
Coskun, Ozlem
2016-01-01
Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406
Xu, Lei; Gong, Yuansheng; Gern, James E; Ikeda, Shinya; Lucey, John A
2018-05-16
A growing concern around the world is the number of people who are suffering from food protein allergies. One potential approach to decrease protein allergenicity is to block IgE-binding epitopes of the protein allergen by attachment of polysaccharides via the Maillard reaction (i.e., glycation). Protein glycation has been extensively studied to modify various functional properties. We wanted to examine whether glycates could reduce IgE binding in patients with cow milk protein allergy and to explore how the size (molar mass; M W ) of the polysaccharide affects this IgE-binding capacity. Glycation was performed using the initial step of the Maillard reaction performed in aqueous solutions. The specific goal of this study was to reduce the IgE-binding capacity of whey protein isolate (WPI) through glycation with dextran (DX). Blood sera were obtained from 8 patients who had been diagnosed with cow milk protein allergy, and a composite sera sample was used for IgE-binding analysis by the ImmunoCap (Phadia, Uppsala, Sweden) method. The WPI was glycated with DX of M W ranging from 1 to 2,000 kDa, and the M W of purified glycates was determined using size-exclusion chromatography coupled with multiangle laser light scattering. The WPI to DX molar ratios in the glycates made from DX that had M W values of 1, 3.5, 10 (G10), 150, 500, and 2,000 kDa were 1:4, 1:3, 1:2, 1:1.5, 1:1, and 1:1, respectively. With the increase in the M W of DX, there was an increase in the M W values of the corresponding glycates but a decrease in the number of bound DX. The WPI-DX glycates had lower whey protein IgE-binding capacity than native WPI, with the lowest IgE-binding capacity obtained in the G10 glycate. The DX binding ratios and morphology results from atomic force microscopy images suggested that glycation of WPI with small-M W DX resulted in extensive protein surface coverage, probably due to the attachment of up to 4 DX molecules per whey protein. The lower IgE binding of the G10 glycate was likely due to greater steric hindrance (or a physical barrier) at the surface of the protein. In summary, our results demonstrate that glycating WPI with DX via Maillard reaction can potentially be used to decrease the allergenicity of whey protein. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
de Gregorio, Marta; Armentia, Alicia; Díaz-Perales, Araceli; Palacín, Arantxa; Dueñas-Laita, Antonio; Martín, Blanca; Salcedo, Gabriel; Sánchez-Monge, Rosa
2009-04-22
Salt-soluble proteins from wheat flour have been described as main allergens associated with both baker's asthma and food allergy. However, most studies have used raw flour as starting material, thus not considering potential changes in allergenic properties induced by the heat treatment and other industrial processing to produce wheat-derived foodstuffs. Salt extracts from different commercial wheat-derived products were obtained and their allergenic properties investigated by IgE-immunodetection, ELISA assays, and skin prick test. The IgE-binding capacity of salt-soluble proteins from commercial breads and cooked pastas was reduced around 50% compared with that of raw flour, the reduction being less dramatic in noncooked pastas and biscuits. Several wheat-derived foodstuffs showed major IgE-binding components of 20 and 35 kDa, identified as avenin-like and globulin proteins, respectively. These proteins, as well as most flour and bread salt-soluble proteins, were hydrolyzed when subjected to simulated gastrointestinal digestion. However, the digested products still exhibited a residual IgE-binding capacity. Therefore, processing of wheat flour to obtain derived foodstuffs decreases the IgE binding-capacity of the major salt-soluble wheat proteins. Moreover, simulated gastric fluid digestion further inactivates some heat-resistant IgE-binding proteins.
Hydrogen storage in engineered carbon nanospaces.
Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter
2009-05-20
It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.
An Intrinsic MicroRNA Timer Regulates Progressive Decline in Shoot Regenerative Capacity in Plants
Zhang, Tian-Qi; Lian, Heng; Tang, Hongbo; Dolezal, Karel; Zhou, Chuan-Miao; Yu, Sha; Chen, Juan-Hua; Chen, Qi; Liu, Hongtao; Ljung, Karin
2015-01-01
Plant cells are totipotent and competent to regenerate from differentiated organs. It has been shown that two phytohormones, auxin and cytokinin, play critical roles within this process. As in animals, the regenerative capacity declines with age in plants, but the molecular basis for this phenomenon remains elusive. Here, we demonstrate that an age-regulated microRNA, miR156, regulates shoot regenerative capacity. As a plant ages, the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors leads to the progressive decline in shoot regenerative capacity. In old plants, SPL reduces shoot regenerative capacity by attenuating the cytokinin response through binding with the B-type ARABIDOPSIS RESPONSE REGULATORs, which encode the transcriptional activators in the cytokinin signaling pathway. Consistently, the increased amount of exogenous cytokinin complements the reduced shoot regenerative capacity in old plants. Therefore, the recruitment of age cues in response to cytokinin contributes to shoot regenerative competence. PMID:25649435
NASA Astrophysics Data System (ADS)
Pramono, H.; Pujiastuti, D. Y.; Sahidu, A. M.
2018-04-01
The effect of acid- and alkali-process on biochemical and physicochemical characteristics of fish protein isolate from red snapper (Lutjanus sp) by-product was evaluated. Protein recovered by alkali process (16.79%) was higher compared to acid process (13.75%). Reduction of lipid content and total volatile basic nitrogen (TVB-N) exhibited in both treatments indicated both process improved fish protein isolate recovered from red snapper by-product. In addition, the increasing of water holding capacity and oil binding capacity were observed. However, high peroxide value of fish protein isolate was showed in both treatment. This finding indicated that acid and alkali process can be used as a useful method to recover proteins from red snapper by-product. Alkali process gave a protein isolate with better overall quality compared to acid process.
Weinberg, Justin; Zhang, Shaojie; Crews, Gillian; Carta, Giorgio; Przybycien, Todd
2018-04-20
Chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) has been proposed as a strategy to increase the process selectivity and resin robustness by providing the ligand with a steric repulsion barrier against non-specific binding. This article comprises a comprehensive study of IgG adsorption and transport in Repligen CaptivA PriMAB resin with PEGylated ProA ligands that are modified using 5.2 and 21.5 kDa PEG chains. We studied the impact of the molecular weight of the PEG as well as the extent of PEGylation for the 5.2 kDa PEG modification. In all cases, PEGylation of ProA ligands decreases the resin average pore size, particle porosity, and static binding capacity for IgG proportional to the volume of conjugated PEG in the resin. Resin batch uptake experiments conducted in bulk via a stirred-tank system and with individual resin particles under confocal laser scanning microscopy suggests that PEGylation introduces heterogeneity into IgG binding kinetics: a fraction of the IgG binding sites are transformed from typical fast association kinetic behavior to slow kinetic behavior. pH gradient elution experiments of an IgG molecule on the modified resins show an increase in IgG elution pH for all modified resins, implying a decrease in IgG-ProA binding affinity on modification. Despite losses in static binding capacity for all resins with PEGylated ligands, the loss of dynamic binding capacity at 10% breakthrough (DBC 10% ) ranged more broadly from almost 0-47% depending on the PEG molecular weight and the extent of PEGylation. Minimal losses in DBC 10% were observed with a low extent of PEGylation with a smaller molecular weight PEG, while higher losses were observed at higher extents of PEGylation and with higher molecular weight PEG due to decreased static binding capacity and increased mass transfer resistance. This work provides insight into the practical implications for resin performance if PEGylation is considered as a strategy for selectivity enhancement in affinity chromatography with macromolecular ligands. Copyright © 2018 Elsevier B.V. All rights reserved.
Price, Helen L; Teasdale, Peter R; Jolley, Dianne F
2013-11-25
This study investigated several knowledge gaps with respect to the diffusive gradients in thin films (DGT) technique for measurement of oxyanions (As(III), As(V), Se(IV), Se(VI), PO4(3-), and V(V)) using the ferrihydrite and Metsorb™ binding layers. Elution efficiencies for each binding layer were higher with 1:20 dilutions, as analytical interferences for ICP-MS were minimised. Diffusion coefficients measured by diffusion cell and by DGT time-series experiments were found to agree well and generally agreed with previously reported values, although a range of diffusion coefficients have been reported for inorganic As and Se species. The relative binding affinity for both ferrihydrite and Metsorb™ was PO4(3-) ≈ As(V)>V(V) ≈ As(III)>Se(IV) > Se(VI) and effective binding capacities were measured in single ion solutions, and spiked synthetic freshwater and seawater, advising practical decisions about DGT monitoring. Under the conditions tested the performance of both ferrihydrite and Metsorb™ binding layers was directly comparable for As(V), As(III) Se(IV), V(V) and PO4(3-) over a deployment spanning ≤ 2 days for both freshwater and seawater. In order to return quantitative data for several analytes we recommend that the DGT method using either ferrihydrite or Metsorb™ be deployed for a maximum of 2 days in marine waters likely to contain high levels of the most strongly adsorbing oxyanions contaminants. The high pH, the competitive ions present in seawater and the identity of co-adsorbing ions affect the capacity of each binding layer for the analytes of interest. In freshwaters, longer deployment times can be considered but the concentration and identity of co-adsorbing ions may impact on quantitative uptake of Se(IV). This study found ferrihydrite-DGT outperformed Metsorb-DGT while previous studies have found the opposite, with variation in binding materials masses used being a likely reason. Clearly, preparation of both binding layers should always be optimised to produce the highest capacity possible, especially for seawater deployments. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi
2014-03-01
(2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, M.J.; Takahashi, J.S.; Dubocovich, M.L.
1988-05-01
Studies in a variety of seasonally breeding mammals have shown that melatonin mediates photoperiodic effects on reproduction. Relatively little is known, however, about the site(s) or mechanisms of action of this hormone for inducing reproductive effects. Although binding sites for (3H)melatonin have been reported previously in bovine, rat, and hamster brain, the pharmacological selectivity of these sites was never demonstrated. In the present study, we have characterized binding sites for a new radioligand, 2-(125I)iodomelatonin, in brains from a photoperiodic species, the Syrian hamster. 2-(125I)Iodomelatonin labels a high affinity binding site in hamster brain membranes. Specific binding of 2-(125I)iodomelatonin is rapid,more » stable, saturable, and reversible. Saturation studies demonstrated that 2-(125I)iodomelatonin binds to a single class of sites with an affinity constant (Kd) of 3.3 +/- 0.5 nM and a total binding capacity (Bmax) of 110.2 +/- 13.4 fmol/mg protein (n = 4). The Kd value determined from kinetic analysis (3.1 +/- 0.9 nM; n = 5) was very similar to that obtained from saturation experiments. Competition experiments showed that the relative order of potency of a variety of indoles for inhibition of 2-(125I)iodomelatonin binding site to hamster brain membranes was as follows: 6-chloromelatonin greater than or equal to 2-iodomelatonin greater than N-acetylserotonin greater than or equal to 6-methoxymelatonin greater than or equal to melatonin greater than 6-hydroxymelatonin greater than or equal to 6,7-dichloro-2-methylmelatonin greater than 5-methoxytryptophol greater than 5-methoxytryptamine greater than or equal to 5-methoxy-N,N-dimethyltryptamine greater than N-acetyltryptamine greater than serotonin greater than 5-methoxyindole (inactive).« less
Basu, Anirban; Kumar, Gopinatha Suresh
2014-05-30
The interaction of the synthetic azo dye and food colorant carmoisine with human and bovine serum albumins was studied by microcalorimetric techniques. A complete thermodynamic profile of the interaction was obtained from isothermal titration calorimetry studies. The equilibrium constant of the complexation process was of the order of 10(6)M(-1) and the binding stoichiometry was found to be 1:1 with both the serum albumins. The binding was driven by negative standard molar enthalpy and positive standard molar entropy contributions. The binding affinity was lower at higher salt concentrations in both cases but the same was dominated by mostly non-electrostatic forces at all salt concentrations. The polyelectrolytic forces contributed only 5-8% of the total standard molar Gibbs energy change. The standard molar enthalpy change enhanced whereas the standard molar entropic contribution decreased with rise in temperature but they compensated each other to keep the standard molar Gibbs energy change almost invariant. The negative standard molar heat capacity values suggested the involvement of a significant hydrophobic contribution in the complexation process. Besides, enthalpy-entropy compensation phenomenon was also observed in both the systems. The thermal stability of the serum proteins was found to be remarkably enhanced on binding to carmoisine. Copyright © 2014 Elsevier B.V. All rights reserved.
Lee, Kelly A; Tell, Lisa A; Mohr, F Charles
2012-12-01
Adult mallard ducks (Anas platyrhynchos) were orally dosed with bunker C fuel oil for 5 days, and five different inflammatory markers (haptoglobin, mannan-binding lectin, ceruloplasmin, unsaturated iron-binding capacity, and plasma iron) were measured in blood plasma prior to and 8, 24, 48, and 72 hr following exposure. In order to contrast the response to fuel oil with that of a systemic inflammatory response, an additional five ducks were injected intramuscularly with bacterial lipopolysaccharide (LPS). Oil-treated birds had an inflammatory marker profile that was significantly different from control and LPS-treated birds, showing decreases in mannan-binding lectin-dependent hemolysis and unsaturated iron-binding capacity, but no changes in any of the other inflammatory markers. Birds treated with oil also exhibited increased liver weights, decreased body and splenic weights, and decreased packed cell volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jinlian; Guo, Yanhua; Zhang, Yun
A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers has been investigated within the framework of first-principle calculations. Our results show that the binding energies of Li, Ca, Sc, Ti on graphyne nanotubes are stronger than that on graphyne monolayers. Such strong binding would prevent the formation of metal clusters on graphyne nanotubes. From the charge transfer and partial density of states, it is found that the curvature effect of nanotubes plays an important role for the strong binding strength of metal on graphyne nanotubes. And the hydrogen storage capacity is 4.82 wt%, 5.08 wt%,more » 4.88 wt%, 4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes that promise a potential material for storing hydrogen. - Graphical abstract: Metal atoms (Li, Ca, Sc and Ti) can strongly bind to graphyne nanotubes to avoid the formation of metal clusters, and a capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015. Twenty-four hydrogen molecules absorb to Ti-decorated graphyne nanotube. - Highlights: • The binding strength for metal on graphyne nanotubes is much stronger than that on γ-graphyne monolayer. • Metal atoms can strongly bind to the curving triangle acetylenes rings to avoid the formation of metal clusters. • A capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015.« less
Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Maturana, Andrés D; Kuroda, Shun'ichi
2016-06-01
Mammalian receptors are recognized as target molecules for drug discovery, and chemical libraries have been screened for both potential antagonists and agonists mainly by ligand-binding assays using immobilized receptors. A bio-nanocapsule (BNC) of approximately 30 nm that displays a tandem form of the protein A-derived immunoglobulin G (IgG) Fc-binding Z domains (denoted as ZZ-BNC) has been developed for both clustering and oriented immobilization of IgGs on the solid phase of immunosensors. In this study, human IgG1 Fc-fused vascular endothelial growth factor (VEGF) receptor was immobilized through ZZ-BNC on the sensor chip of quartz crystal microbalance (ZZ-BNC-coating). When compared with direct adsorption and protein A-coating, the sensor chip showed higher sensitivity (∽46- and ∽165-fold, respectively) and larger ligand-binding capacity (∽4- and ∽18-fold, respectively). Furthermore, the number of VEGF molecules bound to its receptor increased from 0.20 (direct adsorption) to 2.06 by ZZ-BNC-coating, strongly suggesting that ZZ-BNC reduced the steric hindrance near ligand recognition sites through oriented immobilization. Similarly, the sensitivity and ligand-binding capacity of leptin and prolactin receptors were both enhanced at a level comparable to that observed for the VEGF receptor. Thus, the combination of ZZ-BNC and Fc-fused receptors could significantly improve the function of ligand-binding assays. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Panther, Jared G; Teasdale, Peter R; Bennett, William W; Welsh, David T; Zhao, Huijun
2011-07-18
Two adsorbents (Metsorb and ferrihydrite) used in binding layers with the diffusive gradients in a thin film technique were evaluated for the measurement of dissolved reactive phosphorous (DRP) in synthetic and natural waters. Possible interferences were investigated with Cl(-) (up to 1.35 mol L(-1)) and SO(4)(2-) (up to 0.056 mol L(-1)) having no affect on either DGT binding layer, and HCO(3)(-) (up to 5.7 mmol L(-1)) having no effect on Metsorb-DGT, over 4 days. However, HCO(3)(-) interfered with the ferrihydrite-DGT measurement at concentrations typical of many natural waters (≥0.7 mmol L(-1)) after a deployment period of 1-2 days. The capacity of the Metsorb binding phase for DGT response was ∼37,000 ng P, whereas the capacities of a low-mass (17.8 mg of adsorbent per DGT sampler) and high-mass (29.2mg of adsorbent per DGT sampler) ferrihydrite binding phase were substantially lower (∼15,000 ng P and ∼25,000 ng P, low-mass and high-mass, respectively). Increasing the capacity of the ferrihydrite adsorbent allowed the ferrihydrite-DGT to be utilized for up to 3 days before interference by HCO(3)(-) was observed. Seawater deployments demonstrated that even high-capacity ferrihydrite-DGT devices underestimated the DRP concentration by 37%, whereas Metsorb-DGT measurements were accurate. The Metsorb-DGT is superior to the ferrihydrite-DGT for determining DRP over deployment times greater than 1 day and in waters with ≥0.7 mmol L(-1) HCO(3)(-). Based on the experience obtained from this detailed validation process, the authors propose a number of key requirements that need to be considered when developing new DGT binding layers, with testing the performance over longer deployment times being critical. Copyright © 2011 Elsevier B.V. All rights reserved.
Herrmann, Inga; Jourak, Amir; Hedström, Annelie; Lundström, T. Staffan; Viklander, Maria
2013-01-01
Sorption by active filter media can be a convenient option for phosphorus (P) removal and recovery from wastewater for on-site treatment systems. There is a need for a robust laboratory method for the investigation of filter materials to enable a reliable estimation of their longevity. The objectives of this study were to (1) investigate and (2) quantify the effect of hydraulic loading rate and influent source (secondary wastewater and synthetic phosphate solution) on P binding capacity determined in laboratory column tests and (3) to study how much time is needed for the P to react with the filter material (reaction time). To study the effects of these factors, a 22 factorial experiment with 11 filter columns was performed. The reaction time was studied in a batch experiment. Both factors significantly (α = 0.05) affected the P binding capacity negatively, but the interaction of the two factors was not significant. Increasing the loading rate from 100 to 1200 L m−2 d−1 decreased P binding capacity from 1.152 to 0.070 g kg−1 for wastewater filters and from 1.382 to 0.300 g kg−1 for phosphate solution filters. At a loading rate of 100 L m−2 d−1, the average P binding capacity of wastewater filters was 1.152 g kg−1 as opposed to 1.382 g kg−1 for phosphate solution filters. Therefore, influent source or hydraulic loading rate should be carefully controlled in the laboratory. When phosphate solution and wastewater were used, the reaction times for the filters to remove P were determined to be 5 and 15 minutes, respectively, suggesting that a short residence time is required. However, breakthrough in this study occurred unexpectedly quickly, implying that more time is needed for the P that has reacted to be physically retained in the filter. PMID:23936313
Liu, Jian-Ying; He, Yi-Feng; Dai, Zhi; Chen, Cai-Zhong; Cheng, Wei-Zhong; Zhou, Jian; Wang, Xin
2013-01-01
Purpose Excessive brain iron accumulation contributes to cognitive impairments in hepatitis B virus (HBV)-related cirrhotic patients. The underlying mechanism remains unclear. Hepcidin, a liver-produced, 25-aminoacid peptide, is the major regulator of systemic iron metabolism. Abnormal hepcidin level is a key factor in some body iron accumulation or deficiency disorders, especially in those associated with liver diseases. Our study was aimed to explore the relationship between brain iron content in patients with HBV-related cirrhosis and serum hepcidin level. Methods Seventy HBV-related cirrhotic patients and forty age- sex-matched healthy controls were enrolled. Brain iron content was quantified by susceptibility weighted phase imaging technique. Serum hepcidin as well as serum iron, serum transferrin, ferritin, soluble transferrin receptor, total iron binding capacity, and transferrin saturation were tested in thirty cirrhotic patients and nineteen healthy controls. Pearson correlation analysis was performed to investigate correlation between brain iron concentrations and serum hepcidin, or other iron parameters. Results Cirrhotic patients had increased brain iron accumulation compared to controls in the left red nuclear, the bilateral substantia nigra, the bilateral thalamus, the right caudate, and the right putamen. Cirrhotic patients had significantly decreased serum hepcidin concentration, as well as lower serum transferring level, lower total iron binding capacity and higher transferrin saturation, compared to controls. Serum hepcidin level negatively correlated with the iron content in the right caudate, while serum ferritin level positively correlated with the iron content in the bilateral putamen in cirrhotic patients. Conclusions Decreased serum hepcidin level correlated with excessive iron accumulation in the basal ganglia in HBV-related cirrhotic patients. Our results indicated that systemic iron overload underlined regional brain iron repletion. Serum hepcidin may be a clinical biomarker for brain iron deposition in cirrhotic patients, which may have therapeutic potential. PMID:23776499
Feature Binding in Visual Working Memory Evaluated by Type Identification Paradigm
ERIC Educational Resources Information Center
Saiki, Jun; Miyatsuji, Hirofumi
2007-01-01
Memory for feature binding comprises a key ingredient in coherent object representations. Previous studies have been equivocal about human capacity for objects in the visual working memory. To evaluate memory for feature binding, a type identification paradigm was devised and used with a multiple-object permanence tracking task. Using objects…
Binding of environmental carcinogens to asbestos and mineral fibres.
Harvey, G; Pagé, M; Dumas, L
1984-01-01
A rapid method has been developed for measuring the binding capacity of asbestos and other mineral fibres for environmental carcinogens. Benzo(alpha)pyrene (B(alpha)P), nitrosonornicotine (NNN), and N-acetyl-2-aminofluorene (NAAF) were assayed in the presence of Canadian grade 4T30 chrysotile, chrysotile A, amosite, crocidolite, glass microfibres, glasswool, attapulgite, and titanium dioxide. Chrysotile binds significantly more carcinogens than the other mineral fibres. This binding assay is reproducible with coefficients of variation of less than 8% and 6% respectively for inter and intra assay. The influence of pH was also studied, and there is good correlation between the carcinogen binding and the charge of the tested mineral fibres. The in vitro cytotoxicity on macrophage like cell line P388D1 and the haemolytic activity of various mineral fibres were also measured; a good correlation was found between the binding capacity and the cytotoxicity of tested mineral fibres on P388D1 cells. These results give some explanations for the reported synergism between exposure to asbestos and the smoking habits of workers. PMID:6331497
Binding of carbonyl flavours to canola, pea and wheat proteins using GC/MS approach.
Wang, Kun; Arntfield, Susan D
2014-08-15
Interactions of homologous aldehydes (hexanal, heptanal, and octanal) and ketones (2-hexanone, 2-heptanone, and 2-octanone) to salt and alkaline-extracted canola and pea proteins and commercial wheat gluten were studied using GC/MS. Long-chain aldehyde flavours exhibited higher binding affinity, regardless of protein type and isolation method. Salt-extracted canola protein isolates (CPIs) revealed the highest binding capacity to all aldehydes followed by wheat gluten and salt-extracted pea protein isolates (PPIs), while binding of ketone flavours decreased in the order: PPIs>wheat gluten>CPIs. Two aldolisation products, 2-butyl-2-octenal and 2-pentyl-2-nonenal, were detected from the interactions between CPIs with hexanal and heptanal, respectively. Protein thermal behaviour in the presence of these compounds was analysed by differential scanning calorimeter, where decreased ΔH inferred potential conformational changes due to partial denaturation of PPIs. Compared to ketones, aldehyde flavours possessed much higher "unfolding capacity" (lower ΔH), which accounted for their higher binding affinities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hemdane, S; Langenaeken, N A; Jacobs, P J; Verspreet, J; Delcour, J A; Courtin, C M
2018-07-01
This study investigates the effect of the physical presence and water binding of wheat bran during bread making, and the possible mechanisms behind this effect. Regular bran, pericarp-enriched bran and synthetic bran-like particles with different water binding capacities and particle sizes were used. Incorporation of regular and pericarp-enriched bran in dough (15% dm) led to a lower oven rise than the control dough. Bread volumes decreased with 11% and 30%, respectively. Dough with synthetic bran, having a low water binding capacity, displayed a near to normal leavening and oven rise and resulted in a bread volume decrease of only 5% compared to the control. Particle size reduction of regular bran and synthetic bran to an average size of 200 µm did not affect final bread quality. Results indicate that water binding by bran affects bread quality the most, whereas steric hindrance by physical presence of bran particles is less determinative. Copyright © 2018 Elsevier Ltd. All rights reserved.
Völlenkle, Christine; Weigert, Stefan; Ilk, Nicola; Egelseer, Eva; Weber, Viktoria; Loth, Fritz; Falkenhagen, Dieter; Sleytr, Uwe B.; Sára, Margit
2004-01-01
The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA31-1068/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-μm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm2, whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm2 was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system. PMID:15006773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James
The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km 2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10 -8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.« less
Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...
2016-02-07
The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km 2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10 -8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.« less
Skog, Johan; Mei, Ya-Fang; Wadell, Göran
2002-06-01
Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.
Wyckoff, A. Christy; Lockwood, Krista L.; Meyerett-Reid, Crystal; Michel, Brady A.; Bender, Heather; VerCauteren, Kurt C.; Zabel, Mark D.
2013-01-01
Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols. PMID:23484043
Wyckoff, A Christy; Lockwood, Krista L; Meyerett-Reid, Crystal; Michel, Brady A; Bender, Heather; VerCauteren, Kurt C; Zabel, Mark D
2013-01-01
Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200 × g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols.
Comparative evaluation of in vitro efficacy of colesevelam hydrochloride tablets.
Krishnaiah, Yellela S R; Yang, Yongsheng; Bykadi, Srikant; Sayeed, Vilayat A; Khan, Mansoor A
2014-09-01
Colesevelam hydrochloride is used as an adjunct to diet and exercise to reduce elevated low-density lipoprotein (LDL) cholesterol in patients with primary hyperlipidemia as well as to improve glycemic control in patients with type 2 diabetes. This is likely to result in submission of abbreviated new drug applications (ANDA). This study was conducted to compare the efficacy of two tablet products of colesevelam hydrochloride based on the in vitro binding of bile acid sodium salts of glycocholic acid (GC), glycochenodeoxycholic acid (GCDA) and taurodeoxycholic acid (TDCA). Kinetic binding study was carried out with constant initial bile salt concentrations as a function of time. Equilibrium binding studies were conducted under conditions of constant incubation time and varying initial concentrations of bile acid sodium salts. The unbound concentration of bile salts was determined in the samples of these studies. Langmuir equation was utilized to calculate the binding constants k1 and k2. The amount of the three bile salts bound to both the products reached equilibrium at 3 h. The similarity factor (f2) was 99.5 based on the binding profile of total bile salts to the test and reference colesevelam tablets as a function of time. The 90% confidence interval for the test to reference ratio of k2 values were 96.06-112.07 which is within the acceptance criteria of 80-120%. It is concluded from the results that the test and reference tablets of colesevelam hydrochloride showed a similar in vitro binding profile and capacity to bile salts.
Alite, Christian; Humphrey, Suzanne; Donderis, Jordi; Maiques, Elisa; Ciges-Tomas, J Rafael; Penadés, José R; Marina, Alberto
2017-09-11
The trimeric staphylococcal phage-encoded dUTPases (Duts) are signalling molecules that induce the cycle of some Staphylococcal pathogenicity islands (SaPIs) by binding to the SaPI-encoded Stl repressor. To perform this regulatory role, these Duts require an extra motif VI, as well as the Dut conserved motifs IV and V. While the apo form of Dut is required for the interaction with the Stl repressor, usually only those Duts with normal enzymatic activity can induce the SaPI cycle. To understand the link between the enzymatic activities and inducing capacities of the Dut protein, we analysed the structural, biochemical and physiological characteristics of the Dut80α D95E mutant, which loses the SaPI cycle induction capacity despite retaining enzymatic activity. Asp95 is located at the threefold central channel of the trimeric Dut where it chelates a divalent ion. Here, using state-of-the-art techniques, we demonstrate that D95E mutation has an epistatic effect on the motifs involved in Stl binding. Thus, ion binding in the central channel correlates with the capacity of motif V to twist and order in the SaPI-inducing disposition, while the tip of motif VI is disturbed. These alterations in turn reduce the affinity for the Stl repressor and the capacity to induce the SaPI cycle.
Lee, Shin Mei; Cheng, Hui Ling; Pan, Bonnie Sun
2009-09-09
Dietary sorghum distillery residue (SDR) showed antioxidant and blood thinning effects on grey mullet during winter, but inhibited their growth. The objective of this study was to establish a preliminary treatment of the dietary SDR with polyethylene glycol (PEG), a tannin-binding agent, to enhance growth and blood antioxidant capacity of grey mullet ( Mugil cephalus ) feed. The feeding trial was carried out from June to November. The water temperature was between 25 and 30 degrees C; the specific growth rate of mullet was reduced significantly by feeding diet containing 20% SDR in comparison to fish fed the control diet or diet containing 20% SDR and PEG. In the period of October-November, the water temperature decreased to 19-25 degrees C; the specific growth rates of the 20% SDR-PEG group and the 20% SDR group were 0.13 and 0.19% day(-1), respectively, significantly higher than those fed the control diet (0.07% day(-1)). Feeding with 20% SDR or 20% SDR-PEG diets resulted in prolonged lag phase of low-density lipoprotein (LDL) oxidation compared to fish fed the control diet. The total antioxidant capacity of the plasma of the grey mullet fed 20% SDR-PEG was 1.24 mmol/L, significantly higher than those in the fish fed 20% SDR diet (0.84 mmol/L) or the control (0.72 mmol/L). In vivo observations found that preliminary treatment of SDR with PEG eliminated the endogenous undesirable growth inhibitory factors but maintained its protective effects against LDL oxidation in blood and improved the total antioxidant capacity and cold adaptation of grey mullet. The ethanol extract of SDR contained 31.9 +/- 7.8 mg/g gallic acids equivalent. The concentration needed to scavenge 50% of the DPPH radicals (IC(50)) was 0.86 mg/mL. Increased gallic acid equivalent and decreased IC(50) of DPPH scavenging activity of SDR fed to fish increased the total antioxidant capacity in blood plasma of grey mullet significantly.
NASA Technical Reports Server (NTRS)
Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)
2002-01-01
Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.
Maubert, B; Guilbert, L J; Deloron, P
1997-01-01
Late stages of Plasmodium falciparum-infected erythrocytes (IRBCs) frequently sequester in the placentas of pregnant women, a phenomenon associated with low birth weight of the offspring. To investigate the physiological mechanism of this sequestration, we developed an in vitro assay for studying the cytoadherence of IRBCs to cultured term human trophoblasts. The capacity for binding to the syncytiotrophoblast varied greatly among P. falciparum isolates and was mediated by intercellular adhesion molecule 1 (ICAM-1), as binding was totally inhibited by 84H10, a monoclonal antibody specific for ICAM-1. Binding of the P. falciparum line RP5 to the syncytiotrophoblast involves chondroitin-4-sulfate (CSA), as this binding was dramatically impaired by addition of free CSA to the binding medium or by preincubation of the syncytiotrophoblast with chondroitinase ABC. ICAM-1 and CSA were visualized on the syncytiotrophoblast by immunofluorescence, while CD36, E-selectin, and vascular cell adhesion molecule 1 were not expressed even on tumor necrosis factor alpha (TNF-alpha)-stimulated syncytiotrophoblast tissue, and monoclonal antibodies against these cell adhesion molecules did not inhibit cytoadherence. ICAM-1 expression and cytoadherence of wild isolates was upregulated by TNF-alpha, a cytokine that can be secreted by the numerous mononuclear phagocytes present in malaria-infected placentas. These results suggest that cytoadherence may be involved in the placental sequestration and broaden the understanding of the physiopathology of the malaria-infected placenta. PMID:9119459
Wiley, J S; Brocklebank, A M; Snook, M B; Jamieson, G P; Sawyer, W H; Craik, J D; Cass, C E; Robins, M J; McAdam, D P; Paterson, A R
1991-02-01
The N6-(4-nitrobenzyl) derivative of adenosine is a tight-binding inhibitor of the equilibrative inhibitor-sensitive nucleoside transporter of mammalian cells. A fluorescent ligand for this transporter has been synthesized by allowing an adenosine analogue. 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine (SAENTA), to react with fluorescein isothiocyanate. The purified adduct had a SAENTA/fluorescein molar ratio of 0.92:1 calculated from its absorption spectrum. The intensity of fluorescent emission from the SAENTA-chi 2-fluorescein adduct was 30% that of fluorescein isothiocyanate (chi 2 is the number of atoms in the linkage between fluorescein and SAENTA). SAENTA-chi 2-fluorescein inhibited the influx of nucleosides into cultured leukaemic cells with an IC50 (total concentration of inhibitor producing 50% inhibition) of 40 nM. The adduct inhibited the binding of [3H]nitrobenzylthioinosine ([3H]NBMPR) with half-maximal inhibition at 50-100 nM. Mass Law analysis of the competitive-binding data suggested the presence of two classes of sites for [3H]NBMPR binding, only one of which was accessible to SAENTA-chi 2-fluorescein. Flow cytometry was used to analyse equilibrium binding of SAENTA-chi 2-fluorescein to leukaemic cells and a Kd of 6 nM was obtained. SAENTA-chi 2-fluorescein is a high-affinity ligand for the equilibrative inhibitor-sensitive nucleoside transporter which allows rapid assessment of transport capacity by flow cytometry.
Interference of ascorbic acid with chemical analytes.
Meng, Qing H; Irwin, William C; Fesser, Jennifer; Massey, K Lorne
2005-11-01
Ascorbic acid can interfere with methodologies involving redox reactions, while comprehensive studies on main chemistry analysers have not been reported. We therefore attempted to determine the interference of ascorbic acid with analytes on the Beckman Synchron LX20. Various concentrations of ascorbic acid were added to serum, and the serum analytes were measured on the LX20. With a serum ascorbic acid concentration of 12.0 mmol/L, the values for sodium, potassium, calcium and creatinine increased by 43%, 58%, 103% and 26%, respectively (P<0.01). With a serum ascorbic acid concentration of 12.0 mmol/L, the values for chloride, total bilirubin and uric acid decreased by 33%, 62% and 83%, respectively (P<0.01), and were undetectable for total cholesterol, triglyceride, ammonia and lactate. There was no definite influence of ascorbic acid on analytical values for total CO(2), urea, glucose, phosphate, total protein, albumin, amylase, creatine kinase, creatine kinase-MB, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total iron, unbound iron-binding capacity or magnesium. Ascorbic acid causes a false increase in sodium, potassium, calcium and creatinine results and a false decrease in chloride, total bilirubin, uric acid, total cholesterol, triglyceride, ammonia and lactate results.
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...
2015-09-18
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Iron deficiency anaemia in Nigerian infants.
Akinkugbe, F M; Ette, S I; Durowoju, T A
1999-01-01
Hematological parameters and the iron status of 50 randomly selected infants who were attending the research infant welfare clinic of the Institute of Child Health, Ibadan (ICHI), for routine immunization were studied. Investigations included estimations of packed cell volume (PCV), haemoglobin (Hb), serum iron (Fe), unsaturated iron-binding capacity (UIBC) and total iron-binding Capacity (TIBC). Forty percent of the infants had PCVs below 0.32, 48% had Hbs below 10 g/dl and 27% had mean corpuscular volume (MVC) less that 70fl. Thirty-seven percent of the children had serum Fe below 3.58 mmol/l, but only 4% had UIBC above 320 mmol/l. Fifty-two percent had Transferin Saturation Index (TSI) below 10%. Eighteen percent had MCV below 70fl associated with TSI below 10% and 67% of these had Hbs below 10 g/dl. The prevalence of iron deficiency anaemia in infants as shown in this study is very high. The ill effects of iron deficiency in childhood have been well documented. It is suggested that screening for anaemia should be offered at 9 months as part of a Child Survival Programme and that infants found to be anaemic should be treated. However, for cost-effectiveness and taking into consideration the high prevalence rate of iron deficiency in this age group, it might be preferable to give iron and weekly prophylactic antimalarias routinely to infants aged 9 to 15 months in lieu of screening.
Comparison of the fibronectin-binding ability and antitumor efficacy of various mycobacteria.
Hudson, M A; Ritchey, J K; Catalona, W J; Brown, E J; Ratliff, T L
1990-07-01
Although the mechanism by which Bacillus Calmette-Guerin (BCG) exerts an antitumor effect on superficial bladder tumors is not fully understood, recent evidence has implicated binding of BCG organisms to fibronectin (FN) as requisite for this antitumor efficacy. Various substrains of BCG and other mycobacteria were tested in vitro for their relative capacities to bind both matrix and soluble FN. A substrain of Mycobacterium kansasii, designated the "high-binding strain," was found to bind FN more readily (P less than 0.05) in in vitro studies, when compared to commercially available substrains of BCG (Tice, Connaught, and Armand Frappier). The binding by the three commercial strains of BCG to FN in vitro appeared to be equivalent. The high-binding strain was further demonstrated to attach more readily in vivo to the acutely injured murine bladder (P less than 0.005) than the Armand Frappier substrain. Finally, using the MB49 murine bladder tumor model, an enhanced antitumor effect (P less than 0.05) was noted in mice treated with intravesical high-binding strain, in comparison to the Armand Frappier substrain, during five weekly treatments. It appears not only that the commercial substrains of BCG bind FN in an equivalent manner but also that the relative binding capacities of the substrains correlate directly with antitumor activity. A substrain of M. kansasii appears to have been identified which may prove more clinically effective than the currently available strains of BCG.
Amano, Ryo; Takada, Kenta; Tanaka, Yoichiro; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi
2016-11-15
AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes. In this study, we identified high-affinity RNA aptamers that bind to RD by systematic evolution of ligands by exponential enrichment. The binding assay using surface plasmon resonance indicated that a shortened aptamer retained the ability to bind to RD when 1 M potassium acetate was used. A thermodynamic study using isothermal titration calorimetry (ITC) showed that the aptamer-RD interaction is driven by a large enthalpy change, and its unfavorable entropy change is compensated by a favorable enthalpy change. Furthermore, the binding heat capacity change was identified from the ITC data at various temperatures. The aptamer binding showed a large negative heat capacity change, which suggests that a large apolar surface is buried upon such binding. Thus, we proposed that the aptamer binds to RD with long-range electrostatic force in the early stage of the association and then changes its conformation and recognizes a large surface area of RD. These findings about the biophysics of aptamer binding should be useful for understanding the mechanism of RNA-protein interaction and optimizing and modifying RNA aptamers.
Mistry, Hiten D; Kurlak, Lesia O; Mansour, Yosef T; Zurkinden, Line; Mohaupt, Markus G; Escher, Geneviève
2017-06-01
Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P < 0.05). Maternal and fetal apoE concentrations were higher in preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples ( P < 0.05). Placental protein expression of both CYP27A1 and AIBP were localized around fetal vessels and significantly increased in preeclampsia ( P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia ( P < 0.05). Increased HDL-mediated cholesterol efflux capacity and placental CYP27A1/27-OHC could be a rescue mechanism in preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Effect of chain length on binding of fatty acids to Pluronics in microemulsions.
James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O
2008-03-15
We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.
Buczek, Pawel; Horvath, Martin P.
2010-01-01
The Oxytricha nova telomere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (ΔH), entropy (ΔS), and dissociation constant (KD-DNA) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T2G4), d(T4G4), d(G3T4G4), and d(G4T4G4) each formed monovalent protein complexes. In the case of d(T4G4T4G4), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity “A site” has a dissociation constant, KD-DNA(A)=13(±4) nM, while the low-affinity “B site” is characterized by KD-DNA(B)=5600(±600) nM at 25 °C. Nucleotide substitution variants verified that the A site corresponds principally with the 3′-terminal portion of d(T4G4T4G4). The relative contributions of entropy (ΔS) and enthalpy (ΔH) for binding reactions were DNA length-dependent as was heat capacity (ΔCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA–protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology. PMID:16678852
Buczek, Pawel; Horvath, Martin P
2006-06-23
The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology.
[Fiber in the diet--certainties and speculation].
Peters, P; Peters, K M
1988-06-01
This report defines dietary fibre and summarizes its effects on dental, gastrointestinal and metabolic diseases. A higher intake of dietary fibre is important in prophylaxis of caries, paradentosis, constipation, diverticulosis, colon cancer, diabetes and hypercholesteraemia. An ideal preparation must have the following abilities: It should be coarse, hard and swallowable and without cariogenic sugars in order to prevent dental diseases. It should be a mixture of several kinds of fibre getting water binding capacity and bile acid binding capacity. Mechanical crushing and heatening of fibre are to be avoided. The preparation should not contain phytic acid.
Ingavle, Ganesh C; Baillie, Les W J; Zheng, Yishan; Lis, Elzbieta K; Savina, Irina N; Howell, Carol A; Mikhalovsky, Sergey V; Sandeman, Susan R
2015-05-01
Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount of PA remained in the solution after passing through unmodified as well as protein A modified poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated potential application of these materials for treatment of Bacillus anthracis infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W
2014-07-18
This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus)
Gautier, Célia; Guenin, Sophie-Penelope; Riest-Fery, Isabelle; Perry, Tahlia Jade; Legros, Céline; Nosjean, Olivier; Simonneaux, Valerie; Grützner, Frank
2018-01-01
Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals. PMID:29529033
Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus).
Gautier, Célia; Guenin, Sophie-Penelope; Riest-Fery, Isabelle; Perry, Tahlia Jade; Legros, Céline; Nosjean, Olivier; Simonneaux, Valerie; Grützner, Frank; Boutin, Jean A
2018-01-01
Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals.
Ca sup 2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huppertz, B.; Weyand, I.; Bauer, P.J.
1990-06-05
Arrestin (also called S-antigen or 48-kDa protein) binds to photoexcited and phosphorylated rhodopsin and, thereby, blocks competitively the activation of transducin. Using Ca{sup 2+} titration in the presence of the indicator arsenazo III and {sup 45}Ca{sup 2+} autoradiography, we show that arrestin is a Ca2(+)-binding protein. The Ca{sup 2+} binding capacity of arresting-containing protein extracts from bovine rod outer segments is about twice as high as that of arrestin-depleted extracts. The difference in the Ca{sup 2+} binding of arrestin-containing and arrestin-depleted protein extracts was attributed to arrestin. Both, these difference-measurements of protein extracts and the measurements of purified arrestin yieldmore » dissociation constants for the Ca{sup 2+} binding of arrestin between 2 and 4 microM. The titration curves are consistent with a molar ratio of one Ca{sup 2+} binding site per arrestin. No Ca{sup 2+} binding in the micromolar range was found in extracts containing mainly transducin and cGMP-phosphodiesterase. Since arrestin is one of the most abundant proteins in rod photoreceptors occurring presumably up to millimolar concentrations in rod outer segments, we suggest that aside from its function to prevent the activation of transducin, arrestin acts probably as an intracellular Ca{sup 2+} buffer.« less
Sun, Chengliang; Lu, Lingli; Yu, Yan; Liu, Lijuan; Hu, Yan; Ye, Yiquan; Jin, Chongwei; Lin, Xianyong
2016-01-01
Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induced NO accumulation in the root tips. Eliminating NO production with an NO scavenger (cPTIO) significantly alleviated the Al-induced inhibition of root growth and thus reduced Al accumulation. Elimination of NO, however, did not significantly affect malate efflux or rhizosphere pH changes under Al exposure. Levels of cell wall polysaccharides (pectin, hemicelluloses 1, and hemicelluloses 2) and pectin methylesterase activity, as well as pectin demethylation in the root apex, significantly increased under Al treatment. Exogenous cPTIO application significantly decreased pectin methylesterase activity and increased the degree of methylation of pectin in the root cell wall, thus decreasing the Al-binding capacity of pectin. These results suggest that the Al-induced enhanced production of NO decreases cell wall pectin methylation, thus increasing the Al-binding capacity of pectin and negatively regulating Al tolerance in wheat. PMID:26663393
NASA Astrophysics Data System (ADS)
Harrison, Robert; James, Jason; Dietzen, Christiana; Littke, Kimberly
2017-04-01
Biomass, carbon and nitrogen pools in soil (1 m depth) and tree components in 68 intensively-managed Douglas-fir plantations in western Oregon and Washington USA, and British Columbia Canada. The potential removal of N with bole-only and total aboveground harvesting was compared to total ecosystem pools of N to determine the relative removals compared to the total ecosystem N pools to assign a risk rating to each potential harvest site for N removal, with <=10% of total removed being a threshhold at which there would be little potential for N removal concerns over a 55-year rotation, and 30% or greater a cause for significan concern or the potential amelioration of losses with N fertilization. Additional research on 22 of the sites for deep rooting and soil C and N pools up to 4 m depth showed that there were unanticipated and formerly unrecognized large pools of C and N below 1 m depth, and as deep as we were capable of sampling (4 m). Analysis of organic matter in the soil profiles indicate significant differences in binding of organic matter to mineral components of soil at depth, dependent on pH-dependent charge sources primarily associated with volcanic activity in the region. Characterization of PZNC and pH dependent charge at one site showed substantial anion exchange capacity and the ability to bind organic acids and DOC leaching through the soil profile.
NASA Astrophysics Data System (ADS)
Susilowati, Agustine; Aspiyanto, Ghozali, Muhammad
2017-11-01
Fermentation on inulin hydrolysate as fructooligosaccharides (FOS) by Bifidobacterium bifidum as a result of hydrolysis by inulase enzyme of Scopulariopsis sp.-CBS1 fungi has been performed to bind cholesterol. Their applications on preparation of fermented pour beverages was conducted via a series of concentration process using dead-end Stirred Ultrafiltration Cell (SUFC) mode at stirrer rotation of 400 rpm, room temperature and pressure of 40 psia for 0 minute (pre-concentration process) as concentrate (A) and 45 minutes as concentrate (B), and drying process using vacuum dryer at 30 °C and 22 cm Hg for 0, 8, 16, 24, 32, 40 and 48 hours. Based on optimization of Total Dietary Fiber (TDF), the best time of drying process was achieved for 40 hours. Long time of drying process would increase TDF and total solids, decreased total acids, and fluctuated dissolved protein and Cholesterol Binding Capacity (CBC). At the optimum condition of drying process was get fermented inulin fiber powder from concentration processes using both UF as pre process (0 minute) as concentrate (A) and UF for 45 minutes as concentrate (B) with compositions of total solids of 92.31 % and 93.67 %, TDF of 59.07 % (dry weight) and 69.28 %, total acids of 7.03 % and 7.5 %, dissolved protein of 3.95 mg/mL and 3.05 mg/mL, and CBC pH 2 15.71 mg/g and 16.8 mg/g, respectively. Concentration process through dead-end SUFC mode gave distribution of particles with better smoothness level than without through dead-end SUFC mode.
Stair, Jacqueline L; Holcombe, James A
2007-03-01
The metal binding capacities, conditional stability constants, and secondary structure of immobilized polyaspartic acid (PLAsp) (n = 6, 20, and 30) on TentaGel resin were determined when binding Mg2+, Co2+, Cd2+, and Ni2+. Metal binding to the synthesized peptides was evaluated using breakthrough curves from a packed microcolumn and flame atomic absorption spectrophotometry (FAAS) detection. The metal capacities reached values of 590, 2160, and 3710 mumol of metal/g of resin for the 6-mer, 20-mer, and 30-mer, respectively, and this resulted in 2-3 residues per metal for all peptides and metals tested. Surprisingly, the concentrated environment of the resin along with the spatial distribution of attachment groups allowed for most residues to participate in metal binding regardless of the peptide length. Conditional stability constants calculated using single metal binding isotherms indicated that binding strength decreased as the chain length increased on the resin. Raman microscopy on single beads was used to determine PLAsp secondary structure, and all peptides were of a mixed conformation (i.e., beta-sheets, alpha-helices, random chain, etc.) during neutral conditioning and metal binding. Uniquely, the longer 20-mer and 30-mer peptides showed a distinct change from a mixed conformation to beta-sheets and alpha-helices during metal release with acid. This study confirms that metal release by longer immobilized peptides is often assisted by a conformational change, which easily spoils the binding cavity, while shorter peptides may release metal primarily by H+ displacement.
Xu, Minwei; Jin, Zhao; Peckrul, Allen; Chen, Bingcan
2018-06-01
The purpose of this study was to investigate antioxidative activity of phenolic compounds extracted from germinated pulse seed including chickpeas, lentils and yellow peas. Phenolic compounds were extracted at different germination time and total phenolic content was examined by Folin Ciocalteu's reaction. Antioxidative activity of extracts was characterized by in vitro assay including 2, 2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), oxygen radical absorbance capacity (ORAC), iron-binding assay, and in stripped soybean oil-in-water emulsions. The results suggested that germination time is critical for phenolic compounds production. The form variation of phenolic compounds influenced the antioxidative activity of phenolic compounds both in vitro assay and in emulsion systems. Soluble bound phenolic compounds showed higher antioxidative ability in emulsion system with the order of chickpea > yellow pea > lentil. On the basis of these results, soluble bound phenolic compounds may be considered as a promising natural antioxidant to prevent lipid oxidation in foods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cai, Xixi; Lin, Jiaping; Wang, Shaoyun
2016-01-01
Peptide-calcium can probably be a suitable supplement to improve calcium absorption in the human body. In this study, a specific peptide Phe-Tyr (FY) with calcium-binding capacity was purified from Schizochytrium sp. protein hydrolysates through gel filtration chromatography and reversed phase HPLC. The calcium-binding capacity of FY reached 128.77 ± 2.57 μg/mg. Results of ultraviolet spectroscopy, fluorescence spectroscopy, and infrared spectroscopy showed that carboxyl groups, amino groups, and amido groups were the major chelating sites. FY-Ca exhibited excellent thermal stability and solubility, which were beneficial to be absorbed and transported in the basic intestinal tract of the human body. Moreover, the calcium bioavailability in Caco-2 cells showed that FY-Ca could enhance calcium uptake efficiency by more than three times when compared with CaCl2, and protect calcium ions against dietary inhibitors, such as tannic acid, oxalate, phytate, and Zn2+. Our findings further the progress of algae-based peptide-calcium, suggesting that FY-Ca has the potential to be developed as functionally nutraceutical additives. PMID:28036002
Nehir El, Sedef; Karakaya, Sibel; Simsek, Sebnem; Dupont, Didier; Menfaatli, Esra; Eker, Alper Tolga
2015-07-01
The hydrolysis degrees of goat milk and kefir during simulated gastrointestinal digestion and some bioactivities of the resulting peptides after fermentation and digestion were studied. A static in vitro digestion method by the COST FA1005 Action INFOGEST was used and goat milk and kefir were partially hydrolyzed during the gastric phase and had above 80% hydrolysis after duodenal digestion. There were no differences between the digestibility of goat milk and kefir (p > 0.05). Goat milk and kefir displayed about 7-fold antioxidant activity after digestion (p < 0.05). Fermentation showed no effect on the calcium-binding capacity of the samples (p > 0.05), however, after in vitro digestion calcium-binding capacity of the goat milk and kefir increased 2 and 5 fold, respectively (p < 0.05). Digested goat milk and kefir showed a higher dose-dependent inhibitory effect on α-amylase compared to undigested samples (p < 0.05). α-Glucosidase inhibitory activities and in vitro bile acid-binding capacities of the samples were not determined at the studied concentrations.
Monoclonal IgA Antibodies for Aflatoxin Immunoassays
Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma
2016-01-01
Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2–50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort. PMID:27187470
[3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.
Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A
1987-04-01
We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.
Chatterjee, Nabamita; Nagarajan, Shantha
2006-08-01
The relative binding of seed water and seed coat membrane stability were measured in two contrasting wheat (Triticum aestivum L) varieties, HDR 77 (drought-tolerant) and HD 2009 (susceptible) using seed water sorption isotherms, electrical conductivity (EC) of leachates and desorption-absorption isotherms. Analysis of sorption isotherm at 25 degrees C showed that the seeds of HDR 77 had significantly higher number of strong binding sites, with correspondingly greater amount of seed water as strongly bound water, as compared to HD 2009. Total number of binding sites was also higher in HDR 77 than HD 2009, which explained the better desiccation tolerance and higher capacity to bind water in seeds of HDR 77. EC of seed leachate in both varieties did not change with respect to change in equilibrium relative humidity (RII), indicating the general seed coat membrane stability of wheat seeds. However, absolute conductivity values were higher for HD 2009. showing its relatively porous seed coat membrane. Significantly lower area enclosed by the desorption-absorption isotherm loop in HDR 77, as compared to HD 2009 also indicated the greater membrane integrity of HDR 77. Germination and seedling vigour of HD 2009 were reduced when equilibrated over very low and very high RH. In contrast, germination and vigour in HDR 77 were maintained high, except at very high RH, indicating again its desiccation tolerance. Thus, the study demonstrated the relative drought tolerance of HDR 77, on the basis of seed water-binding characteristics and seed membrane stability. Seed membrane stability as measured by seed leachate conductivity or as area under dehydration-rehydration loop may be used as a preliminary screening test for drought tolerance in wheat.
Gannasin, Sri Puvanesvari; Adzahan, Noranizan Mohd; Mustafa, Shuhaimi; Muhammad, Kharidah
2016-04-01
Hydrocolloids were extracted from seed mucilage and the pulp fractions from red tamarillo (Solanum betaceum Cav.) mesocarp, and characterisation of their techno-functional properties and in vitro bile acid-binding capacities was performed. The seed mucilage hydrocolloids that were extracted, using either 1% citric acid (THC) or water (THW), had a good foaming capacity (32-36%), whereas the pulp hydrocolloids that were extracted, using 72% ethanol (THE) or 20mM HEPES buffer (THH), had no foaming capacity. The pulp hydrocolloid, however, possessed high oil-holding and water-holding capacities in the range of 3.3-3.6 g oil/g dry sample and 25-27 g water/g dry sample, respectively. This enabled the pulp hydrocolloid to entrap more bile acids (35-38% at a hydrocolloid concentration of 2%) in its gelatinous network in comparison to commercial oat fibre and other hydrocolloids studied. The exceptional emulsifying properties (80-96%) of both hydrocolloids suggest their potential applications as food emulsifiers and bile acid binders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lawrence, Paul J.; Rogolsky, Marvin; Hanh, Vo Thi
1971-01-01
The chemistry of the binding of 14C-benzylpenicillin to sporulating cultures of Bacillus megaterium and B. subtilis is similar to that in a 4-hr vegetative culture of Staphylococcus aureus. Unlabeled penicillins prevent the binding of 14C-benzylpenicillin, but benzylpenicilloic acid and benzylpenilloic acid do not. Bound antibiotic can be removed from cells with neutral hydroxylamine at 25 C. Sporulating cultures display two intervals of enhanced binding, whereas binding to stationaryphase S. aureus cells remains constant. The first period of increased binding activity occurs during formation of the spore septum or cell wall primordium development, and the second coincides with cortex biosynthesis. PMID:4942758
2013-01-01
Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription) family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM), which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors. PMID:23324445
Studies on the interactions between purified bovine caseins and alkaline-earth-metalions
Dickson, I. R.; Perkins, D. J.
1971-01-01
1. Alkaline-earth-metal cations at low concentrations form soluble complexes with bovine caseins. The relative order of binding capacities is: Mg2+>Ca2+>Ba2+>Sr2+. 2. The cations interact with both free ionized carboxyl groups of aspartic acid and glutamic acid and with monoester phosphate groups covalently bound to serine and threonine; at low concentrations of the cations interactions are predominantly with the phosphate groups. 3. The order of binding capacities for purified components of the casein complex is: αs1-casein>β-casein>κ-casein. PMID:5166590
Müller, Egbert; Josic, Djuro; Schröder, Tim; Moosmann, Anna
2010-07-09
Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive hydration forces in this hydrotrophic salt.
Ishibashi, Aya; Maeda, Naho; Sumi, Daichi; Goto, Kazushige
2017-01-01
Iron is essential for providing oxygen to working muscles during exercise, and iron deficiency leads to decreased exercise capacity during endurance events. However, the mechanism of iron deficiency among endurance athletes remains unclear. In this study, we compared iron status between two periods involving different training regimens. Sixteen female long-distance runners participated. Over a seven-month period, fasting blood samples were collected during their regular training period (LOW; middle of February) and during an intensified training period (INT; late of August) to determine blood hematological, iron, and inflammatory parameters. Three-day food diaries were also assessed. Body weight and lean body mass did not differ significantly between LOW and INT, while body fat and body fat percentage were significantly lower in INT (p < 0.05). Blood hemoglobin, serum ferritin, total protein, and iron levels, total iron-binding capacity, and transferrin saturation did not differ significantly between the two periods. Serum hepcidin levels were significantly higher during INT than LOW (p < 0.05). Carbohydrate and iron intakes from the daily diet were significantly higher during INT than LOW (p < 0.05). In conclusion, an elevated hepcidin level was observed during an intensified training period in long-distance runners, despite an apparently adequate daily intake of iron. PMID:28335426
Ishibashi, Aya; Maeda, Naho; Sumi, Daichi; Goto, Kazushige
2017-03-14
Iron is essential for providing oxygen to working muscles during exercise, and iron deficiency leads to decreased exercise capacity during endurance events. However, the mechanism of iron deficiency among endurance athletes remains unclear. In this study, we compared iron status between two periods involving different training regimens. Sixteen female long-distance runners participated. Over a seven-month period, fasting blood samples were collected during their regular training period (LOW; middle of February) and during an intensified training period (INT; late of August) to determine blood hematological, iron, and inflammatory parameters. Three-day food diaries were also assessed. Body weight and lean body mass did not differ significantly between LOW and INT, while body fat and body fat percentage were significantly lower in INT ( p < 0.05). Blood hemoglobin, serum ferritin, total protein, and iron levels, total iron-binding capacity, and transferrin saturation did not differ significantly between the two periods. Serum hepcidin levels were significantly higher during INT than LOW ( p < 0.05). Carbohydrate and iron intakes from the daily diet were significantly higher during INT than LOW ( p < 0.05). In conclusion, an elevated hepcidin level was observed during an intensified training period in long-distance runners, despite an apparently adequate daily intake of iron.
Hui, Chang-Ye; Guo, Yan; Yang, Xue-Qin; Zhang, Wen; Huang, Xian-Qing
2018-05-01
To improve the Pb 2+ biosorption capacity of the potential E. coli biosorbent, a putative Pb 2+ binding domain (PbBD) derived from PbrR was efficiently displayed on to the E. coli cell surface. The PbBD was obtained by truncating the N-terminal DNA-binding domain and C-terminal redundant amino acid residues of the Pb 2+ -sensing transcriptional factor PbrR. Whole-cell sorbents were constructed with the full-length PbrR and PbBD of PbrR genetically engineered onto the surface of E. coli cells using Lpp-OmpA as the anchor. Followed by a 1.71-fold higher display of PbBD than PbrR, the presence of PbBD on the surface of E. coli cells enabled a 1.92-fold higher Pb 2+ biosorption than that found in PbrR-displayed cells. Specific Pb 2+ binding via PbBD was the same as Pb 2+ binding via the full-length PbrR, with no observable decline even in the presence of Zn 2+ and Cd 2+ . Since surface-engineered E. coli cells with PbBD increased the Pb 2+ binding capacity and did not affect the adsorption selectivity, this suggests that surface display of the metal binding domain derived from MerR-like proteins may be used for the bioremediation of specific toxic heavy metals.
Rigidification of the autolysis loop enhances Na[superscript +] binding to thrombin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei
2011-09-20
Binding of Na{sup +} to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na{sup +} is weak due to large heat capacity and enthalpy changes associated with binding, and the K{sub d} = 80 mM ensures only 64% saturation of the site at the concentration of Na{sup +} in the blood (140 mM). Residues controlling Na{sup +} binding and activation have been identified. Yet, attempts to improve the interaction of Na{sup +} with thrombin and possibly increase catalyticmore » activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na{sup +} affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na{sup +} binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.« less
Sorption of Cr(III) and Cr(VI) to High and Low Pressure Synthetic Nano-Magnetite (Fe3O4)Particles
Parsons, Jason G.; Hernandez, Jeffrey; Gonzalez, Christina M.; Gardea-Torresdey, J. L.
2014-01-01
The binding of Cr(III) and Cr(VI) to synthetic nano-magnetie particles synthesized under open vessel conditions and a microwave assisted hydrothermal synthesis techniques was investigated. Batch studies showed that the binding of both the Cr(III) and Cr(VI) bound to the nano-materials in a pH dependent manner. The Cr(III) maximized at binding at pH 4 and 100% binding. Similarly, the Cr(VI) ions showed a maximum binding of 100% at pH 4. The data from the time dependency studies showed for the most part the majority of the binding occurred within the first 5 minutes of contact with the nanomaterial and remained constant thereafter. In addition, the effects of the possible interferences were investigated which showed some effects on the binding of both Cr(III) and Cr(VI). However, the interferences never completely eliminated the chromium binding. Isotherm studies conducted at room temperature showed the microwave synthesized nanomaterials had a binding capacity of 1208 ± 43.9 mg/g and 555 ± 10.5 mg/g for Cr(VI) and Cr(III), respectively. However, the microwave assisted synthesized nanomaterials had capacities of 1705 ± 14.5 and 555± 10.5 mg/g for Cr(VI) and Cr(III), respectively. XANES studies showed the Cr(VI) was reduced to Cr(III), and the Cr(III) remained as Cr(III). In addition, the XANES studies indicated that the chromium remained coordinated in an octahedral arrangement of oxygen atoms. PMID:25097452
Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana
2014-01-01
Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735
Melanin-Based Coatings as Lead-Binding Agents
Sono, Karin; Lye, Diane; Moore, Christine A.; Boyd, W. Christopher; Gorlin, Thomas A.; Belitsky, Jason M.
2012-01-01
Interactions between metal ions and different forms of melanin play significant roles in melanin biochemistry. The binding properties of natural melanin and related synthetic materials can be exploited for nonbiological applications, potentially including water purification. A method for investigating metal ion-melanin interactions on solid support is described, with lead as the initial target. 2.5 cm discs of the hydrophobic polymer PVDF were coated with synthetic eumelanin from the tyrosinase-catalyzed polymerization of L-dopa, and with melanin extracted from human hair. Lead (Pb2+) binding was quantified by atomic absorption spectroscopy (flame mode), and the data was well fit by the Langmuir model. Langmuir affinities ranged from 3.4 · 103 to 2.2 · 104 M−1. At the maximum capacity observed, the synthetic eumelanin coating bound ~9% of its mass in lead. Binding of copper (Cu2+), zinc (Zn2+), and cadmium (Cd2+) to the synthetic-eumelanin-coated discs was also investigated. Under the conditions tested, the Langmuir affinities for Zn2+, Cd2+, and Cu2+ were 35%, 53%, and 77%, respectively, of the Langmuir affinity for Pb2+. The synthetic-eumelanin-coated discs have a slightly higher capacity for Cu2+ on a per mole basis than for Pb2+, and lower capacities for Cd2+ and Zn2+. The system described can be used to address biological questions and potentially be applied toward melanin-based water purification. PMID:22611345
Bing, Tiejun; Zhang, Suzhen; Liu, Xiaojuan; Liang, Zhibin; Shao, Peng; Zhang, Song; Qiao, Wentao; Tan, Juan
2016-06-30
Bovine foamy virus (BFV) encodes the transactivator BTas, which enhances viral gene transcription by binding to the long terminal repeat promoter and the internal promoter. In this study, we investigated the different replication capacities of two similar BFV full-length DNA clones, pBS-BFV-Y and pBS-BFV-B. Here, functional analysis of several chimeric clones revealed a major role for the C-terminal region of the viral genome in causing this difference. Furthermore, BTas-B, which is located in this C-terminal region, exhibited a 20-fold higher transactivation activity than BTas-Y. Sequence alignment showed that these two sequences differ only at amino acid 108, with BTas-B containing N108 and BTas-Y containing D108 at this position. Results of mutagenesis studies demonstrated that residue N108 is important for BTas binding to viral promoters. In addition, the N108D mutation in pBS-BFV-B reduced the viral replication capacity by about 1.5-fold. Our results suggest that residue N108 is important for BTas binding to BFV promoters and has a major role in BFV replication. These findings not only advances our understanding of the transactivation mechanism of BTas, but they also highlight the importance of certain sequence polymorphisms in modulating the replication capacity of isolated BFV clones.
Characterization of product capture resin during microbial cultivations.
Frykman, Scott; Tsuruta, Hiroko; Galazzo, Jorge; Licari, Peter
2006-06-01
Various bioactive small molecules produced by microbial cultivation are degraded in the culture broth or may repress the formation of additional product. The inclusion of hydrophobic adsorber resin beads to capture these products in situ and remove them from the culture broth can reduce or prevent this degradation and repression. These product capture beads are often subjected to a dynamic and stressful microenvironment for a long cultivation time, affecting their physical structure and performance. Impact and collision forces can result in the fracturing of these beads into smaller pieces, which are difficult to recover at the end of a cultivation run. Various contaminating compounds may also bind in a non-specific manner to these beads, reducing the binding capacity of the resin for the product of interest (fouling). This study characterizes resin bead binding capacity (to monitor bead fouling), and resin bead volume distributions (to monitor bead fracture) for an XAD-16 adsorber resin used to capture epothilone produced during myxobacterial cultivations. Resin fouling was found to reduce the product binding capacity of the adsorber resin by 25-50%. Additionally, the degree of resin bead fracture was found to be dependent on the cultivation length and the impeller rotation rate. Microbial cultivations and harvesting processes should be designed in such a way to minimize bead fragmentation and fouling during cultivation to maximize the amount of resin and associated product harvested at the end of a run.
Pasquali, R; Casimirri, F; Melchionda, N
1987-12-01
To assess long-term nitrogen sparing capacity of very low-calorie mixed diets, we administered two isoenergetic (2092KJ) liquid formula regimens of different composition for 8 weeks to two matched groups of massively obese patients (group 1: proteins 60 g, carbohydrate 54 g; group 2: proteins 41 g, carbohydrates 81 g). Weight loss was similar in both groups. Daily nitrogen balance (g) during the second month resulted more a negative in group 2 with respect to group 1. However, within the groups individual nitrogen sparing capacity varied markedly; only a few in group 1 and one in group 2 were able to attain nitrogen equilibrium throughout the study. Daily urine excretion of 3-methylhistidine fell significantly in group 1 but did not change in group 2. Unlike total proteins, albumins, and transferrin, serum levels of retinol-binding protein, thyroxin-binding globulin, and complement-C3 fell significantly in both groups but per cent variations of complement-C3 were more pronounced in the first group. Prealbumin levels fell persistently in group 1 and transiently in group 2. The results indicate that even with this type of diet an adequate amount of dietary protein represents the most important factor in minimizing whole body protein catabolism during long-term semistarvation in massively obese patients. Moreover, they confirm the possible role of dietary carbohydrates in the regulation of some visceral protein metabolism.
Safi, Rachid; Bertrand, Stéphanie; Marchand, Oriane; Duffraisse, Marilyne; de Luze, Amaury; Vanacker, Jean-Marc; Maraninchi, Marie; Margotat, Alain; Demeneix, Barbara; Laudet, Vincent
2004-02-01
Neotenic amphibians such as the axolotl (Ambystoma mexicanum) are often unable to undergo metamorphosis under natural conditions. It is thought that neoteny represents a deviation from the standard course of amphibian ontogeny, affecting the thyroid axis at different levels from the central nervous system to peripheral organs. Thyroid hormone receptors (TRs) that bind the thyroid hormone (TH) T(3) have been described in axolotl. However, the full sequences of TR were needed to better characterize the TH response and to be able to assess their functional capacity at the molecular level. We report that each of the alpha and beta axolotl TRs bind both DNA and TH, and they activate transcription in response to TH in a mammalian cell-based transient transfection assay. Moreover, both TRs are expressed in axolotl tissues. Interestingly, each TR gene generates alternatively spliced isoforms, harboring partial or total deletions of the ligand-binding domain, which are expressed in vivo. Further, we found that in the axolotl, TH regulates the expression of stromelysin 3 and collagenase 3, which are TH target genes in Xenopus. Taken together, these results suggest that axolotl TRs are functional and that the molecular basis of neoteny in the axolotl is not linked to a major defect in TH response in peripheral tissues.
Namiesnik, Jacek; Vearasilp, Kann; Nemirovski, Alina; Leontowicz, Hanna; Leontowicz, Maria; Pasko, Pawel; Martinez-Ayala, Alma Leticia; González-Aguilar, Gustavo A; Suhaj, Milan; Gorinstein, Shela
2014-03-01
The aim of this study was to investigate the possibility to use the bioactive components from cape gooseberry (Physalis peruviana), blueberry (Vaccinium corymbosum), and cranberry (Vaccinium macrocarpon) extracts as a novel source against oxidation in food supplementation. The quantitative analysis of bioactive compounds (polyphenols, flavonoids, flavanols, carotenoids, and chlorophyll) was based on radical scavenging spectrophometric assays and mass spectrometry. The total phenolic content was the highest (P < 0.05) in water extract of blueberries (46.6 ± 4.2 mg GAE/g DW). The highest antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and Cupric reducing antioxidant capacity were in water extracts of blueberries, showing 108.1 ± 7.2 and 131.1 ± 9.6 μMTE/g DW with correlation coefficients of 0.9918 and 0.9925, and by β-carotene linoleate assay at 80.1 ± 6.6 % with correlation coefficient of 0.9909, respectively. The water extracts of berries exhibited high binding properties with human serum albumin in comparison with quercetin. In conclusion, the bioactive compounds from a relatively new source of gooseberries in comparison with blueberries and cranberries have the potential as food supplementation for human health. The antioxidant and binding activities of berries depend on their bioactive compounds.
Avian Nanostructured Tissues as Models for New Defensive Coatings and Photonic Crystal Fibers
2012-03-31
promiscuous binding capacity of chitin , the chemical backbone of the arthropod cuticle (Kumar 2000). This polysaccharide binds many proteins and other...properties. The greater refractive index contrast between light and dark layers afforded by chitin may allow Arthropoda to attain brighter and more 71
The Thermal Stabilization of Vaccines Against Agents of Bioterrorism
2005-09-01
to determine (1) whether rPA in the formulation buffer in the absence of excipients binds to Alhydrogel®and (2) the binding capacity . The aluminum...botulinum toxin (Allergan), A ricin vaccine (DOR Biopharma ) and a vaccine against Norwalk virus (Ligocyte) were also initiated and are in various
Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian
2018-07-06
Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625 /S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.
NASA Astrophysics Data System (ADS)
Zhang, Zulei; Niu, Dechao; Li, Yongsheng; Shi, Jianlin
2018-03-01
In this work, a novel kind of magnetic, core-shell structured and surface molecularly imprinted polymers (MMIPs) for the recognition of salicylic acid (SA) was facilely synthesized through a surface imprinting and sol-gel polymerization approach. The as-synthesized MMIPs exhibit uniform core-shell structure and favorable magnetic properties with a saturation magnetization of 22.8 emu g-1. The binding experiments demonstrated that MMIPs possessed high binding and specific recognition capacity, as well as fast binding kinetics and phase separation rate. The maximum binding capacity of MMIPs is around 36.8 mg g-1, nearly 6 times that of the magnetic non-imprinted polymers (MNIPs). Moreover, the selectivity experiments show that all the relative selectivity coefficients towards SA over its structure analogs are higher than 18, further indicating the markedly enhanced binding selectivity of MMIPs. Furthermore, the MMIPs were successfully applied for the determination of SA in environmental water samples with the recovery rates ranging from 94.0 to 108.0 %. This strategy may provide a versatile approach for the fabrication of well-defined molecularly imprinted polymers on nanomaterials for the analysis of complicated matrixes.
NASA Astrophysics Data System (ADS)
Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian
2018-07-01
Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625/S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.
LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.
Clayton, R N; Shakespear, R A; Marshall, J C
1978-06-01
Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.
Gold Binding by Native and Chemically Modified Hops Biomasses
López, M. Laura; Peralta-Videa, J. R.; de la Rosa, G.; Armendáriz, V.; Herrera, I.; Troiani, H.; Henning, J.
2005-01-01
Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass (Humulus lupulus) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding at pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively. PMID:18365087
Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water
Chitpong, Nithinart; Husson, Scott M.
2016-01-01
An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh) measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration. PMID:27999394
Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water.
Chitpong, Nithinart; Husson, Scott M
2016-12-20
An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (R h ) measurements for PAA and PIA obtained from dynamic light scattering, which show that R h values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.
Satitsuksanoa, P; Kennedy, M; Gilis, D; Le Mignon, M; Suratannon, N; Soh, W T; Wongpiyabovorn, J; Chatchatee, P; Vangveravong, M; Rerkpattanapipat, T; Sangasapaviliya, A; Piboonpocanun, S; Nony, E; Ruxrungtham, K; Jacquet, A
2016-10-01
The house dust mite (HDM) allergen Der p 13 could be a lipid-binding protein able to activate key innate signaling pathways in the initiation of the allergic response. We investigated the IgE reactivity of recombinant Der p 13 (rDer p 13), its lipid-binding activities, and its capacity to stimulate airway epithelium cells. Purified rDer p 13 was characterized by mass spectrometry, circular dichroism, fluorescence-based lipid-binding assays, and in silico structural prediction. IgE-binding activity and allergenic potential of Der p 13 were examined by ELISA, basophil degranulation assays, and in vitro airway epithelial cell activation assays. Protein modeling and biophysical analysis indicated that Der p 13 adopts a β-barrel structure with a predominately apolar pocket representing a potential binding site for hydrophobic ligands. Fluorescent lipid-binding assays confirmed that the protein is highly selective for ligands and that it binds a fatty acid with a dissociation constant typical of lipid transporter proteins. The low IgE-binding frequency (7%, n = 224) in Thai HDM-allergic patients as well as the limited propensity to activate basophil degranulation classifies Der p 13 as a minor HDM allergen. Nevertheless, the protein with its presumptively associated lipid(s) triggered the production of IL-8 and GM-CSF in respiratory epithelial cells through a TLR2-, MyD88-, NF-kB-, and MAPK-dependent signaling pathway. Although a minor allergen, Der p 13 may, through its lipid-binding capacity, play a role in the initiation of the HDM-allergic response through TLR2 activation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Molecular Evolution of the Oxygen-Binding Hemerythrin Domain
Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio
2016-01-01
Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the oxygen-binding hemerythrin domain in both prokaryotes and eukaryotes led to a wide variety of functions, ranging from protection against oxidative damage in anaerobic and microaerophilic organisms, to oxygen supplying to particular enzymes and pathways in aerobic and facultative species. PMID:27336621
Sex Differences in Serotonin 1 Receptor Binding in Rat Brain
NASA Astrophysics Data System (ADS)
Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.
1983-10-01
Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daud, A.I.; Bumpus, F.M.; Husain, A.
Ovarian angiotensin I (Ang I)-converting enzyme (ACE), estimated by the specific binding of the ACE inhibitor (125I)iodo-MK-351A, is localized on multiple ovarian structures, including follicular granulosa cells, corpora lutea, terminal epithelium, and ovarian blood vessels, but total ovarian ACE does not display a cyclic pattern of variation during the rat estrous cycle. We have previously shown that ACE is localized on the granulosa cell layer of a subpopulation of rat ovarian follicles. Our present study shows that ovarian granulosa cells contain high affinity (binding site affinity (Kd), approximately 90 pM) and low capacity (binding site density (Bmax), approximately 12 fmol/2.5more » X 10(5) cells) (125I)iodo-MK-351A-binding sites and convert (125I)iodo-Ang I to (125I)iodo-Ang II (greater than 85% of this conversion was inhibited by the ACE inhibitor captopril). Throughout the rat estrous cycle, 94-100% of developing follicles and 89-96% of atretic follicles contained high levels of ACE; however, ACE was either not observed or its levels were very low in preovulatory follicles. These findings indicate the presence of high levels of biologically active ACE on the surface of granulosa cells and suggest a potential role for follicular ACE in early stages of follicular maturation and atresia. Although ACE is known to process a variety of peptides found within the ovary, and these peptides may have opposing effects on follicular maturation, we attempted to define the cumulative effect of ACE inhibition on follicular maturation.« less
Ciucci, Alessandra; Palma, Carla; Manzini, Stefano; Werge, Thomas M
1998-01-01
The binding modalities of substance P and neurokinin A on the wild type and Gly166 to-Cys mutant NK1 receptors expressed on CHO cells were investigated in homologous and heterologous binding experiments using both radiolabelled substance P and neurokinin A.On the wild type NK1 receptor NKA displaces radiolabelled substance P with very low apparent affinity, despite its high-affinity binding constant (determined in homologous binding experiments). The Gly166 to-Cys substitution in the NK1 tachykinin receptor greatly enhances the apparent affinity of neurokinin A in competition for radiolabelled substance P, but it does not change the binding constant of neurokinin A. The mutation, thereby, eliminates the discrepancy between the low apparent affinity and the high binding constant of neurokinin A.On the wild type receptor the binding capacity of neurokinin A is significantly smaller than that of substance P. In contrast, the two tachykinins bind to approximately the same number of sites on the mutant receptor.Simultaneous mass action law analysis of binding data in which multiple radioligands were employed in parallel demonstrated that a one-site model was unable to accommodate all the experimental data, whereas a two-site model provided a dramatically better description.These two receptor-sites display equally high affinity for substance P, while neurokinin A strongly discriminates between a high and a low affinity component. The binding affinities of neurokinin A are not affected by the mutation, which instead specifically alters the distribution between receptor sites in favour of a high affinity neurokinin A binding form.The low apparent affinity and binding capacity of neurokinin A on the wild type receptor results from neurokinin A binding with high affinity only to a fraction of the sites labelled by substance P. The mutation increases the proportion of this site, and consequently enhances the apparent affinity and binding capacity of neurokinin A.The binding modalities of septide-like ligands (i.e. neurokinin B, SP(6-11), SP-methyl ester) are affected similarly to neurokinin A and are better resolved into two sites. The mutation leaves the affinity of these ligands for the two receptor forms unchanged, but increases the fraction of high-affinity sites. On the other hand, the binding of non-peptide and peptide antagonists (SR140.333 and FK888) behaved similarly to substance P with a single high affinity site that is unaffected by the mutation.These findings may suggest that the NK1 receptor exists in two different forms with similar affinity for substance P and NK1 antagonists, but with a high and a low affinity for neurokinin A and septide-like ligands. Hence, the Gly166 in the NK1 receptor would seem to control the distribution between a pan-reactive form and a substance P-selective form of the receptor. PMID:9786514
Bicho, Diana; Sousa, Ângela; Sousa, Fani; Queiroz, João; Tomaz, Cãndida
2014-09-01
DNA therapies are becoming recognized alternatives for the treatment and prevention of severe pathologies. Although most current trials have used plasmids <10 kbp, in the future larger plasmids would be required. The purpose of this work was to study the chromatographic behavior of nongrafted carbonyldiimidazole monolithic disks using plasmids with different sizes under hydrophobic conditions. Thereunto, the purification of several plasmids was performed. Higher size plasmids needed lower ammonium sulfate concentration, due to the greater number of interactions between the plasmids and monolith. The dynamic binding capacity experiments for the different plasmids revealed a lower capacity for bigger plasmids. It was also verified that the increase of salt concentration from 2.5 to 3 M of ammonium sulfate increased the capacity. At the highest salt concentration, a slight improvement in the capacity using lower flow rate was observed, possibly due to compaction of plasmid molecules and its better organization on the monolith channels. Finally, a low pH also had a positive effect on the capacity. So, this monolithic support proved to be appropriate to purify the supercoiled isoform of different plasmids with different sizes, providing a valuable instrument as a purification technique. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid incremental methods for the determination of serum iron and iron-binding capacity
Beale, R. N.; Bostrom, J. O.; Taylor, R. F.
1961-01-01
Rapid methods depending on differential absorptiometry are described for the determination of the transferrin iron content and the latent iron-binding capacity of blood serum. Each determination requires as little as 0·5 ml. serum. The methods are well adapted for routine use in the `average' laboratory. Three or four sera may be completely analysed in 30 minutes. All operations are carried out in the cells or tubes used for the colorimetric measurements, no precipitation or heating being employed at any stage. Critical investigations of the reliability of the methods are attempted and ranges of normal values are included. PMID:13866116
Liu, Yuanyue; Merinov, Boris V; Goddard, William A
2016-04-05
It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.
Xyloglucan-cellulose interaction depends on the sidechains and molecular weight of xyloglucan.
Lima, Denis U; Loh, Watson; Buckeridge, Marcos S
2004-05-01
Recent papers have brought evidence against the hypothesis that the fucosyl branching of primary wall xyloglucans (Xg) are responsible for their higher capacity of binding to cellulose. Reinforcement of this questioning has been obtained in this work where we show that the binding capacity was improved when the molecular weight (MW) of the Xg polymers is decreased by enzymatic hydrolysis. Moreover, the enthalpy changes associated with the adsorption process between Xg and cellulose is similar for Xgs with similar MW (but differing in the fine structure such as the presence/absence of fucose). On the basis of these results, we suggest that the fine structure and MW of Xg determines the energy and amount of binding to cellulose, respectively. Thus, the occurrence of different fine structural domains of Xg (e.g. the presence of fucose and the distribution of galactoses) might have several different functions in the wall. Besides the structural function in primary wall, these results might have impact on the packing features of storage Xg in seed cotyledons, since the MW and absence of fucose could also be associated with the self-association capacity. Copyright 2004 Elsevier SAS
Powers, Jacquelyn M; Buchanan, George R; Adix, Leah; Zhang, Song; Gao, Ang; McCavit, Timothy L
2017-06-13
Iron-deficiency anemia (IDA) affects millions of persons worldwide, and is associated with impaired neurodevelopment in infants and children. Ferrous sulfate is the most commonly prescribed oral iron despite iron polysaccharide complex possibly being better tolerated. To compare the effect of ferrous sulfate with iron polysaccharide complex on hemoglobin concentration in infants and children with nutritional IDA. Double-blind, superiority randomized clinical trial of infants and children aged 9 to 48 months with nutritional IDA (assessed by history and laboratory criteria) that was conducted in an outpatient hematology clinic at a US tertiary care hospital from September 2013 through November 2015; 12-week follow-up ended in January 2016. Three mg/kg of elemental iron once daily as either ferrous sulfate drops or iron polysaccharide complex drops for 12 weeks. Primary outcome was change in hemoglobin over 12 weeks. Secondary outcomes included complete resolution of IDA (defined as hemoglobin concentration >11 g/dL, mean corpuscular volume >70 fL, reticulocyte hemoglobin equivalent >25 pg, serum ferritin level >15 ng/mL, and total iron-binding capacity <425 μg/dL at the 12-week visit), changes in serum ferritin level and total iron-binding capacity, adverse effects. Of 80 randomized infants and children (median age, 22 months; 55% male; 61% Hispanic white; 40 per group), 59 completed the trial (28 [70%] in ferrous sulfate group; 31 [78%] in iron polysaccharide complex group). From baseline to 12 weeks, mean hemoglobin increased from 7.9 to 11.9 g/dL (ferrous sulfate group) vs 7.7 to 11.1 g/dL (iron complex group), a greater difference of 1.0 g/dL (95% CI, 0.4 to 1.6 g/dL; P < .001) with ferrous sulfate (based on a linear mixed model). Proportion with a complete resolution of IDA was higher in the ferrous sulfate group (29% vs 6%; P = .04). Median serum ferritin level increased from 3.0 to 15.6 ng/mL (ferrous sulfate) vs 2.0 to 7.5 ng/mL (iron complex) over 12 weeks, a greater difference of 10.2 ng/mL (95% CI, 6.2 to 14.1 ng/mL; P < .001) with ferrous sulfate. Mean total iron-binding capacity decreased from 501 to 389 μg/dL (ferrous sulfate) vs 506 to 417 μg/dL (iron complex) (a greater difference of -50 μg/dL [95% CI, -86 to -14 μg/dL] with ferrous sulfate; P < .001). There were more reports of diarrhea in the iron complex group than in the ferrous sulfate group (58% vs 35%, respectively; P = .04). Among infants and children aged 9 to 48 months with nutritional iron-deficiency anemia, ferrous sulfate compared with iron polysaccharide complex resulted in a greater increase in hemoglobin concentration at 12 weeks. Once daily, low-dose ferrous sulfate should be considered for children with nutritional iron-deficiency anemia. clinicaltrials.gov Identifier: NCT01904864.
Lockhart, B; Closier, M; Howard, K; Steward, C; Lestage, P
2001-04-01
The potential interaction of acetylcholinesterase inhibitors with cholinergic receptors may play a significant role in the therapeutic and/or side-effects associated with this class of compound. In the present study, the capacity of acetylcholinesterase inhibitors to interact with muscarinic receptors was assessed by their ability to displace both [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding in rat brain membranes. The [3H]-quinuclinidyl benzilate/[3H]-oxotremorine-M affinity ratios permitted predictions to be made of either the antagonist or agonist properties of the different compounds. A series of compounds, representative of the principal classes of acetylcholinesterase inhibitors, displaced [3H]-oxotremorine-M binding with high-to-moderate potency (ambenonium>neostigmine=pyridostigmine=tacrine>physostigmine> edrophonium=galanthamine>desoxypeganine) whereas only ambenonium and tacrine displaced [3H]-quinuclinidyl benzilate binding. Inhibitors such as desoxypeganine, parathion and gramine demonstrated negligible inhibition of the binding of both radioligands. Scatchard plots constructed from the inhibition of [3H]-oxotremorine-M binding in the absence and presence of different inhibitors showed an unaltered Bmax and a reduced affinity constant, indicative of potential competitive or allosteric mechanisms. The capacity of acetylcholinesterase inhibitors, with the exception of tacrine and ambenonium, to displace bound [3H]-oxotremorine-M in preference to [3H]quinuclinidyl benzilate predicts that the former compounds could act as potential agonists at muscarinic receptors. Moreover, the rank order for potency in inhibiting acetylcholinesterase (ambenonium>neostigmine=physostigmine =tacrine>pyridostigmine=edrophonium=galanthamine >desoxypeganine>parathion>gramine) indicated that the most effective inhibitors of acetylcholinesterase also displaced [3H]-oxotremorine-M to the greatest extent. The capacity of these inhibitors to displace [3H]-oxotremorine-M binding preclude their utilisation for the prevention of acetylcholine catabolism in rat brain membranes, the latter being required to estimate the binding of acetylcholine to [3H]-oxotremorine-M-labelled muscarinic receptors. However, fasciculin-2, a potent peptide inhibitor of acetylcholinesterase (IC50 24 nM), did prevent catabolism of acetylcholine in rat brain membranes with an atypical inhibition isotherm of [3H]-oxotremorine-M binding, thus permitting an estimation of the "global affinity" of acetylcholine (Ki 85 nM) for [3H]-oxotremorine-M-labelled muscarinic receptors in rat brain.
Oppenheimer, Jack H.; Bernstein, Gerald; Hasen, Julian
1967-01-01
A mathematical analysis of the plasma disappearance curves of simultaneously injected thyroxine-131I and albumin-125I allows the development of simple formulas for estimating the pool size and transfer kinetics of rapidly exchangeable intracellular thyroxine in man. Evidence is presented that the early distribution kinetics of albumin-125I can be used to represent the expansion of the thyroxine-131I-plasma protein complex into the extracellular compartment. Calculations indicate that approximately 37% of total body extrathyroidal thyroxine is within such exchangeable tissue stores. The average cellular clearance of thyroxine is 42.7 ml per minute, a value far in excess of the metabolic clearance of this hormone. Results of external measurements over the hepatic area and studies involving hepatic biopsies indicate that the liver is an important but probably not the exclusive component of the intracellular compartment. The partition of thyroxine between cellular and extracellular compartments is determined by the balance of tissue and plasma protein binding factors. The fractional transfer constants are inversely related to the strength of binding of each compartment and directly proportional to the permeability characteristic of the hypothetical membrane separating compartments. Appropriate numerical values for these factors are assigned. An increased fractional entrance of thyroxine-131I into the cellular compartment was noted in a patient with congenital decrease in the maximal binding capacity of thyroxine-binding globulin and in three patients after the infusion of 5,5-diphenylhydantoin. Decreased intracellular space and impaired permeability characteristics were observed in five patients with hepatic disease. Studies of the rate of entrance of thyroxine-131I and albumin-125I into the pleural effusion of a patient with congestive heart failure suggested that transcapillary passage of thyroxine independent of its binding protein is not a predominant factor in the total distribution kinetics of thyroxine-131I. The thesis is advanced that the distribution of thyroxine, both within the extracellular compartment and between the extracellular and intracellular compartments, is accomplished largely by the carrier protein and the direct transfer of thyroxine from one binding site to another. The concept of free thyroxine is reassessed in terms of this formulation. PMID:4960936
Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities
Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.
2013-01-01
αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839
Development of gastrointestinal surface. VIII. Lectin identification of carbohydrate differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, K.Y.; Bresson, J.L.; Walker, W.A.
Binding of microvillus membranes (MVM) from newborn and adult rats by concanavalin A (Con A), Ulex europaeus (UEA I), Dolichos bifluorus (DBA), and Triticum vulgaris (WGA) was examined to determine the availability of carbohydrate-containing sites for these lectins on the intestinal surface during development. Consistent patterns of differences in the reaction of MVM with these lectins were found. Con A and UEA had much higher reactivities to MVM of adult than newborn rats. /sup 125/I-labeled-UEA gel overlay experiments revealed the abundance of UEA-binding sites in MVM of adult rat in contrast to the two binding sites in MVM of amore » newborn rat. DBA bound only to MVM of the adults, and very few binding sites were found in immature MVM. In contrast to these lectins, WGA binding was much higher in MVM of the newborns and decreased with maturation. Additional experiments on the age dependence of UEA and DBA reactivities revealed that the most striking changes occur in animals from 2 to 2 wk of age. In MVM from 2-wk-old rats, there were only 13.9% and < 0.2% of the adult binding capacities for UEA and DBA, respectively. By the time the animals were 4 wk old, the binding capacity for UEA had attained close to the level of the adults, whereas for DBA it reached 71.3% of the adult value. These results provide definite evidence of changes in the intestinal surface during perinatal development.« less
Bai, Leilei; Xu, Huacheng; Wang, Changhui; Deng, Jiancai; Jiang, Helong
2016-11-01
Phytoplankton-derived extracellular polymeric substances (EPS) are of vital importance for the biogeochemical cycles of hydrophobic organic pollutants in lake ecosystems. In this study, roles of loosely-bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) in biosorption of phenanthrene (PHE) on a typical cyanobacteria Microcystis aeruginosa were investigated. The results showed that the biosorption of PHE on M. aeruginosa cell varied lasted 24 h, while the binding of PHE to LB-EPS and TB-EPS reached equilibrium within less than 2 h. The equilibrium biosorption capacities of M. aeruginosa cell, LB-EPS and TB-EPS were 6.78, 12.31, and 9.47 μg mg(-1), respectively, indicating that the binding of PHE to EPS was a considerable process involved in biosorption. Fluorescence quenching titration revealed that increasing temperature induced more binding sites in EPS for PHE and the binding process was driven by electrostatic force and hydrophobic interactions. Interestingly, dynamic and static quenching processes occurred simultaneously for the binding of PHE to protein-like substances in EPS, whereas the binding of PHE to humic-like substances belonged to static quenching. The relatively higher contents of proteins in LB-EPS produced a stronger binding capacity of PHE. Overall, the interactions between hydrophobic organic pollutants and cyanobacterial EPS are favorable to the bioaccumulation of hydrophobic organic pollutants in cyanobacteria and facilitate the regulatory function of cyanobacterial biomass as a biological pump. Copyright © 2016 Elsevier Ltd. All rights reserved.
High affinity binding of 125I-neurotensin to dispersed cells from chicken liver and brain.
Mitra, S P; Carraway, R E
1997-01-01
Dispersed cells from chicken brain and liver were found to possess cell surface binding sites for 125I-neurotensin (125I-NT). Scatchard analyses indicated the presence of high affinity (K4, 25-80 pM) and low affinity (Kd, 250-450 pM) components in adult tissues. Binding capacity was reduced 25-40% by incubation with pertussis toxin. Ontogenetic studies indicated that NT receptor capacity increased approximately 20-fold from the embryonic stage to adult. Cross-linking of 125I-NT to intact cells labeled one major band (52 kDa, > or = 90%) and two minor bands (40 and 90 kDa, < or = 10%) which could represent distinct NT-receptors or one receptor partly degraded or cross-linked to G-protein(s). The binding of 125I-NT to dispersed cells was enhanced by reduction with dithoithreitol and suppressed by alkylation with N-ethyl-maleimide (NEM), maleimidocaproic acid (MCA) and p-chloromercuribenzenesulfonate (PCMBS). Since MCA and PCMBS do not permeate cells, this suggests that the sulfhydryl group(s) critical to binding are located within the NT receptor itself. Preincubation of cells with NT prior to treatment with NEM diminished its inhibitory effect, suggesting that the critical SH-group(s) were within the NT binding pocket or were protected by an allosteric effect. These results suggest that one or more of the nine cysteine residues in the NT receptor is involved in the NT binding reaction.
Characterization of the [125I]-neurokinin A binding site in the circular muscle of human colon
Warner, Fiona J; Comis, Alfio; Miller, Robert C; Burcher, Elizabeth
1999-01-01
Neurokinin A (NKA) is a potent contractile agonist of human colon circular muscle. These responses are mediated predominantly through tachykinin NK2 receptors. In the present study, the NK2 receptor radioligand [125I]-NKA has been used to characterize binding sites in this tissue, using tachykinin agonists and antagonists. 125INKA labelled a single, high affinity binding site. Specific binding (95% of total binding) of [125I]-NKA was saturable (KD 0.47±0.05 nM), of high capacity (Bmax 2.1±0.1 fmol mg−1 wet weight tissue) and reversible (kinetically derived KD 0.36±0.07 nM). The rank order of agonists competing for the [125I]-NKA binding site was neuropeptide γ (NPγ)≥NKA≥[Lys5,MeLeu9,Nle10]NKA (4–10) (NK2 agonist)>>substance P (SP)>neurokinin B (NKB)≥[Pro9]SP (NK1 agonist)>>senktide (NK3 agonist), indicating binding to an NK2 site. The nonpeptide selective NK2 antagonist SR48968 showed higher affinity for the [125I]-NKA site than selective peptide NK2 antagonists. The rank order of potency for NK2 antagonists was SR48968≥MEN11420>GR94800≥MEN10627>MEN10376≥R396. The NK1 antagonist SR140333 was a weak competitor. The competition curve for SP could be resolved into two sites. When experiments were repeated in the presence of SR140333 (0.1 μM), the curve for SP became monophasic and showed a significant shift to the right, whereas curves to NKA and NKB were unaffected. In conclusion, binding of the radioligand [125I]-NKA to membranes from circular muscle is predominantly to the NK2 receptor. There may be a small component of binding to the NK1 receptor. The NK2 receptor mediates circular muscle contraction, whereas the role of the NK1 receptor in circular muscle is unclear. PMID:10455255
Fixing atmospheric CO2 by environment adaptive sorbent and renewable energy
NASA Astrophysics Data System (ADS)
Wang, T.; Liu, J.; Ge, K.; Fang, M.
2014-12-01
Fixing atmospheric CO2, followed by geologic storage in remote areas is considered an environmentally secure approach to climate mitigation. A moisture swing sorbent was investigated in the laboratory for CO2 capture at a remote area with humid and windy conditions. The energy requirement of moisture swing absorption could be greatly reduced compared to that of traditional high-temperature thermal swing, by assuming that the sorbent can be naturally dried and regenerated at ambient conditions. However, for currently developed moisture swing materials, the CO2 capacity would drop significantly at high relative humidity. The CO2 capture amount can be reduced by the poor thermodynamics and kinetics at high relative humidity or low temperature. Similar challenges also exist for thermal or vacuum swing sorbents. Developing sorbent materials which adapt to specific environments, such as high humidity or low temperature, can ensure sufficient capture capacity on the one hand, and realize better economics on the other hand (Figure 1) .An environment adaptive sorbent should have the abilities of tunable capacity and fast kinetics at extreme conditions, such as high humidity or low temperature. In this presentation, the possibility of tuning CO2 absorption capacity of a polymerized ionic liquid material is discussed. The energy requirement evaluation shows that tuning the CO2 binding energy of sorbent, rather than increasing the temperature or reducing the humidity of air, could be much more economic. By determining whether the absorption process is controlled by physical diffusion controlled or chemical reaction, an effective approach to fast kinetics at extreme conditions is proposed. A shrinking core model for mass transfer kinetics is modified to cope with the relatively poor kinetics of air capture. For the studied sample which has a heterogeneous structure, the kinetic analysis indicates a preference of sorbent particle size optimization, rather than support layer optimization. Chemical reaction kinetics could be enhanced by stronger binding energy or higher temperature. However, the total kinetics can only be significantly improved by chemical reaction enhancement if the physical diffusion is fast enough.
Is GABA neurotransmission enhanced in auditory thalamus relative to inferior colliculus?
Cai, Rui; Kalappa, Bopanna I.; Brozoski, Thomas J.; Ling, Lynne L.
2013-01-01
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches. In vivo single unit studies compared the ability of half maximal inhibitory concentrations of GABA to inhibit sound-evoked temporal responses, and found that GABA was two to three times (P < 0.01) more potent at suppressing MGB single unit responses than IC unit responses. In vitro whole cell patch-clamp slice recordings were used to demonstrate that gaboxadol, a δ-subunit selective GABAAR agonist, was significantly more potent at evoking tonic inhibitory currents from MGB neurons than IC neurons (P < 0.01). These electrophysiological findings were supported by an in vitro receptor binding assay which used the picrotoxin analog [3H]TBOB to assess binding in the GABAAR chloride channel. MGB GABAARs had significantly greater total open chloride channel capacity relative to GABAARs in IC (P < 0.05) as shown by increased total [3H]TBOB binding. Finally, a comparative ex vivo measurement compared endogenous GABA levels and suggested a trend towards higher GABA concentrations in MGB than in IC. Collectively, these studies suggest that, per unit GABA, high affinity extrasynaptic and synaptic GABAARs confer a significant inhibitory GABAAR advantage to MGB neurons relative to IC neurons. This increased GABA sensitivity likely underpins the vital filtering role of auditory thalamus. PMID:24155003
Heat Capacity Changes and Disorder-to-Order Transitions in Allosteric Activation.
Cressman, William J; Beckett, Dorothy
2016-01-19
Allosteric coupling in proteins is ubiquitous but incompletely understood, particularly in systems characterized by coupling over large distances. Binding of the allosteric effector, bio-5'-AMP, to the Escherichia coli biotin protein ligase, BirA, enhances the protein's dimerization free energy by -4 kcal/mol. Previous studies revealed that disorder-to-order transitions at the effector binding and dimerization sites, which are separated by 33 Å, are integral to functional coupling. Perturbations to the transition at the ligand binding site alter both ligand binding and coupled dimerization. Alanine substitutions in four loops on the dimerization surface yield a range of energetic effects on dimerization. A glycine to alanine substitution at position 142 in one of these loops results in a complete loss of allosteric coupling, disruption of the disorder-to-order transitions at both functional sites, and a decreased affinity for the effector. In this work, allosteric communication between the effector binding and dimerization surfaces in BirA was further investigated by performing isothermal titration calorimetry measurements on nine proteins with alanine substitutions in three dimerization surface loops. In contrast to BirAG142A, at 20 °C all variants bind to bio-5'-AMP with free energies indistinguishable from that measured for wild-type BirA. However, the majority of the variants exhibit altered heat capacity changes for effector binding. Moreover, the ΔCp values correlate with the dimerization free energies of the effector-bound proteins. These thermodynamic results, combined with structural information, indicate that allosteric activation of the BirA monomer involves formation of a network of intramolecular interactions on the dimerization surface in response to bio-5'-AMP binding at the distant effector binding site.
Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui
2018-02-23
Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.
Thermodynamics of Interaction between Some Cellulose Ethers and SDS by Titration Microcalorimetry.
Singh; Nilsson
1999-05-01
The interaction between certain nonionic cellulose ethers (ethyl hydroxyethyl cellulose and hydroxypropyl methyl cellulose) and sodium dodecyl sulphate (SDS) has been investigated using isothermal titration microcalorimetry at temperatures between 25-50 degrees C. The observed heat flow curves have been interpreted in terms of a plausible mechanism of the interaction of the substituent groups with SDS monomers and clusters. The data have been related to changes occuring in the system at the macro- and microscopic levels with the addition of surfactants and with temperature. The process consists predominantly of polymer-surfactant interactions initially and surfactant-surfactant interactions at the later stages. A phenomenological model of the cooperative interaction (adsorption) process has been derived, and earlier published equilibrium binding data have been used to recover binding constants and Gibbs energy changes for this process. The adsorption enthalpies and entropies have been recovered along with the heat capacity change. The enthalpic cost of confining the nonpolar regions of the polymers in surfactant clusters is high, but the entropy gain from release of hydration shell water molecules as well as increased freedom of movement of these nonpolar regions in the clusters gives the process a strong entropic driving force. The process is entropy-driven initially and converts to being both enthalpy and entropy-driven at high SDS concentrations. An enthalpy-entropy compensation behavior is seen. Strongly negative heat capacity changes have been obtained resulting from the transfer of nonpolar groups from aqueous into nonpolar environments, as well as a reduction of conformational domains that the chains can populate. Changes in these two components cause the heat capacity change to become less negative at the higher binding levels. The system can be classified as exhibiting nonclassical hydrophobic binding at the later stages of binding. Copyright 1999 Academic Press.
Glucocorticoid receptor ligand binding in monocytic cells using a microplate assay.
Jansen, J; Uitdehaag, B; Koper, J W; van Den Berg, T K
1999-01-01
Glucocorticoids have profound effects on macrophage function and are widely used as anti-inflammatory drugs. Glucocorticoids receptor (GR) ligand binding capacity is a major determinant of cellular glucocorticoid sensitivity. The number and affinity of GR can be measured in a whole cell binding assay using (3)H-dexamethasone. Here, we describe a rapid and simple microplate assay for GR measurement using the human promonocytic cell line THP-1. Copyright 2000 S. Karger AG, Basel.
Ashrafi-Kooshk, Mohammad Reza; Ebrahimi, Farangis; Ranjbar, Samira; Ghobadi, Sirous; Moradi, Nastaran; Khodarahmi, Reza
2015-09-01
Human serum albumin (HSA), the most abundant protein in blood plasma, is a monomeric multidomain protein that possesses an extraordinary capacity for binding, so that serves as a circulating depot for endogenous and exogenous compounds. During the heat sterilization process, the structure of pharmaceutical-grade HSA may change and some of its activities may be lost. In this study, to provide deeper insight on this issue, we investigated drug-binding and some physicochemical properties of purified albumin (PA) and pharmaceutical-grade albumin (PGA) using two known drugs (indomethacin and ibuprofen). PGA displayed significantly lower drug binding capacity compared to PA. Analysis of the quenching and thermodynamic parameters indicated that intermolecular interactions between the drugs and the proteins are different from each other. Surface hydrophobicity as well as the stability of PGA decreased compared to PA, also surface hydrophobicity of PA and PGA increased upon drugs binding. Also, kinetic analysis of pseudo-esterase activities indicated that Km and Vmax parameters for PGA enzymatic activity are more and less than those of PA, respectively. This in vitro study demonstrates that the specific drug binding of PGA is significantly reduced. Such studies can act as connecting bridge between basic research discoveries and clinical applications. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Young, Anne B.; Snyder, Solomon H.
1974-01-01
The ability of a series of anions to inhibit [3H]strychnine binding to spinal cord synaptic membranes correlates closely with their neurophysiologic capacity to reverse inhibitory postsynaptic potentials in the mammalian spinal cord. Seven neurophysiologically active anions are also effective inhibitors of [3H]strychnine binding with mean effective doses ranging from 160 to 620 mM. Seven other anions that are ineffective neurophysiologically also fail to alter strychnine binding. Chloride inhibits strychnine binding in a noncompetitive fashion. Hill plots of the displacement of [3H]strychnine by chloride give coefficients of 2.3-2.7. The inhibition of strychnine binding by these anions suggests that strychnine binding is closely associated with the ionic conductance mechanism for chloride in the glycine receptor. PMID:4372600
Basu, Anirban; Kumar, Gopinatha Suresh
2015-05-15
The thermodynamics of the interaction of the food colourant tartrazine with two homologous serum proteins, HSA and BSA, were investigated, employing microcalorimetric techniques. At T=298.15K the equilibrium constants for the tartrazine-BSA and HSA complexation process were evaluated to be (1.92 ± 0.05) × 10(5)M(-1) and (1.04 ± 0.05) × 10(5)M(-1), respectively. The binding was driven by a large negative standard molar enthalpic contribution. The binding was dominated essentially by non-polyelectrolytic forces which remained largely invariant at all salt concentrations. The polyelectrolytic contribution was weak at all salt concentrations and accounted for only 6-18% of the total standard molar Gibbs energy change in the salt concentration range 10-50mM. The negative standard molar heat capacity values, in conjunction with the enthalpy-entropy compensation phenomenon observed, established the involvement of dominant hydrophobic forces in the complexation process. Tartrazine enhanced the stability of both serum albumins against thermal denaturation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Flavanol binding of nuclei from tree species.
Feucht, W; Treutter, D; Polster, J
2004-01-01
Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.
Binding of corroded ions to human saliva.
Mueller, H J
1985-05-01
Employing equilibrium dialysis, the binding abilities of Cu, Al, Co and Cr ions from corroded Cu-Al and Co-Cr dental casting alloys towards human saliva and two of its gel chromatographic fractions were determined. Results indicate that both Cu and Co bind to human saliva i.e. 0.045 and 0.027 mg/mg protein, respectively. Besides possessing the largest binding ability, Cu also possessed the largest binding capacity. The saturation of Cu binding was not reached up to the limit of 0.35 mg protein/ml employed in the tests, while Co reached full saturation at about 0.2 mg protein/ml. Chromium showed absolutely no binding to human saliva while Al ions did not pass through the dialysis membranes. Compared to the binding with solutions that were synthetically made up to contain added salivary-type proteins, it is shown that the binding to human saliva is about 1 order of magnitude larger, at least for Cu ions.
Neisser-Svae, A; Bailey, A; Gregori, L; Heger, A; Jordan, S; Behizad, M; Reichl, H; Römisch, J; Svae, T-E
2009-10-01
A new chromatographic step for the selective binding of abnormal prion protein (PrP(Sc)) was developed, and optimization for PrP(Sc) capture was achieved by binding to an affinity ligand attached to synthetic resin particles. This step was implemented into the manufacturing process of the solvent/detergent (S/D)-treated biopharmaceutical quality plasma Octaplas to further improve the safety margin in terms of risk for variant Creutzfeldt-Jakob disease (vCJD) transmission. Intermediates and Octaplas final container material, spiked with hamster brain-derived PrP(Sc)-containing fractions, were used for experiments to establish the feasibility of introducing this novel chromatography step. The binding capacity per millilitre of ligand gel was determined under the selected manufacturing conditions. In addition, the specificity of the ligand gel to bind PrP(Sc) from human sources was investigated. A validated Western blot test was used for the identification and quantification of PrP(Sc). A reduction factor of > or = 3.0 log(10) could be demonstrated by Western blotting, utilizing the relevant Octaplas matrix from manufacturing. In this particular cell-free plasma solution, the PrP(Sc) binding capacity of the selected gel was very high (> or = 6 log(10) ID(50)/ml, equivalent to roughly 10 log(10) ID(50)/column at manufacturing scale). The gel binds specifically PrP(Sc) from both animal (hamster and mouse) and human (sporadic and variant CJD) sources. This new single-use, disposable PrP(Sc)-harvesting gel ensures a very high capacity in terms of removing the pathogenic agent causing vCJD from the new generation OctaplasLG, in the event that prions can be found in plasma from donors incubating the disease and thereby contaminating the raw material plasma used for manufacturing.
Wu, Hai Bing; Fang, Hai Lan; Peng, Hong Ling
2016-05-01
The effects of different vegetation types, compaction ways and soil basic physico-chemical properties on soil water reservoir in the typical newly-established green belts of Shanghai Chenshan Botanical Garden were studied. The results showed that the total reservoir capacity, detention capacity and effective storage for the Botanical Garden were lower than those of natural forests. However, the dead storage was very high accounting for 60.6% of the total reservoir capacity, resulting in reduced flood storage and drainage capacity for the greens. The total reservoir capacity and detention capacity of different vegetation types were in order of brush land> tree land> grassland> bamboo land> bare land. The effective storages of the brush land and the tree land were relatively high, whereas those of the bare land and the bamboo land were lower. The ratios of the dead storage over the total re-servoir capacity in the bare land and the bamboo land were relatively high with the values 65.5% and 67.6%, respectively. The total reservoir capacity, detention capacity and effective storage of the brush land were significantly different from those of the bare land. The vegetation significantly improved the water storage and retention capacity for the soil, while the compaction by large machinery and man-caused trampling reduced the total reservoir capacity, detention capacity and effective storage of soils. The water reservoir properties were influenced by soil bulk density, saturated hydraulic conductivity, capillary porosity, non-capillary porosity, total porosity, clay and organic matter contents. Therefore, improving the soil physico-chemical properties might increase the soil reservoir capacity of the urban green belt effectively.
Dietary total antioxidant capacity and mortality in the PREDIMED study.
Henríquez-Sánchez, P; Sánchez-Villegas, A; Ruano-Rodríguez, C; Gea, A; Lamuela-Raventós, R M; Estruch, R; Salas-Salvadó, J; Covas, M I; Corella, D; Schröder, H; Gutiérrez-Bedmar, M; Santos-Lozano, J M; Pintó, X; Arós, F; Fiol, M; Tresserra-Rimbau, A; Ros, E; Martínez-González, M A; Serra-Majem, L
2016-02-01
The aim of the present study was to assess the association between the dietary total antioxidant capacity, the dietary intake of different antioxidants and mortality in a Mediterranean population at high cardiovascular disease risk. A total of 7,447 subjects from the PREDIMED study (multicenter, parallel group, randomized controlled clinical trial), were analyzed treating data as an observational cohort. Different antioxidant vitamin intake and total dietary antioxidant capacity were calculated from a validated 137-item food frequency questionnaire at baseline and updated yearly. Deaths were ascertained through contact with families and general practitioners, review of medical records and consultation of the National Death Index. Cox regression models were fitted to assess the relationship between dietary total antioxidant capacity and mortality. Dietary total antioxidant capacity was estimated using ferric-reducing antioxidant power assays. A total of 319 deaths were recorded after a median follow-up of 4.3 years. Subjects belonging to the upper quintile of antioxidant capacity were younger, ex-smokers, with high educational level, and more active and had higher alcohol intake. Multivariable-adjusted models revealed no statistically significant difference between total dietary antioxidant capacity and mortality (Q5 vs. Q1 ref HR 0.85; 95% CI 0.60-1.20) neither for the intake of all the vitamins studied. No statistically significant association was found between antioxidant capacity and total mortality in elderly subjects at high cardiovascular risk.
Oki, Tomomi; Suzuki, Mayumi; Nishioka, Yasuhiko; Yasuda, Akio; Umegaki, Keizo; Yamada, Shizuo
2005-04-01
We examined the effects of saw palmetto extract (SPE) on the rat micturition reflex and on autonomic receptors in the lower urinary tract. The effect of SPE was examined on cystometrograms of anesthetized rats induced by intravesical infusion of saline or 0.1% acetic acid. SHR/NDmc-cp (cp/cp) rats received repeat oral administration of SPE and nighttime urodynamic function was determined. The autonomic receptor binding activity of SPE in the rat bladder and prostate was examined by radioligand binding assay. Intraduodenal administration of SPE (60 mg/kg) in anesthetized rat cystometry caused a significant increase in the micturition interval, micturition volume and bladder capacity during intravesical saline infusion. Also, similar administration of SPE at doses of 12 and 20 mg/kg significantly reversed the shortened micturition interval as well as the decreased micturition volume and bladder capacity due to 0.1% acetic acid infusion in a dose dependent manner. In conscious SHR/NDmc-cp (cp/cp) rats repeat oral administration of SPE (6 mg/kg daily) constantly increased the micturition interval and concomitantly decreased voiding frequency. SPE inhibited specific binding of [H]NMS ([N-methyl-H]scopolamine methyl chloride) (bladder) and [H]prazosin (prostate) with IC50 values of 46.1 and 183 microg/ml, respectively. SPE significantly alleviates urodynamic symptoms in hyperactive rat bladders by increasing bladder capacity and subsequently prolonging the micturition interval. Our data may support the clinical efficacy of SPE for the treatment of lower urinary tract symptoms.
Boguta, Patrycja; Pieczywek, Piotr M.; Sokołowska, Zofia
2016-01-01
The main aim of this study was the application of excitation-emission fluorescence matrices (EEMs) combined with two decomposition methods: parallel factor analysis (PARAFAC) and nonnegative matrix factorization (NMF) to study the interaction mechanisms between humic acids (HAs) and Zn(II) over a wide concentration range (0–50 mg·dm−3). The influence of HA properties on Zn(II) complexation was also investigated. Stability constants, quenching degree and complexation capacity were estimated for binding sites found in raw EEM, EEM-PARAFAC and EEM-NMF data using mathematical models. A combination of EEM fluorescence analysis with one of the proposed decomposition methods enabled separation of overlapping binding sites and yielded more accurate calculations of the binding parameters. PARAFAC and NMF processing allowed finding binding sites invisible in a few raw EEM datasets as well as finding totally new maxima attributed to structures of the lowest humification. Decomposed data showed an increase in Zn complexation with an increase in humification, aromaticity and molecular weight of HAs. EEM-PARAFAC analysis also revealed that the most stable compounds were formed by structures containing the highest amounts of nitrogen. The content of oxygen-functional groups did not influence the binding parameters, mainly due to fact of higher competition of metal cation with protons. EEM spectra coupled with NMF and especially PARAFAC processing gave more adequate assessments of interactions as compared to raw EEM data and should be especially recommended for modeling of complexation processes where the fluorescence intensities (FI) changes are weak or where the processes are interfered with by the presence of other fluorophores. PMID:27782078
Iron deficiency and anemia: a common problem in female elite soccer players.
Landahl, Göran; Adolfsson, Peter; Börjesson, Mats; Mannheimer, Clas; Rödjer, Stig
2005-12-01
The objective of the study was to determine the prevalence of iron deficiency and iron deficiency anemia among elite women soccer players. Hemoglobin, serum iron, serum total iron binding capacity, and ferritin were determined in 28 female soccer players called up for the national team. Of the investigated female soccer players, 57% had iron deficiency and 29% iron deficiency anemia 6 months before the FIFA Women's World Cup. It is concluded that iron deficiency and iron deficiency anemia is common in female soccer players at the top international level. Some might suffer from relative anemia and measurement of hemoglobin alone is not sufficient to reveal relative anemia. Regular monitoring of hemoglobin concentration and iron status is necessary to institute iron supplementation when indicated.
Somparn, Nuntiya; Saenthaweeuk, Suphaket; Naowaboot, Jarinyaporn; Thaeomor, Atcharaporn; Kukongviriyapan, Veerapol
2018-06-01
Cymbopogon citratus (DC) Stapf., commonly known as lemongrass, possesses strong antioxidant and cardiotonic properties. Lemongrass water extract contains several polyphenolic compounds including gallic acid, isoquercetin, quercetin, rutin, catechin and tannic acid. Rutin, isoquercetin catechin and quercetin are the flavonoids most abundantly found in the extract. The extract significantly decreased total cholesterol, low-density lipoprotein and atherogenic index in rats after treatment (p < 0.05). Expression of genes and protein of sterol regulatory element binding protein-1c (SREBP1c) and HMG-CoA reductase (HMGR) was also lowered significantly in treated groups (p < 0.05). Moreover, serum antioxidant capacity increased in treated rats in comparison with untreated ones (p < 0.05) and was associated with decreased serum lipid peroxidation.
Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...
2015-11-05
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp 2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexesmore » in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less
Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris
2015-01-01
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830
Gold Binding by Native and Chemically Modified Hops Biomasses
López, M. Laura; Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; ...
2005-01-01
Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass ( Humulus lupulus ) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding atmore » pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively.« less
Alavi, M Z; Richardson, M; Moore, S
1989-02-01
The effect of injury-induced alterations in the aortic neointimal proteoglycans on their binding with homologous serum lipoproteins was examined. Proteoglycans of the aortic intimal-medial tissues of rabbits that had undergone denudation with a balloon catheter 12 weeks earlier were isolated after homogenization of the tissues in 0.33 M sucrose, ultracentrifugation and subsequently by gel-exclusion chromatography. Lipoproteins from the plasma of healthy donors were prepared by sequential, ultracentrifugal floatation after density adjustment with KBr. To study the interactions, aliquots of electrophoretically pure very low-density lipoproteins (VLDL, d less than 1.006 g/ml), low-density lipoproteins (LDL, d = 1.019-1.063 g/ml), or high-density lipoproteins (HDL, d = 1.210 g/ml) were incubated with proteoglycans in the presence of Ca++ and Mg++ at 4 C. The amount of cholesterol found in the resulting pellet was measured as a marker of the binding capacity of the proteoglycans. Among lipoprotein fractions both VLDL and LDL showed strong binding with proteoglycans, whereas no appreciable binding was observed when incubation experiments were done with HDL. There were significant differences in the lipoprotein binding capacity of proteoglycan of control and injured animals, indicating that injury induced changes in proteoglycan composition exert profound influences on their ionic interactions.
Frøsig, Christian; Pehmøller, Christian; Birk, Jesper B; Richter, Erik A; Wojtaszewski, Jørgen F P
2010-11-15
TBC1D1 is a Rab-GTPase activating protein involved in regulation of GLUT4 translocation in skeletal muscle. We here evaluated exercise-induced regulation of TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. In separate experiments healthy men performed all-out cycle exercise lasting either 30 s, 2 min or 20 min. After all exercise protocols, TBC1D1 Ser237 phosphorylation increased (∼70-230%, P < 0.005), with the greatest response observed after 20 min of cycling. Interestingly, capacity of TBC1D1 to bind 14-3-3 protein showed a similar pattern of regulation, increasing 60-250% (P < 0.001). Furthermore, recombinant 5AMP-activated protein kinase (AMPK) induced both Ser237 phosphorylation and 14-3-3 binding properties on human TBC1D1 when evaluated in vitro. To further characterize the role of AMPK as an upstream kinase regulating TBC1D1, extensor digitorum longus muscle (EDL) from whole body α1 or α2 AMPK knock-out and wild-type mice were stimulated to contract in vitro. In wild-type and α1 knock-out mice, contractions resulted in a similar ∼100% increase (P < 0.001) in Ser237 phosphorylation. Interestingly, muscle of α2 knock-out mice were characterized by reduced protein content of TBC1D1 (∼50%, P < 0.001) as well as in basal and contraction-stimulated (∼60%, P < 0.001) Ser237 phosphorylation, even after correction for the reduced TBC1D1 protein content. This study shows that TBC1D1 is Ser237 phosphorylated and 14-3-3 protein binding capacity is increased in response to exercise in human skeletal muscle. Furthermore, we show that the catalytic α2 AMPK subunit is the main (but probably not the only) donor of AMPK activity regulating TBC1D1 Ser237 phosphorylation in mouse EDL muscle.
NASA Astrophysics Data System (ADS)
Eberbeck, Dietmar; Wiekhorst, Frank; Steinhoff, Uwe; Schwarz, Kay Oliver; Kummrow, Andreas; Kammel, Martin; Neukammer, Jörg; Trahms, Lutz
2009-05-01
The binding of monoclonal antibodies labelled with magnetic nanoparticles to CD61 surface proteins expressed by platelets in whole blood samples was measured by magnetorelaxometry. This technique is sensitive to immobilization of the magnetic labels upon binding. Control experiments with previous saturation of the epitopes on the platelet surfaces demonstrated the specificity of the binding. The kinetics of the antibody antigen reaction is accessible with a temporal resolution of 12 s. The minimal detectable platelet concentration is about 2000 μL -1 (sample volume 150 μL). The proportionality of the magnetic relaxation amplitude to the number of bound labels allows a quantification of the antibody binding capacity.
Staphylococcal surface display of metal-binding polyhistidyl peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuelson, P.; Wernerus, H.; Svedberg, M.
2000-03-01
Recombinant Staphylococcus xylosus and Staphylococcus carnosus strains were generated with surface-exposed chimeric proteins containing polyhistidyl peptides designed for binding to divalent metal ions. Surface accessibility of the chimeric surface proteins was demonstrated and the chimeric surface proteins were found to be functional in terms of metal binding, since the recombinant staphylococcal cells were shown to have gained Ni{sup 2+}- and Cd{sup 2+}-binding capacity, suggesting that such bacteria could find use in bioremediation of heavy metals. This is, to their knowledge, the first time that recombinant, surface-exposed metal-binding peptides have been expressed on gram-positive bacteria. Potential environmental or biosensor applications formore » such recombinant staphylococci as biosorbents are discussed.« less
Wong, Ka-Hing; Cheung, Peter C K
2005-11-30
Preparation of three novel dietary fibers (DFs) from mushroom sclerotia, namely, Pleurotus tuberregium, Polyporous rhinocerus, and Wolfiporia cocos, by a scale-up modified AOAC procedure using industrial enzymes was investigated. A remarkably high level of total dietary fiber (TDF) ranging from 81.7 to 96.3% sample dry matter (DM), in which a content of nonstarch polysaccharide (NSP) ranging from 86.6 to 94.3% sclerotial TDF DM, was obtained from the three sclerotia. All sclerotial DFs were rich in beta-glucan (the glucose residue ranged from 89.7 to 94.5% NSP DM) with a very low level of resistant glycogen (ranged from 3.77 to 3.94% sclerotial TDF DM). All three novel sclerotial DFs also exhibited similar, if not better, physicochemical and functional properties (pH, color, water binding capacity, oil holding capacity, and emulsifying properties) as those of barely DF control and commercial DF-rich ingredients. The potential use of the three mushroom sclerotial DFs as a new beta-glucan type DF-rich ingredient in the food industry was discussed.
Fundamental considerations in ski binding analysis.
Mote, C D; Hull, M L
1976-01-01
1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier should be able to release his bindings in every mode by simply pulling or twisting his foot outward. If that cannot be done without injury, the skier has identified for himself one type of fall that will result in injury. 8. And lastly, a little advice from Ben Franklin--"Carelessness does more harm than a want of knowledge."
Buczek, Pawel; Horvath, Martin P.
2009-01-01
In Sterkiella nova, α and β telomere proteins bind cooperatively with single-stranded DNA to form a ternary α·β·DNA complex. Association of telomere protein subunits is DNA-dependent, and α-β association enhances DNA affinity. To further understand the molecular basis for binding cooperativity, we characterized several possible stepwise assembly pathways using isothermal titration calorimetry. In one path, α and DNA first form a stable α·DNA complex followed by addition of β in a second step. Binding energy accumulates with nearly equal free energy of association for each of these steps. Heat capacity is nonetheless dramatically different with ΔCp = −305 ± 3 cal mol−1 K−1 for α binding with DNA and ΔCp = −2010 ± 20 cal mol−1 K−1 for addition of β to complete the α·β·DNA complex. By examining alternate routes including titration of single-stranded DNA with a preformed α·β complex, a significant portion of binding energy and heat capacity could be assigned to structural reorganization involving protein-protein interactions and repositioning of the DNA. Structural reorganization probably affords a mechanism to regulate high affinity binding of telomere single-stranded DNA with important implications for telomere biology. Regulation of telomere complex dissociation is thought to involve post-translational modifications in the lysine-rich C-terminal portion of β. We observed no difference in binding energetics or crystal structure when comparing complexes prepared with full-length β or a C-terminally truncated form, supporting interesting parallels between the intrinsically disordered regions of histones and this portion of β. PMID:17082188
Ingersoll, Christopher G.; Kunz, James L.; Hughes, Jamie P.; Wang, Ning; Ireland, D. Scott; Mount, David R.; Hockett, J. Russell; Valenti, Ted W
2015-01-01
The objective of the present study was to evaluate the relative sensitivity of test organisms in exposures to dilutions of a highly toxic sediment contaminated with metals and organic compounds. One dilution series was prepared using control sand (low total organic carbon [TOC; <0.1%, low binding capacity for contaminants]) and a second dilution series was prepared using control sediment from West Bearskin Lake, Minnesota, USA (high TOC [∼10% TOC, higher binding capacity for contaminants]). Test organisms included an amphipod (Hyalella azteca; 10-d and 28-d exposures), a midge (Chironomus dilutus; 20-d and 48-d exposures started with <1-h-old larvae, and 13-d and 48-d exposures started with 7-d-old larvae), and a unionid mussel (Lampsilis siliquoidea; 28-d exposures). Relative species sensitivity depended on the toxicity endpoint and the diluent. All 3 species were more sensitive in sand dilutions than in West Bearskin Lake sediment dilutions. The <1-h-old C. dilutus were more sensitive than 7-d-old C. dilutus, but replicate variability was high in exposures started with the younger midge larvae. Larval biomass and adult emergence endpoints of C. dilutus exhibited a similar sensitivity. Survival, weight, and biomass of H. azteca were more sensitive endpoints in 28-d exposures than in 10-d exposures. Weight and biomass of L. siliquoidea were sensitive endpoints in both sand and West Bearskin Lake sediment dilutions. Metals, ammonia, oil, and other organic contaminants may have contributed to the observed toxicity.
Purification of native M. vogae and H. contortus tubulin by TOG affinity chromatography.
Munguía, Beatriz; Teixeira, Ramiro; Veroli, Victoria; Melian, Elisa; Saldaña, Jenny; Minteguiaga, Mahia; Señorale, Mario; Marín, Mónica; Domínguez, Laura
2017-11-01
Microtubules are non-covalent cylindrical polymers formed by alpha- and beta-tubulin heterodimer units, crucial for cell division, intracellular transport, motility and differentiation. This makes them very attractive pharmacological targets exploited to develop different drugs such as anthelmintics, antifungals, and antineoplastics. In this work, in order to establish an in vitro target-based screen to integrate to the search for new anthelmintics, we explored the extraction of native assembly-competent tubulin from two helminth parasites: Mesocestoides vogae tetrathyridia (syn. corti, Cestoda: Cyclophyllidea), a useful cestode biological model, and Haemonchus contortus, a sheep gastrointestinal nematode of interest in livestock production. For this purpose, a novel tubulin affinity chromatography procedure was employed, based on the binding capacity of TOG (Tumor Overexpressed Gene) domain from MAPs (microtubule-associated proteins). The TOG domain of the protein Stu2 from Saccharomyces cerevisiae fused to GST (glutathione S- transferase) were produced in E. coli, and the immobilized recombinant proteins allowed for native tubulin extraction from parasites. The binding capacity of TOG1 affinity column (3.6%) was estimated using commercial porcine brain tubulin. A total amount of up to 126 μg of M. vogae tubulin was purified, whereas H. contortus tubulin co-eluted with glutamate dehydrogenase enzyme. The identity of tubulins was confirmed by western blotting and mass spectrometry. The abundance of tubulin estimated in M. vogae was 10% soluble extract, which probably could explain differences observed between tubulin purification results of both helminth parasites. Copyright © 2017 Elsevier Inc. All rights reserved.
Baros, Duka Ninković; Gajanin, Vesna S; Gajanin, Radoslav B; Zrnić, Bogdan
2014-01-01
Psoriasis is a chronic, inflammatory, immune-mediated skin disease. In addition to standard therapeutic modalities (antibiotics, cytostatics, phototherapy, photochemotherapy and retinoids), nonstandard methods can be used in the treatment of psoriasis. This includes balneotherapy which is most commonly used in combination with therapeutic resources. The aim of this research was to determine the length of remission of psoriasis in patients treated with standard therapeutic modalities, balneotherapy, and combined treatment (standard therapeutic modalities and balneotherapy). The study analyzed 60 adult patients, of both sexes, with different clinical forms of psoriasis, who were divided into three groups according to the applied therapeutic modalities: the first group (treated with standard therapeutic modalities), the second group (treated with balneotherapy) and the third group (treated with combined therapy-standard methods therapy and balneotherapy). The Psoriasis Area and Severity Index was determined in first, third and sixth week of treatment for all patients. The following laboratory analysis were performed and monitored: C reactive protein, iron with total iron binding capacity, unsaturated iron binding capacity and ferritin, uric acid, rheumatoid factors and antibodies to streptolysin O in the first and sixth week of treatment. The average length of remission in patients treated with standard therapeutic modalities and in those treated with balneotherapy was 1.77 +/- 0.951 months and 1.79 +/- 0.918 months, respectively. There was a statistically significant difference in the duration of remission between the patients treated with combination therapy and patients treated with standard therapeutic modalities (p = 0.019) and balneotherapy (p = 0.032). The best results have been achieved when the combination therapy was administered.
Potential of goat probiotic to bind mutagens.
Apás, Ana Lidia; González, Silvia Nelina; Arena, Mario Eduardo
2014-08-01
The mutagen binding ability of the goat probiotics (Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39, and Bifidobacterium bifidum DDBA) was evaluated. The oral administration of these probiotics reduced fecal mutagens and intestinal cancer markers in goats. Secondly, the effects of probiotics against the mutagenesis induced by sodium azide (SA), and Benzopyrene (B[α]P) by performing the modified Ames test using Salmonella typhimurium TA 100 was investigated. The capacity to bind benzopyrene and the stability of the bacterial-mutagen complex was analyzed by HPLC. The dismutagenic potential against both mutagens was proportional to probiotic concentration. Results showed that probiotic antimutagenic capacity against SA was ranging from 13 to 78%. The mixture of four goat probiotics (MGP) displayed higher antimutagenic activity against SA than any individual strains at the same cell concentration. This study shows that the highest diminution of mutagenicity in presence of B[α]P (74%) was observed in presence of MGP. The antimutagenic activity of nearly all the individual probiotic and the MGP were in concordance with the B[α]P binding determined by HPLC. According to our results, the B[α]P binding to probiotic was irreversible still after being washed with DMSO solution. The stability of the toxic compounds-bacterial cell binding is a key consideration when probiotic antimutagenic property is evaluated. MGP exhibits the ability to bind and detoxify potent mutagens, and this property can be useful in supplemented foods for goats since it can lead to the removal of potent mutagens and protect and enhance ruminal health and hence food safety of consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim
2016-07-01
The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. Copyright © 2016 Elsevier B.V. All rights reserved.
Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes.
Stax, Martijn J; Mouser, Emily E I M; van Montfort, Thijs; Sanders, Rogier W; de Vries, Henry J C; Dekker, Henk L; Herrera, Carolina; Speijer, Dave; Pollakis, Georgios; Paxton, William A
2015-01-01
Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.
Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan
2017-12-21
Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.
Shayani Rad, Maryam; Khameneh, Bahman; Sabeti, Zahra; Mohajeri, Seyed Ahmad; Fazly Bazzaz, Bibi Sedigheh
2016-10-01
In the present work, the effect of monomer composition on silver nanoparticles' (SNPs) binding capacity of hydrogels was investigated and their antibacterial efficacy was evaluated. Three series of poly-hydroxyethyl methacrylate (HEMA) hydrogels were prepared using methacrylic acid (MAA), methacrylamide (MAAM), and 4-vinylpyridine (4VP) as co-monomers, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. SNPs binding capacity of hydrogels was evaluated in different concentrations (2, 10, and 20 ppm). In vitro antibacterial activity of SNP-loaded hydrogels was studied against Pseudomonas aeruginosa (P. aeruginosa) isolated from patients' eyes. Then, inhibitory effect of hydrogels in biofilm formation was evaluated in the presence of Staphylococcus epidermidis (S. epidermidis) (DSMZ 3270). Our data indicated that poly(HEMA-co-MAA-co-EGDMA) had superior binding affinity for SNPs in comparison with other hydrogels. All SNP-loaded hydrogels demonstrated excellent antimicrobial effects at all times against P. aeruginosa and S. epidermidis after soaking in 10 and 20 ppm SNP suspensions. Scanning electron microscope (SEM) images revealed excellent inhibitory effect of SNPs against biofilm formation on the surface of the hydrogels. This study indicated the effect of monomer compositions in SNP loading capacity of poly(HEMA) hydrogels and antibacterial efficacy of SNP-loaded hydrogels against P. aeruginosa and S. epidermidis, but further in vivo evaluation is necessary.
Arginine homopeptides for plasmid DNA purification using monolithic supports.
Cardoso, Sara; Sousa, Ângela; Queiroz, João A; Azzoni, Adriano R; Sousa, Fani
2018-06-15
Purification of plasmid DNA targeting therapeutic applications still presents many challenges, namely on supports and specific ligand development. Monolithic supports have emerged as interesting approaches for purifying pDNA due to its excellent mass transfer properties and higher binding capacity values. Moreover, arginine ligands were already described to establish specific and preferential interactions with pDNA. Additionally, some studies revealed the ability of arginine based cationic peptides to condense plasmid DNA, which increased lengthening can result in strongest interactions with higher binding capacities for chromatographic purposes of large molecules such as pDNA. In this work, arginine homopeptides were immobilized in monolithic supports and their performance was evaluated and compared with a single arginine monolithic column regarding supercoiled (sc) plasmid DNA purification. Specific interactions of arginine based peptides with several nucleic acids present in a clarified Escherichia coli lysate sample showed potential for the sc pDNA purification. Effectively, the immobilization of the arginine homopeptides became more functional compared with the single arginine amino acid, showing higher binding capacities, which was also reflected in the intensity of the interactions. The combination of structural versatilities of monoliths with the specificity of arginine peptides raised as a promising strategy for sc pDNA purification. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc
2010-09-01
Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.
Berghof, Tom V. L.; Visker, Marleen H. P. W.; Arts, Joop A. J.; Parmentier, Henk K.; van der Poel, Jan J.; Vereijken, Addie L. J.; Bovenhuis, Henk
2018-01-01
Natural antibodies (NAb) are antigen binding antibodies present in individuals without a previous exposure to this antigen. Keyhole limpet hemocyanin (KLH)-binding NAb levels were previously associated with survival in chickens. This suggests that selective breeding for KLH-binding NAb may increase survival by means of improved general disease resistance. Genome-wide association studies (GWAS) were performed to identify genes underlying genetic variation in NAb levels. The studied population consisted of 1,628 adolescent layer chickens with observations for titers of KLH-binding NAb of the isotypes IgM, IgA, IgG, the total KLH-binding (IgT) NAb titers, total antibody concentrations of the isotypes IgM, IgA, IgG, and the total antibodies concentration in plasma. GWAS were performed using 57,636 single-nucleotide polymorphisms (SNP). One chromosomal region on chromosome 4 was associated with KLH-binding IgT NAb, and total IgM concentration, and especially with KLH-binding IgM NAb. The region of interest was fine mapped by imputing the region of the study population to whole genome sequence, and subsequently performing an association study using the imputed sequence variants. 16 candidate genes were identified, of which FAM114A1, Toll-like receptor 1 family member B (TLR1B), TLR1A, Krüppel-like factor 3 (KLF3) showed the strongest associations. SNP located in coding regions of the candidate genes were checked for predicted changes in protein functioning. One SNP (at 69,965,939 base pairs) received the maximum impact score from two independent prediction tools, which makes this SNP the most likely causal variant. This SNP is located in TLR1A, which suggests a fundamental role of TLR1A on regulation of IgM levels (i.e., KLH-binding IgM NAb, and total IgM concentration), or B cells biology, or both. This study contributes to increased understanding of (genetic) regulation of KLH-binding NAb levels, and total antibody concentrations. PMID:29375555
2011-01-01
Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates. Conclusions Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches. PMID:22112852
Complement Interaction with Trypanosomatid Promastigotes in Normal Human Serum
Domínguez, Mercedes; Moreno, Inmaculada; López-Trascasa, Margarita; Toraño, Alfredo
2002-01-01
In normal human serum (NHS), axenic promastigotes of Crithidia, Phytomonas, and Leishmania trigger complement activation, and from 1.2 to 1.8 × 105 C3 molecules are deposited per promastigote within 2.5 min. In Leishmania, promastigote C3 binding capacity remains constant during in vitro metacyclogenesis. C3 deposition on promastigotes activated through the classical complement pathway reaches a 50% maximum after ∼50 s, and represents >85% of total C3 bound. In C1q- and C2-deficient human sera, promastigotes cannot activate the classical pathway (CP) unless purified C1q or C2 factors, respectively, are supplemented, demonstrating a requirement for CP factor in promastigote C3 opsonization. NHS depleted of natural anti-Leishmania antibodies cannot trigger promastigote CP activation, but IgM addition restores C3 binding. Furthermore, Leishmania binds natural antibodies in ethylenediaminetetracetic acid (EDTA)-treated NHS; after EDTA removal, promastigote-bound IgM triggers C3 deposition in natural antibody-depleted NHS. Serum collectins and pentraxins thus do not participate significantly in NHS promastigote C3 opsonization. Real-time kinetic analysis of promastigote CP-mediated lysis indicates that between 85–95% of parasites are killed within 2.5 min of serum contact. These data indicate that successful Leishmania infection in man must immediately follow promastigote transmission, and that Leishmania evasion strategies are shaped by the selective pressure exerted by complement. PMID:11854358
Pharmacokinetics and dromotropic activity of ajmaline in rats with hyperthyroidism.
Hashimoto, Y.; Yasuhara, M.; Kamiya, A.; Okumura, K.; Hori, R.
1989-01-01
1. The pharmacokinetics and the dromotropic action (increased PQ interval) of intravenously administered ajmaline (2 mg kg-1) were studied in hyperthyroid rats with sinus tachycardia. The hyperthyroidism was induced by intraperitoneal injection of 3,5,3'-triiodo-L-thyronine (0.5 mg kg-1) for 4 days. 2. The change in the ajmaline concentration in whole blood could be described by a biexponential equation. The steady state distribution volume of ajmaline decreased from 4.81 l kg-1 in control rats to 3.80 l kg-1 in hyperthyroid rats and the total body blood clearance was slightly higher in hyperthyroid rats than in control rats. 3. Ajmaline exhibited a saturable binding to rat plasma proteins, and one kind of binding site was found in the observed range of concentrations. The binding capacity was 2 fold higher in hyperthyroid rats than in control rats. 4. On the basis of the plasma unbound concentration, ajmaline exhibited an increased negative dromotropic activity in hyperthyroid rats compared with control rats. 5. A positive correlation was found between the pacing rate and the dromotropic action of ajmaline on atrioventricular conduction in isolated perfused hearts. There was no significant difference in the rate-dependence of the effect of ajmaline on the heart between control and hyperthyroid rats. 6. Our findings suggest that the increased dromotropic activity of ajmaline is mainly due to the increased heart rate in hyperthyroid rats. PMID:2924068
Huang, Chih-Yang; Liou, Show-Yih; Kuo, Wei-Wen; Wu, Hsi-Chin; Chang, Yen-Lin; Chen, Tung-Sheng
2016-12-01
Regular hemodialysis treatment induces an elevation in oxidative stress in patients with end-stage renal failure, resulting in oxidative damage of the most abundant serum protein, albumin. Oxidation of serum albumin causes depletion of albumin reactive thiols, leading to oxidative modification of serum albumin. The aim of this study was to screen the antioxidant capacity of albumins isolated from uremic patients (HD-ALB) or healthy volunteers (N-ALB). From high-performance liquid chromatography spectra, we observed that one uremic solute binds to HD-ALB via the formation of disulfide bonds between HD-ALB and the uremic solute. Furthermore, we found using chemiluminescent analysis that the antioxidant capacities for N-ALB to scavenge reactive oxygen species including singlet oxygen, hypochlorite and hydrogen peroxide were higher than HD-ALB. Our results suggest that protein-bound uremic solute binds to albumin via formation of disulfide bonds, resulting in the depletion of albumin reactive thiols. The depletion of albumin reactive thiols leads to a reduced antioxidant capacity of HD-ALB, implying postmodification of albumin. This situation may reduce the antioxidant capacity of albumin and increase oxidative stress, resulting in increase in complications related to oxidative damage in uremic patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Alteration of lung atrial natriuretic peptide receptors in genetic cardiomyopathy.
Mukaddam-Daher, S; Tremblay, J; Fujio, N; Koch, C; Jankowski, M; Quillen, E W; Gutkowska, J
1996-07-01
These studies were designed to characterize the atrial natriuretic peptide (ANF) receptor subtypes [guanylyl cyclase natriuretic peptide receptors (NPR-A, NPR-B) and NPR-C] in lungs of normal hamsters and to evaluate alterations in receptor kinetics in genetic cardiomyopathy (CMO), a model of human congestive heart failure. Lung membranes were obtained from normal and CMO 200-to 230-day-old hamsters. Cross-linking and competitive binding receptor assays using 125I-labeled human ANF showed that lung membranes exhibit NPR, mainly guanylyl cyclase NPR-A and clearance NPR-C receptors. Stimulation of guanylyl cyclase by ANF and C-type natriuretic peptide (CNP) confirmed the presence of NPR-A and NPR-B. The maximum binding capacity of total ANF binding sites (442 +/- 68 vs. 271 +/- 57 fmol/mg protein, P < 0.05) was reduced, but dissociation constant (0.26 +/- 0.04 vs. 0.41 +/- 0.08 nM) was not altered in CMO animals. Similar reductions were observed in the binding sites for brain natriuretic peptide (BNP; 438 +/- 83 vs. 236 +/- 53 fmol/mg protein) and CNP (321 +/- 80 vs. 165 +/- 56 fmol/mg protein, P < 0.05) which may reflect a decline in NPR-A and NPR-B and/or NPR-C. Acid wash improved binding of 125I-labeled rat ANF to lung membranes of both normal and CMO hamsters, but the tendency towards reduced binding in CMO hamsters did not reach statistical significance, implying that downregulation may not have been due only to prior occupancy of the receptors. Transcripts of NPR-A, NPR-B, and NPR-C receptors in hamster lungs were detected by quantitative polymerase chain reaction. Compared with normal controls, the CMO hamster lung NPR-A mRNA was reduced by 50%, but NPR-B mRNA and NPR-C mRNA were not altered. Moreover, CMO hamster lungs showed less activation of guanylyl cyclase by ANF. These studies demonstrate that lung NPR are downregulated in hamster CMO.
Zhao, Chunjian; Li, Chunying; Liu, Shuaihua; Yang, Lei
2014-01-01
Total polyphenol content, catechins content, and antioxidant capacities of green, dark, oolong, and black teas made from Camellia sinensis in China were evaluated. The total polyphenol content of 20 samples of tea was in the range of 7.82–32.36%. Total catechins content was in the range of 4.34–24.27%. The antioxidant capacity of tea extract was determined by the oxygen radical absorbance capacity (ORAC) test and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging test. Total polyphenol content, catechins content, and antioxidant capacity decreased in the following order: green > oolong > black > dark tea. A positive correlation existed between the antioxidant capacity and total polyphenol content or catechins content (R 2 = 0.67–0.87). The antioxidant capacities of five major catechins (epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epicatechin, epigallocatechin, and catechin) were determined by online HPLC DPPH radical-scavenging; the antioxidant activity of tea was mainly attributed to the esterified catechins (EGCG or ECG). PMID:25243234
Assessment of the nickel-albumin binding assay for diagnosis of acute coronary syndrome.
da Silva, Sandra Huber; Pereira, Renata da Silva; Hausen, Bruna dos Santos; Signor, Cristiane; Gomes, Patrícia; de Campos, Marli Matiko Anraku; Moresco, Rafael Noal
2011-03-01
Myocardial ischemia may alter the metal binding capacity of circulating serum albumin. Thus, the aim of this study was to describe an automated method to measure ischemia-induced alterations in the binding capacity of serum albumin for exogenous nickel, and to evaluate the diagnostic characteristics of this assay for the assessment of acute coronary syndrome (ACS) in patients presenting to the emergency room (ER) with acute chest pain. We assessed the concentrations of cardiac troponin I (cTnI), serum albumin, ischemia-modified albumin (IMA) measured by the cobalt-albumin binding assay (CABA), and by an automated nickel-albumin binding assay (NABA) in the following groups: ACS (n=63) and non-ischemic chest pain (NICP, n=26). Biochemical markers were determined in blood samples obtained from patients within 3 h of ER admission. cTnI, CABA and NABA concentrations were higher in ACS group in comparison to the NICP group. A significant correlation between NABA and CABA was observed (r=0.5387, p<0.001). Areas under the curve for CABA and NABA were 0.7289 and 0.7582, respectively. Both CABA and NABA have the ability to discriminate patients with ACS. However, NABA has a slightly higher ability to discriminate ACS compared with CABA. Patients with ACS have reduced nickel binding to human serum albumin, and NABA may have an important role as an early marker of myocardial ischemia, particularly in patients presenting to the ER with acute chest pain.
Salian, Vishal D; Vaughan, Asa D; Byrne, Mark E
2012-06-01
In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture. Copyright © 2012 John Wiley & Sons, Ltd.
Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek
2017-01-01
A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.
Teepakorn, Chalore; Fiaty, Koffi; Charcosset, Catherine
2015-07-17
During the last 10 years, membrane chromatography (MC) has been increasingly reported for biomolecule purification at both small and large scales. Although, several axial and radial flow MC devices are commercialized, the effect of the device dimensions on the adsorption performance has not been fully investigated. In this study, axial and radial flow anion ion-exchange MC devices were used for bovine serum albumin (BSA) adsorption. For both axial and radial flow, three devices at different scales were compared, two having similar diameter and two similar bed height. The pressure drop and the flow distribution using acetone as a non-binding solute were measured, as well as BSA breakthrough curves at different flow rates and BSA loading concentrations. For all devices, it was observed that the flow rate had no effect on the breakthrough curve, which confirms the advantage of MC to be used at high flow rates. In addition, the BSA binding capacity increased with increasing BSA concentration, which suggests that it could be preferable to work with concentrated solutions rather than with very dilute solutions, when using buffer at high phosphate concentration. For both axial and radial flow, the bed height had a negative impact on the binding capacity, as the lowest binding capacities per membrane volume were obtained with the devices having the highest bed height. Radial flow MC has potential at large-scale applications, as a short bed thickness can be combined with a large inlet surface area. Copyright © 2015 Elsevier B.V. All rights reserved.
Equine sperm-bound antisperm antibodies are associated with poor semen quality.
Ferrer, M S; Miller, L M J
2018-06-01
Antisperm antibodies (ASAs) have been associated with infertility in stallions. The objectives of this study were to investigate the frequency of ASA-positive semen samples in satisfactory and non-satisfactory breeder stallions, the association between ASA binding and semen quality, and factors that may affect the diagnosis. Breeding soundness examinations were performed in 21 stallions and the percentage of IgG- and IgA-bound spermatozoa was evaluated using flow cytometry. Median IgG and IgA binding did not differ between the first and second ejaculates. The percentage of IgA-bound spermatozoa was higher in non-satisfactory (n = 10) than satisfactory breeder stallions (n = 11). However, IgG binding or frequency of IgG-positive ejaculates did not differ with stallion classification. The IgG-positive stallions had significantly lower total sperm motility, concentration and total numbers than IgG-negative stallions in the first ejaculate, and lower sperm concentration in the second ejaculate. The IgA-positive stallions had lower total sperm motility, normal spermatozoa and total numbers than IgA-negative stallions in the first ejaculate, and lower total sperm motility, normal spermatozoa and total numbers in the second ejaculate. While IgG binding did not differ with season, IgA binding was higher in the non-breeding season (n = 6 stallions) than the breeding season (n = 15 stallions) in the first ejaculate. Stallion age did not differ with ASA classification. In conclusion, IgG binding was highly prevalent in both groups of stallions, while IgA binding was higher and more prevalent in non-satisfactory breeders. Both isotypes were associated with poor semen quality. Season and sexual rest had an effect on IgA but not IgG binding. Copyright © 2018 Elsevier Inc. All rights reserved.
Influence of processing on the allergenic properties of pistachio nut assessed in vitro.
Noorbakhsh, Reihaneh; Mortazavi, Seyed Ali; Sankian, Mojtaba; Shahidi, Fakhri; Maleki, Soheila J; Nasiraii, Leila Roozbeh; Falak, Reza; Sima, Hamid Reza; Varasteh, AbdolReza
2010-09-22
Pistachio (Pistacia vera) is a tree nut that has been reported to cause IgE-mediated allergic reactions. This study was undertaken to investigate the distinctions between different cultivars of pistachio nut and the influence of different processing on the IgE-binding capacity of whole pistachio protein extracts. The influence of different processes on allergenicity was investigated using competitive inhibition ELISA and Western blotting assays. The Western blotting results of extracts from pistachio cultivars showed no marked difference among them. The IgE-binding capacity was significantly lower for the protein extract prepared from steam-roasted than from raw and dry-roasted pistachio nuts. The results of sensory evaluation analysis and hedonic rating proved no significant differences in color, taste, flavor, and overall quality of raw, roasted, and steam-roasted pistachio nut treatments. The most significant finding of the present study was the successful reduction of IgE-binding by pistachio extracts using steam-roast processing without any significant changes in sensory quality of product.
NASA Astrophysics Data System (ADS)
Chen, Ming; Zhao, Yu-Jun; Liao, Ji-Hai; Yang, Xiao-Bao
2012-07-01
Using density-functional theory calculations, we investigated the adsorption of transition-metal (TM) atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) on carbon doped hexagonal boron nitride (BN) sheet and the corresponding cage (B12N12). With carbon substitution of nitrogen, Sc, V, Cr, and Mn atoms were energetically favorable to be dispersed on the BN nanostructures without clustering or the formation of TM dimers, due to the strong binding between TM atoms and substrate, which contains the half-filled levels above the valence bands maximum. The carbon doped BN nanostructures with dispersed Sc could store up to five and six H2, respectively, with the average binding energy of 0.3 ˜ 0.4 eV, indicating the possibility of fabricating hydrogen storage media with high capacity. We also demonstrated that the geometrical effect is important for the hydrogen storage, leading to a modulation of the charge distributions of d levels, which dominates the binding between H2 and TM atoms.
Protection of Dentate Hilar Cells from Prolonged Stimulation by Intracellular Calcium Chelation
NASA Astrophysics Data System (ADS)
Scharfman, Helen E.; Schwartzkroin, Philip A.
1989-10-01
Prolonged afferent stimulation of the rat dentate gyrus in vivo leads to degeneration only of those cells that lack immunoreactivity for the calcium binding proteins parvalbumin and calbindin. In order to test the hypothesis that calcium binding proteins protect against the effects of prolonged stimulation, intracellular recordings were made in hippocampal slices from cells that lack immunoreactivity for calcium binding proteins. Calcium binding protein--negative cells showed electrophysiological signs of deterioration during prolonged stimulation; cells containing calcium binding protein did not. When neurons without calcium binding proteins were impaled with microelectrodes containing the calcium chelator BAPTA, and BAPTA was allowed to diffuse into the cells, these cells showed no deterioration. These results indicate that, in a complex tissue of the central nervous system, an activity-induced increase in intracellular calcium can trigger processes leading to cell deterioration, and that increasing the calcium binding capacity of a cell decreases its vulnerability to damage.
You, Qingping; Zhang, Yuping; Zhang, Qingwen; Guo, Junfang; Huang, Weihua; Shi, Shuyun; Chen, Xiaoqin
2014-08-08
Thermo-responsive magnetic molecularly imprinted polymers (TMMIPs) for selective recognition of curcuminoids with high capacity and selectivity have firstly been developed. The resulting TMMIPs were characterized by TEM, FT-IR, TGA, VSM and UV, which indicated that TMMIPs showed thermo-responsiveness [lower critical solution temperature (LCST) at 33.71°C] and rapid magnetic separation (5s). The polymerization, adsorption and release conditions were optimized in detail to obtain the highest binding capacity, selectivity and release ratio. We found that the adopted thermo-responsive monomer [N-isopropylacrylamide (NIPAm)] could be considered not only as inert polymer backbone for thermo-responsiveness but also as functional co-monomers combination with basic monomer (4-VP) for more specific binding sites when ethanol was added in binding solution. The maximum adsorption capacity with highest selectivity of curcumin was 440.3μg/g (1.93 times that on MMIPs with no thermosensitivity) at 45°C (above LCST) in 20% (v/v) ethanol solution on shrunk TMMIPs, and the maximum release proportion was about 98% at 20°C (below LCST) in methanol-acetic acid (9/1, v/v) solution on swelled TMMIPs. The adsorption process between curcumin and TMMIPs followed Langumuir adsorption isotherm and pseudo-first-order reaction kinetics. The prepared TMMIPs also showed high reproducibility (RSD<6% for batch-to-batch evaluation) and stability (only 7% decrease after five cycles). Subsequently, the TMMIPs were successfully applied for selective extraction of curcuminoids from complex natural product, Curcuma longa. Copyright © 2014 Elsevier B.V. All rights reserved.
Wells, Amanda M.; Haub, Mark D.; Fluckey, James; Williams, D. Keith; Chernoff, Ronni; Campbell, Wayne W.
2008-01-01
Objective To test the hypothesis that older men who consumed a vegetarian (lacto-ovo) diet would develop a lower iron status compared with older men who consumed a beef-containing diet during a period of resistive training (RT). Design Experimental, repeated measures study. Subjects Twenty-one healthy men aged 59 to 78 years, with a BMI range of 24 to 33 kg/m2, completed the study. Intervention All men consumed a vegetarian diet for 2 weeks (baseline). After this, the men were randomly assigned to one of two dietary groups. Eleven men consumed a beef-containing diet, and 10 men continued to consume a vegetarian diet for 12 weeks. During this time all subjects participated in RT three days per week, designated as RT1 to RT12. Main outcome measures Serum ferritin and serum iron concentrations, transferrin saturation, transferrin receptor, total iron binding capacity, and selected hematological variables, as well as selected nutrient intakes and estimated iron bioavailability from three-day diet records, were determined at baseline, RT5, and RT12. Statistical analyses A general linear model repeated-measures ANOVA was used to examine the effects of group, time, and group×time interactions for iron status and dietary data. Results Total iron intake was not different between the two groups; however, the beef group had a three to four times greater intake of bioavailable iron (P<.01) than the vegetarian group. Serum iron, total iron binding capacity, transferrin saturation, and transferrin receptor were not significantly different between the beef and vegetarian groups, or changed over time with RT. Serum ferritin decreased over time in both the beef and vegetarian groups during RT (P<.01). Re-introduction of beef into the diets of the beef group increased hemoglobin concentration and hematocrit compared with the vegetarian group during the 12 weeks of RT (group×time, P<.05). These changes were within clinically normal limits. Applications/Conclusions Older men who consume a beef-containing, higher-bioavailable-iron diet, compared with a vegetarian, lower-bioavailable-iron diet, have an increased hematological profile during a 12-week period of RT. Older men who consume either a beef-containing or a vegetarian diet maintain a hematological profile within clinically normal limits during 12 weeks of RT. PMID:12728219
Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components.
Gong, Jinyan; Huang, Jun; Xiao, Gongnian; Chen, Feng; Lee, Bolim; Ge, Qing; You, Yuru; Liu, Shiwang; Zhang, Ying
2016-07-30
This research was conducted for evaluation of antioxidant activities of four fractions from bamboo shavings extract (BSE) and their antioxidant components. The antioxidant capacities of BSE and four fractions on ABTS, DPPH, FRAP and total antioxidant capacity assays exhibited the following descending order: DF > n-butanol fraction (BF) > BSE ≈ ethyl acetate fraction (AF) > water fraction (WF). Among the identified phenolic compounds, caffeic acid exhibited the highest antioxidant capacities on DPPH, FRAP and total antioxidant capacity assays. An extremely significant positive correlation between the antioxidant activities with the contents of total flavonoids, total phenolic acids, or total phenolics was observed in this study. The result indicated that the bamboo shaving extract and its solvent fractions could act as natural antioxidants in light of their potent antioxidant activities.
Das De, Sudeep; Krishna, Sreedhar; Jethwa, Ankeet
2015-02-01
Observations in the past have hypothesized an association between body iron status and coronary heart disease (CHD). Epidemiological studies to date have however been inconclusive without the existence of strongly positive or strongly negative associations between iron status and coronary heart disease. To investigate the association between iron status and coronary heart disease. A systematic review was performed using the databases PubMed and Cochrane Library. Search terms included iron, ferritin, transferrin, total iron binding capacity, coronary heart disease and angina. Only prospective studies investigating the association of body iron status and coronary heart disease were included. All participants were free from coronary heart disease at baseline. There were no language or geographic restrictions imposed on the search strategy. Independent extraction of articles by 2 authors using predefined data fields. All pooled analyses were based on random-effects models. A total of 17 studies were identified for analysis, involving a total of 9236 cases of coronary heart disease and 156,427 participants. Several studies reported more than 1 marker of iron status. For serum ferritin, comparison of individuals in the top third versus the bottom third of baseline measurements yielded a combined risk ratio of 1.03 (95%CI, 0.87-1.23) for CHD/MI. For transferrin saturation, the combined risk ratio for CHD/MI was 0.82 (95% CI, 0.75-0.89) for individuals in the top third versus the bottom third of baseline measurements. Comparison of individuals in top and bottom thirds of baseline measurements yielded non-significant risk ratios of studies involving total iron-binding capacity (combined risk ratio, 0.99; 95% CI 0.86-1.13) and serum iron (combined risk ratio, 0.87; 95% CI 0.73-1.04). For serum iron, the combined risk ratio for CHD/MI after excluding the study by Morrisson et al. [1] was 0.80 (95% CI, 0.73-0.87). The results suggest that there is a negative association of transferrin levels and coronary heart disease with high transferrin saturations being associated with a lower risk of CHD/MI. There was also a negative association of serum iron and CHD/MI after one study [1] was excluded. There is no significant association between the other markers of iron status and CHD. It is however difficult to infer causality from these findings due to limitations in terms of reverse causality bias and residual confounding. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
On the limited recognition of inorganic surfaces by short peptides compared with antibodies.
Artzy-Schnirman, Arbel; Abu-Shah, Enas; Dishon, Matan; Soifer, Hadas; Sivan, Yotam; Reiter, Yoram; Benhar, Itai; Sivan, Uri
2014-06-01
The vast potential applications of biomolecules that bind inorganic surfaces led mostly to the isolation of short peptides that target selectively specific materials. The demonstrated differential affinity toward certain surfaces created the impression that the recognition capacity of short peptides may match that of rigid biomolecules. In the following, we challenge this view by comparing the capacity of antibody molecules to discriminate between the (100) and (111A) facets of a gallium arsenide semiconductor crystal with the capacity of short peptides to do the same. Applying selection from several peptide and single chain phage display libraries, we find a number of antibody molecules that bind preferentially a given crystal facet but fail to isolate, in dozens of attempts, a single peptide capable of such recognition. The experiments underscore the importance of rigidity to the recognition of inorganic flat targets and therefore set limitations on potential applications of short peptides in biomimetics. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Identification and characterization of a Fc receptor activity on the Toxoplasma gondii tachyzoite.
Vercammen, M; el Bouhdidi, A; Ben Messaoud, A; de Meuter, F; Bazin, H; Dubremetz, J F; Carlier, Y
1998-01-01
The Immunoglobulin (Ig) binding capacity of Toxoplasma gondii tachyzoites was investigated using fluorescence flow-cytometry analysis. Polyclonal mouse, human and rat immunoglobulins without specific anti-Toxoplasma activity bound to parasites in a concentration-dependent manner, saturating them at circulating serum concentrations. The immunoglobulin class and subclass specificity of binding was investigated using irrelevant monoclonal antibodies. IgM, IgA and IgG reacted with the parasite membrane. The attachment of mouse IgM to the parasite surface was hampered by mouse IgG1, IgG2a, IgG2b and IgG3. The binding of mouse IgG was proportionally reduced with increasing concentrations of mouse monoclonal IgM. The binding of murine immunoglobulin was diminished when in presence of human IgG. Purified Fc- but not Fab portions of immunoglobulins, fixed to parasites. Using labelled calibrated beads, the Ig binding capacity of parasites was estimated to be 6900 +/- 500 sites per tachyzoite. The Kd of the T. gondii Fc Receptor (FcR) activity was determined at 1.4 +/- 0.1 microM (mean +/- SEM). Such FcR activity was reduced by phospholipase C, trypsin and pronase treatment of the parasites. These data show a low affinity FcR activity on T. gondii tachyzoites which recognizes Ig of different species and isotypes and is likely supported by a glycosyl-phosphatidylinositol (GPI)-anchored surface protein of the parasite.
Bonaterra, Gabriel A; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf
2017-03-15
Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.
Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase
Votapka, Lane; Demir, Özlem; Swift, Robert V; Walker, Ross C; Amaro, Rommie E
2012-01-01
Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity. PMID:22872804
Switching on RNA Silencing Suppressor Activity by Restoring Argonaute Binding to a Viral Protein
Szabó, Edit Z.; Manczinger, Máté; Göblös, Anikó; Kemény, Lajos
2012-01-01
We found that Sweet potato feathery mottle virus (SPFMV) P1, a close homologue of Sweet potato mild mottle virus P1, did not have any silencing suppressor activity. Remodeling the Argonaute (AGO) binding domain of SPFMV P1 by the introduction of two additional WG/GW motifs converted it to a silencing suppressor with AGO binding capacity. To our knowledge, this is the first instance of the transformation of a viral protein of unknown function to a functional silencing suppressor. PMID:22623784
ERIC Educational Resources Information Center
McVay, Jennifer C.; Kane, Michael J.
2012-01-01
A combined experimental, individual-differences, and thought-sampling study tested the predictions of executive attention (e.g., Engle & Kane, 2004) and coordinative binding (e.g., Oberauer, Suss, Wilhelm, & Sander, 2007) theories of working memory capacity (WMC). We assessed 288 subjects' WMC and their performance and mind-wandering rates…
Chappell, J D; Gunn, V L; Wetzel, J D; Baer, G S; Dermody, T S
1997-03-01
The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.
Comparison of functional assays used in the clinical development of a placental malaria vaccine.
Pehrson, Caroline; Heno, Kristine K; Adams, Yvonne; Resende, Mafalda; Mathiesen, Line; Soegaard, Max; de Jongh, Willem A; Theander, Thor G; Salanti, Ali; Nielsen, Morten A
2017-01-23
Malaria in pregnancy is associated with significant morbidity in pregnant women and their offspring. Plasmodium falciparum infected erythrocytes (IE) express VAR2CSA that mediates binding to chondroitin sulphate A (CSA) in the placenta. Two VAR2CSA-based vaccines for placental malaria are in clinical development. The purpose of this study was to evaluate the robustness and comparability of binding inhibition assays used in the clinical development of placental malaria vaccines. The ability of sera from animals immunised with different VAR2CSA constructs to inhibit IE binding to CSA was investigated in three in vitro assays using 96-well plates, petri dishes, capillary flow and an ex vivo placental perfusion assay. The inter-assay variation was not uniform between assays and ranged from above ten-fold in the flow assay to two-fold in the perfusion assay. The intra-assay variation was highest in the petri dish assay. A positive correlation between IE binding avidity and the level of binding after antibody inhibition in the petri dish assay indicate that high avidity IE binding is more difficult to inhibit. The highest binding inhibition sensitivity was found in the 96-well and petri dish assays compared to the flow and perfusion assays where binding inhibition required higher antibody titers. The inhibitory capacity of antibodies is not easily translated between assays and the high sensitivity of the 96-well and petri dish assays stresses the need for comparing serial dilutions of serum. Furthermore, IE binding avidity must be in the same range when comparing data from different days. There was an overall concordance in the capacity of antibody-mediated inhibition, when comparing the in vitro assays with the perfusion assay, which more closely represents in vivo conditions. Importantly the ID1-ID2a protein in a liposomal formulation, currently in a phase I trial, effectively induced antibodies that inhibited IE adhesion in placental tissue. Copyright © 2016. Published by Elsevier Ltd.
Polevoda, Bogdan; Joseph, Rebecca; Friedman, Alan E.; Bennett, Ryan P.; Greiner, Rebecca; De Zoysa, Thareendra; Stewart, Ryan A.; Smith, Harold C.
2017-01-01
APOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity. Bulk RNA and substrate ssDNA bind to the same three A3G tryptic peptides (amino acids 181–194, 314–320, and 345–374) that form parts of a continuously exposed protein surface extending from the catalytic domain in the C terminus of A3G to its N terminus. We show here that the A3G tyrosines 181 and 315 directly cross-linked ssDNA. Binding experiments showed that a Y315A mutation alone significantly reduced A3G binding to both ssDNA and RNA, whereas Y181A and Y182A mutations only moderately affected A3G nucleic acid binding. Consistent with these findings, the Y315A mutant exhibited little to no deaminase activity in an Escherichia coli DNA mutator reporter, whereas Y181A and Y182A mutants retained ∼50% of wild-type A3G activity. The Y315A mutant also showed a markedly reduced ability to assemble into viral particles and had reduced antiviral activity. In uninfected cells, the impaired RNA-binding capacity of Y315A was evident by a shift of A3G from high-molecular-mass ribonucleoprotein complexes to low-molecular-mass complexes. We conclude that Tyr-315 is essential for coordinating ssDNA interaction with or entry to the deaminase domain and hypothesize that RNA bound to Tyr-315 may be sufficient to competitively inhibit ssDNA deaminase-dependent antiviral activity. PMID:28381554
Kelly, Edward; Mathew, Jeff; Kohler, Jonathan E.; Blass, Amy L.; Soybel, David I.
2012-01-01
Zinc ions (Zn2+) are essential for tissue repair following injury or stress. We hypothesize that during such stresses Zn2+ is redistributed to labile pools in plasma components. Here we tested this hypothesis utilizing a novel assay to monitor labile Zn2+ in plasma in hemorrhagic shock. Adult rats in the Shock (S) group underwent hemorrhage and resuscitation. Blood samples were drawn at baseline, 1 hr, 4 hrs and 24 hrs. The Surgical Control (SC) group was anesthetized and instrumented, but not bled. Albumin, total Zn2+, and labile Zn2+ levels were assayed in plasma. Binding capacity for Zn2+ was assessed in high (HMW) and low (LMW) molecular weight pools. Significant decreases in total Zn2+ were observed by 24 hrs, in both S and SC groups. Albumin levels were significantly reduced in the S group at 1 hr and 4 hr but restored at 24 hrs; significant changes were not observed in other groups. In whole plasma, labile Zn2+ levels were stable initially in the S and SC groups, but declined at 24 hrs. In the HMW pool, marked and significant impairment of binding was noted throughout all time periods following the shock period in the S group. Such changes were observed in the SC group of less intensity and duration. These experiments suggest that Shock alters affinity of plasma proteins for Zn2+, promoting delivery to peripheral tissues during periods of increased Zn2+ utilization. PMID:22744307
Kelly, Edward; Mathew, Jeff; Kohler, Jonathan E; Blass, Amy L; Soybel, And David I
2012-08-01
Zinc ions (Zn) are essential for tissue repair following injury or stress. We hypothesize that during such stresses Zn is redistributed to labile pools in plasma components. Here we tested this hypothesis using a novel assay to monitor labile Zn in plasma in hemorrhagic shock. Adult rats in the shock group (S group) underwent hemorrhage and resuscitation. Blood samples were drawn at baseline and at 1, 4, and 24 h. The surgical control group (SC group) was anesthetized and instrumented, but not bled. Albumin, total Zn, and labile Zn levels were assayed in plasma. Binding capacity for Zn was assessed in high- and low-molecular-weight pools. Significant decreases in total Zn were observed by 24 h, in both S and SC groups. Albumin levels were significantly reduced in the S group at 1 and 4 h but restored at 24 h; significant changes were not observed in other groups. In whole plasma, labile Zn levels were stable initially in the S and SC groups, but declined at 24 h. In the high-molecular-weight pool, marked and significant impairment of binding was noted throughout all time periods following the shock period in the S group. Such changes were observed in the SC group of less intensity and duration. These experiments suggest that shock alters affinity of plasma proteins for Zn, promoting delivery to peripheral tissues during periods of increased Zn utilization.
Hepatitis B Virus S Protein Enhances Sperm Apoptosis and Reduces Sperm Fertilizing Capacity In Vitro
Huang, JiHua; Zhong, Ying; Fang, XiaoWu; Xie, QingDong; Kang, XiangJin; Wu, RiRan; Li, FangZheng; Xu, XiaoQin; Lu, Hui; Xu, Lan; Huang, TianHua
2013-01-01
Objective Studying the impact of Hepatitis B virus S protein (HBs) on early apoptotic events in human spermatozoa and sperm fertilizing capacity. Methodology/Principal Findings Spermatozoa were exposed to HBs (0, 25, 50, 100 µg/ml) for 3 h, and then fluo-4 AM calcium assay, Calcein/Co2+ assay, protein extraction and ELISA, ADP/ATP ratio assay, sperm motility and hyperactivation and sperm-zona pellucida (ZP) binding and ZP-induced acrosome reaction (ZPIAR) tests were performed. The results showed that in the spermatozoa, with increasing concentration of HBs, (1) average cytosolic free Ca2+ concentration ([Ca2+]i) rose; (2) fluorescence intensity of Cal-AM declined; (3) average levels of cytochrome c decreased in mitochondrial fraction and increased in cytosolic fraction; (4) ADP/ATP ratios rose; (5) average rates of total motility and mean hyperactivation declined; (6) average rate of ZPIAR declined. In the above groups the effects of HBs exhibited dose dependency. However, there was no significant difference in the number of sperms bound to ZP between the control and all test groups. Conclusion HBs could induce early events in the apoptotic cascade in human spermatozoa, such as elevation of [Ca2+]i, opening of mitochondrial permeability transition pore (MPTP), release of cytochrome c (cyt c) and increase of ADP/ATP ratio, but exerted a negative impact on sperm fertilizing capacity. PMID:23874723
2014-01-01
Endotoxins are part of the cell wall of Gram-negative bacteria. They are potent immune stimulators and can lead to death if present in high concentrations. Feed additives, which bind endotoxins in the gastrointestinal tract of animals, could help to prevent their negative impact. The objective of our study was to determine the potential of a bentonite (Bentonite 1), a sodium bentonite (Bentonite 2), a chemically treated smectite (Organoclay 1) and a modified attapulgite (Organoclay 2) to bind endotoxins in vitro. Polymyxin B served as positive control. The kinetic chromogenic Limulus Amebocyte lysate test was adapted to measure endotoxin activity. Firstly, a single sorption experiment (10 endotoxin units/mL (EU/mL)) was performed. Polymyxin B and organoclays showed 100% binding efficiency. Secondly, the adsorption efficiency of sorbents in aqueous solution with increasing endotoxin concentrations (2,450 – 51,700 EU/mL) was investigated. Organoclay 1 (0.1%) showed a good binding efficiency in aqueous solution (average 81%), whereas Bentonite 1 (0.1%) obtained a lower binding efficiency (21-54%). The following absorbent capacities were calculated in highest endotoxin concentration: 5.59 mg/g (Organoclay 1) > 3.97 mg/g (Polymyxin B) > 2.58mg/g (Organoclay 2) > 1.55 mg/g (Bentonite 1) > 1.23 mg/g (Bentonite 2). Thirdly, a sorption experiment in artificial intestinal fluid was conducted. Especially for organoclays, which are known to be unspecific adsorbents, the endotoxin binding capacity was significantly reduced. In contrast, Bentonite 1 showed comparable results in artificial intestinal fluid and aqueous solution. Based on the results of this in vitro study, the effect of promising clay minerals will be investigated in in vivo trials. PMID:24383578
Weisinger, J R; Contreras, N E; Cajias, J; Bellorin-Font, E; Amair, P; Guitierrez, L; Sylva, V; Paz-Martínez, V
1988-01-01
Insulin resistance in uremia has been attributed to impaired hormone-receptor binding or to postbinding defects. Oral glucose tolerance tests, insulin binding, and in vitro glycolytic activity were studied in purified red blood cells from normal control subjects (C) and from uremic patients belonging to three groups: nondialyzed (U), on chronic hemodialysis (HD), and on continuous ambulatory peritoneal dialysis (CAPD). Glucose intolerance and hyperinsulinemia were demonstrated in all groups of patients. Maximal specific binding of 125I-insulin to erythrocytes, kinetically derived receptor numbers per cell, and affinity constants for insulin binding did not differ between control and patient groups. No correlation was found between the degree of glucose intolerance and insulin binding parameters. Basal lactate production by erythrocytes incubated in vitro was significantly higher in U and HD patients than in C, whereas CAPD patients did not differ from C in this respect. Addition of 1 mM dibutyryl-cAMP and 0.5 mM isobutyl-methyl-xanthine during incubation of erythrocytes caused an increase in the rate of lactate production that was similar in magnitude in the U, HD and C groups, whereas cells from CAPD subjects showed a significantly larger absolute response to these compounds after 1 h of incubation. There was no evidence of impairment of glycolytic capacity in red blood cells from uremic patients. In addition, no correlation was found between the degree of glucose intolerance and basal or stimulated lactate production by erythrocytes. Our results obtained in human erythrocytes suggest that the insulin resistance observed in uremia does not involve a defect in hormone binding or in the intracellular capacity to utilize glucose through glycolysis.
Xu, Huacheng; Guan, Dong-Xing; Zou, Li; Lin, Hui; Guo, Laodong
2018-08-01
Effects of photochemical and microbial degradation on variations in composition and molecular-size of dissolved organic matter (DOM) from different sources (algal and soil) and the subsequent influence on Cu(II) binding were investigated using UV-Vis, fluorescence excitation-emission matrices coupled with parallel factor analysis, flow field-flow fractionation (FlFFF), and metal titration. The degradation processes resulted in an initial rapid decline in the bulk dissolved organic carbon and chromophoric and fluorescent DOM components, followed by a small or little decrease. Specifically, photochemical reaction decreased the aromaticity, humification and apparent molecular weights of all DOM samples, whereas a reverse trend was observed during microbial degradation. The FlFFF fractograms revealed that coagulation of both protein- and humic-like DOM induced an increase in molecular weights for algal-DOM, while the molecular weight enhancement for allochthonous soil samples was mainly attributed to the self-assembly of humic-like components. The Cu(II) binding capacity of algal-derived humic-like and fulvic-like DOM consistently increased during photo- and bio-degradation, while the soil-derived DOM exhibited a slight decline in Cu(II) binding capacity during photo-degradation but a substantial increase during microbial degradation, indicating source- and degradation-dependent metal binding heterogeneities. Pearson correlation analysis demonstrated that the Cu(II) binding potential was mostly related with aromaticity and molecular size for allochthonous soil-derived DOM, but was regulated by both DOM properties and specific degradation processes for autochthonous algal-derived DOM. This study highlighted the coupling role of inherent DOM properties and external environmental processes in regulating metal binding, and provided new insights into metal-DOM interactions and the behavior and fate of DOM-bound metals in aquatic environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bile acid binding capacity has been related to cholesterol-lowering potential of foods and food fractions. Lowered recirculating bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of can...
Olga Loseva; Mohamed Ibrahim; Mehmet Candas; C. Noah Koller; Leah S. Bauer; Lee A. Jr. Bulla
2002-01-01
Widespread commercial use of Bacillus thuringiensis Cry toxins to control pest insects has increased the likelihood for development of insect resistance to this entomopathogen. In this study, we investigated protease activity profiles and toxin-binding capacities in the midgut of a strain of Colorado potato beetle (CPB) that has developed resistance...
Eder, M; Lütz-Meindl, U
2008-08-01
Pectins are the major matrix polysaccharides of plant cell walls and are important for controlling growth, wall porosity and regulation of the ionic environment in plant cells. Pectic epitopes recognized by the monoclonal antibodies JIM5, JIM7 and 2F4 could be localized in the primary wall during development of the green alga Micrasterias. As the degree of pectin esterification determines the calcium-binding capacity and thus the physical properties of the cell wall, chemical and enzymatic in situ de-esterification was performed. This resulted in displacement of epitopes recognized by JIM5, JIM7 and 2F4, respectively, in changes in the intensity of the antibody labelling as visualized in CLSM. In addition, calcium-binding capacities of cell walls and components of the secretory apparatus were determined in transmission electron microscopy by electron energy loss spectroscopy and electron spectroscopic imaging. These analyses revealed that pectic polysaccharides are transported to the cell wall in a de-esterified form. At the primary wall, pectins get methyl-esterified at the inner side, thus allowing flexibility of the wall. At the outer side of the wall they become again de-esterified and bind high amounts of calcium which leads to cell wall stiffening. Mucilage vesicles possess the highest calcium-binding capacity of all structures observed in Micrasterias, indicating that the pectic polysaccharides of mucilage are secreted in a de-esterified, compact form. When mucilage is excreted through the cell wall, it loses its ability to bind calcium. The esterification of pectins involved is obviously required for swelling of mucilage by water uptake, which generates the motive force for orientation of this unicellular organism in respect to light. Incubation of Micrasterias in pectin methylesterase (PME), which de-esterifies pectic polymers in higher plants, resulted in growth inhibition, cell shape malformation and primary wall thickening. A PME-like enzyme could be found in Micrasterias by PME activity assays.
Storage capacity of the Fena Valley Reservoir, Guam, Mariana Islands, 2014
Marineau, Mathieu D.; Wright, Scott A.
2015-01-01
Analyses of the bathymetric data indicate that the reservoir currently has 6,915 acre-feet of storage capacity. The engineering drawings of record show that the total reservoir capacity in 1951 was estimated to be 8,365 acre-feet. Thus, between 1951 and 2014, the total storage capacity decreased by 1,450 acre-feet (a loss of 17 percent of the original total storage capacity). The remaining live-storage capacity, or the volume of storage above the lowest-level reservoir outlet elevation, was calculated to be 5,511 acre-feet in 2014, indicating a decrease of 372 acre-feet (or 6 percent) of the original 5,883 acre-feet of live-storage capacity. The remaining dead-storage capacity, or volume of storage below the lowest-level outlet, was 1,404 acre-feet in 2014, indicating a decrease of 1,078 acre-feet (or 43 percent) of the original 2,482 acre-feet of dead-storage capacity.
Factors influencing the measurement of closing volume.
Make, B; Lapp, N L
1975-06-01
The various factors influencing closing volume were studied by performing the single-breath N2 test on 9 healthy nonsmokers. Time of day, day of the week, and preceding volume history had no effect on either closing volume or alveolar plateau. Slow inspiratory flow resulted in larger ratio of closing volume to vital capacity, ratio of closing capacity to total lung capacity, and change in N2 concentration than fast inspiratory flow. Voluntary regulation of the expiratory flow resulted in smaller ratios of closing volume to vital capacity and closing capacity to total lung capacity than when flow was regulated by a resistance. Prolonged breath holding of the inspired O2 led to larger ratio of closing volume to vital capacity and ratio of closing capacity to total lung capacity. To obtain uniform, comparable closing volumes, it is suggested that the subject inspire slowly, control expiratory flow (preferably voluntarily), and not pause between inspiration and expiration.
Gruber, Andreas; Lell, Claudia P; Speth, Cornelia; Stoiber, Heribert; Lass-Flörl, Cornelia; Sonneborn, Anja; Ernst, Joachim F; Dierich, Manfred P; Würzner, Reinhard
2001-01-01
Tat, the human immunodeficiency virus type 1 (HIV-1) transactivating protein, binds through its RGD-motif to human integrin receptors. Candida albicans, the commonest cause of mucosal candidiasis in subjects infected with HIV-1, also possesses RGD-binding capacity. The present study reveals that Tat binds to C. albicans but not to C. tropicalis. Tat binding was markedly reduced by laminin and to a lesser extent by a complement C3 peptide containing the RGD motif, but not by a control peptide. The outgrowth of C. albicans was accelerated following binding of Tat, but phagocytosis of opsonized C. albicans was also increased after Tat binding. Thus, Tat binding promotes fungal virulence by inducing hyphae but may also reduce it by augmenting phagocytosis. The net effect of Tat in vivo is difficult to judge but in view of the many disease-promoting effects of Tat we propose that accelerating the formation of hyphae dominates over the augmentation of phagocytosis. PMID:11899432
Total antioxidant capacity of the Korean diet
Han, Jeong-Hwa; Lee, Hye-Jin; Cho, Mi Ran; Chang, Namsoo; Kim, Yuri; Oh, Se-Young
2014-01-01
BACKGROUND/OBJECTIVES The objective of this study was to measure and/or estimate the total antioxidant capacity of the Korean diet. MATERIALS/METHODS Eighty-one plant foods that were expected to exhibit rather high antioxidant activities were selected from the Korean diet using the Fifth Korean National Health and Nutrition Survey (KNHANES V). These foods were categorized into 11 food groups: cereals, potatoes, legumes, nuts, vegetables, kimchies, mushrooms, fruits, fruit juices, sea weeds, and oils. The foods were mixed in the proportions specified in traditional Korean recipes and analyzed. The measured indicators for antioxidant capacities were total phenolics, 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC), and Trolox equivalent antioxidant capacity (TEAC). RESULTS Total phenolics were high in the fruit juices, nuts, vegetables, and fruits; and the average DPPH, ORAC, and TEAC values were high in the vegetables, fruits, fruit juices, and nuts. The correlation coefficient between the content of total phenolics of each food and the in vitro antioxidant capacity was relatively high at 0.851. The intake of total phenolics per capita per day in the Republic of Korea was estimated to be 127 mg. The total dietary antioxidant capacity (TDAC) values, which were obtained from the total antioxidant capacity of each food, taking into account the intake of each food, were 20,763, 54,335, and 876.4 µmol of Trolox equivalents using the DPPH, ORAC, and TEAC methods, respectively. The food group that contributed the most to the Korean TDAC was cereals at 39.7%, followed by fruits and vegetables at 27.8% and 13.9%, respectively. The contribution of legumes, nuts, fruit juices, and mushrooms was quite minimal at less than 2% each. CONCLUSIONS The content of total phenolics and the antioxidant capacity of the Korean diet are significantly correlated and the high contributing food groups are cereals, fruits, and vegetables. PMID:24741403
Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice.
Su, Hong-Ming; Feng, Li-Na; Zheng, Xiao-Dong; Chen, Wei
2016-06-01
Myricetin is a naturally occurring antioxidant commonly found in various plants. However, little information is available with respect to its direct anti-obesity effects. This study was undertaken to investigate the effect of myricetin on high-fat diet (HFD)-induced obesity in C57BL/6 mice. Administration of myricetin dramatically reduced the body weight of diet-induced obese mice compared with solely HFD-induced mice. Several parameters related to obesity including serum glucose, triglyceride, and cholesterol were significantly decreased in myricetin-treated mice. Moreover, obesity-associated oxidative stress (glutathione peroxidase (GPX) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA)) and inflammation (tumor necrosis factor-α (TNF-α)) were ameliorated in myricetin-treated mice. Further investigation revealed that the protective effect of myricetin against HFD-induced obesity in mice appeared to be partially mediated through the down-regulation of mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c). Consumption of myricetin may help to prevent obesity and obesity-related metabolic complications.
Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice*
Su, Hong-ming; Feng, Li-na; Zheng, Xiao-dong; Chen, Wei
2016-01-01
Background: Myricetin is a naturally occurring antioxidant commonly found in various plants. However, little information is available with respect to its direct anti-obesity effects. Objective: This study was undertaken to investigate the effect of myricetin on high-fat diet (HFD)-induced obesity in C57BL/6 mice. Results: Administration of myricetin dramatically reduced the body weight of diet-induced obese mice compared with solely HFD-induced mice. Several parameters related to obesity including serum glucose, triglyceride, and cholesterol were significantly decreased in myricetin-treated mice. Moreover, obesity-associated oxidative stress (glutathione peroxidase (GPX) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA)) and inflammation (tumor necrosis factor-α (TNF-α)) were ameliorated in myricetin-treated mice. Further investigation revealed that the protective effect of myricetin against HFD-induced obesity in mice appeared to be partially mediated through the down-regulation of mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c). Conclusions: Consumption of myricetin may help to prevent obesity and obesity-related metabolic complications. PMID:27256677
Mahdavi, Hamed; Liu, Yang; Ulrich, Ania C
2013-02-01
This paper studies the partitioning and bioaccumulation of ten target metals ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements. Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, (60)Ni, (65)Cu, (88)Sr, (95)Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes. Copyright © 2012 Elsevier Ltd. All rights reserved.
High voltage and high specific capacity dual intercalating electrode Li-ion batteries
NASA Technical Reports Server (NTRS)
Blanco, Mario (Inventor); West, William C. (Inventor)
2010-01-01
The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.
Nuclear magnetic resonance-based model of a TF1/HmU-DNA complex.
Silva, M V; Pasternack, L B; Kearns, D R
1997-12-15
Transcription factor 1 (TF1), a type II DNA-binding protein encoded by the Bacillus subtilis bacteriophage SPO1, has the capacity for sequence-selective DNA binding and a preference for 5-hydroxymethyl-2'-deoxyuridine (HmU)-containing DNA. In NMR studies of the TF1/HmU-DNA complex, intermolecular NOEs indicate that the flexible beta-ribbon and C-terminal alpha-helix are involved in the DNA-binding site of TF1, placing it in the beta-sheet category of DNA-binding proteins proposed to bind by wrapping two beta-ribbon "arms" around the DNA. Intermolecular and intramolecular NOEs were used to generate an energy-minimized model of the protein-DNA complex in which both DNA bending and protein structure changes are evident.
Sari, Fatma Nur; Akdag, Arzu; Dizdar, Evrim Alyamac; Uras, Nurdan; Erdeve, Omer; Erel, Ozcan; Dilmen, Ugur
2012-06-01
To determine total antioxidant capacity and total oxidation status in fresh and freeze stored (at -80°C) breast milk during the stages of lactation. Samples of colostrum, transitional and mature milk were collected from 44 healthy women at 3, 8 and 30 days after birth. The total milk volume collected (6 ml) was divided in two aliquot parts: 3 ml for the fresh analysis which was done immediately after the extraction and 3 ml for storage under freezing conditions at -80°C for two months. The antioxidant status and oxidative stress of the fresh and stored breast milk were assessed via determination of total antioxidant capacity and total oxidation status. Antioxidant capacity of transitional and mature milk decreased (p = 0.0001, p = 0.028, respectively); however, antioxidant capacity of colostrum did not change by storage at -80°C (p > 0.05). Total antioxidant capacity of fresh and stored breast milk significantly decreased during the stages of lactation (p < 0.0001, p = 0.028, respectively). Total oxidation status showed no significant difference in fresh and stored breast milk during the stages of lactation (p > 0.05). Freeze storage of breast milk at -80°C for two months seems not to be the optimal condition to preserve the antioxidant capacity of breast milk.
Cléry, Antoine; Allain, Frédéric H-T
2017-01-01
Abstract RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM–ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process. PMID:28334819
Multimodal charge-induction chromatography for antibody purification.
Tong, Hong-Fei; Lin, Dong-Qiang; Chu, Wen-Ning; Zhang, Qi-Lei; Gao, Dong; Wang, Rong-Zhu; Yao, Shan-Jing
2016-01-15
Hydrophobic charge-induction chromatography (HCIC) has advantages of high capacity, salt-tolerance and convenient pH-controlled elution. However, the binding specificity might be improved with multimodal molecular interactions. New ligand W-ABI that combining tryptophan and 5-amino-benzimidazole was designed with the concept of mutimodal charge-induction chromatography (MCIC). The indole and benzimidazole groups of the ligand could provide orientated mutimodal binding to target IgG under neutral pH, while the imidazole groups could induce the electrostatic repulsion forces for efficient elution under acidic pH. W-ABI ligand was coupled successfully onto agarose gel, and IgG adsorption behaviors were investigated. High affinity to IgG was found with the saturated adsorption capacity of 70.4 mg/ml at pH 7, and the flow rate of mobile phase showed little impact on the dynamic binding capacity. In addition, efficient elution could be achieved at mild acidic pH with high recovery. Two separation cases (IgG separation from albumin containing feedstock and monoclonal antibody purification from cell culture supernatant) were verified with high purity and recovery. In general, MCIC with the specially-designed ligand is an expanding of HCIC with improved adsorption selectivity, which would be a potential alternative to Protein A-based capture for the cost-effective purification of antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.
Stabilization of glucocorticoid receptors in isolated rat hepatocytes by radioprotectants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karle, J.M.; Ridder, W.E.; Wright, N.
1986-05-01
Previous work has shown that glucocorticoid receptors in rat liver homogenate can be stabilized by the addition of MoO/sub 4/ plus the sulfhydryl-containing compounds dithiothreitol and WR 1065. The latter is the dephosphorylated, principal metabolite of the radioprotectant WR 2721 (or S-2-(3-aminopropylamino)ethanesphosphorothioic acid). The current work results from applying this knowledge to intact rat hepatocytes. Cells were isolated by collagenase perfusion and incubated in supplemented minimum essential medium at 37/sup 0/C with various concentrations of WR 2721, WR 1065, or vehicle. Samples of these cell suspensions were analyzed at various times for steroid binding capacity by incubating homogenates (27,000 xmore » g supernates) with 50 nM /sup 3/H-triamcinolone acetonide in the presence or absence of excess unlabelled dexamethasone. Concentrations of 10 mM WR 2721 provided marked preservation of the binding capacity (>85% of the initial value at 5 hours) compared to control at <20% by 2 hours. WR 2721 at 1 mM preserved >60% of the binding capacity. WR 1065 at 10 mM provided no such protection. This is consistent with the observation that WR 1065 does not pass cell membranes. The authors propose that supplying reducing equivalents to intracellular components such as the glucocorticoid receptor may be one mechanism of the radioprotection afforded by WR 2721.« less
High-capacity composite adsorbents for nucleic acids.
Tiainen, Peter; Rokebul Anower, M; Larsson, Per-Olof
2011-08-05
Cytopore™ is a bead-shaped, macroporous and easily compressible cellulose-based anion-exchange material intended for cultivation of anchor-dependent animal cells. Reticulated vitreous carbon (RVC) is a strong, non-compressible, high voidage (97%) matrix material that can be cut to desired geometrical shapes. Cytopore and RVC were combined to cylindrical composites (25 mm × 10 mm) fitted inside chromatography columns. The composite combined the advantageous properties of both its constituents, making it suitable for column chromatography. The composite could withstand very high flow rates without compaction of the bed (>25 column volumes/min; 4000 cm h(-1)). Chromatography runs with tracers showed a low HETP value (0.3mm), suggesting that pore flow was in operation. The dynamic binding capacities (10% breakthrough) per gram of dry weight Cytopore were determined for several compounds including DNA and RNA and were found to be 240-370 mg/g. The composite was used to isolate pUC 18-type plasmids from a cleared alkaline lysate in a good yield. Confocal microscopy studies showed that plasmids were bound not only to the surface of the Cytopore material but also within the matrix walls, thus offering an explanation to the very high binding capacities observed. The concept of using a composite prepared from a mechanically weak, high-binding material and a strong scaffold material may be applied to other systems as well. Copyright © 2011 Elsevier B.V. All rights reserved.
Turner, K J; Fisher, E H; Mayrhofer, G
1981-08-01
The capacity of N. brasiliensis (Nb) infestation to modify synthesis of ovalbumin (OV) specific IgE antibody was monitored in weanling, juvenile and adult female WAG rats by both passive cutaneous anaphylaxis (PCA) activity and by a rat radio-allergosorbent test (RAST). Infestation with Nb larvae 10 days after immunization with OV produced marginal potentiation of anti-OV Ig antibody production by both RAST and PCA in weanlings, marginal suppression by both parameters in juveniles and was without effect in adults. However, immunization with OV after infestation with Nb partially suppressed anti-OV IgE antibody production in weanlings (RAST) and totally abolished the PCA activity. Although this regime did not impair anti-OV IgE antibody synthesis (RAST) in juveniles, the sera were PCA-negative. In contrast, normal responses were found in adult rats. Negative PCA titres in sera containing high levels of specific antibody occurred when serum total IgE levels were elevated, and are explained on the basis of competition for binding sites on mast cells. The ratio of OV-specific IgE to 'total' IgE is a critical factor in detecting PCA activity.
Characterization of large-pore polymeric supports for use in perfusion biochromatography.
Whitney, D; McCoy, M; Gordon, N; Afeyan, N
1998-05-22
Perfusion chromatography is uniquely characterized by the flow of a portion of the column eluent directly through the resin in the packed bed. The benefits of this phenomenon and some of the properties of perfusive resins have been described before, and can be summarized as enhanced mass transport to interior binding sites. Here we extend the understanding of this phenomenon by comparing resins with different pore size distributions. Resins are chosen to give approximately the same specific pore volumes (as shown in the characterization section) but the varying contribution of large pores is used to control the amount of liquid flowing through the beads. POROS R1 has the largest contribution of throughpores, and therefore the greatest intraparticle flow. POROS R2 has a lower contribution of throughpores, and a higher surface area coming from a greater population of diffusive pores, but still shows significant mass transport enhancements relative to a purely diffusive control. Oligo R3 is dominated by a high population of diffusive pores, and is used comparatively as a non-perfusive resin. Although the pore size distribution can be engineered to control mass transport rates, the resulting surface area is not the only means by which binding capacity can be controlled. Surface coatings are employed to increase binding capacity without fundamentally altering the mass transport properties. Models are used to describe the amount of flow transecting the beads, and comparisons of coated resins to uncoated (polystyrene) resins leads to the conclusion that these coatings do not obstruct the throughpore structures. This is an important conclusion since the binding capacity of the coated product, in some cases, is shown to be over 10-fold higher than the precursor polystyrene scaffold (i.e., POROS R1 or POROS R2).
Bugajska-Schrette..., A; Grote, M; Vangelista, L; Valent, P; Sperr, W; Rumpold, H; Pastore, A; Reichelt, R; Valenta, R; Spitzauer, S
2000-01-01
BACKGROUND—Almost 4% of the population suffer from food allergy which is an adverse reaction to food with an underlying immunological mechanism. AIMS—To characterise one of the most frequent IgE defined food allergens, fish parvalbumin. METHODS—Tissue and subcellular distribution of carp parvalbumin was analysed by immunogold electron microscopy and cell fractionation. Parvalbumin was purified to homogeneity, analysed by mass spectrometry and circular dichroism (CD) spectroscopy, and its allergenic activity was analysed by IgE binding and basophil histamine release tests. RESULTS—The isoelectric point (pI) 4.7 form of carp parvalbumin, a three EF-hand calcium-binding protein, was purified to homogeneity. CD analysis revealed a remarkable stability and refolding capacity of calcium-bound parvalbumin. This may explain why parvalbumin, despite cooking and exposure to the gastrointestinal tract, can sensitise patients. Purified parvalbumin reacted with IgE of more than 95% of individuals allergic to fish, induced dose-dependent basophil histamine release and contained, on average, 83% of the IgE epitopes present in other fish species. Calcium depletion reduced the IgE binding capacity of parvalbumin which, according to CD analysis, may be due to conformation-dependent IgE recognition. CONCLUSIONS—Purified carp parvalbumin represents an important cross reactive food allergen. It can be used for in vitro and in vivo diagnosis of fish-induced food allergy. Our finding that the apo-form of parvalbumin had a greatly reduced IgE binding capacity indicates that this form may be a candidate for safe immunotherapy of fish-related food allergy. Keywords: food allergy; parvalbumin; circular dichroism; epitopes; antibodies; immunochemistry PMID:10764710
Kitzmüller, C; Wallner, M; Deifl, S; Mutschlechner, S; Walterskirchen, C; Zlabinger, G J; Ferreira, F; Bohle, B
2012-11-01
BM4 is a novel genetically engineered variant of the major birch pollen allergen Bet v 1 that lacks the typical Bet v 1-like fold and displays negligible IgE-binding but strong T cell-activating capacity. The aim of this study was to elucidate possible differences between BM4 and Bet v 1 in internalization, antigen processing, and presentation. Proliferative responses to BM4 and Bet v 1 of peripheral blood mononuclear cells and Bet v 1-specific T-cell clones were compared. Fluorescently labeled BM4 and Bet v 1 were used to study surface binding, endocytosis, and intracellular degradation by monocyte-derived DC (mdDC). Both proteins were digested by endolysosomal extracts of mdDC. BM4- and Bet v 1-pulsed mdDC were employed to assess the kinetics of activation of Bet v 1-specific T-cell clones and the polarization of naïve T cells. BM4 displayed a significantly stronger T cell-activating capacity than Bet v 1. Furthermore, BM4 showed increased surface binding and internalization as well as faster endolysosomal degradation compared with Bet v 1. BM4-pulsed mdDC induced enhanced proliferative responses at earlier time-points in Bet v 1-specific T-cell clones and promoted less IL-5 production in T cells than Bet v 1-pulsed mdDC. The loss of the Bet v 1-fold changes the protein's interaction with the human immune system at the level of antigen-presenting cells resulting in altered T-cell responses. By combining low IgE-binding with strong and modulating T cell-activating capacity, BM4 represents a highly interesting candidate for specific immunotherapy of birch pollen allergy. © 2012 John Wiley & Sons A/S.
Arias, María Elena; Sánchez-Villalba, Esther; Delgado, Andrea; Felmer, Ricardo
2017-02-01
Sperm-mediated gene transfer (SMGT) is based on the capacity of sperm to bind exogenous DNA and transfer it into the oocyte during fertilization. In bovines, the progress of this technology has been slow due to the poor reproducibility and efficiency of the production of transgenic embryos. The aim of the present study was to evaluate the effects of different sperm transfection systems on the quality and functional parameters of sperm. Additionally, the ability of sperm to bind and incorporate exogenous DNA was assessed. These analyses were carried out by flow cytometry and confocal fluorescence microscopy, and motility parameters were also evaluated by computer-assisted sperm analysis (CASA). Transfection was carried out using complexes of plasmid DNA with Lipofectamine, SuperFect and TurboFect for 0.5, 1, 2 or 4 h. The results showed that all of the transfection treatments promoted sperm binding and incorporation of exogenous DNA, similar to sperm incorporation of DNA alone, without affecting the viability. Nevertheless, the treatments and incubation times significantly affected the motility parameters, although no effect on the integrity of DNA or the levels of reactive oxygen species (ROS) was observed. Additionally, we observed that transfection using SuperFect and TurboFect negatively affected the acrosome integrity, and TurboFect affected the mitochondrial membrane potential of sperm. In conclusion, we demonstrated binding and incorporation of exogenous DNA by sperm after transfection and confirmed the capacity of sperm to spontaneously incorporate exogenous DNA. These findings will allow the establishment of the most appropriate method [intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF)] of generating transgenic embryos via SMGT based on the fertilization capacity of transfected sperm.
Takeuchi, Masahiro; Doi, Tomomitsu; Obayashi, Kunie; Hirai, Ayako; Yoneda, Kazue; Tanaka, Fumihiro; Iwai, Yoshiko
2018-04-01
PD-L1 is one of the important immune checkpoint molecules that can be targeted by cancer immunotherapies. PD-L1 has a soluble form (sPD-L1) and a membrane-bound form (mPD-L1). Conventional enzyme-linked immunosorbent assay (ELISA) systems can detect sPD-L1 using anti-PD-L1 capture antibody through the antigen-antibody reaction, but cannot evaluate the quality and function of sPD-L1. In this study, we developed a novel ELISA system for the detection and quantification of sPD-L1 with PD-1-binding capacity (bsPD-L1). To capture bsPD-L1 through the ligand-receptor reaction, the anti-PD-L1 capture antibody in the conventional ELISA was replaced with PD-1-Ig fusion protein in the new ELISA. The new ELISA could detect bsPD-L1 in 29 out of 75 plasma samples from patients with non-small cell lung cancer (NSCLC), with higher sensitivity and frequency than the conventional ELISA. The western blot analysis showed that sPD-L1 in the plasma was glycosylated. Treatment of the samples with glycosidase reduced the absorbance determined by the new ELISA but had no effect on the absorbance determined by the conventional ELISA. These results suggest that glycosylation of sPD-L1 is important for its binding to the immobilized PD-1 in the new ELISA. Our new ELISA system may be useful for the evaluation of functional sPD-L1 with PD-1-binding capacity in cancer patients. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Clinical biochemistry, haematology and body weight in piglets.
Egeli, A K; Framstad, T; Morberg, H
1998-01-01
Reference ranges for clinical biochemical parameters commonly investigated in pigs were determined in one- (day 1), 21- and 35-day old piglets. The mean and standard deviation were also estimated for body weight, and haematological and clinical biochemical parameters at these ages. The piglets were divided into 2 investigation groups according to whether they had a haemoglobin concentration < or = 80 g/l ("anaemic group") or > 80 g/l ("normal group") on days 14, 21 and 28. The "anaemic group" was compared to the "normal group" on days 21 and 35. Many of the clinical biochemical parameters varied according to age. Some of the enzymes had high average values and wide reference ranges in piglets, especially on day 1, compared to the reference ranges for sows given in the literature. The reference ranges for some of the metabolic parameters were broader on day 1 than later in the preweaning period. The reference ranges for albumin, total iron-binding capacity and serum iron were, however, lower and more narrow on day 1. On days 21 and 35, relatively high values for phosphorus must be considered "normal" compared to the figures given in the literature for adult pigs. The other minerals seemed to be quite unaffected of age, but some were affected by anaemia. The anaemic piglets had lower average serum iron but higher total iron-binding capacity than the "normal" piglets on days 21 and 35. However, variation between piglets gave wide reference ranges, indicating that these parameters will only have limited usefulness in detecting iron deficiency anaemia in piglets. The electrolytes seemed also to be affected by the existence of anaemia. The body weight and leukocyte counts were significantly lower in the "anaemic group" than the "normal group" on day 35, while the greatest differences in clinical biochemical parameters between the groups were found on day 21, when the piglets in the "anaemic group" were most severely anaemic. Although these piglets suffered from severe iron-deficiency anaemia, only a few clinical biochemical parameters were affected, and the differences between groups were mostly small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connelly, P.R.; Gill, S.J.; Miller, K.I.
1989-02-21
Employment of high-precision thin-layer methods has enabled detailed functional characterization of oxygen and carbon monoxide binding for (1) the fully assembled form with 70 binding sites and (2) the isolated chains with 7 binding sites of octopus dofleini hemocyanin. The striking difference in the cooperativities of the two ligands for the assembled decamer is revealed through an examination of the binding capacities and the partition coefficient, determined as functions of the activities of both ligands. A global analysis of the data sets supported by a two-state allosteric model assuming an allosteric unit of 7. Higher level allosteric interactions were notmore » indicated. This contrasts to results obtained for arthropod hemocyanins. Oxygen and carbon monoxide experiments performed on the isolated subunit chain confirmed the presence of functional heterogeneity reported previously. The analysis shows two types of binding sites in the ratio of 4:3.« less
Clinical relevance of drug binding to plasma proteins
NASA Astrophysics Data System (ADS)
Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana
2014-12-01
Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.
Markers of iron metabolism in retired racing Greyhounds with and without osteosarcoma
Caro, J. T.; Marín, L. M.; Iazbik, M. C.; Zaldivar-López, S.; Borghese, H.; Couto, C. G.
2014-01-01
Background Greyhounds have well-described clinicopathologic idiosyncrasies, including a high prevalence of osteosarcoma (OSA). Hematocrit, HGB, and HGB oxygen affinity are higher than in other dogs, while haptoglobin concentration is lower, so we hypothesized that Greyhounds have a different iron metabolism. To our knowledge, there are no reports on serum iron profiles in Greyhounds. Objectives To elucidate iron metabolism in Greyhounds, we wanted to compare serum iron concentration, total iron-binding capacity (TIBC), and percent transferrin saturation (%SAT) in healthy retired racing Greyhounds (RRGs) with OSA (RRGs – OSA), and also with non-Greyhounds (NGs), without and with OSA (NGs – OSA). Methods Serum iron concentration and unsaturated iron-binding capacity (UIBC) were measured by standard methods, and TIBC and %SAT were calculated in RRGs (n = 25), RRGs – OSA (n = 28), NGs (n = 30), and NGs – OSA (n = 32). Results TIBC was lower in RRGs than in NGs (P < .0001), and in RRGs – OSA than in NGs – OSA (P < .0001). NGs – OSA had lower TIBC than healthy NGs (P = .003). Percent SAT was higher in RRGs than in NGs (P < .0001) and in RRGs – OSA (P = .008), and %SAT was also lower in NGs than in NGs – OSA (P = .004). Percent SAT was also higher in RRGs – OSA than in NGs – OSA (P = .001). Both RRGs – OSA (P = .02) and NGs – OSA (P < .0001) had lower serum iron concentrations than their healthy counterparts. Conclusion Lower TIBC and higher %SAT may constitute another Greyhound idiosyncrasy compared with other dogs. In this study, all dogs with OSA had higher serum iron concentrations and %SAT than healthy dogs. PMID:24033801
Guimarães, Vanessa; Rodríguez-Castellón, Enrique; Algarra, Manuel; Rocha, Fernando; Bobos, Iuliu
2016-11-05
The UO2(2+) adsorption on smectite (samples BA1, PS2 and PS3) with a heterogeneous structure was investigated at pH 4 (I=0.02M) and pH 6 (I=0.2M) in batch experiments, with the aim to evaluate the influence of pH, layer charge location and crystal thickness distribution. Mean crystal thickness distribution of smectite crystallite used in sorption experiments range from 4.8nm (sample PS2), to 5.1nm (sample PS3) and, to 7.4nm (sample BA1). Smaller crystallites have higher total surface area and sorption capacity. Octahedral charge location favor higher sorption capacity. The sorption isotherms of Freundlich, Langmuir and SIPS were used to model the sorption experiments. The surface complexation and cation exchange reactions were modeled using PHREEQC-code to describe the UO2(2+) sorption on smectite. The amount of UO2(2+) adsorbed on smectite samples decreased significantly at pH 6 and higher ionic strength, where the sorption mechanism was restricted to the edge sites of smectite. Two binding energy components at 380.8±0.3 and 382.2±0.3eV, assigned to hydrated UO2(2+) adsorbed by cation exchange and by inner-sphere complexation on the external sites at pH 4, were identified after the U4f7/2 peak deconvolution by X-photoelectron spectroscopy. Also, two new binding energy components at 380.3±0.3 and 381.8±0.3eV assigned to AlOUO2(+) and SiOUO2(+) surface species were observed at pH 6. Copyright © 2016 Elsevier B.V. All rights reserved.
Kilburn, K H
2000-01-01
In this study, the author addressed the following question: Do workers with advanced asbestosis have a restrictive pulmonary physiology, and, alternately, do those who have restrictive physiological tests have advanced asbestosis? One group was identified by obvious radiographic measurements, and the other group was defined via physiologic measurements. Total lung capacity, vital capacity, and flows were measured in 12,856 men exposed to asbestos, of whom 3,445 had radiographic signs of asbestosis, as defined by the International Labour Office criteria. Radiographically advanced asbestosis-International Labour Office criteria profusion greater than 2/2 was present in 85 (2.5%) of men. An additional 52 men had physiologically restrictive disease. The author, who compared pulmonary flows and volumes of these two groups, used mean percentage predicted, adjusted for height, age, and duration of cigarette smoking. Men with radiographically advanced asbestosis had normal total lung capacity (i.e., 105.5% predicted), reduced forced vital capacities (i.e., 82.7% predicted), air trapping (i.e., residual volume/total lung capacity increased to 54.4%), and reduced flows (i.e., forced expiratory flow [FEF25-75] = 60.6% predicted, forced expiratory volume in 1 s = 78.0% predicted, and forced expiratory volume in 1 s/forced vital capacity = 65.5%). In contrast, men selected from the same exposed population for restrictive disease (i.e., reduced total lung capacity [72.6% predicted] and forced vital capacity [61.5% predicted]) also had airflow obstruction (i.e., forced expiratory volume in 1 s/forced vital capacity of 74.5% predicted) and air trapping (i.e., residual volume/total lung capacity of 46.7%). Only half of these men had asbestosis--and it was of minimal severity. In summary, advanced asbestosis was characterized by airway obstruction and air trapping, both of which reduced vital capacity but not total lung capacity; therefore, it was not a restrictive disease. In contrast, restrictive disease was rare and was associated with minimal asbestosis.
What is working memory capacity, and how can we measure it?
Wilhelm, Oliver; Hildebrandt, Andrea; Oberauer, Klaus
2013-01-01
A latent variable study examined whether different classes of working-memory tasks measure the same general construct of working-memory capacity (WMC). Data from 270 subjects were used to examine the relationship between Binding, Updating, Recall-N-back, and Complex Span tasks, and the relations of WMC with secondary memory measures, indicators of cognitive control from two response-conflict paradigms (Simon task and Eriksen flanker task), and fluid intelligence. Confirmatory factor analyses support the concept of a general WMC factor. Results from structural-equation modeling show negligible relations of WMC with response-conflict resolution, and very strong relations of WMC with secondary memory and fluid intelligence. The findings support the hypothesis that individual differences in WMC reflect the ability to build, maintain and update arbitrary bindings. PMID:23898309
Enhancement of anion-exchange chromatography of DNA using compaction agents
NASA Technical Reports Server (NTRS)
Murphy, Jason C.; Fox, George E.; Willson, Richard C.
2003-01-01
The use of adsorptive chromatography for preparative nucleic acid separations is often limited by low capacity. The possibility that the adsorbent surface area sterically accessible to nucleic acid molecules could be increased by reducing their radius of gyration with compaction agents has been investigated. The equilibrium adsorption capacity of Q Sepharose anion-exchange matrix for plasmid DNA at 600 mM NaCl was enhanced by up to ca. 40% in the presence of 2.5 mM spermine. In addition, compaction agent selectivity has been demonstrated. Spermine, for example, enhances the adsorption of both plasmid and genomic DNA, spermidine enhances binding only of plasmid, and hexamine cobalt enhances only the binding of genomic DNA. Compaction may be generally useful for enhancing adsorptive separations of nucleic acids.
NASA Astrophysics Data System (ADS)
Söylemez, Meshude Akbulut; Barsbay, Murat; Güven, Olgun
2018-01-01
Radiation-induced RAFT polymerization technique was applied to synthesize well-defined molecularly imprinted polymers (MIPs) of erythromycin (ERY). Methacrylic acid (MAA) was grafted onto porous polyethylene (PE)/polypropylene (PP) nonwoven fabrics, under γ-irradiation by employing 2-pheny-2-propyl benzodithioate as the RAFT agent and ethylene glycol dimethacrylate (EGDMA) as the crosslinker. MAA/erythromycin ratios of 2/1, 4/1, 6/1 were tested to optimize the synthesis of MIPs. The highest binding capacity was encountered at a MAA/ERY ratio of 4/1. Non-imprinted polymers (NIPs) were also synthesized in the absence of ERY. The MIPs synthesized by RAFT method presented a better binding capacity compared to those prepared by conventional method where no RAFT agent was employed.
NASA Astrophysics Data System (ADS)
Chen, Yajing; Xiong, Zhichao; Zhang, Lingyi; Zhao, Jiaying; Zhang, Quanqing; Peng, Li; Zhang, Weibing; Ye, Mingliang; Zou, Hanfa
2015-02-01
Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g-1), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples.Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g-1), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05955g
Structural and thermodynamic basis of a frontometaphyseal dysplasia mutation in filamin A
Ithychanda, Sujay S.; Dou, Kevin; Robertson, Stephen P.; Qin, Jun
2017-01-01
Filamin-mediated linkages between transmembrane receptors (TR) and the actin cytoskeleton are crucial for regulating many cytoskeleton-dependent cellular processes such as cell shape change and migration. A major TR binding site in the immunoglobulin repeat 21 (Ig21) of filamin is masked by the adjacent repeat Ig20, resulting in autoinhibition. The TR binding to this site triggers the relief of Ig20 and protein kinase A (PKA)-mediated phosphorylation of Ser-2152, thereby dynamically regulating the TR-actin linkages. A P2204L mutation in Ig20 reportedly cause frontometaphyseal dysplasia, a skeletal disorder with unknown pathogenesis. We show here that the P2204L mutation impairs a hydrophobic core of Ig20, generating a conformationally fluctuating molten globule-like state. Consequently, unlike in WT filamin, where PKA-mediated Ser-2152 phosphorylation is ligand-dependent, the P2204L mutant is readily accessible to PKA, promoting ligand-independent phosphorylation on Ser-2152. Strong TR peptide ligands from platelet GP1bα and G-protein-coupled receptor MAS effectively bound Ig21 by displacing Ig20 from autoinhibited WT filamin, but surprisingly, the capacity of these ligands to bind the P2204L mutant was much reduced despite the mutation-induced destabilization of the Ig20 structure that supposedly weakens the autoinhibition. Thermodynamic analysis indicated that compared with WT filamin, the conformationally fluctuating state of the Ig20 mutant makes Ig21 enthalpically favorable to bind ligand but with substantial entropic penalty, resulting in total higher free energy and reduced ligand affinity. Overall, our results reveal an unusual structural and thermodynamic basis for the P2204L-induced dysfunction of filamin and frontometaphyseal dysplasia disease. PMID:28348077
Phospholipid epitopes for mouse antibodies against bromelain-treated mouse erythrocytes.
Kawaguchi, S
1987-01-01
The reactivity of mouse antibodies against bromelain-treated mouse erythrocytes (BrMRBC) with phospholipid epitopes was assessed by ELISA, using four clones of monoclonal anti-BrMRBC antibodies that had idiotypes distinct from one another. The four antibodies could bind to low-density lipoproteins (LDL) from human and chicken, but not to LDL from mouse and rat. As to liposomes of natural phospholipids, all the clones reacted with liposomes of phosphatidylcholine, and some of them could react with liposomes of sphingomyelin, phosphatidylglycerol, phosphatidylic acid or cardiolipin. For liposomes of synthetic phosphatidylcholine with different fatty acids, the length of carbon chains and the number of unsaturated carbon chains of the fatty acids markedly affected the binding of each monoclonal antibody to the liposomes. The addition of dicetyl phosphate or stearylamine to phosphatidylcholine liposomes changed the reactivity of the liposomes. These results support the view that mouse anti-BrMRBC antibodies can recognize appropriately spaced phosphorylcholine residues on the surface of phospholipid liposomes, LDL and cells. The four clones had similar capacities for binding to LDL as well as to BrMRBC, but they had obviously different capacities for binding to phospholipid liposomes; the epitopes on phospholipid liposomes used in the present study were not so perfect as to react well with every anti-BrMRBC antibody. PMID:2443446
Enhanced binding by dextran-grafting to Protein A affinity chromatographic media.
Zhao, Lan; Zhu, Kai; Huang, Yongdong; Li, Qiang; Li, Xiunan; Zhang, Rongyue; Su, Zhiguo; Wang, Qibao; Ma, Guanghui
2017-04-01
Dextran-grafted Protein A affinity chromatographic medium was prepared by grafting dextran to agarose-based matrix, followed by epoxy-activation and Protein A coupling site-directed to sulfhydryl groups of cysteine molecules. An enhancement of both the binding performance and the stability was achieved for this dextran-grafted Protein A chromatographic medium. Its dynamic binding capacity was 61 mg immunoglobulin G/mL suction-dried gel, increased by 24% compared with that of the non-grafted medium. The binding capacity of dextran-grafted medium decreased about 7% after 40 cleaning-in-place cycles, much lower than that of the non-grafted medium as decreased about 15%. Confocal laser scanning microscopy results showed that immunoglobulin G was bound to both the outside and the inside of dextran-grafted medium faster than that of non-grafted one. Atomic force microscopy showed that this dextran-grafted Protein A medium had much rougher surface with a vertical coordinate range of ±80 nm, while that of non-grafted one was ±10 nm. Grafted dextran provided a more stereo surface morphology and immunoglobulin G molecules were more easily to be bound. This high-performance dextran-grafted Protein A affinity chromatographic medium has promising applications in large-scale antibody purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Torma, Ferenc; Bori, Zoltan; Koltai, Erika; Felszeghy, Klara; Vacz, Gabriella; Koch, Lauren; Britton, Steven; Boldogh, Istvan; Radak, Zsolt
2014-08-01
Exercise capacity and dietary restriction (DR) are linked to improved quality of life, including enhanced brain function and neuro-protection. Brain derived neurotrophic factor (BDNF) is one of the key proteins involved in the beneficial effects of exercise on brain. Low capacity runner (LCR) and high capacity runner (HCR) rats were subjected to DR in order to investigate the regulation of BDNF. HCR-DR rats out-performed other groups in a passive avoidance test. BDNF content increased significantly in the hippocampus of HCR-DR groups compared to control groups (p<0.05). The acetylation of H3 increased significantly only in the LCR-DR group. However, chip-assay revealed that the specific binding between acetylated histone H3 and BNDF promoter was increased in both LCR-DR and HCR-DR groups. In spite of these increases in binding, at the transcriptional level only, the LCR-DR group showed an increase in BDNF mRNA content. Additionally, DR also induced the activity of cAMP response element-binding protein (CREB), while the content of SIRT1 was not altered. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) was elevated in HCR-DR groups. But, based on the levels of nuclear respiratory factor-1 and cytocrome c oxidase, it appears that DR did not cause mitochondrial biogenesis. The data suggest that DR-mediated induction of BDNF levels includes chromatin remodeling. Moreover, DR does not induce mitochondrial biogenesis in the hippocampus of LCR/HCR rats. DR results in different responses to a passive avoidance test, and BDNF regulation in LCR and HCR rats. Copyright © 2014 Elsevier Inc. All rights reserved.
Zubair, Usman; Amici, Julia; Francia, Carlotta; McNulty, David; Bodoardo, Silvia; O'Dwyer, Colm
2018-06-11
In Li-S batteries, it is important to ensure efficient reversible conversion of sulfur to lithium polysulfide (LiPS). Shuttling effects caused by LiPS dissolution can lead to reduced performance and cycle life. Although carbon materials rely on physical trapping of polysulfides, polar oxide surfaces can chemically bind LiPS to improve the stability of sulfur cathodes. We show a simple synthetic method that allows high sulfur loading into mesoporous carbon preloaded with spatially localized nanoparticles of several Magnéli-phase titanium oxide (Ti n O 2n-1 ). This material simultaneously suppresses polysulfide shuttling phenomena by chemically binding Li polysulfides onto several Magnéli-phase surfaces in a single cathode and ensures physical confinement of sulfur and LiPS. The synergy between chemical immobilization of significant quantities of LiPS at the surface of several Ti n O 2n-1 phases and physical entrapment results in coulombically efficient high-rate cathodes with long cycle life and high capacity. These cathodes function efficiently at low electrolyte-to-sulfur ratios to provide high gravimetric and volumetric capacities in comparison with their highly porous carbon counterparts. Assembled coin cells have an initial discharge capacity of 1100 mAh g -1 at 0.1C and maintain a reversible capacity of 520 mAh g -1 at 0.2C for more than 500 cycles. Even at 1C, the cell loses only 0.06 % per cycle for 1000 cycles with a coulombic efficiency close to 99 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Total brain death: a reply to Alan Shewmon.
Lee, Patrick; GriseZ, Germain
2012-06-01
D. Alan Shewmon has advanced a well-documented challenge to the widely accepted total brain death criterion for death of the human being. We show that Shewmon’s argument against this criterion is unsound, though he does refute the standard argument for that criterion. We advance a distinct argument for the total brain death criterion and answer likely objections. Since human beings are rational animals--sentient organisms of a specific type--the loss of the radical capacity for sentience (the capacity to sense or to develop the capacity to sense) involves a substantial change, the passing away of the human organism. In human beings total brain death involves the complete loss of the radical capacity for sentience, and so in human beings total brain death is death.
An accurate and rapid radiographic method of determining total lung capacity
Reger, R. B.; Young, A.; Morgan, W. K. C.
1972-01-01
The accuracy and reliability of Barnhard's radiographic method of determining total lung capacity have been confirmed by several groups of investigators. Despite its simplicity and general reliability, it has several shortcomings, especially when used in large-scale epidemiological surveys. Of these, the most serious is related to film technique; thus, when the cardiac and diaphragmatic shadows are poorly defined, the appropriate measurements cannot be made accurately. A further drawback involves the time needed to measure the segments and to perform the necessary calculations. We therefore set out to develop an abbreviated and simpler radiographic method for determining total lung capacity. This uses a step-wise multiple regression model which allows total lung capacity to be derived as follows: posteroanterior and lateral films are divided into the standard sections as described in the text, the width, depth, and height of sections 1 and 4 are measured in centimetres, finally the necessary derivations and substitutions are made and applied to the formula Ŷ = −1·41148 + (0·00479 X1) + (0·00097 X4), where Ŷ is the total lung capacity. In our hands this method has provided a simple, rapid, and acceptable method of determining total lung capacity. PMID:5034594
Wong, Chi-Wai; Lam, Kevin K W; Lee, Cheuk-Lun; Yeung, William S B; Zhao, Wei E; Ho, Pak-Chung; Ou, Jian-Ping; Chiu, Philip C N
2017-04-01
Are multimeric sperm plasma membrane protein complexes, ERp57 and sperm surface thiol content involved in human spermatozoa-zona pellucida (ZP) interaction? ERp57 is a component of a multimeric spermatozoa-ZP receptor complex involved in regulation of human spermatozoa-ZP binding via up-regulation of sperm surface thiol content. A spermatozoon acquires its fertilization capacity within the female reproductive tract by capacitation. Spermatozoa-ZP receptor is suggested to be a composite structure that is assembled into a functional complex during capacitation. Sperm surface thiol content is elevated during capacitation. ERp57 is a protein disulphide isomerase that modulates the thiol-disulphide status of proteins. The binding ability and components of protein complexes in extracted membrane protein fractions of spermatozoa were studied. The roles of capacitation, thiol-disulphide reagent treatments and ERp57 on sperm functions and sperm surface thiol content were assessed. Spermatozoa were obtained from semen samples from normozoospermic men. Human oocytes were obtained from an assisted reproduction programme. Blue native polyacrylamide gel electrophoresis, western ligand blotting and mass spectrometry were used to identify the components of solubilized ZP/ZP3-binding complexes. The localization and expression of sperm surface thiol and ERp57 were studied by immunostaining and sperm surface protein biotinylation followed by western blotting. Sperm functions were assessed by standard assays. Several ZP-binding complexes were isolated from the cell membrane of capacitated spermatozoa. ERp57 was a component of one of these complexes. Capacitation significantly increased the sperm surface thiol content, acrosomal thiol distribution and ERp57 expression on sperm surface. Sperm surface thiol and ERp57 immunoreactivity were localized to the acrosomal region of spermatozoa, a region responsible for ZP-binding. Up-regulation of the surface thiol content or ERp57 surface expression in vitro stimulated ZP-binding capacity of human spermatozoa. Blocking of ERp57 function by specific antibody or inhibitors against ERp57 reduced the surface thiol content and ZP-binding capacity of human spermatozoa. N/A. The mechanisms by which up-regulation of surface thiol content stimulates spermatozoa-ZP binding have not been depicted. Thiol-disulphide exchange is a crucial event in capacitation. ERp57 modulates the event and the subsequent fertilization process. Modulation of the surface thiol content of the spermatozoa of subfertile men may help to increase fertilization rate in assisted reproduction. This work was supported by The Hong Kong Research Grant Council Grant HKU764611 and HKU764512M to P.C.N.C. The authors have no competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Kim, Hong-Gi; Bae, Jong-Hyang; Jastrzebski, Zenon; Cherkas, Andriy; Heo, Buk-Gu; Gorinstein, Shela; Ku, Yang-Gyu
2016-06-01
The scope of this research was to determine the bioactive composition, antioxidant, binding, and anti-proliferative properties of red sweet paprika growing under artificial light. The amounts of carotenoids, chlorophyll, polyphenols, tannins, and flavonoids in red paprika (RP), cultivated in Korea, before and after light treatments under high pressure sodium (HPS) and lighting emitting plasma (LEP) lamps (RPControl, RPHPS, RPLEP), were analyzed in water (W) and ethanolic extracts (Et). Spectroscopic, radical scavenging assays, fluorescence and cytotoxicity measurements were applied. The results of this study showed that total chlorophyll and carotenes were the highest in RPHPS (10.50 ± 1.02 and 33.90 ± 3.26 μg/g dry weight (DW)). The strongest antioxidant capacity (μM TE/g DW) in a 2, 2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt (ABTS(•+)) assay was in RPControlEt (24.34 ± 2.36), in a ferric-reducing/antioxidant power (FRAP) assay in RPHPSW (27.08 ± 2.4) and in a cupric reducing antioxidant (CUPRAC) in RPLEPW (70.99 ± 7.11). The paprika ethanolic extracts showed lower values in their bioactivity than the water ones. The binding and cytotoxicity abilities of extracted polyphenols correlated with their amounts. LEP treatment is better for plant growth characteristics than other conventional treatments. The investigated paprika samples can be used as a source of antioxidants.
ERIC Educational Resources Information Center
Coffey, David M.; And Others
1994-01-01
Includes "Risking the Future" (Coffey); "Breaking Tradition" (Paynton); "Sustainable Farm Plan Activity" (Vahoviak et al.); "Curriculum Integration and Ornamental Horticulture" (Clark); "Ties That Bind" (Barden et al.); "Building Capacity for an Innovative Elementary Agriscience…
Bonaterra, Gabriel A.; Driscoll, David; Schwarzbach, Hans; Kinscherf, Ralf
2017-01-01
Background: Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO)-in-water emulsion in human macrophages in vitro. Materials and Methods: Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4) in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. Results: KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL) and 75% (at 25 µg/mL), whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL) also inhibited (30%, 40%, or 75%, respectively) the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. Conclusion: KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity. PMID:28294970
Lovrić, Vanja; Putnik, Predrag; Kovačević, Danijela Bursać; Jukić, Marijana; Dragović-Uzelac, Verica
2017-06-01
This research was undertaken to investigate the influence of extraction parameters during microwave-assisted extraction on total phenolic content, total flavonoids, total hydroxycinnamic acids and total flavonols of blackthorn flowers as well as to evaluate the antioxidant capacity by two different methods (2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power assays). The investigated extraction parameters were: solvent type and volume fraction of alcohol in solvent (50 and 70% aqueous solutions of ethanol and methanol), extraction time (5, 15 and 25 min) and extraction temperature (40, 50 and 60 °C) controlled by microwave power of 100, 200 and 300 W. Multivariate analysis of variance (MANOVA) was used to evaluate the differences at a 95% confidence level (p≤0.05). The obtained results show that aqueous solution of ethanol was more appropriate solvent for extraction of phenolic compounds (total flavonoids, total hydroxycinnamic acids and total flavonols) than aqueous solution of methanol. The amount of phenolic compounds was higher in 70% aqueous solution of ethanol or methanol, while higher antioxidant capacity was observed in 50% aqueous solution of methanol. Higher temperature of extraction improved the amount of phenolic compounds and also antioxidant capacity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity assay. Extensive duration of extraction (15- to 25-minute interval) has a significant effect only on the increase of total phenolic content, while specific phenolic compound content and antioxidant capacity were the highest when microwave extraction time of 5 min was applied.
Multiple sup 3 H-oxytocin binding sites in rat myometrial plasma membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crankshaw, D.; Gaspar, V.; Pliska, V.
1990-01-01
The affinity spectrum method has been used to analyse binding isotherms for {sup 3}H-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6-1.5 x 10(-9), 0.4-1.0 x 10(-7) and 7 x 10(-6) mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTP gamma S (guanosine-5'-O-3-thiotriphosphate) in the incubation medium. The bindingmore » parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.« less
Bead mediated separation of microparticles in droplets.
Wang, Sida; Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A
2017-01-01
Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead's solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield.
Bead mediated separation of microparticles in droplets
Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.
2017-01-01
Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412
Total Brain Death and the Integration of the Body Required of a Human Being
Lee, Patrick
2016-01-01
I develop and refine an argument for the total brain death criterion of death previously advanced by Germain Grisez and me: A human being is essentially a rational animal, and so must have a radical capacity for rational operations. For rational animals, conscious sensation is a pre-requisite for rational operation. But total brain death results in the loss of the radical capacity for conscious sensation, and so also for rational operations. Hence, total brain death constitutes a substantial change—the ceasing to be of the human being. Objections are considered, including the objection that total brain death need not result in the loss of capacity for sensation, and that damage to the brain less than total brain death can result in loss of capacity for rational operations. PMID:27097647
Manno, Carlo; Sztretye, Monika; Figueroa, Lourdes; Allen, Paul D; Ríos, Eduardo
2013-01-15
The buffering power, B, of the sarcoplasmic reticulum (SR), ratio of the changes in total and free [Ca(2+)], was determined in fast-twitch mouse muscle cells subjected to depleting membrane depolarization. Changes in total SR [Ca(2+)] were measured integrating Ca(2+) release flux, determined with a cytosolic [Ca(2+)] monitor. Free [Ca(2+)](SR) was measured using the cameleon D4cpv-Casq1. In 34 wild-type (WT) cells average B during the depolarization (ON phase) was 157 (SEM 26), implying that of 157 ions released, 156 were bound inside the SR. B was significantly greater when BAPTA, which increases release flux, was present in the cytosol. B was greater early in the pulse - when flux was greatest - than at its end, and greater in the ON than in the OFF. In 29 Casq1-null cells, B was 40 (3.6). The difference suggests that 75% of the releasable calcium is normally bound to calsequestrin. In the nulls the difference in B between ON and OFF was less than in the WT but still significant. This difference and the associated decay in B during the ON were not artifacts of a slow SR monitor, as they were also found in the WT when [Ca(2+)](SR) was tracked with the fast dye fluo-5N. The calcium buffering power, binding capacity and non-linear binding properties of the SR measured here could be accounted for by calsequestrin at the concentration present in mammalian muscle, provided that its properties were substantially different from those found in solution. Its affinity should be higher, or K(D) lower than the conventionally accepted 1 mm; its cooperativity (n in a Hill fit) should be higher and the stoichiometry of binding should be at the higher end of the values derived in solution. The reduction in B during release might reflect changes in calsequestrin conformation upon calcium loss.
Gudapaty, Seshagirirao; Suzuki, Kazushi; Wang, Xin; Babitzke, Paul; Romeo, Tony
2001-01-01
The global regulator CsrA (carbon storage regulator) of Escherichia coli is a small RNA binding protein that represses various metabolic pathways and processes that are induced in the stationary phase of growth, while it activates certain exponential phase functions. Both repression and activation by CsrA involve posttranscriptional mechanisms, in which CsrA binding to mRNA leads to decreased or increased transcript stability, respectively. CsrA also binds to a small untranslated RNA, CsrB, forming a ribonucleoprotein complex, which antagonizes CsrA activity. We have further examined the regulatory interactions of CsrA and CsrB RNA. The 5′ end of the CsrB transcript was mapped, and a csrB::cam null mutant was constructed. CsrA protein and CsrB RNA levels were estimated throughout the growth curves of wild-type and isogenic csrA, csrB, rpoS, or csrA rpoS mutant strains. CsrA levels exhibited modest or negligible effects of these mutations. The intracellular concentration of CsrA exceeded the total CsrA-binding capacity of intracellular CsrB RNA. In contrast, CsrB levels were drastically decreased (∼10-fold) in the csrA mutants. CsrB transcript stability was unaffected by csrA. The expression of a csrB-lacZ transcriptional fusion containing the region from −242 to +4 bp of the csrB gene was decreased ∼20-fold by a csrA::kanR mutation in vivo but was unaffected by CsrA protein in vitro. These results reveal a significant, though most likely indirect, role for CsrA in regulating csrB transcription. Furthermore, our findings suggest that CsrA mediates an intriguing form of autoregulation, whereby its activity, but not its levels, is modulated through effects on an RNA antagonist, CsrB. PMID:11567002
Schoon, E; Muller, M; Vermeer, C; Schurgers, L; Brummer, R; Stockbrugger, R
2001-01-01
BACKGROUND—A high prevalence of osteoporosis is reported in Crohn's disease. The pathogenesis is not completely understood but is probably multifactorial. Longstanding Crohn's disease is associated with a deficiency of fat soluble vitamins, among them vitamin K. Vitamin K is a cofactor in the carboxylation of osteocalcin, a protein essential for calcium binding to bone. A high level of circulating uncarboxylated osteocalcin is a sensitive marker of vitamin K deficiency. AIMS—To determine serum and bone vitamin K status in patients with Crohn's disease and to elucidate its relationship with bone mineral density. METHODS—Bone mineral density was measured in 32 patients with longstanding Crohn's disease and small bowel involvement, currently in remission, and receiving less than 5 mg of prednisolone daily. Serum levels of vitamins D and K, triglycerides, and total immunoreactive osteocalcin, as well as uncarboxylated osteocalcin ("free" osteocalcin) were determined. The hydroxyapatite binding capacity of osteocalcin was calculated. Data were compared with an age and sex matched control population. RESULTS—Serum vitamin K levels of CD patients were significantly decreased compared with normal controls (p<0.01). "Free" osteocalcin was higher and hydroxyapatite binding capacity of circulating osteocalcin was lower than in matched controls (p<0.05 and p<0.001, respectively), indicating a low bone vitamin K status in Crohn's disease. In patients, an inverse correlation was found between "free" osteocalcin and lumbar spine bone mineral density (r=−0.375, p<0.05) and between "free" osteocalcin and the z score of the lumbar spine (r=−0.381, p<0.05). Multiple linear regression analysis showed that "free" osteocalcin was an independent risk factor for low bone mineral density of the lumbar spine whereas serum vitamin D was not. CONCLUSIONS—The finding that a poor vitamin K status is associated with low bone mineral density in longstanding Crohn's disease may have implications for the prevention and treatment of osteoporosis in this disorder. Keywords: Crohn's disease; bone mineral density; vitamin K; osteocalcin PMID:11247890
Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei
2017-09-01
Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.
Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian
2016-10-02
To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake-probably by promoting a feeling of satiety in rats to decrease their feeding behavior.
Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Zhou, Yuanfei; Peng, Jian
2016-01-01
To understand whether soluble fiber (SF) with high water-binding capacity (WBC), swelling capacity (SC) and fermentability reduces food intake and whether it does so by promoting satiety or satiation or both, we investigated the effects of different SFs with these properties on the food intake in rats. Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch (PWMS) plus guar gum (PG), and PWMS starch plus xanthan gum (PX) for three weeks, with the measured values of SF, WBC, and SC in the four diets following the order of PG > KF > PX > control. Food intake, body weight, meal pattern, behavioral satiety sequence, and short-chain fatty acids (SCFAs) in cecal content were evaluated. KF and PG groups reduced the food intake, mainly due to the decreased feeding behavior and increased satiety, as indicated by decreased meal numbers and increased inter-meal intervals. Additionally, KF and PG groups increased concentrations of acetate acid, propionate acid, and SCFAs in the cecal contents. Our results indicate that SF with high WBC, SC, and fermentability reduces food intake—probably by promoting a feeling of satiety in rats to decrease their feeding behavior. PMID:27706095
Diagnosis and management of transfusion iron overload: The role of imaging
Wood, John C.
2010-01-01
The characterization of iron stores is important to prevent and treat iron overload. Serum markers such as ferritin, serum iron, iron binding capacity, transferrin saturation, and nontransferrin-bound iron can be used to follow trends in iron status; however, variability in these markers limits predictive power for any given individual. Liver iron represents the best single marker of total iron balance. Measures of liver iron include biopsy, superconducting quantum interference device, computer tomography, and magnetic resonance imaging (MRI). MRI is the most accurate and widely available noninvasive tool to assess liver iron. The main advantages of MRI include a low-rate of variability between measurements and the ability to assess iron loading in endocrine tissues, the heart and the liver. This manuscript describes the principles, validation, and clinical utility of MRI for tissue iron estimation. PMID:17963249
Swertiajaponin as an anti-browning and antioxidant flavonoid.
Moon, Kyoung Mi; Lee, Bonggi; Cho, Won-Kyung; Lee, Bong-Seon; Kim, Choon Young; Ma, Jin Yeul
2018-06-30
Enzymatic browning is a major issue that needs to be solved in the food industry. Although swertiajaponin is a flavonoid rich in the whole herb of Swertia japonica that has been clinically used, its biological functions and application in the foods have not been fully elucidated. Here, we showed that swertiajaponin efficiently blocked enzymatic browning in potatoes possibly by direct binding to and inactivating polyphenol oxidase. Furthermore, swertiajaponin showed potent antioxidant activity proven by markedly suppressed reactive oxygen species. Swertiajaponin significantly increased antioxidant properties of potato extract when it is added since it additively elevated total flavonoid content. Considering numerous beneficial effects of antioxidants, swertiajaponin may be used as a functional food additive to suppress enzymatic browning and elevate the antioxidant capacity of foods including beverages and soups by fortification of flavonoids. Copyright © 2018 Elsevier Ltd. All rights reserved.
Metal-functionalized silicene for efficient hydrogen storage.
Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev
2013-10-21
First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Jayraj N.; Garcia-Gutierrez, Erika Y.; Moran, Colton M.
Functionalization of copper carboxylate groups on a series of UiO-66 metal organic framework (MOF) analogues and their corresponding impact on humid and dry ammonia adsorption behavior were studied. Relative locations of possible carboxylic acid binding sites for copper on the MOF analogues were varied on ligand and missing linker defect sites. Materials after copper incorporation exhibited increased water vapor and ammonia affinity during isothermal adsorption and breakthrough experiments, respectively. The introduction of copper markedly increased ammonia adsorption capacities for all adsorbents possessing carboxyl binding sites. In particular, the new MOF UiO-66-(COOCu)2 displayed the highest ammonia breakthrough capacities of 6.38 andmore » 6.84 mmol g–1 under dry and humid conditions, respectively, while retaining crystallinity and porosity. Relative carboxylic acid site locations were also found to impact sorbent stability, as missing linker defect functionalized materials degraded under humid conditions after copper incorporation. Postsynthetic metal insertion provides a method for adding sites that are analogous to open metal sites while maintaining good structural stability.« less
Wang, Xuemei; Huang, Pengfei; Ma, Xiaomin; Wang, Huan; Lu, Xiaoquan; Du, Xinzhen
2017-05-01
Novel magnetic mesoporous molecularly imprinted polymers (MMIPs) with core-shell structure were prepared by simple surface molecular imprinting polymerization using tetrabromobisphenol-S (TBBPS) as the template. The MMIPs-TBBPS were characterized by fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N 2 adsorption-desorption transmission, and vibrating sample magnetometry. The resultant MMIPs-TBBPS were successfully applied magnetic solid-phase extraction (MSPE) coupled with HPLC determination of TBBPS in spiked real water samples with recoveries of 77.8-88.9%. The adsorption experiments showed that the binding capacity of MMIPs-TBBPS to TBBPS and six structural analogs were significantly higher than that of the magnetic nonimprinted polymers (MNIPs). Meanwhile, the MMIPs-TBBPS possessed rapid binding affinity, excellent magnetic response, specific selectivity and high adsorption capacity toward TBBPS with a maximum adsorption capacity of 1626.8µgg -1 . The analytical results indicate that the MMIPs-TBBPS are promising materials for selective separation and fast enrichment of TBBPS from complicated enviromental samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.
Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G
1999-01-01
The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.
Metal binding stoichiometry and isotherm choice in biosorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiewer, S.; Wong, M.H.
1999-11-01
Seaweeds that possess a high metal binding capacity may be used as biosorbents for the removal of toxic heavy metals from wastewater. The binding of Cu and Ni by three brown algae (Sargassum, Colpomenia, Petalonia) and one green alga (Ulva) was investigated at pH 4.0 and pH 3.0. The greater binding strength of Cu is reflected in a binding constant that is about 10 times as high as that of Ni. The extent of metal binding followed the order Petalonia {approximately} Sargassum > Colpomenia > Ulva. This was caused by a decreasing number of binding sites and by much lowermore » metal binding constants for Ulva as compared to the brown algae. Three different stoichiometric assumptions are compared for describing the metal binding, which assume either that each metal ion M binds to one binding site B forming a BM complex or that a divalent metal ion M binds to two monovalent sites B forming BM{sub 0.5} or B{sub 2}M complexes, respectively. Stoichiometry plots are proposed as tools to discern the relevant binding stoichiometry. The pH effect in metal binding and the change in proton binding were well predicted for the B{sub 2}M or BM{sub 0.5} stoichiometries with the former being better for Cu and the latter preferable for Ni. Overall, the BM{sub 0.5} model is recommended because it avoids iterations.« less
Klammt, Sebastian; Mitzner, Steffen R; Stange, Jan; Loock, Jan; Heemann, Uwe; Emmrich, Jörg; Reisinger, Emil C; Schmidt, Reinhard
2008-09-01
Extracorporeal albumin dialysis (ECAD) enables the elimination of albumin bound substances and is used as artificial liver support system. Albumin binding function for the benzodiazepine binding site specific marker Dansylsarcosine was estimated in plasma samples of 22 patients with cirrhosis and hyperbilirubinaemia (ECAD: n = 12; control: n = 10) during a period of 30 days in a randomized controlled clinical ECAD trial. Albumin Binding Capacity (ABiC) at baseline was reduced to 31.8% (median; range 24%-74%) and correlated to the severity of liver disease. Within two weeks a significant improvement of ABiC and a reduction of the albumin bound markers bilirubin and bile acids were observed in the ECAD group. During single treatments a significant decrease of albumin bound substances (bilirubin and bile acids) as well as an increase in ABiC was observed. In the control group, baseline ABiC was significantly lower in patients who died during study period (34.2% vs. 41.7%; P < 0.028), whereas no significant differences were observed for CHILD, coagulation factors, albumin, bile acids nor bilirubin. At baseline 13 patients had a severely impaired ABiC (<40%), improvement of ABiC was more frequent in the ECAD group (5/6) than in the SMT group (2/7). Reduced albumin binding function is present in decompensated liver failure and is related to severity and 30 day survival. ABiC can be improved by ECAD. The beneficial effect of this treatment may be related to the improvement of albumin binding function more than to the elimination of specific substances. Characterization of albumin function by the ABiC test may help to evaluate different liver support systems and other therapeutic measures.
Paleskava, Alena; Konevega, Andrey L.; Rodnina, Marina V.
2012-01-01
SelB is a specialized translation factor that binds GTP and GDP and delivers selenocysteyl-tRNA (Sec-tRNASec) to the ribosome. By analogy to elongation factor Tu (EF-Tu), SelB is expected to control the delivery and release of Sec-tRNASec to the ribosome by the structural switch between GTP- and GDP-bound conformations. However, crystal structures of SelB suggested a similar domain arrangement in the apo form and GDP- and GTP-bound forms of the factor, raising the question of how SelB can fulfill its delivery function. Here, we studied the thermodynamics of guanine nucleotide binding to SelB by isothermal titration calorimetry in the temperature range between 10 and 25 °C using GTP, GDP, and two nonhydrolyzable GTP analogs, guanosine 5′-O-(γ-thio)triphosphate (GTPγS) and guanosine 5′-(β,γ-imido)-triphosphate (GDPNP). The binding of SelB to either guanine nucleotide is characterized by a large heat capacity change (−621, −467, −235, and −275 cal × mol−1 × K−1, with GTP, GTPγS, GDPNP, and GDP, respectively), associated with compensatory changes in binding entropy and enthalpy. Changes in heat capacity indicate a large decrease of the solvent-accessible surface area in SelB, amounting to 43 or 32 amino acids buried upon binding of GTP or GTPγS, respectively, and 15–19 amino acids upon binding GDP or GDPNP. The similarity of the GTP and GDP forms in the crystal structures can be attributed to the use of GDPNP, which appears to induce a structure of SelB that is more similar to the GDP than to the GTP-bound form. PMID:22740700
Paleskava, Alena; Konevega, Andrey L; Rodnina, Marina V
2012-08-10
SelB is a specialized translation factor that binds GTP and GDP and delivers selenocysteyl-tRNA (Sec-tRNA(Sec)) to the ribosome. By analogy to elongation factor Tu (EF-Tu), SelB is expected to control the delivery and release of Sec-tRNA(Sec) to the ribosome by the structural switch between GTP- and GDP-bound conformations. However, crystal structures of SelB suggested a similar domain arrangement in the apo form and GDP- and GTP-bound forms of the factor, raising the question of how SelB can fulfill its delivery function. Here, we studied the thermodynamics of guanine nucleotide binding to SelB by isothermal titration calorimetry in the temperature range between 10 and 25 °C using GTP, GDP, and two nonhydrolyzable GTP analogs, guanosine 5'-O-(γ-thio)triphosphate (GTPγS) and guanosine 5'-(β,γ-imido)-triphosphate (GDPNP). The binding of SelB to either guanine nucleotide is characterized by a large heat capacity change (-621, -467, -235, and -275 cal × mol(-1) × K(-1), with GTP, GTPγS, GDPNP, and GDP, respectively), associated with compensatory changes in binding entropy and enthalpy. Changes in heat capacity indicate a large decrease of the solvent-accessible surface area in SelB, amounting to 43 or 32 amino acids buried upon binding of GTP or GTPγS, respectively, and 15-19 amino acids upon binding GDP or GDPNP. The similarity of the GTP and GDP forms in the crystal structures can be attributed to the use of GDPNP, which appears to induce a structure of SelB that is more similar to the GDP than to the GTP-bound form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, W.J.; Offner, H.; Vandenbark, A.A.
1989-01-01
The binding of different gangliosides to rat T-helper lymphocytes was characterized under conditions that decrease CD4 expression on different mammalian T-helper lymphoctyes. Saturation binding by monosialylated ({sub 3}H)-GM{sub 1} to rat T-lymphocytes was time- and temperature-dependent, had a dissociation constant (K{sub D}) of 2.2 {plus minus} 1.4 {mu}M and a binding capacity near 2 fmoles/cell. Competitive inhibition of ({sup 3}H)- GM{sub 1} binding demonstrated a structural-activity related to the number of unconstrained sialic acid moieties on GM{sub 1}-congeneric gangliosides. A comparison between the results of these binding studies and gangliosides-induced decrease of CD4 expression demonstrated that every aspect of ({supmore » 3}H)-GM{sub 1} binding concurs with ganglioside modulation of CD4 expression. It is concluded that the specific decrease of CD4 expression induced by pretreatment with gangliosides involves the initial process of gangliosides binding to specific sites on CD4{sup {double dagger}} T-helper lymphocytes.« less
NASA Astrophysics Data System (ADS)
Ucisik, Melek N.; Dashti, Danial S.; Faver, John C.; Merz, Kenneth M.
2011-08-01
An energy expansion (binding energy decomposition into n-body interaction terms for n ≥ 2) to express the receptor-ligand binding energy for the fragmented HIV II protease-Indinavir system is described to address the role of cooperativity in ligand binding. The outcome of this energy expansion is compared to the total receptor-ligand binding energy at the Hartree-Fock, density functional theory, and semiempirical levels of theory. We find that the sum of the pairwise interaction energies approximates the total binding energy to ˜82% for HF and to >95% for both the M06-L density functional and PM6-DH2 semiempirical method. The contribution of the three-body interactions amounts to 18.7%, 3.8%, and 1.4% for HF, M06-L, and PM6-DH2, respectively. We find that the expansion can be safely truncated after n = 3. That is, the contribution of the interactions involving more than three parties to the total binding energy of Indinavir to the HIV II protease receptor is negligible. Overall, we find that the two-body terms represent a good approximation to the total binding energy of the system, which points to pairwise additivity in the present case. This basic principle of pairwise additivity is utilized in fragment-based drug design approaches and our results support its continued use. The present results can also aid in the validation of non-bonded terms contained within common force fields and in the correction of systematic errors in physics-based score functions.
Crosstalk between inflammation, iron metabolism and endothelial function in Behçet's disease.
Oliveira, Rita; Napoleão, Patricia; Banha, João; Paixão, Eleonora; Bettencourt, Andreia; da Silva, Berta Martins; Pereira, Dina; Barcelos, Filipe; Teixeira, Ana; Patto, José Vaz; Viegas-Crespo, Ana Maria; Costa, Luciana
2014-01-01
Behçet's disease (BD) is a rare chronic vasculitis of unclear etiology. It has been suggested that inflammatory response has an important role in BD pathophysiology. Herein, we aimed to study the interplay between inflammation, iron metabolism and endothelial function in BD and search for its putative association with disease activity. Twenty five patients clinically diagnosed with BD were selected and twenty four healthy age-sex matched individuals participated as controls. Results showed an increase of total number of circulating white blood cells and neutrophils, serum transferrin, total iron binding capacity, mieloperoxidase (MPO), ceruloplasmin (Cp), C reactive protein, β2 microglobulin and Cp surface expression in peripheral blood monocytes in BD patients comparatively to healthy individuals (p < 0,05). Of notice, the alterations observed were associated to disease activity status. No significant differences between the two groups were found in serum nitric oxide concentration. The results obtained suggest an important contribution from innate immunity in the pathogenesis of this disease. In particular, surface expression of leukocyte-derived Cp may constitute a new and relevant biomarker to understand BD etiology.
Pasalar, M; Mehrabani, D; Afrasiabi, A; Mehravar, Z; Reyhani, I; Hamidi, R; Karimi, M
2014-12-17
This study investigated the prevalence of iron-deficiency anaemia, glucose-6-phosphate dehydrogenase (G6PD) deficiency and β-thalassaemia trait among Arab migrating nomad children in southern Islamic Republic of Iran. Blood samples were analysed from 134 schoolchildren aged < 18 years (51 males, 83 females). Low serum ferritin (< 12 ng/dL) was present in 17.9% of children (21.7% in females and 11.8% in males). Low haemoglobin (Hb) correlated significantly with a low serum ferritin. Only 1 child had G6PD deficiency. A total of 9.7% of children had HbA2 ≥ 3.5 g/dL, indicating β-thalassaemia trait (10.8% in females and 7.8% in males). Mean serum iron, serum ferritin and total iron binding capacity were similar in males and females. Serum ferritin index was as accurate as Hb index in the diagnosis of iron-deficiency anaemia. A high prevalence of β-thalassaemia trait was the major potential risk factor in this population.
Rezaeetalab, Fariba; Kazemian, Mozhgan; Vaezi, Touraj; Shaban, Barratollah
2015-12-01
Bimaxillary orthognathic surgery can cause changes to respiration and the airways. We used body plethysmography to evaluate its effect on airway resistance and lung volumes in 20 patients with class III malocclusions (8 men and 12 women, aged 17 - 32 years). Lung volumes (forced vital capacity; forced inspiratory volume/one second; forced expiratory volume/one second: forced vital capacity; peak expiratory flow; maximum expiratory flow 25-75; maximum inspiratory flow; total lung capacity; residual volume; residual volume:total lung capacity), and airway resistance were evaluated one week before, and six months after, operation. Bimaxillary operations to correct class III malocclusions significantly increased airway resistance, residual volume, total lung capacity, and residual volume:total lung capacity. Other variables also changed after operation but not significantly so. Orthognathic operations should be done with caution in patients who have pre-existing respiratory diseases. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
The contribution of perceptual factors and training on varying audiovisual integration capacity.
Wilbiks, Jonathan M P; Dyson, Benjamin J
2018-06-01
The suggestion that the capacity of audiovisual integration has an upper limit of 1 was challenged in 4 experiments using perceptual factors and training to enhance the binding of auditory and visual information. Participants were required to note a number of specific visual dot locations that changed in polarity when a critical auditory stimulus was presented, under relatively fast (200-ms stimulus onset asynchrony [SOA]) and slow (700-ms SOA) rates of presentation. In Experiment 1, transient cross-modal congruency between the brightness of polarity change and pitch of the auditory tone was manipulated. In Experiment 2, sustained chunking was enabled on certain trials by connecting varying dot locations with vertices. In Experiment 3, training was employed to determine if capacity would increase through repeated experience with an intermediate presentation rate (450 ms). Estimates of audiovisual integration capacity (K) were larger than 1 during cross-modal congruency at slow presentation rates (Experiment 1), during perceptual chunking at slow and fast presentation rates (Experiment 2), and, during an intermediate presentation rate posttraining (Experiment 3). Finally, Experiment 4 showed a linear increase in K using SOAs ranging from 100 to 600 ms, suggestive of quantitative rather than qualitative changes in the mechanisms in audiovisual integration as a function of presentation rate. The data compromise the suggestion that the capacity of audiovisual integration is limited to 1 and suggest that the ability to bind sounds to sights is contingent on individual and environmental factors. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrie, R. A.; Sharp, J. G.; Bendall, J. R.
1961-11-01
The immediate effects of 5-Mrad ionizing radiation on beef and pork longissimus dorsi muscles were an increase in pH, a decrease in water-holding capacity, in increment in gel-volume for a given pH rise, and in soluble protein, and increased resistance to low- and high-speed homogenization. The indications of cross-binding induced by irradiation were supported by studies of isolated myofibrils from rabbit psoas muscle. Irradiation markedly reduced the syneresis (18 deg , mu = 0.04) and the swelling (0 deg , mu = 0.25) induced by ATP and, to a lesser extent, over-all fibrillar ATP-ase activity (the initial fast phase beingmore » depressed more than the slower second phase of the reaction). On storage (at -20 deg +37 deg pH and water-binding capacity increased generally with increase of temperature. Changes in pH occurred earlier with pork and to a greater extent than with beef. In sterile beef longissimus dorsi (irradiated or unirradiated) there was a decrease in soluble protein during storage for 60-90 days at 37- (indicating denaturation) and lncreases in TCA-soluble nitrogen and tyrosine (indicating proteolysis, which was more marked in unirradiated samples). The absence of soluble hydroxyproline and the presence of clearly marked cross- striations indicated that the autolysis must have involved sarcoplasmic and not fibrillar or connective tissue protein.« less
Human blood-brain barrier insulin-like growth factor receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.
1988-02-01
Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefoldmore » greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of /sup 125/I-IGF-1, /sup 125/I-IGF-2, and /sup 125/I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin.« less
Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*
Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar
2015-01-01
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212
Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhifei; Bommier, Clement; Chong, Zhi Sen
Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less
Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping
Li, Zhifei; Bommier, Clement; Chong, Zhi Sen; ...
2017-05-23
Hard carbon is the candidate anode material for the commercialization of Na-ion batteries the batteries that by virtue of being constructed from inexpensive and abundant components open the door for massive scale up of battery-based storage of electrical energy. Holding back the development of these batteries is that a complete understanding of the mechanism of Na-ion storage in hard carbon has remained elusive. Although as an amorphous carbon, hard carbon possesses a subtle and complex structure composed of domains of layered rumpled sheets that have local order resembling graphene within each layer but complete disorder along the c-axis between layers.more » Here, we present two key discoveries: first that characteristics of hard carbon s structure can be modified systematically by heteroatom doping, and second, that these changes greatly affect Na-ion storage properties, which reveal the mechanisms for Na storage in hard carbon. Specifically, P, S and B doping was used to engineer the density of local defects in graphenic layers, and to modify the spacing between the layers. While opening the interlayer spacing through P or S doping extends the low-voltage capacity plateau, and increasing the defect concentration with P or B doping high first sodiation capacity is achieved. Furthermore, we observe that the highly defective B-doped hard carbon suffers a tremendous irreversible capacity in the first desodiation cycle. Our combined first principles calculations and experimental studies revealed a new trapping mechanism, showing that the high binding energies between B-doping induced defects and Na-ions are responsible for the irreversible capacity. The understanding generated in this work provides a totally new set of guiding principles for materials engineers working to optimize hard carbon for Na-ion battery applications.« less
Fiorotto, Marta L; Davis, Teresa A; Sosa, Horacio A; Villegas-Montoya, Carolina; Estrada, Irma; Fleischmann, Ryan
2014-01-01
Nutritionally-induced growth faltering in the perinatal period has been associated with reduced adult skeletal muscle mass; however, the mechanisms responsible for this are unclear. To identify the factors that determine the recuperative capacity of muscle mass, we studied offspring of FVB mouse dams fed a protein-restricted diet during gestation (GLP) or pups suckled from postnatal day 1 (PN1) to PN11 (E-UN), or PN11 to PN22 (L-UN) on protein-restricted or control dams. All pups were refed under control conditions following the episode of undernutrition. Before refeeding, and 2, 7 and 21 days later, muscle protein synthesis was measured in vivo. There were no long-term deficits in protein mass in GLP and E-UN offspring, but in L-UN offspring muscle protein mass remained significantly smaller even after 18 months (P < 0.001). E-UN differed from L-UN offspring by their capacity to upregulate postprandial muscle protein synthesis when refed (P < 0.001), a difference that was attributable to a transient increase in ribosomal abundance, i.e. translational capacity, in E-UN offspring (P < 0.05); translational efficiency was similar across dietary treatments. The postprandial phosphorylation of Akt and extracellular signal-regulated protein kinases were similar among treatments. However, activation of the ribosomal S6 kinase 1 via mTOR (P < 0.02), and total upstream binding factor abundance were significantly greater in E-UN than L-UN offspring (P < 0.02). The results indicate that the capacity of muscles to recover following perinatal undernutrition depends on developmental age as this establishes whether ribosome abundance can be enhanced sufficiently to promote the protein synthesis rates required to accelerate protein deposition for catch-up growth. PMID:25239457
Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
Wen, Yang; Zhu, Yujie; Langrock, Alex; Manivannan, Ayyakkannu; Ehrman, Sheryl H; Wang, Chunsheng
2013-08-26
Silicon (Si) has been considered a very promising anode material for lithium ion batteries due to its high theoretical capacity. However, high-capacity Si nanoparticles usually suffer from low electronic conductivity, large volume change, and severe aggregation problems during lithiation and delithiation. In this paper, a unique nanostructured anode with Si nanoparticles bonded and wrapped by graphene is synthesized by a one-step aerosol spraying of surface-modified Si nanoparticles and graphene oxide suspension. The functional groups on the surface of Si nanoparticles (50-100 nm) not only react with graphene oxide and bind Si nanoparticles to the graphene oxide shell, but also prevent Si nanoparticles from aggregation, thus contributing to a uniform Si suspension. A homogeneous graphene-encapsulated Si nanoparticle morphology forms during the aerosol spraying process. The open-ended graphene shell with defects allows fast electrochemical lithiation/delithiation, and the void space inside the graphene shell accompanied by its strong mechanical strength can effectively accommodate the volume expansion of Si upon lithiation. The graphene shell provides good electronic conductivity for Si nanoparticles and prevents them from aggregating during charge/discharge cycles. The functionalized Si encapsulated by graphene sample exhibits a capacity of 2250 mAh g⁻¹ (based on the total mass of graphene and Si) at 0.1C and 1000 mAh g⁻¹ at 10C, and retains 85% of its initial capacity even after 120 charge/discharge cycles. The exceptional performance of graphene-encapsulated Si anodes combined with the scalable and one-step aerosol synthesis technique makes this material very promising for lithium ion batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gosseries, Olivia; Yu, Qing; LaRocque, Joshua J; Starrett, Michael J; Rose, Nathan S; Cowan, Nelson; Postle, Bradley R
2018-05-02
Although the manipulation of load is popular in visual working memory research, many studies confound general attentional demands with context binding by drawing memoranda from the same stimulus category. In this fMRI study of human observers (both sexes), we created high- versus low-binding conditions, while holding load constant, by comparing trials requiring memory for the direction of motion of one random dot kinematogram (RDK; 1M trials) versus for three RDKs (3M), or versus one RDK and two color patches (1M2C). Memory precision was highest for 1M trials and comparable for 3M and 1M2C trials. And although delay-period activity in occipital cortex did not differ between the three conditions, returning to baseline for all three, multivariate pattern analysis decoding of a remembered RDK from occipital cortex was also highest for 1M trials and comparable for 3M and 1M2C trials. Delay-period activity in intraparietal sulcus (IPS), although elevated for all three conditions, displayed more sensitivity to demands on context binding than to load per se. The 1M-to-3M increase in IPS signal predicted the 1M-to-3M declines in both behavioral and neural estimates of working memory precision. These effects strengthened along a caudal-to-rostral gradient, from IPS0 to IPS5. Context binding-independent load sensitivity was observed when analyses were lateralized and extended into PFC, with trend-level effects evident in left IPS and strong effects in left lateral PFC. These findings illustrate how visual working memory capacity limitations arise from multiple factors that each recruit dissociable brain systems. SIGNIFICANCE STATEMENT Visual working memory capacity predicts performance on a wide array of cognitive and real-world outcomes. At least two theoretically distinct factors are proposed to influence visual working memory capacity limitations: an amodal attentional resource that must be shared across remembered items; and the demands on context binding. We unconfounded these two factors by varying load with items drawn from the same stimulus category ("high demands on context binding") versus items drawn from different stimulus categories ("low demands on context binding"). The results provide evidence for the dissociability, and the neural bases, of these two theorized factors, and they specify that the functions of intraparietal sulcus may relate more strongly to the control of representations than to the general allocation of attention. Copyright © 2018 the authors 0270-6474/18/384357-10$15.00/0.
Brent, G A; Williams, G R; Harney, J W; Forman, B M; Samuels, H H; Moore, D D; Larsen, P R
1992-04-01
Thyroid hormone response elements (T3REs) have been identified in a variety of promoters including those directing expression of rat GH (rGH), alpha-myosin heavy chain (rMHC), and malic enzyme (rME). A detailed biochemical and genetic analysis of the rGH element has shown that it consists of three hexamers related to the consensus [(A/G)GGT(C/A)A]. We have extended this analysis to the rMHC and rME elements. Binding of highly purified thyroid hormone receptor (T3R) to T3REs was determined using the gel shift assay, and thyroid hormone (T3) induction was measured in transient tranfections. We show that the wild type version of each of the three elements binds T3R dimers cooperatively. Mutational analysis of the rMHC and rME elements identified domains important for binding T3R dimers and allowed a direct determination of the relationship between T3R binding and function. In each element two hexamers are required for dimer binding, and mutations that interfere with dimer formation significantly reduce T3 induction. Similar to the rGH element, the rMHC T3RE contains three hexameric domains arranged as a direct repeat followed by an inverted copy, although the third domain is weaker than in rGH. All three are required for full function and T3R binding. The rME T3RE is a two-hexamer direct repeat T3RE, which also binds T3R monomer and dimer. Across a series of mutant elements, there was a strong correlation between dimer binding in vitro and function in vivo for rMHC (r = 0.99, P less than 0.01) and rME (r = 0.67, P less than 0.05) T3REs. Our results demonstrate a similar pattern of T3R dimer binding to a diverse array of hexameric sequences and arrangements in three wild type T3REs. Addition of nuclear protein enhanced T3R binding but did not alter the specificity of binding to wild type or mutant elements. Binding of purified T3R to T3REs was highly correlated with function, both with and without the addition of nuclear protein. T3R dimer formation is the common feature which defines the capacity of these elements to confer T3 induction.
Binding mechanism and electrochemical properties of M13 phage-sulfur composite.
Dong, Dexian; Zhang, Yongguang; Sutaria, Sanjana; Konarov, Aishuak; Chen, Pu
2013-01-01
Self-assembly of nanostructured materials has been proven a powerful technique in material design and synthesis. By phage display screening, M13 phage was found to strongly bind sulfur particles. Fourier transform infrared and X-ray photoelectron spectroscopy measurements indicated that the strong sulfur-binding ability of M13 phage derives from newly generated S-O and C-S bonds. Using this phage assembled sulfur composite in a lithium battery, the first discharge capacity reached 1117 mAh g(-1), which is more than twice that of the sulfur only cathode. Besides, the negative polysulfide shuttle effect in a lithium-sulfur battery was significantly suppressed.
Binding Mechanism and Electrochemical Properties of M13 Phage-Sulfur Composite
Dong, Dexian; Zhang, Yongguang; Sutaria, Sanjana; Konarov, Aishuak; Chen, Pu
2013-01-01
Self-assembly of nanostructured materials has been proven a powerful technique in material design and synthesis. By phage display screening, M13 phage was found to strongly bind sulfur particles. Fourier transform infrared and X-ray photoelectron spectroscopy measurements indicated that the strong sulfur-binding ability of M13 phage derives from newly generated S-O and C-S bonds. Using this phage assembled sulfur composite in a lithium battery, the first discharge capacity reached 1117 mAh g-1, which is more than twice that of the sulfur only cathode. Besides, the negative polysulfide shuttle effect in a lithium-sulfur battery was significantly suppressed. PMID:24324560
Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.H.; el-Fakahany, E.E.
1985-06-01
The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less
Relation between Soil Order and Sorptive Capacity for Dissolved Organic Carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heal, Katherine R; Brandt, Craig C; Mayes, Melanie
2012-01-01
Soils have historically been considered a temporary sink for organic C, but deeper soils may serve as longer term C sinks due to the sorption of dissolved organic C (DOC) onto Fe- and clay-rich mineral soil particles. This project provides an improved understanding and predictive capability of the physical and chemical properties of deep soils that control their sorptive capacities for DOC. Two hundred thirteen subsurface soil samples (72 series from five orders) were selected from the eastern and central United States. A characterized natural DOC source was added to the soils, and the Langmuir sorption equation was fitted tomore » the observed data by adjusting the maximum DOC sorption capacity (Q{sub max}) and the binding coefficient (k). Different isotherm shapes were observed for Ultisols, Alfisols, and Mollisols due to statistically significant differences in the magnitude of k, while Q{sub max} was statistically invariant among these three orders. Linear regressions were performed on the entire database and as a function of soil order to correlate Langmuir fitted parameters with measured soil properties, e.g., pH, clay content, total organic C (TOC), and total Fe oxide content. Together, textural clay and Fe oxide content accounted for 35% of the variation in Q{sub max} in the database, and clay was most important for Alfisols and Ultisols. The TOC content, however, accounted for 27% of the variation in Q{sub max} in Mollisols. Soil pH accounted for 45% of the variation in k for the entire database, 41% for Mollisols, and 22% for Alfisols. Our findings demonstrate that correlations between Langmuir parameters and soil properties are different for different soil orders and that k is a more sensitive parameter for DOC sorption than is Q{sub max} for temperate soils from the central and eastern United States.« less
Ener, Kemal; Keske, Murat; Aldemir, Mustafa; Özcan, Muhammet Fuat; Okulu, Emrah; Özayar, Asım; Ergin, Merve; Doluoğlu, Ömer Gökhan; Çakmak, Serdar; Erel, Özcan
2015-08-01
This study aimed to investigate oxidative stress in etiopathogenesis by analyzing serum total antioxidant capacity (TAC), total oxidant status (TOS), binding capacity of exogenous cobalt to human albumin (IMA), serum advanced oxidation protein products (AOPP), paraoxonase (PON), arylesterase, IgE, and C-reactive protein (CRP) in bladder pain syndrome/interstitial cystitis (BPS/IC). The study included 16 female patients diagnosed with BPS/IC and 25 healthy female subjects forming the control group. A bladder biopsy was performed on all patients in the BPS/IC group by carrying out cystoscopy with hydrodistention under general anesthesia. The results of serum TAC, TOS, IMA, AOPP, PON, arylesterase, IgE, and CRP of the subjects in both groups were compared. The mean age of the 16 female patients in the BPS/IC group was 43.6 ± 14.5 years, and the mean age of the 25 healthy subjects in the control group was 42.0 ± 10.3 years. According to the criteria of International Society for the Study of Interstitial Cystitis (ESSIC), eight patients were classified as Type 2A, three patients as Type 2B, four patients as Type 2C, and one patient as Type 3C. In the BPS/IC group, while TAC was found significantly lower than in the control group, IMA, IgE, and CRP were found significantly higher (P < 0.05). When binary logistic regression analysis was performed, the created model was determined to have 81.3 % sensitivity and 80 % specifity. In the etiology of BPS/IC, mechanism of oxidative damage comes into prominence. In the diagnosis of BPS/IC, IgE, CRP, and TAC are not specific markers when used separately; however, a higher specifity and sensitivity could be reached when used jointly in the suspected patients.
Increased lectin binding capacity of trophoblastic cells of late day 5 rat blastocysts.
Stein, B A; Shaw, T J; Turner, V F; Murphy, C R
1994-01-01
The binding of lectins to the trophoblast of rat blastocysts has been studied using quantitative ultrastructural cytochemistry. Rat blastocysts from early, mid and late d 5 of gestation were stained using biotinylated lectins (Phytolacca americana [Phy am], fucose binding protein [FBP] and soybean agglutinin [SBA]) and a sensitive avidin-ferritin cytochemical method. Electron micrographs of ferritin particles along the membrane were processed to produce images for which grey scale levels could be established and the ferritin particles automatically counted. The ferritin:membrane ratio was then calculated. Increased binding with Phy am (which detects short chain oligosaccharides) was found after midday of d 5, i.e. after hatching. Binding of FBP and SBA did not alter during the period studied. The increased concentration of oligosaccharides on the blastocyst surface membrane after hatching may have important implications for blastocyst attachment to the endometrium. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7649802
Non-B-DNA structures on the interferon-beta promoter?
Robbe, K; Bonnefoy, E
1998-01-01
The high mobility group (HMG) I protein intervenes as an essential factor during the virus induced expression of the interferon-beta (IFN-beta) gene. It is a non-histone chromatine associated protein that has the dual capacity of binding to a non-B-DNA structure such as cruciform-DNA as well as to AT rich B-DNA sequences. In this work we compare the binding affinity of HMGI for a synthetic cruciform-DNA to its binding affinity for the HMGI-binding-site present in the positive regulatory domain II (PRDII) of the IFN-beta promoter. Using gel retardation experiments, we show that HMGI protein binds with at least ten times more affinity to the synthetic cruciform-DNA structure than to the PRDII B-DNA sequence. DNA hairpin sequences are present in both the human and the murine PRDII-DNAs. We discuss in this work the presence of, yet putative, non-B-DNA structures in the IFN-beta promoter.
LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.
Marshall, J C; Shakespear, R A; Odell, W D
1976-11-01
Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.
Sulfated Glycopeptide Nanostructures for Multipotent Protein Activation
Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng; Álvarez, Zaida; Sleep, Eduard; Chun, Danielle S.; Weiner, Joseph A.; Cook, Ralph W.; Freshman, Ryan D.; Schallmo, Michael S.; Katchko, Karina M.; Schneider, Andrew D.; Smith, Justin T.; Yun, Chawon; Singh, Gurmit; Hashmi, Sohaib Z.; McClendon, Mark T.; Yu, Zhilin; Stock, Stuart R.; Hsu, Wellington K.; Hsu, Erin L.; Stupp, Samuel I.
2017-01-01
Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with very different polysaccharide binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signaling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than expected. These super-bioactive nanostructures may enable many therapies in the horizon involving proteins. PMID:28650443
Senetar, Melissa A; Foster, Stanley J; McCann, Richard O
2004-12-14
The I/LWEQ module superfamily is a class of actin-binding proteins that contains a conserved C-terminal actin-binding element known as the I/LWEQ module. I/LWEQ module proteins include the metazoan talins, the cellular slime mold talin homologues TalA and TalB, fungal Sla2p, and the metazoan Sla2 homologues Hip1 and Hip12 (Hip1R). These proteins possess a similar modular organization that includes an I/LWEQ module at their C-termini and either a FERM domain or an ENTH domain at their N-termini. As a result of this modular organization, I/LWEQ module proteins may serve as linkers between cellular compartments, such as the plasma membrane and the endocytic machinery, and the actin cytoskeleton. Previous studies have shown that I/LWEQ module proteins bind to F-actin. In this report, we have determined the affinity of the I/LWEQ module proteins Talin1, Talin2, huntingtin interacting protein-1 (Hip1), and the Hip1-related protein (Hip1R/Hip12) for F-actin and identified a conserved structural element that interferes with the actin binding capacity of these proteins. Our data support the hypothesis that the actin-binding determinants in native talin and other I/LWEQ module proteins are cryptic and indicate that the actin binding capacities of Talin1, Talin2, Hip1, and Hip12 are regulated by intrasteric occlusion of primary actin-binding determinants within the I/LWEQ module. We have also found that the I/LWEQ module contains a dimerization motif and stabilizes actin filaments against depolymerization. This activity may contribute to the function of talin in cell adhesion and the roles of Hip1, Hip12 (Hip1R), and Sla2p in endocytosis.
Aggregation server for grid-integrated vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempton, Willett
2015-05-26
Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregatedmore » EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.« less
Bratislava Symposium on Saccharides (7th) Programme and Abstracts
1994-09-01
that of cellulose (1). Althoug the binding capacity of cellulose microfibrils is dependent on the sace of the binding un of the kmfbrul& xyloglucans...are not only party embedded in but are also parly free between microfibrils . suggesting cross-link to cellulose microfibuils (2). Xyloglucan...desediftcoli Y.-C.-M a 12. KoIlkovd B., Hricovfrni M., Sirmoutti R.: 43C NMR study of solid-stal, reaction of cellulose with lIgnin monomers 13. Joniak D
Edenfeld, J; Schöpper, B; Sturm, R; Diedrich, K; Al-Hasani, S
2002-04-01
Laser systems are very promising new technical tools in assisted reproduction. It was investigated if laser radiation can replace the mechanical cutting procedure via micromanipulator in the hemizona assay (HZA), a commonly used bioassay to determine the sperm-zona pellucida binding capacity. An oocyte was bisected precisely into two identical hemizonae with approximately 20 laser pulses (pulse length 30 msec) using a 1.48-microm diode laser. Compared with the conventional method using microscalpels for zona bisection, laser treated hemizonae showed equivalent sperm-binding and within the two groups there was no detectable difference between matching hemizonae in their capacity for tight sperm-binding. To evaluate whether laser radiation affects the outcome of the HZA when effects of certain substances are investigated, the spermatozoa were preincubated with human follicular fluid (hFF), which inhibits the binding of spermatozoa to zona pellucida in vitro. Supplementation with follicular fluid exerted an inhibitory effect in both groups. The hemizona index (HZI) showed no statistical differences between the two methods. Therefore, the 1.48-microm diode laser is a suitable new instrument for generating equally sized hemizonae. There is no use for holding pipettes and microscalpels, on the contrary, for performing the HZA the laser is a precise, very quick and easy to use new working tool.
Cai, Xixi; Yang, Qian; Lin, Jiaping; Fu, Nanyan; Wang, Shaoyun
2017-03-29
Marine microorganisms have been proposed as a new kind of protein source. Efforts are needed in order to transform the protein-rich biological wastes left after lipid extraction into value-added bio-products. Thus, the utilization of protein recovered from defatted Schizochytrium sp. by-products presents an opportunity. A specific peptide Tyr-Leu (YL) with calcium-binding capacity was purified from defatted Schizochytrium sp. protein hydrolysates through gel filtration chromatography and RP-HPLC. The calcium-binding activity of YL reached 126.34 ± 3.40 μg/mg. The calcium-binding mechanism was investigated through ultraviolet, fluorescence and infrared spectroscopy. The results showed that calcium ions could form dative bonds with carboxyl oxygen atoms and amino nitrogen atoms as well as the nitrogen and oxygen atoms of amide bonds. YL-Ca exhibited excellent thermal stability and solubility, which was beneficial for its absorption and transport in the basic intestinal tract of the human body. Moreover, the cellular uptake of calcium in Caco-2 cells showed that YL-Ca could enhance calcium uptake efficiency and protect calcium ions against precipitation caused by dietary inhibitors such as tannic acid, oxalate, phytate and metal ions. The findings indicate that the by-product of Schizochytrium sp. is a promising source for making peptide-calcium bio-products as algae-based functional supplements for human beings.
Sun, Han-wen; Qiao, Feng-xia; Liu, Guang-yu
2006-11-17
Theophylline imprinted monolithic columns were designed and prepared for rapid separation of a homologous series of xanthine derivatives, caffeine, and theophylline by an in situ thermal-initiated copolymerization technique. Caffeine and theophylline were fully separated both under isocratic and gradient elutions on this kind of monolithic molecularly imprinted polymers (MIP) column. The broad peak showed in isocratic elution could be improved in gradient elution. Some chromatographic conditions such as mobile phase composition, flow rate, and the temperature on the retention times were investigated. Hydrogen bonding interaction and hydrophobic interaction played an important role in the retention and separation. The binding capacity was evaluated by static adsorption and Scatchard analysis, which showed that the dissociation constant (KD) and the maximum binding capacity (Qmax) were 1.50 mol/L, and 236 micromol/g for high affinity binding site, and 7.97 mol/L and 785 micromol/g for lower affinity binding site, respectively. Thermodynamic data (DeltaDeltaH and DeltaDeltaS) obtained by Van't Hoff plots revealed an enthalpy-controlled separation. The morphological characteristics of monolithic MIP were investigated by scanning electron microscope, which showed that both mesopores and macropores were formed in the monolith. The present monolithic MIP column was successfully applied for the quantitative determination of caffeine and theophylline in different kinds of green tea.
Mangold, Sabine; Norwood, Suzanne J.; Yap, Alpha S.; Collins, Brett M.
2012-01-01
We recently identified the atypical myosin, Myosin VI, as a component of epithelial cell-cell junctions that interacts with E-cadherin. Recombinant proteins bearing the cargo-binding domain of Myosin VI (Myo VI-CBD) or the cytoplasmic tail of E-cadherin can interact directly with one another. In this report we further investigate the molecular requirements of the interaction between Myo VI-CBD and E-cadherin combining truncation mutation analysis with in vitro binding assays. We report that a short (28 amino acid) juxtamembrane region of the cadherin cytoplasmic tail is sufficient to bind Myo VI-CBD. However, central regions of the cadherin tail adjacent to the juxtamembrane sequence also display binding activity for Myo VI-CBD. It is therefore possible that the cadherin tail bears two binding sites for Myosin VI, or an extended binding site that includes the juxtamembrane region. Nevertheless, our biochemical data highlight the capacity for the juxtamembrane region to interact with functionally-significant cytoplasmic proteins. PMID:23007415
Pedersen, S A; Kristiansen, E; Andersen, R A; Zachariassen, K E
2007-04-01
The effect of cadmium (Cd) exposure on Cd-binding ligands was investigated for the first time in a beetle (Coleoptera), using the mealworm Tenebrio molitor (L) as a model species. Exposure to Cd resulted in an approximate doubling of the Cd-binding capacity of the protein extracts from whole animals. Analysis showed that the increase was mainly explained by the induction of a Cd-binding protein of 7134.5 Da, with non-metallothionein characteristics. Amino acid analysis and de novo sequencing revealed that the protein has an unusually high content of the acidic amino acids aspartic and glutamic acid that may explain how this protein can bind Cd even without cysteine residues. Similarities in the amino acid composition suggest it to belong to a group of little studied proteins often referred to as "Cd-binding proteins without high cysteine content". This is the first report on isolation and peptide sequence determination of such a protein from a coleopteran.
Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J
2014-01-24
Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.
Importance of adhesins in the recurrence of pharyngeal infections caused by Streptococcus pyogenes.
Wozniak, Aniela; Scioscia, Natalia; Geoffroy, Enrique; Ponce, Iván; García, Patricia
2017-04-01
Pharyngo-amygdalitis is the most common infection caused by Streptococcus pyogenes (S. pyogenes). Reinfection with strains of different M types commonly occurs. However, a second infection with a strain of the same M type can still occur and is referred to as recurrence. We aimed to assess whether recurrence of S. pyogenes could be associated to erythromycin resistance, biofilm formation or surface adhesins like fibronectin-binding proteins and pilus proteins, both located in the fibronectin-binding, collagen-binding, T-antigen (FCT) region. We analyed clinical isolates of S. pyogenes obtained from children with multiple positive cultures of throat swabs. We analysed potential associations between M types, clonal patterns, biofilm production and FCT types with their capacity of producing a recurrent infection. We genetically defined recurrence as an infection with the same M type (same strain) and reinfection as an infection with a different M type. No differences were observed between recurrent and reinfection isolates in relation to erythromycin resistance, presence and number of domains of prtF1 gene, and biofilm formation capacity; the only significant difference was the higher frequency of FCT-4 type among recurrent isolates. However, when all the factors that could contribute to recurrence (erythromycin resistance, biofilm production, presence of prtF1 gene and FCT-4 type) were analysed together, we observed that recurrent isolates have a higher number of factors than reinfection isolates. Recurrence seems not to be associated with biofilm formation. However, pili and fibronectin-binding proteins could be associated with recurrence because FCT-4 isolates which harbour two fibronectin-binding proteins are more frequent among recurrent isolates.
Yang, Jun; Ou, Boxin; Wise, Mitchell L; Chu, YiFang
2014-10-01
To better understand mechanisms underlying the health benefits of oats, the free radical scavenging capacities of oat avenanthramides 2c, 2f, and 2p and their ability to inhibit NF-κB activation were evaluated. The antioxidant capacities of 2c, 2f, and 2p against peroxyl radicals, hydroxyl radicals, superoxide anion, singlet oxygen, and peroxynitrite were determined by using ORAC, HORAC, SORAC, SOAC, and NORAC assays, respectively. The total antioxidant capacity of 2c was approximately 1.5-fold those of 2f and 2p. Total antioxidant capacity was primarily attributable to SORAC and ORAC for 2c (>77%, p<0.05), and to ORAC and SOAC for 2f. ORAC accounted for approximately 32% of total antioxidant capacity in 2p. EC50 values for inhibiting TNF-α-induced NF-κB activation in C2C12 cells were 64.3, 29.3, and 9.10 μM for 2c, 2f, and 2p, respectively. Differences in antioxidant capacities and ability to inhibit NF-κB among the avenanthramides could be ascribed to structural variations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Costanzo, Simona; De Curtis, Amalia; di Niro, Veronica; Olivieri, Marco; Morena, Mariarosaria; De Filippo, Carlo Maria; Caradonna, Eugenio; Krogh, Vittorio; Serafini, Mauro; Pellegrini, Nicoletta; Donati, Maria Benedetta; de Gaetano, Giovanni; Iacoviello, Licia
2015-04-01
Postoperative atrial fibrillation is a major cause of morbidity and mortality for stroke after cardiac surgery. Both systemic inflammation and oxidative stress play a role in the initiation of postoperative atrial fibrillation after cardiac surgery. The possible association between long-term intake of antioxidant-rich foods and postoperative atrial fibrillation incidence was examined in patients undergoing cardiac surgery. A total of 217 consecutive patients (74% were men; median age, 68.4 years) undergoing cardiac surgery, mainly coronary artery bypass grafting and valve replacement or repair, were recruited from January 2010 to September 2012. Total antioxidant capacity was measured in foods by the Trolox equivalent antioxidant capacity assay. The European Prospective Investigation into Cancer and Nutrition Food Frequency Questionnaire was used for dietary total antioxidant capacity assessment. The association among tertiles of dietary total antioxidant capacity and postoperative atrial fibrillation incidence was assessed using multivariable logistic analysis. The overall incidence of total arrhythmias and postoperative atrial fibrillation was 42.4% and 38.2%, respectively. In multivariable analysis, after adjustment for age, gender, use of hypoglycemic drugs, physical activity, education, previous diagnosis of atrial fibrillation, and total energy intake, patients in the highest tertile of dietary total antioxidant capacity had a lower risk of postoperative atrial fibrillation than patients in the 2 lowest tertiles (odds ratio, 0.46; 95% confidence interval, 0.22-0.95; P = .048). A restricted cubic spline transformation confirmed the nonlinear relationship between total antioxidant capacity (in continuous scale) and postoperative atrial fibrillation (P = .023). When considering only coronary artery bypass grafting, valve replacement/repair, and combined surgeries, the protective effect on postoperative atrial fibrillation of a diet rich in antioxidants was confirmed. Long-term consumption of antioxidant-rich foods is associated with a reduced incidence of postoperative atrial fibrillation in patients undergoing cardiac surgery. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Evaluation of blood and serum markers in spinal cord injured patients with pressure sores.
Gurcay, Eda; Bal, Ajda; Gurcay, Ahmet G; Cakci, Aytul
2009-03-01
To evaluate blood and serum markers in traumatic spinal cord injured (SCI) patients, with and without pressure sores. This cross-sectional study was performed at the Ministry of Health Diskapi Yildirim Beyazit, and Numune Education and Research Hospitals, Ankara, Turkey, from 2006-2008. A total of 23 SCI patients with pressure sores (group I) and a control group of 25 SCI patients without pressure sores (group II) were evaluated. Characteristics of sores were examined with respect to duration, location, grade, tissue types, surface area, and exudate amount. Recorded laboratory parameters included erythrocyte sedimentation rates (ESR), C-reactive protein (CRP), hemoglobin (Hb), hematocrit (Htc), lymphocytes, white blood cells (WBC), red blood cells (RBC), serum iron, transferrin, total iron-binding capacity (TIBC), ferritin, total protein, albumin, vitamin B12, and zinc. The most common pressure sore location was the sacrum (38%). Compared to the control group, the patients with pressure sores showed anemia with reduced serum iron, transferrin, TIBC, and increased ferritin. They also had increased ESR, CRP, and WBC and reduced lymphocytes, total protein, albumin and zinc. Statistically significant correlations were found between CRP, Hb, Htc, lymphocytes, RBC, WBC, and serum protein levels, and grade of pressure sores. Clinicians should regularly screen patients with respect to blood and serum markers, in order to determine any risks for pressure sores, and they should perform immediate preventive measures based on the patient's condition.
Shifren, Jan L; Desindes, Sophie; McIlwain, Marilyn; Doros, Gheorghe; Mazer, Norman A
2007-01-01
To compare the changes induced by oral versus transdermal estrogen therapy on the total and free serum concentrations of testosterone (T), thyroxine (T4), and cortisol (C) and the concentrations of their serum binding globulins sex hormone-binding globulin, thyroxine-binding globulin, and cortisol-binding globulin in naturally menopausal women. Randomized, open-label, crossover. Interventions included a 6-week withdrawal from previous hormone therapy (baseline), followed in randomized order by 12 weeks of oral conjugated equine estrogens (CEE) (0.625 mg/d) and 12 weeks of transdermal estradiol (TD E2) (0.05 mg/d), with oral micronized progesterone (100 mg/d) given continuously during both transdermal estrogen therapy regimens. Twenty-seven women were enrolled in the study, and 25 completed both treatment periods. The mean(SD) percentage changes from baseline of sex hormone-binding globulin, total T, and free T with oral CEE were +132.1% (74.5%), +16.4% (43.8%), and -32.7% (25.9%), respectively, versus +12.0% (25.1%), +1.2% (43.7%), and +1.0% (45.0%) with TD E2. The mean (SD) percentage changes of thyroxine-binding globulin, total T4, and free T4 with oral CEE were +39.9% (20.1%), +28.4% (29.2%), and -10.4% (22.3%), respectively, versus +0.4% (11.1%), -0.7% (16.5%), and +0.2% (26.6%) with TD E2. The mean (SD) percentage changes of cortisol-binding globulin, total C, and free C with oral CEE were +18.0% (19.5%), +29.2% (46.3%), and +50.4% (126.5%), respectively, versus -2.2% (11.3%), -6.7% (30.8%), and +1.8% (77.1%) with TD E2. Concentrations of all hormones and binding globulins were significantly different (P < or = 0.003) during administration of oral versus transdermal estrogen therapy, except for free T4 and free C. Compared with oral CEE, TD E2 exerts minimal effects on the total and free concentrations of T, T4, and C and their binding proteins.
Behind the scenes of vitamin D binding protein: more than vitamin D binding.
Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M
2015-10-01
Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein. Copyright © 2015 Elsevier Ltd. All rights reserved.
Peptide-functionalized iron oxide magnetic nanoparticle for gold mining
NASA Astrophysics Data System (ADS)
Shen, Wei-Zheng; Cetinel, Sibel; Sharma, Kumakshi; Borujeny, Elham Rafie; Montemagno, Carlo
2017-02-01
Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles.
Hanski, E; Caparon, M
1992-07-01
Binding to fibronectin has been suggested to play an important role in adherence of the group A streptococcus Streptococcus pyrogenes to host epithelial cells; however, the identity of the streptococcal fibronectin receptor has been elusive. Here we demonstrate that the fibronectin-binding property of S. pyogenes is mediated by protein F, a bacterial surface protein that binds fibronectin at high affinity. The gene encoding protein F (prtF) produced a functional fibronectin-binding protein in Escherichia coli. Insertional mutagenesis of the cloned gene generated a mutation that resulted in the loss of fibronectin-binding activity. When this mutation was introduced into the S. pyrogenes chromosome by homologous recombination with the wild-type allele, the resulting strains no longer produced protein F and lost their ability to bind fibronectin. The mutation could be complemented by prtF introduced on a plasmid. Mutants lacking protein F had a much lower capacity to adhere to respiratory epithelial cells. These results demonstrate that protein F is an important adhesin of S. pyogenes.
Lipzig, Rosalinde van; Montagu, Marc Van; Cornelissen, Marc; Meulewaeter, Frank
2001-01-01
The satellite tobacco necrosis virus RNA is uncapped and requires a 3′ translational enhancer domain (TED) for translation. Both in the wheat germ extract and in tobacco, TED stimulates in cis translation of heterologous, uncapped RNAs. In this study we investigated to what extent translation stimulation by TED depends on binding to wheat germ factors. We show that in vitro TED binds at least seven wheat germ proteins. Translation and crosslinking assays, to which TED or TED derivatives with reduced functionality were included as competitor, showed that TED function correlates with binding to a 28 kDa protein (p28). One particular condition of competition revealed that p28 binding is not obligatory for TED function. Under this condition, a 30 kDa protein (p30) binds to TED. Importantly, affinity of p30 correlates with functionality of TED. These results strongly suggest that TED has the capacity to stimulate translation by recruiting the translational machinery either via binding to p28 or via binding to p30. PMID:11222757
Total antioxidant capacity in children with acute appendicitis.
Kaya, M; Boleken, M E; Kanmaz, T; Erel, O; Yucesan, S
2006-02-01
This study aimed to investigate antioxidant capacity by using a novel automated method in children with acute appendicitis. Blood samples were obtained from consecutive patients with acute appendicitis (appendicitis group, n = 12) and acute abdominal pain due to non surgical disease (non-appendicitis group, n = 11), and from patients with inguinal hernia (healthy group, n = 12) as the control group. At admission, total antioxidant capacity (TAC) levels of plasma were evaluated in all patients by a method recently developed by Erel. Four other major individual plasma antioxidant components, the levels of total protein, albumin, uric acid and bilirubin, were also evaluated. Total antioxidant capacity in patients with acute appendicitis was statistically compared with the two other groups. While the TAC level in the appendicitis group was significantly greater than in the non-appendicitis group, no significant difference was found in healthy groups (p < 0.05, p > 0.05, 1.94 +/- 0.38, 1.40 +/- 0.36, and 1.99 +/- 0.35 respectively). Individual components of total antioxidant capacity, i.e. total protein, albumin, uric acid and bilirubin concentrations, were also higher in the patients with acute appendicitis than those of the other two control groups. Our data show that children with acute appendicitis do not have deficient blood plasma antioxidant capacity. These results provide evidence that acute appendicitis results in more induction of antioxidative response than non-surgical diseases.
Tomassetti, Mauro; Serone, Maruschka; Angeloni, Riccardo; Campanella, Luigi; Mazzone, Elisa
2015-01-01
The aim of this research was to test the correctness of response of a superoxide dismutase amperometric biosensor used for the purpose of measuring and ranking the total antioxidant capacity of several systematically analysed mixed berries. Several methods are described in the literature for determining antioxidant capacity, each culminating in the construction of an antioxidant capacity scale and each using its own unit of measurement. It was therefore endeavoured to correlate and compare the results obtained using the present amperometric biosensor method with those resulting from two other different methods for determining the total antioxidant capacity selected from among those more frequently cited in the literature. The purpose was to establish a methodological approach consisting in the simultaneous application of different methods that it would be possible to use to obtain an accurate estimation of the total antioxidant capacity of different mixed berries and the food products containing them. Testing was therefore extended to also cover jams, yoghurts and juices containing mixed berries. PMID:25654720
Khan, Hamayun; Amin, Hazrat; Ullah, Asad; Saba, Sumbal; Rafique, Jamal; Khan, Khalid; Ahmad, Nasir; Badshah, Syed Lal
2016-01-01
Two important biologically active compounds were isolated from Mallotus philippensis. The isolated compounds were characterized using spectroanalytical techniques and found to be bergenin (1) and 11-O-galloylbergenin (2). The in vitro antioxidant and antiplasmodial activities of the isolated compounds were determined. For the antioxidant potential, three standard analytical protocols, namely, DPPH radical scavenging activity (RSA), reducing power assay (RPA), and total antioxidant capacity (TAC) assay, were adopted. The results showed that compound 2 was found to be more potent antioxidant as compared to 1. Fascinatingly, compound 2 displayed better EC50 results as compared to α-tocopherol while being comparable with ascorbic acid. The antiplasmodial assay data showed that both the compound exhibited good activity against chloroquine sensitive strain of Plasmodium falciparum (D10) and IC50 values were found to be less than 8 μM. The in silico molecular docking analyses were also performed for the determination of binding affinity of the isolated compounds using P. falciparum proteins PfLDH and Pfg27. The results showed that compound 2 has high docking score and binding affinity to both protein receptors as compared to compound 1. The demonstrated biological potentials declared that compound 2 could be the better natural antioxidant and antiplasmodial candidate. PMID:26998192
An immunoblotting analysis of cross-reactivity between melon, and plantago and grass pollens.
García Ortiz, J C; Ventas, P; Cosmes, P; López-Asunsolo, A
1996-01-01
It is known that most patients with type I allergy to pollens also suffer intolerance to fruits. Recently, an epidemiological and CAP-inhibition study has shown a new clustering of allergy between melon and Plantago and grass pollens. The aim of the present study was to confirm these results by immunoblotting analysis and inhibition of immunoblotting. Sera from 3 patients with confirmed allergy to melon, and Dactylis glomerata and Plantago lanceolata pollens were used for the in vitro studies. SDS-PAGE and immunoblotting analysis with a pool of sera revealed that several distinct protein bands were shared by the three extracts at 14, 31, and a spectrum between 40 and 70 kDa, approximately. Immunoblotting inhibition experiments, performed with extracts of melon, Plantago and Dactylis, showed that all allergens of melon blotting were almost completely inhibited by grass and Plantago pollen extracts. Inversely, the melon extract was capable of inhibiting IgE-binding to various allergens of Dactylis at high mol mass and partially to the band at 14 kDa. Moreover, the melon almost totally inhibited the IgE-binding capacity to the proteins of Plantago extract. Taken together, the results support the presence of structurally similar allergens in melon, Plantago and grass pollens, and that all allergenic epitopes of the melon are present in these pollens.
Ouabain Modulates Zymosan-Induced Peritonitis in Mice
Leite, Jacqueline Alves; Alves, Anne Kaliery De Abreu; Galvão, José Guilherme Marques; Teixeira, Mariana Pires; Rumjanek, Vivian Mary; Rodrigues-Mascarenhas, Sandra
2015-01-01
Ouabain, a potent inhibitor of the Na+, K+-ATPase, was identified as an endogenous substance. Recently, ouabain was shown to affect various immunological processes. We have previously demonstrated the ability of ouabain to modulate inflammation, but little is known about the mechanisms involved. Thus, the aim of the present work is to evaluate the immune modulatory role of ouabain on zymosan-induced peritonitis in mice. Our results show that ouabain decreased plasma exudation (33%). After induction of inflammation, OUA treatment led to a 46% reduction in the total number of cells, as a reflex of a decrease of polymorphonuclear leukocytes, which does not appear to be due to cell death. Furthermore, OUA decreased TNF-α (57%) and IL-1β (58%) levels, without interfering with IL-6 and IL-10. Also, in vitro experiments show that ouabain did not affect endocytic capacity. Moreover, electrophoretic mobility shift assay (EMSA) shows that zymosan treatment increased (85%) NF-κB binding activity and that ouabain reduced (30%) NF-κB binding activity induced by zymosan. Therefore, our data suggest that ouabain modulated acute inflammatory response, reducing the number of cells and cytokines levels in the peritoneal cavity, as well as NFκB activation, suggesting a new mode of action of this substance. PMID:26078492
Mallik, Rangan; Wa, Chunling; Hage, David S.
2008-01-01
Two techniques were developed for the immobilization of proteins and other ligands to silica through sulfhydryl groups. These methods made use of maleimide-activated silica (the SMCC method) or iodoacetyl-activated silica (the SIA method). The resulting supports were tested for use in high-performance affinity chromatography by employing human serum albumin (HSA) as a model protein. Studies with normal and iodoacetamide-modified HSA indicated that these methods had a high selectivity for sulfhydryl groups on this protein, which accounted for the coupling of 77–81% of this protein to maleimide- or iodacetyl-activated silica. These supports were also evaluated in terms of their total protein content, binding capacity, specific activity, non-specific binding, stability and chiral selectivity for several test solutes. HSA columns prepared using maleimide-activated silica gave the best overall results for these properties when compared to HSA that had been immobilized to silica through the Schiff base method (i.e., an amine-based coupling technique). A key advantage of the supports developed in this work is that they offer the potential of giving greater site-selective immobilization and ligand activity than amine-based coupling methods. These features make these supports attractive in the development of protein columns for such applications as the study of biological interactions and chiral separations. PMID:17297940
Mokánszki, Attila; Molnár, Zsuzsanna; Ujfalusi, Anikó; Balogh, Erzsébet; Bazsáné, Zsuzsa Kassai; Varga, Attila; Jakab, Attila; Oláh, Éva
2012-12-01
Infertile men with low sperm concentration and/or less motile spermatozoa have an increased risk of producing aneuploid spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding may reduce genetic risks such as chromosomal rearrangements and numerical aberrations. Fluorescence in-situ hybridization (FISH) has been used to evaluate the presence of aneuploidies. This study examined spermatozoa of 10 oligozoospermic, 9 asthenozoospermic, 9 oligoasthenozoospermic and 17 normozoospermic men by HA binding and FISH. Mean percentage of HA-bound spermatozoa in the normozoospermic group was 81%, which was significantly higher than in the oligozoospermic (P<0.001), asthenozoospermic (P<0.001) and oligoasthenozoospermic (P<0.001) groups. Disomy of sex chromosomes (P=0.014) and chromosome 17 (P=0.0019), diploidy (P=0.03) and estimated numerical chromosome aberrations (P=0.004) were significantly higher in the oligoasthenozoospermic group compared with the other groups. There were statistically significant relationships (P<0.001) between sperm concentration and HA binding (r=0.658), between sperm concentration and estimated numerical chromosome aberrations (r=-0.668) and between HA binding and estimated numerical chromosome aberrations (r=-0.682). HA binding and aneuploidy studies of spermatozoa in individual cases allow prediction of reproductive prognosis and provision of appropriate genetic counselling. Infertile men with normal karyotypes and low sperm concentrations and/or less motile spermatozoa have significantly increased risks of producing aneuploid (diminished mature) spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding, based on a binding between sperm receptors for zona pellucida and HA, may reduce the potential genetic risks such as chromosomal rearrangements and numerical aberrations. In the present study we examined sperm samples of 45 men with different sperm parameters by HA-binding assay and fluorescence in-situ hybridization (FISH). Mean percentage of HA-bound spermatozoa in the normozoospermic group was significantly higher than the oligozoospermic, the asthenozoospermic and the oligoasthenozoospermic groups. Using FISH, disomy of sex chromosomes and chromosome 17, diploidy and estimated numerical chromosome aberration frequencies were significantly higher in the oligoasthenozoospermic group compared with the three other groups. A significant positive correlation was found between the sperm concentration and the HA-binding capacity, and significant negative correlations between the sperm concentration and the estimated numerical chromosomes aberrations as well as between the HA-binding ability and the estimated numerical chromosome aberrations were identified. We conclude that HA-binding assay and sperm aneuploidy study using FISH may help to predict the reproductive ability of selected infertile male patients and to provide appropriate genetic counselling. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Thermodynamics of Aryl-Dihydroxyphenyl-Thiadiazole Binding to Human Hsp90
Kazlauskas, Egidijus; Petrikaitė, Vilma; Michailovienė, Vilma; Revuckienė, Jurgita; Matulienė, Jurgita; Grinius, Leonas; Matulis, Daumantas
2012-01-01
The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic Kd approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors. PMID:22655030
2017-01-01
Prosthetic joint infection (PJI) is the most common cause of failure of total joint arthroplasty, but a gold standard for PJI diagnosis is still lacking. Advanced glycation end products (AGEs) are proinflammatory molecules inducing intracellular oxidative stress (OS) after binding to their cell membrane receptors (RAGE). The aim of this study was to evaluate plasmatic soluble receptor for advanced glycation end products (sRAGE), as a new OS and infection marker correlating sRAGE to the level of OS and antioxidant defenses, in PJI, in order to explore the possible application of this new biomarker in the early diagnosis of PJI. Plasmatic sRAGE levels (by ELISA assay), plasma antioxidant total defenses (by lag time method), plasma reactive oxygen species (ROS), and thiobarbituric acid reactive substance (TBARS) levels (by colorimetric assay) were evaluated in 11 PJI patients and in 30 matched controls. ROS and TBARS were significantly higher (p < 0.001) while plasma total antioxidant capacity and sRAGE were significantly lower (p < 0.01) in patients with PJI compared to controls. Our results confirm the OS in PJI and show a strong negative correlation between the level of sRAGE and oxidative status, suggesting the plasmatic sRAGE as a potential marker for improving PJI early diagnosis. PMID:29386700
Massaccesi, Luca; Bonomelli, Barbara; Marazzi, Monica Gioia; Drago, Lorenzo; Romanelli, Massimiliano Marco Corsi; Erba, Daniela; Papini, Nadia; Barassi, Alessandra; Goi, Giancarlo; Galliera, Emanuela
2017-01-01
Prosthetic joint infection (PJI) is the most common cause of failure of total joint arthroplasty, but a gold standard for PJI diagnosis is still lacking. Advanced glycation end products (AGEs) are proinflammatory molecules inducing intracellular oxidative stress (OS) after binding to their cell membrane receptors (RAGE). The aim of this study was to evaluate plasmatic soluble receptor for advanced glycation end products (sRAGE), as a new OS and infection marker correlating sRAGE to the level of OS and antioxidant defenses, in PJI, in order to explore the possible application of this new biomarker in the early diagnosis of PJI. Plasmatic sRAGE levels (by ELISA assay), plasma antioxidant total defenses (by lag time method), plasma reactive oxygen species (ROS), and thiobarbituric acid reactive substance (TBARS) levels (by colorimetric assay) were evaluated in 11 PJI patients and in 30 matched controls. ROS and TBARS were significantly higher ( p < 0.001) while plasma total antioxidant capacity and sRAGE were significantly lower ( p < 0.01) in patients with PJI compared to controls. Our results confirm the OS in PJI and show a strong negative correlation between the level of sRAGE and oxidative status, suggesting the plasmatic sRAGE as a potential marker for improving PJI early diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demura, T.; Driscoll, W.J.; Lee, Y.C.
1991-01-01
Nuclei of the guinea pig adrenal cortex contain a protein that specifically binds progesterone and that, biochemically, is clearly distinct from the classical progesterone receptor. The adrenocortical nuclear progesterone-binding protein has now been purified more than 2000-fold by steroid-affinity chromatography with a 75% yield. The purified protein preparation demonstrated three major bands on sodium dodecyl sulfate-polyacrylamide gel of 79K, 74K, and 50K. To determine which of the three might represent the progesterone-binding protein, steroid photoaffinity labeling was performed which resulted in the specific and exclusive labeling of a 50K band. Thus, the adrenocortical nuclear progesterone-binding protein appears to be distinctmore » from the classical progesterone receptor not only biochemically, but also on the basis of molecular size. To test whether the adrenocortical nuclear progesterone-binding protein can be hormonally stimulated, guinea pigs were treated with ACTH. The chronic administration of ACTH caused a 4- to 6-fold increase in the specific progesterone binding capacity without a change in the binding affinity. There appeared to be no significant difference in nuclear progesterone binding between the zona fasciculata and zona reticularis. This finding suggests a mediating role for the progesterone-binding protein in ACTH action. In addition, the nuclear progesterone-binding protein bound to nonspecific DNA sequences, further suggesting a possible transcriptional regulatory role.« less
Yu, Lin-Ling; Tao, Shi-Peng; Dong, Xiao-Yan; Sun, Yan
2013-08-30
To explore the details of protein uptake to polymer-grafted ion exchangers, Sepharose FF was modified with poly(ethylenimine) (PEI) to prepare anion exchanger of 10 different ionic capacities (ICs, 100-1220mmol/L). Adsorption equilibria and kinetics of bovine serum albumin (BSA) were then studied. It is found that ionic capacity, i.e., the coupling density of PEI, had significant effect on both adsorption capacity (qm) and effective protein diffusivity (De). With increasing ionic capacity, the qm value increased rapidly at IC<260mmol/L and then increased slowly till reaching a plateau at IC=600mmol/L. In the IC range of 100-600mmol/L, however, the De values kept at a low level (De/D0<0.07); it first decreased from 0.05±0.01 at IC=100mmol/L to 0.01±0.01 at IC=260mmol/L and then increased to 0.06±0.01 at IC=600mmol/L. Thereafter, sharp increases of the qm and De values [36% (from 201 to 273mg/mL) and 670% (from 0.06±0.01 to 0.49±0.04), respectively] were observed in the narrow range of IC from 600 to 740mmol/L. Finally, at IC>740mmol/L, the qm value decreased significantly while the De value increased moderately with increasing the IC. The results indicate that PEI chains played an important role in protein adsorption and transport. In brief, there was a critical IC (cIC) or PEI chain density, above which protein adsorption and transport behaviors changed drastically. The cIC was identified to be about 600mmol/L. Estimation of PEI grafting-layer thickness suggests that PEI chains formed an extended three-dimensional grafting-layer at IC>cIC, which provided high flexibility as well as accessibility of the chains for protein binding. Therefore, at IC>cIC, the adjacent PEI chains became close and flexible enough, leading to facilitated transport of adsorbed protein molecules by the interactions of neighboring chains mediated by the bound molecules. It is regarded as "chain delivery" effect. At the same time, improved accessibility of binding sites led the significant increase of binding capacity. The decrease of qm value at IC>740mmol/L is considered due to the decrease of effective porosity. The research has thus provided new insight into protein adsorption and transport in polymer-grafted ion-exchange media. Copyright © 2013 Elsevier B.V. All rights reserved.
Total Brain Death and the Integration of the Body Required of a Human Being.
Lee, Patrick
2016-06-01
I develop and refine an argument for the total brain death criterion of death previously advanced by Germain Grisez and me: A human being is essentially a rational animal, and so must have a radical capacity for rational operations. For rational animals, conscious sensation is a pre-requisite for rational operation. But total brain death results in the loss of the radical capacity for conscious sensation, and so also for rational operations. Hence, total brain death constitutes a substantial change-the ceasing to be of the human being. Objections are considered, including the objection that total brain death need not result in the loss of capacity for sensation, and that damage to the brain less than total brain death can result in loss of capacity for rational operations. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bansode, Rishipal R; Plundrich, Nathalie J; Randolph, Priscilla D; Lila, Mary Ann; Williams, Leonard L
2018-10-15
This study investigates the anti-allergic properties of peanut skin polyphenols (PSP)-enriched peanut (PN) protein aggregates. PSP was blended with PN flour at concentrations of 5, 10, 15, 30, and 40% (w/w). Rat basophil leukemia cells (RBL-2H3) were sensitized with either anti-DNP-IgE or PN-allergic plasma followed by co-exposure to unmodified PN flour (control) or PSP-PN protein aggregates and Ca 2+ ionophore, ionomycin. Immunoblotting and staining were performed to measure the IgE binding capacity of PSP-PN aggregates. Results showed that 30% PSP-PN aggregate significantly reduced β-hexosaminidase and histamine levels by 54.2% and 49.2%, respectively compared with control. Immunoblotting results revealed 40% PSP-PN aggregates significantly decreased IgE binding by 19%. The phosphorylation of p44/42 MAPK was significantly reduced while phosphorylation of p38 MAPK and SAPK/JNK increased upon PSP-PN protein aggregate exposure to the cells. Our results show that aggregation of PSP to PN proteins reduces allergic response by inhibiting Ca 2+ -induced MAPK-dependent cell degranulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Treatment of metal-contaminated wastewater: a comparison of low-cost biosorbents.
Akunwa, N K; Muhammad, M N; Akunna, J C
2014-12-15
This study aimed to identify some optimum adsorption conditions for the use of low-cost adsorbent, seaweed (Ascophyllum nodosum), sawdust and reed plant (Phragmites australis) root, in the treatment of metal contaminated wastewater for the removal of cadmium, chromium and lead. The effect of pH on the absorption capacity of each of these biosorbents was found to be significant and dependent on the metal being removed. Post-adsorption FTIR analysis showed significant binding activities at the nitro NO groups site in all biosorbents, especially for lead. Competitive metal binding was found to have possibly affected the adsorption capacity for chromium by A. nodosum more than it affected sawdust and P. australis root. Adsorption is believed to take place mainly by ion exchange particularly at low pH values. P. australis root exhibited the highest adsorption for chromium at pH 2, cadmium at pH 10 and lead at pH 7. A. nodosum seaweed species demonstrated the highest adsorption capacity of the three biosorbents used in the study, for cadmium at pH 7 and for lead at pH 2. Sawdust proved to be an efficient biosorbent for lead removal only at pH 7 and 10. No significant effect of temperature on adsorption capacity was observed, particularly for cadmium and lead removal. Copyright © 2014 Elsevier Ltd. All rights reserved.
New functionalized IRMOF-10 with strong affinity for methanol: A simulation study
NASA Astrophysics Data System (ADS)
Liu, Zewei; Zhang, Kai; Wu, Ying; Xi, Hongxia
2018-05-01
Grand Canonical Monte Carlo (GCMC) method simulation combined with density functional theory (DFT) calculation were used to investigate the methanol adsorption in IRMOF-10, with nitrogen and metal-doping functionalizations in order to understand the underlying performance of MOFs in methanol adsorption. New doped IRMOF-10s (M-2N-IRMOF-10, M = Be, Mg, Ca, Sr, Ba) were theoretically constructed by binding nitrogen atoms of organic linkers in N-doping IRMOF-10 (2N-IRMOF-10) with various metal atoms. 2N-IRMOF-10 shows only a little higher methanol capacity in the measured pressure range. However, M-2N-IRMOF-10s (especially Be-2N-IRMOF-10) demonstrate much higher methanol capacity due to the stronger interaction between the induced Be atoms and methanol molecules. Furthermore, the obtained results can be attributed to the new adsorption sites created by metal-doping, as revealed by the more exothermic binding energies (BEs) on Be-sites (-160.8 kJ/mol) than Zn-sites (-19.4 kJ/mol). According to the simulation results, it can be concluded that functionalized IRMOF-10 are capable of enhancing the adsorption capacity of methanol at pressure from 0 to 12 kPa at 298 K. This study provides a new functionalized method to effectively enhance methanol adsorption capacity of MOFs, which might extend the application of MOFs on methanol adsorption in the near future.
Tan, Chengquan; Wei, Hongkui; Zhao, Xichen; Xu, Chuanhui; Peng, Jian
2017-01-01
Objective : The aim of this study was to investigate the effects of supplementation of dietary soluble fibers with high water-binding capacity (WBC) and swelling capacity (SC) on gastrointestinal tract mass, physicochemical properties of digesta, gastrointestinal mean retention time (MRT), body weight, and food intake in male rats. Methods : Thirty-two male Sprague-Dawley rats were randomized to four equal groups and fed the control diet or diet containing 2% konjac flour (KF), pregelatinized waxy maize starch plus guar gum (PWMS+GG), andPWMS plus xanthan gum (PWMS+XG) for three weeks. Results : WBC and SC of diets followed the order of PWMS+GG > KF > PWMS + XG > control. PWMS+GG and KF groups had a lower average daily food intake than the control group, but all the groups showed no difference in final body weightand the weight gain rate. The high WBC and SC of the PWMS+GG and KF groupsled to an increase of WBC and SC in the stomach digesta, and a gain of the cecal digesta weight, due to increased cecal moisture content. Conclusion : The inclusion of the novel fiber, PWMS+GG, in the diet of male rats appears to facilitate the modulation of WBC and SC of stomach digesta and the reduction of food intake.
Coffinier, Yannick; Vijayalakshmi, Mookambeswaran A
2004-08-25
In this study, we attempted a limited combinatorial approach for designing affinity ligands based on mercaptoheterocyclic components. The template, divinyl sulfone structure (DVS), which was grafted on poly(ethylene vinyl alcohol) (PEVA) hollow fiber membrane, has served for the tethering of different heterocyclic compounds as pyridine, imidazole, purine and pyrimidine rings. Their ability to adsorb specifically IgG in a salt independent manner out of pure IgG solution, mixture of IgG/albumin and human plasma was demonstrated. Mercapto methyl imidazole (MMI) has shown the best adsorption of IgG in terms of binding capacity. No subclass discrimination was observed on all tested ligands except for mercapto methyl pyrimidine where the major IgG subclass adsorbed was IgG3. MMI gave an IgG binding capacity of 100 microg/cm2 of hollow fiber membrane surface area.
Ferrocene-Promoted Long-Cycle Lithium-Sulfur Batteries.
Mi, Yingying; Liu, Wen; Yang, Ke R; Jiang, Jianbing; Fan, Qi; Weng, Zhe; Zhong, Yiren; Wu, Zishan; Brudvig, Gary W; Batista, Victor S; Zhou, Henghui; Wang, Hailiang
2016-11-14
Confining lithium polysulfide intermediates is one of the most effective ways to alleviate the capacity fade of sulfur-cathode materials in lithium-sulfur (Li-S) batteries. To develop long-cycle Li-S batteries, there is an urgent need for material structures with effective polysulfide binding capability and well-defined surface sites; thereby improving cycling stability and allowing study of molecular-level interactions. This challenge was addressed by introducing an organometallic molecular compound, ferrocene, as a new polysulfide-confining agent. With ferrocene molecules covalently anchored on graphene oxide, sulfur electrode materials with capacity decay as low as 0.014 % per cycle were realized, among the best of cycling stabilities reported to date. With combined spectroscopic studies and theoretical calculations, it was determined that effective polysulfide binding originates from favorable cation-π interactions between Li + of lithium polysulfides and the negatively charged cyclopentadienyl ligands of ferrocene. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Osińska-Jaroszuk, Monika; Błachowicz, Adriana; Wydrych, Jerzy; Polak, Jolanta; Jarosz-Wilkołazka, Anna; Kandefer-Szerszeń, Martyna
2014-01-01
A new exopolysaccharide preparation isolated from stationary cultures of the white rot fungus Ganoderma applanatum (GpEPS) was tested in terms of its bioactive properties including its cytotoxic and immunostimulatory effect. The results indicate that the tested GpEPS (at concentrations above 22.85 µg/mL and 228.5 µg/mL) may exhibit selective activity against tumor cells (cell lines SiHa) and stimulate production of TNF-α THP-1-derived macrophages at the level of 752.17 pg/mL. The GpEPS showed antibacterial properties against Staphyloccoccus aureus and a toxic effect against Vibrio fischeri cells (82.8% cell damage). High cholesterol-binding capacity and triglycerides-binding capacity (57.9% and 41.6% after 24 h of incubation with the tested substances, resp.) were also detected for the investigated samples of GpEPS. PMID:25114920
Analysis of Protein Interactions at Native Chloroplast Membranes by Ellipsometry
Kriechbaumer, Verena; Nabok, Alexei; Mustafa, Mohd K.; Al-Ammar, Rukaiah; Tsargorodskaya, Anna; Smith, David P.; Abell, Ben M.
2012-01-01
Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE). We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins. PMID:22479632
Memory Binding Test Predicts Incident Amnestic Mild Cognitive Impairment.
Mowrey, Wenzhu B; Lipton, Richard B; Katz, Mindy J; Ramratan, Wendy S; Loewenstein, David A; Zimmerman, Molly E; Buschke, Herman
2016-07-14
The Memory Binding Test (MBT), previously known as Memory Capacity Test, has demonstrated discriminative validity for distinguishing persons with amnestic mild cognitive impairment (aMCI) and dementia from cognitively normal elderly. We aimed to assess the predictive validity of the MBT for incident aMCI. In a longitudinal, community-based study of adults aged 70+, we administered the MBT to 246 cognitively normal elderly adults at baseline and followed them annually. Based on previous work, a subtle reduction in memory binding at baseline was defined by a Total Items in the Paired (TIP) condition score of ≤22 on the MBT. Cox proportional hazards models were used to assess the predictive validity of the MBT for incident aMCI accounting for the effects of covariates. The hazard ratio of incident aMCI was also assessed for different prediction time windows ranging from 4 to 7 years of follow-up, separately. Among 246 controls who were cognitively normal at baseline, 48 developed incident aMCI during follow-up. A baseline MBT reduction was associated with an increased risk for developing incident aMCI (hazard ratio (HR) = 2.44, 95% confidence interval: 1.30-4.56, p = 0.005). When varying the prediction window from 4-7 years, the MBT reduction remained significant for predicting incident aMCI (HR range: 2.33-3.12, p: 0.0007-0.04). Persons with poor performance on the MBT are at significantly greater risk for developing incident aMCI. High hazard ratios up to seven years of follow-up suggest that the MBT is sensitive to early disease.
NASA Technical Reports Server (NTRS)
Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.
1992-01-01
Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.
The effect of interferon on the receptor sites to rabies virus on mouse neuroblastoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, D.J.
1989-01-01
The binding of rabies virus to mouse neuroblastoma cells (MNA) primed with alpha interferon (IFN-{alpha}), beta interferon (IFN-{beta}), or alpha bungarotoxin (BTX) was examined. A saturable number of receptor sites to rabies virus was calculated by increasing the amount of {sup 3}H-CVS added to a constant number of untreated MNA cells. MNA cells were then exposed to 20 I.U. of IFN-{alpha}, IFN-{beta}, or 1 {mu}g of BTX and assayed to determine if these treatments had an effect on the number of receptor sites to rabies virus. Total amount of {sup 3}H-CVS bound to MNA cells was determined during a threemore » hour incubation period. Cold competition assays using 1,000 fold excess unlabeled CVS were used to determine non-specific binding for each treatment. Specific binding was then calculated by subtracting non-specific binding from the total amount of CVS bound to MNA cells. A similar amount of total viral protein bound to untreated and IFN-{beta}, and BTX treated cells after 180 minutes of incubation. The bound protein varied by only 0.07 {mu}g. However, the amount of specific and non-specific binding varied a great deal between treatments. BTX caused an increase in non-specific and a decrease in specific binding of rabies virus. IFN-{beta} produced variable results in non-specific and specific binding while IFN-{alpha} caused mainly specific binding to occur. The most significant change brought about by IFN-{alpha} was an increase in the rate of viral attachment. At 30 minutes post-infection, IFN-{alpha} treated cells had bound 90% of the total amount of virus bound to untreated cells after 180 minutes. The increased binding rate did not cause a productive infection of rabies virus. No viral production was evident after an incubation period of 48 hours in either IFN-{alpha} or IFN-{beta} treated cells.« less
Characterization of exochelins of the Mycobacterium bovis type strain and BCG substrains.
Gobin, J; Wong, D K; Gibson, B W; Horwitz, M A
1999-04-01
Pathogenic mycobacteria must acquire iron in the host in order to multiply and cause disease. To do so, they release abundant quantities of siderophores called exochelins, which have the capacity to scavenge iron from host iron-binding proteins and deliver it to the mycobacteria. In this study, we have characterized the exochelins of Mycobacterium bovis, the causative agent of bovine and occasionally of human tuberculosis, and the highly attenuated descendant of M. bovis, bacillus Calmette-Guérin (BCG), widely used as a vaccine against human tuberculosis. The M. bovis type strain, five substrains of M. bovis BCG (Copenhagen, Glaxo, Japanese, Pasteur, and Tice), and two strains of virulent Mycobacterium tuberculosis all produce the same set of exochelins, although the relative amounts of individual exochelins may differ. Among these mycobacteria, the total amount of exochelins produced is greatest in M. tuberculosis, intermediate in M. bovis, and smallest in M. bovis BCG.
Singh, Naveen Kumar; DSouza, Roy N; Bibi, Noor Shad; Fernández-Lahore, Marcelo
2015-01-01
Immobilized metal-ion affinity chromatography (IMAC) has been developed for the rapid isolation and purification of recombinant proteins. In this chapter, megaporous cryogels were synthesized having metal-ion affinity functionality, and their adsorptive properties were investigated. These cryogels have large pore sizes ranging from 10 to 100 μm with corresponding porosities between 80 and 90%. The synthesized IMAC-cryogel had a total ligand density of 770 μmol/g. Twelve milligram of a His6-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) can be purified from a crude cell extract per gram of IMAC-cryogels. The protein binding capacity is increased with higher degrees of grafting, although a slight decrease in column efficiency may result. This chapter provides methodologies for a rapid single-step purification of recombinant His6-tagged proteins from crude cell extracts using IMAC-cryogels.
Pore size distribution of OPC and SRPC mortars in presence of chlorides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryavanshi, A.K.; Scantlebury, J.D.; Lyon, S.B.
1995-07-01
The pore structure of chloride-free ordinary portland cement (OPC) and sulphate resistant portland cement (SRPC) mortars are compared with the corresponding mortars with NaCl and CaCl{sub 2} added during mixing. In both OPC and SRPC mortars the addition of chlorides reduced the total accessible pore volumes compared to the corresponding chloride-free mortars. Also, in the presence of chlorides, the number of coarse pores were increased. These changes in the pore structure are believed to be due to dense calcium silicate hydrate (C-S-H) gel morphology formed in the presence of chlorides. The SRPC showed greater changes in pore structures than themore » OPC with equivalent amounts of chlorides added. This may be due to the lower chloride binding capacity of the SRPC and hence the higher availability of free chlorides to modify the gel morphology.« less
Kitzmüller, Claudia; Kalser, Julia; Mutschlechner, Sonja; Hauser, Michael; Zlabinger, Gerhard J; Ferreira, Fatima; Bohle, Barbara
2018-01-01
Recombinant fusion proteins of flagellin and antigens have been demonstrated to induce strong innate and adaptive immune responses. Such fusion proteins can enhance the efficacy of allergen-specific immunotherapy. We sought to characterize different fusion proteins of flagellin and the major birch pollen allergen Bet v 1 for suitability as allergy vaccines. A truncated version of flagellin (NtCFlg) was genetically fused to the N- or C-terminus of Bet v 1. Toll-like receptor (TLR) 5 binding was assessed with HEK293 cells expressing TLR5. Upregulation of CD40, CD80, CD83, and CD86 on monocyte-derived dendritic cells from allergic patients was analyzed by using flow cytometry. The T cell-stimulatory capacity of the fusion proteins was assessed with naive and Bet v 1-specific T cells. IgE binding was tested in inhibition ELISAs and basophil activation tests. Mice were immunized with the fusion proteins in the absence and presence of aluminum hydroxide. Cellular and antibody responses were monitored. Murine antibodies were tested for blocking capacity in basophil activation tests. Both fusion proteins matured monocyte-derived dendritic cells through TLR5. Compared with Bet v 1, the fusion proteins showed stronger T cell-stimulatory and reduced IgE-binding capacity and induced murine Bet v 1-specific antibodies in the absence of aluminum hydroxide. However, only antibodies induced by means of immunization with NtCFlg fused to the C-terminus of Bet v 1 inhibited binding of patients' IgE antibodies to Bet v 1. Bet v 1-flagellin fusion proteins show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity and thus represent promising vaccines for birch pollen allergen-specific immunotherapy. However, the sequential order of allergen and adjuvant within a fusion protein determines its immunologic characteristics. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.
Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi
2014-05-27
Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.
Pandey, Pallavi; Reddy, N Venugopal; Rao, V Arun Prasad; Saxena, Aditya; Chaudhary, C P
2015-03-01
The aim of the study was to evaluate salivary flow rate, pH, buffering capacity, calcium, total protein content and total antioxidant capacity in relation to dental caries, age and gender. The study population consisted of 120 healthy children aged 7-15 years that was further divided into two groups: 7-10 years and 11-15 years. In this 60 children with DMFS/dfs = 0 and 60 children with DMFS/dfs ≥5 were included. The subjects were divided into two groups; Group A: Children with DMFS/dfs = 0 (caries-free) Group B: Children with DMFS/dfs ≥5 (caries active). Unstimulated saliva samples were collected from all groups. Flow rates were determined, and samples analyzed for pH, buffer capacity, calcium, total protein and total antioxidant status. Salivary antioxidant activity is measured with spectrophotometer by an adaptation of 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) assays. The mean difference of the two groups; caries-free and caries active were proved to be statistically significant (P < 0.05) for salivary calcium, total protein and total antioxidant level for both the sexes in the age group 7-10 years and for the age 11-15 years the mean difference of the two groups were proved to be statistically significant (P < 0.05) for salivary calcium level for both the sexes. Salivary total protein and total antioxidant level were proved to be statistically significant for male children only. In general, total protein and total antioxidants in saliva were increased with caries activity. Calcium content of saliva was found to be more in caries-free group and increased with age.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-13
... agency decision to exempt BMW as a vehicle manufacturer from the notification and recall responsibilities... seating capacity as ``2'' when in fact it should be ``3,'' and the total designated seating capacity as...- pillar. * * * (b)Designated seated capacity (expressed in terms of total number of occupants and number...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-23
... reversible pump turbine with a total installed generating capacity of 250 megawatts (MW); (6) a transformer... with a total installed generating capacity of 250 MW; (6) a transformer hall; (7) a lower reservoir; (8... installed generating capacity of 250 MW; (6) a transformer hall; (7) a lower reservoir with a storage...
Link, Nils; Brunner, Tobias J; Dreesen, Imke A J; Stark, Wendelin J; Fussenegger, Martin
2007-12-01
Owing to their small size, synthetic nanoparticles show unprecedented biophysical and biochemical properties which may foster novel advances in life-science research. Using flame-spray synthesis technology we have produced non-coated aluminum-, calcium-, cerium-, and zirconium-derived inorganic metal oxide nanoparticles which not only exhibit high affinity for nucleic acids, but can sequester such compounds from aqueous solution. This non-covalent DNA-binding capacity was successfully used to transiently transfect a variety of mammalian cells including human, reaching transfection efficiencies which compared favorably with classic calcium phosphate precipitation (CaP) procedures and lipofection. In this straightforward protocol, transfection was enabled by simply mixing nanoparticles with DNA in solution prior to addition to the target cell population. Transiently transfected cells showed higher production levels of the human secreted glycoprotein SEAP compared to isogenic populations transfected with established technologies. Inorganic metal oxide nanoparticles also showed a high binding capacity to human-pathogenic viruses including adenovirus, adeno-associated virus and human immunodeficiency virus type 1 and were able to clear these pathogens from aqueous solutions. The DNA transfection and viral clearance capacities of inorganic metal oxide nanoparticles may provide cost-effective biopharmaceutical manufacturing and water treatment in developing countries.
Wu, Hao; Meng, Qingxiang; Yu, Zhongtang
2015-06-01
The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abbasi, Arshad Mehmood; Guo, Xinbo; Fu, Xiong; Zhou, Lin; Chen, Youngsheng; Zhu, Yong; Yan, Huaifeng; Liu, Rui Hai
2015-01-01
Mango (Mangifera indica L.), also called “the king of fruits”, is one of the most popular fruits in tropical regions. Pulp and peel samples of mango cultivars were analyzed to estimate total phenolic, total flavonoid and total anthocyanin contents. Phenolic acids, hydrophilic peroxyl radical scavenging capacity (hydro-PSC) and oxygen radical scavenging capacity (ORAC) in vitro were also determined. Total phenolics and flavonoid contents were found maximum in the peel of Xiao Tainang and Da Tainang cultivars, respectively, whereas Xiao Tainang also exhibited significant antioxidant capacity. Noteworthy, concentrations of gallic acid, protocatechuic acid, ferulic acid, chlorogenic acid and caffeic acids at 79.15, 64.33, 33.75, 27.19 and 13.62 mg/100 g fresh weight (FW) were quantified for Da Tainang, Xiao Tainang and of Jidan cultivars, respectively. Comparatively, a higher level of phenolics and significant antioxidant capacity in mango peel indicated that it might be useful as a functional food and value-added ingredient to promote human health. PMID:26075869
Staat, R H; Peyton, J C
1984-01-01
It is proposed that binding of oral streptococci to saliva-coated hydroxylapatite (SHA) surfaces is a multifactorial process involving both specific and nonspecific receptors. In this context, specific binding is described as a high-affinity, saturable interaction between the cell and binding surface. Conversely, nonspecific binding is considered to be a nonsaturable, generalized, low-affinity reaction. Experimental differentiation of specific binding from nonspecific binding was achieved with a competition assay which utilized a large excess of nonradiolabeled bacteria to compete with the 3H-labeled cells for attachment to receptors on 1.5 mg of SHA crystals. Competition assays of Streptococcus sanguis and Streptococcus mitis adhesion clearly demonstrated that the total binding isotherm was composed of a saturable specific binding reaction and a minor nonspecific binding component. This was further substantiated by analysis of nonlinear Scatchard plots of the total binding data. The competition data for Streptococcus mutans binding indicated that ca. 50% of the S. mutans binding appeared to be specific, although saturation of the SHA surfaces with bacterial cells could not be demonstrated. Experiments measuring desorption of radiolabeled cells from SHA crystals into buffer showed that ca. 50% of the bound S. mutans cells were removed after 4 h, whereas less than 5% of the S. sanguis cells were eluted from the SHA surfaces. The kinetics of attachment were studied by using an extract of Persea americana as a noncompetitive inhibitor of adherence. The total cell binding data for these experiments suggested a very rapid binding reaction followed by a slower rate of attachment. It was concluded from these three different experimental approaches that adherence of selected oral streptococci to SHA surfaces involves specific, high-affinity and nonspecific, low-affinity binding reactions. The concept is developed that in vitro streptococcal attachment to SHA can be described as a two-reaction process in which the low-affinity interaction of the cell with the SHA surface precedes the establishment of the stronger, specific bonds needed for the maintenance of streptococci in the oral cavity. PMID:6327530
The complexity of minocycline serum protein binding.
Zhou, Jian; Tran, Brian T; Tam, Vincent H
2017-06-01
Serum protein binding is critical for understanding the pharmacology of antimicrobial agents. Tigecycline and eravacycline were previously reported to have atypical non-linear protein binding; the percentage of free fraction decreased with increasing total concentration. In this study, we extended the investigation to other tetracyclines and examined the factors that might impact protein binding. Different minocycline concentrations (0.5-50 mg/L) and perfusion media (saline, 0.1 M HEPES buffer and 0.1 and 1 M PBS) were examined by in vitro microdialysis. After equilibration, two dialysate samples were taken from each experiment and the respective antimicrobial agent concentrations were analysed by validated LC-MS/MS methods. For comparison, the serum protein bindings of doxycycline and levofloxacin were also determined. The free fraction of minocycline decreased with increasing total concentration, and the results depended on the perfusion media used. The trends of minocycline protein binding in mouse and human sera were similar. In addition, serum protein binding of doxycycline showed the same concentration-dependent trend as minocycline, while the results of levofloxacin were concentration independent. The serum protein bindings of minocycline and doxycycline are negatively correlated with their total concentrations. It is possible that all tetracyclines share the same pharmacological property. Moreover, the specific perfusion media used could also impact the results of microdialysis. Additional studies are warranted to understand the mechanism(s) and clinical implications of serum protein binding of tetracyclines. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Amorim, Irina; Freitas, Daniela P; Magalhães, Ana; Faria, Fátima; Lopes, Célia; Faustino, Augusto M; Smet, Annemieke; Haesebrouck, Freddy; Reis, Celso A; Gärtner, Fátima
2014-08-01
The gastric mucosa of dogs is often colonized by non-Helicobacter pylori helicobacters (NHPH), while H. pylori is the predominant gastric Helicobacter species in humans. The colonization of the human gastric mucosa by H. pylori is highly dependent on the recognition of host glycan receptors. Our goal was to define the canine gastric mucosa glycophenotype and to evaluate the capacity of different gastric Helicobacter species to adhere to the canine gastric mucosa. The glycosylation profile in body and antral compartments of the canine gastric mucosa, with focus on the expression of histo-blood group antigens was evaluated. The in vitro binding capacity of FITC-labeled H. pylori and NHPH to the canine gastric mucosa was assessed in cases representative of the canine glycosylation pattern. The canine gastric mucosa lacks expression of type 1 Lewis antigens and presents a broad expression of type 2 structures and A antigen, both in the surface and glandular epithelium. Regarding the canine antral mucosa, H. heilmannii s.s. presented the highest adhesion score whereas in the body region the SabA-positive H. pylori strain was the strain that adhered more. The canine gastric mucosa showed a glycosylation profile different from the human gastric mucosa suggesting that alternative glycan receptors may be involved in Helicobacter spp. binding. Helicobacter pylori and NHPH strains differ in their ability to adhere to canine gastric mucosa. Among the NHPH, H. heilmannii s.s. presented the highest adhesion capacity in agreement with its reported colonization of the canine stomach. © 2014 John Wiley & Sons Ltd.
Fish protein hydrolysates: application in deep-fried food and food safety analysis.
He, Shan; Franco, Christopher; Zhang, Wei
2015-01-01
Four different processes (enzymatic, microwave-intensified enzymatic, chemical, and microwave-intensified chemical) were used to produce fish protein hydrolysates (FPH) from Yellowtail Kingfish for food applications. In this study, the production yield and oil-binding capacity of FPH produced from different processes were evaluated. Microwave intensification significantly increased the production yields of enzymatic process from 42% to 63%. It also increased the production yields of chemical process from 87% to 98%. The chemical process and microwave-intensified chemical process produced the FPH with low oil-binding capacity (8.66 g oil/g FPH and 6.25 g oil/g FPH), whereas the microwave-intensified enzymatic process produced FPH with the highest oil-binding capacity (16.4 g oil/g FPH). The FPH from the 4 processes were applied in the formulation of deep-fried battered fish and deep-fried fish cakes. The fat uptake of deep-fried battered fish can be reduced significantly from about 7% to about 4.5% by replacing 1% (w/w) batter powder with FPH, and the fat uptake of deep-fried fish cakes can be significantly reduced from about 11% to about 1% by replacing 1% (w/w) fish mince with FPH. Food safety tests of the FPH produced by these processes demonstrated that the maximum proportion of FPH that can be safely used in food formulation is 10%, due to its high content of histamine. This study demonstrates the value of FPH to the food industry and bridges the theoretical studies with the commercial applications of FPH. © 2015 Institute of Food Technologists®
Suzuki, Takao; Muto, Shigeaki; Miyata, Yukio; Maeda, Takao; Odate, Takayuki; Shimanaka, Kimio; Kusano, Eiji
2015-06-01
A K(+) -adsorption filter was developed to exchange K(+) in the supernatant of stored irradiated red blood cells with Na(+) . To date, however, the filter's adsorption capacity for K(+) has not been fully evaluated. Therefore, we characterized the cation-binding capacity of this filter. Artificial solutions containing various cations were continuously passed through the filter in 30 mL of sodium polystyrene sulfonate at 10 mL/min using an infusion pump at room temperature. The cation concentrations were measured before and during filtration. When a single solution containing K(+) , Li(+) , H(+) , Mg(2+) , Ca(2+) , or Al(3+) was continuously passed through the filter, the filter adsorbed K(+) and the other cations in exchange for Na(+) in direct proportion to the valence number. The order of affinity for cation adsorption to the filter was Ca(2+) >Mg(2+) >K(+) >H(+) >Li(+) . In K(+) -saturated conditions, the filter also adsorbed Na(+) . After complete adsorption of these cations on the filter, their concentration in the effluent increased in a sigmoidal manner over time. Cations that were bound to the filter were released if a second cation was passed through the filter, despite the different affinities of the two cations. The ability of the filter to bind cations, especially K(+) , should be helpful when it is used for red blood cell transfusion at the bedside. The filter may also be useful to gain a better understanding of the pharmacological properties of sodium polystyrene sulfonate. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.
Wen, Zhimou; Berenbaum, May R; Schuler, Mary A
2006-03-01
The structural and biosynthetic diversity of allelochemicals in plants is thought to arise from selection for additive toxicity as a consequence of toxin mixture or for enhanced toxicity as a result of synergism. In order to understand how insects cope with this type of plant defense, we tested the effects of some allelochemicals in host plants of the black swallowtail Papilio polyxenes on the xanthotoxin-metabolic activity of CYP6B1, the principal enzyme responsible for the detoxification of furanocoumarins in this caterpillar. Additionally, the effects of some synthetic compounds not normally encountered by P. polyxenes on CYP6B1 were tested. These studies demonstrate that the integrity of furanocoumarin structure is important for competitive binding to the active site of CYP6B1, even though the carbonyl group on the pyranone ring apparently does not affect its inhibitory capacity, as in the case of furanochromones. Angular furanocoumarins are generally less phototoxic to many organisms than linear furanocoumarins due to their reduced capacity for cross-linking DNA strands, yet they are more toxic than linear furanocoumarins to black swallowtail larvae. This enhanced toxicity in vivo may be due to the ability of angular furanocoumarins to bind to the active site of CYP6B1 without being rapidly metabolized. This binding reduces the availability of CYP6B1 to metabolize other linear furanocoumarins. The structure-activity relationships for methylenedioxyphenyl compounds, flavonoids, imidazole, and imidazole derivatives are also discussed in light of their capacity to inhibit the xanthotoxin-metabolic activity of CYP6B1.
Chen, Yajing; Xiong, Zhichao; Zhang, Lingyi; Zhao, Jiaying; Zhang, Quanqing; Peng, Li; Zhang, Weibing; Ye, Mingliang; Zou, Hanfa
2015-02-21
Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g(-1)), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples.
Physicochemical properties and biological activities of DEAE-derivatized Sphingomonas gellan.
Yoo, Sang-Ho; Lee, Kyung Hee; Lee, Ji-Soo; Cha, Jaeho; Park, Cheon Seok; Lee, Hyeon Gyu
2005-08-10
Physicochemical characteristics and biological activities of Sphingomonas gellan (S-gellan) were investigated. The S-gellan weight fractions of Glc and GlcUA were 0.45 and 0.25, respectively, and the molar ratio of Glc:Rha:GlcUA was approximately 4:2:3. The S-gellan was chemically derivatized with diethylaminoethyl chloride-HCl (DEAE-HCl), and the resulting modified S-gellan contained both positive and negative charges. The elemental and IR analyses were conducted to confirm the successful incorporation of DEAE groups into S-gellan. A large increase in nitrogen fraction was observed from the derivatized S-gellan by elemental analysis. The IR absorption bands induced by C-H, C-N, and C-O-C stretching were noticeable at 2950, 1310-1380, and 1000-1150 cm(-1), respectively, resulting from the DEAE substitution. The characteristic CH3 and CH2 peaks originated from the DEAE group were detected in the 1H NMR spectrum of the derivatized S-gellan as well. The solubility of native S-gellan was improved almost twice from 40% to 75% after DEAE derivatization, while water holding capacity (WHC) drastically decreased from 10026% to 245%. Oil binding capacity (OBC) of S-gellan also significantly dropped from 1528% to 331% after the derivatization. The bile acid binding capacity of S-gellan was indirectly determined by measuring the holding capability of cholic acid inside the dialysis membrane (MWCO 12,000-14,000 Da). Once S-gellan was DEAE derivatized, there was substantial increase in the cholic acid retardation index (CRI). Up to 9 h of dialysis, the derivatized S-gellan released 29.3% less of cholic acid compared to the control group that did not contain S-gellan. From these results of the improved water solubility and stronger bile acid binding capacity, it would be suggested that the DEAE-derivatized S-gellan has more advantages than gellan itself for functional food applications.
Iarkova, M A
2011-01-01
The level of specific 3H-flunitrazepam binding in synaptosomal membranes of C57BL/6 and BALB/c mice brain underwent to the stress of different types has been studied. Mild stress (Elevated Plus Maze) was shown to induce the decrease of benzodiazepine binding in BALB/c mice only, while the strong one (Exposure to a predator) was revealed to cause this decrease in both strains. Behavioral effects of different non-benzodiazepine drugs possessing anxiolytic properties (Afobazol, Ladasten and Noopept) was accompanied with the normalization of the level of benzodiazepine reception, reduced by the stress of both modalities.
Effect of molecular parameters on the binding of phenoxyacetic acid derivatives to albumins.
Cserháti, T; Forgács, E; Deyl, Z; Miksík, I
2001-03-25
The interaction of 12 phenoxyacetic acid derivatives with human and serum albumin as well as with egg albumin was studied by charge-transfer reversed-phase (RP) thin-layer chromatography (TLC) and the relative strength of interaction was calculated. Each phenoxyacetic acid derivative interacted with human and bovine serum albumins whereas no interaction was observed with egg albumin. Stepwise regression analysis proved that the lipophilicity of the derivatives exert a significant impact on their capacity to bind to serum albumins. This result supports the hypothesis that the binding of phenoxyacetic acid derivatives to albumins may involve hydrophobic forces occurring between the corresponding apolar substructures of these derivatives and the amino acid side chains.
Kilburn, K H; Warshaw, R H; Thornton, J C; Thornton, K; Miller, A
1992-01-01
BACKGROUND: Published predicted values for total lung capacity and residual volume are often based on a small number of subjects and derive from different populations from predicted spirometric values. Equations from the only two large studies gave smaller predicted values for total lung capacity than the smaller studies. A large number of subjects have been studied from a population which has already provided predicted values for spirometry and transfer factor for carbon monoxide. METHODS: Total lung capacity was measured from standard posteroanterior and lateral chest radiographs and forced vital capacity by spirometry in a population sample of 771 subjects. Prediction equations were developed for total lung capacity (TLC), residual volume (RV) and RV/TLC in two groups--normal and total. Subjects with signs or symptoms of cardiopulmonary disease were combined with the normal subjects and equations for all subjects were also modelled. RESULTS: Prediction equations for TLC and RV in non-smoking normal men and women were square root transformations which included height and weight but not age. They included a coefficient for duration of smoking in current smokers. The predictive equation for RV/TLC included weight, age, age and duration of smoking for current smokers and ex-smokers of both sexes. For the total population the equations took the same form but the height coefficients and constants were slightly different. CONCLUSION: These population based prediction equations for TLC, RV and RV/TLC provide reference standards in a population that has provided reference standards for spirometry and single breath transfer factor for carbon monoxide. PMID:1412094
Mozaffari, Hadis; Daneshzad, Elnaz; Surkan, Pamela J; Azadbakht, Leila
2018-05-01
Measurement of dietary total antioxidant capacity (DTAC) is considered a new holistic dietary approach and assesses total antioxidants present in the overall diet. Our aim was to perform a comprehensive review of the literature on the association between DTAC and cardiovascular disease (CVD) risk factors. PubMed, Web of Science, and Scopus were used to conduct a comprehensive search for articles published on this topic through September 2017. There was no limit on earliest year of publication. The search was based on the following keywords: dietary total antioxidant capacity, nonenzymatic antioxidant capacity, total radical-trapping antioxidant parameter, ferric reducing ability of plasma, oxygen radical absorbance capacity, Trolox equivalent antioxidant capacity, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), total cholesterol (TC), waist circumference (WC), insulin resistance, homeostatic model assessment of insulin resistance (HOMA-IR), insulin, obesity, glucose, C-reactive protein (CRP), blood pressure (BP), and body mass index. In total, 16 papers were identified for inclusion in the present systematic review. Most well-designed studies that evaluated associations between DTAC and CVD risk factors showed inverse associations for fasting blood glucose, CRP, BP, and WC and positive associations for HDL-C. However, there was no association between DTAC and LDL-C or TC in any of the studies. Results regarding the association of DTAC with insulin, HOMA-IR, high-sensitivity CRP, and TG in the published literature were inconsistent. Findings indicated a substantial association between high DTAC and most CVD-related risk factors.
Dahlman, Lena; Persson, Jörgen; Näsholm, Torgny; Palmqvist, Kristin
2003-05-01
With the aim of understanding how some lichens can survive intensive fertilization we investigated two green algal ( Trebouxia) lichens, Hypogymnia physodes (L.) Nyl. and Platismatia glauca (L.) W. Culb., and compared control (Ctr), and intensively fertilized (F) thalli. We measured total N, proteins and amino acids to assess lichen N status. Chlorophyll a indicated photosynthetic capacity and photobiont mass, ergosterol the metabolic demands of the fungus, and chitin the fungal biomass. For carbon status we measured glucose, the photobiont ( Trebouxia) export product ribitol, and the mycobiont-specific carbohydrates arabitol and mannitol. The F-thalli had 2-3 times higher protein and N concentrations, 5-10 times higher chlorophyll a concentrations, while ergosterol and chitin were doubled. The ribitol concentrations were 4-5 times higher in the F-thalli, while the fungal carbohydrates did not increase to the same extent. The amino acid arginine had increased 60-fold. The F-thalli also had a relatively higher N investment in the photobiont in relation to mycobiont tissue compared to the Ctr-thalli, probably resulting in an increased capacity for carbon assimilation, most possibly required for maintaining the higher nutrient status of the F-thalli. Arginine accumulation possibly avoided toxic effects of accumulated NH4+, albeit binding a significant fraction of assimilated carbon.
Marsh, Lorraine
2015-01-01
Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.
NASA Astrophysics Data System (ADS)
Zhang, Huijie; Yamazaki, Tomohiko; Zhi, Chunyi; Hanagata, Nobutaka
2012-09-01
CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7 (BNNS-BP7) were taken up by cells and showed no cytotoxicity, and CpG ODNs were successfully crosslinked with BP7 to create BP7-CpG ODN conjugates. Using BP7 as a linker, the loading efficiency of CpG ODNs on BNNS increased 5-fold compared to the direct binding of CpG ODNs to BNNS. Furthermore, the BP7-CpG ODN conjugate-loaded BNNS had a greater capacity to induce interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production from peripheral blood mononuclear cells (PBMCs) than that of CpG ODNs directly loaded on BNNS. The higher amount of cytokine induction by BP7-CpG ODN conjugate-loaded BNNS may be attributed to a higher loading capacity and stronger binding to BNNS of the linker BP7. The greater functionality of BP7-conjugated CpG ODNs on BNNS expands the potential of BNNS for drug delivery applications.CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7 (BNNS-BP7) were taken up by cells and showed no cytotoxicity, and CpG ODNs were successfully crosslinked with BP7 to create BP7-CpG ODN conjugates. Using BP7 as a linker, the loading efficiency of CpG ODNs on BNNS increased 5-fold compared to the direct binding of CpG ODNs to BNNS. Furthermore, the BP7-CpG ODN conjugate-loaded BNNS had a greater capacity to induce interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production from peripheral blood mononuclear cells (PBMCs) than that of CpG ODNs directly loaded on BNNS. The higher amount of cytokine induction by BP7-CpG ODN conjugate-loaded BNNS may be attributed to a higher loading capacity and stronger binding to BNNS of the linker BP7. The greater functionality of BP7-conjugated CpG ODNs on BNNS expands the potential of BNNS for drug delivery applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31189e
Diminished hepatic growth hormone receptor binding in sex-linked dwarf broiler and leghorn chickens.
Leung, F C; Styles, W J; Rosenblum, C I; Lilburn, M S; Marsh, J A
1987-02-01
Hepatic growth hormone (GH) receptor binding was compared in normal and sex-linked dwarfs (SLD) from both Hubbard and Cornell strain chickens. At 6, 8, and 20 weeks of age, hepatic GH receptor binding in the Hubbard SLD chickens was significantly lower than that of normal fast-growing birds. At 20 weeks of age, only 2 of 22 SLD chickens in the Hubbard broiler strain showed positive binding at a high enough level to allow for Scatchard analysis. The affinity constants and binding capacities of these two SLD chickens were numerically (but not significantly) lower than those of the normal fast-growing birds. We further examined hepatic GH receptor binding in two closely related White Leghorn strains of chickens that have been maintained as closed breeding populations for many years. We observed no detectable hepatic GH binding in the Cornell SLD chickens (N = 20), as compared to the normal-growing control strain (K strain). In both SLD strains, pretreatment with 4 M MgCl2 did not enhance GH binding, suggesting that there was no endogenous GH binding to the receptor. Based on these data, we suggest that the lack, or greatly reduced number, of GH receptors may be a major contributing factor to the dwarfism observed in these strains.
NASA Astrophysics Data System (ADS)
Maity, Subhajit; Chakraborty, Sandipan; Chakraborti, Abhay Sankar
2017-02-01
The present study demonstrates critical insight into the binding of a bioactive flavanone naringenin with normal human haemoglobin (NHb). Both spectrophotometric and spectrofluorimetric studies reveal that naringenin interacts with NHb. The binding affinity constant and number of binding sites appear to be approximately (1.5 ± 0.2) × 104 M-1 and 1, respectively. Static quenching seems to be an important factor in binding process, as evident from steady-state and time-resolved fluorescence spectroscopic studies. Far UV circular dichroism spectroscopy depicts that binding of naringenin to NHb causes no change in the secondary structure of the protein, which is also evident from Fourier transform infrared spectroscopic study. Free energy change (ΔG0) for naringenin-NHb interaction, determined by spectroscopic and isothermal calorimetric method, appears to be -5.67 kcal/mol and -6.90 kcal/mol, respectively, and is close to the docking energy -6.84 kcal/mol. Molecular docking suggests that naringenin binds near the cavity of the tetrameric heme protein, forming hydrogen bonds with surrounding amino acid residues. The binding site is away from the heme moieties, implicating naringenin binding does not affect the oxygen binding capacity of NHb, which makes the protein a suitable carrier of the flavonoid.
Individual differences in working memory capacity and workload capacity.
Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta
2014-01-01
We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.
A Single Rainbow Trout Cobalamin-binding Protein Stands in for Three Human Binders
Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S.; Højrup, Peter; Poulsen, Steen S.; Nexo, Ebba
2012-01-01
Cobalamin uptake and transport in mammals are mediated by three cobalamin-binding proteins: haptocorrin, intrinsic factor, and transcobalamin. The nature of cobalamin-binding proteins in lower vertebrates remains to be elucidated. The aim of this study was to characterize the cobalamin-binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases, it appeared to be the same protein based on analysis of partial sequences and immunological responses. The trout cobalamin-binding protein was purified from roe fluid, sequenced, and further characterized. Like haptocorrin, the trout cobalamin-binding protein was stable at low pH and had a high binding affinity for the cobalamin analog cobinamide. Like haptocorrin and transcobalamin, the trout cobalamin-binding protein was present in plasma and recognized ligands with altered nucleotide moiety. Like intrinsic factors, the trout cobalamin-binding protein was present in the stomach and resisted degradation by trypsin and chymotrypsin. It also resembled intrinsic factor in the composition of conserved residues in the primary cobalamin-binding site in the C terminus. The trout cobalamin-binding protein was glycosylated and displayed spectral properties comparable with those of haptocorrin and intrinsic factor. In conclusion, only one soluble cobalamin-binding protein was identified in the rainbow trout, a protein that structurally behaves like an intermediate between the three human cobalamin-binding proteins. PMID:22872637
Quantification of oil binding capacity of structuring fats: A novel method and its application.
Omonov, Tolibjon S; Bouzidi, Laziz; Narine, Suresh S
2010-09-01
A robust, well-defined and reproducible method to accurately measure the oil binding capacity (OBC) of structuring fats was developed. The method was validated using two oil/fat model systems, i.e., fully hydrogenated canola oil (FHCO) in canola oil (CO) (FHCO/CO) and fully hydrogenated soybean oil (FHSO) in CO (FHSO/CO). The mixtures were crystallized from the melt down to three different temperatures (15, 25 and 35 degrees C) at constant rates of cooling and the OBC was measured after different periods of storage time. The critical concentration of hard fat at which the solid fat network is stable and effectively binds oil has been also measured for mixtures crystallized at temperatures close to room temperature, i.e., 25 degrees C. Crystal structure, melting behavior, microstructure, and solid fat content of these binary systems have been investigated in relation to the OBC of the solid fat network using X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized light microscopy (PLM), and wide-line pulsed nuclear magnetic resonance (pNMR) techniques. The two model systems exhibited similar trends in OBC over time, a behavior attributed to their similar TAG composition and polymorphism. However, relatively smaller OBC values were achieved by the CO/FHSO compared to CO/FHCO samples, largely due to differences in their solid network structure. Four successive decreasing linear segments, identifying successive mechanisms of oil migration/binding, were observed in the experimental OBC versus fat weight fraction curves. The critical concentration of hard fat, at which the solid fat network is effective in binding oil, was also determined and found to be approximately 6wt% for both systems. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Temperature and pH Dual-Responsive Core-Brush Nanocomposite for Enrichment of Glycoproteins.
Jiang, Lingdong; Messing, Maria E; Ye, Lei
2017-03-15
In this report, we present a novel modular approach to the immobilization of a high density of boronic acid ligands on thermoresponsive block copolymer brushes for effective enrichment of glycoproteins via their synergistic multiple covalent binding with the immobilized boronic acids. Specifically, a two-step, consecutive surface-initiated atom transfer radical polymerization (SI-ATRP) was employed to graft a flexible block copolymer brush, pNIPAm-b-pGMA, from an initiator-functionalized nanosilica surface, followed by postpolymerization modification of the pGMA moiety with sodium azide. Subsequently, an alkyne-tagged boronic acid (PCAPBA) was conjugated to the polymer brush via a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, leading to a silica-supported polymeric hybrid material, Si@pNIPAm-b-pBA, with a potent glycol binding affinity. The obtained core-brush nanocomposite was systematically characterized with regard to particle size, morphology, organic content, brush density, and number of immobilized boronic acids. We also studied the characteristics of glycoprotein binding of the nanocomposite under different conditions. The nanocomposite showed high binding capacities for ovalbumin (OVA) (98.0 mg g -1 ) and horseradish peroxidase (HRP) (26.8 mg g -1 ) in a basic buffer (pH 9.0) at 20 °C. More importantly, by adjusting the pH and temperature, the binding capacities of the nanocomposite can be tuned, which is meaningful for the separation of biological molecules. In general, the synthetic approach developed for the fabrication of block copolymer brushes in the nanocomposite opened new opportunities for the design of more functional hybrid materials that will be useful in bioseparation and biomedical applications.
Maalej, H; Hmidet, N; Boisset, C; Buon, L; Heyraud, A; Nasri, M
2015-02-01
To investigate the effect of culture conditions and medium components on exopolysaccharide (EPS) production by Pseudomonas stutzeri AS22 and to access the EPS performance as a metal-binding exopolysaccharide. The EPS production conditions of Ps. stutzeri AS22 in submerged culture were optimized using two approaches for EPS quantification, and its metal-binding capacity was evaluated using both single and mixed metal ions systems. Maximum EPS level was achieved after 24 h of incubation at 30°C with an initial pH of 8.0, 250 rev min(-1) stirring level and 10% inoculum size. 50 g l(-1) starch, 5 g l(-1) yeast extract, 0.5 g l(-1) NaCl, 1.4 g l(-1) K2 HPO4, 0.4 g l(-1) MgSO4, 0.4 g l(-1) CaCl2 and 1 g l(-1) mannose were found to be the most suitable carbon, nitrogen, mineral and additional carbohydrate sources, respectively. From metal-binding experiments, the crude EPS showed interesting metal adsorption capacity adopting the order Pb > Co > Fe > Cu > Cd. Lead was preferentially biosorbed with a maximal uptake of 460 mg g(-1) crude EPS. Under the optimal culture requirements, EPS level reached 10.2 g l(-1) after 24 h of fermentation, seven times more than the production under initial conditions. According to the metal-binding assay, the crude EPS has potential to be used as a novel biosorbent in the treatment of heavy metals-contaminated water. Our results are interesting in terms of yield as well as efficiency for the potential use of the Ps. stutzeri exopolysaccharide as a metal-absorbent polymer in the bioremediation field. © 2014 The Society for Applied Microbiology.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... as a vehicle manufacturer from the notification and recall responsibilities of 49 CFR part 573 for... capacity as ``2'' when in fact it should be ``3,'' and the total designated seating capacity as ``4'' when... seated capacity (expressed in terms of total number of occupants and number of occupants for each front...
Shrestha, Ritu; Elsabahy, Mahmoud; Florez-Malaver, Stephanie; Samarajeewa, Sandani; Wooley, Karen L.
2012-01-01
Cationic shell crosslinked knedel-like nanoparticles (cSCKs) have emerged as a highly efficient transfection agent for nucleic acids delivery. In this study, a new class of cSCKs with tunable buffering capacities has been developed by altering the amounts of histamines and primary amines incorporated into their crosslinked shell regions. The effect of histamine content of these nanoparticles with a hydrodynamic diameter of ca. 20 nm, on the siRNA-binding affinity, cytotoxicity, immunogenicity, and transfection efficiency was investigated. The modification of cSCKs with histamine was found to reduce the siRNA-binding affinity and cellular binding. On the other hand, it significantly reduced the toxicity and immunogenicity of the nanoparticles with subsequent increase in the transfection efficiency. In addition, escape from endosomes was facilitated by having two species of low and high pKas (i.e. histamine and primary amine groups, respectively), as demonstrated by the potentiometric titration experiments and the effect of bafilomycin A1, an inhibitor of the endosomal acidification, on the transfection efficiency of cSCKs. Histamine modification of 15 mol% was a threshold, above which cSCKs with higher histamine content completely lost the ability to bind siRNA and to transfect cells. This study highlights the potential of histamine incorporation to augment the gene silencing activity of cationic nanoparticles, reduce their toxicity, and increase their biocompatibility, which is of particular importance in the design of nucleic acids delivery vectors. PMID:22901966
NASA Astrophysics Data System (ADS)
Boudouris, Bryan; Weidman, Jacob; Mulvenna, Ryan; Phillip, William
The efficient removal of metal ions from aqueous streams is of significant import in applications ranging from industrial waste treatment to the purification of drinking water. An emerging paradigm associated with this separation is one that utilizes membrane adsorbers as a means by which to bind metal salt contaminants. Here, we demonstrate that the casting of an A-B-C triblock polymer using the self-assembly and non-solvent induced phase separation (SNIPS) methodology results in a nanoporous membrane geometry. The nature of the triblock polymer affords an extremely high density of binding sites within the membrane. As such, we demonstrate that the membranes with binding capacities equal to that of state-of-the-art packed bed columns. Moreover, because the affinity of the C moiety can be tuned, highly selective binding events can occur based solely on the chemistry of the block polymer and the metal ions in solution (i.e., in a manner that is independent of the size of the metal ions). Due to these combined facts, these membranes efficiently remove heavy metal (e.g., lead- and cadmium-based) salts from contaminated water streams with greater than 95% efficiency. Finally, we show that the membranes can be regenerated through a simple treatment in order to provide long-lasting adsorber systems as well. Thus, it is anticipated that these nanostructured triblock polymer membranes are a platform by which to obtain next-generation water purification processes.
Boronic acid-modified magnetic materials for antibody purification
Dhadge, Vijaykumar L.; Hussain, Abid; Azevedo, Ana M.; Aires-Barros, Raquel; Roque, Ana C. A.
2014-01-01
Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g−1 MP and eluted 160 ± 5 mg hIgG g−1 MP, while binding only 15 ± 5 mg BSA g−1 MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 105 M−1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g−1 MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g−1 MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions. PMID:24258155
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landefeld, T.D.; Byrne, M.D.; Campbell, K.L.
1981-12-01
The alpha- and beta-subunits of hCG were radioiodinated and recombined with unlabeled complementary subunits. The resultant recombined hormones, selectively labeled in either the alpha- or beta-subunit, were separated from unrecombined subunit by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, extracted with Triton X-100, and characterized by binding analysis. The estimates of maximum binding (active fraction) of the two resultant selectively labeled, recombined hCG preparations, determined with excess receptor were 0.41 and 0.59. These values are similar to those obtained when hCG is labeled as an intact molecule. The specific activities of the recombined preparations were estimated by four different methods, and themore » resulting values were used in combination with the active fraction estimates to determine the concentrations of active free and bound hormone. Binding analyses were run using varying concentrations of both labeled and unlabeled hormone. Estimates of the equilibrium dissociation binding constant (Kd) and receptor capacity were calculated in three different ways. The mean estimates of capacity (52.6 and 52.7 fmol/mg tissue) and Kd (66.6 and 65.7 pM) for the two preparations were indistinguishable. Additionally, these values were similar to values reported previously for hCG radioiodinated as an intact molecule. The availability of well characterized, selectively labeled hCG preparations provides new tools for studying the mechanism of action and the target cell processing of the subunits of this hormone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruol, D.J.; Wolfe, K.A.
1990-08-28
RU 486 is a synthetic steroid that binds avidly to glucocorticoid receptors without promoting their transformation into activated transcription factors. A significant part of this behavior has been shown to be due to a failure of the RU 486 bound receptor to be efficiently released from a larger (sedimenting at 8-9 S) multimeric complex containing the 90-kDa heat shock protein. The studies have found that in vitro at 15{degree}C the RU 486-receptor was slowly released from the 8-9S complex and converted into a DNA binding protein by a process that could be blocked by sodium fluoride. Moreover, this transition wasmore » significantly accelerated by treatment with alkaline phosphatase. High-resolution anion-exchange chromatography showed that the profile of receptor subspecies released from the 8-9S complex was different for the RU 486 bound receptor when compared to the receptor occupied by the agonist triamcinolone acetonide. Production of the earliest eluting receptor form (peak A) was inhibited with RU 486. Treatment of the Ru 486-receptor with alkaline phosphatase increased the formation of the peak A subspecies as well as the capacity of receptor to bind DNA-cellulose. Taken together, the results indicate that phosphorylation of the receptor or a tightly bound factor contributes to defining the capacity with which individual steroids can promote dissociation of the 8-9S complex and conversion of the glucocorticoid receptor into a DNA-binding protein.« less
Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode
Paronyan, Tereza M.; Thapa, Arjun Kumar; Sherehiy, Andriy; Jasinski, Jacek B.; Jangam, John Samuel Dilip
2017-01-01
Graphite’s capacity of intercalating lithium in rechargeable batteries is limited (theoretically, 372 mAh g−1) due to low diffusion within commensurately-stacked graphene layers. Graphene foam with highly enriched incommensurately-stacked layers was grown and applied as an active electrode in rechargeable batteries. A 93% incommensurate graphene foam demonstrated a reversible specific capacity of 1,540 mAh g−1 with a 75% coulombic efficiency, and an 86% incommensurate sample achieves above 99% coulombic efficiency exhibiting 930 mAh g−1 specific capacity. The structural and binding analysis of graphene show that lithium atoms highly intercalate within weakly interacting incommensurately-stacked graphene network, followed by a further flexible rearrangement of layers for a long-term stable cycling. We consider lithium intercalation model for multilayer graphene where capacity varies with N number of layers resulting LiN+1C2N stoichiometry. The effective capacity of commonly used carbon-based rechargeable batteries can be significantly improved using incommensurate graphene as an anode material. PMID:28059110
Global workspace dynamics: cortical "binding and propagation" enables conscious contents.
Baars, Bernard J; Franklin, Stan; Ramsoy, Thomas Zoega
2013-01-01
A global workspace (GW) is a functional hub of binding and propagation in a population of loosely coupled signaling elements. In computational applications, GW architectures recruit many distributed, specialized agents to cooperate in resolving focal ambiguities. In the brain, conscious experiences may reflect a GW function. For animals, the natural world is full of unpredictable dangers and opportunities, suggesting a general adaptive pressure for brains to resolve focal ambiguities quickly and accurately. GW theory aims to understand the differences between conscious and unconscious brain events. In humans and related species the cortico-thalamic (C-T) core is believed to underlie conscious aspects of perception, thinking, learning, feelings of knowing (FOK), felt emotions, visual imagery, working memory, and executive control. Alternative theoretical perspectives are also discussed. The C-T core has many anatomical hubs, but conscious percepts are unitary and internally consistent at any given moment. Over time, conscious contents constitute a very large, open set. This suggests that a brain-based GW capacity cannot be localized in a single anatomical hub. Rather, it should be sought in a functional hub - a dynamic capacity for binding and propagation of neural signals over multiple task-related networks, a kind of neuronal cloud computing. In this view, conscious contents can arise in any region of the C-T core when multiple input streams settle on a winner-take-all equilibrium. The resulting conscious gestalt may ignite an any-to-many broadcast, lasting ∼100-200 ms, and trigger widespread adaptation in previously established networks. To account for the great range of conscious contents over time, the theory suggests an open repertoire of binding coalitions that can broadcast via theta/gamma or alpha/gamma phase coupling, like radio channels competing for a narrow frequency band. Conscious moments are thought to hold only 1-4 unrelated items; this small focal capacity may be the biological price to pay for global access. Visuotopic maps in cortex specialize in features like color, retinal size, motion, object identity, and egocentric/allocentric framing, so that a binding coalition for the sight of a rolling billiard ball in nearby space may resonate among activity maps of LGN, V1-V4, MT, IT, as well as the dorsal stream. Spatiotopic activity maps can bind into coherent gestalts using adaptive resonance (reentry). Single neurons can join a dominant coalition by phase tuning to regional oscillations in the 4-12 Hz range. Sensory percepts may bind and broadcast from posterior cortex, while non-sensory FOKs may involve prefrontal and frontotemporal areas. The anatomy and physiology of the hippocampal complex suggest a GW architecture as well. In the intact brain the hippocampal complex may support conscious event organization as well as episodic memory storage.
Global Workspace Dynamics: Cortical “Binding and Propagation” Enables Conscious Contents
Baars, Bernard J.; Franklin, Stan; Ramsoy, Thomas Zoega
2013-01-01
A global workspace (GW) is a functional hub of binding and propagation in a population of loosely coupled signaling elements. In computational applications, GW architectures recruit many distributed, specialized agents to cooperate in resolving focal ambiguities. In the brain, conscious experiences may reflect a GW function. For animals, the natural world is full of unpredictable dangers and opportunities, suggesting a general adaptive pressure for brains to resolve focal ambiguities quickly and accurately. GW theory aims to understand the differences between conscious and unconscious brain events. In humans and related species the cortico-thalamic (C-T) core is believed to underlie conscious aspects of perception, thinking, learning, feelings of knowing (FOK), felt emotions, visual imagery, working memory, and executive control. Alternative theoretical perspectives are also discussed. The C-T core has many anatomical hubs, but conscious percepts are unitary and internally consistent at any given moment. Over time, conscious contents constitute a very large, open set. This suggests that a brain-based GW capacity cannot be localized in a single anatomical hub. Rather, it should be sought in a functional hub – a dynamic capacity for binding and propagation of neural signals over multiple task-related networks, a kind of neuronal cloud computing. In this view, conscious contents can arise in any region of the C-T core when multiple input streams settle on a winner-take-all equilibrium. The resulting conscious gestalt may ignite an any-to-many broadcast, lasting ∼100–200 ms, and trigger widespread adaptation in previously established networks. To account for the great range of conscious contents over time, the theory suggests an open repertoire of binding1 coalitions that can broadcast via theta/gamma or alpha/gamma phase coupling, like radio channels competing for a narrow frequency band. Conscious moments are thought to hold only 1–4 unrelated items; this small focal capacity may be the biological price to pay for global access. Visuotopic maps in cortex specialize in features like color, retinal size, motion, object identity, and egocentric/allocentric framing, so that a binding coalition for the sight of a rolling billiard ball in nearby space may resonate among activity maps of LGN, V1-V4, MT, IT, as well as the dorsal stream. Spatiotopic activity maps can bind into coherent gestalts using adaptive resonance (reentry). Single neurons can join a dominant coalition by phase tuning to regional oscillations in the 4–12 Hz range. Sensory percepts may bind and broadcast from posterior cortex, while non-sensory FOKs may involve prefrontal and frontotemporal areas. The anatomy and physiology of the hippocampal complex suggest a GW architecture as well. In the intact brain the hippocampal complex may support conscious event organization as well as episodic memory storage. PMID:23974723
Physicochemical properties and antioxidant capacity of raw, roasted and puffed cacao beans.
Hu, SuJung; Kim, Byung-Yong; Baik, Moo-Yeol
2016-03-01
The antioxidant capacity and attributable bioactive compounds of puffed cacao beans were investigated. Roasting was carried out at 190°C for 15min and puffing was performed at 4-7kgf/cm(2). Cacao beans puffed at 4kgf/cm(2) showed the highest total polyphenols (23.16mgGAE/gsample) and total flavonoids (10.65mgCE/gsample) (p<0.05). As the puffing pressure increased, the amount of total polyphenols and total flavonoids decreased. The antioxidant capacity of cacao beans reflected the total polyphenols and flavonoids measured. The quantities of theobromine, catechin, epicatechin, and procyanidin B2 were higher in cacao beans puffed at 4kgf/cm(2) than in roasted cacao beans. Puffed cacao beans received a good sensory score in flavor, but sourness increased as puffing pressure increased. Thus, these results suggest that, in cacao bean processing, puffing could be an alternative to roasting, which provide a rich taste and high antioxidant capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assay dilution factors confound measures of total antioxidant capacity in polyphenol-rich juices
USDA-ARS?s Scientific Manuscript database
The extent to which sample dilution factor (DF) affects Total Antioxidant Capacity (TAC) values is poorly understood. Thus, we examined the impact of DF on the ORAC, FRAP, DPPH, and Total Phenols (TP) assays using pomegranate juice (PJ), grape juice (GJ), selected flavonoids, ascorbic acid, and ella...
Kalfas, S; Andersson, M; Edwardsson, S; Forsgren, A; Naidu, A S
1991-12-01
Human isolates of Porphyromonas gingivalis (n = 16), Prevotella intermedia n = 82) and Prevotella melaninogenica (n = 18) from diseased periodontal pockets were examined for interaction with human lactoferrin (HLf) in a standardized 125I-labeled protein binding assay. The highest HLf binding was found in P. intermedia strains, followed by P. gingivalis and P. melaninogenica. Further characterization of the interaction was performed with 1 representative strain from each species. HLf binding to P. gingivalis reached a saturation instantly and was optimal at pH 5.0-6.5. The corresponding values for P. melaninogenica were 90 min and pH 3.0-5.5. The HLf binding to the 2 strains seem to be nonspecific. In contrast, P. intermedia demonstrated specific binding, and a time-saturability within 60 min with an optimal uptake at pH 6.0-7.5. Scatchard analysis implied 45,000 receptors per cell with an affinity constant of 5.5 x 10(-7) M on P. intermedia strain 4H. The binding capacity in all 3 strains was affected by the culture medium. HLf binding components in these strains were susceptible to heat or proteases. Binding was eliminated in P. gingivalis and was enhanced in P. intermedia and P. melaninogenica by periodate treatment. Unlabeled HLf or bovine lactoferrin effectively displaced labeled HLf binding. Various proteins and carbohydrates did not inhibit HLf binding. Our data suggest that HLf binds to these periodontitis-associated species and that this mechanism is distinct from the previously known ligand interactions in oral bacteria.
Fukada, H; Sturtevant, J M; Quiocho, F A
1983-11-10
The thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli have been studied by isothermal and scanning calorimetry. The binding reaction with arabinose is characterized by an enthalpy change of -15.3 +/- 0.5 kcal mol-1 at 25 degrees C, and a large decrease in apparent heat capacity, amounting to -0.44 +/- 0.05 kcal K-1 mol-1, which is constant over the temperature range 8 to 30 degrees C. Very similar results were obtained with D-galactose. These calorimetric results have been combined with binding constants determined by equilibrium dialysis (Clark, A. F., Gerken, T. A., and Hogg, R. W. (1982) Biochemistry 21, 2227-2233) to obtain free energy and entropy changes over the range 5 to 30 degrees C, and by extrapolation to 60 degrees C. The protein undergoes reversible unfolding on being heated with an increase in enthalpy at 53.5 degrees C of 151.8 +/- 1.1 kcal mol-1 (169.2 +/- 1.2 kcal mol-1 at 59.0 degrees C) and in apparent heat capacity of 3.16 +/- 0.07 kcal K-1 mol-1. In the presence of arabinose, the unfolding enthalpy is increased to 200.7 +/- 1.8 kcal mol-1 at 59.0 degrees C, the increase being due to the enthalpy of dissociation of the ligand which amounts to 31 kcal mol-1 at the unfolding temperature. The unfolding temperature is increased by the presence of excess arabinose or galactose, an effect which is due solely to displacement by the added ligand of the unfolding-dissociation equilibrium. The thermodynamic data are discussed in connection with the detailed structural information available for this system from x-ray crystallography (Newcomer, M. E., Gilliland, G. L. and Quiocho, F. A. (1981) J. Biol. Chem. 256, 13213-13217, and references cited therein).
Hoffmann, Hanne Mette; Crouzin, Nadine; Moreno, Estefanía; Raivio, Noora; Fuentes, Silvia; McCormick, Peter J.; Vignes, Michel
2017-01-01
Abstract Background: Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors, with allosteric modulators showing particular promise. Methods: We evaluated the capacity of group I metabotropic glutamate receptors to induce functional responses in ex vivo striatal slices from rats with (1) acute cocaine self-administration, (2) chronic cocaine self-administration, and (3) 60 days cocaine self-administration withdrawal by Western blot and extracellular recordings of synaptic transmission. Results: We found that striatal group I metabotropic glutamate receptors are the principal mediator of the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine-induced cAMP responsive-element binding protein phosphorylation. Both acute and chronic cocaine self-administration blunted group I metabotropic glutamate receptor effects on cAMP responsive-element binding protein phosphorylation in the striatum, which correlated with the capacity to induce long-term depression, an effect that was maintained 60 days after chronic cocaine self-administration withdrawal. In the nucleus accumbens, the principal brain region mediating the rewarding effects of drugs, chronic cocaine self-administration blunted group I metabotropic glutamate receptor stimulation of extracellular signal-regulated protein kinases 1/2 and cAMP responsive-element binding protein. Interestingly, the group I metabotropic glutamate receptor antagonist/inverse-agonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride, led to a specific increase in cAMP responsive-element binding protein phosphorylation after chronic cocaine self-administration, specifically in the nucleus accumbens, but not in the striatum. Conclusions: Prolonged cocaine self-administration, through withdrawal, leads to a blunting of group I metabotropic glutamate receptor responses in the striatum. In addition, specifically in the accumbens, group I metabotropic glutamate receptor signaling to cAMP responsive-element binding protein shifts from an agonist-induced to an antagonist-induced cAMP responsive-element binding protein phosphorylation. PMID:27744406
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangvanich, Thanapon; Sukwarotwat, Vichaya; Wiacek, Robert J.
2010-10-15
Copper(II) ferrocyanide immobilized inside mesoporous silica MCM-41 supports (Cu-FC-EDA-SAMMSTM) has been evaluated against iron(III) hexacyanoferrate(II) (insoluble Prussian blue) for the sorption of cesium (Cs+) and thallium (Tl+) from natural waters and simulated wastes. The affinities (in term of distribution coefficients, Kd) of both sorbents for Cs and Tl were measured as a function of solution pH, competing cations, and matrices. For the entire pH studied (pH 0.1 to 7.3), Cu-FC-EDA-SAMMS had higher affinities for Cs and Tl (one to two orders of magnitude higher Kd) than Prussian blue and was less negatively impacted by the solution pH, competing cations, andmore » matrices. The adsorption isotherms and kinetics of the two sorbents for Cs and/or Tl were also determined in seawater and simulated acid and alkaline wastes. SAMMS outperformed Prussian blue in terms of maximum adsorption capacity (e.g., 21.7 versus 2.6 mg Cs/g in acid waste stimulant, pH 1.1), and rate (e.g., over 95 wt% of Cs was removed after 2 minutes with SAMMS, while only 75 wt% was removed with Prussian blue). The lower affinity, capacity, and rate of Cs and Tl sorption on Prussian blue than those on Cu-FC-EDA-SAMMS were attributed to the molecular pore sizes, which restrict mass transport, and the insoluble Cs abducts of the Prussian blue, which restrict the ability of neighboring binding sites to further bind Cs ions. On the other hand, the large pores of SAMMS not only enable faster diffusion and faster binding chemistry, but they also allow isolation of binding sites so that one Cs binding event does not impact further Cs binding. In addition, iron (Fe) dissolved from insoluble Prussian blue over 10-fold of that from Cu-FC-EDA-SAMMS after 24 hours of contact time, indicating poorer material stability of Prussian blue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
deBethizy, J.D.; Sherrill, J.M.; Rickert, D.E.
1983-07-01
The influence of diets varying in pectin content on intestinal microfloral metabolic capacity of rats has been investigated as a possible mechanism for the alteration of toxicity of 2,6-dinitrotoluene (2,6-DNT) produced by these diets. Male F-344 rats were fed a purified diet (AIN-76A), AIN-76A plus 5% or 10% citrus pectin, or either of two cereal-based diets that vary in pectin content, NIH-07 or Purina Chow 5002. After 28 days, rats were given tritium-labeled 2,6-DNT (10 or 75 mg/kg po) and killed 12 hr later. Total hepatic macromolecular covalent binding (CVB) was determined by exhaustive extraction. The CVB of 2,6-DNT wasmore » found to be independent of diet at 10 mg/kg. However, at 75 mg/kg CVB was increased 40% by feeding 5% pectin in the purified diet and 90% by feeding 10% pectin in the purified diet. Animals fed Purina 5002 and NIH-07 had 135 and 150% higher CVB, respectively, than animals fed the purified diet alone and significantly greater CVB than animals fed the pectin supplemented diets. Elevated (two- to threefold) beta-glucuronidase and nitroreductase activities, microfloral enzymes proposed to be involved in the activation of 2,6-DNT to a toxicant, were found in the cecal contents of animals fed the pectin-containing diets which correlated with a two- to threefold increase in total number of cecal anaerobes. These results suggest that pectin-induced changes in microflora may enhance hepatoxicity after high doses of 2,6-DNT.« less
Fluorescence Immunofiltration Assay of Brucella Melitensis.
1995-01-01
second urease -labelled antibody directed against fluorescein. The assay system is useful for measuring protein, virus and bacteria in aqueous...binding site for the signal-generating urease -labelled antibody, it is a highly fluorescent molecule and has signal-generating capacity of its own
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, S.K.
1987-01-01
Because arginine vasotocin (AVT) activates male sexual behaviors in the rough-skinned newt (Taricha granulosa), quantitative autoradiography with radiolabeled arginine vasopressin (/sup 3/H-AVP) was used to localize and characterize putative AVT receptors in the brain of this amphibian. Binding of /sup 3/H-AVP to sites within the medial pallium was saturable, specific, reversible, of high affinity and low capacity. These binding sites appear to represent authentic central nervous system receptors for AVT. Furthermore, ligand specificity for the binding sites in this amphibian differs from that reported for AVP binding sites in rat brains. Dense concentrations of specific binding sites were located inmore » the olfactory nerve as it entered the olfactory bulb within the medial pallium, dorsal pallium, and amygdala pars lateralis of the telencephalon, and in the tegmental region of the medulla. Concentrations of binding sites differed significantly among various brain regions. A comparison of male and female newts collected during the breeding season revealed no sexual dimorphism. These areas may represent site(s) of action where AVT elicits sexual behaviors in male T. granulosa.« less
Characterization of the increased binding of acetaldehyde to red blood cells in alcoholics.
Hernández-Muñoz, R; Baraona, E; Blacksberg, I; Lieber, C S
1989-10-01
Using equilibrium dialysis, we found that acetaldehyde, at the levels commonly occurring after ethanol ingestion, did not bind detectably to plasma proteins, but there was significant binding to red blood cells, more in alcoholics than in nonalcoholics. The binding to red blood cells was inhibited by pyridoxal phosphate and N-ethylmaleimide, suggesting adduction to amino and thiol groups. Binding kinetics were consistent with at least two sites. The one with the highest affinity for acetaldehyde corresponded to hemoglobin. Its affinity and Bmax were not changed in alcoholics, but these binding sites accounted for only 44% of the sites available in the red blood cells of alcoholics and 80% of those in controls. Moreover, this binding was not inhibited by N-ethylmaleimide. There was no detectable binding to red cell ghosts. Nonprotein binding was then assessed by changes in NADH produced by the addition of protein-free fractions of the cells to an alcohol dehydrogenase system in equilibrium; this revealed a second binder of lower affinity, larger capacity and with sensitivity to both inhibitors. This binding (possibly due to thiazolidine formation with cysteine) was enhanced in alcoholics, whose red blood cell cysteine content was doubled. Levels of red blood cell cysteine and acetaldehyde remained high for 2 weeks after withdrawal. Because of the prolonged persistence after withdrawal, these changes may provide new markers of alcoholism.
Binding of cholesterol and bile acid to hemicelluloses from rice bran.
Hu, Guohua; Yu, Wenjian
2013-06-01
The objective of this study was to investigate the possibility of using hemicellulose from rice bran to scavenge cholesterol and bile acid in vitro study. This paper demonstrates that rice bran hemicellulose A (RBHA), rice bran hemicellulose B (RBHB) and rice bran hemicellulose C (RBHC) have the potential for binding cholesterol and bile acid. The quantity of cholesterol and bile acid bound varies from one rice bran fibre to another. As it can be inferred from the results of the study, RBHB was characterized by the highest capacity for cholesterol binding, followed by RBHC and RBHA. Binding of cholesterol and bile acid to rice bran insoluble dietary fibre (RBDF) and cellulose from rice bran was found to be poor. Lignin from rice bran was the least active fraction for binding cholesterol and bile acid. This confirms that the RBHB preparation from defatted rice bran has great potential in food applications, especially in the development of functional foods.
Sulfated glycopeptide nanostructures for multipotent protein activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sungsoo S.; Fyrner, Timmy; Chen, Feng
Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptidemore » nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.« less
Cao, Shan; Liu, Bing; Cheng, Baozhen; Lu, Fuping; Wang, Yanping; Li, Yu
2017-01-05
The eco-friendly combination tanning process has been developed to reduce chromium in existing researches, which is based on zinc tanning agents. This can be considered as a less-chrome substitute for current tanning process. To gain deeper understanding of the binding mechanisms of zinc-collagen interaction, which are affected by tanning pH, experiments have been carried out. Analysis in this paper reveals how chemical bonds from the collagen's main function groups combine with zinc. XPS and NIR data was analyzed for further understanding of where the zinc binding sites lie on collagen fibers at different pH. The results indicate that high pH is helpful to amino-binding sites while low pH promotes carboxyl-binding sites on collagen fibers. Furthermore, from the effect of Zinc-chrome combination tanning, we can see that the new method reduces the chromium dosage in tanning process compared to the conventional chrome tanning method. Copyright © 2016 Elsevier B.V. All rights reserved.
Bao, Huan; Duong, Franck
2013-08-16
The signal-transducing protein EIIA(Glc) belongs to the phosphoenolpyruvate carbohydrate phosphotransferase system. In its dephosphorylated state, EIIA(Glc) is a negative regulator for several permeases, including the maltose transporter MalFGK2. How EIIA(Glc) is targeted to the membrane, how it interacts with the transporter, and how it inhibits sugar uptake remain obscure. We show here that acidic phospholipids together with the N-terminal tail of EIIA(Glc) are essential for the high affinity binding of the protein to the transporter. Using protein docking prediction and chemical cross-linking, we demonstrate that EIIA(Glc) binds to the MalK dimer, interacting with both the nucleotide-binding and the C-terminal regulatory domains. Dissection of the ATPase cycle reveals that EIIA(Glc) does not affect the binding of ATP but rather inhibits the capacity of MalK to cleave ATP. We propose a mechanism of maltose transport inhibition by this central amphitropic regulatory protein.
Joynt, Suzanne; Morillo, Victor; Leng, Fenfei
2009-01-01
HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)2 is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5′-CCAAAAAAAAAAAAAAAGCCCCCGCTTTTTTTTTTTTTTTGG-3′ (FL-AT-1) and 5′-CCATATATATATATATAGCCCCCGCTATATATATATATATGG-3′ (FL-AT-2). Surprisingly, we observed an atypical isothermal-titration-calorimetry-binding curve at low-salt aqueous solutions whereby the apparent binding-enthalpy decreased dramatically as the titration approached the end. This unusual behavior can be attributed to the DNA-annealing coupled to the ligand DNA-binding and is eliminated by increasing the salt concentration to ∼200 mM. At this condition, HMGA2 binding to FL-AT-1 is entropy-driven and to FL-AT-2 is enthalpy-driven. Interestingly, the DNA-binding free energies for HMGA2 binding to both hairpins are almost temperature independent; however, the enthalpy-entropy changes are dependent on temperature, which is another aspect of enthalpy-entropy compensation. The heat capacity change for HMGA2 binding to FL-AT-1 and FL-AT-2 are almost identical, indicating that the solvent displacement and charge-charge interaction in the coupled folding/binding processes for both binding reactions are similar. PMID:19450485
Binding biological motion and visual features in working memory.
Ding, Xiaowei; Zhao, Yangfan; Wu, Fan; Lu, Xiqian; Gao, Zaifeng; Shen, Mowei
2015-06-01
Working memory mechanisms for binding have been examined extensively in the last decade, yet few studies have explored bindings relating to human biological motion (BM). Human BM is the most salient and biologically significant kinetic information encountered in everyday life and is stored independently from other visual features (e.g., colors). The current study explored 3 critical issues of BM-related binding in working memory: (a) how many BM binding units can be retained in working memory, (b) whether involuntarily object-based binding occurs during BM binding, and (c) whether the maintenance of BM bindings in working memory requires attention above and beyond that needed to maintain the constituent dimensions. We isolated motion signals of human BM from non-BM sources by using point-light displays as to-be-memorized BM and presented the participants colored BM in a change detection task. We found that working memory capacity for BM-color bindings is rather low; only 1 or 2 BM-color bindings could be retained in working memory regardless of the presentation manners (Experiments 1-3). Furthermore, no object-based encoding took place for colored BM stimuli regardless of the processed dimensions (Experiments 4 and 5). Central executive attention contributes to the maintenance of BM-color bindings, yet maintaining BM bindings in working memory did not require more central attention than did maintaining the constituent dimensions in working memory (Experiment 6). Overall, these results suggest that keeping BM bindings in working memory is a fairly resource-demanding process, yet central executive attention does not play a special role in this cross-module binding. (c) 2015 APA, all rights reserved).
Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.
Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar
2015-09-18
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Yang, Ran; Yu, Lanlan; Zeng, Huajin; Liang, Ruiling; Chen, Xiaolan; Qu, Lingbo
2012-11-01
In this work, the interactions of twelve structurally different flavonoids with Lysozyme (Lys) were studied by fluorescence quenching method. The interaction mechanism and binding properties were investigated. It was found that the binding capacities of flavonoids to Lys were highly depend on the number and position of hydrogen, the kind and position of glycosyl. To explore the selectivity of the bindings of flavonoids with Lys, the structure descriptors of the flavonoids were calculated under QSAR software package of Cerius2, the quantitative relationship between the structures of flavonoids and their binding activities to Lys (QSAR) was performed through genetic function approximation (GFA) regression analysis. The QSAR regression equation was K(A) = 37850.460 + 1630.01Dipole +3038.330HD-171.795MR. (r = 0.858, r(CV)(2) = 0.444, F((11,3)) = 7.48), where K(A) is binding constants, Dipole, HD and MR was dipole moment, number of hydrogen-bond donor and molecular refractivity, respectively. The obtained results make us understand better how the molecular structures influencing their binding to protein which may open up new avenues for the design of the most suitable flavonoids derivatives with structure variants.