Sample records for total catchment runoff

  1. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama

    USGS Publications Warehouse

    Ogden, Fred L.; Crouch, Trey D.; Stallard, Robert F.; Hall, Jefferson S.

    2013-01-01

    A paired catchment methodology was used with more than 3 years of data to test whether forests increase base flow in the dry season, despite reduced annual runoff caused by evapotranspiration (the “sponge-effect hypothesis”), and whether forests reduce maximum runoff rates and totals during storms. The three study catchments were: a 142.3 ha old secondary forest, a 175.6 ha mosaic of mixed age forest, pasture, and subsistence agriculture, and a 35.9 ha actively grazed pasture subcatchment of the mosaic catchment. The two larger catchments are adjacent, with similar morphology, soils, underlying geology, and rainfall. Annual water balances, peak runoff rates, runoff efficiencies, and dry season recessions show significant differences. Dry season runoff from the forested catchment receded more slowly than from the mosaic and pasture catchments. The runoff rate from the forest catchment was 1–50% greater than that from the similarly sized mosaic catchment at the end of the dry season. This observation supports the sponge-effect hypothesis. The pasture and mosaic catchment median runoff efficiencies were 2.7 and 1.8 times that of the forest catchment, respectively, and increased with total storm rainfall. Peak runoff rates from the pasture and mosaic catchments were 1.7 and 1.4 times those of the forest catchment, respectively. The forest catchment produced 35% less total runoff and smaller peak runoff rates during the flood of record in the Panama Canal Watershed. Flood peak reduction and increased streamflows through dry periods are important benefits relevant to watershed management, payment for ecosystem services, water-quality management, reservoir sedimentation, and fresh water security in the Panama Canal watershed and similar tropical landscapes.

  2. Hillslope versus riparian zone runoff contributions in headwater catchments: A multi-watershed comparison

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.

    2001-12-01

    It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the hillslope reservoir/stormflow flux partially controls the relative contributions of hillslope and riparian zones to catchment runoff and solute dynamics.

  3. Mechanism of the surface runoff generation processes of a permafrost watershed in the Qinghai-Tibet plateau

    NASA Astrophysics Data System (ADS)

    Genxu, W.

    2017-12-01

    There is a lack of knowledge about how to quantify runoff generation and the hydrological processes operating in permafrost catchments on permafrost-dominant catchments. To understand the mechanism of runoff generation processes in permafrost catchments, a typical headwater catchment with continuous permafrost on the Tibetan Plateau was measured. A new approach is presented in this study to account for runoff processes on the spring thawing period and autumn freezing period, when runoff generation clearly differs from that of non-permafrost catchments. This approach introduces a soil temperature-based water saturation function and modifies the soil water storage curve with a soil temperature threshold. The results show that surface soil thawing induced saturation excess runoff and subsurface interflow account for approximately 66-86% and 14-34% of total spring runoff, respectively, and the soil temperature significantly affects the runoff generation pattern, the runoff composition and the runoff coefficient with the enlargement of the active layer. The suprapermafrost groundwater discharge decreases exponentially with active layer frozen processes during autumn runoff recession, whereas the ratio of groundwater discharge to total runoff and the direct surface runoff coefficient simultaneously increase. The bidirectional freezing of the active layer controls and changes the autumn runoff processes and runoff composition. The new approach could be used to further develop hydrological models of cold regions dominated by permafrost.

  4. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    PubMed

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important role in modifying the cycles of water and sediment yields in Mediterranean mountain catchments. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characterization of urban runoff pollution between dissolved and particulate phases.

    PubMed

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  6. [Comparison of nitrogen loss via surface runoff from two agricultural catchments in semi-arid North China].

    PubMed

    Lu, Hai-Ming; Yin, Cheng-Qing; Wang, Xia-Hui; Zou, Ying

    2008-10-01

    Nitrogen loss characteristics via surface runoff from two typical agricultural catchments into Yuqiao Reservoir--the important drinking water source area for Tianjin city in semi-arid North China were investigated through two-year in-situ monitoring and indoor chemical analysis. The results showed that annual nitrogen export mainly concentrated in the rainy period between June to September. About 41% of the annual water output and 52% of the annual total nitrogen output took place in two rainfall events with rainfall> 60 mm in Taohuasi catchment (T catchment), while the distribution of water and nitrogen export among various rainfalls in Caogezhuang catchment (C catchment) was smooth. The rainfall thresholds for the appearance of water and nitrogen export from the outlet of T catchment and C catchment were 20 mm and 10 mm. The mean annual runoff coefficients of C and T catchments were 0.013 2 and 0.001 6, respectively. The mean annual total nitrogen exports from C catchment and T catchment were 1.048 kg x (hm2 x a)(-1) and 0.158 kg x (hm2 x a)(-1) respectively. The difference of micro-topography, landscape pattern and hydrological pathway between two catchments could explain the nitrogen export gap. Micro-topographical features created by long-term anthropological disturbance decrease the runoff generation ability. The distance between nitrogen source area and the outlet in T catchment was around 1 500 m, while such distance in C catchment was just around 200 m. The short distance added the nitrogen export risk via surface runoff. Road-type hydrological pathway in C catchment could transfer nitrogen into the receiving water via surface runoff directly, while nitrogen could be detained within the pathway by many sink structures such as small stones, vegetated buffer strip and dry ponds in T catchment.

  7. Key factors affecting urban runoff pollution under cold climatic conditions

    NASA Astrophysics Data System (ADS)

    Valtanen, Marjo; Sillanpää, Nora; Setälä, Heikki

    2015-10-01

    Urban runoff contains various pollutants and has the potential of deteriorating the quality of aquatic ecosystems. In this study our objective is to shed light on the factors that control the runoff water quality in urbanized catchments. The effects of runoff event characteristics, land use type and catchment imperviousness on event mass loads (EML) and event mean concentrations (EMC) were studied during warm and cold periods in three study catchments (6.1, 6.5 and 12.6 ha in size) in the city of Lahti, Finland. Runoff and rainfall were measured continuously for two years at each catchment. Runoff samples were taken for total nutrients (tot-P and tot-N), total suspended solids (TSS), heavy metals (Zn, Cr, Al, Co, Ni, Cu, Pb, Mn) and total organic carbon (TOC). Stepwise multiple linear regression analysis (SMLR) was used to identify general relationships between the following variables: event water quality, runoff event characteristics and catchment characteristics. In general, the studied variables explained 50-90% of the EMLs but only 30-60% of the EMCs, with runoff duration having an important role in most of the SMLR models. Mean runoff intensity or peak flow was also often included in the runoff quality models. Yet, the importance (being the first, second or third best) and role (negative or positive impact) of the explanatory variables varied between the cold and warm period. Land use type often explained cold period concentrations, but imperviousness alone explained EMCs weakly. As for EMLs, the influence of imperviousness and/or land use was season and pollutant dependent. The study suggests that pollutant loads can be - throughout the year - adequately predicted by runoff characteristics given that seasonal differences are taken into account. Although pollutant concentrations were sensitive to variation in seasonal and catchment conditions as well, the accurate estimation of EMCs would require a more complete set of explanatory factors than used in this study.

  8. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    PubMed Central

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  9. Simulation of quantity and quality of storm runoff for urban catchments in Fresno, California

    USGS Publications Warehouse

    Guay, J.R.; Smith, P.E.

    1988-01-01

    Rainfall-runoff models were developed for a multiple-dwelling residential catchment (2 applications), a single-dwelling residential catchment, and a commercial catchment in Fresno, California, using the U.S. Geological Survey Distributed Routing Rainfall-Runoff Model (DR3M-II). A runoff-quality model also was developed at the commercial catchment using the Survey 's Multiple-Event Urban Runoff Quality model (DR3M-qual). The purpose of this study was: (1) to demonstrate the capabilites of the two models for use in designing storm drains, estimating the frequency of storm runoff loads, and evaluating the effectiveness of street sweeping on an urban drainage catchment; and (2) to determine the simulation accuracies of these models. Simulation errors of the two models were summarized as the median absolute deviation in percent (mad) between measured and simulated values. Calibration and verification mad errors for runoff volumes and peak discharges ranged from 14 to 20%. The estimated annual storm-runoff loads, in pounds/acre of effective impervious area, that could occur once every hundred years at the commercial catchment was 95 for dissolved solids, 1.6 for the dissolved nitrite plus nitrate, 0.31 for total recoverable lead, and 120 for suspended sediment. Calibration and verification mad errors for the above constituents ranged from 11 to 54%. (USGS)

  10. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China

    PubMed Central

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-01-01

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521

  11. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China.

    PubMed

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-02-28

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.

  12. Rainfall and runoff quantity and quality characteristics of four urban land-use catchments in Fresno, California, October 1981 to April 1983

    USGS Publications Warehouse

    Oltmann, Richard N.; Shulters, Michael V.

    1989-01-01

    Rainfall and runoff quantity and quality were monitored for industrial, single-dwelling residential, multiple-dwelling residential, and commercial land-use catchments during the 1981-82 and 1982-83 rain seasons. Storm-composite rainfall and discrete run6ff samples were analyzed for numerous inorganic, biological, physical, and organic constituents. Atmospheric dry-deposition and street-surface particulate samples also were collected and analyzed. With the exception of the industrial catchment, the highest runoff concentrations for most constituents occurred during the initial storm runoff and then decreased throughout the remainder of the storm, independent of hydraulic conditions. Metal concentrations were high during initial runoff, but also increased as flow increased. Constituent concentrations for the industrial catchment fluctuated greatly during storms. Statistical tests showed higher ammonia plus organic nitrogen, ammonia, pH, and phenol concentrations in rainfall at the industrial site than at the single-dwelling residential and laboratory sites. Statistical testing of runoff quality data showed higher concentrations for the industrial catchment than for the two residential and commercial catchments for most constituents. Total recoverable lead was one of the few constituents that had lower concentrations for the industrial catchment than for the other three catchments. The two residential catchments showed no significant difference in runoff concentrations for 50 of the 57 constituents used in the statistical analysis. The commercial catchment runoff concentrations for most constituents generally were similar to the residential catchments. Although constituent concentrations generally were higher for the industrial catchment than for the commercial catchment, constituent storm loads from the commercial catchment were similar to the industrial catchment because of the greater runoff volume from the highly impervious commercial catchment. Between 10 and 50 percent of the constituent runoff loads for the two residential catchments were attributed to the rainfall load, with the percentages generally considerably less for the industrial catchment. Event mean concentrations (EMC) for most constituents for all but the industrial catchment were highest for the first two or three storms of the rain season after which they became almost constant. Constituent event mean concentrations for the industrial catchment generally did not show any pattern throughout a rain season. Multiple-regression predictor equations for event mean concentrations were developed for several constituents for all sites. Average annual constituent unit loads were computed for 18 constituents for each catchment. The organophosphorus compounds, diazinon, malathion, and parathion were the most prevalent pesticides detected in rainfall. Diazinon was detected in all 54 rainfall samples. Parathion and malathion were detected in 49 and 50 samples, respectively. Other pesticides detected in rainfall included chlordane, lindane, methoxychlor, endosulfan, and 2,4-D. Of these, only methoxychlor and endosulfan were not consistently detected in runoff.

  13. Impact of the rainfall pattern on synthetic pesticides and copper runoff from a vineyard catchment

    NASA Astrophysics Data System (ADS)

    Payraudeau, Sylvain; Meite, Fatima; Wiegert, Charline; Imfeld, Gwenaël

    2017-04-01

    Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticide is rarely evaluated at the catchment scale. Here, we evaluate the influence of rainfall pattern on the mobilization of synthetic pesticides and copper fungicides in runoff from a small vineyard catchment, both at the plot and catchment scales. During two vineyard growing seasons in 2015 and 2016 (from March to October), we monitored rainfall, runoff, and concentrations of copper and 20 fungicides and herbicides applied by winegrowers at the Rouffach vineyard catchment (France, Alsace; 42.5 ha). Rainfall data were recorded within the catchment while runoff measurement and flow-proportional water sampling were carried out at the outlet of the plot (1486 m2; 87.5 × 17 m) and the catchment. In total, discharges of the 14 runoff events were continuously monitored between March and October 2015 using bubbler flow modules combined with Venturi channels. Detailed and distributed dataset on pesticide applications were extracted from survey (copper formulations and type of pesticides, amount and application dates). Pools of copper and synthetic pesticides were quantified weekly in the topsoil (0-3 cm) by systematic sampling across the catchment. The concentrations of copper (10 mg.kg-1 dried soil) and synthetic pesticides (close to the quantification limit, i.e. 0.05 µg.L-1) available in the top soil for off-site transport largely differed over time. Between March and October, an accumulation of copper of 10% was observed in the top-soil while pesticide concentration decreased below the quantification limits after a few days or weeks following application, depending of the compounds. The average runoff generated at the plot scale was very low (0.13% ± 0.30). The maximum runoff reached 1.37% during the storm of July 22, 2015. Synthetic pesticides exported by runoff was less than 1‰ of the applications. The copper mass exported represented about 1% (i.e. 2,085 g at the plot's scale) of the seasonal input, and mainly occurred during the major storm event. Copper were mainly exported in association with suspended particulate matter (SPM) (>80% of the total load). The partitioning between dissolved and SPM phases differs for the synthetic pesticides as expected by their properties. The rainfall pattern influences concentrations and loads of copper and the pesticides. Dissolved pesticide loads normalized by the pesticide mass in soil varied with larger rainfall intensities, runoff discharges and volumes. Contrasted relationships between rainfall characteristics (i.e. intensity, duration and total amount) and the load exported suggest that mechanisms of contaminant delivery from the vineyard soil differs among the pesticides and for copper. The results support the idea that, even in small catchment areas, the rainfall pattern (i.e. rainfall intensity and duration) partly controls the transport of pesticide and copper loads in runoff. Though other factors, such as the chemical characteristics and the amount and timing of applications, are important drivers for pesticide runoff, the rainfall patterns also determine the transport of pesticides from catchment to downstream aquatic ecosystems, and thus the ecotoxicological risk.

  14. Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain research watershed (Georgia, USA)

    USGS Publications Warehouse

    Burns, Douglas A.; McDonnell, Jeffery J.; Hooper, R.P.; Peters, N.E.; Freer, J.E.; Kendall, C.; Beven, K.

    2001-01-01

    The geographic sources and hydrologic flow paths of stormflow in small catchments are not well understood because of limitations in sampling methods and insufficient resolution of potential end members. To address these limitations, an extensive hydrologic dataset was collected at a 10 ha catchment at Panola Mountain research watershed near Atlanta, GA, to quantify the contribution of three geographic sources of stormflow. Samples of stream water, runoff from an outcrop, and hillslope subsurface stormflow were collected during two rainstorms in the winter of 1996, and an end-member mixing analysis model that included five solutes was developed. Runoff from the outcrop, which occupies about one-third of the catchment area, contributed 50-55% of the peak streamflow during the 2 February rainstorm, and 80-85% of the peak streamflow during the 6-7 March rainstorm; it also contributed about 50% to total streamflow during the dry winter conditions that preceded the 6-7 March storm. Riparian groundwater runoff was the largest component of stream runoff (80-100%) early during rising streamflow and throughout stream recession, and contributed about 50% to total stream runoff during the 2 February storm, which was preceded by wet winter conditions. Hillslope runoff contributed 25-30% to peak stream runoff and 15-18% to total stream runoff during both storms. The temporal response of the three runoff components showed general agreement with hydrologic measurements from the catchment during each storm. Estimates of recharge from the outcrop to the riparian aquifer that were independent of model calculations indicated that storage in the riparian aquifer could account for the volume of rain that fell on the outcrop but did not contribute to stream runoff. The results of this study generally indicate that improvements in the ability of mixing models to describe the hydrologic response accurately in forested catchments may depend on better identification, and detailed spatial and temporal characterization of the mobile waters from the principal hydrologic source areas that contribute to stream runoff. Copyright ?? 2001 John Wiley & Sons, Ltd.

  15. Characterization and source identification of stormwater runoff in tropical urban catchments.

    PubMed

    Chow, M F; Yusop, Z

    2014-01-01

    The characteristics of urban stormwater pollution in the tropics are still poorly understood. This issue is crucial to the tropical environment because its rainfall and runoff generation processes are so different from temperate regions. In this regard, a stormwater monitoring program was carried out at three urban catchments (e.g. residential, commercial and industrial) in the southern part of Peninsular Malaysia. A total of 51 storm events were collected at these three catchments. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand (COD), oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen (NH3-N), soluble reactive phosphorus and total phosphorus. Principal component analysis (PCA) and hierarchical cluster analysis were used to interpret the stormwater quality data for pattern recognition and identification of possible sources. The most likely sources of stormwater pollutants at the residential catchment were from surface soil and leachate of fertilizer from domestic lawns and gardens, whereas the most likely sources for the commercial catchment were from discharges of food waste and washing detergent. In the industrial catchment, the major sources of pollutants were discharges from workshops and factories. The PCA factors further revealed that COD and NH3-N were the major pollutants influencing the runoff quality in all three catchments.

  16. Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Qin, Huapeng; Tan, Xiaolong; Fu, Guangtao; Zhang, Yingying; Huang, Yuefei

    2013-07-01

    This paper investigates the frequency distribution of urban runoff quality indicators using a long-term continuous simulation approach and evaluates the impacts of proposed runoff control schemes on runoff quality in an urbanizing catchment in Shenzhen, China. Four different indicators are considered to provide a comprehensive assessment of the potential impacts: total runoff depth, event pollutant load, Event Mean Concentration, and peak concentration during a rainfall event. The results obtained indicate that urban runoff quantity and quality in the catchment have significant variations in rainfall events and a very high rate of non-compliance with surface water quality regulations. Three runoff control schemes with the capacity to intercept an initial runoff depth of 5 mm, 10 mm, and 15 mm are evaluated, respectively, and diminishing marginal benefits are found with increasing interception levels in terms of water quality improvement. The effects of seasonal variation in rainfall events are investigated to provide a better understanding of the performance of the runoff control schemes. The pre-flood season has higher risk of poor water quality than other seasons after runoff control. This study demonstrates that frequency analysis of urban runoff quantity and quality provides a probabilistic evaluation of pollution control measures, and thus helps frame a risk-based decision making for urban runoff quality management in an urbanizing catchment.

  17. On the non-stationarity of hydrological response in anthropogenically unaffected catchments: an Australian perspective

    NASA Astrophysics Data System (ADS)

    Ajami, Hoori; Sharma, Ashish; Band, Lawrence E.; Evans, Jason P.; Tuteja, Narendra K.; Amirthanathan, Gnanathikkam E.; Bari, Mohammed A.

    2017-01-01

    Increases in greenhouse gas concentrations are expected to impact the terrestrial hydrologic cycle through changes in radiative forcings and plant physiological and structural responses. Here, we investigate the nature and frequency of non-stationary hydrological response as evidenced through water balance studies over 166 anthropogenically unaffected catchments in Australia. Non-stationarity of hydrologic response is investigated through analysis of long-term trend in annual runoff ratio (1984-2005). Results indicate that a significant trend (p < 0.01) in runoff ratio is evident in 20 catchments located in three main ecoregions of the continent. Runoff ratio decreased across the catchments with non-stationary hydrologic response with the exception of one catchment in northern Australia. Annual runoff ratio sensitivity to annual fractional vegetation cover was similar to or greater than sensitivity to annual precipitation in most of the catchments with non-stationary hydrologic response indicating vegetation impacts on streamflow. We use precipitation-productivity relationships as the first-order control for ecohydrologic catchment classification. A total of 12 out of 20 catchments present a positive precipitation-productivity relationship possibly enhanced by CO2 fertilization effect. In the remaining catchments, biogeochemical and edaphic factors may be impacting productivity. Results suggest vegetation dynamics should be considered in exploring causes of non-stationary hydrologic response.

  18. The development of a novel approach for assessment of the first flush in urban stormwater discharges.

    PubMed

    Bach, P M; McCarthy, D T; Deletic, A

    2010-01-01

    The management of stormwater pollution has placed particular emphasis on the first flush phenomenon. However, definition and current methods of analyses of the phenomena contain serious limitations, the most important being their inability to capture a possible impact of the event size (total event volume) on the first flush. This paper presents the development of a novel approach in defining and assessing the first flush that should overcome these problems. The phenomenon is present in a catchment if the decrease in pollution concentration with the absolute cumulative volume of runoff from the catchment is statistically significant. Using data from seven diverse catchments around Melbourne, Australia, changes in pollutant concentrations for Total Suspended Solids (TSS) and Total Nitrogen (TN) were calculated over the absolute cumulative runoff and aggregated from a collection of different storm events. Due to the discrete nature of the water quality data, each concentration was calculated as a flow-weighted average at 2 mm runoff volume increments. The aggregated concentrations recorded in each increment (termed as a 'slice' of runoff) were statistically compared to each other across the absolute cumulative runoff volume. A first flush is then defined as the volume at which concentrations reach the 'background concentration' (i.e. the statistically significant minimum). Initial results clearly highlight first flush and background concentrations in all but one catchment supporting the validity of this new approach. Future work will need to address factors, which will help assess the first flush's magnitude and volume. Sensitivity testing and correlation with catchment characteristics should also be undertaken.

  19. Impact of forestry on total and methyl-mercury in surface waters: distinguishing effects of logging and site preparation.

    PubMed

    Eklöf, Karin; Schelker, Jakob; Sørensen, Rasmus; Meili, Markus; Laudon, Hjalmar; von Brömssen, Claudia; Bishop, Kevin

    2014-05-06

    Forestry operations can increase the export of mercury (both total and methyl) to surface waters. However, little is known about the relative contribution of different forestry practices. We address this question using a paired-catchment study that distinguishes the effects of site preparation from the antecedent logging. Runoff water from three catchments, two harvested and one untreated control, was sampled biweekly during one year prior to logging, two years after logging, and three years after site preparation. The logging alone did not significantly increase the concentrations of either total or methyl-mercury in runoff, but export increased by 50-70% in one of the harvested catchments as a consequence of increased runoff volume. The combined effects of logging and site preparation increased total and methyl-mercury concentrations by 30-50% relative to preharvest conditions in both treated catchments. The more pronounced concentration effect after site preparation compared to logging could be related to site preparation being conducted during summer. This caused more soil disturbance than logging, which was done during winter with snow covering the ground. The results suggest that the cumulative impact of forest harvest on catchment mercury outputs depends on when and how forestry operations are implemented.

  20. Volumetric runoff coefficients for experimental rural catchments in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Taguas, Encarnación V.; Molina, Cecilio; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Farguell, Joaquim; Giménez, Rafael; Giráldez, Juan V.; Gómez, Helena; Gómez, Jose A.; González-Hidalgo, J. Carlos; Keizer, J. Jacob; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Sussane; Serrano-Muela, M. Pilar

    2015-04-01

    Analysis of runoff and peaks therein is essential for designing hydraulic infrastructures and for assessing the hydrological implications of likely scenarios of climate and/or land-use change. Different methods are available to calculate runoff coefficients. For instance, the runoff coefficient of a catchment can be described either as the ratio of total depth of runoff to total depth of rainfall or as the ratio of peak flow to rainfall intensity for the time of concentration (Dhakal et al. 2012). If the first definition is considered, runoff coefficients represent the global effect of different features and states of catchments and its determination requires a suitable analysis according to the objectives pursued (Chow et al., 1988). In this work, rainfall-runoff data and physical attributes from small rural catchments located in the Iberian Peninsula (Portugal and Spain) were examined in order to compare the representative values of runoff coefficients using three different approaches: i) statistical analysis of rainfall-runoff data and their quantiles (Dhakal et al., 2012); ii) probabilistic runoff coefficients from the rank-ordered pairs of observed rainfall-runoff data and their relationships with rainfall depths (Schaake et al., 1967); iii) finally, a multiple linear model based on geomorphological attributes. These catchments exhibit great variety with respect to their natural settings, such as climate, topography and lithology. We present a preliminary analysis of the rainfall-runoff relationships as well as their variability in a complex context such as the Iberian Peninsula where contrasted environmental systems coexist. We also discuss reference parameters representing runoff coefficients commonly included into hydrological models. This study is conceived as the first step to explore further working protocols and modeling gaps in a very susceptible area to the climate change such as the Iberian Peninsula's, where the analysis of runoff coefficients is crucial for designing appropriate decision making tools for water management. REFERENCES Chow V.T., Maidment D.R. and Mays, L.W. 1988. Applied Hydrology. MCGraw Hill, Nueva York. Dhakal, N., Fang, X., Cleveland, T., Thompson, D., Asquith, W., and Marzen, L. (2012). "Estimation of Volumetric Runoff Coefficients for Texas Watersheds Using Land-Use and Rainfall-Runoff Data." Journal of Irrigation and Drainage Engineering, 1(2012):43-54. Schaake JC, Geyer JC,Knapp JW. 1967. Experimental examination of the rational method. J. Hydr.Div. 93(6),353-70

  1. Simulating high frequency water quality monitoring data using a catchment runoff attenuation flux tool (CRAFT).

    PubMed

    Adams, Russell; Quinn, Paul F; Perks, Matthew; Barber, Nicholas J; Jonczyk, Jennine; Owen, Gareth J

    2016-12-01

    High resolution water quality data has recently become widely available from numerous catchment based monitoring schemes. However, the models that can reproduce time series of concentrations or fluxes have not kept pace with the advances in monitoring data. Model performance at predicting phosphorus (P) and sediment concentrations has frequently been poor with models not fit for purpose except for predicting annual losses. Here, the data from the Eden Demonstration Test Catchments (DTC) project have been used to calibrate the Catchment Runoff Attenuation Flux Tool (CRAFT), a new, parsimonious model developed with the aim of modelling both the generation and attenuation of nutrients and sediments in small to medium sized catchments. The CRAFT has the ability to run on an hourly timestep and can calculate the mass of sediments and nutrients transported by three flow pathways representing rapid surface runoff, fast subsurface drainage and slow groundwater flow (baseflow). The attenuation feature of the model is introduced here; this enables surface runoff and contaminants transported via this pathway to be delayed in reaching the catchment outlet. It was used to investigate some hypotheses of nutrient and sediment transport in the Newby Beck Catchment (NBC) Model performance was assessed using a suite of metrics including visual best fit and the Nash-Sutcliffe efficiency. It was found that this approach for water quality models may be the best assessment method as opposed to using a single metric. Furthermore, it was found that, when the aim of the simulations was to reproduce the time series of total P (TP) or total reactive P (TRP) to get the best visual fit, that attenuation was required. The model will be used in the future to explore the impacts on water quality of different mitigation options in the catchment; these will include attenuation of surface runoff. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Controls on Water Storage, Mixing and Release in a Nested Catchment Set-up with Clean and Mixed Physiographic Characteristics

    NASA Astrophysics Data System (ADS)

    Pfister, L.; McDonnell, J.; Hissler, C.; Martínez-Carreras, N.; Klaus, J.

    2015-12-01

    With catchment water storage being only rarely determined, storage dynamics remain largely unknown to date. However, storage bears considerable potential for catchment inter-comparison exercises, as well as it is likely to have an important role in regulating catchment functions. Catchment comparisons across a wide range of environments and scales will help to increase our understanding of relationships between storage dynamics and catchment processes. With respect to the potential of catchment storage for bringing new momentum to catchment classification and catchment processes understanding we currently investigate spatial and temporal variability of dynamic storage in a nested catchment set-up (16 catchments) of the Alzette River basin (Luxembourg, Europe), covering a wide range of geological settings, catchment areas, contrasted landuse, and hydro-meteorological and tracer series. We define catchment storage as the total amount of water stored in a control volume, delimited by the catchment's topographical boundaries and depth of saturated and unsaturated zones. Complementary storage assessments (via input-output dynamics of natural tracers, geographical sounding, groundwater level measurements, soil moisture measurements, hydrometry) are carried out for comparison purposes. In our nested catchment set-up we have (1) assessed dependencies between geology, catchment permeability and winter runoff coefficients, (2) calculated water balance derived catchment storage and mixing potential and quantified how dynamic storage differs between catchments and scales, and (3) examined how stream baseflow dD (as a proxy for baseflow transit time) and integrated flow measures (like the flow duration curve) relate to bedrock geology. Catchments with higher bedrock permeability exhibited larger storage capacities and eventually lower average winter runoff coefficients. Over a time-span of 11 years, all catchments re-produced the same winter runoff coefficients year after year, regardless of their bedrock geology, permeability and winter season storage filling ratios. Ultimately, catchment organisation in our area of interest (i.e. geology, permeability, flowpath length) appeared to have a strong control on winter runoff coefficients, catchment storage and subsequently baseflow dD.

  3. Simulation and assessment of urbanization impacts on runoff metrics: insights from landuse changes

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Xia, Jun; Yu, Jingjie; Randall, Mark; Zhang, Yichi; Zhao, Tongtiegang; Pan, Xingyao; Zhai, Xiaoyan; Shao, Quanxi

    2018-05-01

    Urbanization-induced landuse changes alter runoff regimes in complex ways. In this study, a detailed investigation of the urbanization impacts on runoff regimes is provided by using multiple runoff metrics and with consideration of landuse dynamics. A catchment hydrological model is modified by coupling a simplified flow routing module of the urban drainage system and landuse dynamics to improve long-term urban runoff simulations. Moreover, multivariate statistical approach is adopted to mine the spatial variations of runoff metrics so as to further identify critical impact factors of landuse changes. The Qing River catchment as a peri-urban catchment in the Beijing metropolitan area is selected as our study region. Results show that: (1) the dryland agriculture is decreased from 13.9% to 1.5% of the total catchment area in the years 2000-2015, while the percentages of impervious surface, forest and grass are increased from 63.5% to 72.4%, 13.5% to 16.6% and 5.1% to 6.5%, respectively. The most dramatic landuse changes occur in the middle and downstream regions; (2) The combined landuse changes do not alter the average flow metrics obviously at the catchment outlet, but slightly increase the high flow metrics, particularly the extreme high flows; (3) The impacts on runoff metrics in the sub-catchments are more obvious than those at the catchment outlet. For the average flow metrics, the most impacted metric is the runoff depth in the dry season (October ∼ May) with a relative change from -10.9% to 11.6%, and the critical impact factors are the impervious surface and grass. For the high flow metrics, the extreme high flow depth is increased most significantly with a relative change from -0.6% to 10.5%, and the critical impact factors are the impervious surface and dryland agriculture; (4) The runoff depth metrics in the sub-catchments are increased because of the landuse changes from dryland agriculture to impervious surface, but are decreased because of the landuse changes from dryland agriculture or impervious surface to grass or forest. The results of this study provide useful information for urban planning such as Sponge City design.

  4. Improving the water use efficiency of olive trees growing in water harvesting systems

    NASA Astrophysics Data System (ADS)

    Berliner, Pedro; Leake, Salomon; Carmi, Gennady; Agam, Nurit

    2017-04-01

    Water is a primary limiting factor for agricultural development in many arid and semi-arid regions in which a runoff generation is a rather frequent event. If conveyed to dyke surrounded plots and ponded, runoff water can thereafter be used for tree production. One of the most promising runoff collection configurations is that of micro-catchments in which water is collected close to the area in which runoff was generated and stored in adjacent shallow pits. The objective of this work was to assess the effect of the geometry of runoff water collection area (shallow pit or trench) on direct evaporative water losses and on the water use efficiency of olive trees grown in them. The study was conducted during the summer of 2013 and 2014. In this study regular micro-catchments with basins of 9 m2 (3 x 3 m) by 0.1 m deep were compared with trenches of one meter deep and one meter wide. Each configuration was replicated three times. One tree was planted in each shallow basin and the distance between trees in the 12 m long trench was four meters. Access tubes for neutron probes were installed in the micro-catchments and trenches (four and seven, respectively) to depths of 2.5 m. Soil water content in the soil profile was monitored periodically throughout drying periods in between simulated runoff events. Transpiration of the trees was estimated from half-hourly sap flow measurements using a Granier system. Total transpiration fluxes were computed for time intervals corresponding to consecutive soil water measurements. During the first year, a large runoff event was simulated by applying once four cubic meters to each plot; and in the second year the same volume of water was split into four applications, simulating a series of small runoff events. In both geometries, trees received the same amount of water per tree. Evaporation from trenches and micro-catchments was estimated as the difference between evapotranspiration obtained computing the differences in total soil water content between two consecutive measurements and transpiration for this interval estimated from sap flow measurements. In both years the evaporation from micro-catchments was significantly larger than that of trenches. The fractional loss due to evaporation from the total applied water for the second year for example, was 53% and 22% for micro-catchments and trenches, respectively. This indicates that a trench geometry reduces the amount of water lost to direct evaporation from the soil, and is thus more efficient in utilizing harvested runoff water.

  5. Examining the effects of forest thinning on runoff responses at different catchments scales in forested headwaters

    NASA Astrophysics Data System (ADS)

    Dung, B. X.; Gomi, T.; Onda, Y.; Kato, H.; Hiraoka, M.

    2012-12-01

    We conducted field observation in nested headwater catchments draining Japanese cypress (Chamaecyparis obtusa) and cedar (Cryptomeria japonica) forests at Tochigi prefectures for examining the effects of forest thinning on runoff generation at different catchment scales. 50% of the stems was removed with line thinning in catchment K2 (treatment catchment), while catchment K3 remained untreated as a control. We also monitored nested catchments within K2-1 (17.1 ha) as K2-2 (10.2 ha), K2-3 (3.7 ha) and K2-4 (5.1 ha), and within K3-1 (8.9 ha) as K3-2 (3.0 ha). Runoff from the catchments was monitored during the pre-thinning (from April, 2010 to May 2011), and the post-thinning periods (from June 2011 to July 2012). Paired-catchment and hydrograph separation analysis were used to evaluate the effects of forest thinning on runoff generation at different catchment scales. We developed the pre-thinning calibration equation for predicting post-thinning responses. Paired-catchment analysis revealed that annual catchment runoff increased 648 mm in K2-1, 414 mm in K2-2, 517 mm in K2-3 and 487 mm in K2-4 after the thinning. Both quick and delayed runoff components only increased significantly in the larger catchments of K2-1 and K2-2, while only delayed runoff components of smaller catchments (K2-3 and K2-4) increased significantly during the post-thinning period. Increases of quick runoff in large catchments could be associated with quick runoff response to soil surface compaction by line thinning and skid trail installation. Increases of delayed runoff in small catchment may be associated with increase in net precipitation and decrease in evapotranspiration. Our finding showed that changes in internal hydrological flow pathways and associated changes in runoff components due to forest harvesting differ depending on the catchment sizes.

  6. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments - a review

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Auerswald, K.; van Oost, K.

    2009-04-01

    In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water drainage networks.

  7. Modeling the risk of phosphorus runoff following single and split phosphorus fertilizer applications in two contrasting catchments.

    PubMed

    Burkitt, Lucy L; Dougherty, Warwick J; Corkrey, Ross; Broad, Shane T

    2011-01-01

    The potential loss of P in runoff is a function of the combined effects of fertilizer-soil interactions and climatic characteristics. In this study, we applied a Bayesian approach to experimental data to model the annualized long-term risk of P runoff following single and split P fertilizer applications using two example catchments with contrasting rainfall/runoff patterns. Split P fertilizer strategies are commonly used in intensive pasture production in Australia and our results showed that three applications of 13.3 kg P ha(-1) resulted in a greater risk of P runoff compared with a single application of 40 kg P ha(-1) when long-term surface runoff data were incorporated into a Bayesian P risk model. Splitting P fertilizer applications increased the likelihood of a coincidence of fertilizer application and runoff occurring. We found that the overall risk of P runoff is also increased in catchments where the rainfall/runoff pattern is less predictable, compared with catchments where rainfall/runoff is winter dominant. The findings of our study also question the effectiveness of current recommendations to avoid applying fertilizer if runoff is likely to occur in the next few days, as we found that total P concentrations at the half-life were still very high (18.2 and 8.2 mg P L(-1)) following single and split P treatments, respectively. Data from the current study also highlight that omitting P fertilizer on soils that already have adequate soil test P concentrations is an effective method of reducing P loss in surface runoff. If P fertilizer must be applied, we recommend less frequent applications and only during periods of the year when the risk of surface P runoff is low.

  8. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.

    2014-12-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.

  9. Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Parkin, G.; O'Donnell, G.; Ewen, J.; Bathurst, J. C.; O'Connell, P. E.; Lavabre, J.

    1996-02-01

    Validation methods commonly used to test catchment models are not capable of demonstrating a model's fitness for making predictions for catchments where the catchment response is not known (including hypothetical catchments, and future conditions of existing catchments which are subject to land-use or climate change). This paper describes the first use of a new method of validation (Ewen and Parkin, 1996. J. Hydrol., 175: 583-594) designed to address these types of application; the method involves making 'blind' predictions of selected hydrological responses which are considered important for a particular application. SHETRAN (a physically based, distributed catchment modelling system) is tested on a small Mediterranean catchment. The test involves quantification of the uncertainty in four predicted features of the catchment response (continuous hydrograph, peak discharge rates, monthly runoff, and total runoff), and comparison of observations with the predicted ranges for these features. The results of this test are considered encouraging.

  10. Effects of landscape-based green infrastructure on stormwater ...

    EPA Pesticide Factsheets

    The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reaching streams. These changes have deleterious effects on downstream surface waters. Consequently, strategies to mitigate these impacts are now components of contemporary urban development and stormwater management. This study evaluates the effectiveness of landscape green infrastructure (GI) in reducing stormwater runoff volumes and controlling peak flows in four subdivision-scale suburban catchments (1.88 – 12.97 acres) in Montgomery County, MD, USA. Stormwater flow rates during runoff events were measured in five minute intervals at each catchment outlet. One catchment was built with GI vegetated swales on all parcels with the goal of intercepting, conveying, and infiltrating stormwater before it enters the sewer network. The remaining catchments were constructed with traditional gray infrastructure and “end-of-pipe” best management practices (BMPs) that treat stormwater before entering streams. This study compared characteristics of rainfall-runoff events at the green and gray infrastructure sites to understand their effects on suburban hydrology. The landscape GI strategy generally reduced rainfall-runoff ratios compared to gray infrastructure because of increased infiltration, ul

  11. First flush of storm runoff pollution from an urban catchment in China.

    PubMed

    Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li

    2007-01-01

    Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.

  12. Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia

    NASA Astrophysics Data System (ADS)

    Nasri, S.; Cudennec, C.; Albergel, J.; Berndtsson, R.

    2004-02-01

    In the beginning of the 1990s, the Tunisian Ministry of Agriculture launched an ambitious program for constructing small hillside reservoirs in the northern and central region of the country. At present, more than 720 reservoirs have been created. They consist of small compacted earth dams supplied with a horizontal overflow weir. Due to lack of hydrological data and the area's extreme floods, however, it is very difficult to design the overflow weirs. Also, catchments are very sensitive to erosion and the reservoirs are rapidly silted up. Consequently, prediction of flood volumes for important rainfall events becomes crucial. Few hydrological observations, however, exist for the catchment areas. For this purpose a geomorphological model methodology is presented to predict shape and volume of hydrographs for important floods. This model is built around a production function that defines the net storm rainfall (portion of rainfall during a storm which reaches a stream channel as direct runoff) from the total rainfall (observed rainfall in the catchment) and a transfer function based on the most complete possible definition of the surface drainage system. Observed rainfall during 5-min time steps was used in the model. The model runoff generation is based on surface drainage characteristics which can be easily extracted from maps. The model was applied to two representative experimental catchments in central Tunisia. The conceptual rainfall-runoff model based on surface topography and drainage network was seen to reproduce observed runoff satisfactory. The calibrated model was used to estimate runoff from 5, 10, 20, and 50 year rainfall return periods regarding runoff volume, maximum runoff, as well as the general shape of the runoff hydrograph. Practical conclusions to design hill reservoirs and to extrapolate results using this model methodology for ungauged small catchments in semiarid Tunisia are made.

  13. Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya.

    PubMed

    Gaddam, Vinay Kumar; Kulkarni, Anil V; Gupta, Anil Kumar

    2018-02-20

    Hydrological regimes of most of the Himalayan river catchments are poorly studied due to sparse hydro-meteorological data. Hence, stream runoff assessment becomes difficult for various socio-industrial activities in the Himalaya. Therefore, an attempt is made in this study to assess the stream runoff of Baspa River in Himachal Pradesh, India, by evaluating the contribution from snow-ice melt and rainfall runoff. The total volume of flow was computed for a period of 15 years, from 2000 to 2014, and validated with the long-term field discharge measurements, obtained from Jaipee Hydropower station (31° 32' 35.53″ N, 78° 00' 54.80″ E), at Kuppa barrage in the basin. The observations suggest (1) a good correlation (r 2  > 0.80) between the modeled runoff and field discharge measurements, and (2) out of the total runoff, 81.2% are produced by snowmelt, 11.4% by rainfall, and 7.4% from ice melt. The catchment receives ~75% of its total runoff in the ablation period (i.e., from May to September). In addition, an early snowmelt is observed in accumulation season during study period, indicating the significant influence of natural and anthropogenic factors on high-altitude areas.

  14. Contribution of different sources to the pollution of wet weather flows in combined sewers.

    PubMed

    Gromaire, M C; Garnaud, S; Saad, M; Chebbo, G

    2001-02-01

    Experiments performed on "Marais" catchment, in central Paris, aimed to follow up the quality of wet weather flows from the entry to the exit of a combined sewer network. SS, VSS, COD, BOD5, Cd, Cu, Pb, Zn concentrations were measured for an important number of rain events in roof, yard, street runoff, as well as in dry and wet weather flows at the catchment outlet. Mass entry-exit totals, at the scale of the catchment, were calculated over 31 rain events in order to evaluate the contribution of different types of runoff, of sanitary sewage and of sewer sediments to the total wet weather pollutant loads at the catchment outlet. The erosion of in-sewer pollutant stocks was found to be the main source of particles and of organic matter in wet weather flows, whereas heavy metal loads mainly originated from roof runoff, due to the corrosion of metallic roofs. Particles eroded inside the sewer during rain events were found to be quite different from the particles constituting the main part of sewer sediments: they are organic and biodegradable, with rather important settling velocities and seem to accumulate during dry weather periods. A change of the chemical form of heavy metals was noticed during the transport in the sewer and it is suspected that a fraction of the dissolved metals from the runoff is adsorbed on sewer sediments.

  15. Threshold responses in runoff from sub-humid heterogeneous low relief regions

    NASA Astrophysics Data System (ADS)

    Devito, K.; Hokanson, K. J.; Chasmer, L.; Kettridge, N.; Lukenbach, M.; Mendoza, C. A.; Moore, P.; Peters, D.; Silins, U.

    2017-12-01

    We examined runoff in 20 catchments (50 to 50000 km2) over a 25 year wet and dry climate cycle to understand temporal and spatial thresholds in runoff generation responses in the water limited, glaciated continental Boreal Plains (BP) eco-region of Western Canada. Annual runoff ranged over 3 orders of magnitude (<3 mm to >300 mm/year) but was poorly correlated with annual precipitation. A threshold relationship was observed with multi-year cumulative moisture deficit (CMD) that reflected temporal and spatial differences in effective storage, antecedent moisture state and hydrologic connectivity among catchments with differing portions of land-cover (e.g. wetland vs. forestland) and glacial-deposit types. During dry states (CMD< -200 mm), catchment annual low flow ranged by over one order of magnitude (2 to 80 mm/yr), and increased with percent area of coarse textured deposits. In fine textured catchments, runoff was only observed in catchments with >30% wetland area. During mesic conditions (CMD 0 mm), runoff remained very low in catchments with large proportions of forests and poorly connected open water depressions associated with fine-textured moraines. Runoff was positively correlated with percent peatland area, suggesting that peatland networks were the primary source areas of surface water to regional runoff. During the infrequent wet states (CMD > 200 mm) of the study period, runoff coefficients were similar among all catchments indicating that both forests and peatlands contributed to catchment runoff. . Rather than estimating regional runoff from topographic drainage networks, integrating CMD with the classification of catchments based on land-cover configuration and glacial-deposit type can: 1) better represent water cycling and regional sink-source dynamics controlling regional runoff, and 2) provide an effective management framework for predicting climate and land-use impacts on regional runoff in low relief glacial landscapes such as the Boreal Plain.

  16. Distributed modelling of hydrologic regime at three subcatchments of Kopaninský tok catchment

    NASA Astrophysics Data System (ADS)

    Žlábek, Pavel; Tachecí, Pavel; Kaplická, Markéta; Bystřický, Václav

    2010-05-01

    Kopaninský tok catchment is situated in crystalline area of Bohemo-Moravian highland hilly region, with cambisol cover and prevailing agricultural land use. It is a subject of long term (since 1980's) observation. Time series (discharge, precipitation, climatic parameters...) are nowadays available in 10 min. time step, water quality average daily composit samples plus samples during events are available. Soil survey resulting in reference soil hydraulic properties for horizons and vegetation cover survey incl. LAI measurement has been done. All parameters were analysed and used for establishing of distributed mathematical models of P6, P52 and P53 subcatchments, using MIKE SHE 2009 WM deterministic hydrologic modelling system. The aim is to simulate long-term hydrologic regime as well as rainfall-runoff events, serving the base for modelling of nitrate regime and agricultural management influence in the next step. Mentioned subcatchments differs in ratio of artificial drainage area, soil types, land use and slope angle. The models are set-up in a regular computational grid of 2 m size. Basic time step was set to 2 hrs, total simulated period covers 3 years. Runoff response and moisture regime is compared using spatially distributed simulation results. Sensitivity analysis revealed most important parameters influencing model response. Importance of spatial distribution of initial conditions was underlined. Further on, different runoff components in terms of their origin, flow paths and travel time were separated using a combination of two runoff separation techniques (a digital filter and a simple conceptual model GROUND) in 12 subcatchments of Kopaninský tok catchment. These two methods were chosen based on a number of methods testing. Ordinations diagrams performed with Canoco software were used to evaluate influence of different catchment parameters on different runoff components. A canonical ordination method analyses (RDA) was used to explain one data set (runoff components - either volumes of each runoff component or occurence of baseflow) with another data set (catchment parameters - proportion of arable land, proportion of forest, proportion of vulnerable zones with high infiltration capacity, average slope, topographic index and runoff coefficient). The influence was analysed both for long-term runoff balance and selected rainfall-runoff events. Keywords: small catchment, water balance modelling, rainfall-runoff modelling, distributed deterministic model, runoff separation, sensitivity analysis

  17. Runoff and solute mobilization processes in a semiarid headwater catchment

    NASA Astrophysics Data System (ADS)

    Hughes, Justin D.; Khan, Shahbaz; Crosbie, Russell S.; Helliwell, Stuart; Michalk, David L.

    2007-09-01

    Runoff and solute transport processes contributing to streamflow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Streamflow and electrical conductivity were monitored from two gauges draining a portion of the upper catchment area (UCA) and a saline scalded area, respectively. Runoff in the UCA was related to the formation of a seasonally perched aquifer in the near-surface zone (0-0.4 m). A similar process was responsible for runoff generation in the saline scalded area. However, saturation in the scald area was related to the proximity of groundwater rather than low subsurface hydraulic conductivity. Because of higher antecedent water content, runoff commenced earlier in winter from the scald than did the UCA. Additionally, areal runoff from the scald was far greater than from the UCA. Total runoff from the UCA was higher than the scald (15.7 versus 3.5 mL), but salt export was far lower (0.6 and 5.4 t for the UCA and scald area, respectively) since salinity of the scald runoff was far higher than that from the UCA, indicating the potential impact of saline scalded areas at the catchment scale. End-member mixing analysis modeling using six solutes indicated that most runoff produced from the scald was "new" (40-71%) despite the proximity of the groundwater surface and the high antecedent moisture levels. This is a reflection of the very low hydraulic conductivity of soils in the study area. Nearly all chloride exported to the stream from the scald emanated from the near-surface zone (77-87%). Runoff and solute mobilization processes depend upon seasonal saturation occurring in the near-surface zone during periods of low evaporative demand and generation of saturated overland flow.

  18. Contributions of climate change and human activities to runoff change in seven typical catchments across China.

    PubMed

    Zhai, Ran; Tao, Fulu

    2017-12-15

    Climate change and human activities are two major factors affecting water resource change. It is important to understand the roles of the major factors in affecting runoff change in different basins for watershed management. Here, we investigated the trends in climate and runoff in seven typical catchments in seven basins across China from 1961 to 2014. Then we attributed the runoff change to climate change and human activities in each catchment and in three time periods (1980s, 1990s and 2000s), using the VIC model and long-term runoff observation data. During 1961-2014, temperature increased significantly, while the trends in precipitation were insignificant in most of the catchments and inconsistent among the catchments. The runoff in most of the catchments showed a decreasing trend except the Yingluoxia catchment in the northwestern China. The contributions of climate change and human activities to runoff change varied in different catchments and time periods. In the 1980s, climate change contributed more to runoff change than human activities, which was 84%, 59%, -66%, -50%, 59%, 94%, and -59% in the Nianzishan, Yingluoxia, Xiahui, Yangjiaping, Sanjiangkou, Xixian, and Changle catchment, respectively. After that, human activities had played a more essential role in runoff change. In the 1990s and 2000s, human activities contributed more to runoff change than in the 1980s. The contribution by human activities accounted for 84%, -68%, and 67% in the Yingluoxia, Xiahui, and Sanjiangkou catchment, respectively, in the 1990s; and -96%, -67%, -94%, and -142% in the Nianzishan, Yangjiaping, Xixian, and Changle catchment, respectively, in the 2000s. It is also noted that after 2000 human activities caused decrease in runoff in all catchments except the Yingluoxia. Our findings highlight that the effects of human activities, such as increase in water withdrawal, land use/cover change, operation of dams and reservoirs, should be well managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Elevated Annual Runoff Ratios in Pacific Northwest Catchments Impacted by Epidemic Foliage Disease of Douglas-fir

    NASA Astrophysics Data System (ADS)

    Bladon, K. D.; Bywater-Reyes, S.; LeBoldus, J. M.; Segura, C.; Ritokova, G.; Shaw, D. C.

    2017-12-01

    Catchments in the Western United States are undergoing unprecedented levels of tree die-off and/or reduced vigor due to increased severity of wildfire, drought, insect outbreaks, and disease. In the U.S. Pacific Northwest, Swiss needle cast (SNC) is the most damaging foliar disease of Douglas-fir (Pseudotsuga menziesii), physically obstructing stomata and preventing CO2 uptake and transpiration. A recent analysis in coastal Oregon indicated a substantial increase in area affected by the disease, from 530.5 km2 in 1996 to 2,387.1 km2 in 2015. Deforestation or reduced tree vigor can have profound impacts on catchment hydrology, in theory, producing increased streamflow due to reduced interception and transpiration. However, these increases have not always been detectable as impacts also depend on factors such as climate and vegetation composition. Moreover, press disturbances, such as insect outbreaks or disease, often do not result in complete removal of understorey or canopy vegetation. We analyzed trends in annual runoff ratios (quotient of discharge divided by precipitation) from 1990-2015 in 12 catchments (183-1,744 km2) in western Oregon. In general, runoff ratios increased by 10-27% in catchments with a total area of SNC >10%, with the most substantial runoff increases in catchments with SNC impacting >25% of the area. Interestingly, the most severely impacted catchment ( 90.5% SNC) showed a decrease in runoff. This is consistent with a potential compensatory response from understory western hemlock (Tsuga heterophylla) trees, a phenomenon observed in the most severely impacted sites. Findings from this study are important for assessing the impacts of biotic forest disturbances on water supply and aquatic ecosystem health.

  20. Scale effects on headwater catchment runoff timing, flow sources, and groundwater‐streamflow relations

    USGS Publications Warehouse

    McGlynn, Brian L.; McDonnell, Jeffery J.; Seibert, Jan; Kendall, Carol

    2004-01-01

    The effects of catchment size and landscape organization on runoff generation are poorly understood. Little research has integrated hillslope and riparian runoff investigation across catchments of different sizes to decipher first‐order controls on runoff generation. We investigated the role of catchment sizes on riparian and hillslope dynamics based on hydrometric and tracer data observed at five scales ranging from trenched hillslope sections (55–285 m2) to a 280‐ha catchment at Maimai on the west coast of the South Island, New Zealand. The highly organized landscape is comprised of similar headwater catchments, regular geology, steep highly dissected topography, relatively consistent soil depths, and topographically controlled shallow through flow. We found a strong correlation between riparian zone groundwater levels and runoff for the headwaters, whereas the water tables in the valley bottom of the larger catchments were uncorrelated to runoff for 14 months of record. While there was no clear relationship between catchment size and new water contribution to runoff in the two storms analyzed in detail, lag times of tracer responses increased systematically with catchment size. The combination of hydrometric and tracer data allowed assessment of the runoff contributions from different parts of the landscape. Runoff was generated consistently in headwater riparian zones. This agreed also with the observed variations of tracer (18O and silica) responses for the different catchments. During wetter antecedent conditions or during larger events (>30 mm under dry antecedent conditions) hillslope and valley bottom floodplains did contribute to event runoff directly. We propose that analysis of landscape‐scale organization and the distribution of dominant landscape features provide a structure for investigation of runoff production and solute transport, especially as catchment‐scale increases from headwaters to the mesoscale.

  1. Improved methods to estimate the effective impervious area in urban catchments using rainfall-runoff data

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Ali; Wilson, Bruce N.; Gulliver, John S.

    2016-05-01

    Impervious surfaces are useful indicators of the urbanization impacts on water resources. Effective impervious area (EIA), which is the portion of total impervious area (TIA) that is hydraulically connected to the drainage system, is a better catchment parameter in the determination of actual urban runoff. Development of reliable methods for quantifying EIA rather than TIA is currently one of the knowledge gaps in the rainfall-runoff modeling context. The objective of this study is to improve the rainfall-runoff data analysis method for estimating EIA fraction in urban catchments by eliminating the subjective part of the existing method and by reducing the uncertainty of EIA estimates. First, the theoretical framework is generalized using a general linear least square model and using a general criterion for categorizing runoff events. Issues with the existing method that reduce the precision of the EIA fraction estimates are then identified and discussed. Two improved methods, based on ordinary least square (OLS) and weighted least square (WLS) estimates, are proposed to address these issues. The proposed weighted least squares method is then applied to eleven urban catchments in Europe, Canada, and Australia. The results are compared to map measured directly connected impervious area (DCIA) and are shown to be consistent with DCIA values. In addition, both of the improved methods are applied to nine urban catchments in Minnesota, USA. Both methods were successful in removing the subjective component inherent in the analysis of rainfall-runoff data of the current method. The WLS method is more robust than the OLS method and generates results that are different and more precise than the OLS method in the presence of heteroscedastic residuals in our rainfall-runoff data.

  2. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale

    NASA Astrophysics Data System (ADS)

    Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-11-01

    Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.

  3. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale

    USGS Publications Warehouse

    Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-01-01

    Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.

  4. Hydrologic data for urban storm runoff from three localities in the Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Ellis, Sherman R.

    1978-01-01

    Urban storm-runoff data, collected from 1975 to 1977, on three catchment areas in the Denver, Colo., metropolitan area are presented. The catchment are predominantly a single-family residential catchment area in Littleton, a multifamily residential and commercial catchment area in Lakewood, and a high-density residential and commercial catchment area in Denver. Precipitation, rainfall-runoff, snowmelt-runoff, water-quality (common constituents, nutrients, biochemical oxygen demand, coliform bacteria, and solids, trace elements, and pesticides), and catchment-area data are necessary to use the U.S. Environmental Protection Agency 's Storm Water Management Model II. The urban storm-runoff data may be used by planning, water-management, and environmental-protection agencies to assess the impact of urban storm runoff on the hydrologic system. (Woodard-USGS)

  5. Catchment classification by runoff behaviour with self-organizing maps (SOM)

    NASA Astrophysics Data System (ADS)

    Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.

    2011-09-01

    Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.

  6. Catchment classification by runoff behaviour with self-organizing maps (SOM)

    NASA Astrophysics Data System (ADS)

    Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.

    2011-03-01

    Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.

  7. Storm runoff quality and pollutant loading from commercial, residential, and industrial catchments in the tropic.

    PubMed

    Chow, M F; Yusop, Z; Shirazi, S M

    2013-10-01

    Information on the pollution level and the influence of hydrologic regime on the stormwater pollutant loading in tropical urban areas are still scarce. More local data are still required because rainfall and runoff generation processes in tropical environment are very different from the temperate regions. This study investigated the extent of urban runoff pollution in residential, commercial, and industrial catchments in the south of Peninsular Malaysia. Stormwater samples and flow rate data were collected from 51 storm events. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease (O&G), nitrate nitrogen (NO3-N), nitrite nitrogen, ammonia nitrogen, soluble reactive phosphorus, total phosphorus (TP), and zinc (Zn). It was found that the event mean concentrations (EMCs) of pollutants varied greatly between storm characteristics and land uses. The results revealed that site EMCs for residential catchment were lower than the published data but higher for the commercial and industrial catchments. All rainfall variables were negatively correlated with EMCs of most pollutants except for antecedent dry days (ADD). This study reinforced the earlier findings on the importance of ADD for causing greater EMC values with exceptions for O&G, NO3-N, TP, and Zn. In contrast, the pollutant loadings are influenced primarily by rainfall depth, mean intensity, and max 5-min intensity in all the three catchments. Overall, ADD is an important variable in multiple linear regression models for predicting the EMC values in the tropical urban catchments.

  8. Hydrological Response of Semi-arid Degraded Catchments in Tigray, Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Teka, Daniel; Van Wesemael, Bas; Vanacker, Veerle; Hallet, Vincent

    2013-04-01

    To address water scarcity in the arid and semi-arid part of developing countries, accurate estimation of surface runoff is an essential task. In semi-arid catchments runoff data are scarce and therefore runoff estimation using hydrological models becomes an alternative. This research was initiated in order to characterize runoff response of semi-arid catchments in Tigray, North Ethiopia to evaluate SCS-CN for various catchments. Ten sub-catchments were selected in different river basins and rainfall and runoff were measured with automatic hydro-monitoring equipments for 2-3 years. The Curve Number was estimated for each Hydrological Response Unit (HRU) in the sub-catchments and runoff was modeled using the SCS-CN method at λ = 0.05 and λ = 0.20. The result showed a significant difference between the two abstraction ratios (P =0.05, df = 1, n= 132) and reasonable good result was obtained for predicted runoff at λ = 0.05 (NSE = -0.69; PBIAS = 18.1%). When using the CN values from literature runoff was overestimated compared to the measured value (e= -11.53). This research showed the importance of using measured runoff data to characterize semi-arid catchments and accurately estimate the scarce water resource. Key words: Hydrological response, rainfall-runoff, degraded environments, semi-arid, Ethiopia, Tigray

  9. Urbanisation impacts on storm runoff along a rural-urban gradient

    NASA Astrophysics Data System (ADS)

    Miller, James David; Hess, Tim

    2017-09-01

    Urbanisation alters the hydrological response of catchments to storm events and spatial measures of urban extent and imperviousness are routinely used in hydrological modelling and attribution of runoff response to land use changes. This study evaluates whether a measure of catchment urban extent can account for differences in runoff generation from storm events along an rural-urban gradient. We employed a high-resolution monitoring network across 8 catchments in the south of the UK - ranging from predominantly rural to heavily urbanised - over a four year period, and from this selected 336 storm events. Hydrological response was compared using volume- and scaled time-based hydrograph metrics within a statistical framework that considered the effect of antecedent soil moisture. Clear differences were found between rural and urban catchments, however above a certain threshold of urban extent runoff volume was relatively unaffected by changes and runoff response times were highly variable between catchments due to additional hydraulic controls. Results indicate a spatial measure of urbanisation can generally explain differences in the hydrological response between rural and urban catchments but is insufficient to explain differences between urban catchments along an urban gradient. Antecedent soil moisture alters the volume and timing of runoff generated in catchments with large rural areas, but was not found to affect the runoff response where developed areas are much greater. The results of this study suggest some generalised relationships between urbanisation and storm runoff are not represented in observed storm events and point to limitations in using a simplified representations of the urban environment for attribution of storm runoff in small urban catchments. The study points to the need for enhanced hydrologically relevant catchment descriptors specific to small urban catchments and more focused research on the role of urban soils and soil moisture in storm runoff generation in mixed land-use catchments.

  10. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment

    NASA Astrophysics Data System (ADS)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2018-02-01

    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is useful for better computation of runoff generated from different land cover, for assessments of stormwater management techniques (e.g. the Low Impact Development or LID) and the impacts of land cover and climate change. There are some simplifications or limitations such as the runoff routing does not involve detailed sewer hydraulics, effects of leakages from water supply systems and faulty/illegal connections from sanitary sewer are not considered, the model cannot identify actual locations of the interactions between the subsurface runoff and sewer pipes and lacks parsimony.

  11. Analysis of water supply and demand in high mountain cities of Bolivia under growing population and changing climate

    NASA Astrophysics Data System (ADS)

    Kinouchi, T.; Mendoza, J.; Asaoka, Y.; Fuchs, P.

    2017-12-01

    Water resources in La Paz and El Alto, high mountain capital cities of Bolivia, strongly depend on the surface and subsurface runoff from partially glacierized catchments located in the Cordillera Real, Andes. Due to growing population and changing climate, the balance between water supply from the source catchments and demand for drinking, agriculture, industry and hydropower has become precarious in recent years as evidenced by a serious drought during the 2015-2016 El Nino event. To predict the long-term availability of water resources under changing climate, we developed a semi-distributed glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitude catchments. Two GCM projections (MRI-AGCM and INGV-ECHAM4) were used for the prediction with bias corrected by reanalysis data (ERA-INTERIM) and downscaled to target areas using data monitored at several weather stations. The model was applied to three catchments from which current water resources are supplied and eight additional catchments that will be potentially effective in compensating reduced runoff from the current water resource areas. For predicting the future water demand, a cohort-component method was used for the projection of size and composition of population change, considering natural and social change (birth, death and transfer). As a result, total population is expected to increase from 1.6 million in 2012 to 2.0 million in 2036. The water demand was predicted for given unit water consumption, non-revenue water rate (NWR), and sectorial percentage of water consumption for domestic, industrial and commercial purposes. The results of hydrological simulations and the analysis of water demand indicated that water supply and demand are barely balanced in recent years, while the total runoff from current water resource areas will continue to decrease and unprecedented water shortage is likely to occur since around 2020 toward the middle of 21st century even if NWR is improved. We showed that the runoff from a partially-glacierized catchment located in the vicinity of the current water resource catchments can greatly compensate the projected shortage in water supply. Therefore, consensus building on diverting water from the new catchment will be critical for sustainable development of the region.

  12. Characterization of runoff from various urban catchments at different spatial scales in Beijing, China.

    PubMed

    Zhang, W; Che, W; Liu, D K; Gan, Y P; Lv, F F

    2012-01-01

    In order to investigate the characterization of runoff in storm sewer from various urban catchments, three monitoring systems at different spatial scales have been installed separately. They have been held since July 2010 in urban area of Beijing (China). The monitoring data revealed that chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), and NH(3)-N values significantly exceed the Class V surface water quality standard developed by Ministry of Environmental Protection of the People's Republic of China (MEP). A surface solids buildup and wash off model for small watershed was adopted to analyze and discuss the process of a runoff pollutant discharge. More than a half of pollutant parameters presented a good fit to the model. However, a slightly worse-fit to the wash off model appeared in less than half of the data. Due to the influence of sewer sediments, sewer system characteristics, catchment characteristics, and other reasons, first flush was seldom observed in storm sewer runoff from these three survey areas. Meanwhile, the correlation between TSS and any other pollutant was analyzed according to cumulative load of pollutants in runoff events. An event mean concentrations (EMCs) approach was adopted to quantify the pollution of runoff. EMCs of various pollutants in storm sewer runoff between different rainfall events were slightly higher than the typical values observed in similar areas at home and abroad, according to other studies reported in literature. Based on quantitative analysis, it can be concluded that urban non-point source pollution is recognized as the major causes of quality deterioration in the receiving water bodies. This is after the point source pollution has been controlled substantially in Beijing. An integrated strategy, which combines centralized and decentralized control, along with the conditions of meteorology, hydrology, urban planning, existing drainage system, etc., will be an effective and economic approach to urban runoff pollution control.

  13. Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis.

    PubMed

    Petrucci, Guido; Gromaire, Marie-Christine; Shorshani, Masoud Fallah; Chebbo, Ghassan

    2014-09-01

    The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region. In this application, we suggest several procedures that can be applied for the analysis of other pollutants in different catchments, including an estimation of the total extent of roof accessories (gutters and downspouts, watertight joints and valleys) in a catchment. These accessories result as the major source of Pb and as an important source of Zn in the example catchment, while activity-related sources (traffic, heating) are dominant for Cu (brake pad wear) and PAH (tire wear, atmospheric deposition).

  14. The influence of synthetic hyetograph parameters on simulation results of runoff from urban catchment

    NASA Astrophysics Data System (ADS)

    Mazurkiewicz, Karolina; Skotnicki, Marcin

    2018-02-01

    The paper presents the results of analysis of the influence of the maximum intensity (peak) location in the synthetic hyetograph and rainfall duration on the maximum outflow from urban catchment. For the calculation Chicago hyetographs with a duration from 15 minutes to 180 minutes and peak location between 20% and 50% of the total rainfall duration were design. Runoff simulation was performed using the SWMM5 program for three models of urban catchment with area from 0.9 km2 to 6.7 km2. It was found that the increase in the rainfall peak location causes the increase in the maximum outflow up to 17%. For a given catchment the greatest maximum outflow is generated by the rainfall, which time to peak corresponds to the flow time through the catchment. Presented results may be useful for choosing the rainfall parameters for storm sewer systems modeling.

  15. Hydrological regionalisation based on available hydrological information for runoff prediction at catchment scale

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Li, Zhijia; Zhu, Yuelong; Deng, Yuanqian; Zhang, Ke; Yao, Cheng

    2018-06-01

    Regionalisation provides a way of transferring hydrological information from gauged to ungauged catchments. The past few decades has seen several kinds of regionalisation approaches for catchment classification and runoff predictions. The underlying assumption is that catchments having similar catchment properties are hydrological similar. This requires the appropriate selection of catchment properties, particularly the inclusion of observed hydrological information, to explain the similarity of hydrological behaviour. We selected observable catchments properties and flow duration curves to reflect the hydrological behaviour, and to regionalize rainfall-runoff response for runoff prediction. As a case study, we investigated 15 catchments located in the Yangtze and Yellow River under multiple hydro-climatic conditions. A clustering scheme was developed to separate the catchments into 4 homogeneous regions by employing catchment properties including hydro-climatic attributes, topographic attributes and land cover etc. We utilized daily flow duration curves as the indicator of hydrological response and interpreted hydrological similarity by root mean square errors. The combined analysis of similarity in catchment properties and hydrological response suggested that catchments in the same homogenous region were hydrological similar. A further validation was conducted by establishing a rainfall-runoff coaxial correlation diagram for each catchment. A common coaxial correlation diagram was generated for each homogenous region. The performances of most coaxial correlation diagrams met the national standard. The coaxial correlation diagram can be transferred within the homogeneous region for runoff prediction in ungauged catchments at an hourly time scale.

  16. Runoff processes in catchments with a small scale topography

    NASA Astrophysics Data System (ADS)

    Feyen, H.; Leuenberger, J.; Papritz, A.; Gysi, M.; Flühler, H.; Schleppi, P.

    1996-05-01

    How do runoff processes influence nitrogen export from forested catchments? To support nitrogen balance studies for three experimental catchments (1500m 2) in the Northern Swiss prealps water flow processes in the two dominating soil types are monitored. Here we present the results for an experimental wetland catchment (1500m 2) and for a delineated sloped soil plot (10m 2), both with a muck humus topsoil. Runoff measurements on both the catchment and the soil plot showed fast reactions of surface and subsurface runoff to rainfall inputs, indicating the dominance of fast-flow paths such as cracks and fissures. Three quarters of the runoff from the soil plot can be attributed to water flow in the gleyic, clayey subsoil, 20% to flow in the humic A horizon and only 5% to surface runoff. The water balance for the wetland catchment was closed. The water balance of the soil plot did not close. Due to vertical upward flow from the saturated subsoil into the upper layers, the surface runoff plus subsurface runoff exceeded the input (precipitation) to the plot.

  17. Hydrology, nutrient concentrations, and nutrient yields in nearshore areas of four lakes in northern Wisconsin, 1999-2001

    USGS Publications Warehouse

    Graczyk, David J.; Hunt, Randall J.; Greb, Steven R.; Buchwald, Cheryl A.; Krohelski, James T.

    2003-01-01

    The effects of shoreline development on water quality and nutrient yields in nearshore areas of four lakes in northern Wisconsin were investigated from October 1999 through September 2001. The study measured surface runoff and ground-water flows from paired developed (sites containing lawn, rooftops, sidewalks, and driveways) and undeveloped (mature and immature woods) catchments adjacent to four lakes in northern Wisconsin. Water samples from surface runoff and ground water were collected and analyzed for nutrients. Coupled with water volumes, loads and subsequent yields of selected constituents were computed for developed and undeveloped catchments. The median runoff from lawn surfaces ranged from 0.0019 to 0.059 inch over the catchment area. Median surface runoff estimates from the wooded catchments were an order of magnitude less than those from the lawn catchments. The increased water volumes from the lawn catchments resulted in greater nutrient loads and subsequent annual nutrient yields from the developed sites. Soil temperature and soil moisture were measured at two sites with mixed lawn and wooded areas. At both of these sites, the area covered with a lawn commonly was warmer than the wooded area. No consistent differences in soil moisture were found. A ground-water model was constructed to simulate the local flow systems at two of the paired catchments. Model simulations showed that much of the ground water delivered to the lake originated from distant areas that did not contribute runoff directly to the lake. Surface runoff and ground-water nutrient concentrations from the lawn and wooded catchments did not have apparent patterns. Some of the median concentrations from lawns were significantly different (at the 0.05 significance level) from those at wooded catchments. Water wells and piezometers were sampled for chemical analyses three times during the study period. Variability in the shallow ground-water chemistry over time in the lawn samples was larger than samples from the wooded areas and upgradient wells. Median nutrient yields in surface runoff from lawns always were greater than those from the wooded catchments. Runoff volumes were the most important factor in determining whether lawns or wooded catchments contribute more nutrients to the lake. The ground-water system had appreciable nutrient concentrations, and are likely an important pathway for nutrient transport to the lake. The nitrate plus nitrite nitrogen and total phosphorus yields to the ground-water system from a lawn catchment were approximately 3 to 4 times greater than those from the wooded catchment. There was no difference in the yields of dissolved inorganic phosphorus to the ground-water system from the lawn and wooded catchments. Study results demonstrate that choosing the appropriate landscape position for locating lawns in sloped areas (specifically, slopes that do not terminate at the lake or areas with intervening flat or buffer zones between lawn and lake) can help reduce the adverse effect of lawns on the shallow ground water and, ultimately, the lake. Additional information would be needed to extrapolate these results to a large drainage area of a lake.

  18. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.

    2013-12-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions, if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the Migina catchment.

  19. Runoff Response to Rainfall in Small Catchments Burned by the 2015 Valley Fire

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J. W.; Coe, D. B. R.; Lindsay, D.

    2016-12-01

    Burned areas often produce runoff volumes and peak flows much larger than unburned forests. However, very few studies demonstrate the effect of burn severity on runoff responses, and post-fire data are especially sparse in California. We measured the effects of different degrees of burn severity on rainfall-runoff responses in six small catchments (0.15-0.65 ha) in the Northern Coast Ranges. Weirs and tipping bucket rain gages were installed after the 2015 Valley Fire and prior to any substantial rainfall. In the first wet season (Nov 2015-May 2016), one runoff event was recorded in the catchment with the lowest burn severity (42% bare soil), while 13 runoff events occurred in the catchment with the highest burn severity (68% bare soil). Preliminary results indicate the thirty minute maximum rainfall intensity that generated runoff ranged from 27 mm hr-1 in the lowest severity catchment to only 8.6 mm hr-1 in the highest severity catchment. Peak flow rates for the most intense event (27 mm hr-1), a two-year, 30-min storm, were 1.1 m3 s-1 km-2 in the lowest severity catchment and 17 m3 s-1 km-2 in the highest severity catchment. Longer duration, moderate intensity rain events produced runoff in the highest severity catchments but not the lowest severity catchments. These results are on the high end of the range of post-fire peak flow rates reported in the western US and provide an idea of potential post-fire flood potential to land and emergency management agencies.

  20. Prediction of hydrographs and flow-duration curves in almost ungauged catchments: Which runoff measurements are most informative for model calibration?

    NASA Astrophysics Data System (ADS)

    Pool, Sandra; Viviroli, Daniel; Seibert, Jan

    2017-11-01

    Applications of runoff models usually rely on long and continuous runoff time series for model calibration. However, many catchments around the world are ungauged and estimating runoff for these catchments is challenging. One approach is to perform a few runoff measurements in a previously fully ungauged catchment and to constrain a runoff model by these measurements. In this study we investigated the value of such individual runoff measurements when taken at strategic points in time for applying a bucket-type runoff model (HBV) in ungauged catchments. Based on the assumption that a limited number of runoff measurements can be taken, we sought the optimal sampling strategy (i.e. when to measure the streamflow) to obtain the most informative data for constraining the runoff model. We used twenty gauged catchments across the eastern US, made the assumption that these catchments were ungauged, and applied different runoff sampling strategies. All tested strategies consisted of twelve runoff measurements within one year and ranged from simply using monthly flow maxima to a more complex selection of observation times. In each case the twelve runoff measurements were used to select 100 best parameter sets using a Monte Carlo calibration approach. Runoff simulations using these 'informed' parameter sets were then evaluated for an independent validation period in terms of the Nash-Sutcliffe efficiency of the hydrograph and the mean absolute relative error of the flow-duration curve. Model performance measures were normalized by relating them to an upper and a lower benchmark representing a well-informed and an uninformed model calibration. The hydrographs were best simulated with strategies including high runoff magnitudes as opposed to the flow-duration curves that were generally better estimated with strategies that captured low and mean flows. The choice of a sampling strategy covering the full range of runoff magnitudes enabled hydrograph and flow-duration curve simulations close to a well-informed model calibration. The differences among such strategies covering the full range of runoff magnitudes were small indicating that the exact choice of a strategy might be less crucial. Our study corroborates the information value of a small number of strategically selected runoff measurements for simulating runoff with a bucket-type runoff model in almost ungauged catchments.

  1. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    PubMed

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (<2 mm) compared with stream bank soil (<2 mm) and the <75-μm fraction of stream bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport processes.

  2. Soil moisture controlled runoff mechanisms in a small agricultural catchment in Austria.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Szeles, Borbala; Silasari, Rasmiaditya; Hogan, Patrick; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang; Bloeschl, Guenter

    2017-04-01

    Understanding runoff generation mechanisms is pivotal for improved estimation of floods in small catchments. However, this requires in situ measurements with a high spatial and temporal resolution of different land surface parameters, which are rarely available distributed over the catchment scale and for a long period. The Hydrological Open Air Laboratory (HOAL) is a hydrological observatory which comprises a complex agricultural catchment, covering 66 ha. Due to the agricultural land use and low permeability of the soil part of the catchment was tile drained in the 1940s. The HOAL is equipped with an extensive soil moisture network measuring at 31 locations, 4 rain gauges and 12 stream gauges. By measuring with so many sensors in a complex catchment, the collected data enables the investigation of multiple runoff mechanisms which can be observed simultaneously in different parts of the catchment. The aim of this study is to identify and characterize different runoff mechanisms and the control soil moisture dynamics exert on them. As a first step 72 rainfall events were identified within the period 2014-2015. By analyzing event discharge response, measured at the different stream gauges, and root zone soil moisture, four different runoff mechanisms are identified. The four mechanisms exhibit contrasting soil moisture-discharge relationships. In the presented study we characterize the runoff response types by curve-fitting the discharge response to the soil moisture state. The analysis provides insights in the main runoff processes occurring in agricultural catchments. The results of this study a can be of assistance in other catchments to identify catchment hydrologic response.

  3. Scale appropriate modelling to represent dominant pollution processes in agricultural catchments, to underpin management and policy decisions

    NASA Astrophysics Data System (ADS)

    Adams, Russell; Quinn, Paul

    2014-05-01

    We present the development of scale appropriate modelling techniques to represent dominant pollution processes in agricultural catchments to underpin catchment management and its implications on policy. A quasi-physically based, spatially lumped macro-model (CRAFT), has been developed to assess mitigation options for nitrogen and phosphorus. CRAFT has been developed to use daily time series data of rainfall, stream flow and nutrient concentration data, and can be applied to catchments varying in size from a few hectares to 100s of square kilometres. If stream flow routing is added to the model then potentially larger catchments and sub-daily time steps could be represented. There are two key issues addressed here. Firstly, the model can be used to assess the usefulness of monitoring data collected at a high temporal resolution at considerable expense compared to routine grab sampling. An earlier study in the Frome catchment in southern England collected sub-daily water quality data for more than 12 months at the catchment outlet, comprising: total oxidised nitrogen (TON); soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations. The three data sets have quite different temporal signals relating to flow pathways with different residence times and the importance of runoff events in generating acute pollution. The flexible model structure was therefore developed to include different sources of runoff including overland flow from impervious areas in the catchment, where pollution hotspots will be located (e.g. farmyards). The model has been used to assess the value of collecting high resolution monitoring data, in this case by resampling the Frome sub-daily data to a daily timestep, and comparing these model simulations against those calibrated using all the samples. The usefulness of the high resolution data can be assessed on whether a daily model would undepredict (for example) high nutrient concentrations that can be identified in the sub-daily monitoring data. Secondly, the study aims to investigate the mitigation measures that can be used to address the catchment scale sources of N and P, under EU or other governmental legislation designed to reduce their loads. In a complex catchment like the Frome, the mitigation measures are likely to target both point and non-point sources, particularly of SRP (e.g. wastewater treatment plant discharges and soluble fertilizer applications respectively). For a modelling tool to be useful to land holders and policy makers, it is imperative that these stakeholders can investigate different scenarios by easily manipulating the model input parameters, e.g. by reducing the diffuse sources of SRP and TON (by parameter adjustment), or modifying flow pathways through runoff attenuation (e.g. reducing runoff from farmyards), and the model structure reflects this functionality allowing it to be used as a runoff attenuation tool.

  4. Runoff changes have a land cover specific effect on the seasonal fluxes of terminal electron acceptors in the boreal catchments.

    PubMed

    Mattsson, Tuija; Lehtoranta, Jouni; Ekholm, Petri; Palviainen, Marjo; Kortelainen, Pirkko

    2017-12-01

    Climate change influences the volume and seasonal distribution of runoff in the northern regions. Here, we study how the seasonal variation in the runoff affects the concentrations and export of terminal electron acceptors (i.e. TEAs: NO 3 , Mn, Fe and SO 4 ) in different boreal land-cover classes. Also, we make a prediction how the anticipated climate change induced increase in runoff will alter the export of TEAs in boreal catchments. Our results show that there is a strong positive relationship between runoff and the concentration of NO 3 -N, Mn and Fe in agricultural catchments. In peaty catchments, the relationship is poorer and the concentrations of TEAs tend to decrease with increasing runoff. In forested catchments, the correlation between runoff and TEA concentrations was weak. In most catchments, the concentrations of SO 4 decrease with an increase in runoff regardless of the land cover or season. The wet years export much higher amounts of TEAs than the dry years. In southern agricultural catchments, the wet years increased the TEA export for both spring (January-May) and autumn (September-December) periods, while in the peaty and forested catchments in eastern and northern Finland the export only increased in the autumn. Our predictions for the year 2099 indicate that the export of TEAs will increase especially from agricultural but also from forested catchments. Additionally, the predictions show an increase in the export of Fe and SO 4 for all the catchments for the autumn. Thus, the climate induced change in the runoff regime is likely to alter the exported amount of TEAs and the timing of the export downstream. The changes in the amounts and timing in the export of TEAs have a potential to modify the mineralization pathways in the receiving water bodies, with feedbacks in the cycling of C, nutrients and metals in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cross-Regional Assessment Of Coupling And Variability In Precipitation-Runoff Relationships

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Tetzlaff, D.; Soulsby, C.; Buttle, J. M.; Laudon, H.; McDonnell, J. J.; McGuire, K. J.; Seibert, J.; Shanley, J. B.

    2011-12-01

    The higher mid-latitudes of the northern hemisphere are particularly sensitive to change due to the important role the zero-degree isotherm plays in the phase of precipitation and intermediate storage as snow. An international inter-catchment comparison program North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). For this study, 8 catchments with 10 continuous years of daily precipitation and runoff data were selected to assess the seasonal coupling of rainfall and runoff and the memory effect of runoff events on the hydrograph at different time scales. To assess the coupling and synchroneity of precipitation, continuous wavelet transforms and wavelet coherence were used. Wavelet spectra identified the relative importance of both annual versus seasonal flows while wavelet coherence was applied to identify over different time scales along the 10-year window how well precipitation and runoff were coupled. For example, while on a given day, precipitation may be closely coupled to runoff, a wet year may not necessarily be a high runoff year in catchments with large storage. Assessing different averaging periods in the variation of daily flows highlights the importance of seasonality in runoff response and the relative influence of rain versus snowmelt on flow magnitude and variability. Wet catchments with limited seasonal precipitation variability (Strontian, Girnock) have precipitation signals more closely coupled with runoff, whereas dryer catchments dominated by snow (Wolf Creek, Krycklan) have strongly coupling only during freshet. Most catchments with highly seasonal precipitation show strong intermittent coupling during their wet season. At longer time scales, some catchments do not exhibit coupling in their input-output relations, which is related to catchment storage.

  6. A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach.

    PubMed

    Wilkinson, M E; Quinn, P F; Barber, N J; Jonczyk, J

    2014-01-15

    Intense farming plays a key role in increasing local scale runoff and erosion rates, resulting in water quality issues and flooding problems. There is potential for agricultural management to become a major part of improved strategies for controlling runoff. Here, a Catchment Systems Engineering (CSE) approach has been explored to solve the above problem. CSE is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed in turn reducing soil nutrient losses. The Belford catchment (5.7 km(2)) is a catchment scale study for which a CSE approach has been used to tackle a number of environmental issues. A variety of Runoff Attenuation Features (RAFs) have been implemented throughout the catchment to address diffuse pollution and flooding issues. The RAFs include bunds disconnecting flow pathways, diversion structures in ditches to spill and store high flows, large wood debris structure within the channel, and riparian zone management. Here a framework for applying a CSE approach to the catchment is shown in a step by step guide to implementing mitigation measures in the Belford Burn catchment. The framework is based around engagement with catchment stakeholders and uses evidence arising from field science. Using the framework, the flooding issue has been addressed at the catchment scale by altering the runoff regime. Initial findings suggest that RAFs have functioned as designed to reduce/attenuate runoff locally. However, evidence suggested that some RAFs needed modification and new RAFs be created to address diffuse pollution issues during storm events. Initial findings from these modified RAFs are showing improvements in sediment trapping capacities and reductions in phosphorus, nitrate and suspended sediment losses during storm events. © 2013.

  7. Distributed Modelling of Stormflow Generation: Assessing the Effect of Ground Cover

    NASA Astrophysics Data System (ADS)

    Jarihani, B.; Sidle, R. C.; Roth, C. H.; Bartley, R.; Wilkinson, S. N.

    2017-12-01

    Understanding the effects of grazing management and land cover changes on surface hydrology is important for water resources and land management. A distributed hydrological modelling platform, wflow, (that was developed as part of Deltares's OpenStreams project) is used to assess the effect of land management practices on runoff generation processes. The model was applied to Weany Creek, a small catchment (13.6 km2) of the Burdekin Basin, North Australia, which is being studied to understand sources of sediment and nutrients to the Great Barrier Reef. Satellite and drone-based ground cover data, high resolution topography from LiDAR, soil properties, and distributed rainfall data were used to parameterise the model. Wflow was used to predict total runoff, peak runoff, time of rise, and lag time for several events of varying magnitudes and antecedent moisture conditions. A nested approach was employed to calibrate the model by using recorded flow hydrographs at three scales: (1) a hillslope sub-catchment: (2) a gullied sub-catchment; and the 13.6 km2 catchment outlet. Model performance was evaluated by comparing observed and predicted stormflow hydrograph attributes using the Nash Sutcliffe efficiency metric. By using a nested approach, spatiotemporal patterns of overland flow occurrence across the catchment can also be evaluated. The results show that a process-based distributed model can be calibrated to simulate spatial and temporal patterns of runoff generation processes, to help identify dominant processes which may be addressed by land management to improve rainfall retention. The model will be used to assess the effects of ground cover changes due to management practices in grazed lands on storm runoff.

  8. Spectral analysis of temporal non-stationary rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2018-04-01

    This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.

  9. Toward an operational tool to simulate green roof hydrological impact at the basin scale: a new version of the distributed rainfall-runoff model Multi-Hydro.

    PubMed

    Versini, Pierre-Antoine; Gires, Auguste; Tchinguirinskaia, Ioulia; Schertzer, Daniel

    2016-10-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale: decrease and slow-down of the peak discharge, and decrease of runoff volume. The present work aims to study their possible impact at the catchment scale, more compatible with stormwater management issues. For this purpose, a specific module dedicated to simulating the hydrological behaviour of a green roof has been developed in the distributed rainfall-runoff model (Multi-Hydro). It has been applied on a French urban catchment where most of the building roofs are flat and assumed to accept the implementation of a green roof. Catchment responses to several rainfall events covering a wide range of meteorological situations have been simulated. The simulation results show green roofs can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and initial saturation of the substrate. Additional tests have been made to assess the susceptibility of this response regarding both spatial distributions of green roofs and precipitation. It appears that the total area of greened roofs is more important than their locations. On the other hand, peak discharge reduction seems to be clearly dependent on spatial distribution of precipitation.

  10. δ(15)N and δ(18)O Reveal the Sources of Nitrate-Nitrogen in Urban Residential Stormwater Runoff.

    PubMed

    Yang, Yun-Ya; Toor, Gurpal S

    2016-03-15

    Nitrogen (N) sources are widely distributed in the complex urban environment. High-resolution data elucidating N sources in the residential catchments are not available. We used stable isotopes of N and oxygen (O) of nitrate (δ(18)O-NO3(-) and δ(15)N-NO3(-)) along with δ(18)O and hydrogen (δD) of water (H2O) to understand the sources and transformations of N in residential stormwater runoff. Stormwater runoff samples were collected over 25 stormwater events at 5 min intervals using an autosampler installed at the residential catchment outlet pipe that drained 31 low-density homes with a total drainage area of 0.11 km(2). Bayesian mixing model results indicated that atmospheric deposition (range 43-71%) and chemical N fertilizers (range <1-49%) were the dominant NO3-N sources in the stormwater runoff and that there was a continuum of source changes during the stormwater events. Further, the NO3-N transport in the stormwater runoff from the residential catchment was driven by mixing of multiple sources and biotic (i.e., nitrification) processes. This work suggests that a better understanding of N transport and sources is needed to reduce N export and improve water quality in urban water systems.

  11. Influences of Hydrological Regime on Runoff Quality and Pollutant Loadings in Tropical Urban Areas

    NASA Astrophysics Data System (ADS)

    Chow, M.; Yusop, Z.

    2011-12-01

    Experience in many developed countries suggests that non point source (NPS) pollution is still the main contributor to pollutant loadings into water bodies in urban areas. However, the mechanism of NPS pollutant transport and the influences of hydrologic regime on the pollutant loading are still unclear. Understanding these interactions will be useful for improving design criteria and strategies for controlling NPS pollution in urban areas. This issue is also extremely relevant in tropical environment because its rainfall and the runoff generation processes are so different from the temperate regions where most of the studies on NPS pollutant have been carried out. In this regard, an intensive study to investigate the extent of this pollution was carried out in Skudai, Johor, Malaysia. Three small catchments, each represents commercial, residential and industrial land use were selected. Stormwater samples and flow rate data were collected at these catchments over 52 storm events from year 2008 to 2009. Samples were analyzed for ten water quality constituents including total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, soluble phosphorus, total phosphorus and zinc. Quality of stormwater runoff is estimated using Event Mean Concentration (EMC) value. The storm characteristics analyzed included rainfall depth, rainfall duration, mean intensity, max 5 minutes intensity, antecedent dry day, runoff volume and peak flow. Correlation coefficients were determined between storm parameters and EMCs for the residential, commercial and industrial catchments. Except for the antecedent storm mean intensity and antecedent dry days, the other rainfall and runoff variables were negatively correlated with EMCs of most pollutants. This study reinforced the earlier findings on the importance of antecedent dry days for causing greater EMC values with exceptions for oil and grease, nitrate nitrogen, total phosphorus and zinc. There is no positive correlation between rainfall intensity and EMC of constituents in all the studied catchments. In contrast, the pollutant loadings are influenced primarily by the rainfall and runoff characteristics. Rainfall depth, mean intensity, max 5 minute intensity, runoff volume and peak flow were positively correlated with the loadings of most of the constituents. Antecedent storm mean intensity and antecedent dry days seemed to be less important for estimating the pollutant loadings. Such study should be further conducted for acquiring a long term monitoring data related to storm runoff quality during rainfall, in order to have a better understanding on NPS pollution in urban areas.

  12. A simple rainfall-runoff model based on hydrological units applied to the Teba catchment (south-east Spain)

    NASA Astrophysics Data System (ADS)

    Donker, N. H. W.

    2001-01-01

    A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall-runoff relationship of the 202 km2 Teba river catchment, located in semi-arid south-eastern Spain. The period of available data (1976-1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years.The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes.The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum.Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level.

  13. A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa

    NASA Astrophysics Data System (ADS)

    de Winnaar, G.; Jewitt, G. P. W.; Horan, M.

    Water scarce countries such as South Africa are subject to various hydrological constraints which can often be attributed to poor rainfall partitioning, particularly within resource poor farming communities that are reliant on rainfed agriculture. Recent initiatives to address this have shifted focus to explore more efficient alternatives to water supply and the recognition of numerous opportunities to implement runoff harvesting as a means to supplement water availability. However, increasing the implementation of runoff harvesting, without encountering unintended impacts on downstream hydrological and ecological systems, requires better understanding of the hydrologic and environmental impacts at catchment scale. In this paper the representation of spatial variations in landscape characteristics such as soil, land use, rainfall and slope information is shown to be an important step in identifying potential runoff harvesting sites, after which modelling the hydrological response in catchments where extensive runoff harvesting is being considered can be performed and likely impacts assessed. Geographic information systems (GIS) was utilised as an integrating tool to store, analyse and manage spatial information and when linked to hydrological response models, provided a rational means to facilitate decision making by providing catchment level identification, planning and assessment of runoff harvesting sites as illustrated by a case study at the Potshini catchment, a small sub-catchment in the Thukela River basin, South Africa. Through the linked GIS, potential runoff harvesting sites are identified relative to areas that concentrate runoff and where the stored water will be appropriately distributed. Based on GIS analysis it was found that 17% percent of the Potshini catchment area has a high potential for generating surface runoff, whereas an analysis of all factors which influence the location of such systems, shows that 18% is highly suitable for runoff harvesting. Details of the spatially explicit method that was adopted in this paper are provided and output from the integrated GIS modelling system is presented using suitability maps. It is concluded that providing an accurate spatial representation of the runoff generation potential within a catchment is an important step in developing a strategic runoff harvesting plan for any catchment.

  14. Transport of cyazofamid and kresoxim methyl in runoff at the plot and catchment scales

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Joaquín García Verdú, Antonio; Maillard, Elodie; Imfeld, Gwenaël; Payraudeau, Sylvain

    2013-04-01

    Surface runoff and erosion during the course of rainfall events represent major processes of pesticides transport from agricultural land to aquatic ecosystem. In general, field and catchment studies on pesticide transfer are carried out separately. A study at both scales may enable to improve the understanding of scale effects on processes involved in pesticides transport and to give clues on the source areas within an agricultural catchment. In this study, the transport in runoff of two widely used fungicides, i.e. kresoxim methyl (KM) and cyazofamid (CY) was assessed in a 43 ha vineyard catchment and the relative contribution of the total fungicides export from one representative plot was evaluated. During an entire period of fungicide application, from May to August 2011, the discharge and loads of dissolved and particle-laden KM and CY were monitored at the plot and catchment scales. The results showed larger export coefficient of KM and CY from catchment (0.064 and 0.041‰ for KM and CY respectively) than from the studied plot (0.009 and 0.023 ‰ for KM and CY respectively). It suggests that the plot margins especially the road network contributed as well to the fungicide loads. This result underlines the impact of fungicide drift on non-target areas. Furthermore, a larger rainfall threshold is necessary at the plot scale to trigger runoff and mobilise pesticides than on the road network. At the plot scale, a rapid dissipation of the both fungicides in the top soil was observed. It highlights that the risky period encompasses the first rainfall events triggering runoff after the applications. At both scales, KM and CY were not detected in suspended solids (i.e. > 0.7 µm). However their partitioning in runoff water differed. 64.1 and 91.8% of the KM load was detected in the dissolved phase (i.e. < 0.22 µm) at the plot and catchment scales respectively, whereas 98.7 and 100% of the CY load was detected in the particulate phase (i.e. between 0.22 and 0.7 µm) at the plot and catchment scales respectively. Although KM and CY have similar lab-defined properties, our results showed that their behaviour in field is different suggesting that these properties are insufficient to assess their transport and fate on site. This study highlights that assessing fungicides export at two different scales enable to improve the understanding of period and source areas of contamination within an agricultural catchment.

  15. Modelling runoff and soil water content with the DR2-2013© SAGA v1.1 model at catchment scale under Mediterranean conditions (NE Spain)

    NASA Astrophysics Data System (ADS)

    López-Vicente, Manuel, , Dr.; Palazón, M. Sc. Leticia; Quijano, M. Sc. Laura; Gaspar, Leticia, , Dr.; Navas, Ana, , Dr.

    2015-04-01

    Hydrological and soil erosion models allow mapping and quantifying spatially distributed rates of runoff depth and soil redistribution for different land uses, management and tillage practices and climatic scenarios. The different temporal and spatial [very small (< 1 km2), small (1-5 km2), medium (5-50 km2) and large catchments (50-1000 km2) or river basins (>1000 km2)] scales of numerical simulations make model selection specific to each range of scales. Additionally, the spatial resolution of the inputs is in agreement with the size of the study area. In this study, we run the GIS-based water balance DR2-2013© SAGA v1.1 model (freely downloaded as executable file at http://digital.csic.es/handle/10261/93543), in the Vandunchil stream catchment (23 km2; Ebro river basin, NE Spain). All input maps are generated at 5 x 5 m of cell size (924,573 pixels per map) allowing sound parameterization. Simulation is run at monthly scale with average climatic values. This catchment is an open hydrological system and it has a long history of human occupation, agricultural practices and water management. Numerous manmade infrastructures or landscape linear elements (LLEs: paved and unpaved trails, rock mounds in non-cultivated areas, disperse and small settlements, shallow and long drainage ditches, stone walls, small rock dams, fences and vegetation strips) appear throughout the hillslopes and streams and modify the natural runoff pathways and thus the hydrological and sediment connectivity. Rain-fed cereal fields occupy one third of the catchment area, 1% corresponds to sealed soils, and the remaining area is covered with Mediterranean forest, scrubland, pine afforestation and meadow. The parent material corresponds to Miocene sandstones and lutites and Holocene colluvial and alluvial deposits. The climate is continental Mediterranean with two humid periods, one in spring and a second in autumn that summarizes 63% of the total annual precipitation. We created a synthetic weather station (WS) from the Caseda and Uncastillo WS. The effective rainfall that reaches the soils (after canopy interception and slope correction) was 85% on average from the total rainfall depth (556 mm yr-1) and the average initial runoff, before overland flow processes, was 320 mm yr-1. The simulated effective runoff (CQeff) ranged from 0 until 29,960 mm yr-1 and the corresponding map showed the typical spatial pattern of overland flow pathways though numerous disruptions appeared along the hillslopes and the main streams due to the presence of LLEs. The total depth of annual runoff corresponds to 37.8% of the total effective rainfall (TER) and 32.0% of the total rainfall depth (TR). The remaining volume of water, the soil water content (Waa) associated with the runoff and rainfall events, meant 62.2% and 52.7% of the TER and TR, respectively. The map of the Waa presented a different spatial pattern where the land uses play a more important role than the processes of cumulative overland flow. Significant variations in the monthly values of CQeff and Waa were described. This study proves the ability of the DR2-2013© SAGA v1.1 model to simulate the hydrological response of the soils at catchment scale.

  16. Discharge-nitrate data clustering for characterizing surface-subsurface flow interaction and calibration of a hydrologic model

    NASA Astrophysics Data System (ADS)

    Shrestha, R. R.; Rode, M.

    2008-12-01

    Concentration of reactive chemicals has different chemical signatures in baseflow and surface runoff. Previous studies on nitrate export from a catchment indicate that the transport processes are driven by subsurface flow. Therefore nitrate signature can be used for understanding the event and pre-event contributions to streamflow and surface-subsurface flow interactions. The study uses flow and nitrate concentration time series data for understanding the relationship between these two variables. Unsupervised artificial neural network based learning method called self organizing map is used for the identification of clusters in the datasets. Based on the cluster results, five different pattern in the datasets are identified which correspond to (i) baseflow, (ii) subsurface flow increase, (iii) surface runoff increase, (iv) surface runoff recession, and (v) subsurface flow decrease regions. The cluster results in combination with a hydrologic model are used for discharge separation. For this purpose, a multi-objective optimization tool NSGA-II is used, where violation of cluster results is used as one of the objective functions. The results show that the use of cluster results as supplementary information for the calibration of a hydrologic model gives a plausible simulation of subsurface flow as well total runoff at the catchment outlet. The study is undertaken using data from the Weida catchment in the North-Eastern Germany, which is a sub-catchment of the Weisse Elster river in the Elbe river basin.

  17. Direct runoff assessment using modified SME method in catchments in the Upper Vistula River Basin

    NASA Astrophysics Data System (ADS)

    Wałęga, A.; Rutkowska, A.; Grzebinoga, M.

    2017-04-01

    Correct determination of direct runoff is crucial for proper and safe dimensioning of hydroengineering structures. It is commonly assessed using SCS-CN method developed in the United States. However, due to deficiencies of this method, many improvements and modifications have been proposed. In this paper, a modified Sahu-Mishra-Eldo (SME) method was introduced and tested for three catchments located in the upper Vistula basin. Modification of SME method involved a determination of maximum potential retention S based on CN parameter derived from SCS-CN method. The modified SME method yielded direct runoff values very similar to those observed in the investigated catchments. Moreover, it generated significantly smaller errors in the direct runoff estimation as compared with SCS-CN and SME methods in the analyzed catchments. This approach may be used for estimating the runoff in uncontrolled catchments.

  18. Urban Stormwater Runoff: A New Class of Environmental Flow Problem

    PubMed Central

    Walsh, Christopher J.; Fletcher, Tim D.; Burns, Matthew J.

    2012-01-01

    Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use. PMID:23029257

  19. Multiple runoff processes and multiple thresholds control agricultural runoff generation

    NASA Astrophysics Data System (ADS)

    Saffarpour, Shabnam; Western, Andrew W.; Adams, Russell; McDonnell, Jeffrey J.

    2016-11-01

    Thresholds and hydrologic connectivity associated with runoff processes are a critical concept for understanding catchment hydrologic response at the event timescale. To date, most attention has focused on single runoff response types, and the role of multiple thresholds and flow path connectivities has not been made explicit. Here we first summarise existing knowledge on the interplay between thresholds, connectivity and runoff processes at the hillslope-small catchment scale into a single figure and use it in examining how runoff response and the catchment threshold response to rainfall affect a suite of runoff generation mechanisms in a small agricultural catchment. A 1.37 ha catchment in the Lang Lang River catchment, Victoria, Australia, was instrumented and hourly data of rainfall, runoff, shallow groundwater level and isotope water samples were collected. The rainfall, runoff and antecedent soil moisture data together with water levels at several shallow piezometers are used to identify runoff processes in the study site. We use isotope and major ion results to further support the findings of the hydrometric data. We analyse 60 rainfall events that produced 38 runoff events over two runoff seasons. Our results show that the catchment hydrologic response was typically controlled by the Antecedent Soil Moisture Index and rainfall characteristics. There was a strong seasonal effect in the antecedent moisture conditions that led to marked seasonal-scale changes in runoff response. Analysis of shallow well data revealed that streamflows early in the runoff season were dominated primarily by saturation excess overland flow from the riparian area. As the runoff season progressed, the catchment soil water storage increased and the hillslopes connected to the riparian area. The hillslopes transferred a significant amount of water to the riparian zone during and following events. Then, during a particularly wet period, this connectivity to the riparian zone, and ultimately to the stream, persisted between events for a period of 1 month. These findings are supported by isotope results which showed the dominance of pre-event water, together with significant contributions of event water early (rising limb and peak) in the event hydrograph. Based on a combination of various hydrometric analyses and some isotope and major ion data, we conclude that event runoff at this site is typically a combination of subsurface event flow and saturation excess overland flow. However, during high intensity rainfall events, flashy catchment flow was observed even though the soil moisture threshold for activation of subsurface flow was not exceeded. We hypothesise that this was due to the activation of infiltration excess overland flow and/or fast lateral flow through preferential pathways on the hillslope and saturation overland flow from the riparian zone.

  20. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  1. A look inside 'black box' hydrograph separation models: A study at the hydrohill catchment

    USGS Publications Warehouse

    Kendall, C.; McDonnell, Jeffery J.; Gu, W.

    2001-01-01

    Runoff sources and dominant flowpaths are still poorly understood in most catchments; consequently, most hydrograph separations are essentially 'black box' models where only external information is used. The well-instrumented 490 m2 Hydrohill artificial grassland catchment located near Nanjing (China) was used to examine internal catchment processes. Since groundwater levels never reach the soil surface at this site, two physically distinct flowpaths can unambiguously be defined: surface and subsurface runoff. This study combines hydrometric, isotopic and geochemical approaches to investigating the relations between the chloride, silica, and oxygen isotopic compositions of subsurface waters and rainfall. During a 120 mm storm over a 24 h period in 1989, 55% of event water input infiltrated and added to soil water storage; the remainder ran off as infiltration-excess overland flow. Only about 3-5% of the pre-event water was displaced out of the catchment by in-storm rainfall. About 80% of the total flow was quickflow, and 10% of the total flow was pre-event water, mostly derived from saturated flow from deeper soils. Rain water with high ??18O values from the beginning of the storm appeared to be preferentially stored in shallow soils. Groundwater at the end of the storm shows a wide range of isotopic and chemical compositions, primarily reflecting the heterogeneous distribution of the new and mixed pore waters. High chloride and silica concentrations in quickflow runoff derived from event water indicate that these species are not suitable conservative tracers of either water sources or flowpaths in this catchment. Determining the proportion of event water alone does not constrain the possible hydrologic mechanisms sufficiently to distinguish subsurface and surface flowpaths uniquely, even in this highly controlled artificial catchment. We reconcile these findings with a perceptual model of stormflow sources and flowpaths that explicitly accounts for water, isotopic, and chemical mass balance. Copyright ?? 2001 John Wiley & Sons, Ltd.

  2. Estimating the SCS runoff curve number in forest catchments of Korea

    NASA Astrophysics Data System (ADS)

    Choi, Hyung Tae; Kim, Jaehoon; Lim, Hong-geun

    2016-04-01

    To estimate flood runoff discharge is a very important work in design for many hydraulic structures in streams, rivers and lakes such as dams, bridges, culverts, and so on. So, many researchers have tried to develop better methods for estimating flood runoff discharge. The SCS runoff curve number is an empirical parameter determined by empirical analysis of runoff from small catchments and hillslope plots monitored by the USDA. This method is an efficient method for determining the approximate amount of runoff from a rainfall even in a particular area, and is very widely used all around the world. However, there is a quite difference between the conditions of Korea and USA in topography, geology and land use. Therefore, examinations in adaptability of the SCS runoff curve number need to raise the accuracy of runoff prediction using SCS runoff curve number method. The purpose of this study is to find the SCS runoff curve number based on the analysis of observed data from several experimental forest catchments monitored by the National Institute of Forest Science (NIFOS), as a pilot study to modify SCS runoff curve number for forest lands in Korea. Rainfall and runoff records observed in Gwangneung coniferous and broad leaves forests, Sinwol, Hwasoon, Gongju and Gyeongsan catchments were selected to analyze the variability of flood runoff coefficients during the last 5 years. This study shows that runoff curve numbers of the experimental forest catchments range from 55 to 65. SCS Runoff Curve number method is a widely used method for estimating design discharge for small ungauged watersheds. Therefore, this study can be helpful technically to estimate the discharge for forest watersheds in Korea with more accuracy.

  3. Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments

    NASA Astrophysics Data System (ADS)

    Gallo, Erika L.; Brooks, Paul D.; Lohse, Kathleen A.; McLain, Jean E. T.

    2013-04-01

    SummaryRecharge of urban runoff to groundwater as a stormwater management practice has gained importance in semi-arid regions where water resources are scarce and urban centers are growing. Despite this trend, the importance of land cover in controlling semi-arid catchment runoff quantity and quality remains unclear. Here we address the question: How do land cover characteristics control the amount and quality of storm runoff in semi-arid urban catchments? We monitored summertime runoff quantity and quality from five catchments dominated by distinct urban land uses: low, medium, and high density residential, mixed use, and commercial. Increasing urban land cover increased runoff duration and the likelihood that a rainfall event would result in runoff, but did not increase the time to peak discharge of episodic runoff. The effect of urban land cover on hydrologic responses was tightly coupled to the magnitude of rainfall. At distinct rainfall thresholds, roads, percent impervious cover and the stormwater drainage network controlled runoff frequency, runoff depth and runoff ratios. Contrary to initial expectations, runoff quality did not vary in repose to impervious cover or land use. We identified four major mechanisms controlling runoff quality: (1) variable solute sourcing due to land use heterogeneity and above ground catchment connectivity; (2) the spatial extent of pervious and biogeochemically active areas; (3) the efficiency of overland flow and runoff mobilization; and (4) solute flushing and dilution. Our study highlights the importance of the stormwater drainage systems characteristics in controlling urban runoff quantity and quality; and suggests that enhanced wetting and in-stream processes may control solute sourcing and retention. Finally, we suggest that the characteristics of the stormwater drainage system should be integrated into stormwater management approaches.

  4. Long-term stormwater quantity and quality analysis using continuous measurements in a French urban catchment.

    PubMed

    Sun, Siao; Barraud, Sylvie; Castebrunet, Hélène; Aubin, Jean-Baptiste; Marmonier, Pierre

    2015-11-15

    The assessment of urban stormwater quantity and quality is important for evaluating and controlling the impact of the stormwater to natural water and environment. This study mainly addresses long-term evolution of stormwater quantity and quality in a French urban catchment using continuous measured data from 2004 to 2011. Storm event-based data series are obtained (716 rainfall events and 521 runoff events are available) from measured continuous time series. The Mann-Kendall test is applied to these event-based data series for trend detection. A lack of trend is found in rainfall and an increasing trend in runoff is detected. As a result, an increasing trend is present in the runoff coefficient, likely due to growing imperviousness of the catchment caused by urbanization. The event mean concentration of the total suspended solid (TSS) in stormwater does not present a trend, whereas the event load of TSS has an increasing tendency, which is attributed to the increasing event runoff volume. Uncertainty analysis suggests that the major uncertainty in trend detection results lies in uncertainty due to available data. A lack of events due to missing data leads to dramatically increased uncertainty in trend detection results. In contrast, measurement uncertainty in time series data plays a trivial role. The intra-event distribution of TSS is studied based on both M(V) curves and pollutant concentrations of absolute runoff volumes. The trend detection test reveals no significant change in intra-event distributions of TSS in the studied catchment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Using runoff slope-break to determine dominate factors of runoff decline in Hutuo River Basin, North China.

    PubMed

    Tian, Fei; Yang, Yonghui; Han, Shumin

    2009-01-01

    Water resources in North China have declined sharply in recent years. Low runoff (especially in the mountain areas) has been identified as the main factor. Hutuo River Basin (HRB), a typical up-stream basin in North China with two subcatchments (Ye and Hutuo River Catchments), was investigated in this study. Mann-Kendall test was used to determine the general trend of precipitation and runoff for 1960-1999. Then Sequential Mann-Kendall test was used to establish runoff slope-break from which the beginning point of sharp decline in runoff was determined. Finally, regression analysis was done to illustrate runoff decline via comparison of precipitation-runoff correlation for the period prior to and after sharp runoff decline. This was further verified by analysis of rainy season peak runoff flows. The results are as follows: (1) annual runoff decline in the basin is significant while that of precipitation is insignificant at alpha=0.05 confidence level; (2) sharp decline in runoff in Ye River Catchment (YRC) occurred in 1968 while that in Hutuo River Catchment (HRC) occurred in 1978; (3) based on the regression analysis, human activity has the highest impact on runoff decline in the basin. As runoff slope-breaks in both Catchments strongly coincided with increase in agricultural activity, agricultural water use is considered the dominate factor of runoff decline in the study area.

  6. Process-based interpretation of conceptual hydrological model performance using a multinational catchment set

    NASA Astrophysics Data System (ADS)

    Poncelet, Carine; Merz, Ralf; Merz, Bruno; Parajka, Juraj; Oudin, Ludovic; Andréassian, Vazken; Perrin, Charles

    2017-08-01

    Most of previous assessments of hydrologic model performance are fragmented, based on small number of catchments, different methods or time periods and do not link the results to landscape or climate characteristics. This study uses large-sample hydrology to identify major catchment controls on daily runoff simulations. It is based on a conceptual lumped hydrological model (GR6J), a collection of 29 catchment characteristics, a multinational set of 1103 catchments located in Austria, France, and Germany and four runoff model efficiency criteria. Two analyses are conducted to assess how features and criteria are linked: (i) a one-dimensional analysis based on the Kruskal-Wallis test and (ii) a multidimensional analysis based on regression trees and investigating the interplay between features. The catchment features most affecting model performance are the flashiness of precipitation and streamflow (computed as the ratio of absolute day-to-day fluctuations by the total amount in a year), the seasonality of evaporation, the catchment area, and the catchment aridity. Nonflashy, nonseasonal, large, and nonarid catchments show the best performance for all the tested criteria. We argue that this higher performance is due to fewer nonlinear responses (higher correlation between precipitation and streamflow) and lower input and output variability for such catchments. Finally, we show that, compared to national sets, multinational sets increase results transferability because they explore a wider range of hydroclimatic conditions.

  7. Indicator bacteria and associated water quality constituents in stormwater and snowmelt from four urban catchments

    NASA Astrophysics Data System (ADS)

    Galfi, H.; Österlund, H.; Marsalek, J.; Viklander, M.

    2016-08-01

    Four indicator bacteria were measured in association with physico-chemical constituents and selected inorganics during rainfall, baseflow and snowmelt periods in storm sewers of four urban catchments in a northern Swedish city. The variation patterns of coliforms, Escherichia coli, enterococci and Clostridium perfringens concentrations were assessed in manually collected grab samples together with those of phosphorus, nitrogen, solids, and readings of pH, turbidity, water conductivity, temperature and flow rates to examine whether these constituents could serve as potential indicators of bacteria sources. A similar analysis was applied to variation patterns of eight selected inorganics typical for baseflow and stormwater runoff to test the feasibility of using these inorganics to distinguish between natural and anthropogenic sources of inflow into storm sewers. The monitored catchments varied in size, the degree of development, and land use. Catchment and season (i.e., rainy or snowmelt periods) specific variations were investigated for sets of individual stormwater samples by the principal component analysis (PCA) to identify the constituents with variation patterns similar to those of indicator bacteria, and to exclude the constituents with less similarity. In the reduced data set, the similarities were quantified by the clustering correlation analysis. Finally, the positive/negative relationships found between indicator bacteria and the identified associated constituent groups were described by multilinear regressions. In the order of decreasing concentrations, coliforms, E. coli and enterococci were found in the highest mean concentrations during both rainfall and snowmelt generated runoff. Compared to dry weather baseflow, concentrations of these three indicators in stormwater were 10 (snowmelt runoff) to 102 (rain runoff) times higher. C. perfringens mean concentrations were practically constant regardless of the season and catchment. The type and number of variables associated with bacteria depended on the degree of catchment development and the inherent complexity of bacteria sources. The list of variables associated with bacteria included the flow rate, solids with associated inorganics (Fe and Al) and phosphorus, indicating similar sources of constituents regardless of the season. On the other hand, bacteria were associated with water temperature only during rain periods, and somewhat important associations of bacteria with nitrogen and pH were found during the periods of snowmelt. Most of the associated constituents were positively correlated with bacteria responses, but conductivity, with two associated inorganics (Si and Sr), was mostly negatively correlated in all the catchments. Although the study findings do not indicate any distinct surrogates to indicator bacteria, the inclusion of the above identified constituents (flow rate, solids and total phosphorus for all seasons, water temperature for rainfall runoff, and total nitrogen and pH for snowmelt only) in sanitary surveys of northern climate urban catchments would provide additional insight into indicator bacteria sources and their modeling.

  8. Hydrological Regimes of Small Catchments in the High Tatra Mountains Before and After Extraordinary Wind-Induced Deforestation

    NASA Technical Reports Server (NTRS)

    Holko, Ladislav; Hlavata, Helena; Kostka, Zdenek; Novak, Jan

    2009-01-01

    The paper presents the results of rainfall-runoff data analysis for small catchments of the upper Poprad River affected by wind-induced deforestation in November 2004. Before-event and afterevent measured data were compared in order to assess the impact of deforestation on hydrological regimes. Several characteristics were used including water balance, minimum and maximum runoff, runoff thresholds, number of runoff events, selected characteristics of events, runoff coefficients, and flashiness indices. Despite increased spring runoff minima, which in one catchment (Velick Creek) exceeded previously observed values after deforestation took place, it can be generally concluded that the impact of the deforestation was not clearly manifested in the analyzed hydrological data.

  9. Modeling of storm runoff and pollutant wash off processes during storm event in rapidly urbanizing catchment

    NASA Astrophysics Data System (ADS)

    Qin, H. P.; Yu, X. Y.; Khu, S. T.

    2009-04-01

    Many urban catchments in developing countries are undergoing fast economic growth, population expansion and land use/cover change. Due to the mixture of agricultural/industrial/residential land use or different urbanization level as well as lack of historical monitoring data in the developing area, storm-water runoff pollution modeling is faced with challenges of considerable spatial variations and data insufficiency. Shiyan Reservoir catchment is located in the rapidly urbanizing coastal region of Southeast China. It has six sub-catchments with largely different land use patterns and urbanization levels. A simple semi-distributed model was used to simulate the storm-water runoff pollution process during storm event in the catchment. The model adopted modified IHACRES model and exponential wash-off functions to describe storm-runoff and pollutant wash-off processes, respectively, in each of six sub-catchments. Temporary hydrological and water quality monitoring sites were set at the downstream section of each sub-catchment in Feb-May 2007, spanning non-rain and rain seasons. And the model was calibrated for storm-runoff and water quality data during two typical storm events with rainfall amount of 10mm/4hr and 73mm/5hr, respectively. The results indicated that the Nash-Sutcliffe (NS) coefficients are greater than 0.65 and 0.55 respectively for storm-runoff model calibration and validation. However although NS coefficients can reach 0.7~0.9 for pollutant wash-off model calibration based on measured data in each storm event, the simulation data can not fit well with the measured data in model validation. According to field survey observation, many litters and residuals were found to distribute in disorder in some sub-catchments or their drainage systems and to instantaneously wash off into the surface water when the rainfall amount and intensity are large enough. In order to improve storm-water runoff pollution simulation in the catchment, the variations of pollutant source and wash off processes in different storm intensity should be consider in future monitoring and model development. Keywords: storm runoff; wash off; urbanization; catchment modeling; litter; residual

  10. Dominant climatic factors driving annual runoff changes at the catchment scale across China

    NASA Astrophysics Data System (ADS)

    Huang, Zhongwei; Yang, Hanbo; Yang, Dawen

    2016-07-01

    With global climate changes intensifying, the hydrological response to climate changes has attracted more attention. It is beneficial not only for hydrology and ecology but also for water resource planning and management to understand the impact of climate change on runoff. In addition, there are large spatial variations in climate type and geographic characteristics across China. To gain a better understanding of the spatial variation of the response of runoff to changes in climatic factors and to detect the dominant climatic factors driving changes in annual runoff, we chose the climate elasticity method proposed by Yang and Yang (2011). It is shown that, in most catchments of China, increasing air temperature and relative humidity have negative impacts on runoff, while declining net radiation and wind speed have positive impacts on runoff, which slow the overall decline in runoff. The dominant climatic factors driving annual runoff are precipitation in most parts of China, net radiation mainly in some catchments of southern China, air temperature and wind speed mainly in some catchments in northern China.

  11. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    PubMed

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha(-1) year(-1)) and, in 20% of the catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  12. Study of Spatial Interrelationship of Long-term River Runoff Variability

    NASA Astrophysics Data System (ADS)

    Jouk, V.; Romanova, H.; Polianin, V.

    To do a number of practical tasks related to water resources management, planning a hydrological monitoring network, estimation of economic activity influence on river runoff, recollection of runoff rows for rivers with short period of observation and other, it is necessary to know about spatial distribution of an annual river runoff. Most of the methods including optimal interpolation that are being used nowadays to solve such problems can deal only with homogeneous and isotropic fields what isn't true in case of an annual river runoff. To find the causes that make an annual river runoff non- isotropic, first of all it is necessary to learn the field structure of its main climatic factors such as precipitation and air humidity deficit. The analyses of anisotropy of these fields can be performed by using unrolled spatially-correlation functions (USCF): Ri,j =f(Si,j;a), Ri,j - empirical correlation of observed rows; Si,j - distance between meteorological stations; a - an anngle between a parallel and the lines that join the centers of river catchments. The form of lines of equal level of USCF shows the direction of bigger or smaller spa- tial interrelationship of the field. In this work an annual river runoff field, precipitation and air humidity deficit fields were studied. The data of 55 meteorological stations was used and the data on water discharge of more than 255 rivers within the East-Europe plain was processed (a period of runoff observation for every river is about 60 years and a catchment area varies from 1 to 20 thousand sq. km.). Joint analyses of the USCFs shows that anisotropy of an annual river runoff field de- pends strongly on anisotropy of the fields of precipitation forming river runoff. In other words, stronger interrelationship of annual river runoff is observed in the direction of dominant moisture transfer. Landscape features of a catchment also have considerable influence on interrelation- ship between annual runoff values of different rivers. This influence was studied by us- ing conditional spatially-correlation functions or CSCF (i.e. spatially-correlation func- 1 tions constructed according to certain conditions applied to some landscape features). The following factors that affect annual river runoff were studied: catchment area, slope, mean elevation of a catchment, percentage of a forest cover of a catchment. As the study shows, the last factor mentioned above is the most important one which affects spatial interrelationship of an annual river runoff. It can be explained by the fact that the forest is a considerable seasonal and annual runoff redistributor. Moreover a forested area of river catchments varies greatly over the studied region. The influence of elevation occurred to be less obvious than that of the forest because of its small variation within the territory. The use of interpolation schemes taking into account anisotropy and heterogeneity of the field made it possible to improve quality of recollection of runoff rows. So considering heterogeneity of an annual runoff field using the information of percent- age of forest cover of a river catchment and mean elevation of a catchment lessened inaccuracy of runoff rows recollection by more than 7%. In principle, quality of in- terpolation can be enhanced more by taking into consideration not only the factors mentioned above, but also all possible landscape features of a river catchment.But this is the task of further researches. 2

  13. The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption.

    PubMed

    Awad, John; van Leeuwen, John; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary

    2015-10-01

    The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~30 cm and ~60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV-visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on the quality of source water used for domestic supply. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff.

    PubMed

    McCarthy, D T; Hathaway, J M; Hunt, W F; Deletic, A

    2012-12-15

    Sediment levels are important for environmental health risk assessments of surface water bodies, while faecal pollution can introduce significant public health risks for users of these systems. Urban stormwater is one of the largest sources of contaminants to surface waters, yet the fate and transport of these contaminants (especially those microbiological) have received little attention in the literature. Stormwater runoff from five urbanized catchments were monitored for pathogen indicator bacteria and total suspended solids in two developed countries. Multiple discrete samples were collected during each storm event, allowing an analysis of intra-event characteristics such as initial concentration, peak concentration, maximum rate of change, and relative confidence interval. The data suggest that a catchment's area influences pollutant characteristics, as larger catchments have more complex stormwater infrastructure and more variable pollutant sources. The variability of total suspended solids for many characteristics was similar to Escherichia coli, indicating that the variability of E. coli may not be substantially higher than that of other pollutants as initially speculated. Further, variations in E. coli appeared to be more commonly correlated to antecedent climate, while total suspended solids were more highly correlated to rainfall/runoff characteristics. This emphasizes the importance of climate on microbial persistence and die off in urban systems. Discrete intra-event concentrations of total suspended solids and, to a lesser extent E. coli, were correlated to flow, velocity, and rainfall intensity (adjusted by time of concentrations). Concentration changes were found to be best described by adjusted rainfall intensity, as shown by other researchers. This study has resulted in an increased understanding of the magnitude of intra-event variations of total suspended solids and E. coli and what physical and climatic parameters influence these variations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Combination of geochemical and hydrobiological tracers for the analysis of runoff generating processes in a lowland catchment

    NASA Astrophysics Data System (ADS)

    Faber, Claas; Wu, Naicheng; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    Since lowlands are characterised by flat topography and low hydraulic gradients, groundwater inflow has a large influence to streamflow generation in such catchments. In catchments with intense agricultural land use, artificial drainages are often another major contributor to streamflow. They shorten the soil passage and thus change the matter retention potential as well as runoff dynamics of a catchment. Contribution of surface runoff to streamflow is usually less important in volume. However, due to high concentrations of agrochemicals, surface runoff can constitute an important entry pathway into water bodies, especially if strong precipitation events coincide with fertilizer or pesticide application. The DFG funded project "Separating surface runoff from tile drainage flow in agricultural lowland catchments based on diatoms to improve modelled runoff components and phosphorous transport" investigates prevalent processes in this context in a 50 km² lowland catchment (Kielstau, Schleswig-Holstein, Germany) with the goal of improving existing models. End Member Mixing Analysis (EMMA) is used in the project to determine the relative importance of groundwater, tile drainage and surface runoff to streamflow at daily time steps. It became apparent that geochemical tracers are suitable for distinguishing surface runoff, but are weak for the separation of tile drainage and groundwater influence. We attribute this to the strong and complex interaction between soil water and shallow groundwater tables in the catchment. Recent studies (e.g. Pfister et al. 2011, Tauro et al. 2013) show the potential of diatoms as indicators for hydrological processes. Since we found diatoms to be suitable for the separation of tile drainage and stream samples (Wu et al., unpublished data) in our catchment, we are able to include diatom derived indices (e.g. density, species moisture indices, diversity indices) as traces in EMMA. Our results show that the inclusion of diatom data in the EMMA dataset improves the ability to distinguish tile drainage, groundwater and surface runoff influence to streamflow in our agriculturally dominated lowland catchment. Keywords: tile drainage, surface runoff, groundwater, hydrograph separation, EMMA, dia-toms, water quality, lowland catchments References: Pfister L, Wetzel CE, Martínez-Carreras N, Frentress J, Ector L, Hoffmann L, McDonnell JJ. 2011. Do diatoms run downhill? Using biodiversity of terrestrial and aquatic diatoms to identify hydrological connectivity between aquatic zones in Luxembourg. AGU Fall Meeting. Tauro F, Martínez-Carreras N, Wetzel CE, Hissler C, Barnich F, Frentress J, Ector L, Hoff-mann L, McDonnell JJ, Pfister L. 2013. Fluorescent diatoms as hydrological tracers: a proof of concept percolation experiment. EGU abstract, EGU2013-7687-4.

  16. Catchments as non-linear filters: evaluating data-driven approaches for spatio-temporal predictions in ungauged basins

    NASA Astrophysics Data System (ADS)

    Bellugi, D. G.; Tennant, C.; Larsen, L.

    2016-12-01

    Catchment and climate heterogeneity complicate prediction of runoff across time and space, and resulting parameter uncertainty can lead to large accumulated errors in hydrologic models, particularly in ungauged basins. Recently, data-driven modeling approaches have been shown to avoid the accumulated uncertainty associated with many physically-based models, providing an appealing alternative for hydrologic prediction. However, the effectiveness of different methods in hydrologically and geomorphically distinct catchments, and the robustness of these methods to changing climate and changing hydrologic processes remain to be tested. Here, we evaluate the use of machine learning techniques to predict daily runoff across time and space using only essential climatic forcing (e.g. precipitation, temperature, and potential evapotranspiration) time series as model input. Model training and testing was done using a high quality dataset of daily runoff and climate forcing data for 25+ years for 600+ minimally-disturbed catchments (drainage area range 5-25,000 km2, median size 336 km2) that cover a wide range of climatic and physical characteristics. Preliminary results using Support Vector Regression (SVR) suggest that in some catchments this nonlinear-based regression technique can accurately predict daily runoff, while the same approach fails in other catchments, indicating that the representation of climate inputs and/or catchment filter characteristics in the model structure need further refinement to increase performance. We bolster this analysis by using Sparse Identification of Nonlinear Dynamics (a sparse symbolic regression technique) to uncover the governing equations that describe runoff processes in catchments where SVR performed well and for ones where it performed poorly, thereby enabling inference about governing processes. This provides a robust means of examining how catchment complexity influences runoff prediction skill, and represents a contribution towards the integration of data-driven inference and physically-based models.

  17. Modelling the effect of wildfire on forested catchment water quality using the SWAT model

    NASA Astrophysics Data System (ADS)

    Yu, M.; Bishop, T.; van Ogtrop, F. F.; Bell, T.

    2016-12-01

    Wildfire removes the surface vegetation, releases ash, increase erosion and runoff, and therefore effects the hydrological cycle of a forested water catchment. It is important to understand chnage and how the catchment recovers. These processes are spatially sensitive and effected by interactions between fire severity and hillslope, soil type and surface vegetation conditions. Thus, a distributed hydrological modelling approach is required. In this study, the Soil and Water Analysis Tool (SWAT) is used to predict the effect of 2001/02 Sydney wild fire on catchment water quality. 10 years pre-fire data is used to create and calibrate the SWAT model. The calibrated model was then used to simulate the water quality for the 10 years post-fire period without fire effect. The simulated water quality data are compared with recorded water quality data provided by Sydney catchment authority. The mean change of flow, total suspended solid, total nitrate and total phosphate are compare on monthly, three month, six month and annual basis. Two control catchment and three burn catchment were analysed.

  18. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County.

    PubMed

    Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran

    2011-07-01

    Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Landscape structure and climate influences on hydrologic response

    NASA Astrophysics Data System (ADS)

    Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.

    2011-12-01

    Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.

  20. Estimating catchment-scale groundwater dynamics from recession analysis - enhanced constraining of hydrological models

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Mengistu, Zelalem

    2016-12-01

    In this study, we propose a new formulation of subsurface water storage dynamics for use in rainfall-runoff models. Under the assumption of a strong relationship between storage and runoff, the temporal distribution of catchment-scale storage is considered to have the same shape as the distribution of observed recessions (measured as the difference between the log of runoff values). The mean subsurface storage is estimated as the storage at steady state, where moisture input equals the mean annual runoff. An important contribution of the new formulation is that its parameters are derived directly from observed recession data and the mean annual runoff. The parameters are hence estimated prior to model calibration against runoff. The new storage routine is implemented in the parameter parsimonious distance distribution dynamics (DDD) model and has been tested for 73 catchments in Norway of varying size, mean elevation and landscape type. Runoff simulations for the 73 catchments from two model structures (DDD with calibrated subsurface storage and DDD with the new estimated subsurface storage) were compared. Little loss in precision of runoff simulations was found using the new estimated storage routine. For the 73 catchments, an average of the Nash-Sutcliffe efficiency criterion of 0.73 was obtained using the new estimated storage routine compared with 0.75 using calibrated storage routine. The average Kling-Gupta efficiency criterion was 0.80 and 0.81 for the new and old storage routine, respectively. Runoff recessions are more realistically modelled using the new approach since the root mean square error between the mean of observed and simulated recession characteristics was reduced by almost 50 % using the new storage routine. The parameters of the proposed storage routine are found to be significantly correlated to catchment characteristics, which is potentially useful for predictions in ungauged basins.

  1. Efficiency of blue-green stormwater retrofits for flood mitigation - Conclusions drawn from a case study in Malmö, Sweden.

    PubMed

    Haghighatafshar, Salar; Nordlöf, Beatrice; Roldin, Maria; Gustafsson, Lars-Göran; la Cour Jansen, Jes; Jönsson, Karin

    2018-02-01

    Coupled one-dimensional (1D) sewer and two-dimensional (2D) overland flow hydrodynamic models were constructed to evaluate the flood mitigation efficiency of a renowned blue-green stormwater retrofit, i.e. Augustenborg, in Malmö, Sweden. Simulation results showed that the blue-green stormwater systems were effective in controlling local surface flooding in inner-city catchments, having reduced the total flooded surfaces by about 70%. However, basement flooding could still be a potential problem depending on the magnitude of the inflows through combined sewer from upstream areas. Moreover, interactions between blue-green retrofits and the surrounding pipe-system were studied. It was observed that the blue-green retrofits reduced the peak flows by approximately 80% and levelled out the runoff. This is a substantial advantage for downstream pipe-bound catchments, as they do not receive a cloudburst-equivalent runoff from the retrofitted catchment, but a reduced flow corresponding to a much milder rainfall. Blue-green retrofits are more effective if primarily implemented in the upstream areas of a pipe-bound catchment since the resulting reduced runoff and levelled out discharge would benefit the entire network lying downstream. Implementing blue-green retrofits from upstream towards downstream can be considered as a sustainable approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Temperature dynamics of stormwater runoff in Australia and the USA.

    PubMed

    Hathaway, J M; Winston, R J; Brown, R A; Hunt, W F; McCarthy, D T

    2016-07-15

    Thermal pollution of surface waters by urban stormwater runoff is an often overlooked by-product of urbanization. Elevated stream temperatures due to an influx of stormwater runoff can be detrimental to stream biota, in particular for cold water systems. However, few studies have examined temperature trends throughout storm events to determine how these thermal inputs are temporally distributed. In this study, six diverse catchments in two continents are evaluated for thermal dynamics. Summary statistics from the data showed larger catchments have lower maximum runoff temperatures, minimum runoff temperatures, and temperature variability. This reinforces the understanding that subsurface drainage infrastructure in urban catchments acts to moderate runoff temperatures. The catchments were also evaluated for the presence of a thermal first flush using two methodologies. Results showed the lack of a first flush under traditional assessment methodologies across all six catchments, supporting the results from a limited number of studies in literature. However, the time to peak temperature was not always coincident with the time to peak flow, highlighting the variability of thermal load over time. When a new first flush methodology was applied, significant differences in temperature were noted with increasing runoff depth for five of the six sites. This study is the first to identify a runoff temperature first flush, and highlights the need to carefully consider the appropriate methodology for such analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Hydro-glaciological modeling in the Upper Maipo River basin, extratropical Andes Cordillera, with explicit representation of debris-covered glaciers.

    NASA Astrophysics Data System (ADS)

    McPhee, J. P.; Castillo, Y.; Escobar, M.; Pellicciotti, F.

    2014-12-01

    In this work we improve and calibrate a hydro-glaciological model based on a simplified energy balance approach using the WEAP modeling platform for two catchments in the headwaters of the Maipo River Basin, in the Andes Mountains of Central Chile. The Morales Creek catchment includes the San Francisco glacier, a clean glacier occupying 7% of the catchment area. The Pirámide catchment holds the debris-covered Pirámide Glacier, which covers 20% of the catchment area. Detailed field measurements have been carried out on both glaciers to characterize their melt and meteorological regimes. We calibrate an Enhanced Temperature Index melt model against ablation stakes and runoff measurements, and obtain clear differences between the optimal parameters for the clean and debris-covered glaciers. Calibrate melt threshold temperatures are 0,25 and 0,5ºC for the clean and debris-covered glaciers, respectively, while the fraction of net shortwave radiation employed for melting is 90 and 83% for clean and debris-covered glaciers, respectively. These results are coherent with an insulating effect of the debris cover at the Pirámide glacier. The hydrologic contribution of ice melt for the clean, San Francisco glacier is equivalent to 32% of total runoff measured at the Morales Creek outlet during the simulation period; on the other hand, ice melt accounts for 83% of total runoff estimated at the outlet of the Pirámide catchment over the same period. These results are part on an ongoing effort aimed at quantifying cryospheric contribution to the hydrology of the Maipo River basin, one of the key river basins in Chile, on the face of accelerated climate change, and is the first documented work to explicitly include debris-covered glaciers in a context of basin-wide hydrological modeling.

  4. Evaluating the impact of climate and underlying surface on runoff change within Budyko framework: a study across 224 catchments in China

    NASA Astrophysics Data System (ADS)

    Shen, Q.; Cong, Z.; Lei, H.

    2017-12-01

    Climate change and underlying surface change are two main factors affecting the hydrological cycle. In respect of climate change, precipitation alters not only in magnitude, but also in intensity, which can be represented by the precipitation depth. To further understand the spatial variation of the impact of precipitation, potential evapotranspiration, precipitation depth as well as the water storage capacity, in this paper 224 catchments across China were analyzed applying the Choudhury-Porporato equation based on the Budyko hypothesis. The catchments distribute in 9 major basins in China and the study period is from 1960 to 2010. The results show that underlying surface is the major driving force of the change in runoff in the Songhua Basin, the Liaohe Basin and the Haihe Basin, while climate change dominates runoff change in other basins. Climate change causes runoff increase in most catchments, except for some catchments in the Yellow River Basin and the Yangtze River Basin. Specifically, change in precipitation depth induces runoff increase in almost each catchment and shows a remarkable contribution rate (14.8% on average, larger than 20% in 32% catchments). The contribution of precipitation depth has little correlation with the aridity index, while positively correlates to the significance of trend in precipitation depth. This study suggests that precipitation depth is an important aspect that should be taken into consideration in attribution of runoff change. The results can give a sight for future researches in attribution analysis within the Budyko framework.

  5. Application of the SPARROW model to assess surface-water nutrient conditions and sources in the United States Pacific Northwest

    USGS Publications Warehouse

    Wise, Daniel R.; Johnson, Henry M.

    2013-01-01

    The watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) was used to estimate mean annual surface-water nutrient conditions (total nitrogen and total phosphorus) and to identify important nutrient sources in catchments of the Pacific Northwest region of the United States for 2002. Model-estimated nutrient yields were generally higher in catchments on the wetter, western side of the Cascade Range than in catchments on the drier, eastern side. The largest source of locally generated total nitrogen stream load in most catchments was runoff from forestland, whereas the largest source of locally generated total phosphorus stream load in most catchments was either geologic material or livestock manure (primarily from grazing livestock). However, the highest total nitrogen and total phosphorus yields were predicted in the relatively small number of catchments where urban sources were the largest contributor to local stream load. Two examples are presented that show how SPARROW results can be applied to large rivers—the relative contribution of different nutrient sources to the total nitrogen load in the Willamette River and the total phosphorus load in the Snake River. The results from this study provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to researchers and water-quality managers performing local nutrient assessments.

  6. A critical source area phosphorus index with topographic transport factors using high resolution LiDAR digital elevation models

    NASA Astrophysics Data System (ADS)

    Thomas, Ian; Murphy, Paul; Fenton, Owen; Shine, Oliver; Mellander, Per-Erik; Dunlop, Paul; Jordan, Phil

    2015-04-01

    A new phosphorus index (PI) tool is presented which aims to improve the identification of critical source areas (CSAs) of phosphorus (P) losses from agricultural land to surface waters. In a novel approach, the PI incorporates topographic indices rather than watercourse proximity as proxies for runoff risk, to account for the dominant control of topography on runoff-generating areas and P transport pathways. Runoff propensity and hydrological connectivity are modelled using the Topographic Wetness Index (TWI) and Network Index (NI) respectively, utilising high resolution digital elevation models (DEMs) derived from Light Detection and Ranging (LiDAR) to capture the influence of micro-topographic features on runoff pathways. Additionally, the PI attempts to improve risk estimates of particulate P losses by incorporating an erosion factor that accounts for fine-scale topographic variability within fields. Erosion risk is modelled using the Unit Stream Power Erosion Deposition (USPED) model, which integrates DEM-derived upslope contributing area and Universal Soil Loss Equation (USLE) factors. The PI was developed using field, sub-field and sub-catchment scale datasets of P source, mobilisation and transport factors, for four intensive agricultural catchments in Ireland representing different agri-environmental conditions. Datasets included soil test P concentrations, degree of P saturation, soil attributes, land use, artificial subsurface drainage locations, and 2 m resolution LiDAR DEMs resampled from 0.25 m resolution data. All factor datasets were integrated within a Geographical Information System (GIS) and rasterised to 2 m resolution. For each factor, values were categorised and assigned relative risk scores which ranked P loss potential. Total risk scores were calculated for each grid cell using a component formulation, which summed the products of weighted factor risk scores for runoff and erosion pathways. Results showed that the new PI was able to predict in-field risk variability and hence was able to identify CSAs at the sub-field scale. PI risk estimates and component scores were analysed at catchment and subcatchment scales, and validated using measured dissolved, particulate and total P losses at subcatchment snapshot sites and gauging stations at catchment outlets. The new PI provides CSA delineations at higher precision compared to conventional PIs, and more robust P transport risk estimates. The tool can be used to target cost-effective mitigation measures for P management within single farm units and wider catchments.

  7. Fungicides transport in runoff from vineyard plot and catchment: contribution of non-target areas.

    PubMed

    Lefrancq, Marie; Payraudeau, Sylvain; García Verdú, Antonio Joaquín; Maillard, Elodie; Millet, Maurice; Imfeld, Gwenaël

    2014-04-01

    Surface runoff and erosion during the course of rainfall events are major processes of pesticides transport from agricultural land to aquatic ecosystem. These processes are generally evaluated either at the plot or the catchment scale. Here, we compared at both scales the transport and partitioning in runoff water of two widely used fungicides, i.e., kresoxim-methyl (KM) and cyazofamid (CY). The objective was to evaluate the relationship between fungicides runoff from the plot and from the vineyard catchment. The results show that seasonal exports for KM and CY at the catchment were larger than those obtained at the plot. This underlines that non-target areas within the catchment largely contribute to the overall load of runoff-associated fungicides. Estimations show that 85 and 62 % of the loads observed for KM and CY at the catchment outlet cannot be explained by the vineyard plots. However, the partitioning of KM and CY between three fractions, i.e., the suspended solids (>0.7 μm) and two dissolved fractions (i.e., between 0.22 and 0.7 µm and <0.22 µm) in runoff water was similar at both scales. KM was predominantly detected below 0.22 μm, whereas CY was mainly detected in the fraction between 0.22 and 0.7 μm. Although KM and CY have similar physicochemical properties and are expected to behave similarly, our results show that their partitioning between two fractions of the dissolved phase differs largely. It is concluded that combined observations of pesticide runoff at both the catchment and the plot scales enable to evaluate the sources areas of pesticide off-site transport.

  8. Water balance and soil losses in an irrigated catchment under conservation tillage in Southern Spain

    NASA Astrophysics Data System (ADS)

    Cid, Patricio; Mateos, Luciano; Taguas, Encarnación V.; Gómez-Macpherson, Helena

    2013-04-01

    Conservation tillage based on permanent beds with crop-residue retention and controlled traffic has been recently introduced in irrigated annual crops in Southern Spain as one way to improve water infiltration, reduce soil losses, and save energy. The water balance and soil losses in water runoff have been monitored during 4 years in a 28-ha catchment within a production farm where this kind of soil conservation practice was established in 2004 for a maize-cotton-wheat rotation. The catchment average slope is 6 %. Soils are Typic Calcixerept and Typic Haploxerert. The water balance components that were measured include: applied irrigation water, rainfall, and runoff. Runoff was measured at the outlet of the catchment by means of a hydrological station that consisted of long-throated flume, ultrasonic water level sensor, automatic water sampler, data logger and transmission system, weather station, and ancillary equipment. We present here results from three hydrological seasons (October to September): 2009-10, 2010-11, and 2011-12. The first season the catchment was grown with wheat, thus the irrigation depth was small (25 mm); rainfall above average, 1103 mm; and the runoff coefficient was 26 %. In the season 2010-11, the catchment was grown with cotton, the irrigation depth was 503 mm, rainfall was 999 mm, and the seasonal runoff coefficient was 7 %. The last season, the crop was maize, rainfall was below average (368 mm), irrigation 590 mm, and the runoff coefficient as the previous year, 7 %. Soil losses were very small: 0.05, 1.26, and 1.33 t per ha and year, the first, second, and third monitored seasons, respectively. A simple water balance model allowed simulating evapotranspiration, deep percolation and runoff. The Curve Number for the catchment was calibrated using the balance model.

  9. Runoff production in a small agricultural catchment in Lao PDR : influence of slope, land-use and observation scale.

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2009-04-01

    We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?

  10. Sensitivity to experimental data of pollutant site mean concentration in stormwater runoff.

    PubMed

    Mourad, M; Bertrand-Krajewski, J L; Chebbo, G

    2005-01-01

    Urban wet weather discharges are known to be a great source of pollutants for receiving waters, which protection requires the estimation of long-term discharged pollutant loads. Pollutant loads can be estimated by multiplying a site mean concentration (SMC) by the total runoff volume during a given period of time. The estimation of the SMC value as a weighted mean value with event runoff volumes as weights is affected by uncertainties due to the variability of event mean concentrations and to the number of events used. This study carried out on 13 catchments gives orders of magnitude of these uncertainties and shows the limitations of usual practices using few measured events. The results obtained show that it is not possible to propose a standard minimal number of events to be measured on any catchment in order to evaluate the SMC value with a given uncertainty.

  11. Stormflow generation: a meta-analysis of field studies and research catchments

    NASA Astrophysics Data System (ADS)

    Barthold, Frauke; Elsenbeer, Helmut

    2014-05-01

    Runoff characteristics are expressions of runoff generation mechanisms. In this study, we want to test the hypothesis if storm hydrographs of catchments with prevailing near-surface flow paths are dominated by new water. We aim to test this hypothesis using published data from the scientific literature. We developed a classification system based on three runoff characteristics: (1) hydrograph response (HR: slowly or quickly), (2) the temporal source of water that dominates the hydrograph (TS: pre-event vs. event water) and (3) the flow paths that the water takes until it is released to the stream (FP: subsurface vs. surface flow paths). We then performed a literature survey to collect information on these runoff characteristics for small, forested headwater catchments that served as study areas in runoff generation studies and assigned each study catchment to one of the 8 classes. For this purpose, we designed a procedure to objectively diagnose the predominant conceptual model of storm flow generation in each catchment and assess its temporal and spatial relevance for the catchment. Finally, we performed an explorative analysis of the classified research catchments and summarized field evidence. Our literature survey yielded a sample of 22 research catchments that fell within our defined criteria (small, naturally forested catchments which served as study areas in stormflow generation studies). We applied our classification procedure to all of these catchments. Among them were 14 catchments for which our meta-analysis yielded a complete set of stormflow characteristics resulting in one of the 8 model concepts and were assigned into our classification scheme. Of the 14 classified research catchments, 10 were dominated by subsurface flow paths while 4 were dominated by overland flow. The data also indicate that the spatial and temporal relevance is high for catchments with subsurface flow paths while often weak for surface flow paths dominated catchments. The catalogue of catchments supports our hypothesis; however, it is afflicted with a relative high degree of uncertainty. Two theories exist that may explain the imbalance between surface and subsurface dominated catchments: (1) the selection of research sites for stormflow generation studies was guided by the leading research question in hydrology, i.e. to address the "old water paradox", and (2) catchments with prevailing subsurface flow paths are much more common in nature. In a next step, the proposed catalogue of research catchments allows correlation of environmental characteristics with runoff characteristics to address questions of catchment organization and similarity. However, the successful application and relevance of such an approach depends on the range of conceptual models for which field support exist. Our results prompt us to highlight future research needs: (1) in order to cover a broader range of combinations of runoff characteristics a careful selection of research sites is necessary and (2) propose guidelines for field studies in order achieve higher comparability of resulting conceptual models of research sites and increase the spatial and temporal relevance of the dominant conceptual model.

  12. The Comparative Accuracy of Two Hydrologic Models in Simulating Warm-Season Runoff for Two Small, Hillslope Catchments

    EPA Science Inventory

    Runoff prediction is a cornerstone of water resources planning, and therefore modeling performance is a key issue. This paper investigates the comparative advantages of conceptual versus process- based models in predicting warm season runoff for upland, low-yield micro-catchments...

  13. A new perspective on catchment storage gained from a nested catchment experiment in Luxembourg (Europe)

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; Klaus, Julian; Hissler, Christophe; François Iffly, Jean; Gourdol, Laurent; Martinez-Carreras, Nuria; McDonnell, Jeffrey J.

    2014-05-01

    Recent hydrological process research focussed on how much water a catchment can store and how these catchments store and release water. Storage can be a valuable metric for catchment description, inter-comparison, and classification. Further storage controls catchment mixing, non-linearities in rainfall-runoff transformation and eco-hydrological processes. Various methods exist to determine catchment storage (e.g. natural tracer, soil moisture and groundwater data, hydrological models). Today it remains unclear what parts of the catchment storage are measured with the different models. Here we present a new hydrometric approach to answer the question how much water a catchment can store. We tested our approach in a dense hydro-climatological monitoring network that encompasses 16 recording streamgauges and 21 pluviographs in the Alzette River basin in Luxembourg (Europe). Catchment scales are ranging from 0.47 to 285 km2 and they have clean- and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Previous investigations in the area of interest have shown that geology largely controls winter runoff coefficients. Here, we focus at how catchment geology is ultimately affecting catchment storage. We used the approach of Sayama et al. (2011) to compute catchment dynamic storage changes for each winter season over the period 2002-2012 (based on precipitation as input; discharge and evapotranspiration as output). We determined dynamic storage changes for each winter semester (October to March) in all 16 catchments over the period 2002-2012. At the beginning of each hydrological winter season, all catchments showed similar trends in storage change. A few weeks into the winter season, catchments with lowest permeability (e.g. marls) started to plateau. The highest storage values were reached several months later in the season in catchments dominated by permeable substrate (e.g. sandstone). For most catchments, we found strong correlations between baseflow prior to the recharge period (i.e. at initiation of the total storage calculations) and the seasonal maximum value of the total storage change calculations. In order to determine the maximum storage potential for each catchment, we fitted a trendline through the annual 'initial baseflow - maximum storage' populations. By extrapolating these trendlines to zero flow conditions, we obtained the maximum storage potential. Our results show that these maximum storage values clearly tend to be larger in catchments dominated by permeable substrate, compared to areas underlain by impermeable bedrock. In the latter, average filling ratios were found to be substantially higher (exceeding 80%) than in catchments dominated by permeable substrate (approximately 40%). These findings were confirmed by average seasonal winter runoff coefficients that are substantially higher in catchments dominated by impermeable bedrock (Pfister et al., in prep.). Our new approach allows a fast assessment of storage potential in catchments based on discharge, precipitation and evapotranspiration data. Pfister L. et al. 2014: Catchment storage, baseflow isotope signatures and basin geology: Is there a connection? In preparation. Sayama, T., McDonnell, J.J., Dhakal, A., Sullivan, K., 2011. How much water can a watershed store ? Hydrological Processes 25, 3899-3908.

  14. The catchment based approach using catchment system engineering

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  15. Urban flood simulation and prioritization of critical urban sub-catchments using SWMM model and PROMETHEE II approach

    NASA Astrophysics Data System (ADS)

    Babaei, Sahar; Ghazavi, Reza; Erfanian, Mahdi

    2018-06-01

    Urban runoff increased due to augment of impervious surfaces. In order to flood mitigation during rainy season, determination of critical urban sub-catchments is very important for urban planners. Due to lack of information, adopting a simulation approach is one of the practical ways to identify the surcharged junctions and critical sub-catchments. Occurrence of destructive floods in the rainy seasons indicates the inappropriateness of the urban drainage system in Urmia. The main aims of this study were to estimate the surface runoff of urban sub-catchments using SWMM, to evaluate the accuracy of the drainage system of the study urban area and to prioritize sub-catchments using PROMETHEE II approach and SWMM. In the present study, the occurrence of rainfall event of the Urmia city (West Azerbaijan province, Iran) used for estimation of runoff depth. The study area was divided into 22 sub-catchments. For calibration and validation of model parameters, 3 rainfall events and their related runoff were measured. According to sensitivity analysis CN was the most sensitive parameter for model calibration. Amount of surcharged conduits and junctions indicates that the drainage system of the study area has not enough capacity for converting of the runoff and. For 10 year return period, depth of channels should increase by 20% for prevention of flooding in these sub-catchments. Sub-catchments were prioritized using PROMETHEE II approach and its results were compared with SWMM simulation outcomes. Based on SWMM simulation, S11, S7, S18, S16 and S1 sub-catchments are more critical sub-catchments respectively, while according to PROMETHEE method, S1, S11, S16, S14 and S18 are determined as the critical areas.

  16. Impact of land-use on water pollution in a rapidly urbanizing catchment in China

    NASA Astrophysics Data System (ADS)

    Khu, Soon-Thiam; Qin, Huapeng

    2010-05-01

    Many catchments in developing countries are undergoing fast urbanization which is usually characterized by population increase, economic growth as well as drastic changes of land-use from natural/rural to urban area. During the urbanization process, some catchments experience water quality deterioration due to rapid increase of pollution loads. Nonpoint source pollution resulting from storm water runoff has been recognized as one of the major causes of pollutants in many cities in developing countries. The composition of land-use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management in the catchment. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as the study area, and temporary monitoring sites were set at the outlets of its 6 sub-catchments to synchronously measured rainfall, runoff and water quality during 4 storm events. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants (such as COD, BOD, NH3-N, TN, TP and SS) in each sub-catchment during the storm events; and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land-use; however, they have different trends in heavy storm events, which correlate with the different proportional combination of residential, industrial, agricultural and bare land-use. It is also shown that it is necessary to consider some pervious land-use types in runoff pollution monitoring or management for a rapidly urbanizing area, particularly in heavy storm.

  17. The influence of multiyear drought on the annual rainfall-runoff relationship: An Australian perspective

    NASA Astrophysics Data System (ADS)

    Saft, Margarita; Western, Andrew W.; Zhang, Lu; Peel, Murray C.; Potter, Nick J.

    2015-04-01

    Most current long-term (decadal and longer) hydrological predictions implicitly assume that hydrological processes are stationary even under changing climate. However, in practice, we suspect that changing climatic conditions may affect runoff generation processes and cause changes in the rainfall-runoff relationship. In this article, we investigate whether temporary but prolonged (i.e., of the order of a decade) shifts in rainfall result in changes in rainfall-runoff relationships at the catchment scale. Annual rainfall and runoff records from south-eastern Australia are used to examine whether interdecadal climate variability induces changes in hydrological behavior. We test statistically whether annual rainfall-runoff relationships are significantly different during extended dry periods, compared with the historical norm. The results demonstrate that protracted drought led to a significant shift in the rainfall-runoff relationship in ˜44% of the catchment-dry periods studied. The shift led to less annual runoff for a given annual rainfall, compared with the historical relationship. We explore linkages between cases where statistically significant changes occurred and potential explanatory factors, including catchment properties and characteristics of the dry period (e.g., length, precipitation anomalies). We find that long-term drought is more likely to affect transformation of rainfall to runoff in drier, flatter, and less forested catchments. Understanding changes in the rainfall-runoff relationship is important for accurate streamflow projections and to help develop adaptation strategies to deal with multiyear droughts.

  18. Mobility and bioavailability of Cd, Co, Cr, Cu, Mn and Zn in surface runoff sediments in the urban catchment area of Guwahati, India

    NASA Astrophysics Data System (ADS)

    Devi, Upama; Bhattacharyya, Krishna G.

    2018-03-01

    The sediments in stormwater runoff are recognised as the major sink of the heavy metals and affect the soil quality in the catchment. The runoff sediments are also important in the management of contaminant transport to receiving water bodies. In the present work, stormwater during several major rain events was collected from nine principal locations of Guwahati, India. The solid phase was separated from the liquid phase and was investigated for the total contents of Cd, Co, Cr, Cu, Mn and Zn as well as their distribution among the prominent chemical phases. Sequential extraction procedure was used for the chemical fractionation of the metals that contains five steps. The total metal concentration showed the trend, Cd < Co < Cu < Cr < Zn < Mn. The relative distribution of the metals showed that Cd was available mostly in the exchangeable and the carbonate bound fractions, which were the most mobile and high-risk fractions. Co with medium mobility was also found to be in the high-risk category. On the other hand, the mobilities of Cu and Zn were relatively low and these were, therefore, the least bioavailable metals in the runoff sediments falling in medium-risk category.

  19. Predictions of runoff signatures in ungauged basins: Austrian case study

    NASA Astrophysics Data System (ADS)

    Viglione, A.; Parajka, J.; Salinas, J.; Rogger, M.; Sivapalan, M.; Bloeschl, G.

    2012-12-01

    Runoff variability can be broken up into several components, each of them meaningful of a certain class of applications of societal relevance: annual runoff, seasonal runoff, flow duration curve, low flows, floods and hydrographs. We call them runoff signatures and we view them as a manifestation of catchment functioning at different time scales, as emergent properties of the complex systems that catchments are. Just as a medical doctor has many different options for studying the state and functioning of a patient, we can infer the state and functioning of a catchment observing its runoff signatures. But what can we do in the absence of runoff data? This study aims to understand how well one can predict runoff signatures in ungauged catchments. The comparison across signatures is based on one consistent data set (Austria) and one regionalisation method (Top-Kriging) in order to explore the relative performance of the predictions of each of the signatures. Results indicate that the performance, assessed by cross-validation, is best for annual and seasonal runoff, it degrades as one moves to low flows and floods and goes up again to high values for runoff hydrographs. Also, dedicated regionalisation methods, i.e. focusing on particular signatures and their characteristics, provide better predictions of the signatures than regionalisation of the entire hydrograph. These results suggest that the use of signatures in the calibration or assessment of process models can be valuable, in that this can lead to models predicting runoff correctly for the right reasons.

  20. How much complexity is warranted in a rainfall-runoff model?

    Treesearch

    A.J. Jakeman; G.M. Hornberger

    1993-01-01

    Development of mathmatical models relating the precipitation incident upon a catchment to the streamflow emanating from the catchment has been a major focus af surface water hydrology for decades. Generally, values for parameters in such models must be selected so that runoff calculated from the model "matches" recorded runoff from some historical period....

  1. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments.

    PubMed

    Sarkkola, Sakari; Koivusalo, Harri; Laurén, Ari; Kortelainen, Pirkko; Mattsson, Tuija; Palviainen, Marjo; Piirainen, Sirpa; Starr, Mike; Finér, Leena

    2009-12-15

    Temporal trends in stream water total organic carbon (TOC) concentration and export were studied in 8 forested headwater catchments situated in eastern Finland. The Seasonal Kendall test was conducted to identify the trends and a mixed model regression analysis was used to describe how catchment characteristics and hydrometeorological variables (e.g. precipitation, air and stream water temperatures, and atmospheric deposition) related to the variation in the concentration and export of stream water TOC. The 8 catchments varied in size from 29 to 494 ha and in the proportion of peatland they contained, from 8 to 70%. Runoff and TOC concentration were monitored for 15-29 years (1979-2006). Trends and variation in TOC levels were analysed from annual and seasonal time series. Mean annual TOC concentration increased significantly in seven of the eight catchments. The trends were the strongest in spring and most apparent during the last decade of the study period. The slopes of the trends were generally smaller than the variation in TOC concentration between years and seasons and between catchments. The annual TOC export showed no clear trends and values were largely determined by the temporal variability in runoff. Annual runoff showed a decreasing trend in two of the eight catchments. Mean annual air and stream water temperatures showed increasing trends, most clearly seen in the summer and autumn series. According to our modeling results, stream water temperature, precipitation and peatland percentage were the most important variables explaining annual and most seasonal TOC concentrations. The atmospheric deposition of SO4, NH4, and NO3 decreased significantly over the study period, but no significant link with TOC concentration was found. Precipitation was the main hydrometeorological driver of the TOC export. We concluded that stream water TOC concentrations and exports are mainly driven by catchment characteristics and hydrometeorological factors rather than trends in atmospheric acid deposition.

  2. Export of nutrients and major ionic solutes from a rain forest catchment in the Central Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lesack, Lance F. W.

    1993-03-01

    The relative roles of base flow runoff versus storm flow runoff versus subsurface outflow in controlling total export of solutes from a 23.4-ha catchment of undisturbed rain forest in the central Amazon Basin were evaluated from water and solute flux measurements performed over a 1 year period. Solutes exported via 173 storms during the study were estimated from stream water samples collected during base flow conditions and during eight storms, and by utilizing a hydrograph separation technique in combination with a mixing model to partition storm flow from base flow fluxes. Solutes exported by subsurface outflow were estimated from groundwater samples from three nests of piezometers installed into the streambed, and concurrent measurements of hydraulic conductivity and hydraulic head gradients. Base flow discharge represented 92% of water outflow from the basin and was the dominant pathway of solute export. Although storm flow discharge represented only 5% of total water outflow, storm flow solute fluxes represented up to 25% of the total annual export flux, though for many solutes the portion was less. Subsurface outflow represented only 2.5% of total water outflow, and subsurface solute fluxes never represented more than 5% of the total annual export flux. Measurement errors were relatively high for storm flow and subsurface outflow fluxes, but cumulative measurement errors associated with the total solute fluxes exported from the catchment, in most cases, ranged from only ±7% to 14% because base flow fluxes were measured relatively well. The export fluxes of most solutes are substantially less than previously reported for comparable small catchments in the Amazon basin, and these differences cannot be reconciled by the fact that storm flow and subsurface outflows were not appropriately measured in previous studies.

  3. Streamflow characteristics from modelled runoff time series: Importance of calibration criteria selection

    USGS Publications Warehouse

    Poole, Sandra; Vis, Marc; Knight, Rodney; Seibert, Jan

    2017-01-01

    Ecologically relevant streamflow characteristics (SFCs) of ungauged catchments are often estimated from simulated runoff of hydrologic models that were originally calibrated on gauged catchments. However, SFC estimates of the gauged donor catchments and subsequently the ungauged catchments can be substantially uncertain when models are calibrated using traditional approaches based on optimization of statistical performance metrics (e.g., Nash–Sutcliffe model efficiency). An improved calibration strategy for gauged catchments is therefore crucial to help reduce the uncertainties of estimated SFCs for ungauged catchments. The aim of this study was to improve SFC estimates from modeled runoff time series in gauged catchments by explicitly including one or several SFCs in the calibration process. Different types of objective functions were defined consisting of the Nash–Sutcliffe model efficiency, single SFCs, or combinations thereof. We calibrated a bucket-type runoff model (HBV – Hydrologiska Byråns Vattenavdelning – model) for 25 catchments in the Tennessee River basin and evaluated the proposed calibration approach on 13 ecologically relevant SFCs representing major flow regime components and different flow conditions. While the model generally tended to underestimate the tested SFCs related to mean and high-flow conditions, SFCs related to low flow were generally overestimated. The highest estimation accuracies were achieved by a SFC-specific model calibration. Estimates of SFCs not included in the calibration process were of similar quality when comparing a multi-SFC calibration approach to a traditional model efficiency calibration. For practical applications, this implies that SFCs should preferably be estimated from targeted runoff model calibration, and modeled estimates need to be carefully interpreted.

  4. The role of land use/land cover dependent preferential flow paths in hydrologic response of steep and seasonal tropical catchments

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Ogden, F. L.; Zhu, J.

    2017-12-01

    The hydrologic behavior of steep catchments with saprolitic soils in the humid seasonal tropics varies with land use and cover, even when they have identical topographic index and slope distributions, underlying geology and soils textures. Forested catchments can produce more baseflow during the dry season compared to catchments containing substantial amount of pasture, the so-called "sponge effect". During rainfall events, forested catchments can also exhibit lower peak runoff rates and runoff efficiencies compared to pasture catchments. We hypothesize that hydrologic effects of land use arise from differences in preferential flow paths (PFPs) formed by biotic and abiotic factors in the upper one to two meters of soil and that land use effects on hydrological response are described by the relative amounts of forest and pasture within a catchment. Furthermore, we hypothesize that infiltration measurements at different scales allow estimation of PFP-related parameters. These hypotheses are tested by a model that explicitly simulates PFPs using distinct input parameter sets for forest and pasture. Runoff observations from three catchments with pasture, forest, and a mosaic of subsistence agricultural land covers allow model evaluation. Multiple objective criteria indicate that field measurements of infiltration enable PFP-relevant parameter identification and that pasture and forest end member parameter sets describe much of the observed difference. Analysis of water balance components and comparison between average transient water table depth and vertical PFP flow capacity demonstrate that the interplay of lateral and vertical PFPs contribute to the sponge-effect and can explain differences in peak runoff and runoff efficiency.

  5. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    EPA Science Inventory

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  6. Hydrological Footprints of Urban Developments in the Lake Simcoe Watershed, Canada: A Combined Paired-Catchment and Change Detection Modeling Approach

    NASA Astrophysics Data System (ADS)

    Oni, S. K.; Futter, M. N.; Buttle, J. M.; Dillon, P.

    2014-12-01

    Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth due to its proximity to the greater Toronto area. This has led to extensive land use changes which have impacted its water resources and altered runoff patterns in some rivers draining to the lake. Here, we use a paired-catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most-urban impacted catchment. Annual runoff from Lovers Creek increased from 239 to 442 mm/yr in contrast to the reference catchment (Black River at Washago) where runoff was relatively stable with an annual mean of 474 mm/yr. Increased annual runoff from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992-1997; pre-major development) and late (2004-2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to runoff flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible runoff simulations in Lovers Creek due to greater scatter between the parameters in canonical space. Separation of early and late period parameter sets for the reference catchment was based on climate and snowmelt related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW.

  7. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.

    PubMed

    Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

    2010-09-15

    The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Catchment Water-Energy Balance Model: Development and Applications

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, H.

    2017-12-01

    International Hydrological community has widely recognized that the catchment water-energy balance exists, which can be expressed as a general form of E/P = f(E0/P, c), where P is precipitation, E0 is potential evaporation, and c is a parameter. Many empirical/rational formulations of the catchment water-energy balance have been proposed. Several analytical solutions of the water-energy balance equation E/P = f(E0/P, c) have been derived by using dimensional analysis and mathematic reasoning and introducing additional boundary conditions. This paper will summarize the catchment water-energy balance equations and discuss their advantages and limitations. Catchment hydrology has been greatly influenced by the intensive variability in land use/cover, precipitation and air temperature due to climate change and local human activities. The water-energy balance equation, which are usually called the Budyko framework is widely used to analyze the impacts of climate and landscape changes on regional hydrology especially the annual runoff change. In order to quantify impacts of climate change and landscape change on the catchment runoff, the climate elasticity and landscape elasticity are estimated theoretically from the catchment water-energy balance equation. The elasticity of runoff has less of a dependency on the aridity index when the climate is drier (larger aridity index). The precipitation elasticity of runoff was close to 1.0 and that of potential evaporation close to 0.0 in the extreme humid climate with no relation to the landscape conditions, which implies that catchment water balance under extremely wet condition is controlled mainly by the climate condition. We establishes a relationship between the change in the landscape parameter in the catchment water-energy balance equation and vegetation change represented by fPAR, the fraction of Photosynthetically Active Radiation absorbed by vegetation. The fPAR elasticity of runoff is introduced and estimated over China, which indicate that runoff is more sensitive to the change in fPAR in relatively dry catchments. This paper will summarize applications of the water-energy balance equation and discuss on the future development.

  9. Derivation of flood frequency curves in poorly gauged Mediterranean catchments using a simple stochastic hydrological rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Aronica, G. T.; Candela, A.

    2007-12-01

    SummaryIn this paper a Monte Carlo procedure for deriving frequency distributions of peak flows using a semi-distributed stochastic rainfall-runoff model is presented. The rainfall-runoff model here used is very simple one, with a limited number of parameters and practically does not require any calibration, resulting in a robust tool for those catchments which are partially or poorly gauged. The procedure is based on three modules: a stochastic rainfall generator module, a hydrologic loss module and a flood routing module. In the rainfall generator module the rainfall storm, i.e. the maximum rainfall depth for a fixed duration, is assumed to follow the two components extreme value (TCEV) distribution whose parameters have been estimated at regional scale for Sicily. The catchment response has been modelled by using the Soil Conservation Service-Curve Number (SCS-CN) method, in a semi-distributed form, for the transformation of total rainfall to effective rainfall and simple form of IUH for the flood routing. Here, SCS-CN method is implemented in probabilistic form with respect to prior-to-storm conditions, allowing to relax the classical iso-frequency assumption between rainfall and peak flow. The procedure is tested on six practical case studies where synthetic FFC (flood frequency curve) were obtained starting from model variables distributions by simulating 5000 flood events combining 5000 values of total rainfall depth for the storm duration and AMC (antecedent moisture conditions) conditions. The application of this procedure showed how Monte Carlo simulation technique can reproduce the observed flood frequency curves with reasonable accuracy over a wide range of return periods using a simple and parsimonious approach, limited data input and without any calibration of the rainfall-runoff model.

  10. Estimating subcatchment runoff coefficients using weather radar and a downstream runoff sensor.

    PubMed

    Ahm, Malte; Thorndahl, Søren; Rasmussen, Michael R; Bassø, Lene

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients of the separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678 ha) located in the city of Aarhus, Denmark. The study has proven that it is possible to use corresponding measurements of the relative rainfall distribution over the catchment and downstream runoff measurements to identify the runoff coefficients at subcatchment level.

  11. Earthworms and tree roots: A model study of the effect of preferential flow paths on runoff generation and groundwater recharge in steep, saprolitic, tropical lowland catchments

    NASA Astrophysics Data System (ADS)

    Cheng, Yanyan; Ogden, Fred L.; Zhu, Jianting

    2017-07-01

    Preferential flow paths (PFPs) affect the hydrological response of humid tropical catchments but have not received sufficient attention. We consider PFPs created by tree roots and earthworms in a near-surface soil layer in steep, humid, tropical lowland catchments and hypothesize that observed hydrological behaviors can be better captured by reasonably considering PFPs in this layer. We test this hypothesis by evaluating the performance of four different physically based distributed model structures without and with PFPs in different configurations. Model structures are tested both quantitatively and qualitatively using hydrological, geophysical, and geochemical data both from the Smithsonian Tropical Research Institute Agua Salud Project experimental catchment(s) in Central Panama and other sources in the literature. The performance of different model structures is evaluated using runoff Volume Error and three Nash-Sutcliffe efficiency measures against observed total runoff, stormflows, and base flows along with visual comparison of simulated and observed hydrographs. Two of the four proposed model structures which include both lateral and vertical PFPs are plausible, but the one with explicit simulation of PFPs performs the best. A small number of vertical PFPs that fully extend below the root zone allow the model to reasonably simulate deep groundwater recharge, which plays a crucial role in base flow generation. Results also show that the shallow lateral PFPs are the main contributor to the observed high flow characteristics. Their number and size distribution are found to be more important than the depth distribution. Our model results are corroborated by geochemical and geophysical observations.

  12. Rapid runoff via shallow throughflow and deeper preferential flow in a boreal catchment underlain by frozen silt (Alaska, USA)

    USGS Publications Warehouse

    Koch, Joshua C.; Ewing, Stephanie A.; Striegl, Robert G.; McKnight, Diane M.

    2013-01-01

    In high-latitude catchments where permafrost is present, runoff dynamics are complicated by seasonal active-layer thaw, which may cause a change in the dominant flowpaths as water increasingly contacts mineral soils of low hydraulic conductivity. A 2-year study, conducted in an upland catchment in Alaska (USA) underlain by frozen, well-sorted eolian silt, examined changes in infiltration and runoff with thaw. It was hypothesized that rapid runoff would be maintained by flow through shallow soils during the early summer and deeper preferential flow later in the summer. Seasonal changes in soil moisture, infiltration, and runoff magnitude, location, and chemistry suggest that transport is rapid, even when soils are thawed to their maximum extent. Between June and September, a shift occurred in the location of runoff, consistent with subsurface preferential flow in steep and wet areas. Uranium isotopes suggest that late summer runoff erodes permafrost, indicating that substantial rapid flow may occur along the frozen boundary. Together, throughflow and deep preferential flow may limit upland boreal catchment water and solute storage, and subsequently biogeochemical cycling on seasonal to annual timescales. Deep preferential flow may be important for stream incision, network drainage development, and the release of ancient carbon to ecosystems

  13. Effects of landscape-based green infrastructure on stormwater runoff in suburban developments

    EPA Science Inventory

    The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reachi...

  14. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments.

    PubMed

    Yang, Yun-Ya; Toor, Gurpal S

    2017-04-01

    Nutrients export from residential catchments contributes to water quality impairment in urban water bodies. We investigated the concentrations, transport mechanisms, and sources of nitrate-nitrogen (NO 3 -N) and orthophosphate-phosphorus (PO 4 -P) in urban stormwater runoff generated in residential catchments in Tampa Bay, Florida, United States. Street runoff samples, collected over 21 storm events, were supplemented with rainfall and roof runoff samples from six representative residential catchments. Samples were analyzed for N and P forms, N and oxygen (O) isotopes of nitrate (δ 18 O-NO 3 - and δ 15 N-NO 3 - ), and δ 18 O and hydrogen (δD) isotopes of water (H 2 O). We found that the main NO 3 -N source in street runoff was atmospheric deposition (range: 35-64%), followed by chemical N fertilizers (range: 1-39%), and soil and organic N (range: 7-33%), whereas PO 4 -P in the street runoff likely originated from erosion of soil particles and mineralization from organic materials (leaves, grass clippings). The variability in the sources and concentrations of NO 3 -N and PO 4 -P across catchments is attributed to different development designs and patterns, use of various fill materials during land development, and landscaping practices. This data can be useful to develop strategies to offset the impacts of urban development (e.g., designs and patterns resulting in variable impervious areas) and management (e.g., fertilizer use, landscaping practices) on NO 3 -N and PO 4 -P transport in urban residential catchments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. How runoff begins (and ends): characterizing hydrologic response at the catchment scale

    USGS Publications Warehouse

    Mirus, Benjamin B.; Loague, Keith

    2013-01-01

    Improved understanding of the complex dynamics associated with spatially and temporally variable runoff response is needed to better understand the hydrology component of interdisciplinary problems. The objective of this study was to quantitatively characterize the environmental controls on runoff generation for the range of different streamflow-generation mechanisms illustrated in the classic Dunne diagram. The comprehensive physics-based model of coupled surface-subsurface flow, InHM, is employed in a heuristic mode. InHM has been employed previously to successfully simulate the observed hydrologic response at four diverse, well-characterized catchments, which provides the foundation for this study. The C3 and CB catchments are located within steep, forested terrain; the TW and R5 catchments are located in gently sloping rangeland. The InHM boundary-value problems for these four catchments provide the corner-stones for alternative simulation scenarios designed to address the question of how runoff begins (and ends). Simulated rainfall-runoff events are used to systematically explore the impact of soil-hydraulic properties and rainfall characteristics. This approach facilitates quantitative analysis of both integrated and distributed hydrologic responses at high-spatial and temporal resolution over the wide range of environmental conditions represented by the four catchments. The results from 140 unique simulation scenarios illustrate how rainfall intensity/depth, subsurface permeability contrasts, characteristic curve shapes, and topography provide important controls on the hydrologic-response dynamics. The processes by which runoff begins (and ends) are shown, in large part, to be defined by the relative rates of rainfall, infiltration, lateral flow convergence, and storage dynamics within the variably saturated soil layers.

  16. Responses of hydrochemical inorganic ions in the rainfall-runoff processes of the experimental catchments and its significance for tracing

    USGS Publications Warehouse

    Gu, W.-Z.; Lu, J.-J.; Zhao, X.; Peters, N.E.

    2007-01-01

    Aimed at the rainfall-runoff tracing using inorganic ions, the experimental study is conducted in the Chuzhou Hydrology Laboratory with special designed experimental catchments, lysimeters, etc. The various runoff components including the surface runoff, interflow from the unsaturated zone and the groundwater flow from saturated zone were monitored hydrometrically. Hydrochemical inorganic ions including Na+, K+, Ca2+, Mg2+, Cl-, SO42-, HCO3- + CO32-, NO3-, F-, NH4-, PO42-, SiO2 and, pH, EC, 18O were measured within a one month period for all processes of rainfall, various runoff components and groundwater within the catchment from 17 boreholes distributed in the Hydrohill Catchment, few soil water samples were also included. The results show that: (a) all the runoff components are distinctly identifiable from both the relationships of Ca2+ versus Cl-/SO42-, EC versus Na+/(Na+ + Ca2+) and, from most inorganic ions individually; (b) the variation of inorganic ions in surface runoff is the biggest than that in other flow components; (c) most ions has its lowermost concentration in rainfall process but it increases as the generation depths of runoff components increased; (d) quantitatively, ion processes of rainfall and groundwater flow display as two end members of that of other runoff components; and (e) the 18O processes of rainfall and runoff components show some correlation with that of inorganic ions. The results also show that the rainfall input is not always the main source of inorganic ions of various runoff outputs due to the process of infiltration and dissolution resulted from the pre-event processes. The amount and sources of Cl- of runoff components with various generation mechanisms challenge the current method of groundwater recharge estimation using Cl-.

  17. The subcatchment- and catchment-scale hydrology of a boreal headwater peatland complex with sporadic permafrost.

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Helbig, M.; Connon, R.; Hould Gosselin, G.; Ryu, Y.; Karoline, W.; Hanisch, J.; Moore, T. R.; Quinton, W. L.

    2017-12-01

    The permafrost region of the Northern Hemisphere has been experiencing twice the rate of climate warming compared to the rest of the Earth, resulting in the degradation of the cryosphere. A large portion of the high-latitude boreal forests of northwestern Canada grows on low-lying organic-rich lands with relative warm and thin isolated, sporadic and discontinuous permafrost. Along this southern limit of permafrost, increasingly warmer temperatures have caused widespread permafrost thaw leading to land cover changes at unprecedented rates. A prominent change includes wetland expansion at the expense of Picea mariana (black spruce)-dominated forest due to ground surface subsidence caused by the thawing of ice-rich permafrost leading to collapsing peat plateaus. Recent conceptual advances have provided important new insights into high-latitude boreal forest hydrology. However, refined quantitative understanding of the mechanisms behind water storage and movement at subcatchment and catchment scales is needed from a water resources management perspective. Here we combine multi-year daily runoff measurements with spatially explicit estimates of evapotranspiration, modelled with the Breathing Earth System Simulator, to characterize the monthly growing season catchment scale ( 150 km2) hydrological response of a boreal headwater peatland complex with sporadic permafrost in the southern Northwest Territories. The corresponding water budget components at subcatchment scale ( 0.1 km2) were obtained from concurrent cutthroat flume runoff and eddy covariance evapotranspiration measurements. The highly significant linear relationships for runoff (r2=0.64) and evapotranspiration (r2=0.75) between subcatchment and catchment scales suggest that the mineral upland-dominated downstream portion of the catchment acts hydrologically similar to the headwater portion dominated by boreal peatland complexes. Breakpoint analysis in combination with moving window statistics on multi-year time-series of daily total and liquid precipitation, and snow water equivalent suggest a recent (post-2010) transition to a more rainfall-controlled runoff regime.

  18. Export of arsenic from forested catchments under easing atmospheric pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucie Erbanova; Martin Novak; Daniela Fottova

    Massive lignite burning in Central European power plants peaked in the 1980s. Dissolved arsenic in runoff from upland forest ecosystems is one of the ecotoxicological risks resulting from power plant emissions. Maxima in As concentrations in runoff from four forest catchments have increased 2-5 times between 1995 and 2006, and approach the drinking water limit (10 {mu}g L{sup -1}). To assess the fate of anthropogenic As, we constructed input/output mass balances for three polluted and one relatively unpolluted forest catchment in the Czech Republic, and evaluated the pool size of soil As. The observation period was 11 years, and themore » sites spanned a 6-fold As pollution gradient. Two of the polluted sites exhibit large net As export via runoff solutes (mean of 4-5 g As ha{sup -1} yr{sup -1} for the 11-year period; up to 28 g As ha{sup -1} yr{sup -1} in 2005). This contrasts with previous studies which concluded that forest catchments are a net sink for atmogenic arsenic both at times of increasing and decreasing pollution. The amount of exported As is not correlated with the total As soil pool size, which is over 78% geogenic in origin, but correlates closely with water fluxes via runoff. Net arsenic release is caused by an interplay of hydrological conditions and retreating acidification which may mobilize arsenic by competitive ligand exchange. The effects of droughts and other aspects of climate change on subsequent As release from soil were not investigated. Between-site comparisons indicate that most pollutant As may be released from humus. 24 refs., 7 figs., 1 tab.« less

  19. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    PubMed

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn only, but lowest in rice fields. Slope gradient had a significant positive correlation with TN’s and total phosphorus (TP)’s concentration losses. Concentrations of TN, NO3-N, and total phosphorus were significantly correlated with rainfall. Peak concentrations of ammoniacal nitrogen occurred during the fertilizer application period in spring and autumn. Different structures of land use types had a significant influence on the concentration losses of nitrogen and phosphorus; thus, using a reasonable way to adjust land use structure and spatial arrangement of whole catchment was an effective solution to control non-point source pollution of the Three Gorges Region.

  20. Lateral, vertical, and longitudinal connectivity of runoff source areas drive stream hydro-biogeochemical signals across a low relief drainage network

    NASA Astrophysics Data System (ADS)

    Zimmer, M. A.; McGlynn, B. L.

    2017-12-01

    Our understanding of the balance between longitudinal, lateral, and vertical expansion and contraction of reactive flowpaths and source areas in headwater catchments is limited. To address this, we utilized an ephemeral-to-perennial stream network in the Piedmont region of North Carolina, USA to gain new understanding about critical zone mechanisms that drive runoff generation and biogeochemical signals in both groundwater and stream water. Here, we used chemical and hydrometric data collected from zero through second order catchments to characterize spatial and temporal runoff and overland, shallow soil, and deep subsurface flow across characteristic landscape positions. Our results showed that the active stream network was driven by two superimposed runoff generation regimes that produced distinct hydro-biogeochemical signals at the catchment outlet. The baseflow runoff generation regime expanded and contracted the stream network seasonally through the rise and fall of the seasonal water table. Superimposed on this, event-activated source area contributions were driven by surficial and shallow subsurface flowpaths. The subsurface critical zone stratigraphy in this landscape coupled with the precipitation regime activated these shallow flowpaths frequently. This drove an increase in dissolved organic carbon (DOC) concentrations with increases in runoff across catchment scales. DOC-runoff relationship variability and spread was driven by the balance between runoff regimes as well as a seasonal depletion of DOC from shallow subsurface flowpath activation and annual replenishment from litterfall. From this, we suggest that the hydro-biogeochemical signals at larger catchment outlets can be driven by a balance of longitudinal, lateral, and vertical source area contributions, critical zone structure, and complex hydrological processes.

  1. Multivariate analysis for stormwater quality characteristics identification from different urban surface types in macau.

    PubMed

    Huang, J; Du, P; Ao, C; Ho, M; Lei, M; Zhao, D; Wang, Z

    2007-12-01

    Statistical analysis of stormwater runoff data enables general identification of runoff characteristics. Six catchments with different urban surface type including roofs, roadway, park, and residential/commercial in Macau were selected for sampling and study during the period from June 2005 to September 2006. Based on univariate statistical analysis of data sampled, major pollutants discharged from different urban surface type were identified. As for iron roof runoff, Zn is the most significant pollutant. The major pollutants from urban roadway runoff are TSS and COD. Stormwater runoff from commercial/residential and Park catchments show high level of COD, TN, and TP concentration. Principal component analysis was further done for identification of linkages between stormwater quality and urban surface types. Two potential pollution sources were identified for study catchments with different urban surface types. The first one is referred as nutrients losses, soil losses and organic pollutants discharges, the second is related to heavy metals losses. PCA was proved to be a viable tool to explain the type of pollution sources and its mechanism for different urban surface type catchments.

  2. Comparison of drought occurrence in selected Slovak and Czech catchments

    NASA Astrophysics Data System (ADS)

    Fendekova, Miriam; Fendek, Marian; Porubska, Diana; Hanel, Martin; Horacek, Stanislav; Martinkova, Marta; Vizina, Adam

    2014-05-01

    The presented study is focused on the analysis and comparison of hydrological drought occurrence, development and duration in six small to middle sized catchments in the Czech Republic (CZ) and Slovakia. The main questions to be answered are: (1) are there correlations between the physical conditions in the catchments and drought occurrence, and (2) does the spatial trend of drought occurrence exist. The Žitava catchment is located in the central western part of Slovakia having runoff dominated by rainfall with the contribution of snow melting during the spring period. The Belá River catchment is located on the contact of Západné and Vysoké Tatry Mts. in the north of Slovakia. The runoff is snow to snow-rain combined type. The Ľupčianka catchment is located on the northern slopes of the Nízke Tatry Mts. in the northern part of the central Slovakia. The runoff regime is snow-rain combined in the upper part of the catchment, and of rain-snow type in the rest of catchment. The Rakovnický potok brook (CZ) has its spring in Rakovnická pahorkatina hilly land. Runoff is dominated by rainfall, quite heavily influenced by water uptakes in the catchment. The Teplá River (CZ) originates in peat meadows in the western part of the Czech Republic. Runoff is dominated by rainfall. The Metuje catchment (CZ) is formed by Adršsbach-Teplické stěny Upland. The headwater part is typical by deeply incest valleys, table mountains and pseudokarst caves. The discharge is fed dominantly by groundwater. The streamflow drought was characterized using discharge data, the groundwater drought using the base flow values. The local minimum method was used for base flow separation. The threshold level method (Q80, BF80) and the sequent peak algorithm were used for calculation of drought duration in discharge and base flow time series. The data of the same three decades of the common period (1971 - 1980, 1981 - 1990 and 1991 - 2000) were used. The resulting base flow values along with the discharges were re-calculated into specific discharge and base flow. The results showed that drought occurrence in evaluated Czech and Slovak catchment reflects very variable physical conditions in catchments, first of all the location of the catchment (latitude and altitude). The latitude difference reflects itself in starting time of drought which often propagates from the west to the east. The altitude is reflected in the seasonal pattern of drought, where drought in higher altitudes occurs much often in winter-spring period whereas in lower altitudes the summer-autumn droughts prevail. Total number of droughts with duration of more than 50 days was much higher in Slovak than in Czech catchments, which could reflect the more continental character of climate in Slovakia. Drought occurrence in Žitava catchment often followed the drought in Czech catchments; especially the drought in Teplá. On the other hand, drought occurrence in the Metuje catchment was in some cases closer to drought development in Slovakia than in other two Czech catchments. The longest drought in discharges, estimated for Rakovnický potok by the method of SPA lasting for 1569 days in 2006 - 2010 period was caused probably by the human activities, because in none of other evaluated catchments such a long drought in the same or similar period occurred. Acknowledgments The research was done and results were published with the financial contribution of project No. APVV-0089-12 as well as projects No. 7AMB12SK167 and APVV-SK-CZ-0156-11 financed by the Ministry of Education of the Czech Republic and APVV agency of the Slovak Republic.

  3. Transport and attenuation of chloroacetanilides in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Imfeld, Gwenaël; Millet, Maurice; Payraudeau, Sylvain

    2015-04-01

    Chloroacetanilides (e.g., S-metolachlor and acetochlor) are pre-emergent herbicides used on corn and sugar beet and are applied to bare soil, which is prone to runoff and erosion. Some of these herbicides are chiral and the commercial products can be isomerically enriched in the enantiomer-S compared to the enantiomer-R as an example S-metolachlor 80/20% S to R . Determination of the transport of these herbicides in the dissolved and particulate phases of runoff water and degradation in agricultural catchments is currently lacking. The objectives of this study were i) to quantify over an corn growing season the export of chloroacetanilides and their main degradation products (ethane sulfonic (ESA) and oxanilic acid (OXA) degradates of metolachlor (MESA and MOXA) and acetochlor (AcESA and AcOXA)) in an 47 ha agricultural head-catchment in the dissolved and particulate phases, and ii) to evaluate S-metolachlor biodegradation from its application on the field to its export from the catchment using enantiomer analysis. Runoff, erosion, hydrochemistry and chloroacetanilide transport were evaluated at both the plot and catchment scales. Our results showed that an important amount of the pesticide load is missed when only the dissolved concentration of the parent compound is analysed. The total export coefficients for S-metolachlor and acetochlor and their degradation products were 11.4 and 11.8%, respectively, which includes both the dissolved and particulate loads. The partitioning of S-metolachlor and acetochlor between the dissolved and particulate phases varied widely over time and was linked to the suspended solid concentrations. Detection of S-metolachlor degradation products in runoff water was more frequent compared to that of acetochlor degradation products. Enrichment up to 37% of R-metolachlor was observed during the corn growing season, supporting enantioselective degradation of S-metolachlor. Our field study indicates the potential of enantiomer analyses for assessing chloroacetanilide biodegradation and could be complemented with laboratory benchmark studies on enantiomeric fractionation during chloroacetanilide degradation combined with an analysis of the degradation products to evaluate the extent of biodegradation in agro-ecosystems. We anticipate that our results will be a starting point for better understanding and predicting transport and degradation of chloroacetanilides at the agricultural catchment scale.

  4. The impact of runoff generation mechanisms on the location of critical source areas

    USGS Publications Warehouse

    Lyon, S.W.; McHale, M.R.; Walter, M.T.; Steenhuis, T.S.

    2006-01-01

    Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes - saturation excess and infiltration excess - on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service-Curve Number (SCS-CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.

  5. [Effect of antecedent dry weather period on urban storm runoff pollution load].

    PubMed

    Li, Li-qing; Yin, Cheng-qing; Kong, Ling-li; He, Qing-ci

    2007-10-01

    Twelve storm events were surveyed at Shilipu catchment in Wuhan City through three-year monitoring regime. The flow discharges, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in runoff were measured to study the mechanism of urban stormwater runoff pollution. The relationship between the event pollution load and the antecedent dry weather period was identified to discuss the influence of the urban surface sanitation management, operation of sewer pipe maintenance and rainfall characteristics on the urban stormwater runoff pollution. It was found that the antecedent dry weather period and runoff amount were the important determining factors in the generation of urban stormwater runoff pollution. The event pollution load was positively correlated to the antecedent dry weather period between two rainfall events (R2 = 0.95, p < 0.01). It was the most important hydrological factor influencing the events pollution loads. The best regression equation to estimate pollution load for storm events was developed based on the antecedent dry weather period and runoff depth. Source control including improving urban street sweeping activities and operation of sewer pipe maintenance should be made to reduce the amount of available pollutant over the dry days. It is important alternative to control urban stormwater runoff pollution for Hanyang District.

  6. Mulch effects on runoff and sediment production at the hillslope scale in the High Park Fire, Colorado

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Kampf, S. K.; Wagenbrenner, J. W.; MacDonald, L. H.; Gleason, H.

    2015-12-01

    The 2012 High Park Fire (HPF) burned 330 km2 of Front Range forests surrounding the Cache la Poudre River just upstream of the municipal water supply intakes for the cities of Fort Collins and Greeley. From 2012-2014, millions of dollars were spent on mulch treatments to stabilize burned soils and protect water supplies. The objective of this research is to evaluate how runoff and sediment production vary with precipitation (P) on two unmulched and two mulched hillslopes of the HPF during the 2014 summer thunderstorm season. The four hillslopes are moderate to severely burned zero-order catchments 0.2-0.4 ha in area. Sediment fences were installed at the base of each hillslope to collect bedload sediment; each fence was fitted with a V-notch weir and a series of flow splitters to collect proportional samples of runoff and suspended sediment. Runoff and sediment were captured during 3-7 events for the unmulched sites and 1-9 events for the mulched sites; some P events that produced bedload sediment did not produce measurable runoff. The 30-minute maximum P intensity thresholds for runoff and sediment production were lower for unmulched (10 mm hr-1) than mulched hillslopes (16 mm hr-1). Runoff ratios were similar for the unmulched (0.01-0.10) and mulched sites (0.00-0.08), but total sediment yield (bedload + suspended load; Mg ha-1) for the unmulched sites was up to three times greater (0.02-1.54) than the mulched sites (0.01-0.50. The ratio of suspended sediment to bedload was similar for the unmulched (0.24-1.97) and mulched sites (0.16-2.52). The results of this research suggest that (1) bedload sediment measurements under-represent hillslope sediment production, and (2) mulching may reduce sediment production in zero-order catchments, but the magnitude of the mulch effect varies by catchment and by rain event.

  7. A temporal-spatial postprocessing model for probabilistic run-off forecast. With a case study from Ulla-Førre with five catchments and ten lead times

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Steinsland, I.

    2012-04-01

    This work is driven by the needs of next generation short term optimization methodology for hydro power production. Stochastic optimization are about to be introduced; i.e. optimizing when available resources (water) and utility (prices) are uncertain. In this paper we focus on the available resources, i.e. water, where uncertainty mainly comes from uncertainty in future runoff. When optimizing a water system all catchments and several lead times have to be considered simultaneously. Depending on the system of hydropower reservoirs, it might be a set of headwater catchments, a system of upstream /downstream reservoirs where water used from one catchment /dam arrives in a lower catchment maybe days later, or a combination of both. The aim of this paper is therefore to construct a simultaneous probabilistic forecast for several catchments and lead times, i.e. to provide a predictive distribution for the forecasts. Stochastic optimization methods need samples/ensembles of run-off forecasts as input. Hence, it should also be possible to sample from our probabilistic forecast. A post-processing approach is taken, and an error model based on Box- Cox transformation, power transform and a temporal-spatial copula model is used. It accounts for both between catchment and between lead time dependencies. In operational use it is strait forward to sample run-off ensembles from this models that inherits the catchment and lead time dependencies. The methodology is tested and demonstrated in the Ulla-Førre river system, and simultaneous probabilistic forecasts for five catchments and ten lead times are constructed. The methodology has enough flexibility to model operationally important features in this case study such as hetroscadasety, lead-time varying temporal dependency and lead-time varying inter-catchment dependency. Our model is evaluated using CRPS for marginal predictive distributions and energy score for joint predictive distribution. It is tested against deterministic run-off forecast, climatology forecast and a persistent forecast, and is found to be the better probabilistic forecast for lead time grater then two. From an operational point of view the results are interesting as the between catchment dependency gets stronger with longer lead-times.

  8. An urban runoff model designed to inform stormwater management decisions.

    PubMed

    Beck, Nicole G; Conley, Gary; Kanner, Lisa; Mathias, Margaret

    2017-05-15

    We present an urban runoff model designed for stormwater managers to quantify runoff reduction benefits of mitigation actions that has lower input data and user expertise requirements than most commonly used models. The stormwater tool to estimate load reductions (TELR) employs a semi-distributed approach, where landscape characteristics and process representation are spatially-lumped within urban catchments on the order of 100 acres (40 ha). Hydrologic computations use a set of metrics that describe a 30-year rainfall distribution, combined with well-tested algorithms for rainfall-runoff transformation and routing to generate average annual runoff estimates for each catchment. User inputs include the locations and specifications for a range of structural best management practice (BMP) types. The model was tested in a set of urban catchments within the Lake Tahoe Basin of California, USA, where modeled annual flows matched that of the observed flows within 18% relative error for 5 of the 6 catchments and had good regional performance for a suite of performance metrics. Comparisons with continuous simulation models showed an average of 3% difference from TELR predicted runoff for a range of hypothetical urban catchments. The model usually identified the dominant BMP outflow components within 5% relative error of event-based measured flow data and simulated the correct proportionality between outflow components. TELR has been implemented as a web-based platform for use by municipal stormwater managers to inform prioritization, report program benefits and meet regulatory reporting requirements (www.swtelr.com). Copyright © 2017. Published by Elsevier Ltd.

  9. Redefining the stormwater first flush phenomenon.

    PubMed

    Bach, Peter M; McCarthy, David T; Deletic, Ana

    2010-04-01

    The first flush in urban runoff has been an important, yet disputed phenomenon amongst many researchers. The vast differences in the evidence could be solely due to limitations of the first flush current definition and the approach used for its assessment. There is a need for revisiting the first flush theory in the light of its practical applications to urban drainage management practices. We propose that a catchment's first flush behaviour is to be quantified by the runoff volume required to reduce a catchment's stormwater pollutant concentrations to background levels. The proposed method for assessment of this runoff volume starts by finding the average catchment pollutant concentrations for a given increment of discharged volume using a number of event pollutographs. Non-parametric statistics are then used to establish the characteristic pollutograph by pooling statistically indifferent runoff increments (known as slices) together. This allows the identification of the catchment's initial and background pollutant concentrations and for quantification of the first flush volume and its strength. The novel technique was used on seven catchments around Melbourne, Australia, with promising results. Sensitivity to the chosen increment of runoff (for which mean concentrations are calculated) indicated that when dealing with discrete flow-weighted water quality data, a suitable slice size should closely match the flow-weighting of samples. The overall sensitivity to runoff increment and level of significance was found to be negligible. Further research is needed to fully develop this method. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Modelling and optimization of land use/land cover change in a developing urban catchment.

    PubMed

    Xu, Ping; Gao, Fei; He, Junchao; Ren, Xinxin; Xi, Weijin

    2017-06-01

    The impacts of land use/cover change (LUCC) on hydrological processes and water resources are mainly reflected in changes in runoff and pollutant variations. Low impact development (LID) technology is utilized as an effective strategy to control urban stormwater runoff and pollution in the urban catchment. In this study, the impact of LUCC on runoff and pollutants in an urbanizing catchment of Guang-Ming New District in Shenzhen, China, were quantified using a dynamic rainfall-runoff model with the EPA Storm Water Management Model (SWMM). Based on the simulations and observations, the main objectives of this study were: (1) to evaluate the catchment runoff and pollutant variations with LUCC, (2) to select and optimize the appropriate layout of LID in a planning scenario for reducing the growth of runoff and pollutants under LUCC, (3) to assess the optimal planning schemes for land use/cover. The results showed that compared to 2013, the runoff volume, peak flow and pollution load of suspended solids (SS), and chemical oxygen demand increased by 35.1%, 33.6% and 248.5%, and 54.5% respectively in a traditional planning scenario. The assessment result of optimal planning of land use showed that annual rainfall control of land use for an optimal planning scenario with LID technology was 65%, and SS pollutant load reduction efficiency 65.6%.

  11. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling: Case studies from Zimbabwe

    NASA Astrophysics Data System (ADS)

    Lørup, Jens Kristian; Refsgaard, Jens Christian; Mazvimavi, Dominic

    1998-03-01

    The purpose of this study was to identify and assess long-term impacts of land use change on catchment runoff in semi-arid Zimbabwe, based on analyses of long hydrological time series (25-50 years) from six medium-sized (200-1000 km 2) non-experimental rural catchments. A methodology combining common statistical methods with hydrological modelling was adopted in order to distinguish between the effects of climate variability and the effects of land use change. The hydrological model (NAM) was in general able to simulate the observed hydrographs very well during the reference period, thus providing a means to account for the effects of climate variability and hence strengthening the power of the subsequent statistical tests. In the test period the validated model was used to provide the runoff record which would have occurred in the absence of land use change. The analyses indicated a decrease in the annual runoff for most of the six catchments, with the largest changes occurring for catchments located within communal land, where large increases in population and agricultural intensity have taken place. However, the decrease was only statistically significant at the 5% level for one of the catchments.

  12. N fluxes in two nitrogen saturated forested catchments in Germany: dynamics and modelling with INCA

    NASA Astrophysics Data System (ADS)

    Langusch, J.-J.; Matzner, E.

    The N cycle in forests of the temperate zone in Europe has been changed substantially by the impact of atmospheric N deposition. Here, the fluxes and concentrations of mineral N in throughfall, soil solution and runoff in two German catchments, receiving high N inputs are investigated to test the applicability of an Integrated Nitrogen Model for European Catchments (INCA) to small forested catchments. The Lehstenbach catchment (419 ha) is located in the German Fichtelgebirge (NO Bavaria, 690-871 m asl.) and is stocked with Norway spruce (Picea abies (L.) Karst.) of different ages. The Steinkreuz catchment (55 ha) with European beech (Fagus sylvatica L.) as the dominant tree species is located in the Steigerwald (NW Bavaria, 400-460 m asl.). The mean annual N fluxes with throughfall were slightly higher at the Lehstenbach (24.6 kg N ha-1) than at the Steinkreuz (20.4 kg N ha-1). In both catchments the N fluxes in the soil are dominated by NO3. At Lehstenbach, the N output with seepage at 90 cm soil depth was similar to the N flux with throughfall. At Steinkreuz more than 50 % of the N deposited was retained in the upper soil horizons. In both catchments, the NO3 fluxes with runoff were lower than those with seepage. The average annual NO3 concentrations in runoff in both catchments were between 0.7 to 1.4 mg NO3-N L-1 and no temporal trend was observed. The N budgets at the catchment scale indicated similar amounts of N retention (Lehstenbach: 19 kg N ha-1yr-1 ; Steinkreuz: 17 kg N ha-1yr-1). The parameter settings of the INCA model were simplified to reduce the model complexity. In both catchments, the NO3 concentrations and fluxes in runoff were matched well by the model. The seasonal patterns with lower NO3 runoff concentrations in summer at the Lehstenbach catchment were replicated. INCA underestimated the increased N3 concentrations during short periods of rewetting in late autumn at the Steinkreuz catchment. The model will be a helpful tool for the calculation of "critical loads"? for the N deposition in Central European forests including different hydrological regimes.

  13. Surface water hydrology and the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  14. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    USGS Publications Warehouse

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2016-01-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., <1 ha) in Colorado, USA that had previously been burned by a wildfire in 2010. We compared measurements of soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  15. A "total parameter estimation" method in the varification of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Wang, M.; Qin, D.; Wang, H.

    2011-12-01

    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in China. The application results demonstrate that this comprehensive testing method is very useful in the development of a distributed hydrological model and it provides a new way of thinking in hydrological sciences.

  16. Simulation of torrential rain as a means for assessment of surface runoff coefficients and calculation of recurrent design events in alpine catchments

    NASA Astrophysics Data System (ADS)

    Markart, Gerhard; Kohl, Bernhard; Sotier, Bernadette; Klebinder, Klaus; Schauer, Thomas; Bunza, Günther

    2010-05-01

    Simulation of heavy rain is an established method for studying infiltration characteristics, runoff and erosion behaviour in alpine catchments. Accordingly for characterization and differentiation of various runoff producing areas in alpine catchments transportable spray irrigation installations for large plots have been developed at the BFW, Department of Natural Hazards and Alpine Timberline, in Innsbruck, Austria. One installation has been designed for assessment of surface runoff coefficients under convective torrential rain with applicable precipitation intensities between 30 and 120 mm*h-1 and a plot size between 50 and 100 m2. The second device is used for simulation of persistent rain events (rain intensity about 10 mm*h-1, plot size: 400-1200 m2). Very reasonable results have been achieved during the comparison with spray irrigations from other institutions (e.g. Bavarian Environmental Agency in Munich) in the field. Rain simulations at BFW are mostly combined with comprehensive additional investigations on land-use, vegetation cover, soil physical characteristics, soil humidity, hydrogeology and other features of the test-sites. This allows proper interpretation of the achieved runoff data. At the moment results from more than 280 rain simulations are available from about 25 catchments / regions of the Eastern Alps at the BFW. Results show that the surface runoff coefficient, when runoff is constant at the test site (φconst) increases only slightly between rain intensities from 30 to 120 mm*h-1 (increment is 6%). Therefore φconst shall be used for assessment of runoff behaviour of runoff contributing areas, because it is less dependent form system conditions than φtot. BFW-data have been consolidated with results of the LfU (Bavarian Environmental Agency in Munich) in a data base and formed the basis for the development of a simple code of practice for assessment of surface runoff coefficients in torrential rain. The manual is freely available under: http://bfw.ac.at/rz/bfwcms.web?dok=4342 (in German language). The runoff contributing areas delineated by use of the manual in the field can be compiled in digital surface runoff coefficient maps and surface roughness maps. These maps in Austria form the basis for calculation of recurrent design events by use of precipitation/runoff models (P/R-models) like ZEMOKOST (optimized runtime method after Zeller = ZEller MOdified by KOhl and STepanek) or HEC-HMS. The result is substantial information on runoff disposition in each sub-catchment and hydrographs showing peak runoff and runoff freight. The code of practice for assessment of surface runoff coefficients has become the standard procedure in Austria to derive input parameters for P/R-models in practice. Recent investigations done at the Institute of Geography at the University of Berne show that the code of practice is suitable for application in catchments at the northern edge of the Swiss Alps too.

  17. Impact of papyrus wetland encroachment on spatial and temporal variabilities of stream flow and sediment export from wet tropical catchments.

    PubMed

    Ryken, N; Vanmaercke, M; Wanyama, J; Isabirye, M; Vanonckelen, S; Deckers, J; Poesen, J

    2015-04-01

    During the past decades, land use change in the Lake Victoria basin has significantly increased the sediment fluxes to the lake. These sediments as well as their associated nutrients and pollutants affect the food and water security of millions of people in one of Africa's most densely populated regions. Adequate catchment management strategies, based on a thorough understanding of the factors controlling runoff and sediment discharge are therefore crucial. Nonetheless, studies on the magnitude and dynamics of runoff and sediment discharge are very scarce for the Lake Victoria basin and the African Rift region. We therefore conducted runoff discharge and sediment export measurements in the Upper Rwizi, a catchment in Southwest Uganda, which is representative for the Lake Victoria basin. Land use in this catchment is characterized by grazing area on the high plateaus, banana cropping on the slopes and Cyperus papyrus L. wetlands in the valley bottoms. Due to an increasing population pressure, these papyrus wetlands are currently encroached and transformed into pasture and cropland. Seven subcatchments (358 km2-2120 km2), with different degrees of wetland encroachment, were monitored during the hydrological year June 2009-May 2010. Our results indicate that, due to their strong buffering capacity, papyrus wetlands have a first-order control on runoff and sediment discharge. Subcatchments with intact wetlands have a slower rainfall-runoff response, smaller peak runoff discharges, lower rainfall-runoff ratios and significantly smaller suspended sediment concentrations. This is also reflected in the measured annual area-specific suspended sediment yields (SYs): subcatchments with encroached papyrus swamps have SY values that are about three times larger compared to catchments with intact papyrus vegetation (respectively 106-137 ton km(-2) y(-1) versus 34-37 ton km(-2) y(-1)). We therefore argue that protecting and (where possible) rehabilitating these papyrus wetlands should be a corner stone of catchment management strategies in the Lake Victoria basin. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Blanket peatland restoration leads to reduced storm runoff from headwater systems

    NASA Astrophysics Data System (ADS)

    Shuttleworth, Emma; Allott, Tim; Evans, Martin; Pilkington, Mike

    2016-04-01

    This paper presents data on the impact of largescale peatland restoration on catchment runoff from peatlands in northern England. The blanket peatlands of the Pennine hills are important sources of water supply and form the headwaters of major river systems. These peatlands are severely eroded with extensive gullying and bare peat resulting from the impacts of industrial pollution, overgrazing, wildfire and climatic change over the last millennium. In the last decade there has been a major programme of peatland restoration through re-vegetation and blocking of drainage lines in these systems. The Making Space for Water project has collected hydrological data from five micro-catchments(two restoration treatments, a bare peat control, a vegetated control and a previously restored site) over a four year period. This has allowed for both Before-After-Control-Intervention and Space for Time analysis of the impact of restoration on downstream runoff. Catchments became wetter following re-vegetation, water tables rose by 35 mm and overland flow production increased by 18%. Storm-flow lag times in restored catchments increased by up to 267 %, while peak storm discharge decreased by up to 37%. There were no statistically significant changes in percentage runoff, indicating limited changes to within-storm catchment storage. Natural flood management solutions are typically focussed around one of two main mechanisms, either enhanced storage of water in catchments or measures which slow transmission of water to channels and within channels. Upland peatlands are often mischaracterised as sponges and assumed to mitigate downstream runoff through additional storage. The results of this study suggest that whilst restoration of upland peatlands can lead to significant reductions in peak discharge, and has potential to contribute to natural flood risk management, the mechanism is an increase in catchment roughness and an associated decrease in flow velocities.

  19. The Effect of Rainfall Measurement Technique and Its Spatiotemporal Resolution on Discharge Predictions in the Netherlands

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Brauer, C.; Overeem, A.; Sassi, M.; Rios Gaona, M. F.

    2014-12-01

    Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of these spatiotemporal resolutions on discharge simulations in lowland catchments by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in a freely draining lowland catchment and a polder with controlled water levels. We used rain gauge networks with automatic (hourly resolution but low spatial density) and manual gauges (high spatial density but daily resolution). Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. We also investigated the effect of spatiotemporal resolution with a high-resolution X-band radar data set for catchments with different sizes. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. When catchments are divided into sub-catchments, rainfall spatial variability can become more important, especially during convective rainfall events, leading to spatially varying catchment wetness and spatially varying contribution of quick flow routes. Improving rainfall measurements and their spatiotemporal resolution can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.

  20. Effect of climate change on stormwater runoff characteristics and treatment efficiencies of stormwater retention ponds: a case study from Denmark using TSS and Cu as indicator pollutants.

    PubMed

    Sharma, Anitha Kumari; Vezzaro, Luca; Birch, Heidi; Arnbjerg-Nielsen, Karsten; Mikkelsen, Peter Steen

    2016-01-01

    This study investigated the potential effect of climate changes on stormwater pollution runoff characteristics and the treatment efficiency of a stormwater retention pond in a 95 ha catchment in Denmark. An integrated dynamic stormwater runoff quality and treatment model was used to simulate two scenarios: one representing the current climate and another representing a future climate scenario with increased intensity of extreme rainfall events and longer dry weather periods. 100-year long high-resolution rainfall time series downscaled from regional climate model projections were used as input. The collected data showed that total suspended solids (TSS) and total copper (Cu) concentrations in stormwater runoff were related to flow, rainfall intensity and antecedent dry period. Extreme peak intensities resulted in high particulate concentrations and high loads but did not affect dissolved Cu concentrations. The future climate simulations showed an increased frequency of higher flows and increased total concentrations discharged from the catchment. The effect on the outlet from the pond was an increase in the total concentrations (TSS and Cu), whereas no major effect was observed on dissolved Cu concentrations. Similar results are expected for other particle bound pollutants including metals and slowly biodegradable organic substances such as PAH. Acute toxicity impacts to downstream surface waters seem to be only slightly affected. A minor increase in yearly loads of sediments and particle-bound pollutants is expected, mainly caused by large events disrupting the settling process. This may be important to consider for the many stormwater retention ponds existing in Denmark and across the world.

  1. Variability of Snow Ablation: Consequences for Runoff Generation at the Process Scale and Lessons for Large Cold Regions Catchments

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Carey, S. K.; Granger, R. J.; Hedstrom, N. R.; Janowicz, R.; Pietroniro, A.; Quinton, W. L.

    2002-12-01

    The supply of water to large northern catchments such as the Mackenzie and Yukon Rivers is dominated by snowmelt runoff from first order mountain catchments. In order to understand the timing, peak and duration of the snowmelt freshet at larger scale it is important to appreciate the spatial and temporal variability of snowmelt and runoff processes at the source. For this reason a comprehensive hydrology study of a Yukon River headwaters catchment, Wolf Creek Research Basin, near Whitehorse, has focussed on the spatial variability of snow ablation and snowmelt runoff generation and the consequences for the water balance in a mountain tundra zone. In northern mountain tundra, surface energetics vary with receipt of solar radiation, shrub vegetation cover and initial snow accumulation. Therefore the timing of snowmelt is controlled by aspect, in that south facing slopes become snow-free 4-5 weeks before the north facing. Runoff generation differs widely between the slopes; there is normally no spring runoff generated from the south facing slope as all meltwater evaporates or infiltrates. On the north facing slope, snowmelt provides substantial runoff to hillside macropores which rapidly route water to the stream channel. Macropore distribution is associated with organic terrain and discontinuous permafrost, which in turn result from the summer surface energetics. Therefore the influence of small-scale snow redistribution and energetics as controlled by topography must be accounted for when calculating contributing areas to larger scale catchments, and estimating the effectiveness of snowfall in generating streamflow. This concept is quite distinct from the drainage controlled contributing area that has been found useful in temperate-zone hydrology.

  2. SWMM Modeling Methods for Simulating Green Infrastructure at a Suburban Headwatershed: User’s Guide

    EPA Science Inventory

    Urban stormwater runoff quantity and quality are strongly dependent upon catchment properties. Models are used to simulate the runoff characteristics, but the output from a stormwater management model is dependent on how the catchment area is subdivided and represented as spatial...

  3. Impacts of Spatial Distribution of Impervious Areas on Runoff Response of Hillslope Catchments: Simulation Study

    EPA Science Inventory

    This study analyzes variations in the model-projected changes in catchment runoff response after urbanization that stem from variations in the spatial distribution of impervious areas, interevent differences in temporal rainfall structure, and antecedent soil moisture (ASM). In t...

  4. Multiscale soil moisture measurement for mapping surface runoff generation on torrential headwater catchments (Draix-Bléone field observatory, South Alps, France)

    NASA Astrophysics Data System (ADS)

    Florian, Mallet; Vincent, Marc; Johnny, Douvinet; Philippe, Rossello; Bouteiller Caroline, Le; Jean-Philippe, Malet; Julien, Gance

    2015-04-01

    Runoff generation in the headwater catchments in various land use conditions still remain a core issue in catchment hydrology (Uhlenbrook S. et al., 2003). Vegetation has a strong impact on flows distribution (interception, infiltration, evapotranspiration, runoff) but the relative influence of these mechanisms according to geomorphological determinants is still not totally understood. The "ORE Draix" located in the Alpes-de-Haute-Provence (France) allows to study these parameters using experimental watersheds equipped with a long term monitoring instrumentation (rainfall, streamflow, water, soil and air temperature, soil erosion, soil moisture...). These marl torrential watersheds have a peculiar hydrological behavior during flood events with large outflow differences between the wooded and the bare areas. We try to identify the runoff production factors by studying water storage/drainage processes within the first 30 cm depth of soil (Wilson et al., 2003, Western et al., 2004). Soil moisture can explain runoff during floods, that's why we try to upscale this variable at the watershed level. Unlike studies on soil moisture monitoring in agricultural context (flat areas), conventional remote sensing methods are difficult to apply to the badlands (elevation between 1500 masl and 1800 masl, approximately 1km² areas, steep slopes, various land uses) (Bagdhadi, 2005). This difficulty can be overcome by measuring soil moisture at different spatial (point, plot, slope, catchment) and time scales (event, season, year) using innovative approaches. In this context, we propose a monitoring of soil moisture based on geostatistical treatments crossed with measurements at different scales. These measures are provided from ground and airborne sensors deployment. Point measurements are ensured at a very high time frequency using capacitance probes. At an intermediate level, a slope is equipped with a DTS sensor (distributed temperature sensing) to obtain a 2D estimate of soilwater flow of from the surface to - 30 cm. Another distributed approach will be carried out from a measurement of cosmic neutrons mitigation (Cosmic ray sensor) to estimate a soil moisture averaged value over 40 ha (Zreda et al., 2012). Finally, the smallest scale (slope and catchment) will be approached using remote sensing with a drone and/or satellite imagery (IR, passive and active microwave). This concatenation of scales with different combinations of time steps should enable us to better understand the hydrological dynamics in torrential environments. It aims at mapping the stormflow generation on a catchment at the flood scale and defining the main determinants of surface runoff. These results may contribute to the improvement of runoff simulation and flood prediction. References : Uhlenbrook S., J.J. McDonnell and C. Leibundgut, 2003. Preface: Runoff generation implications for river basin modelling. Hydrological Processes, Special Issue, 17: 197-198. Andrew W. Western, Sen-Lin Zhou, Rodger B. Grayson, Thomas A. MacMahon, Günter Blöshl, David J. Wilson, 2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology 286. Zreda, M., Shuttleworth WJ., Zeng X., Zweck C., Desilets D., Franz TE. et al., 2012. COSMOS: the COsmic-ray Soil Moisture Observing System. Hydrology and Earth System Sciences, 16(11): 4079-4099.

  5. A Catchment Systems Engineering (CSE) approach to managing intensively farmed land

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg

    2014-05-01

    Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.

  6. Assessing colloid-bound metal export in response to short term changes in runoff from a forested catchment

    NASA Astrophysics Data System (ADS)

    Neubauer, E.; Kammer, F. v. d.; Knorr, K.-H.; Pfeiffer, S.; Reichert, M.; Hofmann, T.

    2012-04-01

    Soils can act as a source of metals and natural organic matter (NOM) in runoff from catchments. Amounts and intensity of rainfall may influence NOM export from catchments. The presence of NOM and other colloids in water may not only enhance metal export, but also significantly change metal speciation. In this study, we investigated the response of metal-colloid associations to short-term discharge variations in the runoff from a small forested catchment (Lehstenbach, Bavaria, Germany). Here, the discharge from the catchment outlet responds within hours to rain events. Near-surface flow in organic-rich layers and peat soils has been identified to increase dissolved organic carbon (DOC) concentrations during stormwater runoff. Flow Field-Flow Fractionation coupled to ICP-MS (FlowFFF-ICPMS) is a high-resolution size separation technique which was used for the detection and quantification of colloids and associated metals. Colloid-associated metals, dissolved metals and metals associated with low-molecular weight organic ligands were also separated by filtration (0.2 µm) and ultrafiltration (1000 g/mol MWCO). During baseflow DOC concentration was <6 mg/L and the pH ranged between 4.6 and 5.0. The DOC concentration exported at a given discharge was subject to strong seasonal variation and depended on the water level before the discharge event. DOC concentrations were up to 8 fold higher during stormwater runoff compared to baseflow. The export of aluminum, arsenic, rare earth elements (REE) and uranium from the catchment increased during stormwater runoff showing a strong correlation with NOM concentrations. This result was supported by FlowFFF-ICPMS data revealing that NOM was the only colloid type available for metal complexation during all hydrological conditions. A clear temporal pattern in the association with the NOM was observed for most of the metals under study: During baseflow, 70-100% (Fe), 90% (Al), 60-100% (REE) and 80-85% (U) were associated with the NOM. During stormwater runoff, the dissolved species concentration and those associated with small organic ligands (<1000 g/mol) increased. The pH drop during the stormwater runoff (pH <4) is most likely the main factor for weaker metal-NOM binding. However, only 25 to 50% of the arsenic was associated with NOM, but no relation to discharge, or pH was exhibited. The results show that fluxes of most trace metals from the catchment are governed by NOM-colloids, even though substantial concentrations are dissolved or associated to low-molecular weight organic substances during stormwater runoff.

  7. Modelling the effects of Prairie wetlands on streamflow

    NASA Astrophysics Data System (ADS)

    Shook, K.; Pomeroy, J. W.

    2015-12-01

    Recent research has demonstrated that the contributing areas of Prairie streams dominated by depressional (wetland) storage demonstrate hysteresis with respect to catchment water storage. As such contributing fractions can vary over time from a very small percentage of catchment area to the entire catchment during floods. However, catchments display complex memories of past storage states and their contributing fractions cannot be modelled accurately by any single-valued function. The Cold Regions Hydrological Modelling platform, CRHM, which is capable of modelling all of the hydrological processes of cold regions using a hydrological response unit discretization of the catchment, was used to further investigate dynamical contributing area response to hydrological processes. Contributing fraction in CRHM is also controlled by the episodic nature of runoff generation in this cold, sub-humid environment where runoff is dominated by snowmelt over frozen soils, snowdrifts define the contributing fraction in late spring, unfrozen soils have high water holding capacity and baseflow from sub-surface flow does not exist. CRHM was improved by adding a conceptual model of individual Prairie depression fill and spill runoff generation that displays hysteresis in the storage - contributing fraction relationship and memory of storage state. The contributing area estimated by CRHM shows strong sensitivity to hydrological inputs, storage and the threshold runoff rate chosen. The response of the contributing area to inputs from various runoff generating processes from snowmelt to rain-on-snow to rainfall with differing degrees of spatial variation was investigated as was the importance of the memory of storage states on streamflow generation. The importance of selecting hydrologically and ecologically meaningful runoff thresholds in estimating contributing area is emphasized.

  8. Event-based stormwater management pond runoff temperature model

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.

    2016-09-01

    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  9. Runoff simulation sensitivity to remotely sensed initial soil water content

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Schmugge, T. J.; Jackson, T. J.; Unkrich, C. L.; Keefer, T. O.; Parry, R.; Bach, L. B.; Amer, S. A.

    1994-05-01

    A variety of aircraft remotely sensed and conventional ground-based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground-based point methods were used to define prestorm initial SW for a distributed rainfall-runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin-wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite-based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.

  10. High Resolution Flash Flood Forecasting Using a Wireless Sensor Network in the Dallas-Fort Worth Metroplex

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.

    2017-12-01

    In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.

  11. Future glaciation and river flow in the Vakhsh and Panj drainage basins, Central Asia

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Hagg, Wilfried; Wagner, Stephan

    2010-05-01

    Central Asia is well known as an area of substantial water problems mainly caused by climate change and careless consumption of water resources. As in other parts of the globe where high mountains are surrounded by arid and semi-arid zones, snow and glacier melt are major contributors to runoff and important resources for agriculture in the lowlands. The FAO-UNESCO has started a "Climate Impact Study on Streamflow" to estimate future discharge in the catchments of the rivers Vakhsh (39,100 km2) and Panj(114,000 km2), the two tributaries of Amu Darya river. According to the World Glacier Inventory (WGI) prepared in the mid 20th century, the Panj and Vakhsh catchments have glacier covers of 3,913 km2 and 3,675 km2, respectively. A new inventory was conducted in 2003 within the frame of the GLIMS project. We used a simple parametrization scheme based on steady state conditions to infer the ice volumes for the two different time periods in the past and to extrapolate future changes. The resulting volumes for the WGI are 170-200 km3 for the Panj catchment and 200-240 km3 for the Vakhsh catchment. From the mid of the 20th century to 2003, an area (volume) decrease of 8.2% (10.5%) for the Panj and 7.5% (4.1%) for the Vakhsh catchment was determined. A comparison of two digital elevation models (SRTM of 2001 and Aster 2008) show for the glacier areas a mean mass change of -0.61 m a-1 for the Vakhsh and -0.81 m a-1 for the Panj. Regional climate simulations project a warming of 1.8°C-2.9°C until 2050, while it remains unclear if and in what direction precipitation will change. Assuming a temperature increase of 2°C until 2050 and no change in precipitation, the ice reserves in the two catchments will decline at an accelerated rate in comparison to the past with total volume reduction of 75.5% for the Panj basin and of 53% for the Vakhsh basin. To simulate present-day and future runoff, the HBV-ETH hydrological model was set up in the two sub-basins of Abramov (56 km², 51% glaciated, Vakhsh catchment) and Kudara (1575 km², 21% glaciated, Panj catchment). The daily time step model needs semi-distributed topographic input (area by elevation and exposition classes for glaciated parts and the whole catchment) and is driven by temperature and precipitation. Calibration is performed on the basis of measured runoff and, if available, glacier mass balance. Results show that the model can reproduce observed runoff curves in the two basins quite well, which is expressed by mean model efficiencies of R²=0.84 and R²=0.91 for Abramov and Kudara, respectively. Runoff scenarios for mid-century conditions were created by modifying glaciation and the meteorological input data. Glacier cover was changed according to the findings above and a temperature rise of 2°C was assumed. To test the sensitivity of precipitation changes, additional model runs with an increase and with a decrease of 20% were performed. While annual discharge remains stable or increases up to 30%, a common feature of all runoff scenarios is a seasonal shift of water resources from August towards early summer.

  12. Mixing the Green-Ampt model and Curve Number method as an empirical tool for rainfall excess estimation in small ungauged catchments.

    NASA Astrophysics Data System (ADS)

    Grimaldi, S.; Petroselli, A.; Romano, N.

    2012-04-01

    The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model that is widely used to estimate direct runoff from small and ungauged basins. The SCS-CN is a simple and valuable approach to estimate the total stream-flow volume generated by a storm rainfall, but it was developed to be used with daily rainfall data. To overcome this drawback, we propose to include the Green-Ampt (GA) infiltration model into a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt), aiming to distribute in time the information provided by the SCS-CN method so as to provide estimation of sub-daily incremental rainfall excess. For a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model. The proposed procedure was evaluated by analyzing 100 rainfall-runoff events observed in four small catchments of varying size. CN4GA appears an encouraging tool for predicting the net rainfall peak and duration values and has shown, at least for the test cases considered in this study, a better agreement with observed hydrographs than that of the classic SCS-CN method.

  13. Spatial and temporal variability in the R-5 infiltration data set: Déjà vu and rainfall-runoff simulations

    NASA Astrophysics Data System (ADS)

    Loague, Keith; Kyriakidis, Phaedon C.

    1997-12-01

    This paper is a continuation of the event-based rainfall-runoff model evaluation study reported by Loague and Freeze [1985[. Here we reevaluate the performance of a quasi-physically based rainfall-runoff model for three large events from the well-known R-5 catchment. Five different statistical criteria are used to quantitatively judge model performance. Temporal variability in the large R-5 infiltration data set [Loague and Gander, 1990] is filtered by working in terms of permeability. The transformed data set is reanalyzed via geostatistical methods to model the spatial distribution of permeability across the R-5 catchment. We present new estimates of the spatial distribution of infiltration that are in turn used in our rainfall-runoff simulations with the Horton rainfall-runoff model. The new rainfall-runoff simulations, complicated by reinfiltration impacts at the smaller scales of characterization, indicate that the near-surface hydrologic response of the R-5 catchment is most probably dominated by a combination of the Horton and Dunne overland flow mechanisms.

  14. Natural flood risk management in flashy headwater catchments: managing runoff peaks, timing, water quality and sediment regimes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen

    2013-04-01

    Over the past decade many European catchments have experienced an unusually high number of flood events. A large number of these events are the result of intense rainfall in small headwater catchments which are dominated by surface runoff generation, resulting in flash flooding of local communities. Soil erosion and related water quality issues, among others, are typically associated with such rapid runoff generation. The hazard of flooding is increasing owing to impacts of changing climatic patterns (including more intense summer storms), intensification of agriculture within rural catchments and continued pressure to build on floodplains. Concurrently, the cost of constructing and maintaining traditional flood defences in small communities outweigh the potential benefits. Hence, there is a growing interest in more cost effective natural approaches that also have multipurpose benefits in terms of sediment, water quality, and habitat creation. Many catchments in Europe are intensively farmed and there is great potential for agriculture to be part of the solution to flood risk management. Natural flood management (NFM) is the alteration, restoration or use of landscape features with the aim of reducing flood risk by slowing down, storing (and filtering) rapid surface runoff. NFM includes measures such as temporarily storing water in ponds/wetlands, increasing soil infiltration, planting trees on floodplains and within catchments, re-meandering and wood placements in streams/ditches. In this presentation we highlight case studies from densely instrumented research sites across the UK (which could be typical of many European catchments) where NFM measures have been installed in small scale flashy catchments. The presentation will give an overview of the function of these measures in these catchments and how other multiple benefits are being accrued. Study catchments include the headwater catchments of the Bowmont (3 to 8 km2) and Belford Burn (6 km2) catchments. These catchments are known for their rapid runoff generation and have downstream local communities at risk of flash flooding. In Bowmont, NFM measures are currently being put in place to restore river bars and to store water more effectively on the flood plains during these flashy events. For example, Apex engineered wood structure in the river channel and riparian zones are designed to trap sediment and log bank protection structures are being installed to stop bank erosion. Tree planting in the catchment is also taking place. In the Belford catchment storage ponds and woody debris have been installed over the past five years to help to reduce the flood risk to the village of Belford. A dense instrumentation network has provided data for analysis and modelling which shows evidence of local scale flood peak reductions along with the collection of large amounts of sediment. A modelling study carried out (using a pond network model) during an intense summer storm showed that 30 small scale pond features used in sequence could reduce the flood peak by ~35% at the local scale. Findings show that managing surface runoff and local ditch flow at local scale headwater catchments is a cost effective way of managing flashy catchment for flood risk and sediment control. Working with catchment stakeholders is vital. Information given by the local community post flooding has been useful in placing NFM measures throughout the catchments. Involving the local communities in these projects and giving them access to the data and model outputs has helped to develop these projects further.

  15. Using a Data-Driven Approach to Understand the Interaction between Catchment Characteristics and Water Quality Responses

    NASA Astrophysics Data System (ADS)

    Western, A. W.; Lintern, A.; Liu, S.; Ryu, D.; Webb, J. A.; Leahy, P.; Wilson, P.; Waters, D.; Bende-Michl, U.; Watson, M.

    2016-12-01

    Many streams, lakes and estuaries are experiencing increasing concentrations and loads of nutrient and sediments. Models that can predict the spatial and temporal variability in water quality of aquatic systems are required to help guide the management and restoration of polluted aquatic systems. We propose that a Bayesian hierarchical modelling framework could be used to predict water quality responses over varying spatial and temporal scales. Stream water quality data and spatial data of catchment characteristics collected throughout Victoria and Queensland (in Australia) over two decades will be used to develop this Bayesian hierarchical model. In this paper, we present the preliminary exploratory data analysis required for the development of the Bayesian hierarchical model. Specifically, we present the results of exploratory data analysis of Total Nitrogen (TN) concentrations in rivers in Victoria (in South-East Australia) to illustrate the catchment characteristics that appear to be influencing spatial variability in (1) mean concentrations of TN; and (2) the relationship between discharge and TN throughout the state. These important catchment characteristics were identified using: (1) monthly TN concentrations measured at 28 water quality gauging stations and (2) climate, land use, topographic and geologic characteristics of the catchments of these 28 sites. Spatial variability in TN concentrations had a positive correlation to fertiliser use in the catchment and average temperature. There were negative correlations between TN concentrations and catchment forest cover, annual runoff, runoff perenniality, soil erosivity and catchment slope. The relationship between discharge and TN concentrations showed spatial variability, possibly resulting from climatic and topographic differences between the sites. The results of this study will feed into the hierarchical Bayesian model of river water quality.

  16. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    NASA Astrophysics Data System (ADS)

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.; Guo, L.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. One of the main challenges of setting up such a system is finding appropriate model parameter values for ungauged catchments. Previous studies have shown that the transfer of parameter sets from hydrologically similar gauged catchments is one of the best performing regionalization methods. However, a remaining key issue is the identification of suitable descriptors of similarity. In this study, we use decision tree learning to explore parameter set transferability in the full space of catchment descriptors. For this purpose, a semi-distributed rainfall-runoff model is set up for 35 catchments in ten Chinese provinces. Hourly runoff data from in total 858 storm events are used to calibrate the model and to evaluate the performance of parameter set transfers between catchments. We then present a novel technique that uses the splitting rules of classification and regression trees (CART) for finding suitable donor catchments for ungauged target catchments. The ability of the model to detect flood events in assumed ungauged catchments is evaluated in series of leave-one-out tests. We show that CART analysis increases the probability of detection of 10-year flood events in comparison to a conventional measure of physiographic-climatic similarity by up to 20%. Decision tree learning can outperform other regionalization approaches because it generates rules that optimally consider spatial proximity and physical similarity. Spatial proximity can be used as a selection criteria but is skipped in the case where no similar gauged catchments are in the vicinity. We conclude that the CART regionalization concept is particularly suitable for implementation in sparsely gauged and topographically complex environments where a proximity-based regionalization concept is not applicable.

  17. Land-use changes reinforce the impacts of climate change on annual runoff dynamics in a southeast China coastal watershed

    NASA Astrophysics Data System (ADS)

    Ervinia, A.; Huang, J.; Zhang, Z.

    2015-06-01

    Study on runoff dynamics across different physiographic regions is fundamentally important to formulate the sound strategies for water resource management especially in the coastal watershed where peoples heavily concentrated and relied on water resources. The L-R diagram, a conceptual model by which the land-changes evapotranspiration (ΔL) was estimated as the difference between actual and climate evapotranspiration to identify the specific impact of land-use changes on annual runoff changes (ΔR), was developed using the 53-year hydro-climatic data of Jiulong River Watershed, a typical medium-sized subtropical coastal watershed in China. This study found that land-use changes have reinforced the impact of climatic changes on runoff changes where nearly all points were scattered in II and IV quadrant. Deforestation and expansion of built up area has diminished the water retention capacity in a catchment as well as evapotranspiration thus produce extra runoff accounting for 12-183 % of total runoff increase. In contrast, reforestation makes the significant contribution to decreasing annual runoff for about 21-82 % of total runoff loss. This study revealed the river runoff has become more vulnerable to intensive anthropogenic disturbances under the context of climate changes in a coastal watershed.

  18. Geological controls on isotopic signatures of streamflow: results from a nested catchment experiment in Luxembourg (Europe)

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; McDonnell, Jeffrey J.; Hissler, Christophe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; François Iffly, Jean; Barnich, François; Stewart, Mike K.

    2014-05-01

    Controls of geology and topography on hydrological metrics, like summer low flow (Grant and Tague, 2004) or dynamic storage (Sayama et al., 2011), have been identified in nested catchment experiments. However, most tracer-based studies on streamflow generation have been carried out in small (10 km2) homogenous catchments (Klaus and McDonnell, 2013). The controlling effects of catchment physiography on how catchments store and release water, and how this eventually controls stream isotope behaviour over a large range of scale are poorly understood. Here, we present results from a nested catchment analysis in the Alzette River basin (Luxembourg, Europe). Our hydro-climatological network consists of 16 recording streamgauges and 21 pluviographs. Catchment areas range from 0.47 to 285 km2, with clean and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Our objective was to identify geological controls on (i) winter runoff ratios, (ii) maximum storage and (iii) isotopic signatures in streamflow. For each catchment we determined average runoff ratios from winter season precipitation-discharge double-mass curves. Maximum catchment storage was based on the dynamic storage change approach of Sayama et al. (2011). Changes in isotopic signatures of streamflow were documented along individual catchment flow duration curves. We found strong correlations between average winter runoff ratios, maximum storage and the prevailing geological settings. Catchments with impermeable bedrock (e.g. marls or schists) were characterised by small storage potential and high average filling ratios. As a consequence, these catchments also exhibited the highest average runoff ratios. In catchments underlain by permeable bedrock (e.g. sandstone), storage potential was significantly higher and runoff ratios were considerably smaller. The isotopic signatures of streamflow showed large differences between catchments. In catchments dominated by permeable bedrock, isotopic signatures of streamflow remained stable throughout the entire flow duration curve consistent with a large storage and mixing potential. On less permeable bedrock substrate, we have observed that isotopic signatures in streamflow were much more variable, due to reduced storage volume and comparatively smaller mixing potential. Other metrics such as catchment size and flowpath length exerted a smaller secondary control on isotopic signatures of streamflow in the Alzette River sub-basins. Tague, C., Grant, G.E., 2004. A geological framework for interpreting the low-flow regimes of Cascade streams, Willamette River Basin, Oregon. Water Resources Research, 40(4), doi:10.1029/2003WR002629 Sayama, T., McDonnell, J.J., Dhakal, A., Sullivan, K., 2011. How much water can a watershed store ? Hydrological Processes 25, 3899-3908. Klaus, J., McDonnell, J.J., 2013. Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology 505, 47-64.

  19. Controls on the chemistry of runoff from an upland peat catchment

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Burt, Tim; Adamson, John

    2003-07-01

    This study uses 2 years of data from a detailed weekly water sampling programme in a 11·4 km2 upland peat catchment in the Northern Pennines, UK. The sampling comprised precipitation, soil-water samples and a number of streams, including the basin outlet. Samples were analysed for: pH, conductivity, alkalinity, Na, K, Ca, Mg, Fe, Al, Total N, SO4, Cl and colour. Principal component analysis (PCA) was used to identify end-members and compositional trends in order to identify controls on the development of water composition. The study showed that the direct use of PCA had several advantages over the use of end-member mixing analysis (EMMA) as it combines an analysis of mixing and evolving waters without the assumption of having to know the compositional sources of the water. In its application to an upland peat catchment, the study supports the view that shallow throughflow at the catotelm/acrotelm boundary is responsible for storm runoff generation and shows that baseflow is controlled by cation exchange in the catotelm and mixing with a base-rich groundwater.

  20. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate.

    PubMed

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2016-04-15

    Sediment and heavy metals in stormwater runoff are key pollutants of urban waterways, and their presence in stormwater is driven by climatic factors such as rainfall intensity. This study describes the total suspended solids (TSS) and heavy metal concentrations found in runoff from four different urban surfaces within a residential/institutional catchment, in a climate where rainfall is typically of low intensity (<5.1mm·h(-1)). The results were compared to untreated runoff quality from a compilation of international studies. The road runoff had the highest TSS concentrations, while copper and galvanized roof runoff had the highest copper and zinc concentrations, respectively. Pollutant concentrations were found to be significantly different between surfaces; quantification and prediction of pollutant contributions from urban surfaces should thus take account of the different surface materials, instead of being aggregated into more generalized categories such as land use. The TSS and heavy metal concentrations were found to be at the low to medium end of ranges observed internationally, except for total copper and zinc concentrations generated by dissolution of copper and galvanized roofing material respectively; these concentrations were at least as high as those reported internationally. TSS wash-off from the roofs was seen to be a source-limited process, where all available TSS is washed off during the rain event despite the low intensity rainfall, whereas both road TSS and heavy metals wash-off from roof and road surfaces appeared to all be transport-limited and therefore some carryover of pollutants occurs between rain events. A first flush effect was seen from most surfaces for TSS, but not for heavy metals. This study demonstrates that in low intensity rainfall climates, quantification of untreated runoff quality from key individual surface types in a catchment are needed to enable development of targeted and appropriately sized stormwater treatment systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Fresh Start for Flood Estimation in Ungauged UK Catchments

    NASA Astrophysics Data System (ADS)

    Giani, Giulia; Woods, Ross

    2017-04-01

    The standard regression-based method for estimating the median annual flood in ungauged UK catchments has a high standard error (95% confidence interval is +/- a factor of 2). This is also the dominant source of uncertainty in statistical estimates of the 100-year flood. Similarly large uncertainties have been reported elsewhere. These large uncertainties make it difficult to do reliable flood design estimates for ungauged catchments. If the uncertainty could be reduced, flood protection schemes could be made significantly more cost-effective. Here we report on attempts to develop a new practical method for flood estimation in ungauged UK catchments, by making more use of knowledge about rainfall-runoff processes. Building on recent research on the seasonality of flooding, we first classify more than 1000 UK catchments into groups according to the seasonality of extreme rainfall and floods, and infer possible causal mechanisms for floods (e.g. Berghuijs et al, Geophysical Research Letters, 2016). For each group we are developing simplified rainfall-runoff-routing relationships (e.g. Viglione et al, Journal of Hydrology, 2010) which can account for spatial and temporal variability in rainfall and flood processes, as well as channel network routing effects. An initial investigation by Viglione et al suggested that the relationship between rainfall amount and flood peak could be summarised through a dimensionless response number that represents the product of the event runoff coefficient and a measure of hydrograph peakedness. Our hypothesis is that this approach is widely applicable, and can be used as the basis for flood estimation. Using subdaily and daily rainfall-runoff data for more than 1000 catchments, we identify a subset of catchments in the west of the UK where floods are generated predominantly in winter through the coincidence of heavy rain and low soil moisture deficits. Floods in these catchments can reliably be simulated with simple rainfall-runoff models, so it is reasonable to expect simple flood estimators. We will report on tests of the several components of the dimensionless response number hypothesis for these catchments.

  2. Modeling Linkages Between Effective Impervious Surface and Urban Vegetation Productivity in Semi-arid Environments

    NASA Astrophysics Data System (ADS)

    Shields, C. A.; Tague, C.

    2010-12-01

    With a majority of the world's population now living in urban areas, the role of vegetation in urban ecosystems warrants increased attention. We address the question of how the fine scale (<5m) spatial arrangement of impervious surfaces affects water available to vegetation, which in turn can significantly impact the productivity of vegetation and uptake of C and N. To gain insight into how landscape features influence vegetation productivity, we use a coupled ecohydrogic model to estimate impacts of the amount and arrangement of impervious surfaces on vegetation water use. We use the model to explore how concepts from research in natural semi-arid ecosystems can be applied in the urban context. Ecological research in semi-arid ecosystems has shown that the arrangement of vegetated and bare surfaces plays a key role in regulating both runoff and ecosystem water use and productivity. Systems that include a mixture of bare and vegetated surfaces, for example, tend to show less runoff and more productivity than those with more homogeneous cover. In some instances, patchiness of bare and vegetated surfaces is more important than total vegetated area in determining rates of runoff and vegetation use of rainfall. In an urban context, impervious surfaces can be viewed as analogous to the bare surfaces present in undeveloped ecosystems. We consider not only the total impervious area (TIA), but also the effect of impervious area with a direct hydrologic connection to the stream network, effective impervious area (EIA). While increases in total impervious area (TIA) have been widely shown to impact catchment hydrology, the role of effective impervious area (EIA) has been less extensively studied. A consensus is emerging from the literature that EIA is as important or even more important than TIA as an indicator of catchment response to urbanization. Ecohydrologic models offer a tool to quantify the role of EIA on water availability and plant productivity and demonstrate the potential of urban areas to act as C or N sinks (and minimize the impacts such as increased storm runoff and degraded downstream water quality). We explore the relative roles of TIA and EIA on water availability and plant productivity in a semi-arid urban environment through a series of modeling exercises. The Regional HydroEcological Simulation System (RHESSys) is used to model a range of impervious surface and vegetation scenarios on a test hillslope in the Mission Creek catchment in Santa Barbara CA. Results indicate that reduced EIA can indeed act to mitigate the impact of TIA on water available to plants. We then implement a modification to the RHESSys model that incorporates patch scale estimates of EIA into simulations of the entire Mission Creek catchment, allowing us to quantify likely catchment-scale impacts of altering EIA.

  3. The impact of papyrus wetland encroachment on the spatial and temporal variability of stream flow and sediment export in the upper Rwizi catchment, Southwest Uganda

    NASA Astrophysics Data System (ADS)

    Ryken, Nick; Vanmaercke, Matthias; Wanyama, Joshua; Deckers, Jozef; Isabirye, Moses; Poesen, Jean

    2014-05-01

    During the past 30 years, human activities in the Lake Victoria basin are responsible for eutrophication of Lake Victoria via sediment-bound nutrients. This affects food security for millions on people. Addressing this problem in this densely populated region will require adequate catchment management strategies. However, sediment yield and runoff data to develop such a strategy are currently unavailable. Also in general, sediment yields for catchments in tropical environments are very scarce, especially in East-Africa. Therefore, runoff discharge and sediment export measurements were conducted in the upper Rwizi, a representative catchment for the Lake Victoria basin which is located in Southwest Uganda. Land use in this catchment is characterized by grazing area on the high plateaus, banana cropping on the slopes and Cyperus papyrus L. wetlands in the river valleys. These papyrus wetlands are currently encroached and transformed into cropland. Eight subcatchments (99 km2 - 2120 km2), with different degrees of wetland encroachment, were monitored during the hydrological year June 2009 - May 2010. Temporal and spatial variations in runoff discharge give strong indications that papyrus wetlands are crucial for buffering runoff and sediment discharge towards Lake Victoria. Subcatchments with intact wetlands show a slower runoff response to rainfall, smaller peak runoff discharges and lower runoff coefficients. Yearly runoff depths of subcatchment with intact wetlands are three to four times smaller compared to subcatchments with encroached wetlands. Suspended sediment concentrations (SSC) show a similar result, with significant smaller SSC in the subcatchments having intact papyrus wetlands. In the subcatchments where no encroachment occurred, annual area-specific suspended sediment yields (SSY) varied between 0,26 ton ha-1 yr-1and 0,33 ton ha-1 yr-1 , while the SSY of the encroached subcatchments varied between 1,20 ton ha-1 yr-1and 2,61 ton ha-1 yr-1. This study demonstrates that papyrus wetlands are crucial for buffering runoff and sediment discharges to Lake Victoria. Hence, measures should be taken to protect these wetlands.

  4. Estimation of the Relative Severity of Floods in Small Ungauged Catchments for Preliminary Observations on Flash Flood Preparedness: A Case Study in Korea

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2012-01-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208

  5. Nonstationarities in Catchment Response According to Basin and Rainfall Characteristics: Application to Korean Watershed

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; Kim, Jin-Guk; Jung, Il-Won

    2015-04-01

    It must be acknowledged that application of rainfall-runoff models to simulate rainfall-runoff processes are successful in gauged watershed. However, there still remain some issues that will need to be further discussed. In particular, the quantitive representation of nonstationarity issue in basin response (e.g. concentration time, storage coefficient and roughness) along with ungauged watershed needs to be studied. In this regard, this study aims to investigate nonstationarity in basin response so as to potentially provide useful information in simulating runoff processes in ungauged watershed. For this purpose, HEC-1 rainfall-runoff model was mainly utilized. In addition, this study combined HEC-1 model with Bayesian statistical model to estimate uncertainty of the parameters which is called Bayesian HEC-1 (BHEC-1). The proposed rainfall-runofall model is applied to various catchments along with various rainfall patterns to understand nonstationarities in catchment response. Further discussion about the nonstationarity in catchment response and possible regionalization of the parameters for ungauged watershed are discussed. KEYWORDS: Nonstationary, Catchment response, Uncertainty, Bayesian Acknowledgement This research was supported by a Grant (13SCIPA01) from Smart Civil Infrastructure Research Program funded by the Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA).

  6. Towards integrating tracer studies in conceptual rainfall-runoff models: recent insights from a sub-arctic catchment in the Cairngorm Mountains, Scotland

    NASA Astrophysics Data System (ADS)

    Soulsby, Chris; Dunn, Sarah M.

    2003-02-01

    Hydrochemical tracers (alkalinity and silica) were used in an end-member mixing analysis (EMMA) of runoff sources in the 10 km2 Allt a' Mharcaidh catchment. A three-component mixing model was used to separate the hydrograph and estimate, to a first approximation, the range of likely contributions of overland flow, shallow subsurface storm flow, and groundwater to the annual hydrograph. A conceptual, catchment-scale rainfall-runoff model (DIY) was also used to separate the annual hydrograph in an equivalent set of flow paths. The two approaches produced independent representations of catchment hydrology that exhibited reasonable agreement. This showed the dominance of overland flow in generating storm runoff and the important role of groundwater inputs throughout the hydrological year. Moreover, DIY was successfully adapted to simulate stream chemistry (alkalinity) at daily time steps. Sensitivity analysis showed that whilst a distinct groundwater source at the catchment scale could be identified, there was considerable uncertainty in differentiating between overland flow and subsurface storm flow in both the EMMA and DIY applications. Nevertheless, the study indicated that the complementary use of tracer analysis in EMMA can increase the confidence in conceptual model structure. However, conclusions are restricted to the specific spatial and temporal scales examined.

  7. Predicting storm runoff from different land-use classes using a geographical information system-based distributed model

    NASA Astrophysics Data System (ADS)

    Liu, Y. B.; Gebremeskel, S.; de Smedt, F.; Hoffmann, L.; Pfister, L.

    2006-02-01

    A method is presented to evaluate the storm runoff contributions from different land-use class areas within a river basin using the geographical information system-based hydrological model WetSpa. The modelling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells. Summation of the flow responses from the cells with the same land-use type results in the storm runoff contribution from these areas. The model was applied on the Steinsel catchment in the Alzette river basin, Grand Duchy of Luxembourg, with 52 months of meteo-hydrological measurements. The simulation results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land-use areas in this catchment, and this tends to increase for small floods and for the dry-season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to recession flow. It is demonstrated that the relative contribution from urban areas decreases with flow coefficient, that cropland relative contribution is nearly constant, and that the relative contribution from grassland and woodland increases with flow coefficient with regard to their percentage of land-use class areas within the study catchment.

  8. Using "StorAge Selection" functions and high resolution isotope data to unravel travel time distributions in headwater catchments

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Soulsby, Chris; Birkel, Christian; Tetzlaff, Doerthe; Botter, Gianluca; Rinaldo, Andrea

    2017-04-01

    We use high resolution tracer data from the Bruntland Burn catchment (UK) to test theoretical approaches that integrate catchment-scale flow and transport processes in a unified framework centered on selective age sampling by streamflow and evapotranspiration fluxes. Hydrologic transport is here described through StorAge Selection (SAS) functions, parametrized as simple power laws. By representing the way in which catchment storage generates outflows composed by water of different ages, the main mechanism regulating the tracer composition of runoff is clearly identified. The calibrated numerical model provides simulations that convincingly reproduce complex measured signals of daily deuterium content in stream waters during wet and dry periods. The results for the catchment under consideration are consistent with other recent studies indicating a tendency for natural catchments to preferentially release younger available water. The model allows estimating transient water age and its related uncertainty, as well as the total catchment storage. This study shows that power-law SAS functions prove a powerful tool to explain catchment-scale transport processes that also has potential in less intensively monitored sites.

  9. A simplified rainfall-runoff stochastic simulation method for an application of the SCHADEX method to ungauged catchments.

    NASA Astrophysics Data System (ADS)

    Penot, David; Paquet, Emmanuel; Lang, Michel

    2014-05-01

    SCHADEX is a probabilistic method for extreme flood estimation, developed and applied since 2006 at Electricité de France (EDF) for dam spillway design [Paquet et al., 2013]. SCHADEX is based on a semi-continuous rainfall-runoff simulation process. The method has been built around two models: a Multi-Exponential Weather Pattern (MEWP) distribution for rainfall probability estimation [Garavaglia et al., 2010] and the MORDOR hydrological model. To use SCHADEX in ungauged context, rainfall distribution and hydrological model must be regionalized. The regionalization of the MEWP rainfall distribution can be managed with SPAZM, a daily rainfall interpolator [Gottardi et al., 2012] which provides reasonable estimates of point and areal rainfall up to hight quantiles. The main issue remains to regionalize MORDOR which is heavily parametrized. A much more simple model has been considered: the SCS model. It is a well known model for event simulation [USDA SCS, 1985; Beven, 2003] and it relies on only one parameter. Then, the idea is to use the SCS model instead of MORDOR within a simplified stochastic simulation scheme to produce a distribution of flood volume from an exhaustive crossing between rainy events and catchment saturation hazards. The presentation details this process and its capacity to generate a runoff distribution based on catchment areal rainfall distribution. The simulation method depends on a unique parameter Smax, the maximum initial loss of the catchment. Then an initial loss S (between zero and Smax) can be drawn to account for the variability of catchment state (between dry and saturated). The distribution of initial loss (or conversely, of catchment saturation, as modeled by MORDOR) seems closely linked to the catchment's regime, therefore easily to regionalize. The simulation takes into account a snow contribution for snow driven catchments, and an antecedent runoff. The presentation shows the results of this stochastic procedure applied on 80 French catchments and its capacity to represent the asymptotic behaviour of the runoff distribution. References: K. J. Beven. Rainfall-Runoff modelling The Primer, British Library, 2003. F. Garavaglia, J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara. Introducing a rainfall compound distribution model based on weather patterns sub-sampling. Hydrology and Earth System Sciences, 14(6):951-964, 2010. F. Gottardi, C. Obled, J. Gailhard, and E. Paquet. Statistical reanalysis of precipitation fields based on ground network data and weather patterns : Application over french mountains. Journal of Hydrology, 432-433:154-167, 2012. ISSN 0022-1694. E. Paquet, F. Garavaglia, R Garçon, and J. Gailhard. The schadex method : a semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 2013. USDA SCS, National Engineering Handbook, Supplement A, Section 4, Chapter 10. Whashington DC, 1985.

  10. Large-scale soil conservation measures contribute to water insecurity in NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Lulu; Feger, Karl-Heinz; Schwärzel, Kai

    2014-05-01

    The Loess Plateau of NW China is one of the most degraded environments worldwide with an annual soil loss rate of ~20,000 t/km². To improve the situation, a national policy against erosion has been implemented in this region since 1950s. This policy includes biological (tree and grass plantation) and engineering (terrace and check-dam construction) measures. However, subject to enormous alteration in land cover / form, an undesired drastic reduction of runoff has appeared hampering economic growth, agricultural production and thus threatening social stability. As a consequence, adaptive innovative management strategies are necessary for mitigating water use conflicts and ensuring regional sustainable development. For successful implementation of such strategies, an improved understanding and quantification of hydrological response to land use and climate change across different scales is essential. For this purpose, the hydrological response to different land cover / form and climate change in the past 50 years was analyzed in small and medium-scale catchments using the upstream of Jing River (Gansu province) as a case. It appears that the driving factors of runoff reduction at different scales are different in terms of land use and climate change. Our study gave evidence that in a small catchment (19 km²), land cover / form change and precipitation variability are the major factors reducing runoff. After separating their contribution, we found that land use change was responsible for 74% of runoff decline while decreased precipitation accounted for 26%. Surprisingly, the annual runoff exhibits a good correlation with precipitation and the percentage area of various land use. Notably, with increasing catchment size the impact of land use on runoff attenuates, while the role of climate ascends. In addition to land use and precipitation, energy supply (evaporative demand of the atmosphere) becomes another dominant climatic factor affecting runoff on the larger scale (3,080 km²). This indicates that the roles of land use and climate change in controlling runoff across different scales are not identical. According to sensitivity analysis, runoff appears more sensitive to precipitation than a comparable change in potential evapotranspiration. To quantify the hydrological response of runoff to a change in the studied factors, we developed an empirical statistical approach that incorporates temporal changes in land cover / form and climatic parameters for predicting annual runoff of this region. This approach has proved to have higher predictive ability than other models in reproducing annual and long-term runoff. It provided evidence that enlarging afforestation and terracing may cause a significant decline in runoff. Both measures may cause a more significant runoff reduction in relatively humid catchments than in relatively dry catchments in absolute terms. However, in terms of percentage, it is probably more critical for drier catchments, due to their more limited water availability. Our analysis demonstrates that the implementation of planning for ecosystem restoration on the Loess Plateau needs a comprehensive assessment that includes on-site effects on soil retention and off-site effects on runoff. Adaptive water-saving measures are urgent for ensuring water supply security in this dryland region of China.

  11. The value of oxygen-isotope data and multiple discharge records in calibrating a fully-distributed, physically-based rainfall-runoff model (CRUM3) to improve predictive capability

    NASA Astrophysics Data System (ADS)

    Neill, Aaron; Reaney, Sim

    2015-04-01

    Fully-distributed, physically-based rainfall-runoff models attempt to capture some of the complexity of the runoff processes that operate within a catchment, and have been used to address a variety of issues including water quality and the effect of climate change on flood frequency. Two key issues are prevalent, however, which call into question the predictive capability of such models. The first is the issue of parameter equifinality which can be responsible for large amounts of uncertainty. The second is whether such models make the right predictions for the right reasons - are the processes operating within a catchment correctly represented, or do the predictive abilities of these models result only from the calibration process? The use of additional data sources, such as environmental tracers, has been shown to help address both of these issues, by allowing for multi-criteria model calibration to be undertaken, and by permitting a greater understanding of the processes operating in a catchment and hence a more thorough evaluation of how well catchment processes are represented in a model. Using discharge and oxygen-18 data sets, the ability of the fully-distributed, physically-based CRUM3 model to represent the runoff processes in three sub-catchments in Cumbria, NW England has been evaluated. These catchments (Morland, Dacre and Pow) are part of the of the River Eden demonstration test catchment project. The oxygen-18 data set was firstly used to derive transit-time distributions and mean residence times of water for each of the catchments to gain an integrated overview of the types of processes that were operating. A generalised likelihood uncertainty estimation procedure was then used to calibrate the CRUM3 model for each catchment based on a single discharge data set from each catchment. Transit-time distributions and mean residence times of water obtained from the model using the top 100 behavioural parameter sets for each catchment were then compared to those derived from the oxygen-18 data to see how well the model captured catchment dynamics. The value of incorporating the oxygen-18 data set, as well as discharge data sets from multiple as opposed to single gauging stations in each catchment, in the calibration process to improve the predictive capability of the model was then investigated. This was achieved by assessing by how much the identifiability of the model parameters and the ability of the model to represent the runoff processes operating in each catchment improved with the inclusion of the additional data sets with respect to the likely costs that would be incurred in obtaining the data sets themselves.

  12. Peak discharges in steep mountain catchments in relation to rainfall variability, vegetation cover and geomorphology of the Rift Valley Escarpment of Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebreyohannes, Tesfaalem; Frankl, Amaury; Haile, Mitiku; Abraha, Amanuel; Monsieurs, Elise; Nyssen, Jan

    2015-04-01

    The hydrological characteristics of steep mountain streams are often considered to be mainly influenced by rainfall distribution and topography. In this study, with the objective of analyzing the runoff response of mountain catchments, a total of 340 peak stage discharges were recorded in three rainy seasons (2012-2014) in 11 sloping (27-65%) mountain catchments (0.4 - 25 km²) of the marginal western Rift Valley escarpment of Northern Ethiopia. Daily rainfall data were collected using 7 rain gauges installed at different altitudes (1623 - 2851 m a.s.l) in and nearby the catchments, and used to calculate weighted average daily rain depths over the catchments. Event peak discharges were calculated from daily measurements by 11 crest stage gauges using the Manning's equation. Percentages of land use and cover classes were detected from high resolution (0.6 m) Google Earth imagery (February 1, 2014). Morphometric characteristics of the catchments were computed from ASTER digital elevation model and topographic maps. Correlation analysis between daily rainfall and peak discharge showed direct relationship (R² = 0.5-0.94, P<0.01) in all the catchments. The average specific peak discharge was negatively related to percentage of forest and grass cover (R² = 0.64, P<0.01), time of concentration (R² = 0.31, P<0.01), drainage texture (R² = 0.42, P<0.01), and catchment perimeter (R² = 0.36, P<0.01). The specific peak discharge was positively correlated with average slope gradient of the catchments (R² = 0.34, P<0.01) and with an index representing the spatial distribution of forest and grass cover (R² = 0.43, P<0.01). A stepwise multiple regression analyses showed that 84% (P<0.01) of the variability of the runoff response in the catchments can be predicted by the percentage of forest and grass cover and the relief ratio of the catchments. All in all, this study demonstrates that the magnitude of flash floods in mountain catchments is not only influenced by the morphometric characteristics of the catchments and by rainfall, but more importantly even by vegetation cover (forest and grasses).

  13. A simple topography-driven, calibration-free runoff generation model

    NASA Astrophysics Data System (ADS)

    Gao, H.; Birkel, C.; Hrachowitz, M.; Tetzlaff, D.; Soulsby, C.; Savenije, H. H. G.

    2017-12-01

    Determining the amount of runoff generation from rainfall occupies a central place in rainfall-runoff modelling. Moreover, reading landscapes and developing calibration-free runoff generation models that adequately reflect land surface heterogeneities remains the focus of much hydrological research. In this study, we created a new method to estimate runoff generation - HAND-based Storage Capacity curve (HSC) which uses a topographic index (HAND, Height Above the Nearest Drainage) to identify hydrological similarity and partially the saturated areas of catchments. We then coupled the HSC model with the Mass Curve Technique (MCT) method to estimate root zone storage capacity (SuMax), and obtained the calibration-free runoff generation model HSC-MCT. Both the two models (HSC and HSC-MCT) allow us to estimate runoff generation and simultaneously visualize the spatial dynamic of saturated area. We tested the two models in the data-rich Bruntland Burn (BB) experimental catchment in Scotland with an unusual time series of the field-mapped saturation area extent. The models were subsequently tested in 323 MOPEX (Model Parameter Estimation Experiment) catchments in the United States. HBV and TOPMODEL were used as benchmarks. We found that the HSC performed better in reproducing the spatio-temporal pattern of the observed saturated areas in the BB catchment compared with TOPMODEL which is based on the topographic wetness index (TWI). The HSC also outperformed HBV and TOPMODEL in the MOPEX catchments for both calibration and validation. Despite having no calibrated parameters, the HSC-MCT model also performed comparably well with the calibrated HBV and TOPMODEL, highlighting the robustness of the HSC model to both describe the spatial distribution of the root zone storage capacity and the efficiency of the MCT method to estimate the SuMax. Moreover, the HSC-MCT model facilitated effective visualization of the saturated area, which has the potential to be used for broader geoscience studies beyond hydrology.

  14. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems.

    PubMed

    Gasperi, J; Gromaire, M C; Kafi, M; Moilleron, R; Chebbo, G

    2010-12-01

    An observatory of urban pollutants was created in Paris for the purpose of assessing the dynamics of wastewater and wet weather flow (WW and WWF) pollutant loads within combined sewers. This observatory is composed of six urban catchments, covering land areas ranging in size from 42 ha to 2581 ha. For a wide array of parameters including total suspended solids (TSS), chemical and biochemical oxygen demand (COD and BOD(5)), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), heavy metals (Cu and Zn) and polycyclic aromatic hydrocarbons (PAHs), this article is intended to evaluate the contributions of wastewater, runoff and in-sewer processes to WWF pollutant loads through the use of an entry-exit mass balance approach. To achieve this objective, a total of 16 rain events were sampled on these sites between May 2003 and February 2006. This study has confirmed that at the considered catchment scale (i.e. from 42 ha to 2581 ha) the production and transfer processes associated with WWF pollutant loads do not vary with basin scale. Entry-exit chemical mass balances over all catchments and for a large number of rain events indicate that wastewater constitutes the main source of organic and nitrogenous pollution, while runoff is the predominant source of Zn. For Cu, PAHs and TSS, the calculation underscores the major role played by in-sewer processes, specifically by sediment erosion, as a source of WWF pollution. A significant loss of dissolved metals was also observed during their transfer within the sewer network, likely as a consequence of the adsorption of dissolved metals on TSS and/or on sewer deposits. Moreover, the nature of eroded particles was examined and compared to the various sewer deposits. This comparison has highlighted that such particles exhibit similar organic and PAH contents to those measured in the organic layer, thus suggesting that the deposit eroded during a wet weather period is organic and of a nature comparable to the organic layer. Despite the extent of initial field investigations, no organic deposit was observed to be present on sewer lines within the catchments, which implies that this organic deposit is probably present in another form or to be found elsewhere in the main trunks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape.

    PubMed

    Zhu, T X

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of <1, 1-2, 2-5, 5-10, 10-20, and >20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  16. Uncertainties in stormwater runoff data collection from a small urban catchment, Southeast China.

    PubMed

    Huang, Jinliang; Tu, Zhenshun; Du, Pengfei; Lin, Jie; Li, Qingsheng

    2010-01-01

    Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.

  17. Runoff scenarios of the Ötz catchment (Tyrol, Austria) considering climate change driven changes of the cryosphere

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Schneeberger, Klaus; Welebil, Irene; Schöber, Johannes; Huss, Matthias; Formayer, Herbert; Huttenlau, Matthias; Schneider, Katrin

    2014-05-01

    The seasonal distribution of runoff in alpine catchments is markedly influenced by the cryospheric contribution (snow and ice). Long-term climate change will alter these reservoirs and consequently have an impact on the water balance. Glacierized catchments like the Ötztal (Tyrol, Austria) are particularly sensitive to changes in the cryosphere and the hydrological changes related to them. The Ötztal possesses an outstanding role in Austrian and international cryospheric research and reacts sensitive to changes in hydrology due to its socio-economic structure (e.g. importance of tourism, hydro-power). In this study future glacier scenarios for the runoff calculations in the Ötztal catchment are developed. In addition to climatological scenario data, glacier scenarios were established for the hydrological simulation of future runoff. Glacier outlines and glacier surface elevation changes of the Austrian Glacier Inventory were used to derive present ice thickness distribution and scenarios of glacier area distribution. Direct effects of climate change (i.e. temperature and precipitation change) and indirect effects in terms of variations in the cryosphere were considered for the analysis of the mean runoff and particularly flood frequencies. Runoff was modelled with the hydrological model HQSim, which was calibrated for the runoff gauges at Brunau, Obergurgl and Vent. For a sensitivity study, the model was driven by separate glacier scenarios. Keeping glacier area constant, variable climate input was used to separate the effect of climate sensitivity. Results of the combination of changed glacier areas and changed climate input were subsequently analysed. Glacier scenarios show first a decrease in volume, before glacier area shrinks. The applied method indicates a 50% ice volume loss by 2050 relative to today. Further, model results show a reduction in glacier volume and area to less than 20% of the current ice cover towards the end of the 21st century. The effect of reduced glacier areas can be seen in a reduction of runoff particularly in summer. Maintaining the glacier areas constant, runoff would increase in summer month caused by higher ice melt under climate change conditions. Also runoff increases in spring and fall is expected due to a shift from solid to liquid precipitation in the mountain catchments. The simulation of the combination of glacier change and climate change scenarios results in an increase in runoff in spring due to a shift in the snowline and a decrease in runoff in summer caused by reduced glacier area.

  18. Phytotoxic substances in runoff from forested catchment areas

    NASA Astrophysics Data System (ADS)

    Grimvall, Anders; Bengtsson, Maj-Britt; Borén, Hans; Wahlström, Dan

    Runoff from different catchment areas in southern Sweden was tested in a root bioassay based on solution cultures of cucumber seedlings. Water samples from agricultural catchment areas produced no signs at all or only weak signs of inhibited root growth, whereas several water samples from catchment areas dominated by mires or coniferous forests produced visible root injuries. The most severe root injuries (very short roots, discolouration, swelling of root tips and lack of root hairs) were caused by samples from a catchment area without local emissions and dominated by old stands of spruce. Fractionation by ultrafiltration showed that the phytotoxic effect of these samples could be attributed to organic matter with a nominal molecular-weight exceeding 1000 or to substances associated with organic macromolecules. Experiments aimed at concentrating phytotoxic compounds from surface water indicated that the observed growth inhibition was caused by strongly hydrophilic substances. Previous reports on phytotoxic, organic substances of natural origin have emphasized interaction between plants growing close together. The presence of phytotoxic substances in runoff indicates that there is also a large-scale dispersion of such compounds.

  19. Peak Flow Responses and Recession Flow Characteristics After Thinning of Japanese Cypress Forest in a Headwater Catchment

    EPA Science Inventory

    We evaluated the effects of forest thinning on peak flow and recession characteristics of storm runoff in headwater catchments at Mie Prefecture, Japan. In catchment M5, 58.3% of stems were removed, whereas catchment M4 remained untreated as a control catchment. Storm precipitati...

  20. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    PubMed

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  1. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.

  2. An interactive modelling tool for understanding hydrological processes in lowland catchments

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Torfs, Paul; Uijlenhoet, Remko

    2016-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS), a rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS explicitly simulates processes which are important in lowland catchments, such as feedbacks between saturated and unsaturated zone and between groundwater and surface water. WALRUS has a simple model structure and few parameters with physical connotations. Some default functions (which can be changed easily for research purposes) are implemented to facilitate application by practitioners and students. The effect of water management on hydrological variables can be simulated explicitly. The model description and applications are published in open access journals (Brauer et al, 2014). The open source code (provided as R package) and manual can be downloaded freely (www.github.com/ClaudiaBrauer/WALRUS). We organised a short course for Dutch water managers and consultants to become acquainted with WALRUS. We are now adapting this course as a stand-alone tutorial suitable for a varied, international audience. In addition, simple models can aid teachers to explain hydrological principles effectively. We used WALRUS to generate examples for simple interactive tools, which we will present at the EGU General Assembly. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.

  3. [Influence of green roof application on water quantity and quality in urban region].

    PubMed

    Wang, Shu-Min; Li, Xing-Yang; Zhang, Jun-Hua; Yu, Hui; Hao, You-Zhi; Yang, Wan-Yi

    2014-07-01

    Green roof is widely used in advanced stormwater management as a major measure now. Taking Huxi catchment in Chongqing University as the study area, the relationships between green roof installation with runoff volume and water quality in urban region were investigated. The results showed that roof greening in the urban region contributed to reducing the runoff volume and pollution load. In addition, the spatial distribution and area of green roof also had effects on the runoff water quality. With the conditions that the roof area was 25% of the total watershed area, rainfall duration was 15 min and rainfall intensity was 14.8 mm x h(-1), the peak runoff and total runoff volume were reduced by 5.3% and 31%, the pollution loads of total suspended solid (TSS), total phosphorus (TP) and total nitrogen (TN) decreased by 40.0%, 31.6% and 29.8%, their peak concentrations decreased by 21.0%, 16.0% and -12.2%, and the EMCs (event mean concentrations) were cut down by 13.1%, 0.9% and -1.7%, respectively, when all impervious roofs were greened in the research area. With the increase of roof greening rate, the reduction rates of TSS and TP concentrations increased, while the reduction rate of TN concentration decreased on the whole. Much more improvement could be obtained with the use of green roofs near the outlet of the watershed.

  4. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands

    PubMed Central

    Helmers, Matthew J.; Liebman, Matt; James, David E.; Kolka, Randall K.; O’Neal, Matthew E.; Tomer, Mark D.; Tyndall, John C.; Asbjornsen, Heidi; Drobney, Pauline; Neal, Jeri; Van Ryswyk, Gary; Witte, Chris

    2017-01-01

    Loss of biodiversity and degradation of ecosystem services from agricultural lands remain important challenges in the United States despite decades of spending on natural resource management. To date, conservation investment has emphasized engineering practices or vegetative strategies centered on monocultural plantings of nonnative plants, largely excluding native species from cropland. In a catchment-scale experiment, we quantified the multiple effects of integrating strips of native prairie species amid corn and soybean crops, with prairie strips arranged to arrest run-off on slopes. Replacing 10% of cropland with prairie strips increased biodiversity and ecosystem services with minimal impacts on crop production. Compared with catchments containing only crops, integrating prairie strips into cropland led to greater catchment-level insect taxa richness (2.6-fold), pollinator abundance (3.5-fold), native bird species richness (2.1-fold), and abundance of bird species of greatest conservation need (2.1-fold). Use of prairie strips also reduced total water runoff from catchments by 37%, resulting in retention of 20 times more soil and 4.3 times more phosphorus. Corn and soybean yields for catchments with prairie strips decreased only by the amount of the area taken out of crop production. Social survey results indicated demand among both farming and nonfarming populations for the environmental outcomes produced by prairie strips. If federal and state policies were aligned to promote prairie strips, the practice would be applicable to 3.9 million ha of cropland in Iowa alone. PMID:28973922

  5. Hydrological responses in water loss due to thinning of forested watersheds in Japan using the short-term water balance method

    NASA Astrophysics Data System (ADS)

    Sano, K.; Gomi, T.; Hiraoka, M.; Sato, T.; Onda, Y.

    2015-12-01

    We examined the changes in seasonal patterns of catchment-scale evapotranspiration (i.e., water loss) using Short-Term Water Balance Model (STWBM) developed. STWBM is applied to estimate the value of water loss based on precipitation minus discharge volume during short-periods(8 to 80 days). This method can be applicable for examining seasonal characteristics of water loss that relets to ET. We applied STWBM for investigating the effects of 50% thinning in nested headwater catchments draining Japanese cypress (Cryptomeria japonica) and cedar (Chamaecyparis obtusa) forests. Study areas is located to 70 km north of Tokyo with 1250 mm annual precipitation and 14℃ mean annual temperature. 50% of the stems (46% of timber volume) were removed by strip thinning in 17 ha treatment catchment, 9 ha catchment remained untreated as a control. We installed 4 nested gauging stations in treated and control catchments with 3 to 10 ha of drainage areas. Runoff in each nested gauging station was measured in the pre- (from April, 2010 to June 2011) and the post-thinning periods (from January 2012 to December 2012). Total runoff coefficient in treated and control catchment was 54% and 26%, respectively. , . Estimated annual water loss by STWBM was 585 mm in treated and 969 mm in control catchments. Because annual evapotranspiration of Japanese cypress and cedar was about ranging from 400 to 800 mm in this catchment, our estimated water loss mostly associated with ET and partially by water loss by deep bedrock percolation. Estimated water loss after thinning in growth season (May to October) decreased 45 to 60 (in 2012) % and 51 to 60 (in 2013) % for all nested gauging station, while estimated water loss in control catchment was consistent. This result suggested that 50% of thinning decreased water loss by ET but changes can be varied among nested gauging station.

  6. Why can postwildfire runoff and erosion vary from negligible to extreme?

    NASA Astrophysics Data System (ADS)

    Noske, P.; Nyman, P.; Lane, P. N. J.; Van der Sant, R.; Sheridan, G. J.

    2016-12-01

    Soil surface properties vary with aridity, as does runoff and erosion after wildfire. Here we draw on studies conducted in different upland eucalypt forests of Victoria Australia, to compare and contrast the hydrological effects of wildfire. The study central to this presentation was conducted in two small (0.2-0.3 ha) dry forested headwater catchments burned during the 2009 Black Saturday wildfire. Surface runoff ratios during rainfall events approached 0.45 in the first year postwildfire. High runoff ratios in these dry forests were attributed to wildfire-induced soil water repellency and inherently low hydraulic conductivity. Average annual sediment yields peaked at 10 t ha-1 during the first year before declining dramatically to background levels, suggesting high-magnitude erosion processes may become limited by sediment availability on hillslopes. Surface runoff and erosion differed substantially between the equatorial and polar-facing catchments; this was most likely due to higher rates of infiltration and surface roughness on polar-facing slopes. Data collected from a plot scale study from 5 different burned forest locations of differing aridity produced a range of runoff ratios that support the findings of the central study. Additional data from burned catchments supporting wetter forests are also presented to further illustrate the contrast in rates of runoff and recovery from a different forest type. Results show that rates of postwildfire erosion and runoff in eucalypt forests in south-east Australia are highly variable. Large differences in erosion and runoff occur with relatively small changes in aridity.

  7. Characterizing runoff and water yield for headwater catchments in the southern Sierra Nevada

    Treesearch

    Mohammad Safeeq; Carolyn T. Hunsaker

    2016-01-01

    In a Mediterranean climate where much of the precipitation falls during winter, snowpacks serve as the primary source of dry season runoff. Increased warming has led to significant changes in hydrology of the western United States. An important question in this context is how to best manage forested catchments for water and other ecosystem services? Answering this...

  8. Snowmelt runoff and water yield along elevation and temperature gradients in California's southern Sierra Nevada

    Treesearch

    Carolyn T. Hunsaker; Thomas W. Whitaker; Roger C. Bales

    2012-01-01

    Differences in hydrologic response across the rain-snow transition in the southern Sierra Nevada were studied in eight headwater catchments – the Kings River Experimental Watersheds – using continuous precipitation, snowpack, and streamflow measurements. The annual runoff ratio (discharge divided by precipitation) increased about 0.1 per 300 m of mean catchment...

  9. Quantification of Runoff as Influenced by Morphometric Characteristics in a Rural Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Pradhan, Biswajeet; Sulaiman, Wan Nor Azmin; Jamil, Nor Rohaizah

    2018-05-01

    This study addresses the critical scientific question of assessing the relationship between morphometric features and the hydrological factors that increase the risk of flooding in Kelantan River basin, Malaysia. Two hypotheses were developed to achieve this aim, namely: the alternate hypothesis (runoff, is influenced by morphometric characteristics in the study watershed) and the null hypothesis (runoff is not influenced by morphometric characteristics). First, the watershed was delineated into four major catchments, namely: Galas, Pergau, Lebir, and Nenggiri. Next, quantitative morphometric characters such as linear aspects, areal aspects, and relief aspects were determined on each of these catchments. Furthermore, HEC-HMS and flood response analyses were employed to simulate the hydrological response of the catchments. From the results of morphometric analysis, profound spatial changes were observed between runoff features of Kelantan River and the morphometric characteristics. The length of overflow that was related to drainage density and constant channel maintenance was found to be 0.12 in Pergau, 0.04 in both Nenggiri and Lebir, and 0.03 in Galas. Drainage density as influenced by geology and vegetation density was found to be low in all the catchments (0.07-0.24). Results of hydrological response indicated that Lebir, Nenggiri, Galas, and Pergau recorded a flood response factor of 0.75, 0.63, 0.40, and 0.05, respectively. Therefore, Lebir and Nenggiri are more likely to be flooded during a rainstorm. There was no clear indication with regard to the catchment that emerged as the most prevailing in all the morphological features. Hence, the alternate hypothesis was affirmed. This study can be replicated in other catchments with different hydrologic setup.

  10. Quantification of Runoff as Influenced by Morphometric Characteristics in a Rural Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Pradhan, Biswajeet; Sulaiman, Wan Nor Azmin; Jamil, Nor Rohaizah

    2018-03-01

    This study addresses the critical scientific question of assessing the relationship between morphometric features and the hydrological factors that increase the risk of flooding in Kelantan River basin, Malaysia. Two hypotheses were developed to achieve this aim, namely: the alternate hypothesis (runoff, is influenced by morphometric characteristics in the study watershed) and the null hypothesis (runoff is not influenced by morphometric characteristics). First, the watershed was delineated into four major catchments, namely: Galas, Pergau, Lebir, and Nenggiri. Next, quantitative morphometric characters such as linear aspects, areal aspects, and relief aspects were determined on each of these catchments. Furthermore, HEC-HMS and flood response analyses were employed to simulate the hydrological response of the catchments. From the results of morphometric analysis, profound spatial changes were observed between runoff features of Kelantan River and the morphometric characteristics. The length of overflow that was related to drainage density and constant channel maintenance was found to be 0.12 in Pergau, 0.04 in both Nenggiri and Lebir, and 0.03 in Galas. Drainage density as influenced by geology and vegetation density was found to be low in all the catchments (0.07-0.24). Results of hydrological response indicated that Lebir, Nenggiri, Galas, and Pergau recorded a flood response factor of 0.75, 0.63, 0.40, and 0.05, respectively. Therefore, Lebir and Nenggiri are more likely to be flooded during a rainstorm. There was no clear indication with regard to the catchment that emerged as the most prevailing in all the morphological features. Hence, the alternate hypothesis was affirmed. This study can be replicated in other catchments with different hydrologic setup.

  11. Estimating catchment scale groundwater dynamics from recession analysis - enhanced constraining of hydrological models

    NASA Astrophysics Data System (ADS)

    Skaugen, T.; Mengistu, Z.

    2015-10-01

    In this study we propose a new formulation of subsurface water storage dynamics for use in rainfall-runoff models. Under the assumption of a strong relationship between storage and runoff, the temporal distribution of storage is considered to have the same shape as the distribution of observed recessions (measured as the difference between the log of runoff values). The mean subsurface storage is estimated as the storage at steady-state, where moisture input equals the mean annual runoff. An important contribution of the new formulation is that its parameters are derived directly from observed recession data and the mean annual runoff and hence estimated prior to calibration. Key principles guiding the evaluation of the new subsurface storage routine have been (a) to minimize the number of parameters to be estimated through the, often arbitrary fitting to optimize runoff predictions (calibration) and (b) maximize the range of testing conditions (i.e. large-sample hydrology). The new storage routine has been implemented in the already parameter parsimonious Distance Distribution Dynamics (DDD) model and tested for 73 catchments in Norway of varying size, mean elevations and landscape types. Runoff simulations for the 73 catchments from two model structures; DDD with calibrated subsurface storage and DDD with the new estimated subsurface storage were compared. No loss in precision of runoff simulations was found using the new estimated storage routine. For the 73 catchments, an average of the Nash-Sutcliffe Efficiency criterion of 0.68 was found using the new estimated storage routine compared with 0.66 using calibrated storage routine. The average Kling-Gupta Efficiency criterion was 0.69 and 0.70 for the new and old storage routine, respectively. Runoff recessions are more realistically modelled using the new approach since the root mean square error between the mean of observed and simulated recessions was reduced by almost 50 % using the new storage routine.

  12. On hydrologic similarity: A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation

    NASA Technical Reports Server (NTRS)

    Sivapalan, Murugesu; Wood, Eric F.; Beven, Keith J.

    1993-01-01

    One of the shortcomings of the original theory of the geomorphologic unit hydrograph (GUH) is that it assumes that runoff is generated uniformly from the entire catchment area. It is now recognized that in many catchments much of the runoff during storm events is produced on partial areas which usually form on narrow bands along the stream network. A storm response model that includes runoff generation on partial areas by both Hortonian and Dunne mechanisms was recently developed by the authors. In this paper a methodology for integrating this partial area runoff generation model with the GUH-based runoff routing model is presented; this leads to a generalized GUH. The generalized GUH and the storm response model are then used to estimate physically based flood frequency distributions. In most previous work the initial moisture state of the catchment had been assumed to be constant for all the storms. In this paper we relax this assumption and allow the initial moisture conditions to vary between storms. The resulting flood frequency distributions are cast in a scaled dimensionless framework where issues such as catchment scale and similarity can be conveniently addressed. A number of experiments are performed to study the sensitivity of the flood frequency response to some of the 'similarity' parameters identified in this formulation. The results indicate that one of the most important components of the derived flood frequency model relates to the specification of processes within the runoff generation model; specifically the inclusion of both saturation excess and Horton infiltration excess runoff production mechanisms. The dominance of these mechanisms over different return periods of the flood frequency distribution can significantly affect the distributional shape and confidence limits about the distribution. Comparisons with observed flood distributions seem to indicate that such mixed runoff production mechanisms influence flood distribution shape. The sensitivity analysis also indicated that the incorporation of basin and rainfall storm scale also greatly influences the distributional shape of the flood frequency curve.

  13. How snowmelt changed due to climate change in an ungauged catchment on the Tibetan Plateau?

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Yao, Zhijun

    2017-04-01

    Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial-temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from MODIS snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree-day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9 3 d/10a and the end time of snow melt has become later by 0.6 2.3 d/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6 % and 6.8 %, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River.

  14. Impact of Landslides Induced by Earthquake on Hydrologic Response in a Mountainous Catchment

    NASA Astrophysics Data System (ADS)

    Qian, Q.; Su, D.; Ran, Q.

    2013-12-01

    The changes of the underlying surface conditions (topography, vegetation cover rate, etc.), which were caused by the numerous landslides in the Wenchuan earthquake, may influence the hydrologic response and then change the flash flood or other kinds of the disaster risk in the affected areas. The Jianpinggou catchment, located in Sichuan China, is selected as the study area for this paper. It is a steep-slope mountainous catchment, flash flood is the main disaster, and sometimes causes the debris flow. The distribution of the landslides in this catchment is obtained from the remote sensing image data. The changes of topography are obtained from the comparisons among the different periods of digital elevation models (DEMs). A physical-based model, the Integrated Hydrology Model (InHM), is used to simulate the hydrologic response before and after the landslide, respectively. The influence of the underlying surface conditions is then discussed based on the output data, such as the hydrograph, distributed water depth and local runoff. The study leads to the following generalized conclusions: 1) the impact of the landslides on hydrologic response does exist, and the greater the proportion of surface flow in the total runoff is, the greater the impact will be; 2) the peak flow from the outlet increased after the landslide, but the shape of the hydrograph has little change; 3) the effect of the landslides on the local runoff is relatively obvious, and this elevates the local flash floods risk; 4) the difference of hydrologic responses between the two periods (before and after the landslide occurring) becomes larger with the increasing rainfall, with a threshold of rapid growth at the rainfall frequencies of once in every 50 years, but there is a limit. The improved understanding of the impact of landslides on the hydrologic response in Jianpinggou catchment provides valuable theoretical support for the storm flood forecast.

  15. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.

    2015-04-01

    The demand for better life quality and lower living costs created a great pressure on peri-urban areas, leading to significant land-use changes. The complexity of mixed land-use patterns, however, presents a challenge to understand the hydrological pathways and streamflow response involved in such changes. This study assesses the impact of a actively changing Portuguese peri-urban area on catchment hydrology. It focuses on quantifying streamflow delivery from contributing areas, of different land-use arrangement and the seasonal influence of the Mediterranean climate on stream discharge. The study focuses on Ribeira dos Covões a small (6 km2) peri-urban catchment on the outskirts of Coimbra, one of the main cities in central Portugal. Between 1958 and 2012 the urban area of the catchment expanded from 8% to 40%, mostly at the expense of agriculture (down from 48% to 4%), with woodland now accounting for the remaining 56% of the catchment area. The urban area comprises contrasting urban settings, associated with older discontinuous arrangement of buildings and urban structures and low population density (<25 inhabitants/km), and recent well-defined urban cores dominated by apartment blocks and high population density (9900 inhabitants/km). The hydrological response of the catchment has been monitored since 2007 by a flume installed at the outlet. In 2009, five rainfall gauges and eight additional water level recorders were installed upstream, to assess the hydrological response of different sub-catchments, characterized by distinct urban patterns and either limestone or sandstone lithologies. Annual runoff coefficients range between 14% and 22%. Changes in annual baseflow index (36-39% of annual rainfall) have been small with urbanization (from 34% to 40%) during the monitoring period itself. Annual runoff coefficients were lowest (14-7%) on catchments >80% woodland and highest (29% on sandstone; 18% on limestone) in the most urbanized (49-53% urban) sub-catchments. Percentage impermeable surface seems to control streamflow particularly during dry periods. Winter runoff was 2-4 times higher than total river flow in the summer dry season in highly urbanized areas, but was 21-fold higher in winter in the least urbanized sub-catchment, denoting greater flow connectivity enhanced by increased soil moisture. Although impermeable surfaces are prone to generate overland flow, the proximity to the stream network is an important parameter determining their hydrological impacts. During the monitoring period, the enlargement of 2% of the urban area at downslope locations in the Covões sub-catchment, led to a 6% increase in the runoff coefficient. In contrast, the urban area increase from 9 to 25% mainly in upslope parts of the Quinta sub-catchment did not increase the peak streamflow due to downslope infiltration and surface retention opportunities. Despite impermeable surfaces enhance overland flow, some urban features (e.g. walls and road embankments) promote surface water retention. The presence of artificial drainage systems, on the other hand, enhances flow connectivity, leading to increasing peak flow and quicker response times (~10 minutes versus 40-50 minutes) as in the Covões sub-catchment. Urbanization impact on streamflow responses may be minimized through planning the land-use mosaic so as to maximize infiltration opportunities. Knowledge of the influence of distinct urban mosaics on flow connectivity and stream discharge is therefore important to landscape managers and should guide urban planning in order to minimize flood hazards.

  16. Rainfall-Runoff Dynamics Following Wildfire in Mountainous Headwater Catchments, Alberta, Canada.

    NASA Astrophysics Data System (ADS)

    Williams, C.; Silins, U.; Bladon, K. D.; Martens, A. M.; Wagner, M. J.; Anderson, A.

    2015-12-01

    Severe wildfire has been shown to increase the magnitude and advance the timing of rainfall-generated stormflows across a range of hydro-climate regions. Loss of canopy and forest floor interception results in increased net precipitation which, along with the removal of forest organic layers and increased shorter-term water repellency, can result in strongly increased surface flow pathways and efficient routing of precipitation to streams. These abrupt changes have the potential to exacerbate flood impacts and alter the timing of runoff delivery to streams. However, while these effects are well documented in drier temperate mountain regions, changes in post-fire rainfall-runoff processes are less well understood in colder, more northern, snowfall dominated regimes. The objectives of this study are to explore longer term precipitation and runoff dynamics of burned and unburned (reference) watersheds from the Southern Rockies Watershed Project (SRWP) after the 2003 Lost Creek wildfire in the front-range Rocky Mountains of southwestern Alberta, Canada. Streamflow and precipitation were measured in 5 watersheds (3.7 - 10.4 km2) for 10 years following the wildfire (2005-2014). Measurements were collected from a dense network of meteorological and hydrometric stations. Stormflow volume, peak flow, time to peak flow, and total annual streamflow were compared between burned and reference streams. Event-based data were separated into 3 post-fire periods to detect changes in rainfall-runoff dynamics as vegetation regenerated. Despite large increases in post-fire snowpacks and net summer rainfall, rainfall-generated runoff from fire-affected watersheds was not large in comparison to that reported from more temperate snowfall-dominated Rocky Mountain hydrologic settings. High proportions of groundwater contribution to annual runoff regimes (as opposed to surface flow pathways) and groundwater storage were likely contributors to greater watershed resistance to wildfire effects in these northern Rocky Mountain catchments.

  17. Hydrological significance of soil frost for pre-alpine areas

    NASA Astrophysics Data System (ADS)

    Stähli, Manfred

    2017-03-01

    Soil frost can have a substantial impact on water flows at the soil surface and-potentially-alter the dynamics of catchment runoff. While these findings are mainly based on studies from alpine and Northern-latitude areas (including permafrost areas), little is known about the significance of soil frost for hydrology in pre-alpine areas, i.e. the region at the transition from central European lowlands to high-alpine areas. Here I synthesize soil temperature data and soil frost observations from ten sites in Switzerland to assess the occurrence of soil frost and to determine its impact on catchment runoff. In addition, a well-established numerical model was used to reconstruct the presence of soil frost in two first-order catchments for single runoff events and winters. The data clearly demonstrates that shallow soil frost has formed regularly in this altitudinal range over the past decade. The presence of a frozen soil surface was found to be highly variable among the sites under study and did not significantly correlate with altitude or forest density. For the first-order catchments, it was not possible to relate important flood peaks or increased runoff coefficients to winter situations with substantial soil frost. Thus, the present analysis suggests that although soil frost is widespread and regularly occurring at this altitudinal range, it has no significant impact on winter runoff in pre-alpine watersheds.

  18. Evaluating the impact of lower resolutions of digital elevation model on rainfall-runoff modeling for ungauged catchments.

    PubMed

    Ghumman, Abul Razzaq; Al-Salamah, Ibrahim Saleh; AlSaleem, Saleem Saleh; Haider, Husnain

    2017-02-01

    Geomorphological instantaneous unit hydrograph (GIUH) usually uses geomorphologic parameters of catchment estimated from digital elevation model (DEM) for rainfall-runoff modeling of ungauged watersheds with limited data. Higher resolutions (e.g., 5 or 10 m) of DEM play an important role in the accuracy of rainfall-runoff models; however, such resolutions are expansive to obtain and require much greater efforts and time for preparation of inputs. In this research, a modeling framework is developed to evaluate the impact of lower resolutions (i.e., 30 and 90 m) of DEM on the accuracy of Clark GIUH model. Observed rainfall-runoff data of a 202-km 2 catchment in a semiarid region was used to develop direct runoff hydrographs for nine rainfall events. Geographical information system was used to process both the DEMs. Model accuracy and errors were estimated by comparing the model results with the observed data. The study found (i) high model efficiencies greater than 90% for both the resolutions, and (ii) that the efficiency of Clark GIUH model does not significantly increase by enhancing the resolution of the DEM from 90 to 30 m. Thus, it is feasible to use lower resolutions (i.e., 90 m) of DEM in the estimation of peak runoff in ungauged catchments with relatively less efforts. Through sensitivity analysis (Monte Carlo simulations), the kinematic wave parameter and stream length ratio are found to be the most significant parameters in velocity and peak flow estimations, respectively; thus, they need to be carefully estimated for calculation of direct runoff in ungauged watersheds using Clark GIUH model.

  19. High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts.

    PubMed

    Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain

    2017-06-01

    Rainfall-induced peaks in pesticide concentrations can occur rapidly. Low frequency sampling may therefore largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is lacking. High frequency monitoring (2min) of seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The maximum pesticide concentrations were 387μgL -1 . Samples from all of the runoff events exceeded the legal limit of 0.1μgL -1 for at least one pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The point and average (time or discharge-weighted) concentrations indicated up to a 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively. This highlights the important role of sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve understanding of pesticide supply and transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Beall, F. D.; Webster, K. L.; Hazlett, P. W.; Creed, I. F.; Semkin, R. G.; Jeffries, D. S.

    2018-02-01

    Hydrological consequences of alternative harvesting strategies in deciduous forest landscapes with seasonal snow cover have received relatively little attention. Most forest harvesting experiments in landscapes with seasonal snow cover have focused on clearcutting in coniferous forests. Few have examined alternative strategies such as selection or shelterwood cutting in deciduous stands whose hydrologic responses to harvesting may differ from those of conifers. This study presents results from a 31-year examination of hydrological response to and recovery from alternative harvesting strategies in a deciduous forest landscape with seasonal snow cover in central Ontario, Canada. A quantitative means of assessing hydrologic recovery to harvesting is also developed. Clearcutting resulted in increased water year (WY) runoff. This was accompanied by increased runoff in all seasons, with greatest relative increases in Summer. Direct runoff and baseflow from treatment catchments generally increased following harvesting, although annual peak streamflow did not. Largest increases in WY runoff and seasonal runoff as well as direct runoff and baseflow generally occurred in the selection harvest catchment, likely as a result of interception of hillslope runoff by a forest access road and redirection to the stream channel. Hydrologic recovery appeared to begin towards the end of the experimental period for several streamflow metrics but was incomplete for all harvesting strategies 15 years after harvesting. Geochemical tracing indicated that harvesting enhanced the relative importance of surface and near-surface water pathways on catchment slopes for all treatments, with the clearcut catchment showing the most pronounced and prolonged response. Such insights into water partitioning between flow pathways may assist assessments of the ecological and biogeochemical consequences of forest disturbance.

  1. High frequency monitoring of pesticides in runoff water from a vineyard: ecotoxicological and hysteresis pattern analysis

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain

    2017-04-01

    Rainfall-induced peaks in pesticide concentrations can occur rapidly; therefore, low frequency sampling may largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is actually lacking. High frequency monitoring (2 min) of dissolved concentrations and loads for seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The pesticide concentrations reached 387 µg/L. All of the runoff events exceeded the mandated acceptable concentrations of 0.1 µg/L for each pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The instantaneous and average (time or discharge-weighted) concentrations indicated an up to 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively, highlighting the important role of the sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve the understanding of pesticide supply and transport.

  2. RNICO: a new simple geometric index for assessing the impact of urban development pattern on peak flows in urban catchments

    NASA Astrophysics Data System (ADS)

    Kasaee Roodsari, B.; Chandler, D. G.

    2016-12-01

    Urban sprawl is widespread across the world and the associated hydrologic impacts are increasing in peri-urban catchments due to increased area of impervious. There is a strong agreement on the positive correlation between the fractional impervious area and peak flows in urban catchments. Nevertheless, the effect of land development pattern on peak flows is not well investigated. In this study, a new simple geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri-urban catchments to runoff peak flows. Results of applying RNICO to 20 sub-catchments in New York State showed a strong positive correlation (R2>0.97) between RNICO and runoff peak flows for small peri-urban catchments (A< 42 km2) indicating higher flood risk of downstream urbanization. For large catchments (A> 42 km2), no correlation was indicated between RNICO and peak flows. We highlight the necessity of a greater discharge monitoring network at small peri-urban catchments to support local urban flood forecast.

  3. Tracing the origin and mobilization of Glyphosate and AMPA in a vineyard catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, Matthias; Olsson, Oliver; Payraudeau, Sylvain; Imfeld, Gwenaël; Kümmerer, Klaus

    2014-05-01

    Pesticides residues are often found in storm-water runoff in agricultural areas. There are several pathways along which pesticides may be transported from their application point towards the river. Although the primary target of pesticide application is the agricultural area, wind drift transports pesticide droplets to non-target areas. Furthermore, miss-operation of application machines results in the deposition of pesticides at filter strips or roads from where they can be washed off. Therefore, it may be difficult to identify the origin of pesticides in storm-water runoff. However, management of water quality requires that critical source areas are clearly delineated in order to effectively reduce water pollution. In the Rouffach catchment, a 42.7 ha vineyard catchment in France, Glyphosate and its transformation product AMPA occurred frequently and in high concentrations in runoff water during rainfall-runoff events in 2008. In order to identify the source areas of Glyphosate residue pollution and its mobilization, we used here a combination of sampling data analysis techniques and distributed pollutant transfer modelling. Available sampling data allowed for an analysis by Normalized Cumulative Loads (NCL) at a high temporal resolution (10 min). The results imply that pollutant mobilization took place mainly at the beginning of an event. This First Flush suggests a wash off of substances from impervious surfaces such as roads. This assumption was confirmed by local hydrological knowledge about infiltration rates in the vineyard, which were not exceeded by rainfall intensities in most considered events. Additionally, the distributed process-based reactive transport model ZIN-AgriTra was used as a learning tool to evaluate the pesticide mobilization and export processes. The hydrological model was successfully calibrated and validated for long high-resolution time series of discharge data. Pesticide export modelling focused on the first rainfall-runoff event following the first significant Glyphosate application in 2008. Assuming only target Glyphosate application, hardly any export of Ghyphosate and AMPA occurred. Therefore, non-target application at adjacent roads was introduced into the model. By assuming different mobilization processes of substances on the roads, our results show that storage of sorbed pesticides (e.g. road sides, unpaved roads) and storage without sorption (e.g. plant surface, paved roads) significantly contributed to the total pesticide residue export. Concluding, it is likely that the major part of pesticides in runoff of the Rouffach catchment originates from the roads rather than from the vine growing areas and that the mobilization process is a combination of both sorptive and non-sorptive substance storage. Thus, avoiding non-target pesticide application could largely help to mitigate water contamination in this catchment.

  4. Land Cover Influence on Wet Season Storm Runoff Generation and Hydrologic Flowpaths in Central Panama

    NASA Astrophysics Data System (ADS)

    Birch, A. L.; Stallard, R. F.; Barnard, H. R.

    2017-12-01

    While relationships between land use/land cover and hydrology are well studied and understood in temperate parts of the world, little research exists in the humid tropics, where hydrologic research is often decades behind. Specifically, quantitative information on how physical and biological differences across varying land covers influence runoff generation and hydrologic flowpaths in the humid tropics is scarce; frequently leading to poorly informed hydrologic modelling and water policy decision making. This research effort seeks to quantify how tropical land cover change may alter physical hydrologic processes in the economically important Panama Canal Watershed (Republic of Panama) by separating streamflow into its different runoff components using end member mixing analysis. The samples collected for this project come from small headwater catchments of four varying land covers (mature tropical forest, young secondary forest, active pasture, recently clear-cut tropical forest) within the Smithsonian Tropical Research Institute's Agua Salud Project. During the past three years, samples have been collected at the four study catchments from streamflow and from a number of water sources within hillslope transects, and have been analyzed for stable water isotopes, major cations, and major anions. Major ion analysis of these samples has shown distinct geochemical differences for the potential runoff generating end members sampled (soil moisture/ preferential flow, groundwater, overland flow, throughfall, and precipitation). Based on this finding, an effort was made from May-August 2017 to intensively sample streamflow during wet season storm events, yielding a total of 5 events of varying intensity in each land cover/catchment, with sampling intensity ranging from sub-hourly to sub-daily. The focus of this poster presentation will be to present the result of hydrograph separation's done using end member mixing analysis from this May-August 2017 storm dataset. Expected results presented will yield an increase in the quantitative understanding of how land cover may influence physical hydrologic flowpaths and runoff generation in the humid tropics.

  5. Hydrologic connectivity between landscapes and streams: Transferring reach‐ and plot‐scale understanding to the catchment scale

    USGS Publications Warehouse

    Jencso, Kelsey G.; McGlynn, Brian L.; Gooseff, Michael N.; Wondzell, Steven M.; Bencala, Kenneth E.; Marshall, Lucy A.

    2009-01-01

    The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first‐order control on the distribution of soil water and groundwater. Hillslope‐riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope‐riparian‐stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape‐scale connectivity through time and ascertain its relationship to catchment‐scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first‐order control on runoff source area and whole catchment response characteristics.

  6. Impact of land use, soil and DEM databases on surface runoff assessment with GIS decision support tool: A study case on the Briançon vineyard catchment (Gard, France)

    NASA Astrophysics Data System (ADS)

    Regazzoni, C.; Payraudeau, S.

    2012-04-01

    Runoff and associated erosion represent a primary mode of mobilization and transfer of pesticides from agricultural lands to watercourses and groundwater. The pesticides toxicity is potentially higher at the headwater catchment scale. These catchments are usually ungauged and characterized by temporary streams. Several mitigation strategies and management practices are currently used to mitigate the pesticides mixtures in agro-ecosystems. Among those practices, Stormwater Wetlands (SW) could be implemented to store surface runoff and to mitigate pesticides loads. The implementation of New Potential Stormwater Wetlands (NPSW) requires a diagnosis of intermittent runoff at the headwater catchment scale. The main difficulty to perform this diagnosis at the headwater catchment scale is to spatially characterize with enough accuracy the landscape components. Indeed, fields and field margins enhance or decrease the runoff and determine the pathways of hortonian overland flow. Land use, soil and Digital Elevation Model databases are systematically used. The question of the respective weight of each of these databases on the uncertainty of the diagnostic results is rarely analyzed at the headwater catchment scale. Therefore, this work focused (i) on the uncertainties of each of these databases and their propagation on the hortonian overland flow modelling, (ii) the methods to improve the accuracy of each database, (iii) the propagation of the databases uncertainties on intermittent runoff modelling and (iv) the impact of modelling cell size on the diagnosis. The model developed was a raster approach of the SCS-CN method integrating re-infiltration processes. The uncertainty propagation was analyzed on the Briançon vineyard catchment (Gard, France, 1400 ha). Based on this study site, the results showed that the geographic and thematic accuracies of regional soil database (1:250 000) were insufficient to correctly simulate the hortonian overland flow. These results have to be weighted according to the soil heterogeneity. Conversely, the regional land use (1:50 000) provided an acceptable diagnostic when combining with accurate soil database (1:15 000). Moreover, the regional land use quality can be improved by integrating road and river networks usually available at the national scale. Finally, a 5 m modelling cell size appeared as an optimum to correctly describe the landscape components and to assess the hortonian overland flow. A wrong assessment of the hortonian overland flow leads to a misinterpretation of the results and affects effective decision-making, e.g. the number and the location of the NSPW. This uncertainty analysis and the improvement methods developed on this study site can be adapted on other headwater catchments characterized by intermittent surface runoff.

  7. Using hydrochemical tracers to conceptualise hydrological function in a larger scale catchment draining contrasting geologic provinces

    NASA Astrophysics Data System (ADS)

    Capell, R.; Tetzlaff, D.; Malcolm, I. A.; Hartley, A. J.; Soulsby, C.

    2011-09-01

    SummaryA year-long multivariate tracer study in the 749 km 2 catchment of the North-Esk in north east Scotland was carried out to infer the dominant runoff generation processes in two markedly different geologic provinces. The upper 60% of the catchment has montane headwaters dominated by impermeable metamorphic rocks, steep topography, peaty soils and a sub-arctic climate with over 1400 mm of precipitation. The lowlands of the catchment are underlain by a major sandstone aquifer, and mainly have freely draining, fertile soils that support intensive arable farming under a drier climate with around 800 mm of precipitation. Storm runoff in the uplands is dominated by near-surface processes in soils and sedimentary layers which generate around 60% of annual stream flows with water of low alkalinity and ionic strength. In contrast, tributaries in the lower parts of the catchment are dominated by groundwater-fed base flows which account for 75% of annual runoff and are characterised by alkaline waters with high concentrations of base cations and high levels of nitrate. Multivariate statistical methods were used to derive a generic typology of catchment source waters, their spatial and temporal dynamics and particularly, how they integrate together at the larger catchment scale. The uplands dominate the winter high flow response of the whole catchment. The influence of lowland groundwater from major aquifers becomes more apparent under low flows. However, groundwater from small upland aquifers plays a critical role for ecosystem service in dry periods providing baseflows which dilute pollutant inputs from lowland areas at the large catchment scale.

  8. Getting a feel for parameters: using interactive parallel plots as a tool for parameter identification in the new rainfall-runoff model WALRUS

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Torfs, Paul; Teuling, Ryan; Uijlenhoet, Remko

    2015-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS) to fill the gap between complex, spatially distributed models often used in lowland catchments and simple, parametric models which have mostly been developed for mountainous catchments (Brauer et al., 2014ab). This parametric rainfall-runoff model can be used all over the world in both freely draining lowland catchments and polders with controlled water levels. The open source model code is implemented in R and can be downloaded from www.github.com/ClaudiaBrauer/WALRUS. The structure and code of WALRUS are simple, which facilitates detailed investigation of the effect of parameters on all model variables. WALRUS contains only four parameters requiring calibration; they are intended to have a strong, qualitative relation with catchment characteristics. Parameter estimation remains a challenge, however. The model structure contains three main feedbacks: (1) between groundwater and surface water; (2) between saturated and unsaturated zone; (3) between catchment wetness and (quick/slow) flowroute division. These feedbacks represent essential rainfall-runoff processes in lowland catchments, but increase the risk of parameter dependence and equifinality. Therefore, model performance should not only be judged based on a comparison between modelled and observed discharges, but also based on the plausibility of the internal modelled variables. Here, we present a method to analyse the effect of parameter values on internal model states and fluxes in a qualitative and intuitive way using interactive parallel plotting. We applied WALRUS to ten Dutch catchments with different sizes, slopes and soil types and both freely draining and polder areas. The model was run with a large number of parameter sets, which were created using Latin Hypercube Sampling. The model output was characterised in terms of several signatures, both measures of goodness of fit and statistics of internal model variables (such as the percentage of rain water travelling through the quickflow reservoir). End users can then eliminate parameter combinations with unrealistic outcomes based on expert knowledge using interactive parallel plots. In these plots, for instance, ranges can be selected for each signature and only model runs which yield signature values in these ranges are highlighted. The resulting selection of realistic parameter sets can be used for ensemble simulations. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geoscientific Model Development, 7, 2313-2332, www.geosci-model-dev.net/7/2313/2014/gmd-7-2313-2014.pdf C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrology and Earth System Sciences, 18, 4007-4028, www.hydrol-earth-syst-sci.net/18/4007/2014/hess-18-4007-2014.pdf

  9. Rainfall estimates for hydrological models: Comparing rain gauge, radar and microwave link data as input for the Wageningen Lowland Runoff Simulator (WALRUS)

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Overeem, Aart; Uijlenhoet, Remko

    2015-04-01

    Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of differences in rainfall estimates on discharge simulations in a lowland catchment by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in the Hupsel Brook catchment. We used two automatic rain gauges with hourly resolution, located inside the catchment (the base run) and 30 km northeast. Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. Traditionally, the precipitation research community places emphasis on quantifying spatial errors and uncertainty, but for hydrological applications, temporal errors and uncertainty should be quantified as well. Its memory makes the hydrologic system sensitive to missed or badly timed rainfall events, but also emphasizes the effect of a bias in rainfall estimates. Systematic underestimation of rainfall by the uncorrected operational radar product leads to very dry model states and an increasing underestimation of discharge. Using the rain gauge 30 km northeast of the catchment yields good results for climatological studies, but not for forecasting individual floods. Simulating discharge using the maps derived from microwave link data and the gauge-adjusted radar product yields good results for both events and climatological studies. This indicates that these products can be used in catchments without gauges in or near the catchment. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. Improving rainfall measurements can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.

  10. Runoff sources and flowpaths in a partially burned, upland boreal catchment underlain by permafrost

    USGS Publications Warehouse

    Koch, Joshua C.; Kikuchi, Colin P.; Wickland, Kimberly P.; Schuster, Paul

    2014-01-01

    Boreal soils in permafrost regions contain vast quantities of frozen organic material that is released to terrestrial and aquatic environments via subsurface flowpaths as permafrost thaws. Longer flowpaths may allow chemical reduction of solutes, nutrients, and contaminants, with implications for greenhouse gas emissions and aqueous export. Predicting boreal catchment runoff is complicated by soil heterogeneities related to variability in active layer thickness, soil type, fire history, and preferential flow potential. By coupling measurements of permeability, infiltration potential, and water chemistry with a stream chemistry end member mixing model, we tested the hypothesis that organic soils and burned slopes are the primary sources of runoff, and that runoff from burned soils is greater due to increased hydraulic connectivity. Organic soils were more permeable than mineral soils, and 25% of infiltration moved laterally upon reaching the organic-mineral soil boundary on unburned hillslopes. A large portion of the remaining water infiltrated into deeper, less permeable soils. In contrast, burned hillslopes displayed poorly defined soil horizons, allowing rapid, mineral-rich runoff through preferential pathways at various depths. On the catchment scale, mineral/organic runoff ratios averaged 1.6 and were as high as 5.2 for an individual storm. Our results suggest that burned soils are the dominant source of water and solutes reaching the stream in summer, whereas unburned soils may provide longer term storage and residence times necessary for production of anaerobic compounds. These results are relevant to predicting how boreal catchment drainage networks and stream export will evolve given continued warming and altered fire regimes.

  11. Functional approach to exploring climatic and landscape controls of runoff generation: 1. Behavioral constraints on runoff volume

    NASA Astrophysics Data System (ADS)

    Li, Hong-Yi; Sivapalan, Murugesu; Tian, Fuqiang; Harman, Ciaran

    2014-12-01

    Inspired by the Dunne diagram, the climatic and landscape controls on the partitioning of annual runoff into its various components (Hortonian and Dunne overland flow and subsurface stormflow) are assessed quantitatively, from a purely theoretical perspective. A simple distributed hydrologic model has been built sufficient to simulate the effects of different combinations of climate, soil, and topography on the runoff generation processes. The model is driven by a sequence of simple hypothetical precipitation events, for a large combination of climate and landscape properties, and hydrologic responses at the catchment scale are obtained through aggregation of grid-scale responses. It is found, first, that the water balance responses, including relative contributions of different runoff generation mechanisms, could be related to a small set of dimensionless similarity parameters. These capture the competition between the wetting, drying, storage, and drainage functions underlying the catchment responses, and in this way, provide a quantitative approximation of the conceptual Dunne diagram. Second, only a subset of all hypothetical catchment/climate combinations is found to be "behavioral," in terms of falling sufficiently close to the Budyko curve, describing mean annual runoff as a function of climate aridity. Furthermore, these behavioral combinations are mostly consistent with the qualitative picture presented in the Dunne diagram, indicating clearly the commonality between the Budyko curve and the Dunne diagram. These analyses also suggest clear interrelationships amongst the "behavioral" climate, soil, and topography parameter combinations, implying these catchment properties may be constrained to be codependent in order to satisfy the Budyko curve.

  12. Post-fire mulching for runoff and erosion mitigation; Part II: Effectiveness in reducing runoff and sediment yields from small catchments

    Treesearch

    Peter R. Robichaud; Joseph W. Wagenbrenner; Sarah A. Lewis; Louise E. Ashmun; Robert E. Brown; Peter M. Wohlgemuth

    2013-01-01

    Agricultural straw, hydromulch, and wood shred or wood strand mulches increasingly are being used as post-fire hillslope treatments, but the differences in effectiveness among these mulch treatments are not fully understood. Following the 2002 Hayman fire in central Colorado and the 2003 Cedar fire in southern California, matched catchments were monitored for five to...

  13. Source Areas of Water and Nitrate in a Peatland Catchment, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.

    2017-12-01

    In nitrogen polluted forests, stream nitrate concentrations increase and some unprocessed atmospheric nitrate may be transported to streams during stormflow events. This understanding has emerged from forests with upland mineral soils. In contrast, catchments with northern peatlands may have both upland soils and lowlands with deep organic soils, each with unique effects on nitrate transport and processing. While annual budgets show nitrate yields to be relatively lower from peatland than upland-dominated catchments, little is known about particular runoff events when stream nitrate concentrations have been higher (despite long periods with little or no nitrate in outlet streams) or the reasons why. I used site knowledge and expansive/extensive monitoring at the Marcell Experimental Forest in Minnesota, along with a targeted 2-year study to determine landscape areas, water sources, and nitrate sources that affected stream nitrate variation in a peatland catchment. I combined streamflow, upland runoff, snow amount, and frost depth data from long-term monitoring with nitrate concentration, yield, and isotopic data to show that up to 65% of stream nitrate during snowmelt of 2009 and 2010 was unprocessed atmospheric nitrate. Up to 46% of subsurface runoff from upland soils during 2009 was unprocessed atmospheric nitrate, which shows the uplands to be a stream nitrate source during 2009, but not during 2010 when upland runoff concentrations were below the detection limit. Differences are attributable to variations in water and nitrate sources. Little snow (a nitrate source), less upland runoff relative to peatland runoff, and deeper soil frost in the peatland caused a relatively larger input of nitrate from the uplands to the stream during 2009 and the peatland to the stream during 2010. Despite the near-absence of stream nitrate during much of rest of the year, these findings show an important time when nitrate transport affected downstream aquatic ecosystems, reasons why nitrate was transported, and that atmospheric nitrate pollution had a direct effect on a stream in a peatland catchment. Furthermore, this work illustrates how long-term monitoring when coupled with shorter-duration studies allows contemporary questions to be addressed within legacy catchment studies.

  14. Effects of Soil Moisture Thresholds in Runoff Generation in two nested gauged basins

    NASA Astrophysics Data System (ADS)

    Fiorentino, M.; Gioia, A.; Iacobellis, V.; Manfreda, S.; Margiotta, M. R.; Onorati, B.; Rivelli, A. R.; Sole, A.

    2009-04-01

    Regarding catchment response to intense storm events, while the relevance of antecedent soil moisture conditions is generally recognized, the role and the quantification of runoff thresholds is still uncertain. Among others, Grayson et al. (1997) argue that above a wetness threshold a substantial portion of a small basin acts in unison and contributes to the runoff production. Investigations were conducted through an experimental approach and in particular exploiting the hydrological data monitored on "Fiumarella of Corleto" catchment (Southern Italy). The field instrumentation ensures continuous monitoring of all fundamental hydrological variables: climate forcing, streamflow and soil moisture. The experimental basin is equipped with two water level installations used to measure the hydrological response of the entire basin (with an area of 32 km2) and of a subcatchment of 0.65 km2. The aim of the present research is to better understand the dynamics of soil moisture and the runoff generation during flood events, comparing the data recorded in the transect and the runoff at the two different scales. Particular attention was paid to the influence of the soil moisture content on runoff activation mechanisms. We found that, the threshold value, responsible of runoff activation, is equal or almost to field capacity. In fact, we observed a rapid change in the subcatchment response when the mean soil moisture reaches a value close to the range of variability of the field capacity measured along a monitored transect of the small subcatchment. During dry periods the runoff coefficient is almost zero for each of the events recorded. During wet periods, however, it is rather variable and depends almost only on the total rainfall. Changing from the small scale (0.65 km2) up to the medium scale (represented by the basin of 32 km2) the threshold mechanism in runoff production is less detectable because masked by the increased spatial heterogeneity of the vegetation cover and soil texture.

  15. Impacts of fire on forest age and runoff in mountain ash forests

    USGS Publications Warehouse

    Wood, S.A.; Beringer, J.; Hutley, L.B.; McGuire, A.D.; Van Dijk, A.; Kilinc, M.

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire - returning to pre-fire levels in the following centuries - owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8 mm day-1 with increasing forest age (an annual decrease of 657 mm) the understorey ET contributed between 1.2 and 1.5 mm day-1, 45% of the total ET (3 mm day-1) at the old growth forest. ?? CSIRO 2008.

  16. Should we trust build-up/wash-off water quality models at the scale of urban catchments?

    PubMed

    Bonhomme, Céline; Petrucci, Guido

    2017-01-01

    Models of runoff water quality at the scale of an urban catchment usually rely on build-up/wash-off formulations obtained through small-scale experiments. Often, the physical interpretation of the model parameters, valid at the small-scale, is transposed to large-scale applications. Testing different levels of spatial variability, the parameter distributions of a water quality model are obtained in this paper through a Monte Carlo Markov Chain algorithm and analyzed. The simulated variable is the total suspended solid concentration at the outlet of a periurban catchment in the Paris region (2.3 km 2 ), for which high-frequency turbidity measurements are available. This application suggests that build-up/wash-off models applied at the catchment-scale do not maintain their physical meaning, but should be considered as "black-box" models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Temporal change of SF6 age in spring during rainstorms in a forested headwater catchment, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Sakakibara, Koichi; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Sato, Yutaro; Nagano, Kosuke

    2017-04-01

    Time variant water age in catchments can fundamentally describe catchment function, controlling rainfall-runoff generation, groundwater flow pathway, and water storage. We observed sulfur hexafluoride concentration in the stream and groundwater with 1 - 2 hours interval during rainstorm events in order to reveal temporal variations of rainfall-runoff water age. Target's spring is perennial in a forested headwater catchment with an area of 0.045 square km, Fukushima, Japan. The observed hydrological data and tracer data of water in the catchment (stable isotopic compositions, inorganic solute concentrations) were used for clarifying rainfall-runoff processes related to water age variances. The storm hydrograph and groundwater table clearly responded to rainfall especially with more than 30 mm per day throughout the monitoring period (May 2015 - October 2016). Large variations of SF6 age in spring ranging from zero to 14 years were found in the short period during rainstorms. In particular, the SF6 age in spring was evidently old when the runoff was over 2 mm per day. At the high runoff condition, the SF6 age in spring positively correlated with discharge rate: the spring age became older as the discharge rate increased. With regard to spatial distributions of SF6 age in groundwater, the old groundwater age (9 - 13 years) in the shallow subsurface area along the valley was confirmed after heavy rainfall. This groundwater age was similar age to the deep groundwater at no-rainfall conditions. In addition, inorganic solute concentrations such as chloride ion, sodium ion, and silica in spring water showed dominant levels in the deep and ridge groundwater. All facts suggest that the old groundwater, stored in the ridge or deeper subsurface area, replaced the shallow groundwater in the vicinity of the spring due to heavy rainfall, then it contributed to the spring discharge. Therefore, rainstorm events play important roles as triggers for discharging older water stored in the catchment, causing dynamic changes of groundwater flow system.

  18. Effects of suburban development on runoff generation in the Croton River basin, New York, USA

    USGS Publications Warehouse

    Burns, D.; Vitvar, T.; McDonnell, J.; Hassett, J.; Duncan, J.; Kendall, C.

    2005-01-01

    The effects of impervious area, septic leach-field effluent, and a riparian wetland on runoff generation were studied in three small (0.38-0.56 km 2) headwater catchments that represent a range of suburban development (high density residential, medium density residential, and undeveloped) within the Croton River basin, 70 km north of New York City. Precipitation, stream discharge, and groundwater levels were monitored at 10-30 min intervals for 1 year, and stream water and groundwater samples were collected biweekly for ??18O, NO3-, and SO42- analysis for more than 2 years during an overlapping period in 2000-2002. Data from 27 storms confirmed that peak magnitudes increased and recession time decreased with increasing development, but lags in peak arrival and peak discharge/mean discharge were greatest in the medium density residential catchment, which contains a wetland in which storm runoff is retained before entering the stream. Baseflow during a dry period from Aug. 2001-Feb. 2002 was greatest in the high-density residential catchment, presumably from the discharge of septic effluent through the shallow groundwater system and into the stream. In contrast, moderate flows during a wet period from Mar.-Aug. 2002 were greatest in the undeveloped catchment, possibly as a result of greater subsurface storage or greater hydraulic conductivity at this site. The mean residence time of baseflow was about 30 weeks at all three catchments, indicating that human influence was insufficient to greatly affect the groundwater recharge and discharge properties that determine catchment residence time. These results suggest that while suburban development and its associated impervious surfaces and storm drains accelerate the transport of storm runoff into streams, the combined effects of remnant natural landscape features such as wetlands and human alterations such as deep groundwater supply and septic systems can change the expected effects of human development on storm runoff and groundwater recharge. ?? 2005 Elsevier B.V. All rights reserved.

  19. Surface runoff and nitrogen (N) loss in a bamboo (Phyllostachys pubescens) forest under different fertilization regimes.

    PubMed

    Zhang, Qichun; Shamsi, Imran Haider; Wang, Jinwen; Song, Qiujin; Xue, Qiaoyun; Yu, Yan; Lin, Xianyong; Hussain, Sayed

    2013-07-01

    Nitrogen (N) losses from agricultural fields have been extensively studied. In contrast, surface runoff and N losses have rarely been considered for bamboo forests that are widespread in regions such as southern China. The thriving of bamboo industries has led to increasing fertilizer use in bamboo forests. In this study, we evaluated surface runoff and N losses in runoff following different fertilization treatments under field conditions in a bamboo (Phyllostachys pubescens) forest in the catchment of Lake Taihu in Jiangsu, China. Under three different fertilization regimes, i.e., control, site-specific nutrient management (SSNM), and farmer's fertilization practice (FFP), the water runoff rate amounted to 356, 361, and 342 m(3) ha(-1) and accounted for 1.91, 1.98, and 1.85% of the water input, respectively, from June 2009 to May 2010. The total N losses via surface runoff ranged from 1.2 to 1.8 kg ha(-1). Compared with FFP, the SSNM treatment reduced total nitrogen (TN) and dissolved nitrogen (DN) losses by 31 and 34%, respectively. The results also showed that variations in N losses depended mainly on runoff fluxes, not N concentrations. Runoff samples collected from all treatments throughout the year showed TN concentrations greater than 0.35 mg L(-1), with the mean TN concentration in the runoff from the FFP treatment reaching 8.97 mg L(-1). The loss of NO3(-)-N was greater than the loss of NH4(+)-N. The total loss of dissolved organic nitrogen (DON) reached 23-41% of the corresponding DN. Therefore, DON is likely the main N species in runoff from bamboo forests and should be emphasized in the assessment and management of N losses in bamboo forest.

  20. Spatial and Temporal Variation of Water Quality in the Bertam Catchment, Cameron Highlands, Malaysia.

    PubMed

    Rasul, M G; Islam, Mir Sujaul; Yunus, Rosli Bin Mohd; Mokhtar, Mazlin Bin; Alam, Lubna; Yahaya, F M

    2017-12-01

      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.

  1. A bottom up approach to implementing multi-purpose mitigation measures for reducing flood risk and improving water quality in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. E.; Quinn, P. F.; Jonczyk, J.; Burke, S.; Nicholson, A.; Barber, N.; Owen, G.; Palmer, M.

    2012-04-01

    A number of studies have suggested that there is evidence that modern land-use management practices have increased surface runoff at the local scale. There is an urgent need for interventions to reduce the risk of flooding whilst also delivering multiple benefits (doing more for less). There are many settlements, which regularly suffer from flooding, which would benefit from upstream mitigation measures. Interventions at the source of runoff generation can have a positive impact on the flood hydrograph downstream. An integrated approach to managing runoff can also have multiple benefits on pollution and ecology, which could lead to beneficial impacts at the catchment scale. Belford, a small community in Northumberland, UK has suffered from an increased number of flood events over the past ten years. There is currently support within the English and Welsh Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features which are being trialled at Belford. These runoff attenuation features (RAFs) also have benefits to water quality, capture sediment and create new ecological zones. Although the process by which numerous RAFs were deployed in Belford proved initially difficult to achieve within the existing regulatory framework, an efficient uptake process is now supported by local regulators including several branches of the Environment Agency. The Belford runoff management framework provides a step by step guide to implementing mitigation measures in the Belford burn catchment and could be easily applied to other catchments at a similar scale. The approach is based on implementing mitigation measures through engaging with catchment stakeholders and using solid field science and management protocols.

  2. Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes.

    PubMed

    Babcsányi, Izabella; Chabaux, François; Granet, Mathieu; Meite, Fatima; Payraudeau, Sylvain; Duplay, Joëlle; Imfeld, Gwenaël

    2016-07-01

    Understanding the fate of copper (Cu) fungicides in vineyard soils and catchments is a prerequisite to limit the off-site impact of Cu. Using Cu stable isotopes, Cu retention in soils and runoff transport was investigated in relation to the use of Cu fungicides and the hydrological conditions in a vineyard catchment (Rouffach, Haut-Rhin, France; mean slope: 15%). The δ(65)Cu values of the bulk vineyard soil varied moderately through the depth of the soil profiles (-0.12 to 0.24‰±0.08‰). The values were in the range of those of the fungicides (-0.21 to 0.11‰) and included the geogenic δ(65)Cu value of the untreated soil (0.08‰). However, δ(65)Cu values significantly differed between particle-size soil fractions (-0.37±0.10‰ in fine clays and 0.23±0.07‰ in silt). Together with the soil mineralogy, the results suggested Cu isotope fractionation primarily associated with the clay and fine clay fractions that include both SOM and mineral phases. The vegetation did not affect the Cu isotope patterns in the vineyard soils. Cu export by runoff from the catchment accounted for 1% of the applied Cu mass from 11th May to 20(th) July 2011, covering most of the Cu use period. 84% of the exported Cu mass was Cu bound to suspended particulate matter (SPM). The runoff displayed δ(65)Cu values from 0.52 to 1.35‰ in the dissolved phase (<0.45μm) compared to -0.34 to -0.02‰ in the SPM phase, indicating that clay and fine clay fractions were the main vectors of SPM-bound Cu in runoff. Overall, this study shows that Cu stable isotopes may allow identifying the Cu distribution in the soil fractions and their contribution to Cu export in runoff from Cu-contaminated catchments. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Catchment area-based evaluation of the AMC-dependent SCS-CN-based rainfall-runoff models

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jain, M. K.; Pandey, R. P.; Singh, V. P.

    2005-09-01

    Using a large set of rainfall-runoff data from 234 watersheds in the USA, a catchment area-based evaluation of the modified version of the Mishra and Singh (2002a) model was performed. The model is based on the Soil Conservation Service Curve Number (SCS-CN) methodology and incorporates the antecedent moisture in computation of direct surface runoff. Comparison with the existing SCS-CN method showed that the modified version performed better than did the existing one on the data of all seven area-based groups of watersheds ranging from 0.01 to 310.3 km2.

  4. Field-testing competing runoff source and hydrochemical conceptualisations

    NASA Astrophysics Data System (ADS)

    Western, A. W.; Saffarpour, S.; Adams, R.; Costelloe, J. F.; McDonnell, J.

    2014-12-01

    There are competing conceptualisations of heterogeneity in catchment systems. It is often convenient to divide catchments into zones, for example the soil profile, groundwater aquifers (saturated zone), riparian zones, etc. We also often divide flow sources into distinct categories such as surface runoff, interflow and baseflow, implying a few distinct stores of water. In tracer hydrology we typically assume water from such zones has distinct and invariant chemistry that is used to infer the runoff source mixture through conservative mixing model techniques such as End-Member Mixing Analysis (EMMA). An alternative conceptualisation is that catchments consist of a large number of stores with varying residence times. In this case individual stores contribute a variable proportion of flow and may have a temporally varying composition due to processes such as evapo-concentration. Hence they have a variable influence on the hydrochemistry of runoff. In this presentation, examples from two field studies in southern Australia will be presented that examine the relationships between hydrologic and hydrochemical conceptualisations and the relative variation within and between different hydrologic zones. The implications for water quality behaviour will be examined and the additional behavioural complexities associated with interactions between runoff pathways for non-conservative chemical species will be discussed.

  5. Utilising monitoring and modelling of estuarine environments to investigate catchment conditions responsible for stratification events in a typically well-mixed urbanised estuary

    NASA Astrophysics Data System (ADS)

    Lee, Serena B.; Birch, Gavin F.

    2012-10-01

    Estuarine health is affected by contamination from stormwater, particularly in highly-urbanised environments. For systems where catchment monitoring is insufficient, novel techniques must be employed to determine the impact of urban runoff on receiving water bodies. In the present work, estuarine monitoring and modelling were successfully employed to determine stormwater runoff volumes and establish an appropriate rainfall/runoff relationship capable of replicating fresh-water discharge due to the full range of precipitation conditions in the Sydney Estuary, Australia. Using estuary response to determine relationships between catchment rainfall and runoff is a widely applicable method and may be of assistance in the study of waterways where monitoring fluvial discharges is not practical or is beyond the capacity of management authorities. For the Sydney Estuary, the SCS-CN method replicated rainfall/runoff and was applied in numerical modelling experiments investigating the hydrodynamic characteristics affecting stratification and estuary recovery following high precipitation. Numerical modelling showed stratification in the Sydney Estuary was dominated by fresh-water discharge. Spring tides and up-estuary winds contributed to mixing and neap tides and down-estuary winds enhanced stratification.

  6. Simulation of Runoff Concentration on Arable Fields and the Impact of Adapted Tillage Practises

    NASA Astrophysics Data System (ADS)

    Winter, F.; Disse, M.

    2012-04-01

    Conservational tillage can reduce runoff on arable fields. Due to crop residues remaining on the fields a seasonal constant ground cover is achieved. This additional soil cover not only decreases the drying of the topsoil but also reduces the mechanical impact of raindrops and the possibly resulting soil crust. Further implications of the mulch layer can be observed during heavy precipitation events and occurring surface runoff. The natural roughness of the ground surface is further increased and thus the flow velocity is decreased, resulting in an enhanced ability of runoff to infiltrate into the soil (so called Runon-Infiltration). The hydrological model system WaSiM-ETH hitherto simulates runoff concentration by a flow time grid in the catchment, which is derived from topographical features of the catchment during the preprocessing analysis. The retention of both surface runoff and interflow is modelled by a single reservoir in every discrete flow time zone until the outlet of a subcatchment is reached. For a more detailed analysis of the flow paths in catchments of the lower mesoscale (< 1 km2) the model was extended by a kinematic wave approach for the surface runoff concentration. This allows the simulation of small-scale variation in runoff generation and its temporal distribution in detail. Therefore the assessment of adapted tillage systems can be derived. On singular fields of the Scheyern research farm north-west of Munich it can be shown how different crops and tillage practises can influence runoff generation and concentration during single heavy precipitation events. From the simulation of individual events in agricultural areas of the lower mesoscale hydrologically susceptible areas can be identified and the positive impact of an adapted agricultural management on runoff generation and concentration can be quantifed.

  7. Occurrence, fate, and fluxes of perfluorochemicals (PFCs) in an urban catchment: Marina Reservoir, Singapore.

    PubMed

    Nguyen, Viet Tung; Gin, Karina Yew-Hoong; Reinhard, Martin; Liu, Changhui

    2012-01-01

    A study was carried out to characterize the occurrence, sources and sinks of perfluorochemicals (PFCs) in the Marina Catchment and Reservoir, Singapore. Salinity depth profiles indicated the reservoir was stratified with lower layers consisting of sea water (salinity ranging from 32 to 35 g L(-1)) and a brackish surface layer containing approximately 14-65% seawater. The PFC mixture detected in catchment waters contained perfluoroalkyl carboxylates (PFCAs), particularly perfluorooctanoate (PFOA), perfluorohexanoate (PFHpA), perfluorooctane sulfonate (PFOS) and PFC transformation products. PFC concentrations in storm runoff were generally higher than those in dry weather flow of canals and rivers. PFC concentration profiles measured during storm events indicated 'first flush' behavior, probably because storm water is leaching PFC compounds from non-point sources present in the catchment area. Storm runoff carries high concentrations of suspended solids (SS), which suggests that PFC transport is via SS. In Marina Bay, PFCs are deposited in the sediments along with the SS. In sediments, the total PFC concentration was 4,700 ng kg(-1), approximately 200 times higher than in the bottom water layers. Total perfluoroalkyl sulfonates (PFSAs), particularly PFOS and 6:2 fluoro telomer sulfonate (6:2 FtS) were dominant PFCs in the sediments. PFC sorption by sediments varied with perfluorocarbon chain length, type of functional group and sediment characteristics. A first approximation analysis based on SS transport suggested that the annual PFC input into the reservoir was approximately 35 ± 12 kg y(-1). Contributions of SS, dry weather flow of river/canals, and rainfall were approximately 70, 25 and 5%, respectively. This information will be useful for improving strategies to protect the reservoir from PFC contamination.

  8. Estimating flow duration curve in the humid tropics: a disaggregation approach in Hawaiian catchments

    NASA Astrophysics Data System (ADS)

    Chris, Leong; Yoshiyuki, Yokoo

    2017-04-01

    Islands that are concentrated in developing countries have poor hydrological research data which contribute to stress on hydrological resources due to unmonitored human influence and negligence. As studies in islands are relatively young, there is a need to understand these stresses and influences by building block research specifically targeting islands. The flow duration curve (FDC) is a simple start up hydrological tool that can be used in initial studies of islands. This study disaggregates the FDC into three sections, top, middle and bottom and in each section runoff is estimated with simple hydrological models. The study is based on Hawaiian Islands, toward estimating runoff in ungauged island catchments in the humid tropics. Runoff estimations in the top and middle sections include using the Curve Number (CN) method and the Regime Curve (RC) respectively. The bottom section is presented as a separate study from this one. The results showed that for majority of the catchments the RC can be used for estimations in the middle section of the FDC. It also showed that in order for the CN method to make stable estimations, it had to be calibrated. This study identifies simple methodologies that can be useful for making runoff estimations in ungauged island catchments.

  9. Evaluation of Green Infrastructure on Peak Flow Mitigation Focusing on the Connectivity of Impervious Areas

    NASA Astrophysics Data System (ADS)

    Seo, Y.; Hwang, J.; Kwon, Y.

    2017-12-01

    The existence of impervious areas is one of the most distinguishing characteristics of urban catchments. It decreases infiltration and increases direct runoff in urban catchments. The recent introduction of green infrastructure in urban catchments for the purpose of sustainable development contributes to the decrease of the directly connected impervious areas (DCIA) by isolating existing impervious areas and consequently, to the flood risk mitigation. This study coupled the width function-based instantaneous hydrograph (WFIUH), which is able to handle the spatial distribution of the impervious areas, with the concept of the DCIA to assess the impact of decreasing DCIA on the shape of direct runoff hydrographs. Using several scenarios for typical green infrastructure and corresponding changes of DCIA in a test catchment, this study evaluated the effect of green infrastructure on the shape of the resulting direct runoff hydrographs and peak flows. The results showed that the changes in the DCIA immediately affects the shape of the direct runoff hydrograph and decreases peak flows depending on spatial implementation scenarios. The quantitative assessment of the spatial distribution of impervious areas and also the changes to the DCIA suggests effective and well-planned green infrastructure can be introduced in urban environments for flood risk management.

  10. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    NASA Astrophysics Data System (ADS)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  11. From Hills to Holes: How Climate Change and Mining are Altering Runoff Processes in Canada

    NASA Astrophysics Data System (ADS)

    Carey, S. K.

    2015-12-01

    Canadian environments are under considerable pressure from both climate and land-use change. While warming temperatures are widespread and amplified in the north, surface mining has resulted in large-scale landscape disturbance. How these changes affect catchment response is profound, fundamentally altering the cycling and delivery of water and geochemicals to the drainage network. In permafrost-underlain environments, coupled mass and energy processes control runoff response, and as ground thaw increases, new subsurface pathways become accessible while changing overall catchment storage. With surface mining, watersheds are altered such that they bare little resemblance to what existed prior to mining. In this presentation, data will be presented from long-term experiments exploring the impact of climate and mining on runoff processes in cold catchments using stable isotopes of water and associated hydrometric measurements. In southern Yukon, results from the Wolf Creek Research Basin highlights the influence of surface energy balances on controlling the timing and magnitude of flow response, with inter-annual variability largely driven by how atmospheric forcing interacts with permafrost-underlain areas of the catchment. In mountainous areas of southern British Columbia, surface mining reconfigures landscapes as valleys are filled with waste-rock. Mine-influenced catchments exhibit attenuated flows with delays in spring freshet and a more muted to precipitation. Stable isotopes in stream water suggests that both waste-rock and reference catchments are well mixed, however reference catchments are more responsive to enrichment and depletion events and that mine-influenced catchments had a heavier isotope signature than reference watersheds, suggesting enhanced influence of rainfall on recharge. In both cases, snow storage and release exerts considerable control on streamflow responses, and future changes in streamflow regimes will reflect both a changes in the snow regime and inherent catchment storage properties that are dynamic with time.

  12. A model for assessing water quality risk in catchments prone to wildfire

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Smith, Hugh; Chong, Derek; Nyman, Petter; Lane, Patrick; Sheridan, Gary

    2017-04-01

    Post-fire debris flows can have erosion rates up to three orders of magnitude higher than background rates. They are major sources of fine suspended sediment, which is critical to the safety of water supply from forested catchments. Fire can cover parts or all of these large catchments and burn severity is often heterogeneous. The probability of spatial and temporal overlap of fire disturbance and rainfall events, and the susceptibility of hillslopes to severe erosion determine the risk to water quality. Here we present a model to calculate recurrence intervals of high magnitude sediment delivery from runoff-generated debris flows to a reservoir in a large catchment (>100 km2) accounting for heterogeneous burn conditions. Debris flow initiation was modelled with indicators of surface runoff and soil surface erodibility. Debris flow volume was calculated with an empirical model, and fine sediment delivery was calculated using simple, expert-based assumptions. In a Monte-Carlo simulation, wildfire was modelled with a fire spread model using historic data on weather and ignition probabilities for a forested catchment in central Victoria, Australia. Multiple high intensity storms covering the study catchment were simulated using Intensity-Frequency-Duration relationships, and the runoff indicator calculated with a runoff model for hillslopes. A sensitivity analysis showed that fine sediment is most sensitive to variables related to the texture of the source material, debris flow volume estimation, and the proportion of fine sediment transported to the reservoir. As a measure of indirect validation, denudation rates of 4.6 - 28.5 mm ka-1 were estimated and compared well to other studies in the region. From the results it was extrapolated that in the absence of fire management intervention the critical sediment concentrations in the studied reservoir could be exceeded in intervals of 18 - 124 years.

  13. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions

    PubMed Central

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-01-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. “pre-event” water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as “isostats,” not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Key Points Hillslope connectivity is controlled by small storage changes in soil units Different catchment source waters mix in large riparian wetland storage Isotopes show riparian wetlands set the catchment transit time distribution PMID:25506098

  14. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions.

    PubMed

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-02-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. "pre-event" water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as "isostats," not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Hillslope connectivity is controlled by small storage changes in soil unitsDifferent catchment source waters mix in large riparian wetland storageIsotopes show riparian wetlands set the catchment transit time distribution.

  15. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty magnitude and bias, and to test how uncertainty depended on the density of the raingauge network and flow gauging station characteristics. The uncertainties were sometimes large (i.e. typical intervals of ±10-40% relative uncertainty) and highly variable between signatures. Uncertainty in the mean discharge was around ±10% for both catchments, while signatures describing the flow variability had much higher uncertainties in the Mahurangi where there was a fast rainfall-runoff response and greater high-flow rating uncertainty. Event and total runoff ratios had uncertainties from ±10% to ±15% depending on the number of rain gauges used; precipitation uncertainty was related to interpolation rather than point uncertainty. Uncertainty distributions in these signatures were skewed, and meant that differences in signature values between these catchments were often not significant. We hope that this study encourages others to use signatures in a way that is robust to data uncertainty.

  16. Multi-catchment rainfall-runoff simulation for extreme flood estimation

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel

    2017-04-01

    The SCHADEX method (Paquet et al., 2013) is a reference method in France for the estimation of extreme flood for dam design. The method is based on a semi-continuous rainfall-runoff simulation process: hundreds of different rainy events, randomly drawn up to extreme values, are simulated independently in the hydrological conditions of each day when a rainy event has been actually observed. This allows generating an exhaustive set of crossings between precipitation and soil saturation hazards, and to build a complete distribution of flood discharges up to extreme quantiles. The hydrological model used within SCHADEX, the MORDOR model (Garçon, 1996), is a lumped model, which implies that hydrological processes, e.g. rainfall and soil saturation, are supposed to be homogeneous throughout the catchment. Snow processes are nevertheless represented in relation with altitude. This hypothesis of homogeneity is questionable especially as the size of the catchment increases, or in areas of highly contrasted climatology (like mountainous areas). Conversely, modeling the catchment with a fully distributed approach would cause different problems, in particular distributing the rainfall-runoff model parameters trough space, and within the SCHADEX stochastic framework, generating extreme rain fields with credible spatio-temporal features. An intermediate solution is presented here. It provides a better representation of the hydro-climatic diversity of the studied catchment (especially regarding flood processes) while keeping the SCHADEX simulation framework. It consists in dividing the catchment in several, more homogeneous sub-catchments. Rainfall-runoff models are parameterized individually for each of them, using local discharge data if available. A first SCHADEX simulation is done at the global scale, which allows assigning a probability to each simulated event, mainly based on the global areal rainfall drawn for the event (see Paquet el al., 2013 for details). Then the rainfall of each event is distributed through the different sub-catchments using the spatial patterns calculated in the SPAZM precipitation reanalysis (Gottardi et al., 2012) for comparable situations of the 1948-2005 period. Corresponding runoffs are calculated with the hydrological models and aggregated to compute the discharge at the outlet of the main catchment. A complete distribution of flood discharges is finally computed. This method is illustrated with the example of the Durance at Serre-Ponçon catchment (south of French Alps, 3600 km2) which has been divided in four sub-catchements. The proposed approach is compared with the "classical" SCHADEX approach applied on the whole catchment. References: Garçon, R. (1996). Prévision opérationnelle des apports de la Durance à Serre-Ponçon à l'aide du modèle MORDOR. Bilan de l'année 1994-1995. La Houille Blanche, (5), 71-76. Gottardi, F., Obled, C., Gailhard, J., & Paquet, E. (2012). Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains. Journal of Hydrology, 432, 154-167. Paquet, E., Garavaglia, F., Garçon, R., & Gailhard, J. (2013). The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 495, 23-37.

  17. Hydrological modelling in sandstone rocks watershed

    NASA Astrophysics Data System (ADS)

    Ponížilová, Iva; Unucka, Jan

    2015-04-01

    The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.

  18. Simulating Streamflow and Dissolved Organic Matter Export from small Forested Watersheds

    NASA Astrophysics Data System (ADS)

    Xu, N.; Wilson, H.; Saiers, J. E.

    2010-12-01

    Coupling the rainfall-runoff process and solute transport in catchment models is important for understanding the dynamics of water-quality-relevant constituents in a watershed. To simulate the hydrologic and biogeochemical processes in a parametrically parsimonious way remains challenging. The purpose of this study is to quantify the export of water and dissolved organic matter (DOM) from a forested catchment by developing and testing a coupled model for rainfall-runoff and soil-water flushing of DOM. Natural DOM plays an important role in terrestrial and aquatic systems by affecting nutrient cycling, contaminant mobility and toxicity, and drinking water quality. Stream-water discharge and DOM concentrations were measured in a first-order stream in Harvard Forest, Massachusetts. These measurements show that stream water DOM concentrations are greatest during hydrologic events induced by rainfall or snowmelt and decline to low, steady levels during periods of baseflow. Comparison of the stream-discharge data to calculations of a simple rainfall-runoff model reveals a hysteretic relationship between stream-flow rates and the storage of water within the catchment. A modified version of the rainfall-runoff model that accounts for hysteresis in the storage-discharge relationship in a parametrically simple way is capable of describing much, but not all, of the variation in the time-series data on stream discharge. Our ongoing research is aimed at linking the new rainfall-runoff formulation with coupled equations that predict soil-flushing and stream-water concentrations of DOM as functions of the temporal change in catchment water storage. This model will provide a predictive tool for examining how changes in climatic variables would affect the runoff generation and DOM fluxes from terrestrial landscape.

  19. Exploring the Recurrence of Contributing Area Dynamics

    NASA Astrophysics Data System (ADS)

    Spence, C.; Mengistu, S. G.

    2015-12-01

    Recent years have witnessed a progression towards using models as a tool for predicting high frequency contributing area dynamics in catchments. High frequency contributing area modeling can become a viable alternative to the current approach for estimating contributing area in Canadian catchments, which assumes a static portion of the catchment's gross drainage area. The current approach does not consider the spatiotemporal variability of contributing area dynamics, and therefore, represents an important challenge for characterizing the recurrence that saturated areas in the catchment can actively connect and contribute to the main channel in response to runoff producing snowmelt or storm events. Such characterizations are useful to assess the relative importance of different areas within a catchment for runoff generation, and nutrient production and transport. In this study, the PDMROF configuration of Environment Canada's MESH model has been applied to simulate areas actively contributing to daily streamflow from four nested catchments of the Qu'Appelle River basin. The return periods of annual maximum contributing areas were computed using Weibull's equation. The research also evaluates if runoff magnitude is always associated with the same extent and recurrence of contributing area and investigates how contributing area and streamflow return periods relate. This work provides the foundation for evaluating the effect of environmental changes (mainly land use and climate associated changes) on contributing area recurrence by conducting similar investigations under various environmental change scenarios.

  20. Changes in catchment hydrology in relation to vegetation recovery: a comparative modelling experiment

    NASA Astrophysics Data System (ADS)

    Lana-Renault, Noemí; Karssenberg, Derek; Latron, Jérôme; Serrano, Mā Pilar; Regüés, David; Bierkens, Marc F. P.

    2010-05-01

    Mediterranean mountains have been largely affected by land abandonment and subsequent vegetation recovery, with a general expansion of shrubs and forests. Such a large scale land-cover change has modified the hydrological behavior of these areas, with significant impact on runoff production. Forecasting the trend of water resources under future re-vegetation scenarios is of paramount importance in Mediterranean basins, where water management relies on runoff generated in these areas. With this purpose, a modelling experiment was designed based on the information collected in two neighbouring research catchments with a different history of land use in the central Spanish Pyrenees. One (2.84 km2) is an abandoned agricultural catchment subjected to plant colonization and at present mainly covered by shrubs. The other (0.92 km2) is a catchment covered by dense natural forest, representative of undisturbed environments. Here we present the results of the analysis of the hydrological differences between the two catchments, and a description of the approach and results of the modelling experiment. In a statistical analysis of the field data, significant differences were observed in the streamflow response of the two catchments. The forested catchment recorded fewer floods per year compared to the old agricultural catchment, and its hydrological response was characterised by a marked seasonality, with autumn and spring as the only high flow periods. Stormflow was generally higher in the old agricultural catchment, especially for low to intermediate size events; only for large events the stormflow in the forested catchment was sometimes greater. Under drier conditions, the relative differences in the stormflow between the two catchments tended to increase whereas under wet conditions they tended to be similar. The forested catchment always reacted more slowly to rainfall, with lower peakflows (generally one order of magnitude lower) and longer recession limbs. The modelling experiment aims at separating the effect of land cover from other differences (e.g. catchment area, morphology) between the two catchments. This approach allows us to make general statements on effects of land cover, required for future predictions for larger areas. In our modelling experiment, a process-based distributed hydrological model is used for the two catchments. First, we calibrate the model using data from the two catchments until a single set of parameters valid for both is found. With this set of parameters and considering a given meteorological driver (due to their proximity, it can be considered the same for both catchments), runoff at the outlet of each catchment is simulated. Land cover is then swapped between catchments and a new runoff simulation is performed for each "swapped" catchment, using the same set of parameters and the same meteorological driver. The effects of the land cover change are determined by analysing the differences between the first and the "swapped" simulations. This study is based on an analysis of the hydrological differences of two catchments with different history of land use, and a comparative modelling experiment applied to them. Following this approach, we attempt to advance our understanding of the effects of land-use/land-cover changes in catchment hydrology and, ultimately, anticipate their hydrological consequences under a future re-vegetation scenario.

  1. Statistical Examination of the Resolution of a Block-Scale Urban Drainage Model

    NASA Astrophysics Data System (ADS)

    Goldstein, A.; Montalto, F. A.; Digiovanni, K. A.

    2009-12-01

    Stormwater drainage models are utilized by cities in order to plan retention systems to prevent combined sewage overflows and design for development. These models aggregate subcatchments and ignore small pipelines providing a coarse representation of a sewage network. This study evaluates the importance of resolution by comparing two models developed on a neighborhood scale for predicting the total quantity and peak flow of runoff to observed runoff measured at the site. The low and high resolution models were designed for a 2.6 ha block in Bronx, NYC in EPA Stormwater Management Model (SWMM) using a single catchment and separate subcatchments based on surface cover, respectively. The surface covers represented included sidewalks, street, buildings, and backyards. Characteristics for physical surfaces and the infrastructure in the high resolution mode were determined from site visits, sewer pipe maps, aerial photographs, and GIS data-sets provided by the NYC Department of City Planning. Since the low resolution model was depicted at a coarser scale, generalizations were assumed about the overall average characteristics of the catchment. Rainfall and runoff data were monitored over a four month period during the summer rainy season. A total of 53 rain fall events were recorded but only 29 storms produced significant amount of runoffs to be evaluated in the simulations. To determine which model was more accurate at predicting the observed runoff, three characteristics for each storm were compared: peak runoff, total runoff, and time to peak. Two statistical tests were used to determine the significance of the results: the percent difference for each storm and the overall Chi-squared Goodness of Fit distribution for both the low and high resolution model. These tests will evaluate if there is a statistical difference depending on the resolution of scale of the stormwater model. The scale of representation is being evaluated because it could have a profound impact on how low-impact development strategies are assessed. Rerouting flows to delay the time of entry into the combined sewage is the primary goal of stormwater source controls which may be better differentiated in a high resolution as opposed to low resolution model. The preliminary hypothesis is that the low resolution model simplifies watershed by defining attributes uniformly across the watershed. In the high resolution model, the physical flow can be more accurate depicted by connected the various subcatchments. For example, the runoff from buildings can directly be routed to the backyard. The main drawback to the high resolution model is the risk of adding uncertainty due to the number of parameters.

  2. Stormwater runoff pollutant loading distributions and their correlation with rainfall and catchment characteristics in a rapidly industrialized city.

    PubMed

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.

  3. Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City

    PubMed Central

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries. PMID:25774922

  4. Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Ferreira, António

    2017-04-01

    Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (<0.4m). Forest is the dominant land-use (56%), but urban areas cover an extensive area (40%), whereas agricultural land has declined to a very small area (4%). The urban area comprises contrasting urban styles, notably older discontinuous urban areas with buildings separated by gardens of low population density (<25 inhabitants km-2), and recent well-defined continuous urban cores dominated by apartment blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management), and lithology (either sandstone or limestone). Annual storm runoff coefficients were lowest (13.7%) in catchments dominated by forest (>80%) and greatest (17.3-17.6%) in the most urbanized sub-catchments (49-53% urban). Impervious area seems to control streamflow particularly during dry periods. Winter runoff (streamflow per unit area) was 2-4 times higher than summer runoff in highly urbanized areas, but was 21-fold higher in winter than in summer in the least urbanized sub-catchment, indicating greater flow connectivity in winter, enhanced by increased soil moisture. Lithology also played an important role on hydrology, with sandstone sub-catchments exhibiting greater annual baseflow index values (23-46%) than found in limestone ones (<5%). For sub-catchments underlain by both lithologies, linear relationships were found between storm runoff coefficients and percentage urban and percentage impervious area, but with greater runoff responses in the sandstone ones. Nevertheless, linear regression lines for both lithologies get close to each other when the extent of urban areas reached about 50%. The proximity of urban areas to the stream network and whether urban storm runoff is directly piped to the stream network were important parameters influencing peak flows and response time. Landscape mosaics that include land-use patches of high soil permeability tend to provide locations of surface water retention and enhanced infiltration, thereby breaking flow connectivity between hillslope urban surfaces and the stream network. This kind of spatial pattern should be considered for urban planning, in order to minimize flood hazards.

  5. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dessie, Mekete; Verhoest, Niko E. C.; Pauwels, Valentijn R. N.; Adgo, Enyew; Deckers, Jozef; Poesen, Jean; Nyssen, Jan

    2015-03-01

    Lakes are very important components of the earth's hydrological cycle, providing a variety of services for humans and ecosystem functioning. For a sustainable use of lakes, a substantial body of knowledge on their water balance is vital. We present here a detailed daily water balance analysis for Lake Tana, the largest lake in Ethiopia and the source of the Blue Nile. Rainfall on the lake is determined by Thiessen polygon procedure, open water evaporation is estimated by the Penman-combination equation and observed inflows for the gauged catchments as well as outflow data at the two lake outlets are directly used. Runoff from ungauged catchments is estimated using a simple rainfall-runoff model and runoff coefficients. Hillslope catchments and floodplains are treated separately, which makes this study unique compared to previous water balance studies. Impact of the floodplain on the lake water balance is analyzed by conducting scenario-based studies. We found an average yearly abstraction of 420 × 106 m3 or 6% of river inflows to the lake by the floodplain in 2012 and 2013. Nearly 60% of the inflow to the lake is from the Gilgel Abay River. Simulated lake levels compare well with the observed lake levels (R2 = 0.95) and the water balance can be closed with a closure error of 82 mm/year (3.5% of the total lake inflow). This study demonstrates the importance of floodplains and their influence on the water balance of the lake and the need of incorporating the effects of floodplains and water abstraction for irrigation to improve predictions.

  6. Use of a scenario-neutral approach to identify the key hydro-meteorological attributes that impact runoff from a natural catchment

    NASA Astrophysics Data System (ADS)

    Guo, Danlu; Westra, Seth; Maier, Holger R.

    2017-11-01

    Scenario-neutral approaches are being used increasingly for assessing the potential impact of climate change on water resource systems, as these approaches allow the performance of these systems to be evaluated independently of climate change projections. However, practical implementations of these approaches are still scarce, with a key limitation being the difficulty of generating a range of plausible future time series of hydro-meteorological data. In this study we apply a recently developed inverse stochastic generation approach to support the scenario-neutral analysis, and thus identify the key hydro-meteorological variables to which the system is most sensitive. The stochastic generator simulates synthetic hydro-meteorological time series that represent plausible future changes in (1) the average, extremes and seasonal patterns of rainfall; and (2) the average values of temperature (Ta), relative humidity (RH) and wind speed (uz) as variables that drive PET. These hydro-meteorological time series are then fed through a conceptual rainfall-runoff model to simulate the potential changes in runoff as a function of changes in the hydro-meteorological variables, and runoff sensitivity is assessed with both correlation and Sobol' sensitivity analyses. The method was applied to a case study catchment in South Australia, and the results showed that the most important hydro-meteorological attributes for runoff were winter rainfall followed by the annual average rainfall, while the PET-related meteorological variables had comparatively little impact. The high importance of winter rainfall can be related to the winter-dominated nature of both the rainfall and runoff regimes in this catchment. The approach illustrated in this study can greatly enhance our understanding of the key hydro-meteorological attributes and processes that are likely to drive catchment runoff under a changing climate, thus enabling the design of tailored climate impact assessments to specific water resource systems.

  7. Rainfall and runoff quantity and quality data collected at four urban land-use catchments in Fresno, California, October 1981-April 1983

    USGS Publications Warehouse

    Oltmann, R.N.; Guay, J.R.; Shay, J.M.

    1987-01-01

    Data were collected as part of the National Urban Runoff Program to characterize urban runoff in Fresno, California. Rainfall-runoff quantity and quality data are included along with atmospheric dry-deposition and street-surface particulate quality data. The data are presented in figures and tables that reflect four land uses: industrial, single-dwelling residential, multiple-dwelling residential, and commercial. A total of 255 storms were monitored for rainfall and runoff quantity. Runoff samples from 112 of these storms were analyzed for physical, organic, inorganic, and biological constituents. The majority of the remaining storms have pH and specific conductance data only. Ninety-two composite rain samples were collected. Of these, 63 were analyzed for physical, inorganic, and (or) organic constituents. The remaining rainfall samples have pH and specific conductance data only. Nineteen atmospheric deposition and 21 street-particulate samples were collected and analyzed for inorganic and organic constituents. The report also details equipment utilization and operation, and discusses data collection methods. (USGS)

  8. Effect of Spatial Heterogeneity of Runoff Generation Mechanisms on the Scaling Behavior of Event Runoff Responses in a Natural River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Sivapalan, Murugesu

    2011-05-26

    This paper investigates the effects of spatial heterogeneity of runoff generation processes on the scaling behavior of event runoff responses in a natural catchment, the Illinois River Basin near Tahlequah in Oklahoma. A previous study in this basin had revealed a systematic spatial trend in the relative dominance of different runoff generation mechanisms, with the fraction of total runoff generation due to the subsurface stormflow mechanism shown to increase in the downstream direction, while surface runoff generation by saturation excess showed a corresponding decrease. These trends were attributable to corresponding systematic trends in landscape properties, namely, saturated hydraulic conductivity ofmore » soils and topographic slope. Considering the differences in the timing of hillslope responses between the different runoff generation mechanisms, this paper then explores their impacts on the runoff routing responses, including how they change with increasing spatial scale. For this purpose we utilize a distributed, physically based hydrological model, with a fully hydraulic stream network routing component. The model is used to generate instantaneous response functions (IRF) for nested catchments of a range of sizes along the river network, as well as quantitative measures of their shape, e.g., peak and time-to-peak. In order to decipher and separate the effects of landscape heterogeneity from those due to basin geomorphology and hydrologic regime, the model simulations are carried out for three hypothetical cases that make assumptions about regarding landscape properties (uniform, a systematic trend, and heterogeneity plus the trend), repeating these simulations under wet and dry antecedent conditions. The simulations produced expected (consistent with previous theoretical studies) and also somewhat surprising results. For example, the power-law relationship between peak of the IRF and drainage area is shown to be flatter under wet conditions than under dry conditions, even though the (faster) saturation excess mechanism is more dominant under wet conditions. This result appears to be caused by partial area runoff generation: under wet conditions, the fraction of saturation area is about 30%, while under dry conditions it is less than 10% for the same input of rainfall. This means travel times associated with overland flow (that mostly contributes to the peak and time to peak) are in fact longer under wet conditions than during dry conditions. The power-law relationship between peak and drainage area also exhibits a scaling break at around 1000 km2, and this can be shown to be related to the peculiar shape of the catchment, which is reflected in a corresponding scaling break in the mainstream length versus drainage area relationship (i.e., Hack’s Law) at about 1,000 km2.« less

  9. Neural Networks for Hydrological Modeling Tool for Operational Purposes

    NASA Astrophysics Data System (ADS)

    Bhatt, Divya; Jain, Ashu

    2010-05-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. The ANN models developed consistently outperformed the conceptual model developed in this study. The results obtained in this study indicate that the ANNs can be extremely useful tools for modeling the complex rainfall-runoff process in real catchments. The ANNs should be adopted in real catchments for hydrological modeling and forecasting. It is hoped that more research will be carried out to compare the performance of ANN model with the conceptual models actually in use at catchment scales. It is hoped that such efforts may go a long way in making the ANNs more acceptable by the policy makers, water resources decision makers, and traditional hydrologists.

  10. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    NASA Astrophysics Data System (ADS)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  11. Streamflow variation of forest covered catchments

    NASA Astrophysics Data System (ADS)

    Gribovszki, Z.; Kalicz, P.; Kucsara, M.

    2003-04-01

    Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).

  12. Integrating observations and models to help understanding how flooding impacts upon catchments as a basis for decision making.

    NASA Astrophysics Data System (ADS)

    Owen, Gareth; Quinn, Paul; O'Donnell, Greg

    2014-05-01

    This paper explains how flood management projects might be better informed in the future by using more observations and a novel impact modelling tool in a simple transparent framework. The understanding of how local scale impacts propagate downstream to impact on the downstream hydrograph is difficult to determine using traditional rainfall runoff and hydraulic routing methods. The traditional approach to modelling essentially comprises selecting a fixed model structure and then calibrating to an observational hydrograph, which make those model predictions highly uncertain. Here, a novel approach is used in which the structure of the runoff generation is not specified a priori and incorporates expert knowledge. Rather than using externally for calibration, the observed outlet hydrographs are used directly within the model. Essentially the approach involves the disaggregation of the outlet hydrograph by making assumptions about the spatial distribution of runoff generated. The channel network is parameterised through a comparison of the timing of observed hydrographs at a number of nested locations within the catchment. The user is then encouraged to use their expert knowledge to define how runoff is generated locally and what the likely impact of any local mitigation is. Therefore the user can specify any hydrological model or flow estimation method that captures their expertise. Equally, the user is encouraged to install as many instruments as they can afford to cover the catchment network. A Decision Support Matrix (DSM) is used to encapsulate knowledge of the runoff dynamics gained from simulation in a simple visual way and hence to convey the likely impacts that arise from a given flood management scenario. This tool has been designed primarily to inform and educate landowners, catchment managers and decision makers. The DSM outlines scenarios that are likely to increase or decrease runoff rates and allows the user to contemplate the implications and uncertainty of their decisions. The tool can also be used to map the likely changes in flood peak due to land use management options. An example case study will be shown for a 35km2 catchment in Northern England which is prone to flooding. The method encourages end users to instrument and quantify their own catchment network and to make informed, evidence based decisions appropriate to their own flooding problems.

  13. Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems

    NASA Astrophysics Data System (ADS)

    Milzow, Christian; Bauer-Gottwein, Peter

    2010-05-01

    The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important source of economic income for Botswana. A second hydrological model simulating flow through the wetlands is used to study the impact of catchment runoff changes on the hydrology and ecology of the wetlands. The final goal of the project is to demonstrate the relation between economic benefits of water abstractions in the upstream and downstream environmental impact. Furthermore the results will provide a basis for defining adequate compensations for upstream stakeholders who forego benefits of agricultural intensification to ensure the conservation of downstream ecosystem services.

  14. Thermal Fluxes and Temperatures in Small Urban Headwater Streams of the BES LTER: Landscape Forest and Impervious Patches and the Importance of Spatial and Temporal Scales

    NASA Astrophysics Data System (ADS)

    Kim, H.; Belt, K. T.; Welty, C.; Heisler, G.; Pouyat, R. V.; McGuire, M. P.; Stack, W. P.

    2006-05-01

    Water and material fluxes from urban landscape patches to small streams are modulated by extensive "engineered" drainage networks. Small urban headwater catchments are different in character and function from their larger receiving streams because of their extensive, direct connections to impervious surface cover (ISC) and their sometimes buried nature. They need to be studied as unique functional hydrologic units if impacts on biota are to be fully understood. As part of the Baltimore Ecosystem Study LTER project, continuous water temperature data are being collected at 2-minute intervals at over twenty small catchments representing various mixtures of forest and ISC. Suburban stream sites with greater ISC generally have higher summer water temperatures. Suburban catchments with most of their channel drainage contained within storm drain pipes show subdued diurnal variation and cool temperatures, but with very large spikes in summer runoff events. Conversely, high ISC urban piped streams have elevated "baseline" temperatures that stand well above all the other monitoring sites. There is a pronounced upstream-downstream effect; nested small headwater catchments experience more frequent, larger temperature spikes related to runoff events than downstream sites. Also, runoff-initiated temperature elevations at small stream sites unexpectedly last much longer than the storm runoff hydrographs. These observations suggest that for small headwater catchments, urban landscapes not only induce an ambient, "heat island" effect on stream temperatures, but also introduce thermal disturbance regimes and fluxes that are not trivial to aquatic biota.

  15. Organic carbon transport through a discontinuous fluvial system in a Mediterranean catchment after a greening-up process

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Almagro, María; Díaz-Pereira, Elvira; Pérez-Cutillas, Pedro; de Vente, Joris; Martínez-Mena, María

    2017-04-01

    Quantification of different organic carbon pools mobilized by lateral fluxes is important to close organic carbon (OC) budgets at the catchment scale. This quantification helps to identify in which forms OC is transferred, deposited, and mineralized during the erosion cycle. Many Mediterranean mountain catchments have experienced important land use changes in the last 50 years leading to a recovery of the vegetation in many cases. Furthermore, many of them are characterized by stream discontinuity with high runoff rates responding to intensive hydrological pulses. There is a current lack of knowledge on fluvial OC fluxes and their relation to soil organic carbon stocks in these systems. The objective of this research was to quantify the amount of organic carbon transported by these systems in a catchment representative of Mediterranean conditions and to explore how intermittent fluvial systems can affect organic carbon transported by lateral flows. During six years OC fluvial fluxes in a catchment of 77 km2 in SE Spain were monitored. The catchment experienced a greening-up process in the last 50 years through a conversion mainly from agricultural use (decrease 44%) to forest (increase 45%). Data on water discharge, sediment concentration, total organic carbon (OC) of suspended sediments and dissolved organic carbon (DOC) were collected throughout 32 rainfall events and 13 sampling periods with base flow conditions. The data were collected from two monitoring stations located on two nested subcatchments covering permanent and ephemeral flow conditions. We found no significant differences in OC concentrations in suspended sediments (10.1 ± 5 g kg-1) and DOC (0.014 ± 0.010 g kg-1) between the ephemeral and the permanent streams. However, sediment concentration, index of aggregation and silt content of suspended load were significantly higher in the ephemeral stream than in the permanent one. OC concentration of suspended sediments was much lower than OC concentration of the catchment soils (20.5 ± 7 g kg-1), and it showed a strong positive correlation with clay content. DOC concentrations were quite high, being in the upper limit of the mean values reported for European rivers and close to DOC values of runoff generated in natural forests from similar areas. A strong positive correlation between DOC and sediment concentration was also observed. DOC represents a 20% and 12% of the total OC fluvial flux in the permanent and ephemeral streams, respectively. OC in suspended solids represents an 80% and 88% of the total OC fluvial flux in the permanent and ephemeral streams, respectively. The ephemeral stream (with a contribution of 70% to the total catchment area) provides up to 20% to the total transported OC downstream. The OC transported to the catchment outlet (1.97 g C m-2 year-1) constitutes 33 % of the OC lateral flux mobilized in the upper subcatchment areas (6 g C m-2 year-1). These findings highlight the strong dynamic character of organic carbon during transport in these fluvial systems and the important role of the hydrological regime for carbon transport and stability.

  16. Regionalization of subsurface stormflow parameters of hydrologic models: Derivation from regional analysis of streamflow recession curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Li, Hongyi; Huang, Maoyi

    2014-07-21

    Subsurface stormflow is an important component of the rainfall–runoff response, especially in steep terrain. Its contribution to total runoff is, however, poorly represented in the current generation of land surface models. The lack of physical basis of these common parameterizations precludes a priori estimation of the stormflow (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global land surface models. This paper is aimed at deriving regionalized parameterizations of the storage–discharge relationship relating to subsurface stormflow from a top–down empirical data analysis of streamflow recession curves extracted from 50 eastern United Statesmore » catchments. Detailed regression analyses were performed between parameters of the empirical storage–discharge relationships and the controlling climate, soil and topographic characteristics. The regression analyses performed on empirical recession curves at catchment scale indicated that the coefficient of the power-law form storage–discharge relationship is closely related to the catchment hydrologic characteristics, which is consistent with the hydraulic theory derived mainly at the hillslope scale. As for the exponent, besides the role of field scale soil hydraulic properties as suggested by hydraulic theory, it is found to be more strongly affected by climate (aridity) at the catchment scale. At a fundamental level these results point to the need for more detailed exploration of the co-dependence of soil, vegetation and topography with climate.« less

  17. Runoff of small rocky headwater catchments: Field observations and hydrological modeling

    NASA Astrophysics Data System (ADS)

    Gregoretti, C.; Degetto, M.; Bernard, M.; Crucil, G.; Pimazzoni, A.; De Vido, G.; Berti, M.; Simoni, A.; Lanzoni, S.

    2016-10-01

    In dolomitic headwater catchments, intense rainstorms of short duration produce runoff discharges that often trigger debris flows on the scree slopes at the base of rock cliffs. In order to measure these discharges, we placed a measuring facility at the outlet (elevation 1770 m a.s.l.) of a small, rocky headwater catchment (area ˜0.032 km2, average slope ˜320%) located in the Venetian Dolomites (North Eastern Italian Alps). The facility consists of an approximately rectangular basin, ending with a sharp-crested weir. Six runoff events were recorded in the period 2011-2014, providing a unique opportunity for characterizing the hydrological response of the catchment. The measured hydrographs display impulsive shapes, with an abrupt raise up to the peak, followed by a rapidly decreasing tail, until a nearly constant plateau is eventually reached. This behavior can be simulated by means of a distributed hydrological model if the excess rainfall is determined accurately. We show that using the Soil Conservation Service Curve-Number (SCS-CN) method and assuming a constant routing velocity invariably results in an underestimated peak flow and a delayed peak time. A satisfactory prediction of the impulsive hydrograph shape, including peak value and timing, is obtained only by combining the SCS-CN procedure with a simplified version of the Horton equation, and simulating runoff routing along the channel network through a matched diffusivity kinematic wave model. The robustness of the proposed methodology is tested through a comparison between simulated and observed timings of runoff or debris flow occurrence in two neighboring alpine basins.

  18. Functional approach to exploring climatic and landscape controls on runoff generation: 2 Timing of runoff storm response

    NASA Astrophysics Data System (ADS)

    Li, Hong-Yi; Sivapalan, Murugesu

    2014-12-01

    Hortonian overland flow, Dunne overland flow, and subsurface stormflow are the three most dominant mechanisms contributing to both the volume and timing of streamflow in headwater catchments. In this paper, guided by the Dunne diagram, we explore the impacts of climate, soil, and topography on estimated probability distributions of the travel times of each of these three runoff components. In each case, these are expressed in terms of the Connected Instantaneous Response Functions (CIRF) and account for the dynamics of their individual partial effective contributing areas that retain the connectivity to the outlet (instead of the whole catchment area). A spatially distributed hydrological model is used to derive the CIRFs numerically under multiple combinations of climate, soil, and topographic properties. The mean travel times and dimensionless forms of the CIRFs (i.e., scaled by their respective mean travel times) are used to examine both advective and dispersive aspects of catchment's runoff routing response. It is found that the CIRFs, upon nondimensionalization, collapsed to common characteristic shapes, which could be explained in terms of the relative contributions of hillslope and channel network flows, and the size of runoff contributing areas. The contributing areas, particularly for the Dunne overland flow, are themselves found to be governed by the competition between drainage of and recharge to the water table, and could be explained by a dimensionless drainage index which quantifies this competition. The study also reveals simple indicators based on landscape properties that can explain the magnitude of travel times in different catchments.

  19. Predicting in ungauged basins using a parsimonious rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Olav Peerebom, Ivar; Nilsson, Anna

    2015-04-01

    Prediction in ungauged basins is a demanding, but necessary test for hydrological model structures. Ideally, the relationship between model parameters and catchment characteristics (CC) should be hydrologically justifiable. Many studies, however, report on failure to obtain significant correlations between model parameters and CCs. Under the hypothesis that the lack of correlations stems from non-identifiability of model parameters caused by overparameterization, the relatively new parameter parsimonious DDD (Distance Distribution Dynamics) model was tested for predictions in ungauged basins in Norway. In DDD, the capacity of the subsurface water reservoir M is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than, for example, the well-known Swedish HBV model. In this study, multiple regression equations relating CCs and model parameters were trained from 84 calibrated catchments located all over Norway and all model parameters showed significant correlations with catchment characteristics. The significant correlation coefficients (with p- value < 0.05) ranged from 0.22-0.55. The suitability of DDD for predictions in ungauged basins was tested for 17 catchments not used to estimate the multiple regression equations. For 10 of the 17 catchments, deviations in Nash-Suthcliffe Efficiency (NSE) criteria between the calibrated and regionalised model were less than 0.1. The median NSE for the regionalised DDD for the 17 catchments, for two different time series was 0.66 and 0.72. Deviations in NSE between calibrated and regionalised models are well explained by the deviations between calibrated and regressed parameters describing spatial snow distribution and snowmelt, respectively. This latter result indicates the topic for further improvements in the model structure of DDD.

  20. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions - the role of runoff components.

    PubMed

    Zajíček, Antonín; Fučík, Petr; Kaplická, Markéta; Liška, Marek; Maxová, Jana; Dobiáš, Jakub

    2018-04-01

    Dynamics of pesticides and their metabolites in drainage waters during baseflow periods and rainfall-runoff events (RREs) were studied from 2014 to 2016 at three small, tile-drained agricultural catchments in Bohemian-Moravian Highlands, Czech Republic. Drainage systems in this region are typically built in slopes with considerable proportion of drainage runoff originating outside the drained area itself. Continuous monitoring was performed by automated samplers, and the event hydrograph was separated using 18 O and 2 H isotopes and drainage water temperature. Results showed that drainage systems represent a significant source for pesticides leaching from agricultural land. Leaching of pesticide metabolites was mainly associated with baseflow and shallow interflow. Water from causal precipitation diluted their concentrations. The prerequisites for the leaching of parental compounds were a rainfall-runoff event occurring shortly after spraying, and the presence of event water in the runoff. When such situations happened consequently, pesticides concentrations in drainage water were high and the pesticide load reached several grams in a few hours. Presented results introduce new insights into the processes of pesticides movement in small, tile-drained catchments and emphasizes the need to incorporate drainage hydrology and flow-triggered sampling into monitoring programmes in larger catchments as well as in environment-conservation policy.

  1. Unravelling abiotic and biotic controls on the seasonal water balance using data-driven dimensionless diagnostics

    NASA Astrophysics Data System (ADS)

    Seibert, Simon Paul; Jackisch, Conrad; Ehret, Uwe; Pfister, Laurent; Zehe, Erwin

    2017-06-01

    The baffling diversity of runoff generation processes, alongside our sketchy understanding of how physiographic characteristics control fundamental hydrological functions of water collection, storage, and release, continue to pose major research challenges in catchment hydrology. Here, we propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in catchment inter-comparison. More specifically, we present dimensionless double mass curves (dDMC) which allow inference of information on runoff generation and the water balance at the seasonal and annual timescales. By separating the vegetation and winter periods, dDMC furthermore provide information on the role of biotic and abiotic controls in seasonal runoff formation. A key aspect we address in this paper is the derivation of dimensionless expressions of fluxes which ensure the comparability of the signatures in space and time. We achieve this by using the limiting factors of a hydrological process as a scaling reference. We show that different references result in different diagnostics. As such we define two kinds of dDMC which allow us to derive seasonal runoff coefficients and to characterize dimensionless streamflow release as a function of the potential renewal rate of the soil storage. We expect these signatures for storage controlled seasonal runoff formation to remain invariant, as long as the ratios of release over supply and supply over storage capacity develop similarly in different catchments. We test the proposed methods by applying them to an operational data set comprising 22 catchments (12-166 km2) from different environments in southern Germany and hydrometeorological data from 4 hydrological years. The diagnostics are used to compare the sites and to reveal the dominant controls on runoff formation. The key findings are that dDMC are meaningful signatures for catchment runoff formation at the seasonal to annual scale and that the type of scaling strongly influences the diagnostic potential of the dDMC. Adding discrimination between growing season and winter period was of fundamental importance and easy to implement by means of a temperature-index model. More specifically, temperature aggregates explain over 70 % of the variability of the seasonal summer runoff coefficients. The results also show that the soil topographic index, i.e. the product of topographic gradient and saturated hydraulic conductivity, is significantly correlated with winter runoff coefficients, whereas the topographic gradient and the hydraulic conductivity alone are not. We conclude that proxies for gradients and resistances should be interpreted as a pair. Lastly, the dDMC concept reveals memory effects between summer and winter runoff regimes that are not relevant in spring between the transition from winter to summer.

  2. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models.

    PubMed

    Bartley, Rebecca; Speirs, William J; Ellis, Tim W; Waters, David K

    2012-01-01

    Land use (and land management) change is seen as the primary factor responsible for changes in sediment and nutrient delivery to water bodies. Understanding how sediment and nutrient (or constituent) concentrations vary with land use is critical to understanding the current and future impact of land use change on aquatic ecosystems. Access to appropriate land-use based water quality data is also important for calculating reliable load estimates using water quality models. This study collated published and unpublished runoff, constituent concentration and load data for Australian catchments. Water quality data for total suspended sediments (TSS), total nitrogen (TN) and total phosphorus (TP) were collated from runoff events with a focus on catchment areas that have a single or majority of the contributing area under one land use. Where possible, information on the dissolved forms of nutrients were also collated. For each data point, information was included on the site location, land use type and condition, contributing catchment area, runoff, laboratory analyses, the number of samples collected over the hydrograph and the mean constituent concentration calculation method. A total of ∼750 entries were recorded from 514 different geographical sites covering 13 different land uses. We found that the nutrient concentrations collected using "grab" sampling (without a well defined hydrograph) were lower than for sites with gauged auto-samplers although this data set was small and no statistical analysis could be undertaken. There was no statistically significant difference (p<0.05) between data collected at plot and catchment scales for the same land use. This is most likely due to differences in land condition over-shadowing the effects of spatial scale. There was, however, a significant difference in the concentration value for constituent samples collected from sites where >90% of the catchment was represented by a single land use, compared to sites with <90% of the upstream area represented by a single land use. This highlights the need for more single land use water quality data, preferably over a range of spatial scales. Overall, the land uses with the highest median TSS concentrations were mining (∼50,000mg/l), horticulture (∼3000mg/l), dryland cropping (∼2000mg/l), cotton (∼600mg/l) and grazing on native pastures (∼300mg/l). The highest median TN concentrations are from horticulture (∼32,000μg/l), cotton (∼6500μg/l), bananas (∼2700μg/l), grazing on modified pastures (∼2200μg/l) and sugar (∼1700μg/l). For TP it is forestry (∼5800μg/l), horticulture (∼1500μg/l), bananas (∼1400μg/l), dryland cropping (∼900mg/l) and grazing on modified pastures (∼400μg/l). For the dissolved nutrient fractions, the sugarcane land use had the highest concentrations of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). Urban land use had the highest concentrations of dissolved inorganic phosphorus (DIP). This study provides modellers and catchment managers with an increased understanding of the processes involved in estimating constituent concentrations, the data available for use in modelling projects, and the conditions under which they should be applied. Areas requiring more data are also discussed. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. Topographic effects on flow path and surface water chemistry of the Llyn Brianne catchments in Wales

    USGS Publications Warehouse

    Wolock, D.M.; Hornberger, G.M.; Musgrove, T.J.

    1990-01-01

    Topographic shape is a watershed attribute thought to influence the flow path followed by water as it traverses a catchment. Flow path, in turn, may affect the chemical composition of surface waters. Topography is quantified in the hydrological model TOPMODEL as the relative frequency distribution of the index ln( a tanB), where a is the upslope area per unit contour that drains past a point and tanB is the local surface slope. Spatial distributions of ln( a tanB) were calculated for eight catchments in Wales on a 25 m ?? 25 m grid. Among the catchments, mean observed stream H+ concentration during high flow periods was highly correlated with the mean of the ln( a tanB) distribution. The steady-state gain of a transfer function (time series) model relating H+ to discharge was positively correlated with the mean of the ln( a tanB) distribution. These results suggest that during high flow periods, both the average stream acidity and the magnitude of fluctuations in H+ are conditioned by the topographic shape of the catchment. By performing a sensitivity analysis on TOPMODEL, we also show that as the mean of the ln( a tanB) distribution for a catchment increases, so does its theoretical likelihood to produce significant quantities of surface and near-surface runoff. Our observed results in the Llyn Brianne catchments are consistent with this theoretical expectation in that surface or near-surface runoff is often higher in acidity than are deeper sources of hillslope runoff. ?? 1990.

  4. The Treatment Train approach to reducing non-point source pollution from agriculture

    NASA Astrophysics Data System (ADS)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be implemented without impacting on the farm's primary function. The TT has the potential to yield benefits beyond those associated with water quality. Increasing catchment resilience through the use of landscape interventions can provide multiple benefits by mitigating for floods and droughts and creating ecological habitat.

  5. The magnitude of variability produced by methods used to estimate annual stormwater contaminant loads for highly urbanised catchments.

    PubMed

    Beck, H J; Birch, G F

    2013-06-01

    Stormwater contaminant loading estimates using event mean concentration (EMC), rainfall/runoff relationship calculations and computer modelling (Model of Urban Stormwater Infrastructure Conceptualisation--MUSIC) demonstrated high variability in common methods of water quality assessment. Predictions of metal, nutrient and total suspended solid loadings for three highly urbanised catchments in Sydney estuary, Australia, varied greatly within and amongst methods tested. EMC and rainfall/runoff relationship calculations produced similar estimates (within 1 SD) in a statistically significant number of trials; however, considerable variability within estimates (∼50 and ∼25 % relative standard deviation, respectively) questions the reliability of these methods. Likewise, upper and lower default inputs in a commonly used loading model (MUSIC) produced an extensive range of loading estimates (3.8-8.3 times above and 2.6-4.1 times below typical default inputs, respectively). Default and calibrated MUSIC simulations produced loading estimates that agreed with EMC and rainfall/runoff calculations in some trials (4-10 from 18); however, they were not frequent enough to statistically infer that these methods produced the same results. Great variance within and amongst mean annual loads estimated by common methods of water quality assessment has important ramifications for water quality managers requiring accurate estimates of the quantities and nature of contaminants requiring treatment.

  6. Operational applications of a process-based runoff generation module on the Swiss Plateau and Prealps

    NASA Astrophysics Data System (ADS)

    Horat, Christoph; Antonetti, Manuel; Wernli, Heini; Zappa, Massimiliano

    2017-04-01

    Flash floods evolve rapidly during and after heavy precipitation events and represent a risk for society, especially in mountainous areas. Knowledge on meteorological variables and their temporal development is often not sufficient to predict their occurrence. Therefore, information about the state of the hydrological system derived from hydrological models is used. These models rely however on strong simplifying assumptions and need therefore to be calibrated. This prevents their application on catchments, where no runoff data is available. Here we present a flash-flood forecasting chain including: (i) a nowcasting product which combines radar and rain gauge rainfall data (CombiPrecip), (ii) meteorological data from numerical weather prediction models at currently finest available resolution (COSMO-1, COSMO-E), (iii) operationally available soil moisture estimations from the PREVAH hydrological model, and (iv) a process-based runoff generation module with no need for calibration (RGM-PRO). This last component uses information on the spatial distribution of dominant runoff processes (DRPs) which can be derived with different mapping approaches, and is parameterised a priori based on expert knowledge. First, we compared the performance of RGM-PRO with the one of a traditional conceptual runoff generation module for several events on Swiss Emme catchment, as well as on their nested catchments. Different DRP-maps are furthermore tested to evaluate the sensitivity of the forecasting chain to the mapping approaches. Then, we benchmarked the new forecasting chain with the traditional chain used on the Swiss Verzasca catchment. The results show that RGM-PRO performs similarly or even better than the traditional calibrated conceptual module on the investigated catchments. The use of strongly simplified DRP mapping approaches still leads to satisfying results, due mainly to the fact that the largest uncertainty source is represented by the meteorological input data. On the Verzasca catchment, RGM-PRO outperformed the traditional forecast chain in terms of mean absolute error, independently from the lead time and threshold quantile, whereas the Brier Skill Score did not show any clear preference. Probabilistic input data led generally to better results compared with those obtained with deterministic forecasts.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Sivapalan, Murugesu

    Hortonian overland flow, Dunne overland flow and subsurface stormflow are the three dominant mechanisms contributing to both the volume and timing of streamflow. A previous study quantified the climatic and landscape controls on the relative dominance of the volumes of the different runoff components. In this paper we explore the impacts of climate, soil and topography on the timing of these runoff components in small catchments within the framework of the Connected Instantaneous Response Functions (CIRF). The CIRF here is viewed as a probability density function of travel times of water droplets associated with a given runoff generation mechanism (frommore » the locations where they are generated to the catchment outlet). CIRF is a refinement of the traditional catchment IRF in that it explicitly accounts for variable contributing areas: only those partial areas of runoff generation which are hydrologically connected to the outlet are regarded as contributing areas. The CIRFs are derived for each runoff mechanism through the numerical simulations with a spatially distributed hydrological model which accounts for spatially distributed runoff generation and routing, involving all three mechanisms, under multiple combinations of climate, soil and topographic properties. The advective and dispersive aspects of catchment’s runoff routing response are captured through the use of, respectively, the mean travel times and dimensionless forms of the CIRFs (i.e., scaled by their respective mean travel times). It was found that the CIRFs, upon non-dimensionalization, collapsed to common characteristic shapes, which could be explained in terms of the relative contributions of hillslope and channel network flows, and especially of the size of the runoff contributing areas. The contributing areas are themselves governed by the competition between drainage and recharge to the water table, and could be explained by a dimensionless drainage index which quantifies this competition. On the other hand, the mean residence times were vastly different in each case, and are governed by relative lengths of the flow pathways, flow velocities (and their variability) and the study also revealed simple indicators based on landscape properties that can explain their magnitudes in different catchments.« less

  8. Urban stormwater run-off promotes compression of saltmarshes by freshwater plants and mangrove forests.

    PubMed

    Geedicke, Ina; Oldeland, Jens; Leishman, Michelle R

    2018-05-08

    Subtropical and temperate coastal saltmarsh of Australia is listed as an endangered ecological community under the Commonwealth Environment Protection and Biodiversity Conservation Act (EPBC Act). Saltmarshes are under threat from sea level rise, landward migration of mangroves, and in urban regions from habitat loss, input of litter, nutrients, and other contaminants. In urbanised catchments, saltmarsh areas receive nutrient-enriched and pollutant-contaminated run-off, such as heavy metals, through the stormwater system. This study aimed to investigate the impact of urban stormwater on saltmarsh and mangrove species composition and distribution. To test the effect of stormwater run-off in urbanised catchments on saltmarsh communities, we analysed the soil for pollutant elements, salinity and nutrient concentration and recorded vegetation composition at eight sites in the Sydney region, Australia. We found that elevated total nitrogen (>0.4 wt%) and reduced salinity of the soil downslope of stormwater outlets facilitates establishment of exotic plants and might promote migration of mangroves into saltmarshes, resulting in a squeezing effect on the distribution of saltmarsh vegetation. Saltmarsh cover was significantly lower below stormwater outlets and exotic plant cover increased significantly with sediment calcium concentrations above 8840 mg/kg, which are associated with stormwater run-off. However, this effect was found to be strongest in highly industrialised areas compared to residential areas. Understanding the impact of pollutants on coastal wetlands will improve management strategies for the conservation of this important endangered ecological community. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA)

    NASA Astrophysics Data System (ADS)

    Shuster, William; Rhea, Lee

    2013-04-01

    SummaryThe effectiveness of stormwater management strategies is a key issue affecting decision making on urban water resources management, and so proper monitoring and analysis of pilot studies must be addressed before drawing conclusions. We performed a pilot study in the suburban Shepherd Creek watershed located in Cincinnati, Ohio to evaluate the practicality of voluntary incentives for stormwater quantity reduction on privately owned suburban properties. Stream discharge and precipitation were monitored 3 years before and after implementation of the stormwater management treatments. To implement stormwater control measures, we elicited the participation of citizen landowners with two successive reverse-auctions. Auctions were held in spring 2007, and 2008, resulting in the installation of 85 rain gardens and 174 rain barrels. We demonstrated an analytic process of increasing model flexibility to determine hydrologic effectiveness of stormwater management at the sub-catchment level. A significant albeit small proportion of total variance was explained by both the effects of study period (˜69%) and treatment-vs.-control (˜7%). Precipitation-discharge relationships were synthesized in estimated unit hydrographs, which were decomposed and components tested for influence of treatments. Analysis of unit hydrograph parameters showed a weakened correlation between precipitation and discharge, and support the output from the initial model that parcel-level green infrastructure added detention capacity to treatment basins. We conclude that retrofit management of stormwater runoff quantity with green infrastructure in a small suburban catchment can be successfully initiated with novel economic incentive programs, and that these measures can impart a small, but statistically significant decrease in otherwise uncontrolled runoff volume. Given consistent monitoring data and analysis, water resource managers can use our approach as a way to estimate actual effectiveness of stormwater runoff volume management, with potential benefits for management of both separated and combined sewer systems. We also discuss lessons-learned with regard to monitoring design for catchment-scale hydrologic studies.

  10. Nested Tracer Studies In Catchment Hydrology: Towards A Multiscale Understanding of Runoff Generation and Catchment Funtioning

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.

    Geochemical and isotopic tracers have been shown to have widespread utility in catch- ment hydrology in terms of identifying hydrological source areas and characterising residence time distributions. In many cases application of tracer techniques has pro- vided insights into catchment functioning that could not be obtained from hydromet- ric and/or modelling studies alone. This paper will show how the use of tracers has contributed to an evolving perceptual model of hydrological pathways and runoff gen- eration processes in catchments in the Scottish highlands. In particular the paper will focus on the different insights that are gained at three different scales of analysis; (a) nested sub-catchments within a mesoscale (ca. 200 square kilometers) experimen- tal catchment; (b) hillslope-riparian interactions and (c) stream bed fluxes. Nested hydrometric and hydrochemical monitoring within the mesoscale Feugh catchment identified three main hydrological response units: (i) plateau peatlands which gener- ated saturation overland flow in the catchment headwaters, (ii) steep valley hillslopes which drain from the plateaux into (iii) alluvial and drift aquifers in the valley bottoms. End Member Mixing Analysis (EMMA) in 8 nested sub-catchments indicated that that stream water tracer concentrations can be modelled in terms of 2 dominant runoff pro- cesses; overland flow from the peat and groundwater from the drift aquifers. Ground- water contributions generally increased with catchment size, though this was moder- ated by the characteristics of individual sub-basins, with drift cover being particularly important. Hillslope riparian interactions were also examined using tracers, hydromet- ric data and a semi-distributed hydrological model. This revealed that in the glaciated, drift covered terrain of the Scottish highlands, extensive valley bottom aquifers effec- tively de-couple hillslope waters from the river channel. Thus, riparian groundwater appears to significantly contribute to storm runoff as well as sustain base flows. Water from steeper hillslopes appears to primarily recharge valley bottom aquifers. Fluxes from the drift aquifers into the stream bed were investigated using hydrometric and tracer techniques. Groundwater fluxes through the stream bed appear to be relatively localized relating to geological boundaries or changes in drift characteristics. How- ever, these fluxes are also controlled by morphological features in the river channel which exert a strong control on localized groundwater U surface water interactions. 1 If catchment hydrology is to contribute to a functional understanding of freshwater ecosystems it is argued that integrated tracer studies, at different scales and incorpo- rating both observations from field work and modelling applications, have a key role to play. 2

  11. Parameter regionalisation methods for a semi-distributed rainfall-runoff model: application to a Northern Apennine region

    NASA Astrophysics Data System (ADS)

    Neri, Mattia; Toth, Elena

    2017-04-01

    The study presents the implementation of different regionalisation approaches for the transfer of model parameters from similar and/or neighbouring gauged basin to an ungauged catchment, and in particular it uses a semi-distributed continuously-simulating conceptual rainfall-runoff model for simulating daily streamflows. The case study refers to a set of Apennine catchments (in the Emilia-Romagna region, Italy), that, given the spatial proximity, are assumed to belong to the same hydrologically homogeneous region and are used, alternatively, as donors and regionalised basins. The model is a semi-distributed version of the HBV model (TUWien model) in which the catchment is divided in zones of different altitude that contribute separately to the total outlet flow. The model includes a snow module, whose application in the Apennine area has been, so far, very limited, even if snow accumulation and melting phenomena do have an important role in the study basins. Two methods, both widely applied in the recent literature, are applied for regionalising the model: i) "parameters averaging", where each parameter is obtained as a weighted mean of the parameters obtained, through calibration, on the donor catchments ii) "output averaging", where the model is run over the ungauged basin using the entire set of parameters of each donor basin and the simulated outputs are then averaged. In the first approach, the parameters are regionalised independently from each other, in the second one, instead, the correlation among the parameters is maintained. Since the model is a semi-distributed one, where each elevation zone contributes separately, the study proposes to test also a modified version of the second approach ("output averaging"), where each zone is considered as an autonomous entity, whose parameters are transposed to the ungauged sub-basin corresponding to the same elevation zone. The study explores also the choice of the weights to be used for averaging the parameters (in the "parameters averaging" approach) or for averaging the simulated streamflow (in the "output averaging" approach): in particular, weights are estimated as a function of the similarity/distance of the ungauged basin/zone to the donors, on the basis of a set of geo-morphological catchment descriptors. The predictive accuracy of the different regionalisation methods is finally assessed by jack-knife cross-validation against the observed daily runoff for all the study catchments.

  12. Development and validation of a runoff and erosion model for lowland drained catchments

    NASA Astrophysics Data System (ADS)

    Grangeon, Thomas; Cerdan, Olivier; Vandromme, Rosalie; Landemaine, Valentin; Manière, Louis; Salvador-Blanes, Sébastien; Foucher, Anthony; Evrard, Olivier

    2017-04-01

    Modelling water and sediment transfer in lowland catchments is complex as both hortonian and saturation excess-flow occur in these environments. Moreover, their dynamics was complexified by the installation of tile drainage networks or stream redesign. To the best of our knowledge, few models are able to simulate saturation runoff as well as hortonian runoff in tile-drained catchments. Most of the time, they are used for small scale applications due to their high degree of complexity. In this context, a model of intermediate complexity was developed to simulate the hydrological and erosion processes at the catchment scale in lowland environments. This GIS-based, spatially distributed and lumped model at the event scale uses a theoretical hydrograph to approximate within-event temporal variations. It comprises two layers used to represent surface and subsurface transfers. Observations of soil surface characteristics (i.e. vegetation density, soil crusting and roughness) were used to document spatial variations of physical soil characteristics (e.g. infiltration capacity). Flow was routed depending on the local slope, using LIDAR elevation data. Both the diffuse and the gully erosion are explicitly described. The model ability to simulate water and sediment dynamics at the catchment scale was evaluated using the monitoring of a selection of flood events in a small, extensively cultivated catchment (the Louroux catchment, Loire River basin, central France; 25 km2). In this catchment, five monitoring stations were equipped with water level sensors, turbidity probes, and automatic samplers. Discharge and suspended sediment concentration were deduced from field measurements. One station was installed at the outlet of a tile drain and was used to parameterize fluxes supplied by the drainage network. The selected floods were representative of various rainfall and soil surface conditions (e.g. low-intensity rainfall occurring on saturated soils as well as intense rainfall occurring on dry soils in spring). The model was able to reproduce the runoff volumes for these different situations, and performed well, especially in winter (the relationship between observed and modeled values has R2=0.72) when most of the sediment are transferred. Therefore, future work will evaluate the model ability to reproduce the erosion and sediment dynamics in this catchment in order to provide a tool for sediment management in these lowland environments draining agricultural land where river siltation is problematic.

  13. Temporal variation of transit time of rainfall-runoff water and groundwater flow dynamics inferred by noble gasses concentration (SF6, CFCs) in a forested small catchment (Fukushima, Japan)

    NASA Astrophysics Data System (ADS)

    Sakakibara, Koichi; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Time variant transit time of water in catchments can fundamentally describe catchment function, controlling rainfall-runoff generation, groundwater flow pathway and water storage. Though rainstorm event has been recognized as active phase on catchment hydrology, accurate and precise time variance of water transit time and related water dynamics during rainstorm have not been well clarified yet. Here, in order to reveal temporal variation of mean transit time of groundwater and related hydrological processes in a forested small catchment during rainstorm event, periodic and intensive field observations (15 - 17th July 2015, rainfall of 100.8 mm in total) were conducted in Yamakiya district (Fukushima, Japan) from September 2014 to December 2015. Discharge volume, groundwater table and precipitation amount were measured in 10 minutes interval. Water samples were taken from groundwater, discharge water, soil water and precipitation for determination of stable isotopic compositions (δ18O, δ2H), inorganic solutes concentration and dissolved noble gasses concentration (CFC11, CFC12, CFC113, SF6) in water. Storm hydrograph and groundwater table clearly responded to rainfall event especially with more than 30 mm per day throughout monitoring period. According to SF6 concentration in water, the mean transit time of discharge water (perennial spring) showed 3 - 6.5 years in the no-rainfall period (steady state), but fluctuated from zero to 12.5 years in the rainstorm event with totally 100.8 mm (unsteady state). The mean transit time of discharge water dramatically altered from zero to 12.5 years from before to after the tentative hydrograph peak in the rising limb, indicating new water components were dominant before tentative hydrograph peak, whereas deep groundwater component with longer residence time contributed much to discharge after the tentative hydrograph peak. On the other hand, mean residence time of groundwater (water in 5 m well) ranged from 0.5 to 11.5 years during the rainstorm event, which followed temporal transit time variation of discharge water. Stable isotopic compositions and chloride ions as conservative tracers presented clear different signals between rainfall and discharge water, and chloride ion concentration in discharge water increased to as high as deeper groundwater (water in 20 m well) just after tentative hydrograph peak in the rising limb. Additionally, CFCs concentration especially in discharge water obviously decreased below the level of current atmospheric CFCs concentration. All of the facts suggest that the contribution of deep groundwater with longer residence time for the discharge water becomes significant at the jumping phase of runoff during intense rainfall, causing dynamic change of groundwater flow system in a catchment.

  14. Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning

    NASA Astrophysics Data System (ADS)

    Talei, Amin; Chua, Lloyd Hock Chye; Quek, Chai; Jansson, Per-Erik

    2013-04-01

    SummaryA study using local learning Neuro-Fuzzy System (NFS) was undertaken for a rainfall-runoff modeling application. The local learning model was first tested on three different catchments: an outdoor experimental catchment measuring 25 m2 (Catchment 1), a small urban catchment 5.6 km2 in size (Catchment 2), and a large rural watershed with area of 241.3 km2 (Catchment 3). The results obtained from the local learning model were comparable or better than results obtained from physically-based, i.e. Kinematic Wave Model (KWM), Storm Water Management Model (SWMM), and Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The local learning algorithm also required a shorter training time compared to a global learning NFS model. The local learning model was next tested in real-time mode, where the model was continuously adapted when presented with current information in real time. The real-time implementation of the local learning model gave better results, without the need for retraining, when compared to a batch NFS model, where it was found that the batch model had to be retrained periodically in order to achieve similar results.

  15. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    NASA Astrophysics Data System (ADS)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  16. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    USGS Publications Warehouse

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  17. Catchment management and the Great Barrier Reef.

    PubMed

    Brodie, J; Christie, C; Devlin, M; Haynes, D; Morris, S; Ramsay, M; Waterhouse, J; Yorkston, H

    2001-01-01

    Pollution of coastal regions of the Great Barrier Reef is dominated by runoff from the adjacent catchment. Catchment land-use is dominated by beef grazing and cropping, largely sugarcane cultivation, with relatively minor urban development. Runoff of sediment, nutrients and pesticides is increasing and for nitrogen is now four times the natural amount discharged 150 years ago. Significant effects and potential threats are now evident on inshore reefs, seagrasses and marine animals. There is no effective legislation or processes in place to manage agricultural pollution. The Great Barrier Reef Marine Park Act does not provide effective jurisdiction on the catchment. Queensland legislation relies on voluntary codes and there is no assessment of the effectiveness of the codes. Integrated catchment management strategies, also voluntary, provide some positive outcomes but are of limited success. Pollutant loads are predicted to continue to increase and it is unlikely that current management regimes will prevent this. New mechanisms to prevent continued degradation of inshore ecosystems of the Great Barrier Reef World Heritage Area are urgently needed.

  18. A Flash Flood Study on the Small Montaneous River Catchments in Western Romania

    NASA Astrophysics Data System (ADS)

    Győri, Maria-Mihaela; Haidu, Ionel; Humbert, Joël

    2013-04-01

    The present study focuses on flash flood modeling on several mountaneous catchments situated in Western Romania by the use of two methodologies, when rainfall and catchment characteristics are known. Hence, the Soil Conservation Service (SCS) Method and the Rational Method will be employed for the generation of the 1%, 2% and 10% historical flash flood hydrographs on the basis of data spanning from 1989-2009. The SCS Method has been applied on the three gauged catchments in the study area: Petris, Troas and Monorostia making use of the existing interconnection between GIS and the rainfall-runoff models. The DEM, soil data and land use preprocessing in GIS allowed a determination of the hydrologic parameters needed for the rainfall-runoff model, with special emphasis on determining the time of concentration, Lag time and the weighted Curve Number according to Antecedent Moisture Conditions II, adapted for the Romanian territory. HEC-HMS rainfall-runoff model (Hydrologic Engineering Center- Hydrologic Modeling System) facilitates the historical 1%, 2% and 10% flash flood hydrograph generation for the three afore mentioned watersheds. The model is calibrated against measured streamflow data from the three existing gauging stations. The results show a good match between the resulted hydrographs and the observed hydrographs under the form of the Peak Weighted Error RMS values. The hydrographs generated by surface runoff on the ungauged catchments in the area is based on an automation of a workflow in GIS, built with ArcGIS Model Builder graphical interface, as a large part of the functions needed were available as ArcGIS tools. The several components of this model calculate: the runoff depth in mm, the runoff coefficient, the travel time and finally the discharge module which is an application of the rational method, allowing the discharge computation for every cell within the catchment. The result consists of discharges for each isochrones that will be subsequently interpolated in order to obtain the hydrograph of the historical flash floods. The two methodologies employed offer the hydrologist the opportunity of computing the historical hydrographs be it on a section of the river at choice, or for every affluent within the small river basins studied, the graphical data being easily accessed both in GIS and HEC-HMS. The peak discharge values of the main rivers as well as those of their tributaries are of great importance in establishing the hydrologic hazard under the form of floodplain maps that are inexistent for the studied watersheds. Key words: flash flood modeling, ungauged catchments, GIS, HEC-HMS rainfall-runoff model. Aknowledgements This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

  19. Efficiency of source control systems for reducing runoff pollutant loads: feedback on experimental catchments within Paris conurbation.

    PubMed

    Bressy, Adèle; Gromaire, Marie-Christine; Lorgeoux, Catherine; Saad, Mohamed; Leroy, Florent; Chebbo, Ghassan

    2014-06-15

    Three catchments, equipped with sustainable urban drainage systems (SUDS: vegetated roof, underground pipeline or tank, swale, grassed detention pond) for peak flow mitigation, have been compared to a reference catchment drained by a conventional separate sewer system in terms of hydraulic behaviour and discharged contaminant fluxes (organic matter, organic micropollutants, metals). A runoff and contaminant emission model has been developed in order to overcome land use differences. It has been demonstrated that the presence of peak flow control systems induces flow attenuation even for frequent rain events and reduces water discharges at a rate of about 50% depending on the site characteristics. This research has also demonstrated that this type of SUDS contributes to a significant reduction of runoff pollutant discharges, by 20%-80%. This level of reduction varies depending on the considered contaminant and on the design of the drainage system but is mostly correlated with the decrease in runoff volume. It could be improved if the design of these SUDS focused not only on the control of exceptional events but also targeted more explicitly the interception of frequent rain events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain

    NASA Astrophysics Data System (ADS)

    Rodrigo-Comino, Jesús; Taguas, Encarnación; Seeger, Manuel; Ries, Johannes B.

    2018-01-01

    A sound understanding of erosive processes at different scales can contribute substantially to the design of suitable management strategies. The main aim of this work was to evaluate key factors at the pedon scale that cause soil erosion to occur. To achieve this goal, we quantified infiltration, permeability, soil losses and runoff volumes in a small Southern Spanish catchment cultivated with olive orchards. To assess which factor contributed most to speeding up soil erosion, a Spearman rank coefficient and principal components analysis were carried out. The results confirmed low infiltration values (11.8 mm h-1) in the surface soil layers and high permeability values (24.6 mm h-1) in the sub-surface soil layers, and produced an average soil loss of 19.7 g m-2 and average runoff coefficients of 26.1%. Statistical analyses showed that: i) the generation of runoff was closely correlated with soil loss; and, ii) an increase in the vegetation cover helped reduce soil erosion. In comparison to larger areas such as a catchment, the pedon scale produced lower or similar soil losses and runoff coefficients in rainfall simulation conditions, although the influence of vegetation cover as a control factor was also detected.

  1. Reducing calibration parameters to increase insight in catchment organization and similarity

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Onof, Christian

    2013-04-01

    Ideally, hydrological models should be built from equations parameterised from observed catchment characteristics and data. This state of affairs may never be reached, but a governing principle in hydrological modelling should be to keep the number of calibration parameters to a minimum. A reduced number of parameters to be calibrated, while maintaining the accuracy and detail required by modern hydrological models, will reduce parameter and model structure uncertainty and improve model diagnostics. The dynamics of runoff for small catchments are derived from the distribution of distances from points in the catchments to the nearest stream in a catchment. This distribution is unique for each catchment and can be determined from a geographical information system (GIS). The distribution of distances, will, when a celerity of (subsurface) flow is introduced, provide a distribution of travel times, or a unit hydrograph (UH). For spatially varying levels of saturation deficit we have different celerities and, hence, different UHs. Runoff is derived from the super-positioning of the different UHs. This study shows how celerities can be estimated if we assume that recession events represent the superpositioned UH for different levels of saturation deficit. The performance of the DDD (Distance Distribution Dynamics) model is compared to that of the Swedish HBV model and is found to perform equally well for eight Norwegian catchments although the number of parameters to be calibrated in the module concerning soil moisture and runoff dynamics is reduced from 7 in the HBV model to 1 in the DDD model. It is also shown that the DDD model has a more realistic representation of the subsurface hydrology. The transparency of the DDD model makes model diagnostics more easy and experience with DDD shows that differences in model performance may be related to differences in catchment characteristics. More specifically, it appears that the hydrological dynamics of bogs have to be taken especially into account when modelling Norwegian catchments.

  2. Runoff production in a small agricultural catchment in Lao PDR: influence of slope, land-use and observation scale

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2010-12-01

    After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.

  3. Application of global sensitivity analysis methods to Takagi-Sugeno-Kang rainfall-runoff fuzzy models

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.; Shamseldin, A. Y.

    2009-04-01

    This study analyses the sensitivity of the parameters of Takagi-Sugeno-Kang rainfall-runoff fuzzy models previously developed by the authors. These models can be classified in two types, where the first type is intended to account for the effect of changes in catchment wetness and the second type incorporates seasonality as a source of non-linearity in the rainfall-runoff relationship. The sensitivity analysis is performed using two global sensitivity analysis methods, namely Regional Sensitivity Analysis (RSA) and Sobol's Variance Decomposition (SVD). In general, the RSA method has the disadvantage of not being able to detect sensitivities arising from parameter interactions. By contrast, the SVD method is suitable for analysing models where the model response surface is expected to be affected by interactions at a local scale and/or local optima, such as the case of the rainfall-runoff fuzzy models analysed in this study. The data of six catchments from different geographical locations and sizes are used in the sensitivity analysis. The sensitivity of the model parameters is analysed in terms of two measures of goodness of fit, assessing the model performance from different points of view. These measures are the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the study show that the sensitivity of the model parameters depends on both the type of non-linear effects (i.e. changes in catchment wetness or seasonality) that dominates the catchment's rainfall-runoff relationship and the measure used to assess the model performance. Acknowledgements: This research was supported by FONDECYT, Research Grant 11070130. We would also like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.

  4. Managing runoff and flow pathways in a small rural catchment to reduce flood risk with other multi-purpose benefits

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Welton, Phil; Kerr, Peter; Quinn, Paul; Jonczyk, Jennine

    2010-05-01

    From 2000 to 2009 there have been a high number of flood events throughout Northern Europe. Meanwhile, there is a demand for land in which to construct homes and businesses on, which is encroaching on land which is prone to flooding. Nevertheless, flood defences usually protect us from this hazard. However, the severity of floods and this demand for land has increased the number of homes which have been flooded in the past ten years. Public spending on flood defences can only go so far which targets the large populations first. Small villages and communities, where in many cases normal flood defences are not cost effective, tend to wait longer for flood mitigation strategies. The Belford Burn (Northumberland, UK) catchment is a small rural catchment that drains an area of 6 km2. It flows through the village of Belford. There is a history of flooding in Belford, with records of flood events dating back to 1877. Normal flood defences are not suitable for this catchment as it failed the Environment Agency (EA) cost benefit criteria for support. There was a desire by the local EA Flood Levy Team and the Northumbria Regional Flood Defence Committee at the Environment Agency to deliver an alternative catchment-based solution to the problem. The EA North East Flood Levy team and Newcastle University have created a partnership to address the flood problem using soft engineered runoff management features. Farm Integrated Runoff Management (FIRM) plans manage flow paths directly by storing slowing and filtering runoff at source on farms. The features are multipurpose addressing water quality, trapping sediment, creating new habitats and storing and attenuating flood flow. Background rainfall and stream stage data have been collected since November 2007. Work on the first mitigation features commenced in July 2008. Since that date five flood events have occurred in the catchment. Two of these flood events caused widespread damage in other areas of the county. However, in Belford only two houses were flooded. Data from the catchment and mitigation features showed that the defence measures resulted in an increase in travel time of the peak and attenuated high flows which would have usually travelled quickly down the channel to the village. For example, the pilot feature appears to have increased the travel time of a flood peak at the top of the catchment from 20 minutes to 35 minutes over a 1 km stretch of channel. There are currently ten active mitigation features present in the catchment. More features are planned for construction this year. Early data from the catchment indicates that the runoff attenuation features are having an impact on reducing flood flows in the channel and also slowing down the flood peak. At the same time the multi-purpose aspects of the features are apparent.

  5. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments: a comparative hydrology approach

    USGS Publications Warehouse

    Singh, R.; Archfield, S.A.; Wagener, T.

    2014-01-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  6. Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments

    PubMed Central

    Crabit, Armand; Colin, François; Bailly, Jean Stéphane; Ayroles, Hervé; Garnier, François

    2011-01-01

    An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels…) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance. PMID:22163868

  7. Abrupt Shift in the Observed Runoff from the Southwest Greenland Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Ahlstrom, A.; Petersen, D.; Box, J.; Langen, P. P.; Citterio, M.

    2016-12-01

    Mass loss of the Greenland ice sheet has contributed significantly to sea level rise in recent years and is considered a crucial parameter when estimating the impact of future climate change. Few observational records of sufficient length exist to validate surface mass balance models, especially the estimated runoff. Here we present an observation time series from 1975-2014 of discharge from a large proglacial lake, Tasersiaq, in West Greenland (66.3°N, 50.4°W) with a mainly ice-covered catchment. We argue that the discharge time series is representative measure of ice sheet runoff, making it the only observational record of runoff to exceed the 30-year period needed to assess the climatological state of the ice sheet. We proceed to isolate the runoff part of the signal from precipitation and identified glacial lake outburst floods from a small sub-catchment. Similarly, the impact from major volcanic eruptions is clearly identified. We examine the trend and annual variability in the annual discharge, relating it to likely atmospheric forcing mechanisms and compare the observational time series with modelled runoff from the regional climate model HIRHAM.

  8. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system.

    PubMed

    Lee, J Y; Moon, H J; Kim, T I; Kim, H W; Han, M Y

    2013-10-01

    Extensive green-roof systems are expected to have a synergetic effect in mitigating urban runoff, decreasing temperature and supplying water to a building. Mitigation of runoff through rainwater retention requires the effective design of a green-roof catchment. This study identified how to improve building runoff mitigation through quantitative analysis of an extensive green-roof system. Quantitative analysis of green-roof runoff characteristics indicated that the extensive green roof has a high water-retaining capacity response to rainfall of less than 20 mm/h. As the rainfall intensity increased, the water-retaining capacity decreased. The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52, indicating reduced runoff comparing with efficiency of 0.9 for a concrete roof. Therefore, extensive green roofs are an effective storm water best-management practice and the proposed parameters can be applied to an algorithm for rainwater-harvesting tank design. © 2013 Elsevier Ltd. All rights reserved.

  9. Identification of internal flow dynamics in two experimental catchments

    USGS Publications Warehouse

    Hansen, D.P.; Jakeman, A.J.; Kendall, C.; Weizu, G.

    1997-01-01

    Identification of the internal flow dynamics in catchments is difficult because of the lack of information in precipitation -stream discharge time series alone. Two experimental catchments, Hydrohill and Nandadish, near Nanjing in China, have been set up to monitor internal flows reaching the catchment stream at various depths, from the surface runoff to the bedrock. With analysis of the precipitation against these internal discharges, it is possible to quantify the time constants and volumes associated with various flowpaths in both catchments.

  10. Monitoring and modeling of runoff from a natural and an urbanized part of a small stream catchment

    NASA Astrophysics Data System (ADS)

    Kalicz, P.; Kucsara, M.; Gribovszki, Z.; Erős, M.; Csáfordi, P.

    2012-04-01

    Runoff processes in natural catchments are significantly different compared to urbanized areas. Human impacts are manifested in high amount of paved surfaces like roofs, roads, parking plots and the compacted soils of quasi natural areas like public gardens and parks. Decay of permeability and storage capacity both induce higher amount of runoff. The common practice to treat the increased volume of runoff is to collect in pipes and drain to a stream as soon as possible. These interventions induce flash floods with smaller time of concentration and higher flood peaks as normal food waves therefore strongly load discharge capacity of stream channel. Streams in urban areas are strongly modified and regulated. Sometimes the stream channel are dredged out to increase the discharge capacity. In worst case some smaller brooks are crowded with lid to increase urbanized habitat. Many climate change scenarios predict higher probability of heavy storm events, therefore increasing volume of runoff induces higher demands of strongly modified and enormous concrete channels. This study presents one year monitoring of a small stream comparing runoff from natural, rural and urban sections. In this paper we also introduce the process of a model setup and an evaluation to investigate the weak points of a stream section in urbanized areas. The pilot area of this research is the Rák Brook which is the second largest stream of city Sopron (western Hungary). The natural headwater catchment is long-term research area of Hidegvíz Valley Project, therefore we had a good basis to extend the research catchment monitoring in the direction of urbanized lower part of the stream. Seven monitoring points are established along the longitudinal section of the stream. In each point the water stage is recorded continuously beside several other water quality parameters. These data sets help the later validation of the hydrodynamic model.

  11. The effect of year-to-year variability of leaf area index on Variable Infiltration Capacity model performance and simulation of runoff

    NASA Astrophysics Data System (ADS)

    Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.

    2015-09-01

    This study assessed the effect of using observed monthly leaf area index (LAI) on hydrological model performance and the simulation of runoff using the Variable Infiltration Capacity (VIC) hydrological model in the Goulburn-Broken catchment of Australia, which has heterogeneous vegetation, soil and climate zones. VIC was calibrated with both observed monthly LAI and long-term mean monthly LAI, which were derived from the Global Land Surface Satellite (GLASS) leaf area index dataset covering the period from 1982 to 2012. The model performance under wet and dry climates for the two different LAI inputs was assessed using three criteria, the classical Nash-Sutcliffe efficiency, the logarithm transformed flow Nash-Sutcliffe efficiency and the percentage bias. Finally, the deviation of the simulated monthly runoff using the observed monthly LAI from simulated runoff using long-term mean monthly LAI was computed. The VIC model predicted monthly runoff in the selected sub-catchments with model efficiencies ranging from 61.5% to 95.9% during calibration (1982-1997) and 59% to 92.4% during validation (1998-2012). Our results suggest systematic improvements, from 4% to 25% in Nash-Sutcliffe efficiency, in sparsely forested sub-catchments when the VIC model was calibrated with observed monthly LAI instead of long-term mean monthly LAI. There was limited systematic improvement in tree dominated sub-catchments. The results also suggest that the model overestimation or underestimation of runoff during wet and dry periods can be reduced to 25 mm and 35 mm respectively by including the year-to-year variability of LAI in the model, thus reflecting the responses of vegetation to fluctuations in climate and other factors. Hence, the year-to-year variability in LAI should not be neglected; rather it should be included in model calibration as well as simulation of monthly water balance.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang

    Inspired by the Dunne diagram, the climatic and landscape controls on the partitioning of annual runoff into its various components (Hortonian and Dunne overland flow and subsurface stormflow) are assessed quantitatively, from a purely theoretical perspective. A simple distributed hydrologic model has been built sufficient to simulate the effects of different combinations of climate, soil, and topography on the runoff generation processes. The model is driven by a sequence of simple hypothetical precipitation events, for a large combination of climate and landscape properties, and hydrologic responses at the catchment scale are obtained through aggregation of grid-scale responses. It is found,more » first, that the water balance responses, including relative contributions of different runoff generation mechanisms, could be related to a small set of dimensionless similarity parameters. These capture the competition between the wetting, drying, storage, and drainage functions underlying the catchment responses, and in this way, provide a quantitative approximation of the conceptual Dunne diagram. Second, only a subset of all hypothetical catchment/climate combinations is found to be ‘‘behavioral,’’ in terms of falling sufficiently close to the Budyko curve, describing mean annual runoff as a function of climate aridity. Furthermore, these behavioral combinations are mostly consistent with the qualitative picture presented in the Dunne diagram, indicating clearly the commonality between the Budyko curve and the Dunne diagram. These analyses also suggest clear interrelationships amongst the ‘‘behavioral’’ climate, soil, and topography parameter combinations, implying these catchment properties may be constrained to be codependent in order to satisfy the Budyko curve.« less

  13. Assessing the Impact of Agricultural Pressures on N and P Loads and Potential Eutrophication Risk at Regional Scales

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Delmas, M.; Moatar, F.

    2014-12-01

    Excessive nutrient loading of freshwater bodies results in increased eutrophication risk worldwide. The processes controlling N/P transfer in agricultural landscapes are well documented through scientific studies conducted in intensively monitored catchments. However, managers need tools to assess water quality and evaluate the contribution of agriculture to eutrophication at regional scales, including unmonitored or poorly monitored areas. To this end, we present an assessment framework which includes: i) a mass-balance model to estimate diffuse N/P transfer and retention and ii) indicators based on N:P:Si molar ratios to assess potential eutrophication risk from external loads. The model, called Nutting (Dupas et al., 2013), integrates variables for both detailed description of agricultural pressures (N surplus, soil P content) and characterisation of physical attributes of catchments (including spatial attributes). It was calibrated on 160 catchments, and applied to 2210 unmonitored headwater bodies in France (Dupas et al., under review). N and P retention represented 53% and 95% of soil N and P surplus, respectively, and was mainly controlled by runoff and an index characterising infiltration/runoff properties. According to our estimates, diffuse agricultural sources represented a mean of 97% of N loads and N exceeded Si in 93% of the catchments, whilst they represented 46% of P loads and P exceeded Si in 26-65% of the catchments. Estimated eutrophication risk was highly sensitive to assumptions about P bioavailability, hence the range of headwaters potentially at risk spanned 26-63% of the catchments, depending on assumptions. To reduce this uncertainty, we recommend introducing P bioavailability tests in water monitoring programs, especially in sensitive areas. Dupas R et al. Assessing N emissions in surface water at the national level: comparison of country-wide vs. regionalized models. Sci Total Environ 2013; 443: 152-62. Dupas R et al. Assessing the impact of agricultural pressures on N and P loads and eutrophication risk (under review).

  14. What controls the very quick runoff response in the Meuse basin?

    NASA Astrophysics Data System (ADS)

    Bouaziz, Laurène; Hrachowitz, Markus; Schellekens, Jaap; Weerts, Albrecht; Savenije, Hubert

    2017-04-01

    Currently, the hydrological model used in the operational forecasting system of the river Meuse is lumped and does not account for the heterogeneity of the landscape, topography and vegetation. Previous studies have shown the importance of model structure distribution in different hydrological response units (HRUs) to improve model simulations. These HRUs take into account the different dominant runoff generation processes that occur in different parts of the landscape. The conceptualization of a runoff response with a very rapid time scale is essential to model the rapid runoff generated by very high intensity rainfall events. The parameterization of this rapid runoff response in the different sub-catchments of the Meuse is very sensitive due to the non-linearity of this threshold process and to the spatio-temporal variability of high-intensity rain events. In this study, we formulate several hypotheses on what controls the very quick runoff response in the Meuse basin and we try to use additional sources of data to test the a-priori assumptions that we made in the conceptualization of the HRUs in our hydrological model and to facilitate model parameterization. We hypothesize that by using appropriate runoff signatures, we may be able to assess the importance of the threshold response in the different catchments. The selection of specific storm events is useful to split the runoff in different time scales to improve the a-priori estimation of the very rapid runoff parameterization. Linking these differences to topographic and physiographic properties of the catchment like soil texture and land use may help us to explain the difference in observed spatial patterns. Especially the assessment of the fraction of roads and paved areas that cross the different hydrological response units may help to explain the observed spatial patterns. Additionally, we believe that deriving permanent and temporary wet areas using the Modified Normalized Difference Water Index (MNDWI) may guide us in strengthening or adapting the assumptions we made concerning the HRU classes.

  15. Modelling the response of a Himalayan watershed to climate change: new insights from linking high resolution in-situ data and remote sensing with an advanced simulation model

    NASA Astrophysics Data System (ADS)

    Ragettli, S.; Pellicciotti, F.; Immerzeel, W.

    2014-12-01

    In high-elevation watersheds of the Himalayan region the correct representation of the internal states and process dynamics in glacio-hydrological models can often not be verified due to missing in-situ measurements. The aim of this study is to provide a fundamental understanding of the hydrology of a Himalayan watershed through the systematic integration of in-situ data in a glacio-hydrological model. We use ground data from the upper Langtang valley in Nepal combined with high resolution satellite data to understand specific processes and test the application of new model components specifically developed. We apply a new model for ablation under debris that takes into account the varying effect of debris thickness on melt rates. A novel approach is tested to reconstruct spatial fields of debris thickness through combination of energy balance modelling, UAV-derived geodetic mass balance and statistical techniques. The systematic integration of in-situ data for model calibration enables the application of a state-of-the art model with many parameters to model glacier evolution and catchment runoff in spite of the lack of continuous long-term historical records. It allows drawing conclusions on the importance of processes that have been suggested as being relevant but never quantified before. The simulations show that 8.7% of total water inputs originate from sub-debris ice melt. 4.5% originate from melted avalanched snow. These components can be locally much more important, since the spatial variability of processes within the valley is high. The model is then used to simulate the response of the catchment to climate change. We show that climate warming leads to an increase in future icemelt and a peak in glacier runoff by mid-century. The increase in total icemelt is due to higher melt rates and large areas that are currently located above the equilibrium line altitude additionally that will contribute to melt. Catchment runoff will not reach below current levels throughout the 21st century due to precipitation increases. Debris covered glacier area will disappear at a slower pace than non-debris covered area. Still, due to the relative climate insensitivity of melt rates below thick debris, the contribution of sub-debris icemelt to runoff will not exceed 10% at all times.

  16. Flood forecasting with DDD-application of a parsimonious hydrological model in operational flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Haddeland, Ingjerd

    2014-05-01

    A new parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics) has been run operationally at the Norwegian Flood Forecasting Service for approximately a year. DDD has been calibrated for, altogether, 104 catchments throughout Norway, and provide runoff forecasts 8 days ahead on a daily temporal resolution driven by precipitation and temperature from the meteorological forecast models AROME (48 hrs) and EC (192 hrs). The current version of DDD differs from the standard model used for flood forecasting in Norway, the HBV model, in its description of the subsurface and runoff dynamics. In DDD, the capacity of the subsurface water reservoir M, is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than the HBV model. Experiences using DDD show that especially the timing of flood peaks has improved considerably and in a comparison between DDD and HBV, when assessing timeseries of 64 years for 75 catchments, DDD had a higher hit rate and a lower false alarm rate than HBV. For flood peaks higher than the mean annual flood the median hit rate is 0.45 and 0.41 for the DDD and HBV models respectively. Corresponding number for the false alarm rate is 0.62 and 0.75 For floods over the five year return interval, the median hit rate is 0.29 and 0.28 for the DDD and HBV models, respectively with false alarm rates equal to 0.67 and 0.80. During 2014 the Norwegian flood forecasting service will run DDD operationally at a 3h temporal resolution. Running DDD at a 3h resolution will give a better prediction of flood peaks in small catchments, where the averaging over 24 hrs will lead to a underestimation of high events, and we can better describe the progress floods in larger catchments. Also, at a 3h temporal resolution we make better use of the meteorological forecasts that for long have been provided at a very detailed temporal resolution.

  17. Pollutant loading from low-density residential neighborhoods in California.

    PubMed

    Bale, Andrew E; Greco, Steven E; Pitton, Bruno J L; Haver, Darren L; Oki, Lorence R

    2017-08-01

    This paper presents a comparison of pollutant load estimations for runoff from two geographically distinct residential suburban neighborhoods in northern and southern California. The two neighborhoods represent a single urban land use type: low-density residential in small catchments (<0.3 km 2 ) under differing regional climates and irrigation practices. Pollutant loads of pesticides, nutrients, and drinking water constituents of concern are estimated for both storm and non-storm runoff. From continuous flow monitoring, it was found that a daily cycle of persistent runoff that peaks mid-morning occurs at both sites. These load estimations indicate that many residential neighborhoods in California produce significant non-storm pollutant loads year-round. Results suggest that non-storm flow accounted for 47-69% of total annual runoff and significantly contributed to annual loading rates of most nutrients and pesticides at both sites. At the Southern California site, annual non-storm loads are 1.2-10 times higher than storm loads of all conventional constituents and nutrients with one exception (total suspended solids). At the Northern California site, annual storm loads range from 51 to 76% of total loads for all conventional constituents and nutrients with one exception (total dissolved solids). Non-storm yields of pesticides at the Southern California site range from 1.3-65 times higher than those at the Northern California site. The disparity in estimated pollutant loads between the two sites indicates large potential variation from site-to-site within the state and suggests neighborhoods in drier and milder climates may produce significantly larger non-storm loads due to persistent dry season runoff and year-round pest control.

  18. What causes similarity in catchments?

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert

    2014-05-01

    One of the biggest issues in hydrology is how to handle the heterogeneity of catchment properties at different scales. But is this really such a big issue? Is this problem not merely the consequence of how we conceptualise and how we model catchments? Is there not far more similarity than we observe. Maybe we are not looking at the right things or at the right scale to see the similarity. The identity of catchments is largely determined by: the landscape, the ecosystem living on the landscape, and the geology, in that order. Soils, which are often seen as a crucial aspect of hydrological behaviour, are far less important, as will be demonstrated. The main determinants of hydrological behaviour are: the landscape composition, the rooting depth and the phenology. These determinants are a consequence of landscape and ecosystem evolution, which, in turn, are the manifestations of entropy production. There are striking similarities between catchments. The different runoff processes from hillslopes are linked and similar in different environments (McDonnell, 2013). Wetlands behave similarly all over the world. The key is to classify landscapes and to link the ecosystems living on them to climate. The ecosystem then is the main controller of hydrological behaviour. Besides phenology, the rooting depth is key in determining runoff behaviour. Both are strongly linked to climate and much less to soil properties. An example is given of how rooting depth is determined by climate, and how rooting depth can be predicted without calibration, providing a strong constraints on the prediction of rainfall partitioning and catchment runoff.

  19. Predicting the occurrence of channelized debris flow by an integrated cascading model: A case study of a small debris flow-prone catchment in Zhejiang Province, China

    NASA Astrophysics Data System (ADS)

    Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang

    2018-05-01

    Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.

  20. The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2016-12-01

    Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.

  1. A MULTIDISCIPLINARY APPROACH TO STORMWATER MANAGEMENT AT THE catchment SCALE

    EPA Science Inventory

    Stormwater runoff from extensive impervious surfaces in urban and suburban areas has led to human safety risks and stream ecosystem impairment, triggering an interest in catchment-scale retrofit stormwater management. Such stormwater management is of multidisciplinary relevance, ...

  2. Threshold values and management options for nutrients in a catchment of a temperate estuary with poor ecological status

    NASA Astrophysics Data System (ADS)

    Hinsby, K.; Markager, S.; Kronvang, B.; Windolf, J.; Sonnenborg, T. O.; Thorling, L.

    2012-08-01

    Intensive farming has severe impacts on the chemical status of groundwater and streams and consequently on the ecological status of dependent ecosystems. Eutrophication is a widespread problem in lakes and marine waters. Common problems are hypoxia, algal blooms, fish kills, and loss of water clarity, underwater vegetation, biodiversity and recreational value. In this paper we evaluate the nitrogen (N) and phosphorus (P) concentrations of groundwater and surface water in a coastal catchment, the loadings and sources of N and P, and their effect on the ecological status of an estuary. We calculate the necessary reductions in N and P loadings to the estuary for obtaining a good ecological status, which we define based on the number of days with N and P limitation, and the corresponding stream and groundwater threshold values assuming two different management options. The calculations are performed by the combined use of empirical models and a physically based 3-D integrated hydrological model of the whole catchment. The assessment of the ecological status indicates that the N and P loads to the investigated estuary should be reduced to levels corresponding to 52 and 56% of the current loads, respectively, to restore good ecological status. Model estimates show that threshold total N (TN) concentrations should be in the range of 2.9 to 3.1 mg l-1 in inlet freshwater (streams) to Horsens estuary and 6.0 to 9.3 mg l-1 in shallow aerobic groundwater (∼ 27-41 mg l-1 of nitrate), depending on the management measures implemented in the catchment. The situation for total P (TP) is more complex, but data indicate that groundwater threshold values are not needed. The stream threshold value for TP to Horsens estuary for the selected management options is 0.084 mg l-1. Regional climate models project increasing winter precipitation and runoff in the investigated region resulting in increasing runoff and nutrient loads to the Horsens estuary and many other coastal waters if present land use and farming practices continue. Hence, lower threshold values are required in many coastal catchments in the future to ensure good status of water bodies and ecosystems.

  3. Instrumenting an upland research catchment in Canterbury, New Zealand to study controls on variability of soil moisture, shallow groundwater and streamflow

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Srinivasan, Ms

    2015-04-01

    Hydrologists recognise the importance of vertical drainage and deep flow paths in runoff generation, even in headwater catchments. Both soil and groundwater stores are highly variable over multiple scales, and the distribution of water has a strong control on flow rates and timing. In this study, we instrumented an upland headwater catchment in New Zealand to measure the temporal and spatial variation in unsaturated and saturated-zone responses. In NZ, upland catchments are the source of much of the water used in lowland agriculture, but the hydrology of such catchments and their role in water partitioning, storage and transport is poorly understood. The study area is the Langs Gully catchment in the North Branch of the Waipara River, Canterbury: this catchment was chosen to be representative of the foothills environment, with lightly managed dryland pasture and native Matagouri shrub vegetation cover. Over a period of 16 months we measured continuous soil moisture at 32 locations and near-surface water table (< 2 m) at 14 locations, as well as measuring flow at 3 stream gauges. The distributed measurement sites were located to allow comparisons between North and South facing locations, near-stream versus hillslope locations, and convergent versus divergent hillslopes. We found that temporal variability is strongly controlled by the climatic seasonal cycle, for both soil moisture and water table, and for both the mean and extremes of their distributions. Groundwater is a larger water storage component than soil moisture, and the difference increases with catchment wetness. The spatial standard deviation of both soil moisture and groundwater is larger in winter than in summer. It peaks during rainfall events due to partial saturation of the catchment, and also rises in spring as different locations dry out at different rates. The most important controls on spatial variability are aspect and distance from stream. South-facing and near-stream locations have higher water tables and more, larger soil moisture wetting events. Typical hydrological models do not explicitly account for aspect, but our results suggest that it is an important factor in hillslope runoff generation. Co-measurement of soil moisture and water table level allowed us to identify interrelationships between the two. Locations where water tables peaked closest to the surface had consistently wetter soils and higher water tables. These wetter sites were the same across seasons. However, temporary patterns of strong soil moisture response to summer storms did not correspond to the wetter sites. Total catchment spatial variability is composed of multiple variability sources, and the dominant type is sensitive to those stores that are close to a threshold such as field capacity or saturation. Therefore, we classified spatial variability as 'summer mode' or 'winter mode'. In summer mode, variability is controlled by shallow processes e.g. interactions of water with soils and vegetation. In winter mode, variability is controlled by deeper processes e.g. groundwater movement and bypass flow. Double flow peaks observed during some events show the direct impact of groundwater variability on runoff generation. Our results suggest that emergent catchment behaviour depends on the combination of these multiple, time varying components of variability.

  4. Diffuse nutrient losses and the impact factors determining their regional differences in four catchments from North to South China

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei

    2016-12-01

    Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and provide a scientific support for the diffuse pollution control and management in China.

  5. Conditional flood frequency and catchment state: a simulation approach

    NASA Astrophysics Data System (ADS)

    Brettschneider, Marco; Bourgin, François; Merz, Bruno; Andreassian, Vazken; Blaquiere, Simon

    2017-04-01

    Catchments have memory and the conditional flood frequency distribution for a time period ahead can be seen as non-stationary: it varies with the catchment state and climatic factors. From a risk management perspective, understanding the link of conditional flood frequency to catchment state is a key to anticipate potential periods of higher flood risk. Here, we adopt a simulation approach to explore the link between flood frequency obtained by continuous rainfall-runoff simulation and the initial state of the catchment. The simulation chain is based on i) a three state rainfall generator applied at the catchment scale, whose parameters are estimated for each month, and ii) the GR4J lumped rainfall-runoff model, whose parameters are calibrated with all available data. For each month, a large number of stochastic realizations of the continuous rainfall generator for the next 12 months are used as inputs for the GR4J model in order to obtain a large number of stochastic realizations for the next 12 months. This process is then repeated for 50 different initial states of the soil moisture reservoir of the GR4J model and for all the catchments. Thus, 50 different conditional flood frequency curves are obtained for the 50 different initial catchment states. We will present an analysis of the link between the catchment states, the period of the year and the strength of the conditioning of the flood frequency compared to the unconditional flood frequency. A large sample of diverse catchments in France will be used.

  6. An index-flood model for deficit volumes assessment

    NASA Astrophysics Data System (ADS)

    Strnad, Filip; Moravec, Vojtěch; Hanel, Martin

    2017-04-01

    The estimation of return periods of hydrological extreme events and the evaluation of risks related to such events are objectives of many water resources studies. The aim of this study is to develop statistical model for drought indices using extreme value theory and index-flood method and to use this model for estimation of return levels of maximum deficit volumes of total runoff and baseflow. Deficit volumes for hundred and thirty-three catchments in the Czech Republic for the period 1901-2015 simulated by a hydrological model Bilan are considered. The characteristics of simulated deficit periods (severity, intensity and length) correspond well to those based on observed data. It is assumed that annual maximum deficit volumes in each catchment follow the generalized extreme value (GEV) distribution. The catchments are divided into three homogeneous regions considering long term mean runoff, potential evapotranspiration and base flow. In line with the index-flood method it is further assumed that the deficit volumes within each homogeneous region are identically distributed after scaling with a site-specific factor. The goodness-of-fit of the statistical model is assessed by Anderson-Darling statistics. For the estimation of critical values of the test several resampling strategies allowing for appropriate handling of years without drought are presented. Finally the significance of the trends in the deficit volumes is assessed by a likelihood ratio test.

  7. On the forecast of runoff based on the harmonic analysis of time series of precipitation in the catchment area

    NASA Astrophysics Data System (ADS)

    Cherednichenko, A. V.; Cherednichenko, A. V.; Cherednichenko, V. S.

    2018-01-01

    It is shown that a significant connection exists between the most important harmonics, extracted in the process of harmonic analysis of time series of precipitation in the catchment area of rivers and the amount of runoff. This allowed us to predict the size of the flow for a period of up to 20 years, assuming that the main parameters of the harmonics are preserved at the predicted time interval. The results of such a forecast for three river basins of Kazakhstan are presented.

  8. Performance of a coupled lagged ensemble weather and river runoff prediction model system for the Alpine Ammer River catchment

    NASA Astrophysics Data System (ADS)

    Smiatek, G.; Kunstmann, H.; Werhahn, J.

    2012-04-01

    The Ammer River catchment located in the Bavarian Ammergau Alps and alpine forelands, Germany, represents with elevations reaching 2185 m and annual mean precipitation between1100 and 2000 mm a very demanding test ground for a river runoff prediction system. Large flooding events in 1999 and 2005 motivated the development of a physically based prediction tool in this area. Such a tool is the coupled high resolution numerical weather and river runoff forecasting system AM-POE that is being studied in several configurations in various experiments starting from the year 2005. Corner stones of the coupled system are the hydrological water balance model WaSiM-ETH run at 100 m grid resolution, the numerical weather prediction model (NWP) MM5 driven at 3.5 km grid cell resolution and the Perl Object Environment (POE) framework. POE implements the input data download from various sources, the input data provision via SOAP based WEB services as well as the runs of the hydrology model both with observed and with NWP predicted meteorology input. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. Results obtained in the years 2005-2011 reveal that river runoff simulations depict high correlation with observed runoff when driven with monitored observations in hindcast experiments. The ability to runoff forecasts is depending on lead times in the lagged ensemble prediction and shows still limitations resulting from errors in timing and total amount of the predicted precipitation in the complex mountainous area. The presentation describes the system implementation, and demonstrates the application of the POE framework in networking, distributed computing and in the setup of various experiments as well as long term results of the system application in the years 2005 - 2011.

  9. Design of runoff water harvesting systems and its role in minimizing water losses

    NASA Astrophysics Data System (ADS)

    Berliner, P.; Carmi, G.; Leake, S.; Agam, N.

    2016-12-01

    Precipitation is one of the major water sources for agricultural production in arid and semi-arid areas. Rainfalls are limited, erratic and not always coincide with the crop growing season. Only a part of the rain is absorbed by the soil. Soil evaporation is most severe in these regions and the large part of the absorbed water is lost to evaporation. The technique of collecting and conveying the runoff is known as runoff harvesting. Microcatchments are one of the primary techniques used for collecting, storing and conserving local surface runoff for growing trees/shrubs. In this system, runoff water is collected close-by the area in which it was generated, and trees/shrubs may utilize the water. The main objective of the present research was to estimate the effect of the design of the micro-catchment collection area (shallow basin and deep trench) has on the efficiency of the water conservation in the soil profile. The study was carried out during two years using regular micro-catchments (three replicates) with a surface area of 9 m2 (3 x 3 m) and a depth of 0.1 m and trenches (three replicates) with a surface area of 12 m2 (12 x 1 m) and 1 m depth. One and three olive trees were planted inside the trenches and micro-catchments, respectively. Access tubes for neutron probe were installed in micro-catchments and trenches (four and seven, respectively) to depths of 3m. Soil water content in the soil profile was monitored. Sap flow in trees was measured by PS-TDP8 Granier sap flow system every 0.5 hour and fluxes computed for the time intervals that correspond to the soil water measurements. The first year study included flooding trenches and regular micro-catchments once with the same amount of water (1.5 m3) and the second year study included flooding four times with 0.25 m3 each time. Flooding was followed by monitoring the water balance components and estimation of evaporation losses and water use efficiency by olive trees. Evaporation from trenches and regular micro-catchments was estimated as the difference between evapotranspiration obtained by soil water content monitoring and transpiration estimated by sap flow measurements. The results clearly show that the evaporation from the regular micro-catchments was significantly larger than that of trenches during the entire duration of the both experiments.

  10. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  11. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    USGS Publications Warehouse

    Shanley, J.B.; Kendall, C.; Smith, T.E.; Wolock, D.M.; McDonnell, Jeffery J.

    2002-01-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1 topographically controlled increase in surface-saturated area with increasing catchment size; 2 direct runoff over frozen ground; 3 low infiltration in agriculturally compacted soils; 4 differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright ?? 2002 John Wiley and Sons, Ltd.

  12. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    NASA Astrophysics Data System (ADS)

    Shanley, James B.; Kendall, Carol; Smith, Thor E.; Wolock, David M.; McDonnell, Jeffrey J.

    2002-02-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1.topographically controlled increase in surface-saturated area with increasing catchment size;2.direct runoff over frozen ground;3.low infiltration in agriculturally compacted soils;4.differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales.

  13. Runoff generation processes and fraction of young water for streamflow and groundwater in a pre-alpine forested catchment

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; Penna, Daniele; van Meerveld, Ilja; Borga, Marco

    2017-04-01

    Understanding of runoff generation mechanisms and storage dynamics is needed for sustainable management of water resources, particularly in catchments characterized by marked seasonality in rainfall. However, temporal and spatial variability of hydrological processes can hinder a detailed comprehension of catchment functioning. In this study, we use hydrometric data and stable isotope data from a 2-ha forested catchment in the Italian pre-Alps to i) identify seasonal changes in runoff generation, ii) determine the factors that affect the hysteretic relations between streamflow and soil moisture and between streamflow and shallow groundwater, and iii) estimate the fraction of young water in stream water and shallow groundwater. Streamflow, soil moisture and groundwater levels were measured continuously between August 2012 and December 2015. Soil moisture was measured at 0-30 cm depth by four time domain reflectometers installed at different locations along a riparian-hillslope transect. Depth to water table was measured in two piezometers installed at a depth of 2.0 and 1.8 m in the riparian zone. Water samples for isotopic analysis were taken monthly from bulk precipitation and approximately biweekly from stream water and groundwater. The relations between streamflow (independent variable), soil moisture and depth to water table (dependent variables) were analyzed by computing a hysteresis index that provides information on the direction, the extent and the shape of the loops for 103 rainfall-runoff events. The temporal variability of the hysteresis index was related to event characteristics (mean and maximum rainfall intensity, rainfall amount and total stormflow) and antecedent soil moisture conditions. We observed threshold-like relations between stormflow and the sum of rainfall and the antecedent soil moisture index and an exponential relation between the change in groundwater level and stormflow. Clockwise hysteretic relations were common between streamflow and riparian soil moisture, suggesting quick contributions from shallow soil layers in the riparian zone to streamflow. The relations between streamflow and hillslope soil moisture and between streamflow and depth to water table in the riparian zone varied seasonally, with clockwise loops being typical for large rainfall events in autumn and anti-clockwise hysteresis being more common in spring and summer. This indicates that hillslope soil water and riparian groundwater dynamics and their contribution to stormflow varied seasonally and depended on event size and antecedent moisture conditions. There was a marked seasonal variability in the isotopic composition of precipitation but a much more damped variability in the isotopic signature of stream water and groundwater. A sine curve was fitted to the seasonal variation in isotopic composition of weighted precipitation, stream water and groundwater to estimate the fraction of young water in stream water and groundwater. The fraction of young water in streamflow was about 14% when considering baseflow conditions only (23% using the entire isotopic dataset). This was similar to the fraction of young water in riparian groundwater. Keywords: runoff generation; hysteresis; isotopes; young water fraction; forested catchment.

  14. On using TRMM data and rainfall forecasts from meteorological models in data-scarce transboundary catchments - an example of Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Tohidul Islam, Md.

    2014-05-01

    This research focuses on the flood risk of the Haor region in the north-eastern part of Bangladesh. The prediction of the hydrological variables at different spatial and temporal scales in the Haor region is dependent on the influence of several upstream rivers in the Meghalaya catchment in India. Limitation in hydro-meteorological data collection and data sharing issues between the two countries dominate the feasibility of hydrological studies, particularly for near-realtime predictions. One of the possible solutions seems to be in making use of the variety of satellite based and meteorological model products for rainfall. The abundance of a variety of rainfall products provides a good basis of hydrological modelling of a part of the Ganges and Brahmaputra basin. In this research the TRMM data and rainfall forecasts from ECMWF have been compared with the scarce rain gauge data from the upstream Meghalaya catchment. Subsequently, the TRMM data and rainfall forecasts from ECMWF have been used as the meteorological input to a rainfall-runoff model of the Meghalaya catchment. The rainfall-runoff model of Meghalaya has been developed using the DEM data from SRTM. The generated runoff at the outlet of Meghalaya has been used as the upstream boundary condition in the existing rainfall-runoff model of the Haor region. The simulation results have been compared with the existing results based on simulations without any information of the rainfall-runoff in the upstream Meghalaya catchment. The comparison showed that the forecasting lead time has been substantially increased. As per the existing results the forecasting lead time at a number of locations in the catchment was about 6 to 8 hours. With the new results the forecasting lead time has gone up, with different levels of accuracy, to about 24 hours. This additional lead time will be highly beneficial in managing flood risk of the Haor region of Bangladesh. The research shows that satellite based rainfall products and rainfall forecasts from meteorological models can be very useful in flood risk management, particularly for data scarce regions and/or transboundary regions with data sharing issues. Keywords: flood risk management, TRMM, ECMWF, flood forecasting, Haor, Bangladesh. Abbreviations: TRMM: Tropical Rainfall Measuring Mission ECMWF: European Centre for Medium-Range Weather Forecasts DEM: Digital Elevation Model SRTM: Shuttle Radar Topography Mission

  15. Threshold values and management options for nutrients in a catchment of a temperate estuary with poor ecological status

    NASA Astrophysics Data System (ADS)

    Hinsby, K.; Markager, S.; Kronvang, B.; Windolf, J.; Sonnenborg, T. O.; Thorling, L.

    2012-02-01

    Intensive farming has severe impacts on the chemical status of groundwater and streams and consequently on the ecological status of dependent ecosystems. Eutrophication is a widespread problem in lakes and marine waters. Common problems are hypoxia, algal blooms and fish kills, and loss of water clarity, underwater vegetation, biodiversity, and recreational value. In this paper we evaluate the nitrogen (N) and phosphorus (P) chemistry of groundwater and surface water in a coastal catchment, the loadings and sources of N and P and their effect on the ecological status of an estuary. We calculate the necessary reductions in N and P loadings to the estuary for obtaining a good ecological status, which we define based on the number of days with N and P limitation, and the equivalent stream and groundwater threshold values assuming two different management options. The calculations are performed by the combined use of empirical models and a physically based 3-D integrated hydrological model of the whole catchment. The assessment of the ecological status indicates that the N and P loads to the investigated estuary should be reduced by a factor of 0.52 and 0.56, respectively, to restore good ecological status. Model estimates show that threshold total N concentrations should be in the range of 2.9 to 3.1 mg l-1 in inlet freshwater to Horsens Estuary and 6.0 to 9.3 mg l-1 in shallow aerobic groundwater (∼27-41 mg l-1 of nitrate), depending on the management measures implemented in the catchment. The situation for total P is more complex but data indicate that groundwater threshold values are not needed. The inlet freshwater threshold value for total P to Horsens Estuary for the selected management options is 0.084 mg l-1. Regional climate models project increasing winter precipitation and runoff in the investigated region resulting in increasing runoff and nutrient loads to coastal waters if present land use and farming practices continue. Hence, lower threshold values are required in the future to ensure good status of all water bodies and ecosystems.

  16. Phosphorus transport and retention in a channel draining an urban, tropical catchment with informal settlements

    NASA Astrophysics Data System (ADS)

    Nyenje, P. M.; Meijer, L. M. G.; Foppen, J. W.; Kulabako, R.; Uhlenbrook, S.

    2014-03-01

    Urban catchments in sub-Saharan Africa (SSA) are increasingly becoming a major source of phosphorus (P) to downstream ecosystems. This is primarily due to large inputs of untreated wastewater to urban drainage channels, especially in informal settlements (or slums). However, the processes governing the fate of P in these catchments are largely unknown. In this study, these processes are investigated. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining a 28 km2 slum-dominated catchment in Kampala, Uganda, and from a tertiary channel draining one of the contributing slum areas (0.54 km2). The samples were analysed for orthophosphate (PO4-P), particulate P (PP), total P (TP), suspended solids (SS) and hydrochemistry. We also collected channel bed and suspended sediments to determine their geo-available metals, sorption characteristics and the dominant phosphorus forms. Our results showed that the catchment exported high fluxes of P (0.3 kg km2 d-1 for PO4-P and 0.95 for TP), which were several orders of magnitude higher than values normally reported in literature. A large proportion of P exported was particulate (56% of TP) and we inferred that most of it was retained along the channel bed. The retained sediment P was predominantly inorganic (> 63% of total sediment P) and consisted of mostly Ca and Fe-bound P, which were present in almost equal proportions. Ca-bound sediment P was attributed to the adsorption of P to calcite because surface water was near saturation with respect to calcite in all the events sampled. Fe-bound sediment P was attributed to the adsorption of P to iron oxides in suspended sediment during runoff events given that surface water was undersaturated with respect to iron phosphates. We also found that the bed sediments were P-saturated and showed a tendency to release P by mineralisation and desorption. During rain events, there was a flushing of PP which we attributed to the resuspension of P-rich bed sediment that accumulated in the channel during low flows. However, first-flush effects were not observed. Our findings provide useful insights into the processes governing the fate and transport of P in urban slum catchments in SSA.

  17. Predicting urban stormwater runoff with quantitative precipitation estimates from commercial microwave links

    NASA Astrophysics Data System (ADS)

    Pastorek, Jaroslav; Fencl, Martin; Stránský, David; Rieckermann, Jörg; Bareš, Vojtěch

    2017-04-01

    Reliable and representative rainfall data are crucial for urban runoff modelling. However, traditional precipitation measurement devices often fail to provide sufficient information about the spatial variability of rainfall, especially when heavy storm events (determining design of urban stormwater systems) are considered. Commercial microwave links (CMLs), typically very dense in urban areas, allow for indirect precipitation detection with desired spatial and temporal resolution. Fencl et al. (2016) recognised the high bias in quantitative precipitation estimates (QPEs) from CMLs which significantly limits their usability and, in order to reduce the bias, suggested a novel method for adjusting the QPEs to existing rain gauge networks. Studies evaluating the potential of CMLs for rainfall detection so far focused primarily on direct comparison of the QPEs from CMLs to ground observations. In contrast, this investigation evaluates the suitability of these innovative rainfall data for stormwater runoff modelling on a case study of a small ungauged (in long-term perspective) urban catchment in Prague-Letňany, Czech Republic (Fencl et al., 2016). We compare the runoff measured at the outlet from the catchment with the outputs of a rainfall-runoff model operated using (i) CML data adjusted by distant rain gauges, (ii) rainfall data from the distant gauges alone and (iii) data from a single temporary rain gauge located directly in the catchment, as it is common practice in drainage engineering. Uncertainties of the simulated runoff are analysed using the Bayesian method for uncertainty evaluation incorporating a statistical bias description as formulated by Del Giudice et al. (2013). Our results show that adjusted CML data are able to yield reliable runoff modelling results, primarily for rainfall events with convective character. Performance statistics, most significantly the timing of maximal discharge, reach better (less uncertain) values with the adjusted CML data than with the distant rain gauges. When the relative error of the volume discharged during the maximum flow period is concerned, the adjusted CMLs perform even better than the rain gauge in the catchment. This seem to be very promising, especially for urban catchments with sparse rain gauge networks. References: Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., and Rieckermann, J. 2013. Improving uncertainty estimation in urban hydrological modeling by statistically describing bias. Hydrology and Earth System Sciences 17, 4209-4225. Fencl, M., Dohnal, M., Rieckermann, J., and Bareš, V. 2016. Gauge-Adjusted Rainfall Estimates from Commercial Microwave Links, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016- 397, in review. Acknowledgements to the Czech Science Foundation projects No. 14-22978S and No. 17-16389S.

  18. Catchment process affecting drinking water quality, including the significance of rainfall events, using factor analysis and event mean concentrations.

    PubMed

    Cinque, Kathy; Jayasuriya, Niranjali

    2010-12-01

    To ensure the protection of drinking water an understanding of the catchment processes which can affect water quality is important as it enables targeted catchment management actions to be implemented. In this study factor analysis (FA) and comparing event mean concentrations (EMCs) with baseline values were techniques used to asses the relationships between water quality parameters and linking those parameters to processes within an agricultural drinking water catchment. FA found that 55% of the variance in the water quality data could be explained by the first factor, which was dominated by parameters usually associated with erosion. Inclusion of pathogenic indicators in an additional FA showed that Enterococcus and Clostridium perfringens (C. perfringens) were also related to the erosion factor. Analysis of the EMCs found that most parameters were significantly higher during periods of rainfall runoff. This study shows that the most dominant processes in an agricultural catchment are surface runoff and erosion. It also shows that it is these processes which mobilise pathogenic indicators and are therefore most likely to influence the transport of pathogens. Catchment management efforts need to focus on reducing the effect of these processes on water quality.

  19. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    NASA Astrophysics Data System (ADS)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  20. A Catchment-Based Approach to Modeling Land Surface Processes in a GCM. Part 1; Model Structure

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Ducharne, Agnes; Stieglitz, Marc; Kumar, Praveen

    2000-01-01

    A new strategy for modeling the land surface component of the climate system is described. The strategy is motivated by an arguable deficiency in most state-of-the-art land surface models (LSMs), namely the disproportionately higher emphasis given to the formulation of one-dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties -- particularly subgrid soil moisture variability and its effects on runoff generation. The new strategy calls for the partitioning of the continental surface into a mosaic of hydrologic catchments, delineated through analysis of high-resolution surface elevation data. The effective "grid" used for the land surface is therefore not specified by the overlying atmospheric grid. Within each catchment, the variability of soil moisture is related to characteristics of the topography and to three bulk soil moisture variables through a well-established model of catchment processes. This modeled variability allows the partitioning of the catchment into several areas representing distinct hydrological regimes, wherein distinct (regime-specific) evaporation and runoff parameterizations are applied. Care is taken to ensure that the deficiencies of the catchment model in regions of little to moderate topography are minimized.

  1. Towards the determination of an optimal scale for stormwater quality management: micropollutants in a small residential catchment.

    PubMed

    Bressy, A; Gromaire, M-C; Lorgeoux, C; Saad, M; Leroy, F; Chebbo, G

    2012-12-15

    Stormwater and atmospheric deposits were collected on a small residential urban catchment (0.8 ha) near Paris in order to determine the levels of certain micropollutants (using a preliminary scan of 69 contaminants, followed by a more detailed quantification of PAHs, PCBs, alkylphenols and metals). Atmospheric inputs accounted for only 10%-38% of the stormwater contamination (except for PCBs), thus indicating substantial release within the catchment. On this small upstream catchment however, stormwater contamination is significantly lower than that observed downstream in storm sewers on larger adjacent urban catchments with similar land uses. These results likely stem from cross-contamination activity during transfers inside the sewer system and underscore the advantages of runoff management strategies at the source for controlling stormwater pollutant loads. Moreover, it has been shown that both contamination levels and contaminant speciation evolve with the scale of the catchment, in correlation with a large fraction of dissolved contaminants in upstream runoff, which differs from what has been traditionally assumed for stormwater. Consequently, the choice of treatment device/protocol must be adapted to the management scale as well as to the targeted type of contaminant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Rainfall-Runoff Simulations to Assess the Potential of SuDS for Mitigating Flooding in Highly Urbanized Catchments.

    PubMed

    Jato-Espino, Daniel; Charlesworth, Susanne M; Bayon, Joseba R; Warwick, Frank

    2016-01-21

    Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall-runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network.

  3. Rainfall–Runoff Simulations to Assess the Potential of SuDS for Mitigating Flooding in Highly Urbanized Catchments

    PubMed Central

    Jato-Espino, Daniel; Charlesworth, Susanne M.; Bayon, Joseba R.; Warwick, Frank

    2016-01-01

    Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall–runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network. PMID:26805864

  4. Spatial variability of polycyclic aromatic hydrocarbon load of urban wet weather pollution in combined sewers.

    PubMed

    Gasperi, J; Moilleron, R; Chebbo, G

    2006-01-01

    In Paris, the OPUR research programme created an experimental on-site observatory of urban pollutant loads in combined sewer systems in order to characterise the dry and wet weather flows at different spatial scales. This article presents the first results on the spatial variability of the polycyclic aromatic hydrocarbon (PAH) load during wet weather flow (WWF). At the scale of a rain event, investigations revealed that (i) PAH concentrations were relatively homogenous whatever the spatial scale and were greater than those of the dry weather flow (DWF), (ii) PAH distributions between dissolved and particulate phases were constant, and (iii) PAH fingerprints exhibited a similar pattern for all catchments. Moreover, an evaluation of the contribution of DWF, runoff and erosion of sewer deposits to WWF load was established. According to the hypothesis on the runoff concentration, the contributions were evaluated at 14, 8 and 78%, respectively, at the scale of the Marais catchment. For all the catchments, the runoff contribution was found quite constant and evaluated at approximately 10%. The DWF contribution seems to increase with the catchment area, contrary to the sewer erosion contribution, which seems to decrease. However, this latter still remains an important source of pollution. These first trends should be confirmed and completed by more investigations of rain events.

  5. Predicting organic matter, nitrogen, and phosphorus concentrations in runoff from peat extraction sites using partial least squares regression

    NASA Astrophysics Data System (ADS)

    Tuukkanen, T.; Marttila, H.; Kløve, B.

    2017-07-01

    Organic matter and nutrient export from drained peatlands is affected by complex hydrological and biogeochemical interactions. Here partial least squares regression (PLSR) was used to relate various soil and catchment characteristics to variations in chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in runoff. Peat core samples and water quality data were collected from 15 peat extraction sites in Finland. PLSR models constructed by cross-validation and variable selection routines predicted 92, 88, and 95% of the variation in mean COD, TN, and TP concentration in runoff, respectively. The results showed that variations in COD were mainly related to net production (temperature and water-extractable dissolved organic carbon (DOC)), hydrology (topographical relief), and solubility of dissolved organic matter (peat sulfur (S) and calcium (Ca) concentrations). Negative correlations for peat S and runoff COD indicated that acidity from oxidation of organic S stored in peat may be an important mechanism suppressing organic matter leaching. Moreover, runoff COD was associated with peat aluminum (Al), P, and sodium (Na) concentrations. Hydrological controls on TN and COD were similar (i.e., related to topography), whereas degree of humification, bulk density, and water-extractable COD and Al provided additional explanations for TN concentration. Variations in runoff TP concentration were attributed to erosion of particulate P, as indicated by a positive correlation with suspended sediment concentration (SSC), and factors associated with metal-humic complexation and P adsorption (peat Al, water-extractable P, and water-extractable iron (Fe)).

  6. Simulating pesticide transport in urbanized catchments: a new spatially-distributed dynamic pesticide runoff model

    NASA Astrophysics Data System (ADS)

    Tang, Ting; Seuntjens, Piet; van Griensven, Ann; Bronders, Jan

    2016-04-01

    Urban areas can significantly contribute to pesticide contamination in surface water. However, pesticide behaviours in urban areas, particularly on hard surfaces, are far less studied than those in agricultural areas. Pesticide application on hard surfaces (e.g. roadsides and walkways) is of particular concern due to the high imperviousness and therefore high pesticide runoff potential. Experimental studies have shown that pesticide behaviours on and interactions with hard surfaces are important factors controlling the pesticide runoff potential, and therefore the magnitude and timing of peak concentrations in surface water. We conceptualized pesticide behaviours on hard surfaces and incorporated the conceptualization into a new pesticide runoff model. The pesticide runoff model was implemented in a catchment hydrological model WetSpa-Python (Water and Energy Transfer between Soil, Plants and Atmosphere, Python version). The conceptualization for pesticide processes on hard surfaces accounts for the differences in pesticide behaviour on different hard surfaces. Four parameters are used to describe the partitioning and wash-off of each pesticide on hard surfaces. We tested the conceptualization using experimental dataset for five pesticides on two types of hard surfaces, namely concrete and asphalt. The conceptualization gave good performance in accounting for the wash-off pattern for the modelled pesticides and surfaces, according to quantitative evaluations using the Nash-Sutcliffe efficiency and percent bias. The resulting pesticide runoff model WetSpa-PST (WetSpa for PeSTicides) can simulate pesticides and their metabolites at the catchment scale. Overall, it includes four groups of pesticide processes, namely pesticide application, pesticide interception by plant foliage, pesticide processes on land surfaces (including partitioning, degradation and wash-off on hard surface; partitioning, dissipation, infiltration and runoff in soil) and pesticide processes in depression storage (including degradation, infiltration and runoff). Processes on hard surfaces employs the conceptualization described in the paragraph above. The WetSpa-PST model can account for various spatial details of the urban features in a catchment, such as asphalt, concrete and roof areas. The distributed feature also allows users to input detailed pesticide application data of both non-point and point origins. Thanks to the Python modelling framework prototype used in the WetSpa-Python model, processes in the WetSpa-PST model can be simulated at different time steps depending on data availability and the characteristic temporal scale of each process. This helps to increase the computational accuracy during heavy rainfall events, especially for the associated fast transport of pesticides into surface water. Overall, the WetSpa-PST model has good potential in predicting effects of management options on pesticide releases from heavily urbanized catchments.

  7. Effect of Wildfire on Hydrological Processes in a Monoculture Invasive Grass Catchment within the Panama Canal Watershed

    NASA Astrophysics Data System (ADS)

    Regina, J. A.; Ogden, F. L.

    2014-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to watershed management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One question posed by this project concerns the hydrologic role of fire in tropical environments. Within the Panama Canal Watershed, fire has seen widespread use among agriculturalists. This study focused on a monoculture invasive grass (Saccharum spontaneum) catchment. Specifically, the effects of significant wildfire events on hydrological processes in the catchment were analyzed. The catchment is within Panama's protected Soberania National Park, which is part of the greater Panama Canal Watershed. Installed instrumentation includes a rain gauge cluster, a two-stage v-notch weir, atmometer and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across the catchment is available from 2009-2013. Various hydrologic characteristics, such as runoff ratio, peak flow per unit area, time to peak, runoff duration, and leaf area index, from before and after the events were compared. These characteristics are related to rates of ground water recharge and the occurrence of flash floods. This study provides a baseline from which the potential impacts of fire on hydrological processes in tropical environments can be analyzed.

  8. Controls on Characteristics of Event-based Catchment Flood Response over Continental United States

    NASA Astrophysics Data System (ADS)

    Shen, X.; Mei, Y.; Nikolopoulos, E. I.; Anagnostou, E. N.

    2017-12-01

    Understanding the primary drivers of regional flood characteristics is of utmost importance for the development of flood early warning system. Many studies have dedicated their efforts on this topic, but the majority of these works is limited in terms of either the size of event population or the extent of their study domain. This prevents us from drawing a comprehensive understanding of the primary factors controlling the variability of catchment flood response across different hydroclimatic regimes and basin geomorphologies. In this study, we render an exhaustive analysis that includes the effect of climate, hydrometeorology, geomorphology, land cover and initial wetness conditions on the catchment's flood response for 318,000 flood events distributed across 5,900 catchments (basin scales ranging from 1 to 106 km2) of the Continental United States (CONUS) over a 10-year (2002 to 2013) period. Event runoff coefficients, response time lag and hydrograph shape are used as diagnostic variables to represent catchment flood response. Our results indicate different distributions of runoff coefficient over different climate regions and seasons. The magnitude of runoff coefficient increases as function of initial basin wetness condition and rainfall depth. Opposite patterns are found for the actual evapotranspiration rate and baseflow index. On the other hand, response time lag is controlled by the relief ratio of the basins and the mean flow length of the events; hydrograph shape reveals increasing trend with soil moisture condition and relief ratio.

  9. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Kuczera, George

    1983-10-01

    A Bayesian methodology is developed to evaluate parameter uncertainty in catchment models fitted to a hydrologic response such as runoff, the goal being to improve the chance of successful regionalization. The catchment model is posed as a nonlinear regression model with stochastic errors possibly being both autocorrelated and heteroscedastic. The end result of this methodology, which may use Box-Cox power transformations and ARMA error models, is the posterior distribution, which summarizes what is known about the catchment model parameters. This can be simplified to a multivariate normal provided a linearization in parameter space is acceptable; means of checking and improving this assumption are discussed. The posterior standard deviations give a direct measure of parameter uncertainty, and study of the posterior correlation matrix can indicate what kinds of data are required to improve the precision of poorly determined parameters. Finally, a case study involving a nine-parameter catchment model fitted to monthly runoff and soil moisture data is presented. It is shown that use of ordinary least squares when its underlying error assumptions are violated gives an erroneous description of parameter uncertainty.

  10. Review article: Hydrological modeling in glacierized catchments of central Asia - status and challenges

    NASA Astrophysics Data System (ADS)

    Chen, Yaning; Li, Weihong; Fang, Gonghuan; Li, Zhi

    2017-02-01

    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeling in glacierized catchments of central Asia, discussing the limitations of the available models and extrapolating these to future challenges and directions. After reviewing recent efforts, we conclude that the main sources of uncertainty in assessing the regional hydrological impacts of climate change are the unreliable and incomplete data sets and the lack of understanding of the hydrological regimes of glacierized catchments of central Asia. Runoff trends indicate a complex response to changes in climate. For future variation of water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, and scientific focus should be on reducing uncertainties linked to these processes.

  11. Potential compensation of hydrological extremes in headwaters: case study of upper Vltava River basin, Šumava Mts., Czechia

    NASA Astrophysics Data System (ADS)

    Kocum, Jan; Janský, Bohumír.; Česák, Julius

    2010-05-01

    Increasing frequency of catastrophic flash floods and extreme droughts in recent years results in an urgent need of solving of flood protection questions and measures leading to discharge increase in dry periods. Flattening of discharge call for the use of untraditional practices as a suitable complement to classical engineering methods. These measures could be represented by gradual increase of river catchment retention capacity in headstream areas. Very favorable conditions for this research solution are concentrated to the upper part of Otava River basin (Vltava River left tributary, Šumava Mts., southwestern Czechia) representing the core zone of a number of extreme floods in Central Europe and the area with high peat land proportion. A number of automatic ultrasound and hydrostatic pressure water level gauges, climatic stations and precipitation gauges and utilization of modern equipment and methods were used in chosen experimental catchments to assess the landscape retention potential and to find out rainfall-runoff relations in this area. Successively, the detailed analysis of peat land hydrological function was carried out. The peat bogs influence on runoff conditions were assessed by thorough comparison of runoff regimes in subcatchments with different peat land proportion. The peat bog influence on hydrological process can be considered also with respect to its affecting of water quality. Therefore, hydrological monitoring was completed by ion, carbon (TOC) and oxygen isotopes balance observing within periods of high or low discharges in order to precise runoff phases separation by means of anion deficiency. Pedological survey of different soil types and textures was carried out to precise the estimation of its water capacity. Detailed analyses of extreme runoff ascending and descending phases and minimum discharges in profiles closing several subcatchments with different physical-geographic conditions show higher peak flow frequency and their shorter reaction to causal amount of precipitation in the case of highly peaty areas, therefore more distinct runoff variability of streams draining peat land localities. These findings were affirmed by geochemical approach laboratory outcomes within the meaning of significant contribution of runoff from peat lands to the total runoff during extreme flood situations. An important component of rainfall-runoff process in source areas of czech rivers represented by snow conditions was analyses very in detail by means of monitoring of snow cover height and its water equivalent in chosen experimental catchments. Outcomes of this study should markedly help with significant precising of estimation of water storage retained in a snow cover. Consecutive runoff simulations using mathematical techniques would then improve a hydrological forecast. In terms of present dyking of former channels draining peat land represented by so called peat bog revitalization partial findings refer to positive effect during mean runoff situations but their considerably negative influence on runoff process in cases of extremely high discharges. In order to achieve retention potential enhancement in source areas of czech rivers an evaluation of possible former accumulative reservoirs (used for wood floating in former times) restoration which could function for example as dry (green) polders should be considered. The system of such small storage bins could function as an alternative and supplement to greater dam reservoirs. Possible spaces for water retention are measured by geodetic total station and modelled by suitable methods in GIS software. Existing outcomes advert to the fact that the effectiveness of such reservoir system would not have to be neglecting. By implementation of these unforceable measures realized in river headstream areas it could be contributed to reduction of peak flows and to increase of water resources during extreme droughts in future.

  12. Influence of land development on stormwater runoff from a mixed land use and land cover catchment.

    PubMed

    Paule-Mercado, M A; Lee, B Y; Memon, S A; Umer, S R; Salim, I; Lee, C-H

    2017-12-01

    Mitigating for the negative impacts of stormwater runoff is becoming a concern due to increased land development. Understanding how land development influences stormwater runoff is essential for sustainably managing water resources. In recent years, aggregate low impact development-best management practices (LID-BMPs) have been implemented to reduce the negative impacts of stormwater runoff on receiving water bodies. This study used an integrated approach to determine the influence of land development and assess the ecological benefits of four aggregate LID-BMPs in stormwater runoff from a mixed land use and land cover (LULC) catchment with ongoing land development. It used data from 2011 to 2015 that monitored 41 storm events and monthly LULC, and a Personalized Computer Storm Water Management Model (PCSWMM). The four aggregate LID-BMPs are: ecological (S1), utilizing pervious covers (S2), and multi-control (S3) and (S4). These LID-BMPs were designed and distributed in the study area based on catchment characteristics, cost, and effectiveness. PCSWMM was used to simulate the monitored storm events from 2014 (calibration: R 2 and NSE>0.5; RMSE <11) and 2015 (validation: R 2 and NSE>0.5; RMSE <12). For continuous simulation and analyzing LID-BMPs scenarios, the five-year (2011 to 2015) stormwater runoff data and LULC change patterns (only 2015 for LID-BMPs) were used. Results show that the expansion of bare land and impervious cover, soil alteration, and high amount of precipitation influenced the stormwater runoff variability during different phases of land development. The four aggregate LID-BMPs reduced runoff volume (34%-61%), peak flow (6%-19%), and pollutant concentrations (53%-83%). The results of this study, in addition to supporting local LULC planning and land development activities, also could be applied to input data for empirical modeling, and designing sustainable stormwater management guidelines and monitoring strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Interannual climate variability and spatially heterogeneous improvement of agricultural management impede detection of a decreasing trend in nitrate pollution in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Fovet, Ophélie; Dupas, Rémi; Durand, Patrick; Gascuel-Odoux, Chantal; Gruau, Gérard; Hamon, Yannick; Petitjean, Patrice

    2016-04-01

    Despite widespread implementation of the nitrate directive in the European Union since the 1990s, the impact on nitrate concentration in rivers is limited (Bouraoui and Grizzetti, 2011). To assess whether this lack of response is due to the long time lags of nitrate transfer or to inadequate programs of measure, long term river and groundwater monitoring data are necessary. This study analyses 15 years of daily nitrate concentration data at the outlet of an intensively farmed catchment in Western France (Kervidy-Naizin, 5 km²) and quarterly nitrate concentration data in the groundwater of two hillslopes equipped with piezometers (Kerroland and Gueriniec) within the same catchment. In this catchment groundwater contribution to annual stream flow is dominant. The objectives of this study were to i) disentangle the influence of interannual climate variability and improvement of agricultural practices (i.e. reduction in N surplus) in the stream chemistry and ii) discuss the reasons for slow catchment recovery from nitrate pollution by comparing trends in groundwater and stream concentrations. Analysis of stream data showed that flow-weighted mean annual concentration at the outlet of the Kervidy-Naizin catchment has decreased by 1.2 mg NO3- l-1 yr-1 from 1999 to 2015. This decrease was slow but significant (p value < 0.01) even though interannual climate variability (i.e. annual cumulated runoff) added noise to the signal: i) deviation in the linear model of nitrate decrease with time was negatively correlated with annual runoff (r = -0.54, p < 0.01) and ii) local minimums in the nitrate time series were coincident with local maximums in the annual runoff. Thus high runoff during wet years led to dilution of the nitrate originating from groundwater, which added variability to the signal of linear decrease in stream concentration. Analysis of groundwater data showed a significant and sharp decrease in nitrate concentration in the Kerroland piezometer transect (4.0 mg NO3- l-1 yr-1) and no significant evolution in the Gueriniec piezometer transect, from 1999 to 2015. This contrasting evolution of groundwater nitrate concentration between the two transects was consistent with data on soil surface nitrogen surplus, with a balanced fertilisation in the Kerroland transect (N surplus close to 0 kg N ha-1 yr-1) and excessive fertilisation in the Gueriniec transect (N surplus > 100 kg N ha-1 yr-1). We conclude that, despite the lags due to pluri annual nitrate transfer through the unsaturated and satured zones in catchments of Western France, significant decrease in nitrate concentration in groundwater and streams should be visible within less than 10 years after implementation of an efficient program of measures. Spatial heterogeneity in the implementation of programs of measures (i.e. reduction of N surplus) is a likely cause of slow, sometimes undetectable, reduction in nitrate concentration. Bouraoui, F., and Grizzetti, B.: Long term change of nutrient concentrations of rivers discharging in European seas, The Science of the total environment, 409, 4899-4916, 10.1016/j.scitotenv.2011.08.015, 2011.

  14. Can we improve streamflow simulation by using higher resolution rainfall information?

    NASA Astrophysics Data System (ADS)

    Lobligeois, Florent; Andréassian, Vazken; Perrin, Charles

    2013-04-01

    The catchment response to rainfall is the interplay between space-time variability of precipitation, catchment characteristics and antecedent hydrological conditions. Precipitation dominates the high frequency hydrological response, and its simulation is thus dependent on the way rainfall is represented. One of the characteristics which distinguishes distributed from lumped models is their ability to represent explicitly the spatial variability of precipitation and catchment characteristics. The sensitivity of runoff hydrographs to the spatial variability of forcing data has been a major concern of researchers over the last three decades. However, although the literature on the relationship between spatial rainfall and runoff response is abundant, results are contrasted and sometimes contradictory. Several studies concluded that including information on rainfall spatial distribution improves discharge simulation (e.g. Ajami et al., 2004, among others) whereas other studies showed the lack of significant improvement in simulations with better information on rainfall spatial pattern (e.g. Andréassian et al., 2004, among others). The difficulties to reach a clear consensus is mainly due to the fact that each modeling study is implemented only on a few catchments whereas the impact of the spatial distribution of rainfall on runoff is known to be catchment and event characteristics-dependent. Many studies are virtual experiments and only compare flow simulations, which makes it difficult to reach conclusions transposable to real-life case studies. Moreover, the hydrological rainfall-runoff models differ between the studies and the parameterization strategies sometimes tend to advantage the distributed approach (or the lumped one). Recently, Météo-France developed a rainfall reanalysis over the whole French territory at the 1-kilometer resolution and the hourly time step over a 10-year period combining radar data and raingauge measurements: weather radar data were corrected and adjusted with both hourly and daily raingauge data. Based on this new high resolution product, we propose a framework to evaluate the improvements in streamflow simulation by using higher resolution rainfall information. Semi-distributed modelling is performed for different spatial resolution of precipitation forcing: from lumped to semi-distributed simulations. Here we do not work on synthetic (simulated) streamflow, but with actual measurements, on a large set of 181 French catchments representing a variety of size and climate. The rainfall-runoff model is re-calibrated for each resolution of rainfall spatial distribution over a 5-year sub-period and evaluated on the complementary sub-period in validation mode. The results are analysed by catchment classes based on catchment area and for various types of rainfall events based on the spatial variability of precipitation. References Ajami, N. K., Gupta, H. V, Wagener, T. & Sorooshian, S. (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4), 112-135. Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C. & Loumagne, C. (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), 1-9.

  15. Linking pulses of atmospheric deposition to DOC release in an upland peat-covered catchment

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Burt, T. P.; Adamson, J. K.

    2008-12-01

    Changes in atmospheric deposition have been proposed as one possible explanation of the widespread increase in DOC concentration observed in many Northern Hemisphere catchments. This study uses detailed, long-term, monthly monitoring records of pH, conductivity SO4, and DOC in precipitation, soil water, and runoff chemistry from an upland peat-covered catchment in northern England. By deriving impulse transfer functions this study explores whether changes in deposition lead to significant changes in the occurrence of each component in the soil and runoff water; especially significant changes in DOC. The study shows that (1) impulses in the deposition of acidity have no significant effect upon pH or DOC in soil water or runoff. (2) DOC in soil water and runoff is responsive to impulses in SO4 and conductivity, but only when those impulses are changes in soil water chemistry and not when they are in atmospheric deposition. (3) The effects of changes in SO4 and/or conductivity can easily be overemphasized if memory effects are not accounted for, and their effect is limited to only 1 or 2 months after a severe drought. This study can support the view that changes in ionic strength can result in changes in DOC concentration in soil water or runoff, but the system studied is unresponsive to changes in atmospheric deposition. Impulses in soil water SO4 do not lead to increases in DOC concentrations, and so this mechanism does not provide an explanation for DOC increases.

  16. The application of electrical conductivity as a tracer for hydrograph separation in urban catchments

    USGS Publications Warehouse

    Pellerin, B.A.; Wollheim, W.M.; Feng, X.; Vororsmarty, C.J.

    2008-01-01

    Two-component hydrograph separation was performed on 19 low-to-moderate intensity rainfall events in a 4.1-km2 urban watershed to infer the relative and absolute contribution of surface runoff (e.g. new water) to stormflow generation between 2001 and 2003. The electrical conductivity (EC) of water was used as a continuous and inexpensive tracer, with order of magnitude differences in precipitation (12-46 ??S/cm) and pre-event streamwater EC values (520-1297 ??S/cm). While new water accounted for most of the increased discharge during storms (61-117%), the contribution of new water to total discharge during events was typically lower (18-78%) and negatively correlated with antecedent stream discharge (r2 = 0??55, p < 0??01). The amount of new water was positively correlated with total rainfall (r2 = 0??77), but hydrograph separation results suggest that less than half (9-46%) of the total rainfall on impervious surfaces is rapidly routed to the stream channel as new water. Comparison of hydrograph separation results using non-conservative tracers (EC and Si) and a conservative isotopic tracer (??D) for two events showed similar results and highlighted the potential application of EC as an inexpensive, high frequency tracer for hydrograph separation studies in urban catchments. The use of a simple tracer-based approach may help hydrologists and watershed managers to better understand impervious surface runoff, stormflow generation and non-point-source pollutant loading to urban streams. Copyright ?? 2007 John Wiley & Sons, Ltd.

  17. Runoff generation from neighboring headwater basins with differing glacier coverage using the distributed hydrological model WaSiM, Eklutna, Alaska

    NASA Astrophysics Data System (ADS)

    Ostman, J. S.; Loso, M.; Liljedahl, A. K.; Gaedeke, A.; Geck, J. E.

    2017-12-01

    Many Alaska glaciers are thinning and retreating, and glacier wastage is projected to affect runoff processes from glacierized basins. Accordingly, effective resource management in glacierized watersheds requires quantification of a glacier's role on streamflow generation. The Eklutna catchment (311 km2) supplies water and electricity for Anchorage, Alaska (pop. 300,000) via Eklutna Lake. The Eklutna headwaters include the West Fork (64 km2, 46% glacier), and the East Fork (101 km2, 12% glacier). Total average annual discharge (2009-2015) is similar from the West (42,100 m3) and East (42,200 m3) forks, while specific annual runoff from the West Fork (2940 mm) exceeds that of the East Fork (1500 mm). To better understand what controls runoff, we are simulating the Eklutna annual water budget using a distributed watershed-level hydrological model. We force the Water Flow and Balance Simulation Model (WaSiM) using continuous air temperature, precipitation, wind speed, shortwave incoming radiation, and relative humidity primarily measured in the West Fork basin. We use Eklutna Glacier snow accumulation and ablation to calibrate the snowmelt and glacier sub-modules. Melt season discharge from the West and East forks is used for runoff comparison. Preliminary results show 2013-2015 simulated glacier point balances (accumulation and melt) are within 15% of glacier stake observations. Runoff was effectively modeled in the West Fork (NSE=0.80), while being over-predicted in the East Fork , which we attribute to a lack of forcing data in the less-glacierized basin. The simulations suggest that 78% of West Fork total runoff is from glacier melt, compared with <40% in the East Fork where glacier runoff contribution is higher during low-snow years.

  18. Assessment of hydrology, suspended sediment and particulate organic carbon transport in a large agricultural catchment using SWAT model

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; José-Miguel, Sánchez-Pérez

    2010-05-01

    Suspended sediment transport from agricultural catchments to stream networks is responsible for aquatic habitat degradation, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, heavy metals and other toxic substances). Quantifying and understanding the dynamics of suspended sediment transfer from agricultural land to watercourses is essential in controlling soil erosion and in implementing appropriate mitigation practices to reduce stream suspended sediment and associated pollutant loads, and hence improve surface water quality downstream. Gascogne area, southwest France, has been dominated by anthropogenic activities particularly intensive agriculture causing severe erosion in recent decades. This leads to a major threat to surface water quality due to soil erosion. Therefore, the catchment water quality has been continuously monitored since January 2007 and the historical data of hydrology and suspended sediment has existed since 1998. In this study, the Soil and Water Assessment Tool (SWAT 2005) was applied to assess hydrology, suspended sediment and particulate organic carbon in this catchment Agricultural management practices (crop rotation, planting date, fertilizer quantity and irrigations) were taken into the model for simulation period of 11 years (July, 1998 to March, 2009). The investigation was conducted using a 11-year streamflow and two years of suspended sediment record from January 2007 to March 2009. Modelling strategy with dominant landuse and soil type was chosen in this study. The SWAT generally performs satisfactorily and could simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily (ENash>0.5). For suspended sediment simulation, the simulated values were compared with the observed continuous suspended sediment derived from turbidity data. Based on the relationship between SSC and POC (R2 = 0.93), POC was modelled by simulated SSC from SWAT. The model predicted that the average annual catchment rainfall of the 11-year evaluation period (726 mm) with evapotranspiration (78.3%), percolation/groundwater recharge (14.1%), transmission loss (0.5%), and yielding surface runoff (7.1%). The simulated average total water yield of 11 years accounted for 138 mm (observed=133mm) and annual sediment yield varying from 4766 t to 123000 t (Mean= 48 t km-2). The annual yield of particulate organic carbon ranged from 120 t to 3100 t (Mean=1.2 t km-2).

  19. Untangling the eco-hydro-geomorphic knot: Insights from an experiment seeking to explain patterns, processes, and feedbacks at the catchment scale

    NASA Astrophysics Data System (ADS)

    Gutierrez-Jurado, H. A.; Vivoni, E. R.; Cikoski, C.; Bras, R. L.; Guan, H.; Harrison, B. J.; Istanbulluoglu, E.

    2012-12-01

    In recent years much has been advanced in the understanding of landscape patterns and processes by means of ever more complex modeling exercises coupling biological and physical mechanisms. Although meaningful, the outcomes of such models are frequently limited and undermined by the lack of proper datasets on which these results can be tested and verified. In this work we provide a summary of findings based on the observation of the ecologic-hydrologic-geomorphic interactions of a semiarid catchment with clear vegetation and geomorphic contrasts. Through various years of data from a network of hydrologic sensors deployed on and along the catchment slopes we were able to decouple the effect of vegetation, terrain properties and energy fluxes on the hydrologic dynamics of two coexisting but opposing ecosystems; a Juniper-savanna on a north facing slope (NFS) and a creosote shrubland on a south facing slope (SFS). Our analyses show that: 1) topographic modulated energy loads exert a first order control on the dynamics of evapotranspiration and soil moisture residence times in the catchment, with vegetation imposing a second order control at the onset of the growing season; 2) the soils exhibit a characteristic progression of moisture and temperature along the slope aspect continuum that is preserved throughout the year, going from a wetter and cooler NFS to a drier and warmer SFS; 3) there is remarkably distinct rainfall-runoff dynamics between the catchment slopes, where a much smaller precipitation threshold on the SFS triggers larger runoff peaks with more variable time lags in runoff initiation than at its NFS counterpart; 4) seasonal water balances of the NFS and SFS follow opposite trajectories in the year and point to distinct soil water pools for ET demands, where the NFS ET is mainly supported by shallow soil moisture while SFS ET may come from deeper soil moisture tapped by the roots of creosote shrubs. Preliminary results on the contribution of transpiration to total ET support these findings. Taken together, the results of this study have important implications for the understanding of the potential causes and effects of landscape changes in areas of complex topography under current and future climatic scenarios. The work provides a conceptual framework for the systematic study of different vegetation-terrain-hydrologic interactions that is currently being explored on an experimental catchment with distinct climatic properties in the southern hemisphere.

  20. Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier

    PubMed Central

    Guzha, Alphonce C.; Torres, Gilmar N.; Kovacs, Kristof; Lamparter, Gabriele; Amorim, Ricardo S. S.; Couto, Eduardo; Gerold, Gerhard

    2017-01-01

    Understanding the impacts of land-use change on landscape-hydrological dynamics is one of the main challenges in the Northern Brazilian Cerrado biome, where the Amazon agricultural frontier is located. Motivated by the gap in literature assessing these impacts, we characterized the soil hydro-physical properties and quantified surface water fluxes from catchments under contrasting land-use in this region. We used data from field measurements in two headwater micro-catchments with similar physical characteristics and different land use, i.e. cerrado sensu stricto vegetation and pasture for extensive cattle ranching. We determined hydraulic and physical properties of the soils, applied ground-based remote sensing techniques to estimate evapotranspiration, and monitored streamflow from October 2012 to September 2014. Our results show significant differences in soil hydro-physical properties between the catchments, with greater bulk density and smaller total porosity in the pasture catchment. We found that evapotranspiration is smaller in the pasture (639 ± 31% mm yr-1) than in the cerrado catchment (1,004 ± 24% mm yr-1), and that streamflow from the pasture catchment is greater with runoff coefficients of 0.40 for the pasture and 0.27 for the cerrado catchment. Overall, our results confirm that conversion of cerrado vegetation to pasture causes soil hydro-physical properties deterioration, reduction in evapotranspiration reduction, and increased streamflow. PMID:28609462

  1. Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier.

    PubMed

    Nóbrega, Rodolfo L B; Guzha, Alphonce C; Torres, Gilmar N; Kovacs, Kristof; Lamparter, Gabriele; Amorim, Ricardo S S; Couto, Eduardo; Gerold, Gerhard

    2017-01-01

    Understanding the impacts of land-use change on landscape-hydrological dynamics is one of the main challenges in the Northern Brazilian Cerrado biome, where the Amazon agricultural frontier is located. Motivated by the gap in literature assessing these impacts, we characterized the soil hydro-physical properties and quantified surface water fluxes from catchments under contrasting land-use in this region. We used data from field measurements in two headwater micro-catchments with similar physical characteristics and different land use, i.e. cerrado sensu stricto vegetation and pasture for extensive cattle ranching. We determined hydraulic and physical properties of the soils, applied ground-based remote sensing techniques to estimate evapotranspiration, and monitored streamflow from October 2012 to September 2014. Our results show significant differences in soil hydro-physical properties between the catchments, with greater bulk density and smaller total porosity in the pasture catchment. We found that evapotranspiration is smaller in the pasture (639 ± 31% mm yr-1) than in the cerrado catchment (1,004 ± 24% mm yr-1), and that streamflow from the pasture catchment is greater with runoff coefficients of 0.40 for the pasture and 0.27 for the cerrado catchment. Overall, our results confirm that conversion of cerrado vegetation to pasture causes soil hydro-physical properties deterioration, reduction in evapotranspiration reduction, and increased streamflow.

  2. Runoff and erosion from a rapidly eroding pinyon-juniper hillslope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, B.P.; Davenport, D. W.; Pitlick, J.

    1996-02-01

    The dramatic acceleration of erosion associated with the expansion of pinyon-juniper woodlands over the past 100 years has been a widely recognized but poorly understood phenomenon. A more complete understanding will come only through long-term observations of erosion and related factors. To this end, we are conducting a study of a small (1-ha) catchment in a rapidly eroding pinyon-juniper woodland. Since July 1993, we have been collecting data on runoff, erosion, and weather conditions in the catchment, as well as on the topography, soils, and vegetation. Our preliminary results suggest that (1) the catchment is currently in a cycle ofmore » accelerated erosion that began concomitant with a shift from ponderosa pine forest to pinyon-juniper woodland that was initiated by a prolonged drought; (2) the intercanopy soils cannot be sustained at the current erosion rates and will be mostly stripped away in about a century; (3) large summer thunderstorms are the most important agents of erosion (4) erosion increases dramatically as the scale increases; (5) runoff makes up <10% of the water budget.« less

  3. On Flood Frequency in Urban Areas under Changing Conditions and Implications on Stormwater Infrastructure Planning and Design

    NASA Astrophysics Data System (ADS)

    Norouzi, A.; Habibi, H.; Nazari, B.; Noh, S.; Seo, D. J.; Zhang, Y.

    2016-12-01

    With urbanization and climate change, many areas in the US and abroad face increasing threats of flash flooding. Due to nonstationarities arising from changes in land cover and climate, however, it is not readily possible to project how such changes may modify flood frequency. In this work, we describe a simple spatial stochastic model for rainfall-to-areal runoff in urban areas, evaluate climatological mean and variance of mean areal runoff (MAR) over a range of catchment scale, translate them into runoff frequency, which is used as a proxy for flood frequency, and assess its sensitivity to precipitation, imperviousness and soil, and their changes as a function of catchment scale and magnitude of precipitation. The findings indicate that, due to large sensitivity of frequency of MAR to multiple hydrometeorological and physiographic factors, estimation of flood frequency for urban catchments is inherently more uncertain. The approach used in this work is useful in developing bounds for flood frequencies in urban areas under nonstationary conditions arising from urbanization and climate change.

  4. The Catchment Runoff Attenuation Flux Tool, a minimum information requirement nutrient pollution model

    NASA Astrophysics Data System (ADS)

    Adams, R.; Quinn, P. F.; Bowes, M. J.

    2015-04-01

    A model for simulating runoff pathways and water quality fluxes has been developed using the minimum information requirement (MIR) approach. The model, the Catchment Runoff Attenuation Flux Tool (CRAFT), is applicable to mesoscale catchments and focusses primarily on hydrological pathways that mobilise nutrients. Hence CRAFT can be used to investigate the impact of flow pathway management intervention strategies designed to reduce the loads of nutrients into receiving watercourses. The model can help policy makers meet water quality targets and consider methods to obtain "good" ecological status. A case study of the 414 km2 Frome catchment, Dorset, UK, has been described here as an application of CRAFT in order to highlight the above issues at the mesoscale. The model was primarily calibrated on 10-year records of weekly data to reproduce the observed flows and nutrient (nitrate nitrogen - N; phosphorus - P) concentrations. Data from 2 years with sub-daily monitoring at the same site were also analysed. These data highlighted some additional signals in the nutrient flux, particularly of soluble reactive phosphorus, which were not observable in the weekly data. This analysis has prompted the choice of using a daily time step as the minimum information requirement to simulate the processes observed at the mesoscale, including the impact of uncertainty. A management intervention scenario was also run to demonstrate how the model can support catchment managers investigating how reducing the concentrations of N and P in the various flow pathways. This mesoscale modelling tool can help policy makers consider a range of strategies to meet the European Union (EU) water quality targets for this type of catchment.

  5. The Use of Asymptotic Functions for Determining Empirical Values of CN Parameter in Selected Catchments of Variable Land Cover

    NASA Astrophysics Data System (ADS)

    Wałęga, Andrzej; Młyński, Dariusz; Wachulec, Katarzyna

    2017-12-01

    The aim of the study was to assess the applicability of asymptotic functions for determining the value of CN parameter as a function of precipitation depth in mountain and upland catchments. The analyses were carried out in two catchments: the Rudawa, left tributary of the Vistula, and the Kamienica, right tributary of the Dunajec. The input material included data on precipitation and flows for a multi-year period 1980-2012, obtained from IMGW PIB in Warsaw. Two models were used to determine empirical values of CNobs parameter as a function of precipitation depth: standard Hawkins model and 2-CN model allowing for a heterogeneous nature of a catchment area. The study analyses confirmed that asymptotic functions properly described P-CNobs relationship for the entire range of precipitation variability. In the case of high rainfalls, CNobs remained above or below the commonly accepted average antecedent moisture conditions AMCII. The study calculations indicated that the runoff amount calculated according to the original SCS-CN method might be underestimated, and this could adversely affect the values of design flows required for the design of hydraulic engineering projects. In catchments with heterogeneous land cover, the results of CNobs were more accurate when 2-CN model was used instead of the standard Hawkins model. 2-CN model is more precise in accounting for differences in runoff formation depending on retention capacity of the substrate. It was also demonstrated that the commonly accepted initial abstraction coefficient λ = 0.20 yielded too big initial loss of precipitation in the analyzed catchments and, therefore, the computed direct runoff was underestimated. The best results were obtained for λ = 0.05.

  6. Effects of wildfire on catchment runoff response: a modeling approach to detect changes in snow-dominated forested catchments

    Treesearch

    Jan Seibert; Jeffrey J. McDonnell; Richard D. Woodsmith

    2010-01-01

    Wildfire is an important disturbance affecting hydrological processes through alteration of vegetation cover and soil characteristics. The effects of fire on hydrological systems at the catchment scale are not well known, largely because site specific data from both before and after wildfire are rare. In this study a modelling approach was employed for change detection...

  7. Climate regulates the erosional carbon export from the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Hilton, Robert G.

    2017-01-01

    Erosion drives the export of particulate organic carbon from the terrestrial biosphere (POCbiosphere) and its delivery to rivers. The carbon transfer is globally significant and can result in drawdown of atmospheric carbon dioxide (CO2) if the eroded POCbiosphere escapes degradation during river transfer and sedimentary deposition. Despite this recognition, we lack a global perspective on how the tectonic and climatic factors which govern physical erosion regulate POCbiosphere discharge, obscuring linkages between mountain building, climate, and CO2 drawdown. To fill this deficit, geochemical (δ13C, 14C and C/N), hydrometric (water discharge, suspended sediment concentration) and geomorphic (slope) measurements are combined from 33 globally-distributed forested mountain catchments. Radiocarbon activity is used to account for rock-derived organic carbon and reveals that POCbiosphere eroded from mountain forests is mostly < 1300 14C years old. Annual POCbiosphere yields are positively correlated with suspended sediment yields, confirming results from Taiwan and a recent global analysis, and are high in catchments with the steepest slopes. Based on these relationships and the global distribution of slope angles (3-arc-second), it is suggested that topography steeper than 10° (16% of the continental area) may contribute 40% of global POCbiosphere erosional flux. Climate is shown to regulate POCbiosphere discharge by mountain rivers, by controlling hydrologically-driven erosion processes. In catchments where discharge measurements are available (8 of the 33) a significant relationship exists between daily runoff (mm day- 1) and POCbiosphere concentration (mg L- 1) (r = 0.53, P < 0.0001). The relationship can be described by a single power law and suggests a high connectivity between forested hillslopes and mountain river channels. As a result, annual POCbiosphere yields are significantly correlated with mean annual runoff (r = 0.64, P < 0.0001). A shear-stress POCbiosphere erosion model is proposed which can explain the patterns in the data. The model allows the climate sensitivity of this carbon flux to be assessed for the first time. For a 1% increase in annual runoff, POCbiosphere discharge is predicted to increase by 4%. In steeper catchments, POCbiosphere discharge increases more rapidly with an increase in annual runoff. For comparison, a 1% increase in annual runoff is predicted to increase carbon transfers by silicate weathering solute fluxes in mountains by 0.4-0.7%. Depending on the fate of the eroded POCbiosphere, river export of POCbiosphere from mountains may act as an important negative feedback on rising atmospheric CO2 and increased global temperature. Erosion of carbon from the terrestrial biosphere links mountain building and climate to the geological evolution of atmospheric CO2, while the carbon fluxes are sensitive to predicted changes in runoff over the coming century. Supplementary Table 2 - Global forested mountain river catchments with estimates of suspended sediment and POCbiosphere, and POCpetro yields, and annual runoff. Supplementary Table 3 - Geomorphic characteristics of mountain river catchments. Supplementary Table 4 - Outputs of binary mixing model.

  8. Impacts of the Conversion of Forest to Arable Land and Long Term Agriculture Practices on the Water Pathways in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Robinet, J.; Minella, J. P. G.; Schlesner, A.; Lücke, A.; Ameijeiras-Marino, Y.; Opfergelt, S.; Vanderborght, J.; Gerard, G.

    2017-12-01

    Changes in runoff pathways affect many environmental processes. Land use change (LUC), and more specifically forest conversion to arable land, is one of the controls of water fluxes at the hillslope or catchment scale. Still, the long term effects of forest conversion and agricultural activities in (sub-) tropical environments have been relatively understudied. Our objective was therefore to study the impact of deforestation and land degradation through agriculture on runoff pathways. We selected two small catchments with contrasting land use (agriculture vs. natural forest) in a subtropical region in the south of Brazil. Stream-, pore-, subsurface- and rainwater were monitored, sampled and analyzed for Dissolve Silicon concentration (DSi) and δ18O isotopic signature. Both forested and agricultural catchments were highly responsive to rainfall event and only 2 runoff components contributed to the stream discharge were identified: baseflow and peak flow components. The δ18O peak flow signal in the agricultural catchment was closely related to the δ18O rainfall signal. In the forested catchment, the δ18O peak flow signal was similar to a seasonally averaged signal. This suggested that most peak flow was derived from current rainfall events in the agricultural catchment, while being derived from a mixed reservoir in the forested one. The DSi of the peak flow was low in both catchments. Hence, the mixing in the forested catchment cannot have taken place in the soil matrix as the soil pore water contained high DSi concentrations. Instead, the mixing must have taken place in a reservoir with a relatively short residence time and isolated, to some extent, from the soil matrix. The dense channel network left by decayed roots in the forest soil above a clay-rich water-impeding B horizon is the most likely candidate and this was confirmed by visual observations. Contributions of other, deeper reservoirs are unlikely given the quick response time of the catchment. Dissolved fluxes at the catchment scale are therefore less likely to be strongly affected by the change in water pathways as, in both catchments, the peak flow component had low solute concentrations. Land use change effects on dissolved loads are likely to be more impacted by the change in water balance caused by forest removal, which leads to a higher water surplus.

  9. A case study examining the efficacy of drainage setbacks for limiting effects to wetlands in the Prairie Pothole Region, USA

    USGS Publications Warehouse

    Tangen, Brian; Finocchiaro, Raymond

    2017-01-01

    The enhancement of agricultural lands through the use of artificial drainage systems is a common practice throughout the United States, and recently the use of this practice has expanded in the Prairie Pothole Region. Many wetlands are afforded protection from the direct effects of drainage through regulation or legal agreements, and drainage setback distances typically are used to provide a buffer between wetlands and drainage systems. A field study was initiated to assess the potential for subsurface drainage to affect wetland surface-water characteristics through a reduction in precipitation runoff, and to examine the efficacy of current U.S. Department of Agriculture drainage setback distances for limiting these effects. Surface-water levels, along with primary components of the catchment water balance, were monitored over 3 y at four seasonal wetland catchments situated in a high-relief terrain (7–11% slopes). During the second year of the study, subsurface drainage systems were installed in two of the catchments using drainage setbacks, and the drainage discharge volumes were monitored. A catchment water-balance model was used to assess the potential effect of subsurface drainage on wetland hydrology and to assess the efficacy of drainage setbacks for mitigating these effects. Results suggest that overland precipitation runoff can be an important component of the seasonal water balance of Prairie Pothole Region wetlands, accounting on average for 34% (19–49%) or 45% (39–49%) of the annual (includes snowmelt runoff) or seasonal (does not include snowmelt) input volumes, respectively. Seasonal (2014–2015) discharge volumes from the localized drainage systems averaged 81 m3 (31–199 m3), and were small when compared with average combined inputs of 3,745 m3 (1,214–6,993 m3) from snowmelt runoff, direct precipitation, and precipitation runoff. Model simulations of reduced precipitation runoff volumes as a result of subsurface drainage systems showed that ponded wetland surface areas were reduced by an average of 590 m2 (141–1,787 m2), or 24% (3–46%), when no setbacks were used (drainage systems located directly adjacent to wetland). Likewise, wetland surface areas were reduced by an average of 141 m2 (23–464 m2), or 7% (1–28%), when drainage setbacks (buffer) were used. In totality, the field data and model simulations suggest that the drainage setbacks should reduce, but not eliminate, impacts to the water balance of the four wetlands monitored in this study that were located in a high-relief terrain. However, further study is required to assess the validity of these conclusions outside of the limited parameters (e.g., terrain, weather, soils) of this study and to examine potential ecological effects of altered wetland hydrology.

  10. Changes in Central Asia’s Water Tower: Past, Present and Future

    PubMed Central

    Chen, Yaning; Li, Weihong; Deng, Haijun; Fang, Gonghuan; Li, Zhi

    2016-01-01

    The Tienshan Mountains, with its status as “water tower”, is the main water source and ecological barrier in Central Asia. The rapid warming affected precipitation amounts and fraction as well as the original glacier/snowmelt water processes, thereby affecting the runoff and water storage. The ratio of snowfall to precipitation (S/P) experienced a downward trend, along with a shift from snow to rain. Spatially, the snow cover area in Middle Tienshan Mountains decreased significantly, while that in West Tienshan Mountains increased slightly. Approximately 97.52% of glaciers in the Tienshan Mountains showed a retreating trend, which was especially obvious in the North and East Tienshan Mountains. River runoff responds in a complex way to changes in climate and cryosphere. It appears that catchments with a higher fraction of glacierized area showed mainly increasing runoff trends, while river basins with less or no glacierization exhibited large variations in the observed runoff changes. The total water storage in the Tienshan Mountains also experienced a significant decreasing trend in Middle and East Tienshan Mountains, but a slight decreasing trend in West Tienshan Mountains, totally at an average rate of −3.72 mm/a. In future, water storage levels are expected to show deficits for the next half-century. PMID:27762285

  11. Impact of landuse/land cover change on run-off in the catchment of a hydro power project

    NASA Astrophysics Data System (ADS)

    Khare, Deepak; Patra, Diptendu; Mondal, Arun; Kundu, Sananda

    2017-05-01

    The landuse/land cover change and rainfall have a significant influence on the hydrological response of the river basins. The run-off characteristics are changing naturally due to reduction of initial abstraction that increases the run-off volume. Therefore, it is necessary to quantify the changes in the run-off characteristics of a catchment under the influence of changed landuse/land cover. Soil conservation service model has been used in the present study to analyse the impact of various landuse/land cover (past, present and future time period) change in the run-off characteristics of a part of Narmada basin at the gauge discharge site of Mandaleswar in Madhya Pradesh, India. Calculated run-off has been compared with the observed run-off data for the study. The landuse/land cover maps of 1990, 2000 and 2009 have been prepared by digital classification method with proper accuracy using satellite imageries. The impact of the run-off change on hydro power potential has been assessed in the study along with the estimation of the future changes in hydro power potential. Five types of conditions (+10, +5 %, average, -5, -10 % of average rainfall) have been applied with 90 and 75 % dependability status. The generated energy will be less in 90 % dependable flow in respect to the 75 % dependable flow. This work will be helpful for future planning related to establishment of hydropower setup.

  12. Initial Abstraction and Curve Numbers in a Semiarid Watershed in Southeastern Arizona

    EPA Science Inventory

    The Soil Conservation Service curve number estimates of direct runoff from rainfall for semiarid catchments can be inaccurate. Investigation of the Walnut Gulch Experimental Watershed (Southeastern Arizona) and its 10 nested catchments determined that the inaccuracy is due to an ...

  13. Similarity and scale in catchment storm response

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Sivapalan, Murugesu; Beven, Keith

    1993-01-01

    Until recently, very little progress had been made in understanding the relationship between small-scale variability of topography, soil, and rainfalls and the storm response seen at the catchment scale. The work reviewed here represents the first attempt at a systematic theoretical framework for such understanding in the context of surface runoff generation by different processes. The parameterization of hydrological processes over a range of scales is examined, and the concept of the 'representative elementary area' (REA) is introduced. The REA is a fundamental scale for catchment modeling at which continuum assumptions can be applied for the spatially variable controls and parameters, and spatial patterns no longer have to be considered explicitly. The investigation of scale leads into the concept of hydrologic similarity in which the effects of the environmental controls on runoff generation and flood frequency response be investigated independently of catchment scale. The paper reviews the authors' initial results and hopefully will motivate others to also investigate the issues of hydrologic scale and similarity.

  14. Assessing the detail needed to capture rainfall-runoff dynamics with physics-based hydrologic response simulation

    USGS Publications Warehouse

    Mirus, B.B.; Ebel, B.A.; Heppner, C.S.; Loague, K.

    2011-01-01

    Concept development simulation with distributed, physics-based models provides a quantitative approach for investigating runoff generation processes across environmental conditions. Disparities within data sets employed to design and parameterize boundary value problems used in heuristic simulation inevitably introduce various levels of bias. The objective was to evaluate the impact of boundary value problem complexity on process representation for different runoff generation mechanisms. The comprehensive physics-based hydrologic response model InHM has been employed to generate base case simulations for four well-characterized catchments. The C3 and CB catchments are located within steep, forested environments dominated by subsurface stormflow; the TW and R5 catchments are located in gently sloping rangeland environments dominated by Dunne and Horton overland flows. Observational details are well captured within all four of the base case simulations, but the characterization of soil depth, permeability, rainfall intensity, and evapotranspiration differs for each. These differences are investigated through the conversion of each base case into a reduced case scenario, all sharing the same level of complexity. Evaluation of how individual boundary value problem characteristics impact simulated runoff generation processes is facilitated by quantitative analysis of integrated and distributed responses at high spatial and temporal resolution. Generally, the base case reduction causes moderate changes in discharge and runoff patterns, with the dominant process remaining unchanged. Moderate differences between the base and reduced cases highlight the importance of detailed field observations for parameterizing and evaluating physics-based models. Overall, similarities between the base and reduced cases indicate that the simpler boundary value problems may be useful for concept development simulation to investigate fundamental controls on the spectrum of runoff generation mechanisms. Copyright 2011 by the American Geophysical Union.

  15. Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, northwest China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Shen, Y.; Wang, N.; Pan, X.; Zhang, W.; He, J.; Wang, G.

    2017-12-01

    Snowmelt water is an important freshwater resource in the Altay Mountains in northwest China, and it is also crucial for local ecological system, economic and social sustainable development; however, warming climate and rapid spring snowmelt can cause floods that endanger both eco-environment and public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature-index model based on remote sensing coupled with high-resolution meteorological data obtained from NCEP reanalysis fields that were downscaled using Weather Research Forecasting model, then bias-corrected using a statistical downscaled model. Validation of the forcing data revealed that the high-resolution meteorological fields derived from downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of temperature-index model based on remote sensing were calibrated for spring 2014, and model performance was validated using MODIS snow cover and snow observations from spring 2012. The results show that the temperature-index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash-Sutchliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt runoff was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt runoff accounts for 72% of spring runoff and 21% of annual runoff. Snowmelt is the main source of runoff for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt runoff predictions, so as to prevent snowmelt-induced floods, and also provide a generalizable approach that can be applied to other remote locations where high-density, long-term observational data is lacking.

  16. Climatic and land-use driven change of runoff throughout Sweden

    NASA Astrophysics Data System (ADS)

    Worman, A. L. E.; Riml, J.; Lindstrom, G.

    2015-12-01

    Changes in runoff can be caused by climatic variations, land-use changes and water regulation. In this paper we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. The latter function characterizes the surface water-groundwater interaction, stream network topology and open channel hydraulics. Based on daily data of digitalized hydro-climatological data from 1961, we constructed synthetic, but calibrated data of runoff from 1001 watersheds in Sweden. From spectral analysis of the data we found periodic fluctuations occurring on time scales of about a decade and a bi-annual peak. These multi-annual fluctuations could be statistically linked through the coherence spectra to climatic indices like the NAO, PDO, geostrophic wind velocity and sun spot numbers on common periods of 3,6 and 7,6 years. Such long-term fluctuations in runoff are not significantly affected by the land-use or regulation other than indirectly through impact on local hydro-climate. Based on a spectral separation of precipitation and impulse response function of the watersheds, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. There is a statistically significant increasing slope of the catchments impulse response function for 63 of the 79 catchments and this suggest a significant hydrological effect of land-use practice in agriculture, urbanisation and forestry.

  17. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe

    2017-04-01

    Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area extent and thereby promoting saturation excess overland flow during rainstorms. Our work shows the potential of using integrated surface-subsurface modelling alongside with rigorous model calibration to better understand and visualise the role of groundwater in runoff generation even with limited datasets.

  18. Relating runoff generation mechanisms to concentration-discharge relationships in catchments with well-characterized Critical Zone structures and hydrologic dynamics

    NASA Astrophysics Data System (ADS)

    Hahm, W. J.; Wang, J.; Druhan, J. L.; Rempe, D.; Dietrich, W. E.

    2017-12-01

    Stream solute concentration-discharge (C-Q) relationships integrate catchment-scale hydrologic and geochemical processes, potentially yielding valuable information about runoff generation and weathering mechanisms. However, recent compilations have established that chemostasis—the condition where solute concentrations are invariant across large ranges of runoff—is observed in watersheds of diverse lithology, climate, and topography, suggesting an equifinality of the C-Q relationship independent of hydrologic process. Here we explore C-Q signals in contrasting catchments of the Eel River Critical Zone (CZ) Observatory in the Northern California Coast Ranges, where, unlike most watersheds where chemostasis has been observed, hillslope hydrologic processes are well characterized via years of intensive hydrologic monitoring. Our two catchments in the Franciscan Complex have radically different runoff generation mechanisms arising from differences in CZ structure: at Elder Creek (Coastal Belt), rain passes vertically as unsaturated flow through soil, saprolite, and a thick weathered rock zone before perching as groundwater on fresh bedrock and flowing laterally through fractures to generate streamflow, resulting in nearly chemostatic major cation behavior (power law C-Q slopes (B) ≈ 0 to -0.1). At Dry Creek (Central Belt), the thin (2 to 3 m) hydrologically active CZ completely saturates in most storm events, generating saturation overland flow across the landscape. New data from Dry Creek reveal log-log C-Q relationships for major cations that exhibit negative curvature, indicating a trend towards increasing dilution at higher flow rates and a possible C-Q signature of overland flow. High geomorphic channel drainage density (16.9 km/km2) results in short flow paths and, presumably, short water hillslope residence times at high runoff when overland flow dominates (> 50 mm d-1). Surprisingly, even at these high runoff rates, pure dilution does not occur (high runoff B ≈ -0.5), suggesting a role for extremely rapid cation exchange reactions and equilibration as water flows over and through the soil surface, and underscoring limitations on the ability to interpret hydrologic processes from C-Q behavior.

  19. Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD

    NASA Astrophysics Data System (ADS)

    Kim, H. S.

    2015-02-01

    The main objective of this study was to assess the predictive uncertainty from the rainfall-runoff model structure coupling a conceptual module (non-linear module) with a metric transfer function module (linear module). The methodology was primarily based on the comparison between the outputs of the rainfall-runoff model and those from an alternative model approach. An alternative model approach was used to minimise uncertainties arising from data and the model structure. A baseflow filter was adopted to better understand deficiencies in the forms of the rainfall-runoff model by avoiding the uncertainties related to data and the model structure. The predictive uncertainty from the model structure was investigated for representative groups of catchments having similar hydrological response characteristics in the upper Murrumbidgee Catchment. In the assessment of model structure suitability, the consistency (or variability) of catchment response over time and space in model performance and parameter values has been investigated to detect problems related to the temporal and spatial variability of the model accuracy. The predictive error caused by model uncertainty was evaluated through analysis of the variability of the model performance and parameters. A graphical comparison of model residuals, effective rainfall estimates and hydrographs was used to determine a model's ability related to systematic model deviation between simulated and observed behaviours and general behavioural differences in the timing and magnitude of peak flows. The model's predictability was very sensitive to catchment response characteristics. The linear module performs reasonably well in the wetter catchments but has considerable difficulties when applied to the drier catchments where a hydrologic response is dominated by quick flow. The non-linear module has a potential limitation in its capacity to capture non-linear processes for converting observed rainfall into effective rainfall in both the wetter and drier catchments. The comparative study based on a better quantification of the accuracy and precision of hydrological modelling predictions yields a better understanding for the potential improvement of model deficiencies.

  20. Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.

    2017-12-01

    Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.

  1. Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2016-01-01

    Environmental heterogeneity is ubiquitous, but environmental systems are often analyzed as if they were homogeneous instead, resulting in aggregation errors that are rarely explored and almost never quantified. Here I use simple benchmark tests to explore this general problem in one specific context: the use of seasonal cycles in chemical or isotopic tracers (such as Cl-, δ18O, or δ2H) to estimate timescales of storage in catchments. Timescales of catchment storage are typically quantified by the mean transit time, meaning the average time that elapses between parcels of water entering as precipitation and leaving again as streamflow. Longer mean transit times imply greater damping of seasonal tracer cycles. Thus, the amplitudes of tracer cycles in precipitation and streamflow are commonly used to calculate catchment mean transit times. Here I show that these calculations will typically be wrong by several hundred percent, when applied to catchments with realistic degrees of spatial heterogeneity. This aggregation bias arises from the strong nonlinearity in the relationship between tracer cycle amplitude and mean travel time. I propose an alternative storage metric, the young water fraction in streamflow, defined as the fraction of runoff with transit times of less than roughly 0.2 years. I show that this young water fraction (not to be confused with event-based "new water" in hydrograph separations) is accurately predicted by seasonal tracer cycles within a precision of a few percent, across the entire range of mean transit times from almost zero to almost infinity. Importantly, this relationship is also virtually free from aggregation error. That is, seasonal tracer cycles also accurately predict the young water fraction in runoff from highly heterogeneous mixtures of subcatchments with strongly contrasting transit-time distributions. Thus, although tracer cycle amplitudes yield biased and unreliable estimates of catchment mean travel times in heterogeneous catchments, they can be used to reliably estimate the fraction of young water in runoff.

  2. Tebuthiuron Movement via Leaching and Runoff from Grazed Vertisol and Alfisol Soils in the Brigalow Belt Bioregion of Central Queensland, Australia.

    PubMed

    Thornton, Craig M; Elledge, Amanda E

    2016-05-25

    Tebuthiuron is one of five priority herbicides identified as a water pollutant entering the Great Barrier Reef. A review of tebuthiuron research in Australia found 13 papers, 6 of which focused on water quality at the basin scale (>10,000 km(2)) with little focus on process understanding. This study examined the movement of tebuthiuron in soil and runoff at the plot (1.7 m(2)) and small catchment (12.7 ha) scales. The greatest concentration and mass in soil occurred from 0 to 0.05 m depth 30-57 days after application. Concentrations at all depths tended to decrease after 55-104 days. Runoff at the small catchment scale contained high concentrations of tebuthiuron (average = 103 μg/L) 100 days after application, being 0.05% of the amount applied. Tebuthiuron concentrations in runoff declined over time with the majority of the chemical in the dissolved phase.

  3. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

    NASA Astrophysics Data System (ADS)

    Wever, Nander; Comola, Francesco; Bavay, Mathias; Lehning, Michael

    2017-08-01

    The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in surface simulations exists and that the runoff dynamics are controlled by only a shallow soil layer. Runoff coefficients (i.e. ratio of rainfall over discharge) based on measurements for high rainfall and snowmelt events were found to be dependent on the simulated initial soil moisture state at the onset of an event, further illustrating the important role of soil moisture for the hydrological processes in the catchment. The runoff coefficients using simulated discharge were found to reproduce this dependency, which shows that the Alpine3D model framework can be successfully applied to assess the predisposition of the catchment to flood risks from both snowmelt and rainfall events.

  4. Ensemble flood simulation for a small dam catchment in Japan using 10 and 2 km resolution nonhydrostatic model rainfalls

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo

    2016-08-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.

  5. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties

    NASA Astrophysics Data System (ADS)

    Roderick, Michael L.; Farquhar, Graham D.

    2011-12-01

    We use the Budyko framework to calculate catchment-scale evapotranspiration (E) and runoff (Q) as a function of two climatic factors, precipitation (P) and evaporative demand (Eo = 0.75 times the pan evaporation rate), and a third parameter that encodes the catchment properties (n) and modifies how P is partitioned between E and Q. This simple theory accurately predicted the long-term evapotranspiration (E) and runoff (Q) for the Murray-Darling Basin (MDB) in southeast Australia. We extend the theory by developing a simple and novel analytical expression for the effects on E and Q of small perturbations in P, Eo, and n. The theory predicts that a 10% change in P, with all else constant, would result in a 26% change in Q in the MDB. Future climate scenarios (2070-2099) derived using Intergovernmental Panel on Climate Change AR4 climate model output highlight the diversity of projections for P (±30%) with a correspondingly large range in projections for Q (±80%) in the MDB. We conclude with a qualitative description about the impact of changes in catchment properties on water availability and focus on the interaction between vegetation change, increasing atmospheric [CO2], and fire frequency. We conclude that the modern version of the Budyko framework is a useful tool for making simple and transparent estimates of changes in water availability.

  6. Impacts of forest age on water use in Mountain ash forests

    USGS Publications Warehouse

    Wood, Stephen A.; Beringer, Jason; Hutley, Lindsay B.; McGuire, A. David; Van Dijk, Albert; Kilinc, Musa

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire returning to pre-fire levels in the following centuries owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8mmday-1 with increasing forest age (an annual decrease of 657mm) the understorey ET contributed between 1.2 and 1.5mmday-1, 45% of the total ET (3mmday-1) at the old growth forest.

  7. Mapping Active Stream Lengths as a Tool for Understanding Spatial Variations in Runoff Generation

    NASA Astrophysics Data System (ADS)

    Erwin, E. G.; Gannon, J. P.; Zimmer, M. A.

    2016-12-01

    Recent studies have shown temporary stream channels respond in complex ways to precipitation. By investigating how stream networks expand and recede throughout rain events, we may further develop our understanding of runoff generation. This study focused on mapping the expansion and contraction of the stream network in two headwater catchments characterized by differing soil depths and slopes, located in North Carolina, USA. The first is a 43 ha catchment located in the Southern Appalachian region, characterized by incised, steep slopes and soils of varying thickness. The second is a 3.3 ha catchment located in the Piedmont region, characterized as low relief with deep, highly weathered soils. Over a variety of flow conditions, surveys of the entire stream network were conducted at 10 m intervals to determine presence or absence of surface water. These surveys revealed several reaches within the networks that were intermittent, with perennial flow upstream and downstream. Furthermore, in some tributaries, the active stream head moved up the channel in response to precipitation and at others it remained anchored in place. Moreover, when repeat surveys were performed during the same storm, hysteresis was observed in active stream length variations: stream length was not the same on the rising limb and falling limb of the hydrograph. These observations suggest there are different geomorphological controls or runoff generation processes occurring spatially throughout these catchments. Observations of wide spatial and temporal variability of active stream length over a variety of flow conditions suggest runoff dynamics, generation mechanisms, and contributing flowpath depths producing streamflow may be highly variable and not easily predicted from streamflow observations at a fixed point. Finally, the observation of similar patterns in differing geomorphic regions suggests these processes extend beyond unique site characterizations.

  8. Intra-basin variability of snowmelt water balance calculations in a subarctic catchment

    NASA Astrophysics Data System (ADS)

    McCartney, Stephen E.; Carey, Sean K.; Pomeroy, John W.

    2006-03-01

    The intra-basin variability of snowmelt and melt-water runoff hydrology in an 8 km2 subarctic alpine tundra catchment was examined for the 2003 melt period. The catchment, Granger Creek, is within the Wolf Creek Research Basin, Yukon, which is typical of mountain subarctic landscapes in northwestern Canada. The study catchment was segmented into nine internally uniform zones termed hydrological response units (HRUs) based on their similar hydrological, physiographic, vegetation and soil properties. Snow accumulation exhibited significant variability among the HRUs, with greatest snow water equivalent in areas of tall shrub vegetation. Melt began first on southerly exposures and at lower elevations, yet average melt rates for the study period varied little among HRUs with the exception of those with steep aspects. In HRUs with capping organic soils, melt water first infiltrated this surface horizon, satisfying its storage capacity, and then percolated into the frozen mineral substrate. Infiltration and percolation into frozen mineral soils was restricted where melt occurred rapidly and organic soils were thin; in this case, melt-water delivery rates exceeded the frozen mineral soil infiltration rate, resulting in high runoff rates. In contrast, where there were slower melt rates and thick organic soils, infiltration was unlimited and runoff was suppressed. The snow water equivalent had a large impact on runoff volume, as soil storage capacity was quickly surpassed in areas of deep snow, diverting the bulk of melt water laterally to the drainage network. A spatially distributed water balance indicated that the snowmelt freshet was primarily controlled by areas with tall shrub vegetation that accumulate large quantities of snow and by alpine areas with no capping organic soils. The intra-basin water balance variability has important implications for modelling freshet in hydrological models.

  9. Long-term analysis of clogging and oil bio-degradation in a System of Catchment, Pre-treatment and Treatment (SCPT).

    PubMed

    Fernández-Barrera, Andrés H; Castro-Fresno, Daniel; Rodriguez-Hernandez, Jorge; Vega-Zamanillo, Angel

    2011-01-30

    Runoff contamination has motivated the development of different systems for its treatment in order to decrease the pollutant load that is discharged into natural water bodies. In the long term, these systems may undergo operational problems. This paper presents the results obtained in a laboratory study with a 1:1 scale prototype of a System of Catchment, Pre-treatment and Treatment (SCPT) of runoff waters. The analysis aims to establish the operational behaviour of the SCPT in the long term with respect to oil degradation and hydraulic conductivity in the geotextile filter. It is concluded that bio-degradation processes take place inside the SCPT and that hydraulic conductivity of the geotextile filtration system decreases slowly with successive simulated runoff events. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Changes in precipitation-streamflow transformation around the world: interdecadal variability and trends.

    NASA Astrophysics Data System (ADS)

    Saft, M.; Peel, M. C.; Andreassian, V.; Parajka, J.; Coxon, G.; Freer, J. E.; Woods, R. A.

    2017-12-01

    Accurate prediction of hydrologic response to potentially changing climatic forcing is a key current challenge in hydrology. Recent studies exploring decadal to multidecadal climate drying in the African Sahel and south-eastern and south-western Australia demonstrated that long dry periods also had an indirect cumulative impact on streamflow via altered catchment biophysical properties. As a result, hydrologic response to persisting change in climatic conditions, i.e. precipitation, cannot be confidently inferred from the hydrologic response to short-term interannual climate fluctuations of similar magnitude. This study aims to characterise interdecadal changes in precipitation-runoff conversion processes globally. The analysis is based on long continuous records from near-natural baseline catchments in North America, Europe, and Australia. We used several complimentary metrics characterising precipitation-runoff relationship to assess how partitioning changed over recent decades. First, we explore the hypothesis that during particularly dry or wet decades the precipitation elasticity of streamflow increases over what can be expected from inter-annual variability. We found this hypothesis holds for both wet and dry periods in some regions, but not everywhere. Interestingly, trend-like behaviour in the precipitation-runoff partitioning, unrelated to precipitation changes, offset the impact of persisting precipitation change in some regions. Therefore, in the second part of this study we explored longer-term trends in precipitation-runoff partitioning, and related them to climate and streamflow changes. We found significant changes in precipitation-runoff relationship around the world, which implies that runoff response to a given precipitation can vary over decades even in near-natural catchments. When significant changes occur, typically less runoff is generated for a given precipitation over time - even when precipitation is increasing. We discuss the consistency of the results and how the likely drivers differ between regions, and between water-limited and energy limited environments. We argue that when considering the impact of climatic change on hydrological systems we need to consider potential cumulative impacts of climatic shifts.

  11. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff.

    PubMed

    Toor, Gurpal S; Occhipinti, Marti L; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner's lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L-1, respectively. Of TN, the proportion of nitrate-N was 58% and other-N was 42%, whereas of TP, orthophosphate-P was 75% and other-P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters.

  12. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff

    PubMed Central

    Occhipinti, Marti L.; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner’s lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L–1, respectively. Of TN, the proportion of nitrate–N was 58% and other–N was 42%, whereas of TP, orthophosphate–P was 75% and other–P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters. PMID:28604811

  13. Are big basins just the sum of small catchments?

    USGS Publications Warehouse

    Shaman, J.; Stieglitz, M.; Burns, D.

    2004-01-01

    Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km 2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes. Copyright ?? 2004 John Wiley & Sons, Ltd.

  14. Coupling a glacier evolution model and a hydrological model to simulate future runoff scenarios in the Oetztal Alps, Austria

    NASA Astrophysics Data System (ADS)

    Stoll, Elena; Oesterle, Felix; Hanzer, Florian; Nemec, Johanna; Berlin, Stefan; Schöber, Johannes; Huttenlau, Matthias; Strasser, Ulrich; Achleitner, Stefan; Förster, Kristian

    2017-04-01

    Fluctuations of glacier and snow runoff play a key role in water management of alpine catchments. Consequently, the catchment water balance is strongly influenced by the variability of the seasonal snow cover and the glacier melt. The huge water storages enable a shift of the hydrological response of glaciers across time scales, leading to response times in the range of decades. In the future, an initial increase of water availability connected to higher temperatures and respective melt rates is expected to turn into a decrease as the glaciers dwindle. One key question is to predict the "moment of peak discharge" when water availability will start to decrease as a consequence of the reduction of glacierized areas. To assess the influence of a warming climate on runoff regimes of glaciated catchments, we couple a simple glacier evolution model (GEM), based on a statistical approach, with a semi-distributed hydrological model (HQsim). Climate scenarios are taken from downscaled EURO-CORDEX data for the scenarios RCP2.6, RCP4.5, and RCP8.5, respectively. The results indicate that the impact of the glaciers on runoff regimes will very likely change towards the second half of the 21st century. Given the scenarios in which most glaciers will attain their minimum extent and sustain only at high elevation levels, the resulting runoff regime is dominated by precipitation and seasonal snow cover, since the "moment of peak discharge" is assumed to occur in the first half of the 21st century.

  15. SIMULATED IMPACTS OF SMALL-SCALE SPATIAL DISTRIBUTION OF IMPERVIOUS AREA ON RUNOFF RESPONSE OF FIELD-SCALE CATCHMENTS

    EPA Science Inventory

    Impervious surface is known to negatively affect catchment hydrology through both its extent and spatial distribution. In this study, we empirically quantify via model simulations the impacts of different configurations of impervious surface on watershed response to rainfall. An ...

  16. Shallow subsurface storm flow in a forested headwater catchment: Observations and modeling using a modified TOPMODEL

    USGS Publications Warehouse

    Scanlon, Todd M.; Raffensperger, Jeff P.; Hornberger, George M.; Clapp, Roger B.

    2000-01-01

    Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two‐storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.

  17. Event-based hydrological modeling for detecting dominant hydrological process and suitable model strategy for semi-arid catchments

    NASA Astrophysics Data System (ADS)

    Huang, Pengnian; Li, Zhijia; Chen, Ji; Li, Qiaoling; Yao, Cheng

    2016-11-01

    To simulate the hydrological processes in semi-arid areas properly is still challenging. This study assesses the impact of different modeling strategies on simulating flood processes in semi-arid catchments. Four classic hydrological models, TOPMODEL, XINANJIANG (XAJ), SAC-SMA and TANK, were selected and applied to three semi-arid catchments in North China. Based on analysis and comparison of the simulation results of these classic models, four new flexible models were constructed and used to further investigate the suitability of various modeling strategies for semi-arid environments. Numerical experiments were also designed to examine the performances of the models. The results show that in semi-arid catchments a suitable model needs to include at least one nonlinear component to simulate the main process of surface runoff generation. If there are more than two nonlinear components in the hydrological model, they should be arranged in parallel, rather than in series. In addition, the results show that the parallel nonlinear components should be combined by multiplication rather than addition. Moreover, this study reveals that the key hydrological process over semi-arid catchments is the infiltration excess surface runoff, a non-linear component.

  18. Assessment of an ensemble seasonal streamflow forecasting system for Australia

    NASA Astrophysics Data System (ADS)

    Bennett, James C.; Wang, Quan J.; Robertson, David E.; Schepen, Andrew; Li, Ming; Michael, Kelvin

    2017-11-01

    Despite an increasing availability of skilful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios) to plan operations over the coming year. We assess a recently developed forecasting system called forecast guided stochastic scenarios (FoGSS) as a skilful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean-land-atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall-runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skilful forecasts at shorter lead times ( < 4 months), and transits to climatology-like forecasts at longer lead times. Forecasts are generally reliable and unbiased. However, FoGSS does not perform well in very dry catchments (catchments that experience zero flows more than half the time in some months), sometimes producing strongly negative forecast skill and poor reliability. We attempt to improve forecasts through the use of (i) ESP rainfall forcings, (ii) different rainfall-runoff models, and (iii) a Bayesian prior to encourage the error model to return climatology forecasts in months when the rainfall-runoff model performs poorly. Of these, the use of the prior offers the clearest benefit in very dry catchments, where it moderates strongly negative forecast skill and reduces bias in some instances. However, the prior does not remedy poor reliability in very dry catchments. Overall, FoGSS is an attractive alternative to historical inflow sequences in all but the driest catchments. We discuss ways in which forecast reliability in very dry catchments could be improved in future work.

  19. Can additional urban development have major impacts on streamflow of a peri-urban catchment? A case study from Portugal

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Nunes, João; Steenhuis, Tammo; de Lima, João; Coelho, Celeste; Ferreira, António

    2016-04-01

    It is well known that urban development brings about changes in hydrological response. Relatively little, however, is known about impacts on streamflow during urban development in the Mediterranean climate. This paper examines changes in streamflow resulting from the construction of an enterprise park, a major road and apartment blocks in a small partially urbanized peri-urban catchment (6.2 km2) in central Portugal. These developments led to an increase in urban area from 32% to 40% over a five-year period (hydrological years 2008/09-2012/13). In the initial two-year period minor land-use changes increased impervious surfaces from 12.8% to 13.2%. The subsequent three-year period led to a further 17.2% increase in impervious area. Streamflow was recorded by a V-notch weir at the catchment outlet. Rainfall was recorded at a weather station 0.5km north of the catchment, and by five tipping-bucket raingauges installed in January 2011 within the study catchment. Annual runoff and storm runoff coefficients ranged from 14% to 21% and 9% to 14%, respectively, recorded in 2011/12 and 2012/13. Although these differences in runoff were caused in part by variation in rainfall, the comparison between 2009/10 (pre-) and 2012/13 (post-additional urban development), with broadly similar rainfall (887mm vs 947mm, respectively) and evapotranspiration (740mm vs 746mm), showed a 43% increase in storm runoff (from 90mm to 129mm), resulting from additional overland flow generated largely by the 4.4% increase in impervious surfaces. The additional urban development also led to changes in hydrograph parameters. The increase in storm runoff was not progressive over the study period, but regression lines of storm runoff against rainstorm parameters exhibited higher vertical positions in 2012/13 than 2008/09. Increasing peak flows, however, were more progressive over the study period, with annual regression lines displaying higher vertical positions, but with a clear distance between pre- and post- additional urban development periods. Response time to rainfall reduced from 60-75 minutes to 40 minutes and recession time fell from 21.3-29.5 h to 7.4-8.7 h, respectively. The relatively low runoff and storm runoff coefficients given the extent of urban land-use is due to the dispersed urban pattern and movement of at least part of the overland flow from impervious surfaces into pervious soils (within urban areas and/or downslope woodland and abandoned fields). High soil permeability, linked to the sandstone and limestone bedrock, favours the establishment of water sinks. The additional extension of observed urban development during the study period, however, also included partial routing of overland flow from additional impervious surfaces into the stream network, enhancing flow connectivity, thus, increasing storm runoff and providing quicker hydrologic response. Urban planning should consider the landscape mosaic of peri-urban areas in order to maximize water infiltration and minimize the impacts on streamflow regime and urban flooding.

  20. Identifying hydrologically sensitive areas using LiDAR DEMs to mitigate critical source areas of diffuse pollution: development and application

    NASA Astrophysics Data System (ADS)

    Thomas, Ian; Jordan, Phil; Mellander, Per-Erik; Fenton, Owen; Shine, Oliver; hUallacháin, Daire Ó.; Creamer, Rachel; McDonald, Noeleen; Dunlop, Paul; Murphy, Paul

    2016-04-01

    Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants such as phosphorus (P). A new GIS-based HSA Index is presented that identifies HSAs at the sub-field scale. It uses a soil topographic index (STI) and accounts for the hydrological disconnection of overland flow via topographic impediment from flow sinks such as hedgerows and depressions. High resolution (0.25-2 m) LiDAR Digital Elevation Models (DEMs) are utilised to capture these microtopographic controls on flow pathways and hydrological connectivity. The HSA Index was applied to four agricultural catchments (~7.5-12 km2) with contrasting topography and soil types. Catchment HSA sizes were estimated using high resolution rainfall-quickflow measurements during saturated winter storm events in 2009-2014, and mapped using the HSA Index. HSA sizes ranged from 1.6-3.4% of the catchment area during median storm events and 2.9-8.5% during upper quartile events depending on whether well or poorly drained soils dominated, which validated HSA Index value distributions. Total flow sink volume capacities ranged from 8,298-59,584 m3 and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'delivery points' along surface runoff pathways where transported pollutants such as P are delivered to the open drainage network. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips (RBS) reduced costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5 years respectively, which included LiDAR DEM acquisition costs. Considering that HSAs are often the dominant P CSA factor in agricultural catchments and can override source pressures, targeting measures at HSAs is potentially a more sustainable, cost-effective and policy-applicable strategy for mitigating diffuse pollution.

  1. Crop structure in a gully catchment and the development of a loess gully (Lublin Upland, E Poland)

    NASA Astrophysics Data System (ADS)

    Mędrek, Karolina; Rodzik, Jan

    2015-04-01

    The study was conducted in a loess gully catchment with an area of 1.23 km2 and height differences of less than 50 m (213-165 m above sea level), located in Kolonia Celejów in the Nałęczów Plateau. This is one of mesoregions of Lublin Upland. In the investigated catchment, loess cover with a thickness of 10-20 m, accumulated during the Vistulian Glaciation, is dissected by a gully system with a depth of 5-15 m and total length of 7.5 km. The gully system is forested in 30% of its area. Until recently, the remaining part of the catchment under agricultural use has been dominated by conventional farming of cereals, potatoes, and sugar beets. Today, 15% of the non-forested area of the catchment is occupied by housing premises, dirt roads, and fallow land, and 45% by orchards with maintained turf, including berry plantations. This type of land management contributes to the retention of precipitation, and protects the soil from flushing. Approximately 20% of the agricultural land is occupied by conventional crops (cereals and root crops), protecting the soil to a moderate degree. Water runoff in the area does not occur every year. Approximately 20% of the agricultural land is currently occupied by cruciferous vegetables (broccoli and cauliflower), decorative shrubs, and orchards without turf in the first 2 years of use. Water and soil runoff from these crops occurs even several times per year. The majority of the material is retained in the lower part of the field, and the water flows into the gully. The crops in the fields adjacent to the ravine have a direct impact on the development of the gully. If the field is located on a raised headland, the flowing water dissects the edge of the gully, and the eroded material is accumulated on the gully bottom. If the field is located in a valley above the gullyhead, the flowing water dissects the bottom of the gully, and the eroded material is discharged outside the catchment.

  2. Catchment systems science and management: from evidence to resilient landscapes

    NASA Astrophysics Data System (ADS)

    Quinn, Paul

    2014-05-01

    There is an urgent need to reassess both the scientific understanding and the policy making approaches taken to manage flooding, water scarcity and pollution in intensively utilised catchments. Many European catchments have been heavily modified and natural systems have largely disappeared. However, working with natural processes must still be at the core of any future management strategy. Many catchments have greatly reduced infiltration rates and buffering capacity and this process needs to be reversed. An interventionist and holistic approach to managing water quantity and quality at the catchment scale is urgently required through the active manipulation of natural flow processes. Both quantitative (field experiments and modelling) and qualitative evidence (local knowledge) is required to demonstrate that catchment have become 'unhealthy'. For example, dense networks of low cost instrumentation could provide this multiscale evidence and, coupled with stakeholder knowledge, build a comprehensive understanding of whole system function. Proactive Catchment System Management is an interventionist approach to altering the catchment scale runoff regime through the manipulation of landscape scale hydrological flow pathways. Many of the changes to hydrological processes cannot be detected at the catchment scale as the primary causes of flooding and pollution. Evidence shows it is the land cover and the soil that are paramount to any change. Local evidence shows us that intense agricultural practices reduce the infiltration capacity through soil degradation. The intrinsic buffering capacity has also been lost across the landscape. The emerging hydrological process is one in which the whole system responds too quickly (driven by near surface and overland flow processes). The bulk of the soil matrix is bypassed during storm events and there is little or no buffering capacity in the riparian areas or in headwater catchments. The prospect of lower intensity farming rates is highly unlikely owing to a growing world population and future climates may be driven by more intense rainfall. Together these will increase runoff rates further, generating more erosion, water pollution and floods. A reduction in recharge to the deeper soil and aquifers also increases the chance of droughts as the natural groundwater reservoirs are not replenished. Hence the urgent need to put back the infiltration and buffering capacity for whole catchments. A strategic plan for where, what and how we grow crops and rear animals within catchments is the first step. Example case studies will be presented that provide evidence that intense farming activities can be offset by the creation of soft engineered wetlands, runoff attenuation ponds, buffer strips and high infiltration zones. A fresh look at how our catchments work and an assessment of what is a healthy food and water dynamic for that system is reviewed. Through gathering local evidence of problems and solutions we can demonstrate how healthy catchments should function for the long term.

  3. A bottom up approach for engineering catchments through sustainable runoff management

    NASA Astrophysics Data System (ADS)

    Wilkinson, M.; Quinn, P. F.; Jonczyk, J.; Burke, S.

    2010-12-01

    There is no doubt that our catchments are under great stress. There have been many accounts around the world of severe flood events and water quality issues within channels. As a result of these, ecological habitats in rivers are also under pressure. Within the United Kingdom, all these issues have been identified as key target areas for policy. Traditionally this has been managed by a policy driven top down approach which is usually ineffective. A one ‘size fits all’ attitude often does not work. This paper presents a case study in northern England whereby a bottom up approach is applied to multipurpose managing of catchments at the source (in the order of 1-10km2). This includes simultaneous tackling of water quality, flooding and ecological issues by creating sustainable runoff management solutions such as storage ponds, wetlands, beaver dams and willow riparian features. In order to identify the prevailing issues in a specific catchment, full and transparent stakeholder engagement is essential, with everybody who has a vested interest in the catchment being involved from the beginning. These problems can then be dealt with through the use of a novel catchment management toolkit, which is transferable to similar scale catchments. However, evidence collected on the ground also allows for upscaling of the toolkit. The process gathers the scientific evidence about the effectiveness of existing or new measures, which can really change the catchment functions. Still, we need to get better at communicating the science to policy makers and policy therefore must facilitate a bottom up approach to land and water management. We show a test site for this approach in the Belford burn catchment (6km2), northern England. This catchment has problems with flooding and water quality. Increased sediment loads are affecting the nearby estuary which is an important ecological zone and numerous floods have affected the local village. A catchment engineering toolkit has been developed that puts in place novel measures to tackle diffuse pollution and reduce flood risk whilst collecting the science needed to influence the policy about these measures. This has been possible through four key practices: full stakeholder engagement, a problem solving agenda set in place, a bottom up approach to solving problems, and the collection of the appropriate science to support the benefits. Hands on, multi-objective work is the most cost effective way to manage catchments. Tackling water quality issues and controlling fast pathway runoff at the source in partnership with farmers and local landowners has proved to be the key to success. Tackling issues in sub-catchments can lead to solving problems at the catchment scale.

  4. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices has also been investigated.

  5. The influence of climate, topography and land-use on the hydrology of ephemeral upland catchments

    NASA Astrophysics Data System (ADS)

    Daly, E.; Webb, J.; Dresel, E.

    2016-12-01

    We report on an on-going project aimed at determining the effects of climate variability and land use change on water resources in ephemeral productive catchments. Meteorological data (including rainfall, solar radiation, air temperature, humidity and wind speed), streamflow and groundwater levels were collected continuously for over five years in seven ephemeral catchments in southeastern Australia. The catchments, dominated by either pasture for grazing (four) or Eucalyptus globulus (blue gum) plantations of different ages (three), were located in three different geological settings. Rainfall varied from higher than the long-term average of this area for the initial years of the study period to much drier than the long-term average for the last two years. Groundwater levels in the farm sites remained stable or slightly increased through the study period, while levels declined in all the plantation catchments, where evapotranspiration rates were greater than rainfall. The trees intercept groundwater recharge and in some areas of the catchments directly access groundwater. Streamflow occurred mainly during winter, with short-term flows in summer caused by sporadic large rainfall events. Despite the large annual rainfall variability, flow rates in each year were similar in most catchments, with the duration of flow being important in determining the annual flow. The frequency rather than the amount of rainfall events determines the generation of streamflow in the two catchments with steeper slopes. The effect of the tree plantations on streamflow varied from a substantial reduction in one catchment to no effect in another, where the tree rows are oriented predominantly downslope, allowing greater runoff. In the third plantation catchment, geology is the main driver of runoff due to capture into underlying karst conduits.

  6. Effectiveness of Perennial Vegetation Strips in Reducing Runoff in Annual Crop Production Systems

    NASA Astrophysics Data System (ADS)

    Hernandez-Santana, V.; Zhou, X.; Helmers, M.; Asbjornsen, H.; Kolka, R. K.

    2010-12-01

    In many parts of the world, unprecedented high crop yields have been attained by conversion of native perennial grasslands to intensively managed annual cropping systems. However, these achievements have often been accompanied by significant environmental impacts with far-reaching social and economic costs. Perhaps nowhere is this situation revealed more acutely than in the Midwestern US, where landscape-scale transformation of native tallgrass prairie to rowcrop corn and soybeans has dramatically altered the hydrologic cycle, increased nutrient and sediment loss, and diminished ecosystem services. The objective of this study was to assess the potential for reducing negative impacts of rowcrop agriculture on water quality and flow by incorporating native prairie vegetation in strategic locations within conventional rowcrop agriculture. Specifically, we tested the hypothesis that small amounts of prairie vegetation strategically located in agricultural landscapes would lead to disproportionate benefits by reducing runoff and nutrient and sediment loss. The study was conducted at the Neal Smith National Wildlife Refuge (Iowa), and consisted of a fully balanced, replicated, incomplete block design whereby twelve small experimental catchments (0.43 - 3.19 ha) received four treatments consisting of varying proportions (0%, 10%, and 20%) of prairie vegetation located in different watershed positions (downslope “toe” vs. contour strips). Pre- treatment data were collected in 2005, treatments installed in 2006, and post-treatment responses monitored annually (April-October) thereafter. Volume and rate of surface runoff were measured with an H-Flume installed in each catchment, and automated ISCO samplers used to collect event-based runoff samples that were analyzed for sediment, nitrate (N), and phosphorus (P) concentration. A total of 102 rainfall events were registered during the study period (April-October, 2008 and 2009), accounting for a total rainfall amount of 792 mm and 684 mm, in 2008 and 2009, respectively. Eighty-eight of the rainfall events were runoff-producing in at least one of the watersheds. A highly significant linear relationship between rainfall and runoff was found and the slopes of equations were always higher for 100% crops and lower for watersheds with prairie vegetation. Peak flows occurred earlier and higher peaks were observed in the watersheds with 100% crops than in the mixed crop-prairie watersheds. There was a trend of greatest runoff reduction occurring in watersheds with 10% of prairie in toeslope and 20% of prairie in contour strips, compared to the other treatments. Sediment, N, and P loss was approximately 25, 5.5, and 9 times greater, respectively, from the 100% rowcrop watersheds compared to the mixed crop-prairie watersheds. In conclusion, the results suggest that the incorporation of strategically placed small amounts of diverse perennial vegetation (10% at toeslope and 20% strips) can significantly reduce runoff volume and loss of sediment and nutrients from rowcrop agriculture.

  7. Modelling the impact of retention-detention units on sewer surcharge and peak and annual runoff reduction.

    PubMed

    Locatelli, Luca; Gabriel, Søren; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Taylor, Heidi; Bockhorn, Britta; Larsen, Hauge; Kjølby, Morten Just; Blicher, Anne Steensen; Binning, Philip John

    2015-01-01

    Stormwater management using water sensitive urban design is expected to be part of future drainage systems. This paper aims to model the combination of local retention units, such as soakaways, with subsurface detention units. Soakaways are employed to reduce (by storage and infiltration) peak and volume stormwater runoff; however, large retention volumes are required for a significant peak reduction. Peak runoff can therefore be handled by combining detention units with soakaways. This paper models the impact of retrofitting retention-detention units for an existing urbanized catchment in Denmark. The impact of retrofitting a retention-detention unit of 3.3 m³/100 m² (volume/impervious area) was simulated for a small catchment in Copenhagen using MIKE URBAN. The retention-detention unit was shown to prevent flooding from the sewer for a 10-year rainfall event. Statistical analysis of continuous simulations covering 22 years showed that annual stormwater runoff was reduced by 68-87%, and that the retention volume was on average 53% full at the beginning of rain events. The effect of different retention-detention volume combinations was simulated, and results showed that allocating 20-40% of a soakaway volume to detention would significantly increase peak runoff reduction with a small reduction in the annual runoff.

  8. Coral Skeletons Provide Historical Evidence of Phosphorus Runoff on the Great Barrier Reef

    PubMed Central

    Mallela, Jennie; Lewis, Stephen E.; Croke, Barry

    2013-01-01

    Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca) of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs. PMID:24086606

  9. Innovative use of soft data for the validation of a rainfall-runoff model forced by remote sensing data

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Eilander, Dirk; Piet, Marijn; Mulder, Gert

    2013-04-01

    The Chamcar Bei catchment in southern Cambodia is a typical ungauged basin. Neither meteorological data or discharge measurements are available. In this catchment, local farmers are highly dependent on the irrigation system. However, due to the unreliability of the water supply, it was required to make a hydrological model, with which further improvements of the irrigation system could be planned. First, we used knowledge generated in the IAHS decade on Predictions in Ungauged Basins (PUB) to estimate the annual water balance of the Chamcar Bei catchment. Next, using remotely sensed precipitation, vegetation, elevation and transpiration data, a monthly rainfall-runoff model has been developed. The rainfall-runoff model was linked to the irrigation system reservoir, which allowed to validate the model based on soft data such as historical knowledge of the reservoir water level and groundwater levels visible in wells. This study shows that combining existing remote sensing data and soft ground data can lead to useful modeling results. The approach presented in this study can be applied in other ungauged basins, which can be extremely helpful in managing water resources in developing countries.

  10. Controls on Stormwater Runoff Quality and Quantity in Semi-arid, Urban Catchments

    NASA Astrophysics Data System (ADS)

    Gallo, E. L.; Brooks, P. D.; Lohse, K. A.

    2009-12-01

    Utilization of recharged urban runoff to complement municipal water supply has gained importance in arid regions where populations and their urban footprint continue to grow, and where water resources are scarce. However, our understanding of how runoff quantity and quality respond to urbanization in arid landscapes is largely incomplete and poses a challenge for water resources management. Here we address the question: What controls the hydrologic and hydrochemical responses of arid urban catchments? We collected water samples and stream stage data from 5 urban catchments of varied land uses (low, medium and high density residential, mixed and commercial land use) in southern Arizona during the summer rainfall seasons of 2007 and 2008. The most homogeneous catchments, as indicated by the index of landscape heterogeneity, were the least and most impervious, while the most heterogeneous sites had mid-range imperviousness. Hydrochemical responses were mixed, did not correlate with imperviousness or vegetation abundance, and were not strongly controlled by land use. Clustering analysis highlight hydrologic and sourcing controls on hydrochemistry, specifically conservative solute transport, land use specific and geologic solute sourcing and atmospheric deposition. Overall, water yields were surprisingly small (< 15%) and increased with imperviousness. Our data show that discharge responses were more sensitive to rainfall magnitude in homogeneous sites. We suggest that imperviousness and rainfall magnitude control water yields; whereas landscape heterogeneity may control a catchment’s sensitivity to generate runoff. The coupling of landscape and hydrology in controlling hydrochemistry is well illustrated by chloride (Cl), a non-reactive hydrologic tracer that was positively correlated with a large number of solutes such as ammonium, dissolved organic carbon, cadmium and zinc. We observed the highest concentrations and coefficients of variation of Cl at least and most impervious sites. We suggest that because the least and most impervious catchments are highly homogeneous and generate runoff in response to a wider range of rainfall magnitudes, flushing and transport of Cl is enhanced and therefore results in similar hydrochemical responses at these two sites despite large differences in their land use and imperviousness. Finally, we suggest that solutes positively correlated with Cl are subject to similar transport processes. Our study indicates that contrary to conceptual models developed for more humid areas, imperviousness is not a reliable predictor of hydrochemical response.

  11. Should Bouchet's hypothesis be taken into account in rainfall-runoff modelling? An assessment over 308 catchments

    NASA Astrophysics Data System (ADS)

    Oudin, Ludovic; Michel, Claude; Andréassian, Vazken; Anctil, François; Loumagne, Cécile

    2005-12-01

    An implementation of the complementary relationship hypothesis (Bouchet's hypothesis) for estimating regional evapotranspiration within two rainfall-runoff models is proposed and evaluated in terms of streamflow simulation efficiency over a large sample of 308 catchments located in Australia, France and the USA. Complementary relationship models are attractive approaches to estimating actual evapotranspiration because they rely solely on climatic variables. They are even more interesting since they are supported by a conceptual description underlying the interactions between the evapotranspirating surface and the atmospheric boundary layer, which was highlighted by Bouchet (1963). However, these approaches appear to be in contradiction with the methods prevailing in rainfall-runoff models, which compute actual evapotranspiration using soil moisture accounting procedures. The approach adopted in this article is to introduce the estimation of actual evapotranspiration provided by complementary relationship models (complementary relationship for areal evapotranspiration and advection aridity) into two rainfall-runoff models. Results show that directly using the complementary relationship approach to estimate actual evapotranspiration does not give better results than the soil moisture accounting procedures. Finally, we discuss feedback mechanisms between potential evapotranspiration and soil water availability, and their possible impact on rainfall-runoff modelling. Copyright

  12. Simulation of rainfall-runoff for major flash flood events in Karachi

    NASA Astrophysics Data System (ADS)

    Zafar, Sumaira

    2016-07-01

    Metropolitan city Karachi has strategic importance for Pakistan. With the each passing decade the city is facing urban sprawl and rapid population growth. These rapid changes directly affecting the natural resources of city including its drainage pattern. Karachi has three major cities Malir River with the catchment area of 2252 sqkm and Lyari River has catchment area about 470.4 sqkm. These are non-perennial rivers and active only during storms. Change of natural surfaces into hard pavement causing an increase in rainfall-runoff response. Curve Number is increased which is now causing flash floods in the urban locality of Karachi. There is only one gauge installed on the upstream of the river but there no record for the discharge. Only one gauge located at the upstream is not sufficient for discharge measurements. To simulate the maximum discharge of Malir River rainfall (1985 to 2014) data were collected from Pakistan meteorological department. Major rainfall events use to simulate the rainfall runoff. Maximum rainfall-runoff response was recorded in during 1994, 2007 and 2013. This runoff causes damages and inundation in floodplain areas of Karachi. These flash flooding events not only damage the property but also cause losses of lives

  13. Distinguishing spatiotemporal variability of sediment sources in small urbanized catchment as a response to urban expansion

    NASA Astrophysics Data System (ADS)

    Belyaev, Vladimir; Feoktistov, Artem; Huygens, Dries; Shamshurina, Eugenia; Golosov, Valentin

    2014-05-01

    Understanding hydrological response and geomorphic behavior of small catchments in urban environments, especially those experiencing urban expansion, represents serious and important problem which has not yet been given an adequate research attention. Urbanization exerts profound and diverse impacts on catchment characteristics, particularly by increasing surface runoff coefficients, peak flow discharges and rates of flash flood waves propagation as a result of widespread appearance of buildings and paved surfaces with practically zero infiltration capacities. Another essential influence of urbanization on small catchment hydrological regimes is associated with significant changes of natural topography (from relatively minor modifications such as grading of steeper slopes to complete transformations including total filling of gullies and small valleys, transfer of small streams from surface into underground pipes or collectors, etc.) combined with creation of systems of concrete-protected surface drainages and underground storm flow sewages. Such activities can result in substantial changes of runoff- and sediment-contributing areas for the remaining gullies and small valleys in comparison to the pre-urbanization conditions, causing dramatic increase of fluvial activity in some of those and much lower flow discharges in others. In addition, gullies and small valleys in urban settlements often become sites of dumping for both dry and liquid domestic and industrial wastes, thus being major pathways for dissolved and particle-bound pollutant transfer into perennial streams and rivers. All the problems listed require detailed hydrological and geomorphic investigations in order to provide sound basis for developing appropriate measures aimed to control and decrease urban erosion, sediment redistribution, pollution of water bodies, damage to constructions and communications. Recent advances in sediment tracing and fingerprinting techniques provide promising opportunities for distinguishing contributions of different sediment sources into catchment sediment budgets on a reliable quantitative basis. In combination with microstratigraphic differentiation and dating of sediment in continuous deposition zones by 137Cs depth distribution curves and available land use records, spatial and temporal variability of sediment sources and sinks can be reconstructed for the last several decades. That is especially important for catchments which experienced profound land use changes such as transition from pristine or agriculture-dominated to urbanized environment. The example presented here describes the results of reconstruction of changing sediment source types, contributions and spatial patterns for small reservoir catchment within the city of Kursk (Sredenerusskaya Upland, Central European Russia). Combination of compound specific stable isotopes, 137Cs, sediment grain size composition, land use information for several time intervals and daily rainfall record for the Kursk meteorological station (conveniently located within the study catchment) have been employed in order to evaluate major sediment sources within the catchment, their spatial pattern and temporal changes and compare those to history of reservoir sedimentation. The reservoir is situated on the Kur River - small river which gave its name to the city itself. The dam and reservoir were constructed and put into operation in 1969, thus the beginning of its infill is located stratigraphically later than the main peak of the global 137Cs fallout. It has been found that transition from dominantly agricultural land use to urbanized conditions caused decrease of contribution of soil erosion from cultivated land and increase of that of the active gullies into reservoir sedimentation. However, it is important to note that during extreme runoff events contribution of sediment originated from soil erosion on arable land still remains dominant, even though its area within the catchment recently became very limited.

  14. Nonlinear effects of microtopography on macroscopic rainfall-runoff partitioning a the hillslope scale: a modelling study

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; Domin, Andrea; Hinz, Christoph

    2017-04-01

    The quantitative description and prediction of hydrological response of hillslopes or hillslope-scale catchments to rainfall events is becoming evermore relevant. At the hillslope scale, the onset of runoff and the overall rainfall-runoff transformation are controlled by multiple interacting small-scale processes, that, when acting together produce a response described in terms of hydrological variables well-defined at the catchment and hillslope scales. We hypothesize that small scale features such microtopography of the land surface will will govern large scale signatures of temporal runoff evolution. This can be tested directly by numerical modelling of well-defined surface geometries and adequate process description. It requires a modelling approach consistent with fundamental fluid mechanics, well-designed numerical methods, and computational efficiency. In this work, an idealized rectangular domain representing a hillslope with an idealized 2D sinusoidal microtopography is studied by simulating surface water redistribution by means of a 2D diffusive-wave (zero-inertia) shallow water model. By studying more than 500 surfaces and performing extensive sensitivity analysis forced by a single rainfall pulse, the dependency of characteristic hydrological responses to microtopographical properties was assessed. Despite of the simplicity of periodic surface and the rain event, results indicate complex surface flow dynamics during the onset of runoff observed at the macro and micro scales. Macro scale regimes were defined in terms of characteristics hydrograph shapes and those were related to surface geometry. The reference regime was defined for smooth topography and consisted of a simple hydrograph with smoothly rising and falling limbs with an intermediate steady state. In constrast, rough surface geometry yields stepwise rising limbs and shorter steady states. Furthermore, the increase in total infiltration over the whole domain relative to the smooth reference case shows a strong non-linear dependency on slope and the ratio of the characteristic wavelength and amplitude of microtopography. The coupled analysis of spatial and hydrological results also suggests that the hydrological behaviour can be explained by the spatiotemporal variations triggered by surface connectivity. This study significantly extents previous work on 1D domains, as our results reveal complexities that require 2D representation of the runoff processes.

  15. Green infrastructure and its catchment-scale effects: an emerging science

    PubMed Central

    Golden, Heather E.; Hoghooghi, Nahal

    2018-01-01

    Urbanizing environments alter the hydrological cycle by redirecting stream networks for stormwater and wastewater transmission and increasing impermeable surfaces. These changes thereby accelerate the runoff of water and its constituents following precipitation events, alter evapotranspiration processes, and indirectly modify surface precipitation patterns. Green infrastructure, or low-impact development (LID), can be used as a standalone practice or in concert with gray infrastructure (traditional stormwater management approaches) for cost-efficient, decentralized stormwater management. The growth in LID over the past several decades has resulted in a concomitant increase in research evaluating LID efficiency and effectiveness, but mostly at localized scales. There is a clear research need to quantify how LID practices affect water quantity (i.e., runoff and discharge) and quality at the scale of catchments. In this overview, we present the state of the science of LID research at the local scale, considerations for scaling this research to catchments, recent advances and findings in scaling the effects of LID practices on water quality and quantity at catchment scales, and the use of models as novel tools for these scaling efforts. PMID:29682288

  16. Green infrastructure and its catchment-scale effects: an emerging science.

    PubMed

    Golden, Heather E; Hoghooghi, Nahal

    2018-01-01

    Urbanizing environments alter the hydrological cycle by redirecting stream networks for stormwater and wastewater transmission and increasing impermeable surfaces. These changes thereby accelerate the runoff of water and its constituents following precipitation events, alter evapotranspiration processes, and indirectly modify surface precipitation patterns. Green infrastructure, or low-impact development (LID), can be used as a standalone practice or in concert with gray infrastructure (traditional stormwater management approaches) for cost-efficient, decentralized stormwater management. The growth in LID over the past several decades has resulted in a concomitant increase in research evaluating LID efficiency and effectiveness, but mostly at localized scales. There is a clear research need to quantify how LID practices affect water quantity (i.e., runoff and discharge) and quality at the scale of catchments. In this overview, we present the state of the science of LID research at the local scale, considerations for scaling this research to catchments, recent advances and findings in scaling the effects of LID practices on water quality and quantity at catchment scales, and the use of models as novel tools for these scaling efforts.

  17. Interpretation of concentration‐discharge patterns in acid‐neutralizing capacity during storm flow in three small, forested catchments in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Rice, Karen C.; Chanat, Jeffrey G.; Hornberger, George M.; Webb, James R.

    2004-01-01

    Episodic concentration‐discharge (c‐Q) plots are a popular tool for interpreting the hydrochemical response of small, forested catchments. Application of the method involves assuming an underlying conceptual model of runoff processes and comparing observed c‐Q looping patterns with those predicted by the model. We analyzed and interpreted c‐Q plots of acid‐neutralizing capacity (ANC) for 133 storms collected over a 7‐year period from three catchments in Shenandoah National Park, Virginia. Because of their underlying lithologies the catchments represent a gradient in both hydrologic and geochemical behavior, ranging from a flashy, acidic, poorly buffered catchment to a moderate, neutral, well‐buffered catchment. The relative frequency of observed anticlockwise c‐Q loops in each catchment decreased along this gradient. Discriminant function analysis indicated that prestorm base flow ANC was an important predictor of loop rotation direction; however, the strength of the predictive relationship decreased along the same gradient. The trends were consistent with several equally plausible three‐component mixing models. Uncertainty regarding end‐member timing and relative volume and possible time variation in end‐member concentrations were key factors precluding identification of a unique model. The inconclusive results obtained on this large data set suggest that identification of underlying runoff mechanisms on the basis of a small number of c‐Q plots without additional supporting evidence is likely to be misleading.

  18. Effects of Urban Stormwater Infrastructure and Spatial Scale on Nutrient Export and Runoff from Semi-Arid Urban Catchments

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.

    2011-12-01

    There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (<200ha) watersheds had uniform land cover (medium density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe-drained sites and therefore stormwater has higher concentrations of nutrients, although total loads are significantly lower. Nonlinearities in cross-storm rainfall-nutrient loading relationships for the wash and retention basin watersheds suggest that these systems may become supply limited during large rain events. Results show that characteristics of the hydrologic network such as hydrologic connectivity mediate terrestrial-aquatic linkages. Specifically, we see that increased hydrologic connectivity, as in the piped watershed, actually decreases the predictive power of storm size with regard to nutrient export, whereas nutrient loads from poorly connected watersheds are strongly predicted by storm size.

  19. Effects of a beaver pond on runoff processes: comparison of two headwater catchments

    USGS Publications Warehouse

    Burns, Douglas A.; McDonnell, Jeffery J.

    1998-01-01

    Natural variations in concentrations of 18O, D, and H4SiO4 in two tributary catchments of Woods Lake in the west-central Adirondack Mountains of New York were measured during 1989–1991 to examine runoff processes and their implications for the neutralization of acidic precipitation by calcium carbonate treatment. The two catchments are similar except that one contained a 1.3 ha beaver pond. Evaporation from the beaver pond caused a seasonal decrease in the slope of the meteoric water line in stream water from the catchment with a beaver pond (WO2). No corresponding change in slope of the meteoric water line was evident in stream water from the other catchment (WO4), nor in ground water nor soil water from either catchment, indicating that evaporative fractionation was not significant. Application of a best-fit sine curve to δ18O data indicated that base flow in both catchments had a residence time of about 100 days. Ground water from a well finished in thick till had the longest residence time (160 days); soil water from the O-horizon and B-horizon had residence times of 63 and 80 days, respectively. Water previously stored within each catchment (pre-event water) was the predominant component of streamflow during spring snowmelt and during spring and autumn rainfall events, but the proportion of streamflow that consisted of pre-event water differed significantly in the two catchments. The proportion of event water (rain and snowmelt) in WO2 was smaller than at WO4 early in the spring snowmelt of March 13–17, 1990, but the proportions of source water components for the two catchments were almost indistinguishable by the peak flow on the third day of the melt. The event water was further separated into surface-water and subsurface-water components by utilizing measured changes in H4SiO4 concentrations in stream water during the snowmelt. Results indicated that subsurface flow was the dominant pathway by which event water reached the stream except during the peak flow of a rain-on-snow event on the last day of the melt. Streamflow from a spring rain storm with dry antecendent conditions two months later (May 16–18, 1990), was less than 5% event water at peak flow in WO2 and 26% in WO4. This change from the runoff pattern in March is attributed to retention of event water in the beaver pond favored by relatively low pre-event storage and isothermal (nonstratified) conditions in the pond that allowed mixing. Streamflow during several autumn storms was about 15–25% event water at peak flow in WO4; the highest values for event water were associated with wet antecedent moisture conditions. These results indicate that a beaver pond can significantly affect the downstream delivery of event water through evaporation and mixing, but provides minimal retention during large runoff events such as snowmelt. Beaver ponds are expected to provide greater opportunity for neutralization of acidic waters during most of the year in catchments treated with calcium carbonate, but little neutralization effect during snowmelt.

  20. Modelling of catchment nitrogen concentrations response to observed varying fertilizer application intensities

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    Eutrophication is a serious environmental problem. Despite numerous experimental and modelling efforts, understanding of the effect of land use and agriculture practices on in-stream nitrogen fluxes is still not fully achieved. This study combined intensive field monitoring and numerical modelling using 30 years of surface water quality data of a drinking water reservoir catchment in central Germany. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% of agricultural land use with significant changes in agricultural practices within the investigation period. The geology of the Weida catchment is characterized by clay schists and eruptive rocks, where rocks have low permeability. The semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was used to reproduce the measured data. First, the model was calibrated for discharge and nitrate-N concentrations (NO3-N) during the period 1997-2000. Then, the HYPE model was validated successfully for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates (with lowest discharge prediction performance of NSE = 0.78 and PBIAS = 3.74%, considering calibration and validation periods). Results showed that the measured as well as simulated in-stream nitrate-N concentration respond quickly to fertilizer application changes (increase/decrease). This rapid response can be explained with short residence times of interflow and baseflow runoff components due to the hardrock geological properties of the catchment. Results revealed that the surface runoff and interflow are the most dominant runoff components. HYPE model could reproduce reasonably well the NO3-N daily loads for varying fertilizer application, when detailed input data in terms of crop management (field-specific survey) are considered.

  1. Estimation of groundwater recharge via percolation outputs from a rainfall/runoff model for the Verlorenvlei estuarine system, west coast, South Africa

    NASA Astrophysics Data System (ADS)

    Watson, Andrew; Miller, Jodie; Fleischer, Melanie; de Clercq, Willem

    2018-03-01

    Wetlands are conservation priorities worldwide, due to their high biodiversity and productivity, but are under threat from agricultural and climate change stresses. To improve the water management practices and resource allocation in these complex systems, a modelling approach has been developed to estimate potential recharge for data poor catchments using rainfall data and basic assumptions regarding soil and aquifer properties. The Verlorenvlei estuarine lake (RAMSAR #525) on the west coast of South Africa is a data poor catchment where rainfall records have been supplemented with farmer's rainfall records. The catchment has multiple competing users. To determine the ecological reserve for the wetlands, the spatial and temporal distribution of recharge had to be well constrained using the J2000 rainfall/runoff model. The majority of rainfall occurs in the mountains (±650 mm/yr) and considerably less in the valley (±280 mm/yr). Percolation was modelled as ∼3.6% of rainfall in the driest parts of the catchment, ∼10% of rainfall in the moderately wet parts of the catchment and ∼8.4% but up to 28.9% of rainfall in the wettest parts of the catchment. The model results are representative of rainfall and water level measurements in the catchment, and compare well with water table fluctuation technique, although estimates are dissimilar to previous estimates within the catchment. This is most likely due to the daily timestep nature of the model, in comparison to other yearly average methods. These results go some way in understanding the fact that although most semi-arid catchments have very low yearly recharge estimates, they are still capable of sustaining high biodiversity levels. This demonstrates the importance of incorporating shorter term recharge event modeling for improving recharge estimates.

  2. Conceptualisation of Snowpack Isotope Dynamics in Spatially Distributed Tracer-Aided Runoff Models in Snow Influenced Northern Cathments

    NASA Astrophysics Data System (ADS)

    Ala-aho, P. O. A.; Tetzlaff, D.; Laudon, H.; McNamara, J. P.; Soulsby, C.

    2016-12-01

    We use the Spatially distributed Tracer-Aided Rainfall-Runoff (STARR) modelling framework to explore non-stationary flow and isotope response in three northern headwater catchments. The model simulates dynamic, spatially variable tracer concentration in different water stores and fluxes within a catchment, which can constrain internal catchment mixing processes, flow paths and associated water ages. To date, a major limitation in using such models in snow-dominated catchments has been the difficulties in paramaterising the isotopic transformations in snowpack accumulation and melt. We use high quality long term datasets for hydrometrics and stable water isotopes collected in three northern study catchments for model calibration and testing. The three catchments exhibit different hydroclimatic conditions, soil and vegetation types, and topographic relief, which brings about variable degree of snow dominance across the catchments. To account for the snow influence we develop novel formulations to estimate the isotope evolution in the snowpack and melt. Algorithms for the isotopic evolution parameterize an isotopic offset between snow evaporation and melt fluxes and the remaining snow storage. The model for each catchment is calibrated to match both streamflow and tracer concentration at the stream outlet to ensure internal consistency of the system behaviour. The model is able to reproduce the streamflow along with the spatio-temporal differences in tracer concentrations across the three studies catchments reasonably well. Incorporating the spatially distributed snowmelt processes and associated isotope transformations proved essential in capturing the stream tracer reponse for strongly snow-influenced cathments. This provides a transferrable tool which can be used to understand spatio-temporal variability of mixing and water ages for different storages and flow paths in other snow influenced, environments.

  3. Twelve year interannual and seasonal variability of stream carbon export from a boreal peatland catchment

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Larsson, A.; Wallin, M. B.; Nilsson, M. B.; Laudon, H.

    2016-07-01

    Understanding stream carbon export dynamics is needed to accurately predict how the carbon balance of peatland catchments will respond to climatic and environmental change. We used a 12 year record (2003-2014) of continuous streamflow and manual spot measurements of total organic carbon (TOC), dissolved inorganic carbon (DIC), methane (CH4), and organic carbon quality (carbon-specific ultraviolet absorbance at 254 nm per dissolved organic carbon) to assess interannual and seasonal variability in stream carbon export for a peatland catchment (70% mire and 30% forest cover) in northern Sweden. Mean annual total carbon export for the 12 year period was 12.2 gCm-2 yr-1, but individual years ranged between 6 and 18 gCm-2 yr-1. TOC, which was primarily composed of dissolved organic carbon (>99%), was the dominant form of carbon being exported, comprising 63% to 79% of total annual exports, and DIC contributed between 19% and 33%. CH4 made up less than 5% of total export. When compared to previously published annual net ecosystem exchange (NEE) for the studied peatland system, stream carbon export typically accounted for 12 to 50% of NEE for most years. However, in 2006 stream carbon export accounted for 63 to 90% (estimated uncertainty range) of NEE due to a dry summer which suppressed NEE, followed by a wet autumn that resulted in considerable stream export. Runoff exerted a primary control on stream carbon export from this catchment; however, our findings suggest that seasonal variations in biologic and hydrologic processes responsible for production and transport of carbon within the peatland were secondary influences on stream carbon export. Consideration of these seasonal dynamics is needed when predicting stream carbon export response to environmental change.

  4. Operational validation of a multi-period and multi-criteria model conditioning approach for the prediction of rainfall-runoff processes in small forest catchments

    NASA Astrophysics Data System (ADS)

    Choi, H.; Kim, S.

    2012-12-01

    Most of hydrologic models have generally been used to describe and represent the spatio-temporal variability of hydrological processes in the watershed scale. Though it is an obvious fact that hydrological responses have the time varying nature, optimal values of model parameters were normally considered as time invariants or constants in most cases. The recent paper of Choi and Beven (2007) presents a multi-period and multi-criteria model conditioning approach. The approach is based on the equifinality thesis within the Generalised Likelihood Uncertainty Estimation (GLUE) framework. In their application, the behavioural TOPMODEL parameter sets are determined by several performance measures for global (annual) and short (30-days) periods, clustered using a Fuzzy C-means algorithm, into 15 types representing different hydrological conditions. Their study shows a good performance on the calibration of a rainfall-runoff model in a forest catchment, and also gives strong indications that it is uncommon to find model realizations that were behavioural over all multi-periods and all performance measures, and multi-period model conditioning approach may become new effective tool for predictions of hydrological processes in ungauged catchments. This study is a follow-up study on the Choi and Beven's (2007) model conditioning approach to test how the approach is effective for the prediction of rainfall-runoff responses in ungauged catchments. To achieve this purpose, 6 small forest catchments are selected among the several hydrological experimental catchments operated by Korea Forest Research Institute. In each catchment, long-term hydrological time series data varying from 10 to 30 years were available. The areas of the selected catchments range from 13.6 to 37.8 ha, and all areas are covered by coniferous or broad-leaves forests. The selected catchments locate in the southern coastal area to the northern part of South Korea. The bed rocks are Granite gneiss, Granite or Limestone. The study is progressed based on the followings. Firstly, hydrological time series of each catchment are sampled and clustered into multi-period having distinctly different temporal characteristics, and secondly, behavioural parameter distributions are determined in each multi-period based on the specification of multi-criteria model performance measures. Finally, behavioural parameter sets of each multi-period of single catchment are applied on the corresponding period of other catchments, and the cross-validations are conducted in this manner for all catchments The multi-period model conditioning approach is clearly effective to reduce the width of prediction limits, giving better model performance against the temporal variability of hydrological characteristics, and has enough potential to be the effective prediction tool for ungauged catchments. However, more advanced and continuous studies are needed to expand the application of this approach in prediction of hydrological responses in ungauged catchments,

  5. Studying strategic interaction under environmental and economic uncertainties among water users in the Zambezi River Basin - From descriptive analysis to institutional design for better transboundary management

    NASA Astrophysics Data System (ADS)

    Beck, L.; Siegfried, T. U.; Bernauer, T.

    2009-12-01

    The Zambezi River Basin (ZRB) is one of the largest freshwater catchments in Africa and worldwide. Consumptive water use in the ZRB is currently estimated at 15 - 20 percent of total runoff. This suggests many development possibilities, particularly for irrigated agriculture and hydropower production. The key drivers in the basin are population development on the demand side as well as uncertain impacts from climate change for supply. Development plans of the riparian countries suggest that consumptive water use might increase up to 40 percent of total runoff by 2025. This suggests that expanding water use in the Zambezi basin could become a source of disputes among the eight riparian countries. We study the surface water allocation in the basin by means of a couple hydrological-economic modeling approach. A conceptual lumped-parameter rainfall-runoff model for the ZRB was constructed and calibrated on the best available runoff data for the basin. Water users are modeled based on an agent-based framework and implemented as distributed sequential decision makers that act in an uncertain environment. Given the current non-cooperative status quo, we use the stochastic optimization technique of reinforcement learning to model the individual agents’ behavior. Their goals include the maximization of a) their long-term reward as conditioned on the state of the multi-agent system and b) the immediate reward obtained from operational decisions of reservoirs and water diversions under their control. We feed a wide range of water demand drivers as well as climate change predictions into the model and assess agents’ responses and the resulting implications for runoff at key points in the water catchment, including Victoria Falls, Kariba reservoir, Kafue Gorge, and Cahora Bassa reservoir in the downstream. It will be shown that considerable benefits exist if the current non-cooperative regime is replaced by a basin-wide, coordinated allocation strategy that regulates water storage and allocation in this complex multi-reservoir river basin. Benefits increase along the river towards the downstream, which suggests the establishment of an upstream-downstream compensation approach. The latter considers tradeoffs from water and hydropower exchanges during respective seasons and locations of peak demand.

  6. Assessing the role of urban developments on storm runoff response through multi-scale catchment experiments

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Owen, Gareth; Geris, Josie; Soulsby, Chris; Quinn, Paul

    2015-04-01

    Many communities across the world face the increasing challenge of balancing water quantity and quality issues with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). In particular for mixed rural and urban catchments where the spatio-temporal variability of hydrological responses is high, there remains a key research challenge in evaluating the timing and magnitude of storage and flow pathways at multiple scales. This is of crucial importance for appropriate catchment management, for example to aid the design of Green Infrastructure (GI) to mitigate the risk of flooding, among other multiple benefits. The aim of this work was to (i) explore spatio-temporal storm runoff generation characteristics in multi-scale catchment experiments that contain rural and urban land use zones, and (ii) assess the (preliminary) impact of Sustainable Drainage (SuDs) as GI on high flow and flood characteristics. Our key research catchment, the Ouseburn in Northern England (55km2), has rural headwaters (15%) and an urban zone (45%) concentrated in the lower catchment area. There is an intermediate and increasingly expanding peri-urban zone (currently 40%), which is defined here as areas where rural and urban features coexist, alongside GIs. Such a structure is typical for most catchments with urban developments. We monitored spatial precipitation and multiscale nested (five gauges) runoff response, in addition to the storage dynamics in GIs for a period of 6 years (2007-2013). For a range of events, we examined the multiscale nested runoff characteristics (lag time and magnitude) of the rural and urban flow components, assessed how these integrated with changing land use and increasing scale, and discussed the implications for flood management in the catchment. The analyses indicated three distinctly different patterns in the timing and magnitude of the contributions of the different land use zones and their nested integrated runoff response at increasing scales. These can be clearly linked to variations in antecedent conditions and precipitation patterns. For low antecedent flow conditions, the main flood peak is dominated by urban origins (faster responding and larger in relative magnitude); for high antecedent flow conditions, rural (and peri-urban) sources are most dominant. A third type of response involves mixed events, where both rural and urban contributions interact and reinforce the peak flow response. Our analyses showed that the effectiveness of the GIs varied substantially between the different events, suggesting that their design could be improved by introducing variable drainage rates and strategic placements to allow for interactions with the stream network. However, more information is needed on the spatio-temporal variability in water sources, flow pathways and residence times. This is of particular importance to also assess other multiple benefits of GIs, including the impacts on water quality. These challenges are currently addressed in two new case study catchment in the North East of Scotland (10km2) which are undergoing major land use change from rural to urban. Here, integrated tracer and hydrometric data are being collected to characterise the integrated impacts of urbanisation and GIs on flow pathways (nature and length) and associated water quality.

  7. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; García-Navarro, Pilar; Murillo, Javier

    2012-07-01

    SummaryHydrological simulation of rain-runoff processes is often performed with lumped models which rely on calibration to generate storm hydrographs and study catchment response to rain. In this paper, a distributed, physically-based numerical model is used for runoff simulation in a mountain catchment. This approach offers two advantages. The first is that by using shallow-water equations for runoff flow, there is less freedom to calibrate routing parameters (as compared to, for example, synthetic hydrograph methods). The second, is that spatial distributions of water depth and velocity can be obtained. Furthermore, interactions among the various hydrological processes can be modeled in a physically-based approach which may depend on transient and spatially distributed factors. On the other hand, the undertaken numerical approach relies on accurate terrain representation and mesh selection, which also affects significantly the computational cost of the simulations. Hence, we investigate the response of a gauged catchment with this distributed approach. The methodology consists of analyzing the effects that the mesh has on the simulations by using a range of meshes. Next, friction is applied to the model and the response to variations and interaction with the mesh is studied. Finally, a first approach with the well-known SCS Curve Number method is studied to evaluate its behavior when coupled with a shallow-water model for runoff flow. The results show that mesh selection is of great importance, since it may affect the results in a magnitude as large as physical factors, such as friction. Furthermore, results proved to be less sensitive to roughness spatial distribution than to mesh properties. Finally, the results indicate that SCS-CN may not be suitable for simulating hydrological processes together with a shallow-water model.

  8. Estimation of extremely high runoff of the Sel\\vska Sora River after the storm of 18 September 2007

    NASA Astrophysics Data System (ADS)

    Kobold, M.; Brilly, M.

    2009-04-01

    Extremely high runoff occurred on 18 September 2007 on the Sel\\vska Sora catchment with drainage area of 104 km2 due to the heavy and intense rainfall which fell in just a few hours. The catchment lies in the north-western hilly part of Slovenia where precipitation started early in the morning. Meteorological forecast predicted precipitation for the September 18, but not in the quantity and intensity as it happened. More than 300 mm of the daily sum of the rainfall was recorded on some rain gauging stations, but the amount of precipitation fell mainly within six hours. The precipitation rates reached up to 70 mm/h and 100 mm in 2 hours on the most affected area along Sel\\vska Sora river upstream the town of Železniki. High differences in the amount of precipitation were detected at small distances. Under the influence of the very intense precipitation streams from the catchments of northwest Slovenia started to rise very quickly. Flash floods caused destruction and enormous material damage, the most in villages Davča and Železniki where three people lost their lives. Unfortunately the equipment on the water gauging station at Železniki stopped working during the flood and the flood wave was not recorded entirely. The highest water level 551 cm was determined after the flood according to the flood trace. The peak discharge was estimated to approximately 300 m3/s by extrapolation of rating curve and it exceeded the highest discharge from the period of observation 1991-2006 two times. The WMS system and HEC-1 hydrological model was used for the simulation of the hydrograph. According to the modelling results the peak of flood wave is estimated to 278 m3/s, what means 2670 l/s/km2 of maximum specific runoff. The results of analysis give the cumulative areal precipitation for the Sel\\vska Sora catchment to Železniki 219 mm, while the effective precipitation which caused direct runoff is only 57 mm. The runoff coefficient is rather low considering the high rainfall intensities for the short periods of few hours. However, the spatial distribution of the rainfall in the area was highly variable and spatial positioning of rain gauges is obviously inadequate for proper representation of the actual spatial amount of rainfall. Regarding to small antecedent soil moisture and consequently low flows before flood event, the infiltration into the soil was very high. The geological structure of the catchment is not uniform; the northern part of the catchment is more permeable whereas the southern part is much less permeable leading to non-uniform hydrological response of the catchment. According to the meteorological and hydrological situation, the flash flood event in Železniki has typical characteristics which make the analysis of the flash flood events difficult, not even mentioning the possibilities to make a prediction of the occurrence of such event in advance.

  9. Evaluation of Rainfall-Runoff Models for Mediterranean Subcatchments

    NASA Astrophysics Data System (ADS)

    Cilek, A.; Berberoglu, S.; Donmez, C.

    2016-06-01

    The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA), a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.

  10. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    PubMed

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  11. Regionalized rainfall-runoff model to estimate low flow indices

    NASA Astrophysics Data System (ADS)

    Garcia, Florine; Folton, Nathalie; Oudin, Ludovic

    2016-04-01

    Estimating low flow indices is of paramount importance to manage water resources and risk assessments. These indices are derived from river discharges which are measured at gauged stations. However, the lack of observations at ungauged sites bring the necessity of developing methods to estimate these low flow indices from observed discharges in neighboring catchments and from catchment characteristics. Different estimation methods exist. Regression or geostatistical methods performed on the low flow indices are the most common types of methods. Another less common method consists in regionalizing rainfall-runoff model parameters, from catchment characteristics or by spatial proximity, to estimate low flow indices from simulated hydrographs. Irstea developed GR2M-LoiEau, a conceptual monthly rainfall-runoff model, combined with a regionalized model of snow storage and melt. GR2M-LoiEau relies on only two parameters, which are regionalized and mapped throughout France. This model allows to cartography monthly reference low flow indices. The inputs data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data from everywhere in the French territory. To exploit fully these data and to estimate daily low flow indices, a new version of GR-LoiEau has been developed at a daily time step. The aim of this work is to develop and regionalize a GR-LoiEau model that can provide any daily, monthly or annual estimations of low flow indices, yet keeping only a few parameters, which is a major advantage to regionalize them. This work includes two parts. On the one hand, a daily conceptual rainfall-runoff model is developed with only three parameters in order to simulate daily and monthly low flow indices, mean annual runoff and seasonality. On the other hand, different regionalization methods, based on spatial proximity and similarity, are tested to estimate the model parameters and to simulate low flow indices in ungauged sites. The analysis is carried out on 691 French catchments that are representative of various hydro-meteorological behaviors. The results are validated with a cross-validation procedure and are compared with the ones obtained with GR4J, a conceptual rainfall-runoff model, which already provides daily estimations, but involves four parameters that cannot easily be regionalized.

  12. Demonstrating the unit hydrograph and flow routing processes involving active student participation - a university lecture experiment

    NASA Astrophysics Data System (ADS)

    Schulz, Karsten; Burgholzer, Reinhard; Klotz, Daniel; Wesemann, Johannes; Herrnegger, Mathew

    2018-05-01

    The unit hydrograph (UH) has been one of the most widely employed hydrological modelling techniques to predict rainfall-runoff behaviour of hydrological catchments, and is still used to this day. Its concept is based on the idea that a unit of effective precipitation per time unit (e.g. mm h-1) will always lead to a specific catchment response in runoff. Given its relevance, the UH is an important topic that is addressed in most (engineering) hydrology courses at all academic levels. While the principles of the UH seem to be simple and easy to understand, teaching experiences in the past suggest strong difficulties in students' perception of the UH theory and application. In order to facilitate a deeper understanding of the theory and application of the UH for students, we developed a simple and cheap lecture theatre experiment which involved active student participation. The seating of the students in the lecture theatre represented the hydrological catchment in its size and form. A set of plastic balls, prepared with a piece of magnetic strip to be tacked to any white/black board, each represented a unit amount of effective precipitation. The balls are evenly distributed over the lecture theatre and routed by some given rules down the catchment to the catchment outlet, where the resulting hydrograph is monitored and illustrated at the black/white board. The experiment allowed an illustration of the underlying principles of the UH, including stationarity, linearity, and superposition of the generated runoff and subsequent routing. In addition, some variations of the experimental setup extended the UH concept to demonstrate the impact of elevation, different runoff regimes, and non-uniform precipitation events on the resulting hydrograph. In summary, our own experience in the classroom, a first set of student exams, as well as student feedback and formal evaluation suggest that the integration of such an experiment deepened the learning experience by active participation. The experiment also initialized a more experienced based discussion of the theory and assumptions behind the UH. Finally, the experiment was a welcome break within a 3 h lecture setting, and great fun to prepare and run.

  13. What happens when catchments get excited? Exploring the link between hydrologic states and responses across spatial scales

    NASA Astrophysics Data System (ADS)

    Wrede, S.; Lyon, S. W.; Martinez-Carreras, N.; Pfister, L.; Uhlenbrook, S.

    2010-12-01

    Investigating relationships between dynamic hydrologic states and associated hydrologic responses of catchments is essential for a better understanding and conceptualization of hydrologic functioning and classification across spatial scales. Nevertheless, the question of “What happens when catchments get excited?” still remains unanswered for most catchments to date. This is especially true with regard to underlying landscape controls and how their relative importance can shift given the state of the various storages in a catchment. To help answering this question, we combined hydrometric and tracer approaches with landscape analysis in 24 nested catchments in Luxembourg, Europe with contrasting bedrock geology ranging from 0.5 to 1091 km2. In our study we discerned two major hydrological states (dry and wet) for each basin according to slope changes in double mass curves of cumulated discharge and precipitation. For each of these states the long-term (i.e. interannual) response of catchment behavior was characterized using conventional runoff signatures, such as master recession curves and average lag time between rainfall and runoff response. We found significantly different hydrologic responses for different hydrologic states of the catchments. These are typified by faster flow recessions, but longer average lag times during wet states and slower flow recessions, but shorter lag times during dry states. Dominating landscape controls on hydrological responses differed during these distinct hydrologic states and were identified as variables related to geology (percentage of impervious bedrock area) and soils (average soil depth), indicating different controls on hydrologic processes under different hydrologic states. Clustering of biweekly conductivity and silica stream water concentration data of the catchments further illustrated the dominant control of the geology on stream chemistry and revealed similar patterns during different hydrologic states. Our findings demonstrate that hydrologic response and their associated controls are closely linked to the dynamic hydrologic states of the catchments and hence should not be neglected in catchment modeling and classification approaches.

  14. Evaluation of hydrological processes in a mountainous small basin using a quinone biomarker.

    PubMed

    Fujita, M; Haga, H; Nishida, K; Sakamoto, Y

    2006-01-01

    An applicability of quinone biomarker to the analysis of hillslope runoff was investigated. At first, quinone profiles of three streams as well as a hillslope runoff in a forested headwater catchment were compared. The quinone composition of hillslope runoff differed from others. Moreover, there were remarkable differences in quinone profile of hillslope runoff under different rainfall conditions. Then, the behavior of quinone biomarker during the increase and decrease of hillslope runoff after a rainfall event was examined. The fractional changes in Q-9 (H2), Q-10 (H2), Q-11, MK-6 and MK-10 suggested the effect of interflow.

  15. Mapping dominant runoff processes: an evaluation of different approaches using similarity measures and synthetic runoff simulations

    NASA Astrophysics Data System (ADS)

    Antonetti, Manuel; Buss, Rahel; Scherrer, Simon; Margreth, Michael; Zappa, Massimiliano

    2016-07-01

    The identification of landscapes with similar hydrological behaviour is useful for runoff and flood predictions in small ungauged catchments. An established method for landscape classification is based on the concept of dominant runoff process (DRP). The various DRP-mapping approaches differ with respect to the time and data required for mapping. Manual approaches based on expert knowledge are reliable but time-consuming, whereas automatic GIS-based approaches are easier to implement but rely on simplifications which restrict their application range. To what extent these simplifications are applicable in other catchments is unclear. More information is also needed on how the different complexities of automatic DRP-mapping approaches affect hydrological simulations. In this paper, three automatic approaches were used to map two catchments on the Swiss Plateau. The resulting maps were compared to reference maps obtained with manual mapping. Measures of agreement and association, a class comparison, and a deviation map were derived. The automatically derived DRP maps were used in synthetic runoff simulations with an adapted version of the PREVAH hydrological model, and simulation results compared with those from simulations using the reference maps. The DRP maps derived with the automatic approach with highest complexity and data requirement were the most similar to the reference maps, while those derived with simplified approaches without original soil information differed significantly in terms of both extent and distribution of the DRPs. The runoff simulations derived from the simpler DRP maps were more uncertain due to inaccuracies in the input data and their coarse resolution, but problems were also linked with the use of topography as a proxy for the storage capacity of soils. The perception of the intensity of the DRP classes also seems to vary among the different authors, and a standardised definition of DRPs is still lacking. Furthermore, we argue not to use expert knowledge for only model building and constraining, but also in the phase of landscape classification.

  16. A Data Stream Model For Runoff Simulation In A Changing Environment

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Shao, J.; Zhang, H.; Wang, G.

    2017-12-01

    Runoff simulation is of great significance for water engineering design, water disaster control, water resources planning and management in a catchment or region. A large number of methods including concept-based process-driven models and statistic-based data-driven models, have been proposed and widely used in worldwide during past decades. Most existing models assume that the relationship among runoff and its impacting factors is stationary. However, in the changing environment (e.g., climate change, human disturbance), their relationship usually evolves over time. In this study, we propose a data stream model for runoff simulation in a changing environment. Specifically, the proposed model works in three steps: learning a rule set, expansion of a rule, and simulation. The first step is to initialize a rule set. When a new observation arrives, the model will check which rule covers it and then use the rule for simulation. Meanwhile, Page-Hinckley (PH) change detection test is used to monitor the online simulation error of each rule. If a change is detected, the corresponding rule is removed from the rule set. In the second step, for each rule, if it covers more than a given number of instance, the rule is expected to expand. In the third step, a simulation model of each leaf node is learnt with a perceptron without activation function, and is updated with adding a newly incoming observation. Taking Fuxi River catchment as a case study, we applied the model to simulate the monthly runoff in the catchment. Results show that abrupt change is detected in the year of 1997 by using the Page-Hinckley change detection test method, which is consistent with the historic record of flooding. In addition, the model achieves good simulation results with the RMSE of 13.326, and outperforms many established methods. The findings demonstrated that the proposed data stream model provides a promising way to simulate runoff in a changing environment.

  17. Prioritization of catchments based on soil erosion using remote sensing and GIS.

    PubMed

    Khadse, Gajanan K; Vijay, Ritesh; Labhasetwar, Pawan K

    2015-06-01

    Water and soil are the most essential natural resources for socioeconomic development and sustenance of life. A study of soil and water dynamics at a watershed level facilitates a scientific approach towards their conservation and management. Remote sensing and Geographic Information System are tools that help to plan and manage natural resources on watershed basis. Studies were conducted for the formulation of catchment area treatment plan based on watershed prioritization with soil erosion studies using remote sensing techniques, corroborated with Geographic Information System (GIS), secondary data and ground truth information. Estimation of runoff and sediment yield is necessary in prioritization of catchment for the design of soil conservation structures and for identifying the critical erosion-prone areas of a catchment for implementation of best management plan with limited resources. The Universal Soil Loss Equation, Sediment Yield Determination and silt yield index methods are used for runoff and soil loss estimation for prioritization of the catchments. On the basis of soil erosion classes, the watersheds were grouped into very high, high, moderate and low priorities. High-priority watersheds need immediate attention for soil and water conservation, whereas low-priority watershed having good vegetative cover and low silt yield index may not need immediate attention for such treatments.

  18. Identifying the Dynamic Catchment Storage That Does Not Drive Runoff

    NASA Astrophysics Data System (ADS)

    Dralle, D.; Hahm, W. J.; Rempe, D.; Karst, N.; Thompson, S. E.; Dietrich, W. E.

    2017-12-01

    The central importance of subsurface water storage in hydrology has resulted in numerous attempts to develop hydrograph and mass balance based techniques to quantify catchment storage state or capacity. In spite of these efforts, relatively few studies have linked catchment scale storage metrics to Critical Zone (CZ) structure and the status of water in hillslopes. Elucidating these relationships would increase the interpretability of catchment storage metrics, and aid the development of hydrologic models. Here, we propose that catchment storage consists of a dynamic component that varies on seasonal timescales, and a static component with negligible time variation. Discharge is assumed to be explicitly sensitive to changes in some fraction of the dynamic storage, while the remaining dynamic storage varies without directly influencing flow. We use a coupled mass balance and storage-discharge function approach to partition dynamic storage between these driving and non-driving storage pools, and compare inferences with direct observations of saturated and unsaturated dynamic water storages at two field sites in Northern California. We find that most dynamic catchment water storage does not drive streamflow in both sites, even during the wettest times of year. Moreover, the physical character of non-driving dynamic storage depends strongly on catchment CZ structure. At a site with a deep profile of weathered rock, the dynamic storage that drives streamflow occurs as a seasonally perched groundwater table atop fresh bedrock, and that which does not drive streamflow resides as seasonally dynamic unsaturated water in shallow soils and deep, weathered rock. At a second site with a relatively thin weathered zone, water tables rapidly rise to intersect the ground surface with the first rains of the wet season, yet only a small fraction of this dynamic saturated zone storage drives streamflow. Our findings emphasize how CZ structure governs the overlap in time and space of three pools of subsurface water: (i) seasonally dynamic vs. static; (ii) unsaturated vs. saturated, and (iii) storage whose magnitude directly influences runoff vs. that which does not. These results highlight the importance of hillslope monitoring for physically interpreting methods of runoff-based hydrologic analysis.

  19. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.

    2014-07-01

    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which is expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of Global Climate Model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the Integrated Catchment Model of Phosphorus Dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivity) were highly varied. Sensitivity was governed by soil type (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy-loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

  20. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography

    NASA Astrophysics Data System (ADS)

    Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.

    2014-12-01

    Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.

  1. Variation of curve number with storm depth

    NASA Astrophysics Data System (ADS)

    Banasik, K.; Hejduk, L.

    2012-04-01

    The NRCS Curve Number (known also as SCS-CN) method is well known as a tool in predicting flood runoff depth from small ungauged catchment. The traditional way of determination the CNs, based on soil characteristics, land use and hydrological conditions, seemed to have tendency to overpredict the floods in some cases. Over 30 year rainfall-runoff data, collected in two small (A=23.4 & 82.4 km2), lowland, agricultural catchments in Center of Poland (Banasik & Woodward 2010), were used to determine runoff Curve Number and to check a tendency of changing. The observed CN declines with increasing storm size, which according recent views of Hawkins (1993) could be classified as a standard response of watershed. The analysis concluded, that using CN value according to the procedure described in USDA-SCS Handbook one receives representative value for estimating storm runoff from high rainfall depths in the analyzes catchments. This has been confirmed by applying "asymptotic approach" for estimating the watershed curve number from the rainfall-runoff data. Furthermore, the analysis indicated that CN, estimated from mean retention parameter S of recorded events with rainfall depth higher than initial abstraction, is also approaching the theoretical CN. The observed CN, ranging from 59.8 to 97.1 and from 52.3 to 95.5, in the smaller and the larger catchment respectively, declines with increasing storm size, which has been classified as a standard response of watershed. The investigation demonstrated also changeability of the CN during a year, with much lower values during the vegetation season. Banasik K. & D.E. Woodward (2010). "Empirical determination of curve number for a small agricultural watrshed in Poland". 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 - July 1, 2010 (http://acwi.gov/sos/pubs/2ndJFIC/Contents/10E_Banasik_ 28_02_10. pdf). Hawkins R. H. (1993). "Asymptotic determination of curve numbers from data". Journal of Irrigation and Drainage Division. American Society of Civil Engineers, 119(2). pp. 334-345. ACKNOWLEDGMENTS The investigation described in the paper is part of the research project no. N N305 396238 founded by PL-Ministry of Science and Higher Education. The support provided by this organization is gratefully acknowledged.

  2. Spatial and temporal variability of runoff and streamflow generation within and among headwater catchments: a combined hydrometric and stable isotope approach

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Emanuel, R. E.; McGlynn, B. L.

    2012-12-01

    The combined influence of topography and vegetation on runoff generation and streamflow in headwater catchments remains unclear. We aim to understand how spatial, hydrological and climate variables affect runoff generation and streamflow at hillslope and watershed scales at the Coweeta Hydrologic Laboratory (CHL) in the southern Appalachian Mountains by analyzing stable isotopes of hydrogen (2H) and oxygen (18O) coupled with measurements of hydrological variables (stream discharge, soil moisture, shallow groundwater) and landscape variables (upslope accumulated area, vegetation density slope, and aspect). We investigated four small catchments, two of which contained broadleaf deciduous vegetation and two of which contained evergreen coniferous vegetation. Beginning in June 2011, we collected monthly water samples at 25 m intervals along each stream, monthly samples from 24 shallow groundwater wells, and weekly to monthly samples from 10 rain gauges distributed across CHL. Water samples were analyzed for 2H and 18O using cavity ring-down spectroscopy. During the same time period we recorded shallow groundwater stage at 30 min intervals from each well, and beginning in fall 2011 we collected volumetric soil moisture data at 30 min intervals from multiple depths at 16 landscape positions. Results show high spatial and temporal variability in δ2H and δ18O within and among streams, but in general we found isotopic enrichment with increasing contributing area along each stream. We used a combination of hydrometric observations and geospatial analyses to understand why stream isotope patterns varied during the year and among watersheds, and we used complementary measurements of δ2H and δ18O from other pools within the watersheds to understand the movement and mixing of precipitation that precedes runoff formation. This combination of high resolution stable isotope data and hydrometric observations facilitates a clearer understanding of spatial controls on streamflow generation. In addition, understanding the relative influences of topography and vegetation on runoff generation could help scientists and managers better assess potential impacts of disturbance on water supplies downstream of forested headwater catchments.

  3. Drainage area characterization for evaluating green infrastructure using the Storm Water Management Model

    NASA Astrophysics Data System (ADS)

    Lee, Joong Gwang; Nietch, Christopher T.; Panguluri, Srinivas

    2018-05-01

    Urban stormwater runoff quantity and quality are strongly dependent upon catchment properties. Models are used to simulate the runoff characteristics, but the output from a stormwater management model is dependent on how the catchment area is subdivided and represented as spatial elements. For green infrastructure modeling, we suggest a discretization method that distinguishes directly connected impervious area (DCIA) from the total impervious area (TIA). Pervious buffers, which receive runoff from upgradient impervious areas should also be identified as a separate subset of the entire pervious area (PA). This separation provides an improved model representation of the runoff process. With these criteria in mind, an approach to spatial discretization for projects using the US Environmental Protection Agency's Storm Water Management Model (SWMM) is demonstrated for the Shayler Crossing watershed (SHC), a well-monitored, residential suburban area occupying 100 ha, east of Cincinnati, Ohio. The model relies on a highly resolved spatial database of urban land cover, stormwater drainage features, and topography. To verify the spatial discretization approach, a hypothetical analysis was conducted. Six different representations of a common urbanscape that discharges runoff to a single storm inlet were evaluated with eight 24 h synthetic storms. This analysis allowed us to select a discretization scheme that balances complexity in model setup with presumed accuracy of the output with respect to the most complex discretization option considered. The balanced approach delineates directly and indirectly connected impervious areas (ICIA), buffering pervious area (BPA) receiving impervious runoff, and the other pervious area within a SWMM subcatchment. It performed well at the watershed scale with minimal calibration effort (Nash-Sutcliffe coefficient = 0.852; R2 = 0.871). The approach accommodates the distribution of runoff contributions from different spatial components and flow pathways that would impact green infrastructure performance. A developed SWMM model using the discretization approach is calibrated by adjusting parameters per land cover component, instead of per subcatchment and, therefore, can be applied to relatively large watersheds if the land cover components are relatively homogeneous and/or categorized appropriately in the GIS that supports the model parameterization. Finally, with a few model adjustments, we show how the simulated stream hydrograph can be separated into the relative contributions from different land cover types and subsurface sources, adding insight to the potential effectiveness of planned green infrastructure scenarios at the watershed scale.

  4. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    NASA Astrophysics Data System (ADS)

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. Since sub-daily streamflow information is unavailable for most small basins in China, one of the main challenges is finding appropriate parameter values for simulating flash floods in ungauged catchments. In this study, we use decision tree learning to explore parameter set transferability between different catchments. For this purpose, the physically-based, semi-distributed rainfall-runoff model PRMS-OMS is set up for 35 catchments in ten Chinese provinces. Hourly data from more than 800 storm runoff events are used to calibrate the model and evaluate the performance of parameter set transfers between catchments. For each catchment, 58 catchment attributes are extracted from several data sets available for whole China. We then use a data mining technique (decision tree learning) to identify catchment similarities that can be related to good transfer performance. Finally, we use the splitting rules of decision trees for finding suitable donor catchments for ungauged target catchments. We show that decision tree learning allows to optimally utilize the information content of available catchment descriptors and outperforms regionalization based on a conventional measure of physiographic-climatic similarity by 15%-20%. Similar performance can be achieved with a regionalization method based on spatial proximity, but decision trees offer flexible rules for selecting suitable donor catchments, not relying on the vicinity of gauged catchments. This flexibility makes the method particularly suitable for implementation in sparsely gauged environments. We evaluate the probability to detect flood events exceeding a given return period, considering measured discharge and PRMS-OMS simulated flows with regionalized parameters. Overall, the probability of detection of an event with a return period of 10 years is 62%. 44% of all 10-year flood peaks can be detected with a timing error of 2 hours or less. These results indicate that the modeling system can provide useful information about the timing and magnitude of flood events at ungauged sites.

  5. Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water.

    PubMed

    Sterk, Ankie; Schijven, Jack; de Roda Husman, Ana Maria; de Nijs, Ton

    2016-05-15

    Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by, for instance, bathing or drinking-water consumption. An increase in runoff, and associated wash-off of animal faeces from fields, is assumed to contribute to the increase of disease outbreaks during periods of high precipitation. Climate change is expected to increase winter precipitation and extreme precipitation events during summer, but has simultaneously also other effects such as temperature rise and changes in evapotranspiration. The question is to what extent the combination of these effects influence the input of zoonotic pathogens to the surface waters. To quantitatively analyse the impacts of climate change on pathogen runoff, pathogen concentrations reaching surface waters through runoff were calculated by combining an input model for catchment pathogen loads with the Wageningen Lowland Runoff Simulator (WALRUS). Runoff of Cryptosporidium and Campylobacter was evaluated under different climate change scenarios and by applying different scenarios for sources of faecal pollution in the catchments, namely dairy cows and geese and manure fertilization. Model evaluation of these scenarios shows that climate change has little overall impact on runoff of Campylobacter and Cryptosporidium from land to the surface waters. Even though individual processes like runoff fluxes, pathogen release and dilution are affected, either positively or negatively, the net effect on the pathogen concentration in surface waters and consequently also on infection risks through recreation seems limited. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. ACIDIFICATION TRENDS AND THE EVOLUTION OF NEUTRALIZATION MECHANISMS THROUGH TIME AT THE BEAR BROOK WATERSHED IN MAINE (BBWM), U.S.A.

    EPA Science Inventory

    The paired catchment study at the forested Bear Brook Watershed in Maine (BBWM) U.S.A. documents interactions among short- to long-term processes of acidification. In 1987-1989, runoff from the two catchments was nearly identical in quality and quantity. Ammonium sulfate has been...

  7. The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales

    Treesearch

    C. Gabrielli; J.J. McDonnell; W.T. Jarvis

    2012-01-01

    Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at...

  8. Direct measurements of meltwater runoff on the Greenland ice sheet surface

    NASA Astrophysics Data System (ADS)

    Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.

    2017-12-01

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

  9. Direct measurements of meltwater runoff on the Greenland ice sheet surface.

    PubMed

    Smith, Laurence C; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T; Chu, Vena W; Rennermalm, Åsa K; Ryan, Jonathan C; Cooper, Matthew G; Gleason, Colin J; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L; Cullather, Richard I; Zhao, Bin; Willis, Michael J; Hubbard, Alun; Box, Jason E; Jenner, Brittany A; Behar, Alberto E

    2017-12-12

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km 2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. Copyright © 2017 the Author(s). Published by PNAS.

  10. Direct measurements of meltwater runoff on the Greenland ice sheet surface

    PubMed Central

    Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.

    2017-01-01

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland’s midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. PMID:29208716

  11. Modelling soil erosion and associated sediment yield for small headwater catchments of the Daugava spillway valley, Latvia

    NASA Astrophysics Data System (ADS)

    Soms, Juris

    2015-04-01

    The accelerated soil erosion by water and associated fine sediment transfer in river catchments has various negative environmental as well as economic implications in many EU countries. Hence, the scientific community had recognized and ranked soil erosion among other environmental problems. Moreover, these matters might worsen in the near future in the countries of the Baltic Region, e.g. Latvia considering the predicted climate changes - more precisely, the increase in precipitation and shortening of return periods of extreme rainfall events, which in their turn will enable formation of surface runoff, erosion and increase of sediment delivery to receiving streams. Thereby it is essential to carry out studies focused on these issues in order to obtain reliable data in terms of both scientific and applied aims, e.g. environmental protection and sustainable management of soils as well as water resources. During the past decades, many of such studies of soil erosion had focused on the application of modelling techniques implemented in a GIS environment, allowing indirectly to estimate the potential soil losses and to quantify related sediment yield. According to research results published in the scientific literature, this approach currently is widely used all over the world, and most of these studies are based on the USLE model and its revised and modified versions. Considering that, the aim of this research was to estimate soil erosion rates and sediment transport under different hydro-climatic conditions in south-eastern Latvia by application of GIS-based modelling. For research purposes, empirical RUSLE model and ArcGIS software were applied, and five headwater catchments were chosen as model territories. The selected catchments with different land use are located in the Daugava spillway valley, which belongs to the upper Daugava River drainage basin. Considering lithological diversity of Quaternary deposits, a variety of soils can be identified, i.e., Stagnic Albeluvisols, Albic Rubic Arenosols and Albic Stagnic Podzols with stony loamy - clayey diamicton to coarse sand textures prevail in the selected catchments. The results of modelling were validated through obtaining data on suspended sediment load directly during episodic runoff events caused by different scenarios of runoff formation. In order to get comparable values of suspended sediment load from gully catchments that differ in size, an area-specific daily suspended sediment yield was derived. The obtained results indicate that modelled area-specific sediment yield from the catchments to river greatly varies from 0.001 to 97.2 t ha-1 yr-1; the average soil loss predicted by RUSLE for the each of five catchments calculated for a 1 × 1 m cell grid totals 0.81; 1.36; 0.96; 1.05 and 1.55 t ha-1 yr-1 respectively. Notably, despite the presence of forest vegetation that cover more than 40% of area of three of these catchments, sizable plots of soils are potentially prone to erosion rates above the tolerable threshold, i.e. 0.3 t ha-1 yr-1. Comparison of modelled vs. measured values indicates that the applied RUSLE model underestimates real sediment delivery, which shortly can reach values 213.75 kg ha-1 day-1 during intense snow melting in spring. Nevertheless, results of GIS modelling can be reasonably used to estimate the spatial distribution of soil erosion risk and to identify potential erosion hotspots.

  12. A thermodynamic approach to link self-organization, preferential flow and rainfall-runoff behaviour

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Ehret, U.; Blume, T.; Kleidon, A.; Scherer, U.; Westhoff, M.

    2013-11-01

    This study investigates whether a thermodynamically optimal hillslope structure can, if existent, serve as a first guess for uncalibrated predictions of rainfall-runoff. To this end we propose a thermodynamic framework to link rainfall-runoff processes and dynamics of potential energy, kinetic energy and capillary binding energy in catchments and hillslopes. The starting point is that hydraulic equilibrium in soil corresponds to local thermodynamic equilibrium (LTE), characterized by a local maximum entropy/minimum of free energy of soil water. Deviations from LTE occur either due to evaporative losses, which increase absolute values of negative capillary binding energy of soil water and reduce its potential energy, or due to infiltration of rainfall, which increases potential energy of soil water and reduces the strength of capillary binding energy. The amplitude and relaxation time of these deviations depend on climate, vegetation, soil hydraulic functions, topography and density of macropores. Based on this framework we analysed the free energy balance of hillslopes within numerical experiments that perturbed model structures with respect to the surface density of macropores. These model structures have been previously shown to allow successful long-term simulations of the water balances of the Weiherbach and the Malalcahuello catchments, which are located in distinctly different pedological and climatic settings. Our findings offer a new perspective on different functions of preferential flow paths depending on the pedological setting. Free energy dynamics of soil water in the cohesive soils of the Weiherbach is dominated by dynamics of capillary binding energy. Macropores act as dissipative wetting structures by enlarging water flows against steep gradients in soil water potential after long dry spells. This implies accelerated depletion of these gradients and faster relaxation back towards LTE. We found two local optima in macropore density that maximize reduction rates of free energy of soil water during rainfall-driven conditions. These two optima exist because reduction rates of free energy are, in this case, a second-order polynomial of the wetting rate, which implicitly depends on macroporosity. An uncalibrated long-term simulation of the water balance of the Weiherbach catchment based on the first optimum macroporosity performed almost as well as the best fit when macroporosity was calibrated to match rainfall-runoff. In the Malalcahuello catchment we did not find an apparent optimum density of macropores, because free energy dynamics of soil water during rainfall-driven conditions is dominated by increases of potential energy. Macropores act as dissipative drainage structures by enhancing export of potential energy. No optimum macropore density exists in this case because potential energy change rates scale linearly with the wetting rate. We found, however, a distinguished macroporosity that assures steady-state conditions of the potential energy balance of the soil, in the sense that average storage of potential energy is compensated by average potential energy export. This distinguished macroporosity was close to the value that yielded the best fit of rainfall-runoff behaviour during a calibration exercise and allowed a robust estimate of the annual runoff coefficient. Our findings are promising for predictions in ungauged catchments (PUB) as the optimal/distinguished model structures can serve as a first guess for uncalibrated predictions of rainfall-runoff. They also offer an alternative for classifying catchments according to their similarity of the free energy balance components.

  13. Links Between Flood Frequency and Annual Water Balance Behaviors: A Basis for Similarity and Regionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jiali; Li, Hongyi; Leung, Lai-Yung R.

    This paper presents the results of a data based comparative study of several hundred catchments across continental United States belonging to the MOPEX dataset, which systematically explored the connection between the flood frequency curve and measures of mean annual water balance. Two different measures of mean annual water balance are used: (i) a climatic aridity index, AI, which is a measure of the competition between water and energy availability at the annual scale; and, (ii) baseflow index, BFI, the ratio of slow runoff to total runoff also at the annual time scale, reflecting the role of geology, soils, topography andmore » vegetation. The data analyses showed that the aridity index, AI, has a first order control on both the mean and Cv of annual maximum floods. While mean annual flood decreases with increasing aridity, Cv increases with increasing aridity. BFI appeared to be a second order control on the magnitude and shape of the flood frequency curve. Higher BFI, meaning more subsurface flow and less surface flow leads to a decrease of mean annual flood whereas lower BFI leads to accumulation of soil moisture and increased flood magnitudes that arise from many events acting together. The results presented in this paper provide innovative means to delineate homogeneous regions within which the flood frequency curves can be assumed to be functionally similar. At another level, understanding the connection between annual water balance and flood frequency will be another building block towards developing comprehensive understanding of catchment runoff behavior in a holistic way.« less

  14. Field and modelling investigations of fresh-water plume behaviour in response to infrequent high-precipitation events, Sydney Estuary, Australia

    NASA Astrophysics Data System (ADS)

    B., Serena; Lee | Gavin, F.; Birch | Charles, J.; Lemckert

    2011-05-01

    Runoff from the urban environment is a major contributor of non-point source contamination for many estuaries, yet the ultimate fate of this stormwater within the estuary is frequently unknown in detail. The relationship between catchment rainfall and estuarine response within the Sydney Estuary (Australia) was investigated in the present study. A verified hydrodynamic model (Environmental Fluid Dynamics Computer Code) was utilised in concert with measured salinity data and rainfall measurements to determine the relationship between rainfall and discharge to the estuary, with particular attention being paid to a significant high-precipitation event. A simplified rational method for calculating runoff based upon daily rainfall, subcatchment area and runoff coefficients was found to replicate discharge into the estuary associated with the monitored event. Determining fresh-water supply based upon estuary conditions is a novel technique which may assist those researching systems where field-measured runoff data are not available and where minor field-measured information on catchment characteristics are obtainable. The study concluded that since the monitored fresh-water plume broke down within the estuary, contaminants associated with stormwater runoff due to high-precipitation events (daily rainfall > 50 mm) were retained within the system for a longer period than was previously recognised.

  15. The soil water regime of stony soils in a mountain catchment

    NASA Astrophysics Data System (ADS)

    Hlaváčiková, Hana; Danko, Michal; Holko, Ladislav; Hlavčo, Jozef; Novák, Viliam

    2016-04-01

    Investigation of processes related to runoff generation is an important topic in catchment hydrology. Observations are usually carried out in small catchments or on hillslopes. Many of such catchments are located in mountain or forested areas. From many studies it is evident that soil conditions and soil characteristics are one of the crucial factors in runoff generation. Mountainous or forest soils have usually high rock fragments content. Nevertheless, the influence of soil stoniness on water flow was not sufficiently studied up to now at catchment and hillslope scales due to flow formation complexity or problems with stony soil properties measurement (installing measuring devices, interpretation of measured data). Results of this work can be divided in two groups: (1) hydrophysical properties of stony soils measurements, and (2) water flow dynamic modelling in stony soils. Properties of stony soils were measured in the Jalovecky creek catchment, the Western Tatra Mts., Slovakia. Altitude of particular study sites varies from 780 to1500 m a.s.l. We measured and analyzed the stoniness of reference soil profiles, as well as retention properties of stony soils (fine soil fraction and rock fragments separately) and hydraulic conductivities of surface and subsurface soil layers. The methodology for determination of the effective hydrophysical properties of a stony soil (later used in modelling) was proposed using results from measurements, calculation, and numerical Darcy experiments. Modelling results show that the presence of rock fragments with low water retention in a stony soil with moderate or high stoniness can cause the soil water storage decrease by 16-31% in compared to the soil without rock fragments. In addition, decreased stony soil retention capacity resulted in faster outflow increase at the bottom of the soil profile during non-ponding infiltration. Furthermore, the presence of rock fragments can increase maximum outflow value. It is not possible to simply extrapolate the results from a soil profile to larger catchment scale because spatial variability of soil properties and unknown bedrock properties. Moreover, water outflow from the soil profile is a complex problem in which several factors co-operate. However, this points out that the presence of rock fragments in moderate or highly stony soils can play a significant role in catchment runoff generation under certain circumstances.

  16. Can spatial study of hydrological connectivity explain some behaviors of catchments?

    NASA Astrophysics Data System (ADS)

    Cantreul, Vincent

    2015-04-01

    Erosion is a major threat to European soil. Consequences can be very important both on-site and off-site. Belgian loamy soils are highly vulnerable to this threat because of their natural sensitivity to erosion on the one hand, and because the land is mainly used for intensive agricultural practices on the other hand. Over the last few decades, rising erosion has even been observed in our regions. This shows the importance of a deeper understanding of the coupled phenomena of runoff and erosion in order to manage soils at catchment scale. Plenty of research have already studied this but all agree to say that it seems to have a non-linear relationship between rainfall and discharge, as well as between rainfall and erosion. For that reason, a new concept has been developed a few years ago: the hydrological connectivity. Several research have focused on connectivity but up to now, each there are as much definition as papers. In this thesis, it will be important firstly to resume all these definitions to clarify this concept. Secondly, a methodology using various transects on the watershed and some pertinent field measurements will be used. These measurements include spatial distribution of particle size, surface states and soil moisture. A new approach of photogrammetry using an UAV will be used to observe erosion and deposition zones on the watershed. In this framework, several time scales will be studied from the event scale to the annual scale passing by monthly and seasonal scales. All this will serve to progress toward a better understanding of the concept of hydrological connectivity in order to study erosion at catchment scale. The final goal of this study is to describe hydrologically each different part of the catchment and to generalize these behaviors to other catchments with similar properties if possible. Afterwards, this research will be integrated in an existing (or not) model to improve the modelling of discharge and erosion in the catchment. Thanks to that, a scenario of hydraulic mitigation measures could be proposed in order to reduce runoff and erosion in the catchment. This scenario will include hydraulic, hydrologic but also ecological, landscape and economical points of view. Key words: catchment, erosion, runoff, modelling, connectivity, UAV, scale, mitigation measures

  17. From Points to Patterns - Functional Relations between Groundwater Connectivity and Catchment-scale Streamflow Response

    NASA Astrophysics Data System (ADS)

    Rinderer, M.; McGlynn, B. L.; van Meerveld, I. H. J.

    2016-12-01

    Groundwater measurements can help us to improve our understanding of runoff generation at the catchment-scale but typically only provide point-scale data. These measurements, therefore, need to be interpolated or upscaled in order to obtain information about catchment scale groundwater dynamics. Our approach used data from 51 spatially distributed groundwater monitoring sites in a Swiss pre-alpine catchment and time series clustering to define six groundwater response clusters. Each of the clusters was characterized by distinctly different site characteristics (i.e., Topographic Wetness Index and curvature), which allowed us to assign all unmonitored locations to one of these clusters. Time series modeling and the definition of response thresholds (i.e., the depth of more transmissive soil layers) allowed us to derive maps of the spatial distribution of active (i.e., responding) locations across the catchment at 15 min time intervals. Connectivity between all active locations and the stream network was determined using a graph theory approach. The extent of the active and connected areas differed during events and suggests that not all active locations directly contributed to streamflow. Gate keeper sites prevented connectivity of upslope locations to the channel network. Streamflow dynamics at the catchment outlet were correlated to catchment average connectivity dynamics. In a sensitivity analysis we tested six different groundwater levels for a site to be considered "active", which showed that the definition of the threshold did not significantly influence the conclusions drawn from our analysis. This study is the first one to derive patterns of groundwater dynamics based on empirical data (rather than interpolation) and provides insight into the spatio-temporal evolution of the active and connected runoff source areas at the catchment-scale that is critical to understanding the dynamics of water quantity and quality in streams.

  18. Nutrient Flux from Mediterranean Coastal Streams: Carpinteria Valley, California

    NASA Astrophysics Data System (ADS)

    Robinson, T. H.; Leydecker, A.; Melack, J. M.; Keller, A. A.

    2003-12-01

    Along the southern California coast, near Santa Barbara, California, we are measuring nutrient export from specific land uses and developing a model to predict nutrient export at a watershed scale. The area is characterized by a Mediterranean-like climate and short steep catchments producing flashy runoff. The six land uses include chaparral, avocado orchards, greenhouse agriculture, open-field nurseries, and residential and commercial development. Sampling sites are located on defined drainages or storm drains that collect runoff from relatively homogeneous areas representing each land use. Stream water samples are taken once a week during the rainy season, every two weeks during the dry season and every one to four hours during storms. Samples are analyzed for ammonium, nitrate, phosphate, total dissolved nitrogen and particulate nitrogen and phosphorus. Intensive sampling at the thirteen sites of the study was conducted throughout Water Year (WY) 2002 and 2003. We determine discharge from measurements of stage derived from pressure transducers at all sampling sites. This information is then converted to flux at a high temporal resolution. Wet and dry season sampling has shown that nitrate baseflow concentrations vary over three orders of magnitude, from a few micromoles per liter in undeveloped catchments, to a few 100 æmol/L in agricultural and urban watersheds, to 1000 æmol/L where intensive "greenhouse" agriculture dominates. Nitrate loading ranged from a few moles per hectare per storm at undeveloped and residential sites to hundreds at the greenhouse site. Phosphate concentrations show a similar, but smaller, variation from 1 to 100 æmol/L, although the loading is comparable at 1-100 moles/ha-storm. Stormflow concentrations fluctuate with the storm hydrograph: phosphate increases with flow, while nitrate typically decreases due to dilution from runoff probably from impervious surfaces. Nitrate export patterns indicate a marked difference between land use type (1, 10, 100 g ha-1mm-1 for undisturbed, urban, and greenhouse sites respectively) and show little variance storm to storm during WY2002 and WY2003. The phosphate export pattern with successive storms is not as clear. Cumulative rainfall and/or runoff/rainfall ratios for nitrate and phosphate show promise as variables to simulate the magnitude of nutrient export for individual storms in non-monitored catchments.

  19. Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Tetzlaff, Doerthe; Buttle, Jim; Laudon, Hjalmar; McDonnell, Jeff; McGuire, Kevin; Seibert, Jan; Soulsby, Chris; Shanley, Jamie

    2013-10-01

    The higher midlatitudes of the northern hemisphere are particularly sensitive to change due to the important role the 0°C isotherm plays in the phase of precipitation and intermediate storage as snow. An international intercatchment comparison program called North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. Here eight North-Watch catchments located in Sweden (Krycklan), Scotland (Girnock and Strontian), the United States (Sleepers River, Hubbard Brook, and HJ Andrews), and Canada (Dorset and Wolf Creek) with 10 continuous years of daily precipitation and runoff data were selected to assess daily to seasonal coupling of precipitation (P) and runoff (Q) using wavelet coherency, and to explore the patterns and scales of variability in streamflow using color maps. Wavelet coherency revealed that P and Q were decoupled in catchments with cold winters, yet were strongly coupled during and immediately following the spring snowmelt freshet. In all catchments, coupling at shorter time scales occurred during wet periods when the catchment was responsive and storage deficits were small. At longer time scales, coupling reflected coherence between seasonal cycles, being enhanced at sites with enhanced seasonality in P. Color maps were applied as an alternative method to identify patterns and scales of flow variability. Seasonal versus transient flow variability was identified along with the persistence of that variability on influencing the flow regime. While exploratory in nature, this intercomparison exercise highlights the importance of climate and the 0°C isotherm on the functioning of northern catchments.

  20. River recharge sources and the partitioning of catchment evapotranspiration fluxes as revealed by stable isotope signals in a typical high-elevation arid catchment

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Tian, Lide; Wang, Lei; Yu, Wusheng; Qu, Dongmei

    2017-06-01

    Catchment-scale hydrological cycles are expected to suffer more extremes under a background of climate change. Quantifying hydrological changes in high and remote areas is practically challenging. However, stable isotopes in river water can be seen to vary, dependent upon the combined influence exerted by recharge sources and local climatic conditions; the study of river water stable isotopes can therefore provide a meaningful method for delineating catchment-scale hydrological studies. In this study, we present high-resolution time series of river δ18O and d-excess values; additionally, we identify the seasonal dynamics of river recharge sources and major components of the catchment-scale water balance, together with precipitation and groundwater isotopes, and concurrent meteorological data recorded in Magazangbu catchment on the northwestern Tibetan Plateau (TP). Using isotopic analysis, and within a proportional framework, we partitioned the isotopic fractionation (E1) or non-fractionation (E2) from soil evaporation fluxes (Esoil) apparent in different processes, using NDVI (Normal Differential Vegetation Index) data collected by MODIS satellites to calculate the vegetation fractional coverage (VFC), and Global Land Data Assimilation System (GLDAS) records to determine evapotranspiration data (ET). Finally, the contributions made by each ET component (Esoil and plant transpiration) to total catchment ET were computed for the high and remote northwestern TP. Our results show that: (1) river δ18O values were high in summer and low in winter, while d-excess values displayed a contrary seasonal cycle; (2) for the monsoon period, precipitation contributed 60.6% to Magazangbu catchment runoff. Deeper groundwater was the main water source for the winter low base flow, and shallow groundwater or high elevation snowmelt was the principal component of the spring thaw and autumn freezing periods; and (3) a substantial proportion of Esoil (96.4% annually; 92.2% during monsoon) was consumed without isotopic fractionation (E2); plant transpiration (T) constituted less than half of total ET (41% annually, 29% during monsoon) in Magazangbu catchment. This calculation of river recharge sources and partitioning of catchment ET components using isotopic signals and MODIS NDVI data or GLDAS ET data provide new methods for hydrological studies in high and remote areas. These results provide important catchment-scale water-balance information which is very useful to climate models conducted in a high-elevation arid environment.

  1. A minimum data set of water quality parameters to assess and compare treatment efficiency of stormwater facilities.

    PubMed

    Ingvertsen, Simon Toft; Jensen, Marina Bergen; Magid, Jakob

    2011-01-01

    Urban stormwater runoff is often of poor quality, impacting aquatic ecosystems and limiting the use of stormwater runoff for recreational purposes. Several stormwater treatment facilities (STFs) are in operation or at the pilot testing stage, but their efficiencies are neither well documented nor easily compared due to the complex contaminant profile of stormwater and the highly variable runoff hydrograph. On the basis of a review of available data sets on urban stormwater quality and environmental contaminant behavior, we suggest a few carefully selected contaminant parameters (the minimum data set) to be obligatory when assessing and comparing the efficiency of STFs. Consistent use of the minimum data set in all future monitoring schemes for STFs will ensure broad-spectrum testing at low costs and strengthen comparability among facilities. The proposed minimum data set includes: (i) fine fraction of suspended solids (<63 μm), (ii) total concentrations of zinc and copper, (iii) total concentrations of phenanthrene, fluoranthene, and benzo(b,k)fluoranthene, and (iv) total concentrations of phosphorus and nitrogen. Indicator pathogens and other specific contaminants (i.e., chromium, pesticides, phenols) may be added if recreational or certain catchment-scale objectives are to be met. Issues that need further investigation have been identified during the iterative process of developing the minimum data set. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Stormwater contaminant loading following southern California wildfires.

    PubMed

    Stein, Eric D; Brown, Jeffrey S; Hogue, Terri S; Burke, Megan P; Kinoshita, Alicia

    2012-11-01

    Contaminant loading associated with stormwater runoff from recently burned areas is poorly understood, despite the fact that it has the potential to affect downstream water quality. The goal of the present study is to assess regional patterns of runoff and contaminant loading from wildfires in urban fringe areas of southern California. Postfire stormwater runoff was sampled from five wildfires that each burned between 115 and 658 km(2) of natural open space between 2003 and 2009. Between two and five storm events were sampled per site over the first one to two years following the fires for basic constituents, metals, nutrients, total suspended solids, and polycyclic aromatic hydrocarbons (PAHs). Results were compared to data from 16 unburned natural areas and six developed sites. Mean copper, lead, and zinc flux (kg/km(2)) were between 112- and 736-fold higher from burned catchments and total phosphorus was up to 921-fold higher compared to unburned natural areas. Polycyclic aromatic hydrocarbon flux was four times greater from burned areas than from adjacent urban areas. Ash fallout on nearby unburned watersheds also resulted in a threefold increase in metals and PAHs. Attenuation of elevated concentration and flux values appears to be driven mainly by rainfall magnitude. Contaminant loading from burned landscapes has the potential to be a substantial contribution to the total annual load to downstream areas in the first several years following fires. Copyright © 2012 SETAC.

  3. The Hydrological Response of Snowmelt Dominated Catchments to Climate Change

    NASA Astrophysics Data System (ADS)

    Arrigoni, A. S.; Moore, J. N.

    2007-12-01

    Hydrological systems dominated by snowmelt discharge contribute greater than half the freshwater resource available to the western United States. Globally, the contribution of mountain discharge to total runoff is twice the expected for their geographical coverage. Therefore, snowmelt dominated mountain catchments have proportionally a more prominent role than other systems to our freshwater resource. A changing climate, or even a more variable climate, could have a significant impact on these systems, and consequently on our freshwater resource. Ergo, a better understanding of how changes and variations in climate will influence mountain catchments is a necessity for improving future water management under predicted/proposed climate change. The research presented here is a first order analysis to improve our understanding of these systems by monitoring and analyzing high mountain catchments along the entirety of the Mission Mountain Front, Montana USA. The Mission Mountain Range is an ideal location for conducting this research as it runs directly north to south with elevations progressively increasing from 7600 feet in the northern section, to over 9700 feet at the southern end. The lower elevation catchments will be used as surrogates for variable climate change, while the high elevation catchments will be used as surrogates for a more stable, cooler, climate regime. We use a combination of USGS and Tribal stream gauges, as well as stage gauge loggers in the headwaters of the catchments, SNOTEL datasets, and weather station datasets. This information is used to determine if, how, and why the snowmelt hydrographs vary between catchments, within the catchments between the upper and lower segments, and the dominant driver or drivers of the hydrograph form in relation to changing climatic variables such as temperature and precipitation. This research will improve current comprehension of how mountain catchments respond to climatic variables, and additionally will expand upon the current understanding of general catchment hydrology.

  4. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience

    USGS Publications Warehouse

    Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; Kennedy, M.; Devito, K.; Pomeroy, J.W.

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. ?? 2010 John Wiley & Sons, Ltd.

  5. Using object-based geomorphometry for hydro-geomorphological analysis in a Mediterranean research catchment

    NASA Astrophysics Data System (ADS)

    Guida, Domenico; Cuomo, Albina; Palmieri, Vincenzo

    2016-08-01

    The aim of the paper is to apply an object-based geomorphometric procedure to define the runoff contribution areas and support a hydro-geomorphological analysis of a 3 km2 Mediterranean research catchment (southern Italy). Daily and sub-hourly discharge and electrical conductivity data were collected and recorded during a 3-year monitoring activity. Hydro-chemograph analyses carried out on these data revealed a strong seasonal hydrological response in the catchment that differed from the stormflow events that occur in the wet periods and in dry periods. This analysis enabled us to define the hydro-chemograph signatures related to increasing flood magnitude, which progressively involves various runoff components (baseflow, subsurface flow and surficial flow) and an increasing contributing area to discharge. Field surveys and water table/discharge measurements carried out during a selected storm event enabled us to identify and map specific runoff source areas with homogeneous geomorphological units previously defined as hydro-geomorphotypes (spring points, diffuse seepage along the main channel, seepage along the riparian corridors, diffuse outflow from hillslope taluses and concentrate sapping from colluvial hollows). Following the procedures previously proposed and used by authors for object-based geomorphological mapping, a hydro-geomorphologically oriented segmentation and classification was performed with the eCognition (Trimble, Inc.) package. The best agreement with the expert-based geomorphological mapping was obtained with weighted plan curvature at different-sized windows. By combining the hydro-chemical analysis and object-based hydro-geomorphotype map, the variability of the contribution areas was graphically modeled for the selected event, which occurred during the wet season, by using the log values of flow accumulation that better fit the contribution areas. The results allow us to identify the runoff component on hydro-chemographs for each time step and calculate a specific discharge contribution from each hydro-geomorphotype. This kind of approach could be useful when applied to similar, rainfall-dominated, forested and no-karst catchments in the Mediterranean eco-region.

  6. Utilization of Historical Maps in the Land Use Change Impact Studies: A Case Study from Myjava River Basin

    NASA Astrophysics Data System (ADS)

    Valent, P.; Rončák, P.; Maliariková, M.; Behan, Š.

    2016-12-01

    The way land is used has a significant impact on many hydrological processes that determine the generation of flood runoff or soil erosion. Advancements in remote sensing which took place in the second half of the 20th century have led to the rise of a new research area focused on analyses of land use changes and their impact on hydrological processes. This study deals with an analysis of the changes in land use over a period of almost three centuries in the Myjava River catchment, which has an outlet at Šaštín-Stráže. In order to obtain information about the way the land was used in the past, three historical mappings representing various periods were used: the first (1st) military mapping (1764-1787), second (2nd) military mapping (1807-1869), and a military topographic mapping (1953-1957). The historical mappings have been manually vectorised in an ArcGIS environment to identify various land use categories. The historical evolution of land use was further compared with a concurrent land use mapping, which was undertaken in 2010 and exploited remote sensing techniques. The study also quantifies the impact of these changes on the long-term catchment runoff as well as their impact on flows induced by extreme precipitation events. This analysis was performed using the WetSpa distributed hydrological model, which enables the simulation of catchment runoff in a daily time step. The analysis showed that the selected catchment has undergone significant changes in land use, mainly characterized by massive deforestation at the end of the 18th century and land consolidation in the middle of the 20th century induced by communist collectivisation. The hydrological simulations demonstrated that the highest and lowest mean annual runoffs were simulated in the first (1st military mapping) and the last (concurrent land use monitoring) time intervals respectively with the smallest and largest percentages of forested areas.

  7. Using stable isotopes to identify the scaling effects of riparian peatlands on runoff generation processes and DOC mobilisation

    NASA Astrophysics Data System (ADS)

    Tunaley, Claire; Tetzlaff, Doerthe; Soulsby, Chris

    2017-04-01

    Knowledge of hydrological sources, flow paths, and their connectivity is fundamental to understanding stream flow generation and surface water quality in peatlands. Stable isotopes are proven tools for tracking the sources and flow paths of runoff. However, relativity few studies have used isotopes in peat-dominated catchments. Here, we combined 13 months (June 2014 - July 2015) of daily isotope measurements in stream water with daily DOC and 15 minute FDOM (fluorescent component of dissolved organic matter) data, at three nested scales in NE Scotland, to identify the hydrological processes occurring in riparian peatlands. We investigated how runoff generation processes in a small, riparian peatland dominated headwater catchment (0.65 km2) propagate to larger scales (3.2 km2 and 31 km2) with decreasing percentage of riparian peatland coverage. Isotope damping was most pronounced in the 0.65 km2 catchment due to high water storage in the organic soils which encouraged tracer mixing and resulted in attenuated runoff peaks. At the largest scale, stream flow and water isotope dynamics showed a more flashy response. Particularly insightful in this study was calculating the deviation of the isotopes from the local meteoric water line, the lc-excess. The lc-excess revealed evaporative fractionation in the peatland dominated catchment, particularly during summer low flows. This implied high hydrological connectivity in the form of constant seepage from the peatlands sustaining high baseflows at the headwater scale. This constant connectivity resulted in high DOC concentrations at the peatland site during baseflow ( 5 mg l-1). In contrast, at the larger scales, DOC was minimal during low flows ( 2 mg l-1) due to increased groundwater influence and the disconnection between DOC sources and the stream. Insights into event dynamics through the analysis of DOC hysteresis loops showed slight dilution on the rising limb, the strong influence of dry antecedent conditions and a quick recovery between events at the riparian peatland site. Again, these dynamics were driven by the tight coupling and high connectivity of the landscape to the stream. At larger scales, the disconnection between the landscape units increased and the variable connectivity controlled runoff generation and DOC dynamics. The results presented here suggest that the hydrological processes occurring in riparian peatlands in headwater catchments are less evident at larger scales which may have implications for the larger scale impact of peatland restoration projects.

  8. Antecedent wetness conditions based on ERS scatterometer data

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.

    2009-01-01

    SummarySoil moisture is widely recognized as a key parameter in environmental processes mainly for the role of rainfall partitioning into runoff and infiltration. Therefore, for storm rainfall-runoff modeling the estimation of the antecedent wetness conditions ( AWC) is one of the most important aspect. In this context, this study investigates the potential of scatterometer on board of the ERS satellites for the assessment of wetness conditions in three Tiber sub-catchments (Central Italy), of which one includes an experimental area for soil moisture monitoring. The satellite soil moisture data are taken from the ERS/METOP soil moisture archive. First, the scatterometer-derived soil wetness index ( SWI) data are compared with two on-site soil moisture data sets acquired by different methodologies on areas of different extension ranging from 0.01 km 2 to ˜60 km 2. Moreover, the reliability of SWI to estimate the AWC at a catchment scale is investigated considering the relationship between SWI and the soil potential maximum retention parameter, S, of the Soil Conservation Service-Curve Number (SCS-CN) method for abstraction. Several flood events occurred from 1992 to 2005 are selected for this purpose. Specifically, the performance of the SWI for S estimation is compared with two antecedent precipitation indices ( API) and one base flow index ( BFI). The S values obtained through the observed direct runoff volume and rainfall depth are used as benchmark. Results show the great reliability of the SWI for the estimation of wetness conditions both at the plot and catchment scale despite the complex orography of the investigated areas. As far as the comparison with on site soil moisture data set is concerned, the SWI is found quite reliable in representing the soil moisture at layer depth of 15 cm, with a mean correlation coefficient equal to 0.81. The characteristic time length parameter variations, as expected, is depended on soil type, with values in accordance with previous studies. In terms of AWC assessment at catchment scale, based on selected flood events, the SWI is found highly correlated with the observed maximum potential retention of the SCS-CN method with a correlation coefficient R equal to -0.90. Besides, SWI in representing the AWC of the three investigated catchments, outperformed both API indices, poorly representative of AWC, and BFI. Finally, the classical SCS-CN method applied for direct runoff depth estimation, where S is assessed by SWI, provided good performance with a percentage error not exceeding ˜25% for 80% of investigated rainfall-runoff events.

  9. Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover

    NASA Astrophysics Data System (ADS)

    Badar, Bazigha; Romshoo, Shakil A.; Khan, M. A.

    2013-04-01

    In this paper, we evaluate the impact of changing land use/land cover (LULC) on the hydrological processes in Dal lake catchment of Kashmir Himalayas by integrating remote sensing, simulation modelling and extensive field observations. Over the years, various anthropogenic pressures in the lake catchment have significantly altered the land system, impairing, inter-alia, sustained biotic communities and water quality of the lake. The primary objective of this paper was to help a better understanding of the LULC change, its driving forces and the overall impact on the hydrological response patterns. Multi-sensor and multi-temporal satellite data for 1992 and 2005 was used for determining the spatio-temporal dynamics of the lake catchment. Geographic Information System (GIS) based simulation model namely Generalized Watershed Loading Function (GWLF) was used to model the hydrological processes under the LULC conditions. We discuss spatio-temporal variations in LULC and identify factors contributing to these variations and analyze the corresponding impacts of the change on the hydrological processes like runoff, erosion and sedimentation. The simulated results on the hydrological responses reveal that depletion of the vegetation cover in the study area and increase in impervious and bare surface cover due to anthropogenic interventions are the primary reasons for the increased runoff, erosion and sediment discharges in the Dal lake catchment. This study concludes that LULC change in the catchment is a major concern that has disrupted the ecological stability and functioning of the Dal lake ecosystem.

  10. Assessing the hydropower potential of ungauged watersheds in Iceland using hydrological modeling and satellite retrieved snow cover images

    NASA Astrophysics Data System (ADS)

    Finger, David

    2015-04-01

    About 80% of the domestic energy production in Iceland comes from renewable energies. Hydropower accounts for about 20% this production, representing about 75% of the total electricity production in Iceland. In 2008 total electricity production from hydropower was about 12.5 TWh a-1, making Iceland a worldwide leader in hydropower production per capita. Furthermore, the total potential of hydroelectricity in Iceland is estimated to amount up to 220 TWh a-1. In this regard, hydrological modelling is an essential tool to adapt a sustainable management of water resources and estimate the potential of possible new sites for hydropower production. We used the conceptual lumped Hydrologiska Byråns Vattenbalansavdelning model (HBV) to estimate the potential of hydropower production in two remote areas in north-eastern Iceland (Leirdalshraun, a 274 km2 area above 595 m asl and Hafralónsá, a 946 km2 area above 235 m asl). The model parameters were determined by calibrating the model with discharge data from gauged sub catchments. Satellite snow cover images were used to constrain melt parameters of the model and assure adequate modelling of snow melt in the ungauged areas. This was particularly valuable to adequately estimate the contribution of snow melt, rainfall runoff and groundwater intrusion from glaciers outside the topographic boundaries of the selected watersheds. Runoff from the entire area potentially used for hydropower exploitation was estimated using the parameter sets of the gauged sub-catchments. Additionally, snow melt from the ungauged areas was validated with satellite based snow cover images, revealing a robust simulation of snow melt in the entire area. Based on the hydrological modelling the total amount of snow melt and rainfall runoff available in Leirdalshraun and Hafralónsá amounts up to 700 M m3 a-1 and 1000 M m3 a-1, respectively. These results reveal that the total hydropower potential of the two sites amounts up to 1.2 TWh a-1 hydroelectricity, accounting for about 10% of the current production in Iceland. These result are of eminent importance to embed sustainable and resilient based water management in discussions concerning future plans of national energy production.

  11. The water quality of the River Enborne, UK: insights from high-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, Sarah; Skeffington, Richard; Wade, Andrew; Bowes, Mike; Gozzard, Emma; Palmer-Felgate, Elizabeth; Newman, Johnathan; Jarvie, Helen; Loewenthal, Matt

    2014-05-01

    The River Enborne is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works (STWs) discharges. Between November 2009 and February 2012, the river was instrumented with in situ analytical equipment to take hourly measurements of total reactive phosphorus (TRP), using a Systea Micromac C; nitrate, using a Hach Lange Nitratax; and pH, chlorophyll, dissolved oxygen, conductivity, turbidity and water temperature, using a YSI 6600 Multi-parameter sonde. In addition, weekly 'grab samples' were also collected and analysed for a wide range of chemical determinands including major ions, nutrients, and trace elements. The catchment land use is largely agricultural, with wheat the dominant crop, and the average population density is 123 persons per sq. km. The river water is largely derived from calcareous groundwater, with a mean calcium concentration of 68.5 mg/l, and high nitrogen and phosphorus concentrations, with mean nitrate and TRP concentrations of 3.96 mg/l-N and 0.17 mg/l-P respectively. A mass-balance for the catchment demonstrated that agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus, accounting for 77 % and 84 % respectively. However, the concentration data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics, with the diurnal STW discharge signal discernable in the high-frequency nutrient dynamics. The nutrient dynamics and correlation structure of the data indicate a substantial contribution of groundwater and agricultural runoff to stream nitrate concentrations, whereas discharges from septic tank systems and sewage treatment works are a more important source of phosphorus. The high-frequency turbidity and conductivity dynamics reveal key information about the seasonal changes controlling the system dynamics, with marked differences in diurnal conductivity dynamics at the onset of riparian shading linked to the decreased importance of the photosynthetically-driven cycle of bicarbonate concentration. Only 4 % of the phosphorus input and 9 % of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  12. Hydrological Modelling and Sensitivity Analysis Using Topmodel and Simulated Annealing Techniques.application To The Haute-mentue Catchment(switzerland).

    NASA Astrophysics Data System (ADS)

    Balin Talamba, D.; Higy, C.; Joerin, C.; Musy, A.

    The paper presents an application concerning the hydrological modelling for the Haute-Mentue catchment, located in western Switzerland. A simplified version of Topmodel, developed in a Labview programming environment, was applied in the aim of modelling the hydrological processes on this catchment. Previous researches car- ried out in this region outlined the importance of the environmental tracers in studying the hydrological behaviour and an important knowledge has been accumulated dur- ing this period concerning the mechanisms responsible for runoff generation. In con- formity with the theoretical constraints, Topmodel was applied for an Haute-Mentue sub-catchment where tracing experiments showed constantly low contributions of the soil water during the flood events. The model was applied for two humid periods in 1998. First, the model calibration was done in order to provide the best estimations for the total runoff. Instead, the simulated components (groundwater and rapid flow) showed far deviations from the reality indicated by the tracing experiments. Thus, a new calibration was performed including additional information given by the environ- mental tracing. The calibration of the model was done by using simulated annealing (SA) techniques, which are easy to implement and statistically allow for converging to a global minimum. The only problem is that the method is time and computer consum- ing. To improve this, a version of SA was used which is known as very fast-simulated annealing (VFSA). The principles are the same as for the SA technique. The random search is guided by certain probability distribution and the acceptance criterion is the same as for SA but the VFSA allows for better taking into account the ranges of vari- ation of each parameter. Practice with Topmodel showed that the energy function has different sensitivities along different dimensions of the parameter space. The VFSA algorithm allows differentiated search in relation with the sensitivity of the param- eters. The environmental tracing was used in the aim of constraining the parameter space in order to better simulate the hydrological behaviour of the catchment. VFSA outlined issues for characterising the significance of Topmodel input parameters as well as their uncertainty for the hydrological modelling.

  13. A flash flood early warning system based on rainfall thresholds and daily soil moisture indexes

    NASA Astrophysics Data System (ADS)

    Brigandì, Giuseppina; Tito Aronica, Giuseppe

    2015-04-01

    Main focus of the paper is to present a flash flood early warning system, developed for Civil Protection Agency for the Sicily Region, for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds and soil moisture indexes. As matter of fact, flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. In this context, some kind of hydrological precursors can be considered to improve the effectiveness of the emergency actions (i.e. early flood warning). Now, it is well known how soil moisture is an important factor in flood formation, because the runoff generation is strongly influenced by the antecedent soil moisture conditions of the catchment. The basic idea of the work here presented is to use soil moisture indexes derived in a continuous form to define a first alert phase in a flash flood forecasting chain and then define a unique rainfall threshold for a given day for the subsequent alarm phases activation, derived as a function of the soil moisture conditions at the beginning of the day. Daily soil moisture indexes, representative of the moisture condition of the catchment, were derived by using a parsimonious and simply to use approach based on the IHACRES model application in a modified form developed by the authors. It is a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method and on the unit hydrograph approach that requires only rainfall, streamflow and air temperature data. It consists of two modules. In the first a non linear loss model, based on the SCS-CN method, was used to transform total rainfall into effective rainfall. In the second, a linear convolution of effective rainfall was performed using a total unit hydrograph with a configuration of one parallel channel and reservoir, thereby corresponding to 'quick' and 'slow' components of runoff. In the non linear model a wetness/soil moisture index, varying from 0 to 1, was derived to define daily soil moisture catchment conditions and then conveniently linked to a corresponding CN value to use as input to derive the corresponding rainfall threshold for a given day. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. Application of the proposed methodology was carried out with reference to a river basin in Sicily, Italy.

  14. The role of forest in runoff generation in a suburban catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Soares, D.; Soares, A. J. D.; Coelho, C. O. A.; Steenhuis, T. S.; Keizer, J. J.; Walsh, R. P. D.

    2012-04-01

    Forests play an important role in the water cycle, particularly through their influence on infiltration and evapotranspiration processes. Removing forest for urban growth will affect the hydrological cycle, but to what degree is not known. To improve the knowledge about the role of forest areas in the catchment surface runoff, a total of nine runoff plots (16m2) was installed in the three predominant woodland types found in the small Ribeira dos Covões catchment (620ha), located in a rapid urbanizing area in central Portugal. The three representative study sites comprised: (i) a dense eucalyptus stand on a sandy-loam soil overlying sandstone; (ii) a open eucalyptus stand dominated by dense shrub vegetation, also on a sandy-loam soil overlying sandstone; (iii) a Mediterranean oak stand on a loamy soil overlying limestone. The three plots at each site were bounded by metal sheets and their outlets were connected to a modified Gerlach through for sediments retention and, subsequently, a tipping-bucket device and a tank for recording and collecting the runoff. The overland flow generated by the plots was monitored for almost one year. In addition, soil moisture content was measured automatically at 0-2, 5-10 and 15-20cm soil depth using 5 sensors per plot. Furthermore, soil water repellency was repeatedly measured on the field, through ethanol percentage method. In the dense eucalyptus forest the soil is hydrophobic during most of the year, just vanished after severe rainfall events. This reflects on low soil moisture content that reached 37% during wet periods. In this area, with an average slope of 20°±5°, the runoff coefficient ranged between 0.0% (for a 3mm rainfall event) and 2.2% (for a 23mm rainfall during hydrophobic conditions). In general, the runoff was higher when the soil was extremely repellent, but it also increased with soil moisture rise when the repellence was absent (reaching 0.6%). In the open eucalyptus forest, hydrophobicity is also presented but it is absent for a longer period comparing with the dense eucalyptus. Nonetheless, the soil moisture content is always lower, with a maximum of 26%. Despite the higher slope (27°±1°), this is thought to be a consequence of the very dense shrub cover, which can explain the lower runoff coefficients (maximum of 0.5%). In these plots, runoff increases with soil moisture. On the other hand, in oak forest the soil is mostly hydrophilic, this indicates the role of vegetation type on water repellence. The soil moisture is higher along the year (35% - 66%), not only due to hydrophobicity nonexistence but also with lower slope (17°±5°). On this forest, overland-flow is almost absent (attaining 0.3%) and increases with soil moisture. The low runoff coefficients show that even when the soil is hydrophobic, water is able to infiltrate to the subsurface through preferential flows. The results confirm the widespread notion that forest areas increase infiltration and, thereby, reduce flood risk. Nonetheless, eucalyptus stand is little suitable as forest cover, comparing with natural oak forest, to promote water infiltration. This knowledge can aid decision-makers dealing with urban planning.

  15. Hydrological interaction between glacier and páramos in the tropical Andes: implications for water resources availability

    NASA Astrophysics Data System (ADS)

    Villacís, Marcos; Cadier, Eric; Mena, Sandra; Anaguano, Marcelo; Calispa, Marlon; Maisisncho, Luis; Galárraga, Remigio; Francou, Bernard

    2010-05-01

    Preliminary hydro glacier estimates indicate that glacier contribution to the average annual consumption (5.6 m3 s-1) of the city of Quito (Capital of Ecuador, ~2'500.000 inhabitants, 2800 masl) represents only about 2%-4% of the total supply for human consumption. However, at the local level at the Antizana volcano (0°28'S, 78°09'W), the mass balance analysis of the system composed by the Humboldt catchment (area of 15.1 km2, 15% of glaciarized area, 5% of moraines area, 80% of the area is páramo-endemic ecosystem of the tropical Andes, range from 5670 masl to 4000 masl) and Los Crespos catchment (area of 2.4 km2, 67% glaciarized area, 27% moraines area, range from 5670 masl to 4500 masl), which is nested into the Humboldt catchment, allows us to identify that due to the presence of the glacier reservoirs there is an additional contribution of 24% to the annual volume at the Humboldt catchment and it helps to regulate the runoff during the dry season, where the daily additional glacier contribution from November to February in some cases could reach t 40%. The Humboldt catchment has similar physiographic characteristics than the sites where new diversions will be built in the future in order to satisfy the increasing demand of water for human consumption of the city of Quito and its surrounding populations. Based on detail hydrological observations (every 15 minutes measurements) during 2005 to 2009 and sporadic environmental trace analysis during the same period, the annual percentage of glacier contribution from the Humboldt catchment could potentially be as high as 37% due in part to the glacier melt contribution that gets infiltrated over 4750 masl it is then delivered around 4100 masl through underground circulation. Some of the sites where the glacier contribution reaches de surface has been identified through field work and the glacier origin of this water have been confirmed using a conductivity measurement, which seems to be a good indicator in when there is low precipitation. This additional contribution from glacier melt will reinforce the capacity to transform precipitation into runoff at the saturation zone of this high land catchment. As a consequence, the hydrologic behavior of these catchments could be negatively affected by disappearing glacier contribution under the climate change context predicted by the IPCC for this region. This could be also the case for catchments from other glacierized mountains located in the tropical Andes, where water supply for surrounding populations, high land ecosystems (locally known as páramos), and in some cases other economic activities such as agriculture will be in jeopardy.

  16. Road traffic impact on urban water quality: a step towards integrated traffic, air and stormwater modelling.

    PubMed

    Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian

    2014-04-01

    Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.

  17. Improving catchment scale water quality modelling with continuous high resolution monitoring of metals in runoff

    NASA Astrophysics Data System (ADS)

    Saari, Markus; Rossi, Pekka; Blomberg von der Geest, Kalle; Mäkinen, Ari; Postila, Heini; Marttila, Hannu

    2017-04-01

    High metal concentrations in natural waters is one of the key environmental and health problems globally. Continuous in-situ analysis of metals from runoff water is technically challenging but essential for the better understanding of processes which lead to pollutant transport. Currently, typical analytical methods for monitoring elements in liquids are off-line laboratory methods such as ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and ICP-MS (ICP combined with a mass spectrometer). Disadvantage of the both techniques is time consuming sample collection, preparation, and off-line analysis at laboratory conditions. Thus use of these techniques lack possibility for real-time monitoring of element transport. We combined a novel high resolution on-line metal concentration monitoring with catchment scale physical hydrological modelling in Mustijoki river in Southern Finland in order to study dynamics of processes and form a predictive warning system for leaching of metals. A novel on-line measurement technique based on micro plasma emission spectroscopy (MPES) is tested for on-line detection of selected elements (e.g. Na, Mg, Al, K, Ca, Fe, Ni, Cu, Cd and Pb) in runoff waters. The preliminary results indicate that MPES can sufficiently detect and monitor metal concentrations from river water. Water and Soil Assessment Tool (SWAT) catchment scale model was further calibrated with high resolution metal concentration data. We show that by combining high resolution monitoring and catchment scale physical based modelling, further process studies and creation of early warning systems, for example to optimization of drinking water uptake from rivers, can be achieved.

  18. Influence of landscape position and transient water table on soil development and carbon distribution in a steep, headwater catchment

    Treesearch

    Scott W. Bailey; Patricia A. Brousseau; Kevin J. McGuire; Donald S. Ross

    2014-01-01

    Upland headwater catchments, such as those in the AppalachianMountain region, are typified by coarse textured soils, flashy hydrologic response, and low baseflow of streams, suggesting well drained soils and minimal groundwater storage. Model formulations of soil genesis, nutrient cycling, critical loads and rainfall/runoff response are typically based on vertical...

  19. Spatial heterogeneity of mobilization processes and input pathways of herbicides into a brook in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Doppler, Tobias; Lück, Alfred; Popow, Gabriel; Strahm, Ivo; Winiger, Luca; Gaj, Marcel; Singer, Heinz; Stamm, Christian

    2010-05-01

    Soil applied herbicides can be transported from their point of application (agricultural field) to surface waters during rain events. There they can have harmful effects on aquatic species. Since the spatial distribution of mobilization and transport processes is very heterogeneous, the contributions of different fields to the total load in a surface water body may differ considerably. The localization of especially critical areas (contributing areas) can help to efficiently minimize herbicide inputs to surface waters. An agricultural field becomes a contributing area when three conditions are met: 1) herbicides are applied, 2) herbicides are mobilized on the field and 3) the mobilized herbicides are transported rapidly to the surface water. In spring 2009, a controlled herbicide application was performed on corn fields in a small (ca 1 km2) catchment with intensive crop production in the Swiss plateau. Subsequently water samples were taken at different locations in the catchment with a high temporal resolution during rain events. We observed both saturation excess and hortonian overland flow during the field campaign. Both can be important mobilization processes depending on the intensity and quantity of the rain. This can lead to different contributing areas during different types of rain events. We will show data on the spatial distribution of herbicide loads during different types of rain events. Also the connectivity of the fields with the brook is spatially heterogeneous. Most of the fields are disconnected from the brook by internal sinks in the catchment, which prevents surface runoff from entering the brook directly. Surface runoff from these disconnected areas can only enter the brook rapidly via macropore-flow into tile drains beneath the internal sinks or via direct shortcuts to the drainage system (maintenance manholes, farmyard or road drains). We will show spatially distributed data on herbicide concentration in purely subsurface systems which shows how important such input pathways can be.

  20. Isotopic investigation of the discharge driven nitrogen dynamics in a mesoscale river catchment

    NASA Astrophysics Data System (ADS)

    Mueller, Christin; Zink, Matthias; Krieg, Ronald; Rode, Michael; Merz, Ralf; Knöller, Kay

    2016-04-01

    Nitrate in surface and groundwater has increased in the last decades due to landuse change, the application of different fertilizer for agricultural landuse and industrial dust in the atmospheric deposition. Increasing nitrate concentrations have a major impact on eutrophication, especially for coastal ecosystems. Therefore it is important to quantify potential nitrate sources and determine nitrate process dynamics with its drivers. The Bode River catchment (total size of 3200 m2) in the Harz Mountains in Germany was intensively investigated by a monitoring approach with 133 sampling points representing the same number of sub-catchments for a period of two years. The area is characterized by a strong anthropogenic gradient, with forest conservation areas in the mountain region, grassland, and intensively mixed farming in the lowlands. Consecutive discharge simulations by a mesoscale hydrological model (mhM) allow a quantitative analysis of nitrate fluxes for all observed tributaries. The investigation of nitrate isotopic signatures for characteristic landscape types allows the delineation of dominant NO3- sources: coniferous forests are characterized by recycled nitrified soil nitrogen; grassland is mainly impacted by organic fertilizer (manure) and nitrified soil-N; in agricultural land use areas nitrate predominantly derives from synthetic fertilizer application. Besides source delineation, the relationship between runoff and nitrate dynamics was analyzed for the entire Bode river catchment and, more detailed, for one major tributary with minor artificial reservoirs (Selke River). Thereby, it becomes apparent that nitrate isotopic variations increase with decreasing discharge. This effect might be due to a local, more intense impact of bacterial denitrification under low discharge conditions (higher residence time) in the anoxic soil zone, in the groundwater that discharges into the river and in the hyporheic zone. Generally, δ15N and δ18Oof nitrate decrease with increasing runoff, which can be caused by a preferential wash-out of more easily mobilizable, isotopically lighter fractions of the soil nitrate pool.

  1. Simulating dissolved organic carbon dynamics at the swedish integrated monitoring sites with the integrated catchments model for carbon, INCA-C.

    PubMed

    Futter, M N; Löfgren, S; Köhler, S J; Lundin, L; Moldan, F; Bringmark, L

    2011-12-01

    Surface water concentrations of dissolved organic carbon ([DOC]) are changing throughout the northern hemisphere due to changes in climate, land use and acid deposition. However, the relative importance of these drivers is unclear. Here, we use the Integrated Catchments model for Carbon (INCA-C) to simulate long-term (1996-2008) streamwater [DOC] at the four Swedish integrated monitoring (IM) sites. These are unmanaged headwater catchments with old-growth forests and no major changes in land use. Daily, seasonal and long-term variations in streamwater [DOC] driven by runoff, seasonal temperature and atmospheric sulfate (SO₄(2-)) deposition were observed at all sites. Using INCA-C, it was possible to reproduce observed patterns of variability in streamwater [DOC] at the four IM sites. Runoff was found to be the main short-term control on [DOC]. Seasonal patterns in [DOC] were controlled primarily by soil temperature. Measured SO₄(2-) deposition explained some of the long-term [DOC] variability at all sites.

  2. Insights into the history and timing of post-European land use disturbance on sedimentation rates in catchments draining to the Great Barrier Reef.

    PubMed

    Bartley, Rebecca; Thompson, Chris; Croke, Jacky; Pietsch, Tim; Baker, Brett; Hughes, Kate; Kinsey-Henderson, Anne

    2018-06-01

    Sediment runoff has been cited as a major contributor to the declining health of the Great Barrier Reef (GBR), however, climate and land use drivers have not been jointly evaluated. This study used alluvial archives from fluvial benches in two tributaries of the Upper Burdekin catchment together with the best available land use history and climate proxy records to provide insights into the timing of depositional events in this region over the past 500 years. This study suggests that mining and the increased runoff variability in the latter half of the nineteenth century are the likely sources of the original excess sediment that was used to build the bench features in these catchments. Grazing also contributed to increased bench sedimentation prior to 1900, however, the contribution of grazing was likely more significant in the second half of the 20th century, and continues to be a dominant land use contributor today. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Hydrogeochemical signatures of catchment evolution - the role of calcium and sulphate release in the constructed Hühnerwasser ("Chicken Creek") catchment

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Hu, Yuzhu; Schaaf, Wolfgang; Gerwin, Werner; Hinz, Christoph

    2016-04-01

    The constructed Hühnerwasser ("Chicken Creek") catchment is an ecohydrological system in an initial state of development. The catchment with an area of 6 ha was built up from quaternary sediments in the post-mining landscape of Lusatia in Eastern Germany and serves as a critical zone observatory for detecting ecosystem transition. The soil substrate is characterized as sands to loamy sands with low carbonate contents but significant amounts of gypsum in the sediments of the catchment. The catchment undergoes a strong transition from an abiotic system in the initial years to a system with growing influence of biota. Concerning the hydrology, a regime shift from surface runoff to groundwater flow dominated processes is significant. It is of interest, whether the catchment transition is also reflected by hydrogeochemical indicators. We assume gypsum dissolution as dominant process at the catchment scale. In order to investigate the hydrogeochemical evolution of the catchment we analysed electric conductivity, calcium and sulphate concentrations and pH-values of biweekly composite samples from 2007-2013 of the atmospheric deposition, of runoff and soil water. The two observation points in the flowing water represent surface runoff and groundwater discharge respectively. Soil water has been analysed at four soil pits in three depths. The monitoring data were provided by the Research Platform Chicken Creek (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). From the macroscopic data analysis we found an exponential decay of the electric conductivity, calcium and sulphate concentrations in the flowing waters and some of the soil pits. In the flowing water, the decrease slope of the electric conductivity and the calcium and sulphate concentrations is almost identical. The calcium / sulphate molar ratio as an indicator of gypsum dissolution is almost equal to one up to 2010, afterwards more calcium than sulphate is released. The pH-values in the flowing and soil water are generally higher than in the atmospheric deposition, they do show variabilites but no trend behaviour. The time series analyses showed that the interannual variability of the hydrogeochemical properties is less pronounced in the first years of ecosystem development than in the later years. This leads to the conclusion, that in the first years, gypsum dissolution is the major source for calcium and sulphate in the soil and the flowing waters. The increasing interannual variability and changes in the calcium / sulphate ratio in the later years might be interpreted as hydrogeochemical response to the development of vegetation and acidification due to the development of the rhizosphere.

  4. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach.

    PubMed

    Ala-Aho, Pertti; Tetzlaff, Doerthe; McNamara, James P; Laudon, Hjalmar; Kormos, Patrick; Soulsby, Chris

    2017-07-01

    Use of stable water isotopes has become increasingly popular in quantifying water flow paths and travel times in hydrological systems using tracer-aided modeling. In snow-influenced catchments, snowmelt produces a traceable isotopic signal, which differs from original snowfall isotopic composition because of isotopic fractionation in the snowpack. These fractionation processes in snow are relatively well understood, but representing their spatiotemporal variability in tracer-aided studies remains a challenge. We present a novel, parsimonious modeling method to account for the snowpack isotope fractionation and estimate isotope ratios in snowmelt water in a fully spatially distributed manner. Our model introduces two calibration parameters that alone account for the isotopic fractionation caused by sublimation from interception and ground snow storage, and snowmelt fractionation progressively enriching the snowmelt runoff. The isotope routines are linked to a generic process-based snow interception-accumulation-melt model facilitating simulation of spatially distributed snowmelt runoff. We use a synthetic modeling experiment to demonstrate the functionality of the model algorithms in different landscape locations and under different canopy characteristics. We also provide a proof-of-concept model test and successfully reproduce isotopic ratios in snowmelt runoff sampled with snowmelt lysimeters in two long-term experimental catchment with contrasting winter conditions. To our knowledge, the method is the first such tool to allow estimation of the spatially distributed nature of isotopic fractionation in snowpacks and the resulting isotope ratios in snowmelt runoff. The method can thus provide a useful tool for tracer-aided modeling to better understand the integrated nature of flow, mixing, and transport processes in snow-influenced catchments.

  5. Probabilistic Design Storm Method for Improved Flood Estimation in Ungauged Catchments

    NASA Astrophysics Data System (ADS)

    Berk, Mario; Å pačková, Olga; Straub, Daniel

    2017-12-01

    The design storm approach with event-based rainfall-runoff models is a standard method for design flood estimation in ungauged catchments. The approach is conceptually simple and computationally inexpensive, but the underlying assumptions can lead to flawed design flood estimations. In particular, the implied average recurrence interval (ARI) neutrality between rainfall and runoff neglects uncertainty in other important parameters, leading to an underestimation of design floods. The selection of a single representative critical rainfall duration in the analysis leads to an additional underestimation of design floods. One way to overcome these nonconservative approximations is the use of a continuous rainfall-runoff model, which is associated with significant computational cost and requires rainfall input data that are often not readily available. As an alternative, we propose a novel Probabilistic Design Storm method that combines event-based flood modeling with basic probabilistic models and concepts from reliability analysis, in particular the First-Order Reliability Method (FORM). The proposed methodology overcomes the limitations of the standard design storm approach, while utilizing the same input information and models without excessive computational effort. Additionally, the Probabilistic Design Storm method allows deriving so-called design charts, which summarize representative design storm events (combinations of rainfall intensity and other relevant parameters) for floods with different return periods. These can be used to study the relationship between rainfall and runoff return periods. We demonstrate, investigate, and validate the method by means of an example catchment located in the Bavarian Pre-Alps, in combination with a simple hydrological model commonly used in practice.

  6. Managment oriented analysis of sediment yield time compression

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed

    2016-04-01

    The understanding of inter- and intra-annual variability of sediment yield is important for the land use planning and management decisions for sustainable landscapes. It is of particular importance in the regions where the annual sediment yield is often highly dependent on the occurrence of few large events which produce the majority of sediments, such as in the Mediterranean. This phenomenon is referred as time compression, and relevance of its consideration growths with the increase in magnitude and frequency of extreme events due to climate change in many other regions. So far, time compression has ben studied mainly on events datasets, providing high resolution, but (in terms of data amount, required data precision and methods), demanding analysis. In order to provide an alternative simplified approach, the monthly and yearly time compressions were evaluated in eight Mediterranean catchments (of the R-OSMed network), representing a wide range of Mediterranean landscapes. The annual sediment yield varied between 0 to ~27100 Mg•km-2•a-1, and the monthly sediment yield between 0 to ~11600 Mg•km-2•month-1. The catchment's sediment yield was un-equally distributed at inter- and intra-annual scale, and large differences were observed between the catchments. Two types of time compression were distinguished - (i) the inter-annual (based on annual values) and intra- annual (based on monthly values). Four different rainfall-runoff-sediment yield time compression patterns were observed: (i) no time-compression of rainfall, runoff, nor sediment yield, (ii) low time compression of rainfall and runoff, but high compression of sediment yield, (iii) low compression of rainfall and high of runoff and sediment yield, and (iv) low, medium and high compression of rainfall, runoff and sediment yield. All four patterns were present at inter-annual scale, while at intra-annual scale only the two latter were present. This implies that high sediment yields occurred in particular months, even in catchment with low or no inter-annual time compression. The analysis of seasonality of time compression showed that in most of the catchments large sediment yields were more likely to occur between October and January, while in two catchments it was in summer (June and July). The appropriate sediment yield management measure: enhancement of soil properties, (dis)connectivity measures or vegetation cover, should therefore be selected with regard to the type of inter-annual time compression, to the properties of the individual catchments, and to the magnitudes of sediment yield. To increase the effectivity and lower the costs of the applied measures, the management in the months or periods when large sediment yields are most likely to occur should be prioritized. The analysis of the monthly time compression might be used for their identification in areas where no event datasets are available. The R-OSMed network of Mediterranean erosion research catchments was funded by "SicMed-Mistrals" grants from 2011 to 2014. Anna Smetanová has received the support of the European Union, in the framework of the Marie-Curie FP7 COFUND People Programme, through the award of an AgreenSkills' fellowship (under grant agreement n° 267196). João Pedro Nunes has received support from the European Union (in the framework of the European Social Fund) and the Portuguese Government under a post-doctoral fellowship (SFRH/BPD/87571/2012).

  7. Calibration of a rainfall-runoff hydrological model and flood simulation using data assimilation

    NASA Astrophysics Data System (ADS)

    Piacentini, A.; Ricci, S. M.; Thual, O.; Coustau, M.; Marchandise, A.

    2010-12-01

    Rainfall-runoff models are crucial tools for long-term assessment of flash floods or real-time forecasting. This work focuses on the calibration of a distributed parsimonious event-based rainfall-runoff model using data assimilation. The model combines a SCS-derived runoff model and a Lag and Route routing model for each cell of a regular grid mesh. The SCS-derived runoff model is parametrized by the initial water deficit, the discharge coefficient for the soil reservoir and a lagged discharge coefficient. The Lag and Route routing model is parametrized by the velocity of travel and the lag parameter. These parameters are assumed to be constant for a given catchment except for the initial water deficit and the velocity travel that are event-dependent (landuse, soil type and moisture initial conditions). In the present work, a BLUE filtering technique was used to calibrate the initial water deficit and the velocity travel for each flood event assimilating the first available discharge measurements at the catchment outlet. The advantages of the BLUE algorithm are its low computational cost and its convenient implementation, especially in the context of the calibration of a reduced number of parameters. The assimilation algorithm was applied on two Mediterranean catchment areas of different size and dynamics: Gardon d'Anduze and Lez. The Lez catchment, of 114 km2 drainage area, is located upstream Montpellier. It is a karstic catchment mainly affected by floods in autumn during intense rainstorms with short Lag-times and high discharge peaks (up to 480 m3.s-1 in September 2005). The Gardon d'Anduze catchment, mostly granite and schistose, of 545 km2 drainage area, lies over the departements of Lozère and Gard. It is often affected by flash and devasting floods (up to 3000 m3.s-1 in September 2002). The discharge observations at the beginning of the flood event are assimilated so that the BLUE algorithm provides optimal values for the initial water deficit and the velocity travel before the flood peak. These optimal values are used for a new simulation of the event in forecast mode (under the assumption of perfect rain-fall). On both catchments, it was shown over a significant number of flood events, that the data assimilation procedure improves the flood peak forecast. The improvement is globally more important for the Gardon d'Anduze catchment where the flood events are stronger. The peak can be forecasted up to 36 hours head of time assimilating very few observations (up to 4) during the rise of the water level. For multiple peaks events, the assimilation of the observations from the first peak leads to a significant improvement of the second peak simulation. It was also shown that the flood rise is often faster in reality than it is represented by the model. In this case and when the flood peak is under estimated in the simulation, the use of the first observations can be misleading for the data assimilation algorithm. The careful estimation of the observation and background error variances enabled the satisfying use of the data assimilation in these complex cases even though it does not allow the model error correction.

  8. Quantifying the effects of conservation practices on soil, water, and nutrients in the Loess Mesa Ravine Region of the Loess Plateau, China.

    PubMed

    Xu, Xiang-Zhou; Li, Mei-Juan; Liu, Bin; Kuang, Shang-Fu; Xu, Shi-Guo

    2012-05-01

    A large number of soil and water conservation programs have been implemented on the Loess Plateau of China since the 1950s. To comprehensively assess the merits and demerits of the conservation practices is of great importance in further supervising the conservation strategy for the Loess Plateau. This study calculates the impact factors of conservation practices on soil, water, and nutrients during the period 1954-2004 in the Nanxiaohegou Catchment, a representative catchment in the Loess Mesa Ravine Region of the Loess Plateau, China. Brief conclusions could be drawn as follows: (1) Soil erosion and nutrient loss had been greatly mitigated through various conservation practices. About half of the total transported water and 94.8 % of the total transported soil and nutrients, had been locally retained in the selected catchment. The soil retained from small watersheds do not only form large-scale fertile farmland but also safeguard the Yellow River against overflow. (2) Check dam was the most appropriate conservation practice on the Loess Plateau. In the selected catchment, more than 90 % of the retained soil and water were accomplished by the dam farmland, although the dam farmland occupied only 2.3 % of the total area of all conservation measures. Retention abilities of the characteristic conservation practices were in the following order: dam farmland > terrace farmland > forest land and grassland. (3) The conservation practices were more powerful in retaining sediment than in reducing runoff from the Loess Plateau, and the negative effects of the conservation practices on reducing water to the Yellow River were relatively slight.

  9. Bridging the Knowledge Gaps between Richards' Equation and Budyko Equation

    NASA Astrophysics Data System (ADS)

    Wang, D.

    2017-12-01

    The empirical Budyko equation represents the partitioning of mean annual precipitation into evaporation and runoff. Richards' equation, based on Darcy's law, represents the movement of water in unsaturated soils. The linkage between Richards' equation and Budyko equation is presented by invoking the empirical Soil Conservation Service curve number (SCS-CN) model for computing surface runoff at the event-scale. The basis of the SCS-CN method is the proportionality relationship, i.e., the ratio of continuing abstraction to its potential is equal to the ratio of surface runoff to its potential value. The proportionality relationship can be derived from the Richards' equation for computing infiltration excess and saturation excess models at the catchment scale. Meanwhile, the generalized proportionality relationship is demonstrated as the common basis of SCS-CN method, monthly "abcd" model, and Budyko equation. Therefore, the linkage between Darcy's law and the emergent pattern of mean annual water balance at the catchment scale is presented through the proportionality relationship.

  10. The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont

    USGS Publications Warehouse

    Shanley, J.B.; Chalmers, A.

    1999-01-01

    Soil frost depth has been monitored at the Sleepers River Research Watershed in northeastern Vermont since 1984. Soil frost develops every winter, particularly in open fields, but its depth varies from year to year in inverse relation to snow depth. During the 15 years of record at a benchmark mid-elevation open site, the annual maximum frost depth varied from 70 to 390 mm. We empirically tested the hypothesis that frozen soil prevents infiltration and recharge, thereby causing an increased runoff ratio (streamflow/(rain + snowmelt)) during the snowmelt hydrograph rise and a decreased runoff ratio during snowmelt recession. The hypothesis was not supported at the 111 km2 W-5 catchment; there was no significant correlation of the runoff ratio with the seasonal maximum frost depth for either the pre-peak or post-peak period. In an analysis of four events, however, the presence of frost promoted a large and somewhat quicker response to rainfall relative to the no-frost condition, although snow cover caused a much greater time-to-peak regardless of frost status. For six years of flow and frost depth measured at the 59 ha agricultural basin W-2, the hypothesis appeared to be supported. The enhancement of runoff due to soil frost is evident on small plots and in extreme events, such as rain on frozen snow-free soil. In the northeastern USA and eastern Canada, the effect is often masked in larger catchments by several confounding factors, including storage of meltwater in the snowpack, variability in snowmelt timing due to elevational and aspect differences, interspersed forested land where frost may be absent, and the timing of soil thawing relative to the runoff peak.Soil frost depth has been monitored at the Sleepers River Research Watershed in northeastern Vermont since 1984. Soil frost develops every winter, particularly in open fields, but its depth varies greatly from year to year in inverse relation to snow depth. During the 15 years of record at a benchmark mid-elevation open site, the annual maximum frost depth varied from 70 to 390 mm. We empirically tested the hypothesis that frozen soil prevents infiltration and recharge, thereby causing an increased runoff ratio (streamflow/(rain + snowmelt)) during the snowmelt hydrograph rise and a decreased runoff ratio during snowmelt recession. The hypothesis was not supported at the 111 km2 W-5 catchment; there was no significant correlation of the runoff ratio with the seasonal maximum frost depth for either the pre-peak or post-peak period. In an analysis of four events, however, the presence of frost promoted a large and somewhat quicker response to rainfall relative to the no-frost condition, although snow cover caused a much greater time-to-peak regardless of frost status. For six years of flow and frost depth measured at the 59 ha agricultural basin W-2, the hypothesis appeared to be supported. The enhancement of runoff due to soil frost is evident on small plots and in extreme events, such as rain of frozen snow-free soil. In the northeastern USA and eastern Canada, the effect is often masked in larger catchments by several confounding factors, including storage of meltwater in the snowpack, variability in snowmelt timing due to elevational and aspect differences, interspersed forested land where frost may be absent, and the timing of soil thawing relative to the runoff peak.

  11. Young runoff fractions control streamwater age and solute concentration dynamics

    Treesearch

    Paolo Benettin; Scott W. Bailey; Andrea Rinaldo; Gene E. Likens; Kevin J. McGuire; Gianluca Botter

    2017-01-01

    We introduce a new representation of coupled solute and water age dynamics at the catchment scale, which shows how the contributions of young runoff waters can be directly referenced to observed water quality patterns. The methodology stems from recent trends in hydrologic transport that acknowledge the dynamic nature of streamflow age and explores the use of water age...

  12. Event-based rainfall-runoff modelling of the Kelantan River Basin

    NASA Astrophysics Data System (ADS)

    Basarudin, Z.; Adnan, N. A.; Latif, A. R. A.; Tahir, W.; Syafiqah, N.

    2014-02-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area.

  13. Quality assessment of rooftop runoff and harvested rainwater from a building catchment.

    PubMed

    Lee, J Y; Kim, H J; Han, M Y

    2011-01-01

    A major obstacle to the promotion of rainwater harvesting is chemical and microbiological concerns. To determine its suitability as an alternative water resource, water quality parameters such as pH, turbidity and metal ion concentrations and counted total coliform, Escherichia coli and heterotrophic bacteria were measured. It was observed that the stored rainwater had a neutral average pH and that its turbidity depended on the duration and intensity of the rainfall event. Metal concentrations were within the permissible limits specified in the Korea drinking water standard. In addition, counts of coliform, E. coli and heterotrophic bacteria were higher in the first flush 5 min after the start of the rainfall event. Principal component analysis and correlation analysis through 40 events in 2009 showed that the quality of stored rainwater depends on the conditions of the catchment and storage tank and the antecedent dry period.

  14. Hydro-meteorological functioning of the Eastern Andean Tropical Montane Cloud Forests: Insight from a paired catchment study in the Orinoco river basin highlands

    NASA Astrophysics Data System (ADS)

    Ramirez, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Leemans, Rik

    2016-04-01

    Tropical forests regulate large scale precipitation patterns and catchment-scale streamflow, while tropical mountains influence runoff by orographic effects and snowmelt. Along tropical elevation gradients, these climate/ecosystem/hydrological interactions are specific and heterogeneous. These interactions are poorly understood and represented in hydro-meteorological monitoring networks and regional or global earth system models. A typical case are the South American Tropical Montane Cloud Forests (TMCF), whose water balance is strongly driven by fog persistence. This also depends on local and up wind temperature and moisture, and changes in this balance alter the impacts of changes in land use and climate on hydrology. These TMCFs were until 2010 only investigated up to 350km from the coast. Continental TMCFs are largely ignored. This gap is covered by our study area, which is part of the Orinoco river basin highlands and located on the northern Eastern Andes at an altitudinal range of 1550 to 2300m a.s.l. The upwind part of our study area is dominated by lowland savannahs that are flooded seasonally. Because meteorological stations are absent in our study area, we first describe the spatial and seasonal meteorological variability and analyse the corresponding catchment hydrology. Our hydro-meteorological data set is collected at three gauged neighbouring catchments with contrasting TMCF/grassland cover from June 2013 to May 2014 and includes hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and runoff measurements. We compare our results with recent TCMF studies in the eastern Andean highlands in the Amazon basin. The studied elevational range always shows wetter conditions at higher elevations. This indicates a positive relation between elevation and fog or rainfall persistence. Lower elevations are more seasonally variable. Soil moisture data indicate that TMCFs do not use persistently more water than grasslands. Runoff data from our three catchments reflect the interaction between ecosystems and elevation. The less-forested catchment at lower elevations has a more seasonally variable runoff and present the lowest base flows during the dry season. In this season, soil water storage and the wetter conditions at higher elevations are crucial to sustain their base flow. The hydro-meteorological patterns of our study area are similar to those at the eastern Andean TMCF sites, but differences in the elevation of fog and rainfall persistence suggest that specific upwind ecosystem conditions and distance to the coast are important to explain and understand regional seasonal differences.

  15. Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France).

    PubMed

    Banas, D; Marin, B; Skraber, S; Chopin, E I B; Zanella, A

    2010-02-01

    Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cu(diss)) and total Cu (Cu(tot)) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cu(tot) concentrations in entering water was 53.6 microg/L whereas it never exceeded 2.4 microg/L in seepage. Cu(tot) concentrations in basin water (>100 microg/L in 24% of the samples) exceeded LC(50) values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cu(tot)). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cu(diss) variability and could help predicting Cu mobilization. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Particle size distribution variance in untreated urban runoff and its implication on treatment selection.

    PubMed

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2015-11-15

    Understanding the particle size distribution (PSD) of sediment in urban runoff assists in the selection of appropriate treatment systems for sediment removal as systems vary in their ability to remove sediment across different particle size fractions. Variation in PSD in runoff from individual urban surfaces both during and across multiple rain events is not well understood and it may lead to performance uncertainty in treatment systems. Runoff PSDs in international literature were compiled to provide a comparative summary of PSDs from different urban surfaces. To further assess both intra-event and inter-event PSD variation, untreated runoff was collected from road, concrete roof, copper roof, and galvanized roof surfaces within an urban catchment exposed to the same rainfall conditions and analysed for PSD and total suspended solids (TSS). Road runoff had the highest TSS concentrations, while copper roofs had high initial TSS that reduced to very low levels under steady state conditions. Despite variation in TSS concentrations, the median particle diameter of the TSS was comparable across the surfaces. Intra-event variation was generally not significant, but substantial inter-event variation was observed, particularly for coarser road and concrete roof surfaces. PSD variation for each surface contributed to a wide range in predicted treatment performance and suggests that short-retention treatment devices carry a high performance risk of not being able to achieve adequate TSS removal across all rain events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A similarity based approach to identify homogeneous regions for seasonal forecasting

    NASA Astrophysics Data System (ADS)

    Schick, Simon; Rössler, Ole; Weingartner, Rolf

    2015-04-01

    Seasonal runoff forecasting using statistical models is challenged by a large number of candidate predictors and a general weak predictor-predictand relationship. As the area of the target basin increases, often also the available data sets do, thus reinforcing the predictor selection challenge. We propose an approach which follows the idea of 'divide and conquer' as developed in computational sciences and machine learning: First, the macroscale target basin is partitioned into homogeneous regions using all its gauged mesoscale subbasins. Second, one representative subbasin per homogeneous region is identified, for which models are fitted and applied. Third, the resulting forecasts are combined at the scale of the macroscale target basin. This approach requires a suitable method to identify homogeneous regions and representative subbasins. We suggest a way based on hydrological similarity, as catchment similarity estimated with respect to physiographic-climatic descriptors does not necessarily imply similar runoff response. Each descriptor is derived from daily runoff series and aimed to reflect a specific catchment characteristic: autocorrelation coefficient, parameters of fitted Gamma distribution and low/high flow indices (based on daily runoff values) fluctuation of the standard deviation within the yearly cycle (based on weekly runoff values) dominant harmonics obtained from the discrete Fourier transform (based on monthly runoff values) long term trend (based on yearly runoff values) Where necessary, the runoff series first need to be standardized, aggregated, detrended or deseasonalized. As a preliminary study we present the results of a cluster analysis for the Swiss Rhine River as macroscale target basin, which leads to about 40 mesoscale subbasins with runoff series for the period 1991-2010. Problems we have to address include the choice of a clustering algorithm, the identification of an appropriate number of regions and the selection of representative subbasins per region. The results are finally discussed with respect to the runoff regimes as defined in the Hydrological Atlas of Switzerland.

  18. An Eco-hydrologic Assessment of Small Experimental Catchments with Various Land Uses within the Panama Canal Watershed: Agua Salud Project

    NASA Astrophysics Data System (ADS)

    Crouch, T. D.; Ogden, F. L.; Stallard, R. F.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project

    2010-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One of the project’s main objectives is to understand how reforestation effects seasonal stream flows. To meet this objective, a baseline characterization of hydrology on the small catchment scale is being assessed across different land uses typical in rural Panama. The small experimental catchments are found within Panama’s protected Soberania National Park and the adjacent headwaters of the Agua Salud and Mendoza Rivers, all of which are part of the greater Panama Canal Watershed. The land uses being monitored include a variety of control catchments as well as treated pasture sites. The catchments used for this study include a mature old regrowth forest, a 50% deforested or mosaic regrowth site, an active pasture and a monoculture invasive grass site (saccharum spontaneum) as experimental controls and two treated catchments that were recently abandoned pastures converted to teak and native species timber plantations. Installed instrumentation includes a network of rain gauges, v-notched weirs, atmometers, an eddy covariance system and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across these six geologically and topographically similar catchments are available from 2009 and 2010. Classic water balance and paired catchment techniques were used to compare the catchments on an annual, seasonal, and event basis. This study sets the stage for hydrologic modeling and for better understanding the effects of vegetation and land-use history on rainfall-runoff processes for the Agua Salud Project and Panama Canal Watershed Experiment.

  19. Simulation of the fate of Boscalid and its transformation product 4-Chlorobenzoic acid in a vineyard-terraces catchment

    NASA Astrophysics Data System (ADS)

    Vollert, Dieter; Gassmann, Matthias; Olsson, Oliver; Kümmerer, Klaus

    2017-04-01

    In the viniculture fungicides are commonly applied foliar on the plant surface, resulting in high concentrations in runoff water. The fungicide Boscalid occurred frequently and in high concentrations in runoff water in the Loechernbach catchment, a 180 ha vineyard catchment in south-west Germany, during rainfall-runoff events in 2016. The catchment is characterized by a typical terraces structure and the connection of a dense road network. The washing off from drift-depositions on the streets is expected to be a major pathway for pesticides. The main objective of this study was the provision of a catchment model to simulate the transport and transformation processes of Boscalid. Based on this model, source areas of Boscalid residue pollution and its export pathways will be identified and provide urgently needed information for the development of water pollution control strategies. The distributed, process-based, reactive transport catchment model ZIN-AgriTra was used for the evaluation of the pesticide mobilization and the export processes. The hydrological model was successfully calibrated for a 6-month high-resolution time series of discharge data. Pesticide modelling was calibrated for single rainfall events after Boscalid application. Additionally, the transformation product 4-Chlorobenzoic acid has been simulated using literature substance parameters, in order to gain information about anticipated environmental concentrations. The pathways for the discharge of Boscalid were characterized and the streets were confirmed as major pathway for the pesticide discharge in the catchment. The main Boscalid loss occured during the first flush after a storm event containing concentrations up to 10 µg/l. The results show that storage on surfaces without sorption contributes significantly to the export of pesticides through the first flush. Therefore, the mobilization process affects a combination of both sorptive (e.g. at the soil) and non-sorptive (e.g. on the surface) storages at the roads. Furthermore, measurements and simulation results show that there are background pesticide concentrations, an order of magnitude lower than the first flush concentration, for the whole simulation period. Additionally, almost half of the applied Boscalid still remains as residue in the soil at the end of the simulated 6-month period, because of slow degradation rates of Boscalid. The transformation product 4-Chlorobenzoic acid was simulated to have concentrations in the range of 0.1 µg/l. The model assumes that subsurface flow is the major loss pathway for this substance. Concluding, the introduced catchment model is an applicable tool to simulate the individual processes of the Boscalid fate in the vineyard catchment. It was confirmed that roads receiving pesticide drift are the major loss areas of Boscalid in the Loechernbach catchment.

  20. Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty

    Treesearch

    Jan Seibert; Jeffrey J. McDonnell

    2010-01-01

    The effect of land-use or land-cover change on stream runoff dynamics is not fully understood. In many parts of the world, forest management is the major land-cover change agent. While the paired catchment approach has been the primary methodology used to quantify such effects, it is only possible for small headwater catchments where there is uniformity in...

Top