Sample records for total cation content

  1. Sodium relations in desert plants. V. Cation balance when grown in solution culture and in the field in three species of Lycium from the northern Mojave desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashcroft, R.T.; Wallace, A.

    1976-07-01

    Three species of Lycium (wolfberry or desert thorn) are indicators of saline conditions of the soils of the northern Mojave Desert on which they grow and range from a halophyte (Lycium shockleyi Gray) to a partial halophyte (Lycium pallidum Miers) to a nonhalophyte (Lycium andersonii Gray). Each species was grown in nutrient solutions with varying Na levels to determine if the differential responses to cations in the field were reproducible in the glasshouse. The differences in Na, K, and Ca contents of leaves of L. andersonii, L. pallidum, and L. shockleyi grown in nutrient solution with varying cation levels weremore » similar to those for plants grown in the field. L. shockleyi accumulated large quantities of Na in leaves when supplied irrespective of the level of Na or of K and Ca in the nutrient substrate. Root and leaf analyses indicate that L. andersonii is a poor accumulator of Na and that the other two Lycium species transport Na to shoots rather than retain it in roots. A high level of NaCl in the nutrient substrate resulted in increased total cations in all three species; in L. shockleyi the increase was the result of an increased Na, but in L. andersonii it was due to increased Ca. There was no relationship in total cation contents of the plants with total contents of N + P + Cl (me basis as ions are absorbed by plants). In whole plants collected from the field, high cation concentrations in leaves were related to differential distribution among plant parts for the three species so that leaf differences were compensated for without differences on the whole plant basis.« less

  2. A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts.

    PubMed

    Fogarasi, Attila-Levente; Kun, Szilárd; Tankó, Gabriella; Stefanovits-Bányai, Eva; Hegyesné-Vecseri, Beáta

    2015-01-15

    Two einkorn wheat, one barley, three optional winter cultivation wheat and five winter cultivation wheat samples harvested in Hungary in 2011, and their malts were evaluated for their DPPH radical and ABTS radical cation scavenging activity, ferric reduction capacity (FRAP) and total phenolic content (TPC). All einkorn and barley samples exhibited significant antioxidant activities determined by DPPH and ABTS radical scavenging activities. The einkorn samples show higher polyphenol content than the other wheat samples. In all cases the barley sample had the highest antioxidant potential and polyphenol content. The einkorn malts had high DPPH and ABTS radical cation scavenging activities, but the phenolic content was lower against wheat samples. There was significant difference between the antioxidant potential of optional and winter cultivation wheat samples except on ABTS scavenging activities. Einkorn wheat is potentially a new raw material to produce organic beer that might have beneficial effects with its increased antioxidant potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Study of quantitative interactions of potato and corn starch granules with ions in diluted solutions of heavy metal salts.

    PubMed

    Szymońska, Joanna; Molenda, Marcin; Wieczorek, Jerzy

    2015-12-10

    Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Evaluation of antioxidant capacity and phenol content in jackfruit (Artocarpus heterophyllus Lam.) fruit pulp.

    PubMed

    Jagtap, Umesh B; Panaskar, Shrimant N; Bapat, V A

    2010-06-01

    The antioxidant capacity of jackfruit (Artocarpus heterophyllus Lam. Fam. Moracae) fruit pulp (JFP) obtained from Western Ghats India was determined by evaluating the scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing power assays and N, N-dimethyl-p-phenylendiamine (DMPD) radical cation decolorization assay. JFP was analyzed for total phenolic content (TPC) and total flavonoids content (TFC). The ethanol and water are the best solvents for the extracting phenols and flavonoids from the JFP. The antioxidant activities of JFP extracts were correlated with the total phenolic and flavonoids content. The results indicated that the jackfruit pulp is one natural source of antioxidant compounds.

  5. Regeneration of Cation-Transport Capacity in HeLa Cell Membranes After Specific Blockade by Ouabain

    PubMed Central

    Vaughan, Gerald L.; Cook, John S.

    1972-01-01

    The cardiac glycoside, ouabain, inhibits alkali-cation transport in HeLa cells. It binds to 0.75 × 106 sites per cell, and the half-time for its dissociation is 16 hr. After partial blockade by ouabain, the cell generates new ouabain-binding sites, with total restoration of transport in 10% of a cell cycle(∼3 hr). This recovery requires protein synthesis and appears to be a response to altered cell-electrolyte content, since growth of cells in media with low K+ concentration enhances the titer of the transport enzyme in a fashion similar to the effect of ouabain. Totally blocked cells do not recover. PMID:4506784

  6. [Monthly dynamics and distribution of major cations in Iris lactea].

    PubMed

    Wang, Yong; Guo, Ji-Xun; Cui, Xi-Yan; Han, De-Fu

    2008-06-01

    The study on the monthly absorption, transportation, and distribution of Na+, K+, Ca2+ and Mg2+ in Iris lactea under saline-alkali field conditions showed that the contents of test cations in I. lactea varied with months. After June, the cations contents in plant increased with growth. Root Ca2+ and Na+ contents were the highest in July, being 2.30% and 0.51%, respectively, while root K+ and Mg2+ contents were the highest in September (0.27%) and October (0.28%), respectively. Leaf Na+ content was the highest in July (0.57%), while leaf K+, Ca2+ and Mg2+ contents were the highest in August, being 1.30%, 2.69% and 0.47%, respectively. In July and August, the selective absorption (SA) of K+ was higher than that of Na+, while the selective transport (ST) was in adverse. The cations contents in I. lactea were significantly higher than those in soil, suggesting that I. lactea had high accumulation capacity to these cations. The cations were mainly accumulated in the 0-30 cm aboveground part and 0-40 cm underground part of I. lactea, and the average contents of Na+, K+, Ca2+ and Mg2+ in aboveground part were 9.11, 4.07, 0.98 and 2.27 times of those in underground part, respectively.

  7. [Study on the extraction of the total alkaloids from Caulopyhllum robustum].

    PubMed

    Li, Yi-ping; Yang, Guang-de; He, Lang-chong

    2007-02-01

    To study the technological parameters of the extraction process of the total alkaloids from Caulopyhllum robstum. Taspine, whiVh is main component of the total alkaloids from Caulopyhllum robustum, was selected as an evaluating marker and determined by HPLC. The orthogonal test was used to optimize extracting conditions in the process of acid water extraction. Then the optimized conditions for purification using cation exchange resin were investigated. The optimized conditions in the process of acid water extraction were 1% hydrochloric acid as much as seven times of the medicine amount for 24hs and three times. Then the extraction of acid water was purified with a column of macroporous cation exchange resin LSD001 at 2 ml/min of flow rate, then eluted with 10BV of 4% aqueous ammonia ethanol. The extraction ratio of the total alkaloids was 1. 35% and the content of taspine of the total alkaloids was 6. 80%. This technology is simply, cheap effective and feasible for manufacture in great scale.

  8. Deterioration of soil fertility by land use changes in South Sumatra, Indonesia: from 1970 to 1990

    NASA Astrophysics Data System (ADS)

    Lumbanraja, Jamalam; Syam, Tamaluddin; Nishide, Hiroyo; Kabul Mahi, Ali; Utomo, Muhajir; Sarno; Kimura, Makoto

    1998-10-01

    We monitored the land use changes in a hilly area of West Lampung, South Sumatra, Indonesia, from 1970 to 1990. The main data sources were the land use maps produced in 1970, 1978, 1984 and 1990 covering the area of 27 km×27 km. Transmigration and the resultant effect of increased population were the major driving forces in land use changes. Fifty-seven per cent of the study area was covered with primary forests in 1970, but only 13% in 1990. Areas under plantations, which were absent in 1970, increased to 60% in 1990. In addition, the change from monoculture plantations (mostly coffee plantation) to mixed plantations was noticeable from 1984 to 1990. Total upland areas including upland areas under shifting cultivation and upland fields with crops and vegetables decreased from 21% in 1970 to 0·1% in 1990. Soil chemical properties (total organic C, total N, available P, total P, exchangeable cations, cation exchangeable capacity (CEC), etc.) were analysed for lands under different land use forms after deforestation in the study area. Soil samples (surface layers, 0-20 cm, and subsurface layers, 20-40 cm) were collected from three different locations, each comprised of four different land use systems: i.e. primary forests, secondary forests, coffee plantations and cultivated lands. The contents of total organic C, total N, available P, total P, exchangeable cations and CEC decreased significantly with land use change from primary forests to the other land use forms. Cultivated lands exhibited the lowest values. Although less remarkable than in the surface layers, the amounts of total organic C, total N, total P, exchangeable cations and CEC were also decreased by forest clearing in the subsurface layers.Based on the land use changes from 1978 in the study area and the deterioration of soil chemical properties by forest clearing, total decreases in the amounts of nutrients in the surface and subsurface layers were estimated. The land use changes were estimated to have decreased the total amounts of total organic C, total N, available P, total P, exchangeable cations and CEC by 2-9% in 1984 and by 2-15% in 1990 in the surface layers, and by 1-6%% in 1984 and by 2-9% in 1990 in the subsurface layers from the levels in 1978, respectively.

  9. C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christl,I.; Kretzschmar, R.

    2007-01-01

    The influence of cation-induced coagulation on the chemical composition of dissolved and coagulated fractions of humic acid was investigated in batch coagulation experiments for additions of aluminum at pH 4 and 5, iron at pH 4, and calcium and lead at pH 6. The partitioning of organic carbon and metals was determined by analyzing total organic carbon and total metal contents of the dissolved phase. Both the dissolved and the coagulated humic acid fractions were characterized using synchrotron scanning transmission X-ray microscopy (STXM) and C-1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Intensities of {pi}* transitions of carboxyl carbon andmore » {sigma}* transitions of alkyl, O-alkyl, and carboxyl carbon decreased with increasing metal concentration for the dissolved humic acid fractions. This decrease was accompanied by an increase of the respective intensities in the coagulated fraction as shown for lead. Intensities of aromatic and phenolic carbon were affected to a larger extent only by aluminum and iron additions. The changes observed in the C-1s NEXAFS spectra coincided with an increasing removal of organic carbon from the dissolved phase with increasing total metal concentrations. We conclude that humic acid was chemically fractionated by cation-induced coagulation, which preferentially removed functional groups involved in metal-cation binding from solution.« less

  10. Structure, thermodynamic and electronic properties of carbon-nitrogen cubanes and protonated polynitrogen cations

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly V.; Andreeva, Nadezhda A.

    2017-12-01

    Energy generation and storage are at the center of modern civilization. Energetic materials constitute quite a large class of compounds with a high amount of stored chemical energy that can be released. We hereby use a combination of quantum chemistry methods to investigate feasibility and properties of carbon-nitrogen cubanes and multi-charged polynitrogen cations in the context of their synthesis and application as unprecedented energetic materials. We show that the stored energy increases gradually with the nitrogen content increase. Nitrogen-poor cubanes retain their stabilities in vacuum, even at elevated temperatures. Such molecules will be probably synthesized at some point. In turn, polynitrogen cations are highly unstable, except N8H+, despite they are isoelectronic to all-carbon cubane. Kinetic stability of the cation decays drastically as its total charge increases. High-level thermodynamic calculations revealed that large amounts of energy are liberated upon decompositions of polynitrogen cations, which produce molecular nitrogen, acetylene, and protons. The present results bring a substantial insights to the design of novel high-energy compounds.

  11. Impact of soil properties on selected pharmaceuticals adsorption in soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also related to absorption coefficients of Carbamazepin (R=0.67 and 0.68). Positive correlation was found between Trimetoprim absorption coefficients and Atenolol, Metoprolol or Carbamazepin absorption coefficients. The negative relationship was found between absorption coefficients of Sulfomethoxazol and Clarithromycin (R=-0.80). Sulfamethoxazol absorption coefficient was negatively related to pH_H2O, pH_KCL or sorption complex saturation and positively to the hydrolytic acidity or exchangeable acidity. Trimetoprim absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation or silt content and negatively to particle density or sand content. Clarithromycin absorption coefficient was positively related to pH_H2O, pH_KCL, CaCO3 content, basic cation saturation or sorption complex saturation and negatively to hydrolytic acidity or exchangeable acidity. Atenolol and Metoprolol absorption coefficients were positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation, salinity, clay content or silt content, and negatively to the particle density or sand content. Finally Carbamazepin absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity or basic cation saturation, and negatively to the particle density or sand content. Evaluated pedotransfer rules for different pharmaceuticals included different sets of soil properties. Absorption coefficients could be predicted from: the hydrolytic acidity (Sulfamethoxazol), the oxidable organic carbon content (Trimetoprim and Carbamazepin), the oxidable organic carbon content, hydrolytic acidity and cation exchange capacity (Clarithromycin), the basic cation saturation (Atenolol and Metoprolol). Acknowledgement: Authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S).

  12. Non-bridging Oxygen and Five-coordinated Aluminum in Aluminosilicate Glasses: A Cation Field Strength Study

    NASA Astrophysics Data System (ADS)

    Thompson, L. M.; Stebbins, J. F.

    2011-12-01

    Linda M. Thompson Jonathan F. Stebbins Dept. of Geological and Environmental Sciences, Stanford University, Stanford CA 94305 Although it is understood in aluminosilicate melts and glasses that non-bridging oxygens (NBO) have significant influence on thermodynamic and transport properties, questions remain about its role and the extent of its influence, particularly in metaluminous and peraluminous compositions. One major question persists regarding whether the formation of NBO is in any way coupled with the formation of VAl (AlO5), which is significantly impacted by cation field strength (defined as the cation charge divided by the square of the distance between the cation and oxygen atoms) (Kelsey et al., 2009). Previous work on calcium and potassium aluminosilicate glasses has shown the presence of NBO on the metaluminous join and persisting into the peraluminous region, with significantly more NBO present in Ca glasses compared to K glasses of similar composition (Thompson and Stebbins, 2011). However, it is unclear if there is any systematic impact on NBO content by cation field strength similar to the impact on VAl. Expanding on the previous study, barium aluminosilicate glasses were synthesized covering a range of compositions crossing the metaluminous (e.g. BaAl2O4-SiO2) join to observe changes in the NBO for comparison against the calcium aluminosilicate glasses, thus looking at the impact of cation size on NBO versus cation charge. In the barium glasses on the 30 mol% SiO2 isopleth, the highest NBO content was 6.9% for the barium rich glass (R = 0.51, where R is Ba2+ / (Ba2+ + 2Al3+)) while the most peraluminous glass (R = 0.45) had an NBO content of 1.9%. Comparison of these results to earlier data shows these numbers are similar to what is observed in the Ca glasses, indicating cation size alone does not have a significant impact on NBO content. However the VAl content does show a decrease (compared to calcium aluminosilicate glasses at similar R values and Si/Al ratios) with decreasing cation field strength. This suggests that the NBO content is much less sensitive to the cation size than the VAl content and indicates that NBO formation across the metaluminous join cannot be completely explained by linking VAl and NBO but that independent mechanisms of formation must exist. Temperature studies are ongoing to offer additional insight into the relationship between VAl and NBO.

  13. The special features of the crystal structure and properties of oxides with mixed conductivity based on lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Politova, E. D.; Ivanov, S. A.; Kaleva, G. M.; Mosunov, A. V.; Rusakov, V. S.

    2008-10-01

    The paper presents a review of works on the synthesis, structural composition effects, phase transitions, and electrical conductivity properties of multicomponent solid solutions based on heterosubstituted lanthanum gallate (La,A)(Ga,M)O3 - y . High-temperature phase transitions and structural and charge ordering effects were studied. The presence of iron cations in different valence states was proved; the relative contents of these cations depended on the x parameter and nonstoichiometry parameter y of the base composition. For M = Fe, antiferromagnetic ordering was observed; its temperature interval was determined by the concentration of iron cations in the high-spin state. The total conductivity was found to increase as the concentration of transition metal cations grew because of an increase in the electronic conductivity component. The data on structural parameters and dc and ac conductivity substantiated the conclusion that the highest ionic conductivity and permeability to oxygen were characteristic of iron-containing oxides. The results obtained are evidence that crystal chemical factors play a determining role in the formation of the ion-conducting properties of anion-deficient perovskite-like oxides.

  14. Determination of labile copper, cobalt, and chromium in textile mill wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crain, J.S.; Essling, A.M.; Kiely, J.T.

    1997-01-01

    Copper, chromium, and cobalt species present in filtered wastewater effluent were separated by cation exchange and reverse phase chromatography. Three sample fractions were obtained: one containing metal cations (i.e., trivalent Cr, divalent Cu, and divalent Co), one containing organic species (including metallized dyes), and one containing other unretained species. The metal content of each fraction was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The sum of the corrected data was compared to the metal content of a filtered effluent aliquot digested totally with fuming sulfuric acid. Other aliquots of the filtered effluent were spiked with the metals ofmore » interest and digested to confirm chemical yield and accuracy. Method detection limits were consistently below 20 {mu}g L{sup -1} for Cu, 30 {mu}g L{sup -1} for Co, and 10 {mu}g L{sup -1} for Cr. Spike recoveries for undifferentiated Cu and Cr were statistically indistinguishable from unity; although Co spike recoveries were slightly low ({approximately}95%), its chemical yield was 98%. Copper retention on the sodium sulfonate cation exchange resin was closely correlated with the [EDTA]/[Cu] ratio, suggesting that metals retained upon the cation exchange column were assignable to labile metal species; however, mass balances for all three elements, though reasonable ({approximately}90%), were significantly different from unity. Mechanical factors may have contributed to the material loss, but other data suggest that some metal species reacted irreversibly with the reverse phase column. 3 refs., 2 figs., 4 tabs.« less

  15. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    PubMed

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oak

  16. The interplay of ion crosslinking, free ion content, and polymer mobility in PEO-based single-ion conductors

    NASA Astrophysics Data System (ADS)

    Lin, Kan-Ju; Maranas, Janna

    2010-03-01

    We use molecular dynamics simulation to study ion clustering and dynamics in ion containing polymers. This PEO based single-ion conducting ionomer serves as a model system for understanding cation transport in solid state polymer electrolytes (SPEs). Although small-angle x-ray scattering does not show an ionomer peak, we observer various cation-anion complexes in the simulation, suggesting ionomer backbones are crosslinked through ion complexes. These crosslinks reduce the adjacent PEO mobility resulting in a symmetric mobility gradient along the PEO chain. We vary the cation-anion interaction in the simulation to observe the interplay of cation-anion association, polymer mobility and cation motion. Cation-anion association controls the number of free ions, which is important in ionic conductivity when these materials are used as SPEs. Polymer mobility controls how fast the free ions are able to move through the SPE. High conductivity requires both a high free ion content and fast polymer motion. To understand the connection between the two, we ``tune'' the force field in order to manipulate the free ion content and observe the influence on PEO dynamics.

  17. Polycyclic Aromatic Hydrocarbons Content in Contaminated Forest Soils with Different Humus Types.

    PubMed

    Lasota, Jarosław; Błońska, Ewa

    2018-01-01

    The aim of the study was to determine polycyclic aromatic hydrocarbon (PAH) content in different forest humus types. The investigation was carried out in Chrzanów Forest District in southern Poland. Twenty research plots with different humus types (mor and mull) were selected. The samples for analysis were taken after litter horizons removing from a depth of 0-10 cm (from the Of- and Oh-horizon total or A-horizon). pH, organic carbon and total nitrogen content, base cations, acidity, and heavy metal content were determined. In the natural moisture state, the activity of dehydrogenase was determined. The study included the determination of PAH content. The conducted research confirms strong contamination of study soil by PAHs and heavy metals. Our experiment provided evidence that different forest humus types accumulate different PAH amounts. The highest content of PAHs and heavy metals was recorded in mor humus type. The content of PAHs in forest humus horizon depends on the content and quality of soil organic matter. Weaker degradation of hydrocarbons is associated with lower biological activity of soils. The mull humus type showed lower content of PAHs and at the same time the highest biological activity confirmed by high dehydrogenase activity.

  18. In vitro antioxidant, lipoxygenase and xanthine oxidase inhibitory activities of fractions from Cienfuegosia digitata Cav., Sida alba L. and Sida acuta Burn f. (Malvaceae).

    PubMed

    Konaté, K; Souza, A; Coulibaly, A Y; Meda, N T R; Kiendrebeogo, M; Lamien-Meda, A; Millogo-Rasolodimby, J; Lamidi, M; Nacoulma, O G

    2010-11-15

    In this study polyphenol content, antioxidant activity, lipoxygenase (LOX) and Xanthine Oxidase (XO) inhibitory effects of n-hexane, dichloromethane, ethyl acetate and n-butanol fractions of aqueous acetone extracts from S. alba L., S. acuta Burn f and Cienfuegosia digitata Cav. were investigated. The total phenolics, flavonoids, flavonols and total tannins were determined by spectrophotometric methods using Folin-ciocalteu, AlCl3 reagents and tannic acid, respectively. The antioxidant potential was evaluated using three methods: inhibition of free radical 2,2-diphenyl-1-picrylhydramzyl (DPPH), ABTS radical cation decolorization assay and Iron (III) to iron (II) reduction activity (FRAP). For enzymatic activity, lipoxygenase and xanthine oxidase inhibitory activities were used. This study shows a relationship between polyphenol contents, antioxidant and enzymatic activities. Present results showed that ethyl acetate and dichloromethane fractions elicit the highest polyphenol content, antioxidant and enzymatic activities.

  19. The oxygen content of the high-temperature superconducting compound Bi(2+x)Sr(3-y)CayCu2O(8+d) with respect to varying Ca and Bi contents

    NASA Technical Reports Server (NTRS)

    Majewski, P.; Su, H.-L.; Aldinger, F.

    1995-01-01

    The oxygen content of Bi(2+x)Sr(3-y)Cu2O(8+d) (2212 phase) has been determined as a function of its cation concentration. With increasing Ca and Bi content the oxygen content increases and T(sub c) decreases. The oxygen content of Ca rich 2212 phase increases with decreasing annealing temperatures. The study shows that the T(sub c) of the 2212 phase primarily is controlled by its cation concentration.

  20. Development of a stable cation modified graphene oxide membrane for water treatment

    NASA Astrophysics Data System (ADS)

    Yu, Wenzheng; (Yet Yu, Tong; Graham, Nigel

    2017-12-01

    Membranes prepared from layers of graphene oxide (GO) offer substantial advantages over conventional materials for water treatment (e.g. greater flux), but the stability of GO membranes in water has not been achieved until now. In this study the behavior of GO membranes prepared with different quantities and species of cations has been investigated to establish the feasibility of their application in water treatment. A range of cation-modified GO membranes were prepared and exposed to aqueous solutions containing specific chemical constituents. In pure water, unmodified and Na-modified GO membranes were highly unstable, while GO membranes modified with multivalent cations were stable provided there were sufficient quantities of cations present; their relative capability to achieve GO stability was as follows: Al3+  >  Ca2+  >  Mg2+  >  Na+. It is believed that the mechanism of cross-linking, and membrane stability, is via metal-carboxylate chelates and cation-graphite surface interactions (cation-π interaction), and that the latter appears to increase with increasing cation valency. The instability of cation (Ca or Al)-modified GO membranes by NaCl solutions during permeation occurred as Na+ exchanged with the incorporated multivalent cations, but a high content of Al3+ in the GO membrane impeded Al3+/Na+ exchange and thus retained membrane stability. In solutions containing biopolymers representative of surface waters or seawater (protein and polysaccharide solutions), Ca-GO membranes (even with high Ca2+ content) were not stable, while Al-GO membranes were stable if the Al3+ content was sufficiently high; Al-formed membranes also had a greater flux than Ca-GO membranes.

  1. Measurement of Ti[superscript +3] / Ti[superscript +4] ratios in pyroxene in Wark-Loveing rims: Evidence for formation in a reducing solar nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, S.B.; Sutton, S.R.; Grossman, L.

    2006-12-13

    Ti-bearing clinopyroxene, known as fassaite, is a major phase in the interiors of coarse-grained, Ca-, Al-rich refractory inclusions (CAIs). Electron microprobe (EMP) analyses of such pyroxene yield low cation sums when normalized to six oxygen anions if it is assumed that all Ti is present as Ti{sup 4+}. Instead, we can assume that there is one Ca cation [1] and two tetrahedral cations present per six oxygens, and can then calculate a Ti{sup 3+}/(Ti{sup 3+} + Ti{sup 4+}), or Ti{sup 3+}/Ti{sup tot}, ratio that gives exactly one cation in the remaining site and a total of exactly four cations permore » six oxygens. Additional evidence for the presence of Ti in multiple valence states includes: pleochroism in Ti-rich crystals with negligible amounts of other multivalent elements; results from measurements of optical spectra [2]; and X-ray absorption near-edge structure (XANES) analysis [3]. Calculation of accurate Ti{sup 3+}/Ti{sup tot} ratios from EMP analyses is generally limited to analyses with >4 wt% TiO{sub 2}{sup tot} (all Ti as TiO{sub 2}), because at low Ti contents the analytical uncertainties approach the magnitude of the cation deficit caused by assuming all Ti is Ti{sup 4+}. Many refractory inclusions are enclosed in sequences of mineralogically distinct layers, first described by [4], that must have formed after the host inclusions did. In most cases, from the CAI outward, the sequence consists of a layer of spinel {+-} perovskite; voids, melilite, or alteration products; clinopyroxene; and hedenbergite. The pyroxene layer may be immediately adjacent to spinel and is commonly zoned from Ti-rich fassaite nearest the spinel layer to Ti-poor aluminous diopside over distances of {approx}10 {micro}m [4]. A recent study of the pyroxene in the rims of one Allende and two Leoville inclusions [5] found that most points analyzed by electron probe had between 4 and 7 wt% TiO{sub 2}{sup tot} and 0.7-1.7 wt% FeO. Those authors also found < 1 Ca cation, but very close to 4 total cations, per 6 oxygen ions, and therefore little or no Ti{sup 3+}. They kindly loaned us one of their samples for analysis, and we also found low Ca contents, high FeO contents ({approx}1 wt%) and undetectable to low Ti{sup 3+} contents compared to fassaite found in the interiors of CAIs. The low-Ca analyses would seem to reflect the presence of an enstatite component in addition to the standard fassaite components [1], but despite inclusion of such a component in our calculations we have not been able to satisfactorily resolve the analyses into pyroxene endmembers. This is a hint that pyroxene analysis spots are contaminated with another phase, a serious problem for stoichiometrydependent calculation of Ti{sup 3+}/Ti{sup tot} ratios. We need to know whether or not rim pyroxene contains Ti{sup 3+} because of its importance as a recorder of nebular oxygen fugacity, but we are unsure of how to normalize EMP analyses in this case, so we cannot calculate Ti{sup 3+}/Ti{sup tot} accurately. We therefore decided to measure the Ti{sup 3+}/Ti{sup tot} of rim pyroxene directly, by XANES. We have conducted a detailed study of pyroxene in the rim on TS24, a fluffy Type A inclusion from Allende. This inclusion is large and very irregularly shaped, giving it a relatively high surface area. It has a well-developed rim sequence, from the CAI outward, of spinel, clinopyroxene zoned from Ti-, Al-rich to nearly pure diopside over {approx}20 {micro}m, and hedenbergite. The spinel-pyroxene and diopside-hedenbergite contacts are sharp.« less

  2. Optimizing Cationic and Neutral Lipids for Efficient Gene Delivery at High Serum Content

    PubMed Central

    Majzoub, Ramsey N.; Hwu, Yeu-kuang; Liang, Keng S.; Leal, Cecília; Safinya, Cyrus R.

    2014-01-01

    Background Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential applications in gene therapy. A key challenge in creating CL-DNA complexes for applications is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of high serum contents on TE even though this may provide design guidelines for applications in vivo. Methods We prepared CL-DNA complexes in which we varied the neutral lipid (DOPC, glycerol-monooleate (GMO), cholesterol), the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). Results In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, in particular at high serum content. Conclusions Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We suggest guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid. PMID:24753287

  3. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil.

    PubMed

    Agegnehu, Getachew; Bass, Adrian M; Nelson, Paul N; Bird, Michael I

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha(-1) biochar (B)+F; 3) 25 t ha(-1) compost (Com)+F; 4) 2.5 t ha(-1) B+25 t ha(-1) Com mixed on site+F; and 5) 25 t ha(-1) co-composted biochar-compost (COMBI)+F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ(15)N and δ(13)C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO3(-)N), ammonium-nitrogen (NH4(+)-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO2 and N2O were higher from the organic-amended soils than from the fertilizer-only control. However, N2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar-compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. Copyright © 2015. Published by Elsevier B.V.

  4. Spatial and seasonal distribution of carbon, nitrogen, phosphorus, and sulfur and their ecological stoichiometry in wetland soils along a water and salt gradient in the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Lu, Qiongqiong; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wu, Jianjun

    2018-04-01

    Top soils (0-10 cm) were collected in three sampling belts during four seasons in 2014, including bare land (HN1), Calamagrostis epigeios (HN2), Typha orientalis (HN3), Phragmites australis (HN4), Tamarix chinensis (HN5) and Suaeda salsa (HN6) along a water and salinity gradient in the Yellow River Delta, China. Soil organic carbon (SOC), total nitrogen (TN), total phosphorous (TP), total sulfur (TS) and their ecological stoichiometry were measured to investigate their seasonal and horizontal distribution patterns, as well as their important influencing factors such as electric conductivity (EC) and water content (WC). Our results showed that the contents of SOC and TN exhibited similar changing tendency along the water and salinity gradient. The TP contents followed the order HN5 ≈ HN2 > HN3 ≈ HN6 > HN4 > HN1. TS levels generally increased with increasing salinity from HN1 to HN6. The higher levels of SOC and TP were mostly observed in October and August, respectively, while the seasonal variations in TN were heterogeneous under different plant covers. TS contents were lower in August compared with other sampling periods except for HN4. The mean values of the C/N, C/P and C/S ratios along a water-salinity gradient ranged from 26 to 72, 20 to 74, and 61 to 292, respectively. Generally, higher C/P ratios were observed in sampling sites with plant covers in October expect for HN1, whereas they were lower in January or August. SOC, TN and TP were significantly positively correlated with soil organic matter (SOM), silt, WC and cation exchange capacity (CEC) (p < 0.05), whereas TS showed a positive correlation with EC and cations content (p > 0.05). Bulk density (BD) had a great influence on C/N ratio, C/P ratio were mainly effected by SOM, EC and silt, while C/S ratio showed a significant negative correlation with BD, EC, K+, Na+, and Mg2+ (p < 0.05).

  5. An extended chemical analysis of gallstone.

    PubMed

    Chandran, P; Kuchhal, N K; Garg, P; Pundir, C S

    2007-09-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble proteins, sodium potassium, magnesium, copper, oxalate and chlorides of biliary calculi (52 cholesterol, 76 mixed and 72 pigment) retrieved from surgical operation of 200 patients from Haryana state was carried out. Total cholesterol as the major component and total bilirubin, phospholipids, triglycerides, bile acids, fatty acids (esterified), soluble protein, calcium, magnesium, iron, copper, sodium, potassium, inorganic phosphate, oxalate and chloride as minor components were found in all types of calculi. The cholesterol stones had higher content of total cholesterol, phospholipids, fatty acids (esterified), inorganic phosphate and copper compared to mixed and pigment stones. The mixed stones had higher content of iron and triglycerides than to cholesterol and pigment stones. The pigment stones were richer in total bilirubin, bile acids, calcium, oxalate, magnesium, sodium, potassium, chloride and soluble protein compared to cholesterol and mixed stones. Although total cholesterol was a major component of cholesterol, mixed and pigment gall stone in Haryana, the content of most of the other lipids, cations and anions was different in different gall stones indicating their different mechanism of formation.

  6. The oxygen content of the high-temperature superconducting compound Bi{sub 2+x}Sr{sub 3-y}CayCu{sub 2}O{sub 8+d} with respect to varying Ca and Bi contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, P.; Su, H.L.; Aldinger, F.

    1994-12-31

    The oxygen content of Bi{sub 2+x}Sr{sub 3-y}Ca{sub y}Cu{sub 2}O{sub 8+d} (2212 phase) has been determined as a function of its cation concentration. With increasing Ca and Bi content the oxygen content increases and T{sub c} decreases. The oxygen content of Ca rich 2212 phase increases with decreasing annealing temperatures. The study shows that the T{sub c} of the 2212 phase primarily is controlled by its cation concentration.

  7. Periodic variation in physical and chemical properties of two central Washington soils.

    Treesearch

    Tom D. Anderson; Arthur R. Tiedemann

    1970-01-01

    Soils derived from two widely distributed parent materials in central Washington were examined periodically during 1968-69 for physical and chemical properties. Basalt soils showed significant periodic variation in cation exchange capacity, pH, and Na and K contents. In sandstone soils, cation exchange capacity and Ca, Na, and K contents varied significantly among...

  8. Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus).

    PubMed

    Ramli, Nurul Shazini; Ismail, Patimah; Rahmat, Asmah

    2014-01-01

    The aim of this study was to examine the effects of extraction methods on antioxidant capacities of red dragon fruit peel and flesh. Antioxidant capacities were measured using ethylenebenzothiozoline-6-sulfonic acid (ABTS) radical cation assay and ferric reducing antioxidant power assay (FRAP). Total phenolic content (TPC) was determined using Folin-Ciocalteu reagent while quantitative determination of total flavonoid content (TFC) was conducted using aluminium trichloride colorimetric method. Betacyanin content (BC) was measured by spectrophotometer. Red dragon fruit was extracted using conventional (CV) and ultrasonic-assisted extraction (UE) technique to determine the most efficient way of extracting its antioxidant components. Results indicated that UE increased TFC, reduced the extraction yield, BC, and TPC, but exhibited the strongest scavenging activity for the peel of red dragon fruit. In contrast, UE reduced BC, TFC, and scavenging activity but increased the yield for the flesh. Nonetheless, UE slightly increases TPC in flesh. Scavenging activity and reducing power were highly correlated with phenolic and flavonoid compounds. Conversely, the scavenging activity and reducing power were weakly correlated with betacyanin content. This work gives scientific evidences for the consideration of the type of extraction techniques for the peel and flesh of red dragon fruit in applied research and food industry.

  9. Influence of Conventional and Ultrasonic-Assisted Extraction on Phenolic Contents, Betacyanin Contents, and Antioxidant Capacity of Red Dragon Fruit (Hylocereus polyrhizus)

    PubMed Central

    Ramli, Nurul Shazini; Ismail, Patimah; Rahmat, Asmah

    2014-01-01

    The aim of this study was to examine the effects of extraction methods on antioxidant capacities of red dragon fruit peel and flesh. Antioxidant capacities were measured using ethylenebenzothiozoline-6-sulfonic acid (ABTS) radical cation assay and ferric reducing antioxidant power assay (FRAP). Total phenolic content (TPC) was determined using Folin-Ciocalteu reagent while quantitative determination of total flavonoid content (TFC) was conducted using aluminium trichloride colorimetric method. Betacyanin content (BC) was measured by spectrophotometer. Red dragon fruit was extracted using conventional (CV) and ultrasonic-assisted extraction (UE) technique to determine the most efficient way of extracting its antioxidant components. Results indicated that UE increased TFC, reduced the extraction yield, BC, and TPC, but exhibited the strongest scavenging activity for the peel of red dragon fruit. In contrast, UE reduced BC, TFC, and scavenging activity but increased the yield for the flesh. Nonetheless, UE slightly increases TPC in flesh. Scavenging activity and reducing power were highly correlated with phenolic and flavonoid compounds. Conversely, the scavenging activity and reducing power were weakly correlated with betacyanin content. This work gives scientific evidences for the consideration of the type of extraction techniques for the peel and flesh of red dragon fruit in applied research and food industry. PMID:25379555

  10. Incorporating Graphene Oxide into Alginate Polymer with a Cationic Intermediate To Strengthen Membrane Dehydration Performance.

    PubMed

    Guan, Kecheng; Liang, Feng; Zhu, Haipeng; Zhao, Jing; Jin, Wanqin

    2018-04-25

    Two-dimensional graphene oxide (GO) in hybrid membranes provides fast water transfer across its surface due to the abundant oxygenated functional groups to afford water sorption and the hydrophobic basal plane to create fast transporting pathways. To establish more compatible and efficient interactions for GO and sodium alginate (SA) polymer chains, cations sourced from lignin are employed to decorate GO (labeled as cation-functionalized GO (CG)) nanosheets via cation-π and π-π interactions, providing more interactive sites to confer synergetic benefits with polymer matrix. Cations from CG are also functional to partially interlock SA chains and intensify water diffusion. And with the aid of two-dimensional pathways of CG, fast selective water permeation can be realized through hybrid membranes with CG fillers. In dehydrating aqueous ethanol solution, the hybrid membrane exhibits considerable performance compared with bare SA polymer membrane (long-term stable permeation flux larger than 2500 g m -2 h -1 and water content larger than 99.7 wt %, with feed water content of 10 wt % under 70 °C). The effects of CG content in SA membrane were investigated, and the transport mechanism was correspondingly studied through varying operation conditions and membrane materials. In addition, such a membrane possesses long-term stability and almost unchanged high dehydration capability.

  11. Influence of antioxidant rich fresh vegetable juices on starch induced postprandial hyperglycemia in rats.

    PubMed

    Tiwari, Ashok K; Reddy, K Srikanth; Radhakrishnan, Janani; Kumar, D Anand; Zehra, Amtul; Agawane, Sachin B; Madhusudana, K

    2011-09-01

    This research analyzed the major chemical components and multiple antioxidant activities present in the fresh juice of eight vegetables, and studied their influence on starch induced postprandial glycemia in rats. A SDS-PAGE based protein fingerprint of each vegetable juice was also prepared. The yields of juice, chemical components like total proteins, total polyphenols, total flavonoids, total anthocyanins and free radicals like the ABTS˙(+) cation, DPPH, H(2)O(2), scavenging activities and reducing properties for NBT and FeCl(3) showed wide variations. Vegetable juice from brinjal ranked first in displaying total antioxidant capacity. Pretreatment of rats with vegetable juices moderated starch induced postprandial glycemia. The fresh juice from the vegetables ridge gourd, bottle gourd, ash gourd and chayote significantly mitigated postprandial hyperglycemic excursion. Total polyphenol concentrations present in vegetable juices positively influenced ABTS˙(+) scavenging activity and total antioxidant capacity. However, NBT reducing activity of juices was positively affected by total protein concentration. Contrarily, however, high polyphenol content in vegetable juice was observed to adversely affect the postprandial antihyperglycemic activity of vegetable juices. This is the first report exploring antihyperglycemic activity in these vegetable juices and highlights the possible adverse influence of high polyphenol content on the antihyperglycemic activity of the vegetable juices. This journal is © The Royal Society of Chemistry 2011

  12. Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature

    NASA Astrophysics Data System (ADS)

    Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus

    2018-01-01

    The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.

  13. Total content and bioavailability of plant essential nutrients and heavy metals in top-soils of an industrialized area of Northwestern Greece

    NASA Astrophysics Data System (ADS)

    Barouchas, Pantelis; Avramidis, Pavlos; Salachas, Georgios; Koulopoulos, Athanasios; Christodoulopoulou, Kyriaki; Liopa-Tsakalidi, Aglaia

    2017-04-01

    Thirty surface soil samples from northwestern Greece in the Ptolemais-Kozani basin, were collected and analyzed for their total content in thirteen elements (Al, Ca, Fe, K, Mg, Mn, Na, P, Cd, Cr, Cu, Ni, Pb, Zn) by ICP-AES and bioavailable content from a plant nutrition scope of view for (Ca, Fe, K, Mg, Mn, Na, P, Zn) by AAS and colorimetric techniques. Particle size distribution, Cation Exchange Capacity (CEC) and the magnetic susceptibility, in a low and a high frequency (at 47kHz and 0.47kHz), of soil samples were measured also in order to correlate the results. Total carbonates were tested by the pressure technique (BD Inventions, FOGII digital soil calcimeter). The concentrations of these elements were compared with international standards and guidelines. The results indicated that Cu, Cd, Zn and Pb are found enriched in the top soils of the study area, mainly as a consequence of natural processes from the surrounding rocks. Moreover, the bioavailability of some of these elements with a plant nutrition interest was tested and results indicate that they do not pose an immediate threat to the environment or crops as it all demonstrated values in an adequate range. Magnetic susceptibility in low and high frequency was correlated with clay content.

  14. Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1

    PubMed Central

    Hiatt, A. J.

    1967-01-01

    Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506

  15. Antioxidant activity of nine Fabaceae species growing in Serbia and Montenegro.

    PubMed

    Godevac, Dejan; Zdunić, Gordana; Savikin, Katarina; Vajs, Vlatka; Menković, Nebojsa

    2008-04-01

    The aim of this study was to investigate antioxidant capacity of nine Fabaceae species collected on the mountains of Serbia and Montenegro. Antioxidant assays with various reaction mechanisms were used, including total phenolic content by Folin-Ciocalteu, DPPH radical scavenging capacity, Trolox equivalent antioxidant capacity (TEAC) values by ABTS radical cation and inhibition of liposome peroxidation. The investigated plants exhibited strong antioxidant capacity in all the tested methods, and among them, Lathyrus binatus, Trifolium pannonicum, and Anthyllis aurea were found to be the most active.

  16. Four reference soil and rock samples for measuring element availability in the Western Energy Regions

    USGS Publications Warehouse

    Crock, J.G.; Severson, R.C.

    1980-01-01

    Attaining acceptable precision in extractable element determinations is more difficult than in total element determinations. In total element determinations, dissolution of the sample is qualitatively checked by the clarity of the solution and the absence of residues. These criteria cannot be used for extracts. Possibilities for error are introduced in virtually every step in soil extractions. Therefore, the use of reference materials whose homogeneity and element content are reasonably well known is essential for determination of extractable elements. In this report, estimates of homogeneity and element content are presented for four reference samples. Bulk samples of about 100 kilograms of each sample were ground to pass an 80-mesh sieve. The samples were homogenized and split using a Jones-type splitter. Fourteen splits of each reference sample were analyzed for total content of Ca, Co, Cu, Fe, K, Mg, Mn, Na, and Zn; DTPA-extractable Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn; exchangeable Ca, Mg, K, and Na; cation exchange capacity water-saturation-extractable Ca, Mg, K, Na, C1, and SO4; soil pH; and hot-water-extractable boron. Error measured between splits was small, indicating that the samples were homogenized adequately and that the laboratory procedure provided reproducible results.

  17. Mercury release from deforested soils triggered by base cation enrichment.

    PubMed

    Farella, N; Lucotte, M; Davidson, R; Daigle, S

    2006-09-01

    The Brazilian Amazon has experienced considerable colonization in the last few decades. Family agriculture based on slash-and-burn enables millions of people to live in that region. However, the poor nutrient content of most Amazonian soils requires cation-rich ashes from the burning of the vegetation biomass for cultivation to be successful, which leads to forest ecosystem degradation, soil erosion and mercury contamination. While recent studies have suggested that mercury present in soils was transferred towards rivers upon deforestation, little is known about the dynamics between agricultural land-use and mercury leaching. In this context, the present study proposes an explanation that illustrates how agricultural land-use triggers mercury loss from soils. This explanation lies in the competition between base cations and mercury in soils which are characterized by a low adsorption capacity. Since these soils are naturally very poor in base cations, the burning of the forest biomass suddenly brings high quantities of base cations to soils, destabilizing the previous equilibrium amongst cations. Base cation enrichment triggers mobility in soil cations, rapidly dislocating mercury atoms. This conclusion comes from principal component analyses illustrating that agricultural land-use was associated with base cation enrichment and mercury depletion. The overall conclusions highlight a pernicious cycle: while soil nutrient enrichment actually occurs through biomass burning, although on a temporary basis, there is a loss in Hg content, which is leached to rivers, entering the aquatic chain, and posing a potential health threat to local populations. Data presented here reflects three decades of deforestation activities, but little is known about the long-term impact of such a disequilibrium. These findings may have repercussions on our understanding of the complex dynamics of deforestation and agriculture worldwide.

  18. Glass-ceramic route of BSCCO superconductors - Fabrication of amorphous precursor

    NASA Astrophysics Data System (ADS)

    Nilsson, Andreas; Gruner, Wolfgang; Acker, Jörg; Wetzig, Klaus

    2007-09-01

    It is well known that many Bi-Sr-Ca-Cu-O compositions are glass-forming and some Bi-based glasses such as Bi 2Sr 2CaCu 2O x and Bi 2Sr 2Ca 2Cu 3O x are converted into high critical temperature superconductors after proper annealing. In order to fabricate superconductors having high- Tc and high critical current density using the glass-ceramic route, it is necessary to clarify the total chemical composition of the quenched glasses prepared in most cases by rapid quenching of melts from around 1200 °C in air. The total oxygen content measured directly reflects a significant oxygen deficit due to the melting process. We have also investigated the cation content in quenched Bi 2Sr 2Ca 2Cu 3O x precursors and found that there are substantial differences from the nominal composition to the quenched materials especially for calcium. Such glasses also show some CaO crystalline reflexes in the XRD patterns.

  19. Enhancing effect of Fe2+ on the formaldehyde production from trimethylamine N-oxide decomposition catalyzed by the extract of Harpadon nehereus kidney

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Zhou, Deqing; Zhao, Feng

    2011-03-01

    The effects of Fe2+ on the trimethylamine N-oxide (TMAO) demethylating activity of the Harpadon nehereus kidney extract were studied in this research. The activity of the kidney extract was presumably inhibited by ethylene diamine tetra-acetic acid (EDTA), which indicates that the kidney extract contains an enzyme or enzyme system with metal cations as activator. Activity of the kidney extract was enhanced significantly when Fe2+ was added into the model system in vitro. As the concentration of Fe2+ increased, the decomposing rate of TMAO increased rapidly until TMAO decomposed completely. The activity of the kidney extract was also enhanced by reductant such as ascorbic acid. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) was employed to determine the content of total iron in a number of fishery products. Significant positive correlation between the contents of total iron and endogenous formaldehyde (FA) was found, especially in marine products.

  20. Effects of in ovo feeding of cationic amino acids on hatchability, hatch weights, and organ developments in domestic pigeon squabs (Columba livia).

    PubMed

    Zhang, X Y; Li, L L; Miao, L P; Zhang, N N; Zou, X T

    2018-01-01

    This study was conducted to evaluate the effect of in ovo feeding of cationic amino acids on hatchability, hatch weights, and organ developments in pigeon squabs. Two experiments were conducted in this study. Eggs in Exp. 1 were subjected to modification of in ovo feeding in pigeons. Optimal time was determined by checking amniotic fluid volume, and suitable length was confirmed through ink injection. Results showed that the optimum time of in ovo feeding was on d 13 of embryonic development, and the suitable injected length was 20 mm to reach the amniotic cavity of the embryo. Eggs in Exp. 2 were transferred to access in ovo feeding of cationic amino acids. A total of 75 fertile pigeon eggs was randomly distributed into 5 treatments of 15 replicate eggs. Treatments in Exp. 2 consisted of non-injected controls (Control), a sterile buffered solution (0.75% saline), or a cationic amino acid mixture (> 98.5% purity crystalline L-arginine, > 98% purity crystalline L-lysine, and > 98.5% purity L-histidine) containing 0.1, 1, or 10% concentration (Conc.), which were relative to their total content in the eggs, respectively. The crystalline amino acids were dissolved in 200 μL buffered solution prior to in ovo feeding. After hatching, hatch weight (HW) and organ weight (OW) of the squabs were measured immediately. In ovo feeding of cationic amino acids increased the proportions of yolk-free hatch weight to hatch weight (YFHW/HW) (quadratic P = 0.01), and those of OW to YFHW including the heart (quadratic P = 0.01), kidney (quadratic P < 0.01), and liver (quadratic P = 0.02) compared to the control group, and the levels of those ratios were maximized in the 1% Conc group. Also, a proportion of small intestine weight to YFHW improved (linear P = 0.02, quadratic P = 0.05) after in ovo feeding. The organ weight of the head, leg, heart, lung, kidney, proventriculus, pancreas, liver, and small intestine correlated with YFHW positively (0.4 < correlation coefficient < 0.8, P < 0.05). In conclusion, cationic amino acids injection into amnion can improve the embryonic development, which may be mediated by the increment of relative organ weight. © 2017 Poultry Science Association Inc.

  1. CATION TRANSPORT AND PARTITIONING DURING A FIELD TEST OF ELECTROOSMOSIS

    EPA Science Inventory

    Field experiments were conducted to evaluate the effects of soil properties, such as the cation exchange capacity and mineral content, on pH, soluble ion concentrations, and electrical conductivity during electroosmosis in a silty clay soil. The soil is composed mainly of quartz ...

  2. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater.

    PubMed

    Meng, Qingpeng; Chen, Hong; Lin, Junzhong; Lin, Zhang; Sun, Junliang

    2017-06-01

    High quality zeolite A was synthesized through a hydrothermal process using alkaline-assisted pre-activated halloysite mineral as the alumina and silica source. The synthesis conditions employed in this study were finely tuned by varying the activating temperature, sodium hydroxide content, water content and Si/Al ratio. The obtained zeolite A showed excellent adsorption properties for both single metal cation solutions and mixed cation solutions when the concentrations of the mixed cations were comparable with those in polluted natural river water and industrial wastewater. High adsorptive capacities for Ag + (123.05mg/g) and Pb 2+ (227.70mg/g) were achieved using the synthesized zeolite A. This observation indicates that the zeolite A synthesized from alkaline-assisted pre-activated halloysite can be used as a low-cost and relatively effective adsorbent to purify heavy metal cation polluted natural river water and industrial wastewater. Copyright © 2016. Published by Elsevier B.V.

  3. [Dependence of ion transport across the plasma membrane on the density of the cell culture. I. Ion flows and the potassium and sodium content in 3 Chinese hamster cell lines (CHO)].

    PubMed

    Marakhova, I I; Pospelova, T V; Vinogradova, T A; Vereninov, A A; Ignatova, T N

    1985-09-01

    Cation transport has been investigated in three lines of Chinese ovary cells CHO-K1 during the cell culture growth. With the increase in the cell density potassium and sodium contents decreased from 1.2 to 0.8-0.5 and from 0.5 to 0.15-0.1 mmole/g protein, respectively. The time courses of potassium and sodium changes were different, and the increase in intracellular K/Na ratio from 1.5-2.0 to 5-10 with the increase in cell density was revealed. The rubidium influx was found to decrease during the culture growth mainly due to the decrease in ouabain-inhibitable and (ouabain + furosemide)- non-inhibitable influxes. The changes in cation fluxes and cation contents were observed in transformed cells without contact inhibition of division and were considered as a manifestation of density-dependent alterations of plasma membrane.

  4. Scandium induced structural transformation and B′:B″ cationic ordering in Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} multiferroic ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallesham, B.; Ranjith, R., E-mail: ranjith@iith.ac.in; Manivelraja, M.

    2014-07-21

    The current study explores non-magnetic Sc{sup 3+} induced structural transformation, evolution of local B-site cation ordering and associated effect on ferroelectric phase transition temperature T{sub max} (temperature corresponding to dielectric maxima) on increasing the atom percent of Sc substitution in [Pb(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} (PFN)] ceramics. In this regard, the phase pure Pb[(Fe{sub 0.5−x}Sc{sub x})Nb{sub 0.5}]O{sub 3} ceramics with x varying from 0 to 0.5 were synthesized through solid state reaction route. The detailed structural analysis through Rietveld refinement confirms the room temperature transformation from a monoclinic Cm to rhombohedral R3m structure at x = 0.3 mol. % of Sc. Absorption spectra studies showmore » that there is a considerable increment in the bandgap at higher scandium content. Most interestingly, the T{sub max} exhibited an increment for lower scandium contents (x = 0.1 to 0.25) followed by a drop in T{sub max} (x = 0.3 to 0.5). Such anomalous behavior in T{sub max} is expected to arise due to the onset of B′, B″ local cation ordering beyond Sc content x = 0.25. The B-site cation ordering at and beyond x = 0.3 was also confirmed by the evolution of cation order induced Pb-O coupled vibrational mode in Raman scattering studies. In addition, the Mössbauer spectra of PFN (x = 0) and Pb(Fe{sub 0.4}Sc{sub 0.1}Nb{sub 0.5})O{sub 3} (x = 0.1) are reported to verify the spin state and oxidation state of iron. The lattice distortion due to the radius ratio difference between a Sc{sup 3+} cation and Fe{sup 3+} cation in low spin state is responsible for the structural transformation, which in turn facilitates a B′:B″ cation ordering.« less

  5. Vermicomposting as an advanced biological treatment for industrial waste from the leather industry.

    PubMed

    Nunes, Ramom R; Bontempi, Rhaissa M; Mendonça, Giovane; Galetti, Gustavo; Rezende, Maria Olímpia O

    2016-01-01

    The leather industry (tanneries) generates high amounts of toxic wastes, including solid and liquid effluents that are rich in organic matter and mineral content. Vermicomposting was studied as an alternative method of treating the wastes from tanneries. Vermicompost was produced from the following tannery residues: tanned chips of wet-blue leather, sludge from a liquid residue treatment station, and a mixture of both. Five hundred earthworms (Eisenia fetida) were added to each barrel. During the following 135 days the following parameters were evaluated: pH, total organic carbon (TOC), organic matter (OM), cation exchange capacity (CEC), C:N ratio, and chromium content as Cr (III) and Cr (VI). The results for pH, TOC and OM contents showed decreases in their values during the composting process, whereas values for CEC and total nitrogen rose, indicating that the vermicompost reached maturity. For chromium, at 135 days, all values of Cr (VI) were below the detectable level. Therefore, the Cr (VI) content had probably been biologically transformed into Cr (III), confirming the use of this technique as an advanced biological treatment. The study reinforces the idea that vermicomposting could be introduced as an effective technology for the treatment of industrial tannery waste and the production of agricultural inputs.

  6. Simplified sample treatment for the determination of total concentrations and chemical fractionation forms of Ca, Fe, Mg and Mn in soluble coffees.

    PubMed

    Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna

    2014-11-15

    A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Pharmaceuticals' sorptions relative to properties of thirteen different soils.

    PubMed

    Kodešová, Radka; Grabic, Roman; Kočárek, Martin; Klement, Aleš; Golovko, Oksana; Fér, Miroslav; Nikodem, Antonín; Jakšík, Ondřej

    2015-04-01

    Transport of human and veterinary pharmaceuticals in soils and consequent ground-water contamination are influenced by many factors, including compound sorption on soil particles. Here we evaluate the sorption isotherms for 7 pharmaceuticals on 13 soils, described by Freundlich equations, and assess the impact of soil properties on various pharmaceuticals' sorption on soils. Sorption of ionizable pharmaceuticals was, in many cases, highly affected by soil pH. The sorption coefficient of sulfamethoxazole was negatively correlated to soil pH, and thus positively related to hydrolytic acidity and exchangeable acidity. Sorption coefficients for clindamycin and clarithromycin were positively related to soil pH and thus negatively related to hydrolytic acidity and exchangeable acidity, and positively related to base cation saturation. The sorption coefficients for the remaining pharmaceuticals (trimethoprim, metoprolol, atenolol, and carbamazepine) were also positively correlated with the base cation saturation and cation exchange capacity. Positive correlations between sorption coefficients and clay content were found for clindamycin, clarithromycin, atenolol, and metoprolol. Positive correlations between sorption coefficients and organic carbon content were obtained for trimethoprim and carbamazepine. Pedotransfer rules for predicting sorption coefficients of various pharmaceuticals included hydrolytic acidity (sulfamethoxazole), organic carbon content (trimethoprimand carbamazepine), base cation saturation (atenolol and metoprolol), exchangeable acidity and clay content (clindamycin), and soil active pH and clay content (clarithromycin). Pedotransfer rules, predicting the Freundlich sorption coefficients, could be applied for prediction of pharmaceutical mobility in soils with similar soil properties. Predicted sorption coefficients together with pharmaceutical half-lives and other imputes (e.g., soil-hydraulic, geological, hydro-geological, climatic) may be used for assessing potential ground-water contamination. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material.

    PubMed

    Adrian, Yorck F; Schneidewind, Uwe; Bradford, Scott A; Simunek, Jirka; Fernandez-Steeger, Tomas M; Azzam, Rafig

    2018-05-01

    Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer media with varying content of material < 0.063 mm in diameter (silt and clay fraction), background solution chemistry, and flow velocity. Breakthrough curves for Ag-ENPs exhibited blocking behavior that frequently produced a delay in arrival time in comparison to a conservative tracer that was dependent on the physicochemical conditions, and then a rapid increase in the effluent concentration of Ag-ENPs. This breakthrough behavior was accurately described using one or two irreversible retention sites that accounted for Langmuirian blocking on one site. Simulated values for the total retention rate coefficient and the maximum solid phase concentration of Ag-ENPs increased with increasing solution ionic strength, cation valence, clay and silt content, decreasing flow velocity, and for polymer-instead of surfactant-stabilized Ag-ENPs. Increased Ag-ENP retention with ionic strength occurred because of compression of the double layer and lower magnitudes in the zeta potential, whereas lower velocities increased the residence time and decreased the hydrodynamics forces. Enhanced Ag-ENP interactions with cation valence and clay were attributed to the creation of cation bridging in the presence of Ca 2+ . The delay in breakthrough was always more pronounced for polymer-than surfactant-stabilized Ag-ENPs, because of differences in the properties of the stabilizing agents and the magnitude of their zeta-potential was lower. Our results clearly indicate that the long-term transport behavior of Ag-ENPs in natural, silicate dominated aquifer material will be strongly dependent on blocking behavior that changes with the physicochemical conditions and enhanced Ag-ENP transport may occur when retention sites are filled. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Application and evaluation of scale dissolver treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielder, G.D.

    1994-12-31

    In order to provide an improved basis for the design of barium sulfate scale dissolver treatments both laboratory testing and monitoring of field applications were carried out. The deleterious effects of mixing produced water with dissolver prior to contacting scale are shown. Increasing total dissolved solids (TDS) levels can reduce dissolution depending upon temperature. Precomplexation with divalent cations reduces the capacity of the dissolver to solubilize solid scales. Magnesium may adversely affect dissolver performance at elevated temperatures. Several oil and gas wells were closely monitored during initial flowback after treatment. Samples were collected on a frequent basis and analyzed formore » pH, dissolver content, chlorides and various cations. The resulting data were used to construct flowback profiles for evaluation of the treatments. Evidence of scale dissolution is presented. The presence of an incompatible flush brine was discovered in one case and possible reverse order of addition of preflush and dissolver in another. The importance of establishing and following treatment procedures is briefly discussed.« less

  10. Ions in Wine and Their Relation to Electrical Conductivity Under Ultrasound Irradiation.

    PubMed

    Yan, Yan-Ying; Zhang, Qing-An; Li, Er-Chun; Zhang, Ya-Feng

    2017-09-01

    Change in electrical conductivity is considered a potential indicator for the on-line monitoring of wine aging accelerated by ultrasound, as determined in our previous study; however, the exact mechanism of change is currently unclear. In this study, the ion content and the total ionic strength were analyzed by ion-exchange chromatography to investigate the change mechanism of the electrical conductivity of wine under ultrasound irradiation. The results indicate that the changes in wine electrical conductivity during ultrasound treatment correlate with the changes in the cations (Na+, K+, Ca2+, Mg2+, and NH4+) and in the anions from the organic acids (malic acid, citric acid, tartaric acid, oxalic acid, and formic acid) and inorganic acids (Cl-, SO42-, and PO43-), especially for the ionic strength of the wine. Overall, electrical conductivity may be used to reflect the chemical reactions related to wine aging to a certain extent because the reactions can be initiated by the conversion of cations and by the degradation or auxiliary function of organic acids.

  11. The cation-controlled and hydrogen bond-mediated shear-thickening behaviour of a tree-fern isolated polysaccharide.

    PubMed

    Wee, May S M; Matia-Merino, Lara; Goh, Kelvin K T

    2015-10-05

    The shear-thickening rheological behaviour (between 5 and 20s(-1)) of a 5% (w/w) viscoelastic gum extracted from the fronds of the native New Zealand black tree fern or mamaku in Māori was further explored by manipulating the salt content. The freeze-dried mamaku gum contained a high mineral content and sugars which upon removal via dialysis, resulted in the loss of shear thickening. However, this loss was reversible by the addition of salts to the dialysed dispersion. The mechanism of shear-thickening behaviour was therefore hypothesised to be due to shear-induced transition of intra- to intermolecular hydrogen bonding, promoted by the screening effect of cations. Mono-, di- and trivalent salts, i.e. Na(+), K(+), N(CH3)4(+), Ca(2+), Mg(2+), Al(3+) and La(3+) at concentrations between 0.001 and 1.0M were tested to support the hypothesis as well as to demonstrate the sensitivity of the biopolymer to cation valency and concentrations. The cation valency and concentration were crucial factors in determining: (i) zero-shear viscosity, (ii) critical shear rate, γ˙c (or shear rate at the onset of shear-thickening) and (iii) the extent of shear-thickening of the solution. For mono- and divalent cations these parameters were similar at equivalent ionic strengths and fairly independent of the cation type. Trivalent cations (La(3+)) however caused precipitation of the gum in the concentration range of 0.005-0.05 M but clear dispersions were obtained above 0.05 M. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Proximate composition, phenolic content and in vitro antioxidant activity of aqueous extracts of the seaweeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus. Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions.

    PubMed

    Agregán, Rubén; Munekata, Paulo E; Domínguez, Ruben; Carballo, Javier; Franco, Daniel; Lorenzo, José M

    2017-09-01

    Extracts from three macroalgae species (Ascophyllum nodosum (ANE), Bifurcaria bifurcata (BBE) and Fucus vesiculosus (FVE)) were tested for proximate composition (total solid, protein and total carbohydrate contents), total phenols content (TPC), and for their antioxidant activities in vitro in comparison to that of BHT compound by using four different assays (ABTS radical cation decolouration, DPPH free radical scavenging activity, ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC)). The inclusion of the extracts as oil stabilizers in canola oil in substitution of the synthetic antioxidant (BHT) was also evaluated by assessing lipid oxidation parameters (peroxide value (PV), p-anisidine value (AV), TBARS value, conjugated dienes (CD) and TOTOX index) under accelerated storage conditions (16days, 60°C). There was an inverse relationship between total solid content and total polyphenols content in the seaweed extracts. FVE showed an intermediate TPC (1.15g PGE/100g extract), but it presented the highest in vitro antioxidant activity when measured using the ABTS, DPPH and FRAP tests. BBE, that displayed the highest TPC (1.99g PGE/100g extract), only showed the highest in vitro antioxidant activity when measured using the ORAC test. ANE showed the lowest TPC and the lowest antioxidant activity in all the tests performed. The seaweed extracts added in a 500ppm concentration significantly reduced the oxidation during canola oil storage at 60°C, being this antioxidant effect significantly higher than that of BHT added at 50ppm. Results indicate that seaweed extracts can effectively inhibit the oxidation of canola oil and they can be a healthier alternative to the synthetic antioxidants in the oil industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Chemical composition and physicochemical properties of Phaeodactylum tricornutum microalgal residual biomass.

    PubMed

    German-Báez, L J; Valdez-Flores, M A; Félix-Medina, J V; Norzagaray-Valenzuela, C D; Santos-Ballardo, D U; Reyes-Moreno, C; Shelton, L M; Valdez-Ortiz, A

    2017-12-01

    The production of photosynthetic biofuels using microalgae is a promising strategy to combat the use of non-renewable energy sources. The microalgae residual biomass is a waste by-product of biofuel production; however, it could prove to have utility in the development of sustainable nutraceuticals and functional foods. In this study, a comprehensive characterisation of the under-utilised Phaeodactylum tricornutum microalgae residual biomass is presented. Proximal composition, antioxidant capacity (using three different antioxidant assays; oxygen radical absorbance capacity; radical cation activity, ABTS; and radical scavenging activity, DPPH), and total phenolic content of free and bound polyphenols were determined. Additionally, the physicochemical properties of water activity, pH, water absorption index, water solubility index, and dispersibility were evaluated. Results revealed that P. tricornutum microalgae residual biomass exhibits a relatively high protein and carbohydrate content, with values of 36.67% and 46.78%, respectively; and most carbohydrates were found as total dietary fibre (45.57%), of which insoluble dietary fibre was the most predominant (43.54%). Antioxidant capacity values for total phytochemicals of 106.22, 67.93, 9.54 µM TE g -1 dw were determined by oxygen radical absorbance capacity, ABTS, and DPPH assays, respectively. Total phenolic content was found to be 2.90 mg GAE g -1 dw. Interestingly, antioxidant capacity and total phenolic content were higher in bound than in free phytochemical extracts. The physicochemical analysis showed P. tricornutum microalgae residual biomass to have suitable properties for the generation of a beverage with Aw, pH, water absorption index, water solubility index, and dispersibility values of 0.45, 7.12, 3.40 g gel g -1  dw, 2.5 g solids 100 g -1  dw, and 90%, respectively. Hence, P. tricornutum microalgae residual biomass could be considered a potential source of bioactive compounds suitable for the production of functional food exhibiting antioxidant capacity and high dietary fibre content.

  14. Influence of lithium cations on prolyl peptide bonds.

    PubMed

    Kunz, Claudia; Jahreis, Günther; Günther, Robert; Berger, Stefan; Fischer, Gunter; Hofmann, Hans-Jörg

    2012-06-01

    The influence of lithium cations on the cis/trans isomerization of prolyl peptide bonds was investigated in a quantitative manner in trifluoroethanol (TFE) and acetonitrile, employing NMR techniques. The focus was on various environmental and structural aspects, such as lithium cation and water concentrations, the type of the partner amino acid in the prolyl peptide bond, and the peptide sequence length. Comparison of the thermodynamic parameters of the isomerization in LiCl/TFE and TFE shows a lithium cation concentration dependence of the cis/trans ratio, which saturates at cation concentrations >200 mM. A pronounced increase in the cis isomer content in the presence of lithium cations occurs with the exception of peptides with Gly-Pro and Asp-Pro moieties. The cation effect appears already at the dipeptide level. The salt concentration can considerably be reduced in solvents with a lower number of nucleophilic centers like acetonitrile. The lithium cation effect decreases with small amounts of water and disappears at a water concentration of about 5%. The isomerization kinetics under the influence of lithium cations suggests a weak cation interaction with the carbonyl oxygen of the peptide bond. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  15. Topochemical synthesis of cation ordered double perovskite oxynitrides.

    PubMed

    Ceravola, Roberta; Oró-Solé, Judith; Black, Ashley P; Ritter, Clemens; Puente Orench, Inés; Mata, Ignasi; Molins, Elies; Frontera, Carlos; Fuertes, Amparo

    2017-04-19

    Topochemical nitridation in ammonia at moderate temperatures of cation ordered Sr 2 FeWO 6 produces new antiferromagnetic double perovskite oxynitrides Sr 2 FeWO 6-x N x with 0 < x ≤ 1. Nitrogen introduction induces the oxidation of Fe 2+ to Fe 3+ and decreases T N from 38 K (x = 0) to 13 K for Sr 2 FeWO 5 N which represents the first example of a double perovskite oxynitride with both high cationic order and nitrogen content. This synthetic approach can be extended to other cation combinations expanding the possibility of new materials in the large group of double perovskites.

  16. Effects of Accelerated Storage on the Quality of Kenaf Seed Oil in Chitosan-Coated High Methoxyl Pectin-Alginate Microcapsules.

    PubMed

    Leong, Mei-Huan; Tan, Chin-Ping; Nyam, Kar-Lin

    2016-10-01

    The objective of this research was to study the oxidative stability and antioxidant properties of microencapsulated kenaf (Hibiscus cannabinus L.) seed oil (MKSO) produced by co-extrusion technology upon accelerated storage. The combination of sodium alginate, high methoxyl pectin, and chitosan were used as shell materials. The oxidative stability of the kenaf seed oil was determined by iodine value, peroxide value, p-Anisidine value, total oxidation (TOTOX), thiobarbituric acid reactive substances assay, and free fatty acid content. Total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) cation radical-scavenging assay and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay were used to examine the antioxidant properties of oils. Oxidative stability tests showed that bulk kenaf seed oil (BKSO) was oxidized significantly higher (P < 0.05) than MKSO. The total increment of TOTOX value of BKSO was 165.93% significantly higher (P < 0.05) than MKSO. Co-extrusion technology has shown to be able to protect kenaf seed oil against lipid oxidation and delay the degradation of natural antioxidants that present in oil during storage. © 2016 Institute of Food Technologists®.

  17. Stability of Ruddlesden–Popper-structured oxides in humid conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtimäki, M.; Yamauchi, H.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    2013-08-15

    Some of layered transition-metal oxides are known to react with atmospheric humidity to form through topotactic intercalation reactions new water-containing layered structures. Here we investigate the influence of oxygen content (7−δ) of the Ruddlesden–Popper-structured Sr{sub 3}FeMO{sub 7−δ} (M=Ni, Mn, Ti) oxides on the water-intercalation reaction. It is found that their oxygen contents influence greatly the reactivity of the phases with water. Other factors possibly affecting the reactivity are discussed on the basis of the present data in combination with a comprehensive review of previous works on Ruddlesden–Popper and related layered oxide phases. - Graphical abstract: Many of the Ruddlesden–Popper-structured A{submore » 3}B{sub 2}O{sub 7−δ} oxides readily react with water via intercalation reactions. Three possible factors affecting the water intercalation are identified: oxygen content of the phase, ionic radius of cation A and valence state of cation B. The resultant layered water-derivative phases can be categorised into two groups, depending on the crystal symmetry of the phase. Highlights: • Ruddlesden–Popper oxides A{sub 3}B{sub 2}O{sub 7−δ} often accommodate water via intercalation reaction. • The lower the oxygen content 7−δ is the more readily the intercalation reaction occurs. • The second factor promoting the reaction is the large size of cation A. • The third possible factor is the high valence state of cation B. • Resultant water-derivatives can be categorised into two groups depending on symmetry.« less

  18. Probing cation and vacancy ordering in the dry and hydrated yttrium-substituted BaSnO3 perovskite by NMR spectroscopy and first principles calculations: implications for proton mobility.

    PubMed

    Buannic, Lucienne; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P

    2012-09-05

    Hydrated BaSn(1-x)Y(x)O(3-x/2) is a protonic conductor that, unlike many other related perovskites, shows high conductivity even at high substitution levels. A joint multinuclear NMR spectroscopy and density functional theory (total energy and GIPAW NMR calculations) investigation of BaSn(1-x)Y(x)O(3-x/2) (0.10 ≤ x ≤ 0.50) was performed to investigate cation ordering and the location of the oxygen vacancies in the dry material. The DFT energetics show that Y doping on the Sn site is favored over doping on the Ba site. The (119)Sn chemical shifts are sensitive to the number of neighboring Sn and Y cations, an experimental observation that is supported by the GIPAW calculations and that allows clustering to be monitored: Y substitution on the Sn sublattice is close to random up to x = 0.20, while at higher substitution levels, Y-O-Y linkages are avoided, leading, at x = 0.50, to strict Y-O-Sn alternation of B-site cations. These results are confirmed by the absence of a "Y-O-Y" (17)O resonance and supported by the (17)O NMR shift calculations. Although resonances due to six-coordinate Y cations were observed by (89)Y NMR, the agreement between the experimental and calculated shifts was poor. Five-coordinate Sn and Y sites (i.e., sites next to the vacancy) were observed by (119)Sn and (89)Y NMR, respectively, these sites disappearing on hydration. More five-coordinated Sn than five-coordinated Y sites are seen, even at x = 0.50, which is ascribed to the presence of residual Sn-O-Sn defects in the cation-ordered material and their ability to accommodate O vacancies. High-temperature (119)Sn NMR reveals that the O ions are mobile above 400 °C, oxygen mobility being required to hydrate these materials. The high protonic mobility, even in the high Y-content materials, is ascribed to the Y-O-Sn cation ordering, which prevents proton trapping on the more basic Y-O-Y sites.

  19. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effect of alcaline cations in zeolites on their dielectric properties.

    PubMed

    Legras, Benoît; Polaert, Isabelle; Estel, Lionel; Thomas, Michel

    2012-01-01

    The effect on dielectric properties of alkaline cations Li+, Na+ and K+ incorporated in a zeolite Faujasite structure X or Y, has been investigated. Two major phenomena have been proved to occur: ionic conductivity and rotational polarization of the water molecules adsorbed. The polarizability of the cation which is directly linked to its radius, affects ionic conductivity as well as rotational polarization. Li cations are more strongly Linked to the framework than K+ and Na+ and induce a lower ionic conductivity. K+ is weakly fixed and induces a ionic conductivity even at low solvation level. At low water content, the cation nature and number mainly control the free rotation of the water molecules and affect the relaxation frequency. Close to saturation, the water molecules are mainly linked together by H bonds: the cation nature and number do not really affect the global dielectric properties anymore.

  1. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics.

    PubMed

    Jafarnejadi, A R; Sayyad, Gh; Homaee, M; Davamei, A H

    2013-05-01

    Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p < 0.01), available P (p < 0.01), cation exchange capacity (p < 0.05), and organic carbon (p < 0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p < 0.01), pH, and clay content (p < 0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.

  2. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide) based polyether-ester-sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    Roach, David J.

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments. Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T g) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components and relative mobilities of the polymer backbone of a suite of. lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content. Each of the main backbone components (PEO spacer and isophthalate groups) exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content on PEO mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, determined from the rate of magnetization transfer from 1H to 13C nuclei, in all ionic samples becomes similar for T [special characters omitted] 1.1 Tg, indicating that the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results compliment previous findings and present an improved picture of the dependence of backbone dynamics on cation type and density in these amorphous PEO-based ionomer systems. 7Li PFG NMR experiments provided measurements of the self-diffusion coefficients for Li+ cations in the PEO600-y Li ionomer series over a range of temperatures. When the Tg values are taken into account, the self-diffusion coefficients of Li+ in each sample follow a similar trendline, indicating that lithium diffusion is independent of ion concentration at any given reduced inverse temperature, Tg/T. Ion aggregation increases Tg and slows both lithium cation diffusion and displacement, but there is no further slowing beyond the Tg effect in the PEO600-y Li ionomers samples. The differences in activation energies obtained from diffusion measurements and relaxation times suggest that at least one additional barrier must be overcome for cations emerge from local hopping motion to macroscopic cation transpfort. Using the Nernst- Einstein equation lithium diffusion coefficients were also calculated from conductivity measurements. The differences between the diffusion measured by the two separate techniques indicate the presence of ion pairs. The activation energy of lithium diffusion was found to be nearly identical between the PFG NMR and conductivity, suggesting that the conductivity and ionic diffusion are related to the same ionic dynamics. As the ion content within the PEO600-y Li samples increases the relative concentration of nonconducting ion pairs decrease. Also an increase in temperature causes a fraction of ion pairs to thermally dissociate into positive triple ions.

  3. Effect of the behavior and availability of heavy metals on the characteristics of the coastal soils developed from alluvial deposits.

    PubMed

    Li, Jinling; He, Ming; Sun, Shouqin; Han, Wei; Zhang, Youchi; Mao, Xiaohui; Gu, Yifan

    2009-09-01

    An investigation of the behavior and availability of heavy metals (HMs), i.e., Cu, Zn, Ni, Pb, Cr, and Cd, based on the analysis of correlation between HMs and physical and chemical properties of coastal soils developed from alluvial deposits in Shanghai, China, has been conducted, in order to reveal the effect of the soil formation and development and the unsuited human activities on the activities and mobility of HMs in agricultural soils. The results showed that (1) the soils still meet the needs of plant growth due to the moderate fertility with a soil texture of silty loam although the content of organic matters is lower, (2) total heavy metal content had a increase trend from the inland area to the coastal area, indicating the impact of alluvial deposits related to the soil formation on the distribution of HMs; (3) a significant positive correlation was found between HMs and some soil properties (i.e., clay content, cation exchange capacity, organic matters, total Phosphorous content, etc.), indicating that the regulation of these properties could give some great effect on the behavior and availability of HMs; (4) the positive correlation among Cu, Zn, Ni, and Cd, and between Pb and Cr is very significant, suggesting the most similar, if not the same, origins of HMs; These findings are helpful to the soil remediation, fertility adjustment, and plant cultivation.

  4. Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley.

    PubMed

    Siebenhandl, Susanne; Grausgruber, Heinrich; Pellegrini, Nicoletta; Del Rio, Daniele; Fogliano, Vincenzo; Pernice, Rita; Berghofer, Emmerich

    2007-10-17

    Two pigmented wheat genotypes (blue and purple) and two black barley genotypes were fractionated in bran and flour fractions, examined, and compared for their free radical scavenging properties against 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (Trolox equivalent antioxidant capacity, TEAC), ferric reducing antioxidant power (FRAP), total phenolic content (TPC), phenolic acid composition, carotenoid composition, and total anthocyanin content. The results showed that fractionation has a significant influence on the antioxidant properties, TPC, anthocyanin and carotenoid contents, and phenolic acid composition. Bran fractions had the greatest antioxidant activities (1.9-2.3 mmol TEAC/100 g) in all four grain genotypes and were 3-5-fold higher than the respective flour fractions (0.4-0.7 mmol TEAC/100 g). Ferulic acid was the predominant phenolic acid in wheat genotypes (bran fractions) while p-coumaric acid was the predominant phenolic acid in the bran fractions of barley genotypes. High-performance liquid chromatography analysis detected the presence of lutein and zeaxanthin in all fractions with different distribution patterns within the genotypes. The highest contents of anthocyanins were found in the middlings of black barley genotypes or in the shorts of blue and purple wheat. These data suggest the possibility to improve the antioxidant release from cereal-based food through selection of postharvest treatments.

  5. Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials.

    PubMed

    Şen, Ferhat; Uzunsoy, İrem; Baştürk, Emre; Kahraman, Memet Vezir

    2017-08-15

    This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic starch was synthesized and characterized by FT-IR spectroscopy and 1 H NMR spectroscopy. Its nitrogen content was determined by Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using starch, cationic starch and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by TGA and DSC. Hydrophobicity of samples was determined by contact angle measurements. Surface morphology of samples was investigated by SEM. Moreover, gel contents of samples were determined. The obtained results prove that produced food packaging materials have good thermal, antimicrobial and surface properties, and they can be used as food packaging material in many industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves.

    PubMed

    Zhen, Jing; Villani, Thomas S; Guo, Yue; Qi, Yadong; Chin, Kit; Pan, Min-Hsiung; Ho, Chi-Tang; Simon, James E; Wu, Qingli

    2016-01-01

    A liquid chromatography-mass spectrometry method was developed for the simultaneous separation, and determination of natural compounds including phenolic acids and flavonoids in the leaves of Hibiscus sabdariffa. By analyzing the UV and MS data, and comparison with authenticated standards, 10 polyphenols including neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, quercetin, kaempferol and their glycosides were identified together with 5-(hydroxymethyl)furfural. Major constituents in the leaves of 25 different populations from worldwide accessions were quantified and compared with each other. The total phenolic content of each accession was determined using Folin-Ciocalteu assay, ranging from 18.98 ± 2.7 to 29.9 ± 0.5 mg GAE/g. Their in vitro antioxidant activities were measured by ABTS radical cation decolorization assay, varying from 17.5 to 152.5 ± 18.8 μmol Trolox/g. After the treatment of H. sabdariffa leaf extract, the reduction of LPS-induced NO production dose-dependently in RAW 264.7 cell indicates the extract's potential anti-inflammatory activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Removal of contaminants from landfill leachates by filtration through glauconitic greensands

    USGS Publications Warehouse

    Spoljaric, N.; Crawford, W.A.

    1979-01-01

    Passing landfill leachate through glauconitic greensand filters reduces the heavy metal cation content, lessens the unpleasant odor, and diminishes the murkiness of the leachate. The capability of the greensand to trap metal cations is increased by prolonging the contact time between the leachate and the greensand. Flushing the charged greensand filter with water does not cause significant release of cations back into solution, suggesting that polluted greensand might be disposed of at landfill sites without endangering the quality of either ground or surface water. ?? 1979 Springer Verlag New York Inc.

  8. Effects of processing steps on the phenolic content and antioxidant activity of beer.

    PubMed

    Leitao, Céline; Marchioni, Eric; Bergaentzlé, Martine; Zhao, Minjie; Didierjean, Luc; Taidi, Behnam; Ennahar, Saïd

    2011-02-23

    A new analytical method (liquid chromatography-antioxidant, LC-AOx) was used that is intended to separate beer polyphenols and to determine the potential antioxidant activity of these constituents after they were allowed to react online with a buffered solution of the radical cation 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(•+)). Using the LC-AOx method, it was possible to demonstrate that the extent of the antioxidant activity was very much dependent on the phenolic compound considered. The method was also applied to the analysis of beer extracts and allowed the evaluation of their antioxidant activity at different steps of beer processing: brewing, boiling, and fermentation. This study showed that the total antioxidant activity remained unchanged throughout beer processing, as opposed to the polyphenolic content, which showed a 3-fold increase. Hopping and fermentation steps were the main causes of this increase. However, the increase measured after fermentation was attributed to a better extraction of polyphenols due to the presence of ethanol, rather than to a real increase in their content. Moreover, this method allowed the detection of three unknown antioxidant compounds, which accounted for 64 ± 4% of the total antioxidant activity of beer and were individually more efficient than caffeic acid and epicatechin.

  9. The hemolymph of caterpillars Spodoptera littoralis: physico-chemical properties and ionic composition compared to culture media.

    PubMed

    Smagghe, G; Van Leeuwen, T

    2004-01-01

    In this paper, we determined some physico-chemical properties like osmotic pressure, pH and electrical conductivity of the hemolymph from caterpillars of Spodoptera littoralis (Lepidoptera: Noctuidae) during the last larval instar. It was of interest that we observed an increase in osmotic pressure with the increase in age in the last instar that may concur with the start of histolysis at metamorphosis. These physicochemical properties were then compared to those of Grace's and modified Grace's tissue culture medium. In addition, concentrations of the cations Na, K, Ca and Mg, and the anions Cl, NO3, PO4 and SO4 were determined in the insect hemolymph of S. littoralis. The cations K and Mg reached high values with a percent of about 52% of the total amount of cations. The concentration of sodium was low. The total sum of the anions consisted about 56 meq/1, and this allows to neutralise about 45 % of the total cations.

  10. Effect of cationic monomer content on polyacrylamide copolymers by frit-inlet asymmetrical flow field-flow fractionation/multi-angle light scattering.

    PubMed

    Lee, Hyejin; Kim, Jin Yong; Choi, Woonjin; Moon, Myeong Hee

    2017-06-23

    In this study, ultrahigh-molecular-weight (MW) (>10 7 Da) cationic polyacrylamides (C-PAMs), which are water-soluble polymers used in waste water treatment, were characterized using frit-inlet asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and differential refractive detection. C-PAMs copolymerized with acryloxyethyltrimethyl ammonium chloride (DAC) were prepared by varying the feed amount of cationic monomer, polymerization method (solution vs. emulsion), and degree of branching. The MW of the copolymers prepared using emulsion polymerization (10 7 -10 9 Da) was generally larger than that of copolymers prepared using solution polymerization (4×10 7 -10 8 Da). When the amount of cationic monomer was increased from 10 to 55mol% in solution polymerization, hydrophobic contraction of the core induced formation of more compact C-PAMs. The copolymers prepared using emulsion polymerization formed highly aggregated or supercoil structures owing to increased intermolecular hydrophobic interaction when less cationic monomer was used. However, the MW decreased with increased cationic group content. In addition, C-PAMs larger than ∼10 8 Da prepared using the emulsion method were separated by steric/hyperlayer elution mode while those in the 10 7 -10 8 Da range were analyzed in either normal or steric/hyperlayer mode depending on the decay patterns of field programming. Moreover, branched copolymers were found to be resolved with different elution modes under the same field decay pattern depending on the degree of branching: steric/hyperlayer for low-branching and normal for high-branching C-PAMs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hydrologic and geochemical data collected near Skewed Reservoir, an impoundment for coal-bed natural gas produced water, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.

    2012-01-01

    The Powder River Structural Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of groundwater that is extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and subsurface water and soil chemistry was conducted at one such impoundment, Skewed Reservoir. Hydrologic and geochemical data collected as part of that study are contained herein. Data include chemistry of groundwater obtained from a network of 21 monitoring wells and three suction lysimeters and chemical and physical properties of soil cores including chemistry of water/soil extracts, particle-size analyses, mineralogy, cation-exchange capacity, soil-water content, and total carbon and nitrogen content of soils.

  12. Divalent Cation Removal by Donnan Dialysis for Improved Reverse Electrodialysis.

    PubMed

    Rijnaarts, Timon; Shenkute, Nathnael T; Wood, Jeffery A; de Vos, Wiebe M; Nijmeijer, Kitty

    2018-05-07

    Divalent cations in feedwater can cause significant decreases in efficiencies for membrane processes, such as reverse electrodialysis (RED). In RED, power is harvested from the mixing of river and seawater, and the obtainable voltage is reduced and the resistance is increased if divalent cations are present. The power density of the RED process can be improved by removing divalent cations from the fresh water. Here, we study divalent cation removal from fresh water using seawater as draw solution in a Donnan dialysis (DD) process. In this way, a membrane system with neither chemicals nor electrodes but only natural salinity gradients can be used to exchange divalent cations. For DD, the permselectivity of the cation exchange membrane is found to be crucial as it determines the ability to block salt leakage (also referred to as co-ion transport). Operating DD using a membrane stack achieved a 76% reduction in the divalent cation content in natural fresh water with residence times of just a few seconds. DD pretreated fresh water was then used in a RED process, which showed improved gross and net power densities of 9.0 and 6.3%, respectively. This improvement is caused by a lower fresh water resistance (at similar open circuit voltages), due to exchange of divalent for monovalent cations.

  13. Impact of wine production on the fractionation of copper and iron in Chardonnay wine: Implications for oxygen consumption.

    PubMed

    Rousseva, Michaela; Kontoudakis, Nikolaos; Schmidtke, Leigh M; Scollary, Geoffrey R; Clark, Andrew C

    2016-07-15

    Copper and iron in wine can influence oxidative, reductive and colloidal stability. The current study utilises a solid phase extraction technique to fractionate these metals into hydrophobic, cationic and residual forms, with quantification by ICP-OES. The impact of aspects of wine production on the metal fractions was examined, along with the relationship between metal fractions and oxygen decay rates. Addition of copper and iron to juice, followed by fermentation, favoured an increase in all of their respective metal fractions in the wine, with the largest increase observed for the cationic form of iron. Bentonite fining of the protein-containing wines led to a significant reduction in the cationic fraction of copper and an increase in the cationic form of iron. Total copper correlated more closely with oxygen consumption in the wine compared to total iron, and the residual and cationic forms of copper provided the largest contribution to this impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The role of modifier cation field strength, oxygen speciation and network cation interaction in pressure-induced structural changes of silicate melts and glasses: 27Al, and 11B MAS NMR studies

    NASA Astrophysics Data System (ADS)

    Bista, S.; Stebbins, J. F.

    2017-12-01

    In aluminosilicate melts and glasses, both non-bridging oxygen content (NBO) and modifier cation field strength (Mg>Ca>Na>K) are known to facilitate network cation (e.g. Al, B) coordination increase with pressure. However, the role of these two compositional parameters in pressure-induced structural changes is derived from data for a limited set of compositions, where effects of the interaction between these parameters is less understood. For example, the effects of NBO are largely based on studies of Na and K aluminosilicate glasses, but effects of geologically important, higher field strength modifier cations such as Mg2+ and Fe2+ could well be significantly different. In this study, we look at a wide compositional range of Na, Ca and Mg aluminosilicate glasses (quenched from high pressure melts near to the glass transition temperature) to understand the roles of NBO and modifier cation field strength that can extend our view of processes important for silicate melts common in nature. Our results show that the role of NBO in pressure-induced structural changes varies systematically with increasing field strength of the modifier cation. In Na aluminosilicate glasses recovered from 1.5 to 3 GPa, large increases in average aluminum coordination are observed in glasses with high NBO content, while no detectable increases are seen for low nominal NBO (jadeite). In contrast, Mg aluminosilicate glasses with both high and low NBO show similar, large increases in average aluminum coordination with increasing pressure. The behaviors of Ca aluminosilicates fall between those of Na and Mg-rich glasses. We have also looked at interactions between different network forming cations in pressure-induced structural changes in low NBO Ca-aluminoborosilicate glasses with varying B/Si. Both aluminum and boron increase dramatically in coordination in these compositions 1.5 to 3 GPa. Increases in both average aluminum coordination and densification are larger in compositions containing higher boron concentrations, suggesting an interaction between boron and aluminum network cations in pressure-induced structural changes.

  15. Metal cation exchange reactions of ore minerals in Fe-Mn crusts of the Marcus Wake Rise (Pacific Ocean) in aqueous-salt solutions

    NASA Astrophysics Data System (ADS)

    Novikov, G. V.; Bogdanova, O. Yu.; Melnikov, M. E.; Drozdova, A. N.; Lobus, N. V.; Shulga, N. A.

    2017-12-01

    It is shown that the reaction ability of metal cations of ore minerals in Fe-Mn crusts of the Marcus Wake Rise increases in the following manner: (Co2+ < Cu2+ < Ni2+) < (Mg2+ < Mn2+ < K+ ≈ Ca2+ ≈ Na+). The composition of the exchange complex of the ore minerals is constant and includes these metal cations. Ca2+ and Na+ are major contributors to the exchange capacity of the ore minerals. The capacity of the ore minerals by cations of alkali and base metals is 0.43-0.60 and 2.08-2.70 mg-equiv/g, respectively. The exchange capacity of the ore minerals by cations of base metals increases linearly with the increase in the MnO2 content of the crust and does not depend on the geographical locations of the Marcus Wake guyots.

  16. Cation Ordering in Li[NixMnxCo(1-2x)]O2-Layered Cathode Materials: A Nuclear Magnetic Resonance (NMR), Pair Distribution Function, X-ray Absorption Spectroscopy, and Electrochemical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng,D.; Cabana, J.; Breger, J.

    2007-01-01

    Several members of the compositional series Li[NixMnxCo(1-2x)]O2 (0.01 = x = 1/3) were synthesized and characterized. X-ray diffraction results confirm the presence of the layered a-NaFeO2-type structure, while X-ray absorption near-edge spectroscopy experiments verify the presence of Ni2+, Mn4+, and Co3+. Their local environment and short-range ordering were investigated by using a combination of 6Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and neutron pair distribution function (PDF) analysis, associated with reverse Monte Carlo (RMC) calculations. The 6Li MAS NMR spectra of compounds with low Ni/Mn contents (x = 0.10) show several well-resolved resonances, which start to mergemore » when the amount of Ni and Mn increases, finally forming a broad resonance at high Ni/Mn contents. Analysis of the 6Li MAS NMR 6Li[Ni0.02Mn0.02Co0.96]O2 spectrum, is consistent with the formation of Ni2+ and Mn4+ clusters within the transition-metal layers, even at these low-doping levels. The oxidation state of Ni in this high Co content sample strongly depends upon the Li/transition metal ratio of the starting materials. Neutron PDF analysis of the highest Ni/Mn content sample Li[Ni1/3Mn1/3Co1/3]O2 shows a tendency for Ni cations to be close to Mn cations in the first coordination shell; however, the Co3+ ions are randomly distributed. Analysis of the intensity of the 'LiCoO2' resonance, arising from Li surrounded by Co3+ in its first two cation coordination shells, for the whole series provides further evidence for a nonrandom distribution of the transition-metal cations. The presence of the insulator-to-metal transition seen in the electrochemical profiles of these materials upon charging correlates strongly with the concentration of the 'LiCoO2' resonance.« less

  17. Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms.

    PubMed

    Funk, Jennifer L; Amatangelo, Kathryn L

    2013-09-01

    Recent evidence points to ferns containing significantly lower contents of foliar calcium and other cations than angiosperms. This is especially true of more ancient 'non-polypod' fern lineages, which predate the diversification of angiosperms. Calcium is an important plant nutrient, the lack of which can potentially slow plant growth and litter decomposition, and alter soil invertebrate communities. The physiological mechanisms limiting foliar calcium (Ca) content in ferns are unknown. While there is a lot we do not know about Ca uptake and transport in plants, three physiological processes are likely to be important. We measured transpiration rate, cation exchange capacity, and leaching loss to determine which process most strongly regulates foliar Ca content in a range of fern and co-occurring understory angiosperm species from a montane Hawaiian rainforest. We found higher instantaneous and lifetime (corrected for leaf lifespan) transpiration rates in angiosperms relative to ferns. Ferns preferentially incorporated Ca into leaves relative to strontium, which suggests that root or stem cation exchange capacity differs between ferns and angiosperms, potentially affecting calcium transport in plants. There were no differences in foliar Ca leaching loss between groups. Among the physiological mechanisms measured, foliar Ca was most strongly correlated with leaf-level transpiration rate and leaf lifespan. This suggests that inter-specific differences in a leaf's lifetime transpiration may play a significant role in determining plant nutrition.

  18. Analyzing Solutions High in Total Dissolved Solids for Rare Earth Elements (REEs) Using Cation Exchange and Online Pre-Concentration with the seaFAST2 Unit; NETL-TRS-7-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2017; p 32

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Torres, M.; Verba, C.

    The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop themore » capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.« less

  19. Optimization and physicochemical characterization of a cationic lipid-phosphatidylcholine mixed emulsion formulated as a highly efficient vehicle that facilitates adenoviral gene transfer.

    PubMed

    Kim, Soo-Yeon; Lee, Sang-Jin; Kim, Jin-Ki; Choi, Han-Gon; Lim, Soo-Jeong

    2017-01-01

    Cationic lipid-based nanoparticles enhance viral gene transfer by forming electrostatic complexes with adenoviral vectors. We recently demonstrated the superior complexation capabilities of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) emulsion compared with a liposomal counterpart but the cytotoxicity of DOTAP emulsions remained a challenge. The present study is aimed at formulating an emulsion capable of acting as a highly effective viral gene transfer vehicle with reduced cytotoxicity and to physicochemically characterize the structures of virus-emulsion complexes in comparison with virus-liposome complexes when the only difference between emulsions and liposomes was the presence or absence of inner oil core. The emulsion formulation was performed by 1) reducing the content of DOTAP while increasing the content of zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2) optimizing the oil content. The complexation capability of formulated DOTAP:DMPC mixed emulsions was similar to those of emulsions containing DOTAP alone while displaying significantly lower cytotoxicity. The complexation capabilities of the DOTAP:DMPC mixed emulsion were serum-compatible and were monitored in a variety of cell types, whereas its liposomal counterpart was totally ineffective. Characterization by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and dynamic light scattering studies indicated that the optimized emulsions spontaneously surrounded the virus particles to generate emulsions that encapsulated the viral particles, whereas viral particles merely attached to the surfaces of the counterpart liposomes to form multiviral aggregates. Overall, these studies demonstrated that optimized DOTAP:DMPC mixed emulsions are potentially useful for adenoviral gene delivery due to less cytotoxicity and the unique ability to encapsulate the viral particle, highlighting the importance of nanoparticle formulation.

  20. Optimization and physicochemical characterization of a cationic lipid-phosphatidylcholine mixed emulsion formulated as a highly efficient vehicle that facilitates adenoviral gene transfer

    PubMed Central

    Kim, Soo-Yeon; Lee, Sang-Jin; Kim, Jin-Ki; Choi, Han-Gon; Lim, Soo-Jeong

    2017-01-01

    Cationic lipid-based nanoparticles enhance viral gene transfer by forming electrostatic complexes with adenoviral vectors. We recently demonstrated the superior complexation capabilities of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) emulsion compared with a liposomal counterpart but the cytotoxicity of DOTAP emulsions remained a challenge. The present study is aimed at formulating an emulsion capable of acting as a highly effective viral gene transfer vehicle with reduced cytotoxicity and to physicochemically characterize the structures of virus-emulsion complexes in comparison with virus–liposome complexes when the only difference between emulsions and liposomes was the presence or absence of inner oil core. The emulsion formulation was performed by 1) reducing the content of DOTAP while increasing the content of zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2) optimizing the oil content. The complexation capability of formulated DOTAP:DMPC mixed emulsions was similar to those of emulsions containing DOTAP alone while displaying significantly lower cytotoxicity. The complexation capabilities of the DOTAP:DMPC mixed emulsion were serum-compatible and were monitored in a variety of cell types, whereas its liposomal counterpart was totally ineffective. Characterization by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and dynamic light scattering studies indicated that the optimized emulsions spontaneously surrounded the virus particles to generate emulsions that encapsulated the viral particles, whereas viral particles merely attached to the surfaces of the counterpart liposomes to form multiviral aggregates. Overall, these studies demonstrated that optimized DOTAP:DMPC mixed emulsions are potentially useful for adenoviral gene delivery due to less cytotoxicity and the unique ability to encapsulate the viral particle, highlighting the importance of nanoparticle formulation. PMID:29070949

  1. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities

    PubMed Central

    Shanab, Sanaa MM; Mostafa, Soha SM; Shalaby, Emad A; Mahmoud, Ghada I

    2012-01-01

    Objective To investigate the antioxidant and anticancer activities of aqueous extracts of nine microalgal species. Methods Variable percentages of major secondary metabolites (total phenolic content, terpenoids and alkaloids) as well as phycobiliprotein pigments (phycocyanin, allophycocyanin and phycoerythrin) in the aqueous algal extracts were recorded. Antioxidant activity of the algal extracts was performed using 2, 2 diphenyl-1-picrylhydrazyl (DPPH) test and 2,2′- azino-bis (ethylbenzthiazoline-6-sulfonic acid (ABTS.+) radical cation assay. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma cell (EACC) and Human hepatocellular cancer cell line (HepG2). Results Antioxidant activity of the algal extracts was performed using DPPH test and ABTS.+ radical cation assays which revealed 30.1-72.4% and 32.0-75.9% respectively. Anticancer efficiency of the algal water extracts was investigated against Ehrlich Ascites Carcinoma Cell (EACC) and Human Hepatocellular cancer cell line (HepG2) with an activity ranged 87.25% and 89.4% respectively. Culturing the promising cyanobacteria species; Nostoc muscorum and Oscillatoria sp. under nitrogen stress conditions (increasing and decreasing nitrate content of the normal BG11 medium, 1.5 g/L), increased nitrate concentration (3, 6 and 9 g/L) led to a remarkable increase in phycobilin pigments followed by an increase in both antioxidant and anticancer activities in both cyanobacterial species. While the decreased nitrate concentration (0.75, 0.37 and 0.0 g/L) induced an obvious decrease in phycobilin pigments with complete absence of allophycocyanin in case of Oscillatoria sp. Conclusions Nitrogen starvation (0.00 g/L nitrate) induced an increase and comparable antioxidant and anticancer activities to those cultured in the highest nitrate content. PMID:23569980

  2. Cation exchange in a glacial till drumlin at a road salt storage facility

    NASA Astrophysics Data System (ADS)

    Ostendorf, David W.; Xing, Baoshan; Kallergis, Niki

    2009-05-01

    We use laboratory and field data to calibrate existing geochemical and transport models of cation exchange induced by contamination of an unconfined aquifer at a road salt storage facility built upon a glacial till drumlin in eastern Massachusetts. A Gaines and Thomas selectivity coefficient K models the equilibrium sodium and divalent cation distribution in the groundwater and solid matrix, while an existing method of characteristics model describes the advective transport of total dissolved cations and sorbed sodium. Laboratory isotherms of split spoon soil samples from the drumlin calibrate K with an average value of 0.0048 (L/g) 1/2 for a measured cation exchange capacity of 0.057 meq/g dry soil. Ten years of monitoring well data document groundwater flow and the advection of conservative chloride due to outdoor storage and handling of road salt at the site. The monitoring well cation data and retarded transport model offer an independent K calibration of 0.0040 to 0.0047 (L/g) 1/2: the consistency of the field and laboratory selectivity coefficient calibrations endorse this application of the Gaines and Thomas and method of characteristics models. The advancing deicing agent plume releases divalent cations from the till into the groundwater, so that monitoring well samples do not reflect the chemical composition of the road salt. In this regard, dissolved divalent cation milliequivalent concentrations are as high as 80% of the total dissolved cationic concentrations in the salt contaminated monitoring well samples, far greater than their 2.5% level in the road salt stored at the site. Cation exchange can thus obscure attempts to hindcast stored road salt sodium water table concentration from monitoring well sample stoichiometry, or to predict sodium impacts on groundwater or receiving stream quality downgradient of the well.

  3. Cation exchange in a glacial till drumlin at a road salt storage facility.

    PubMed

    Ostendorf, David W; Xing, Baoshan; Kallergis, Niki

    2009-05-12

    We use laboratory and field data to calibrate existing geochemical and transport models of cation exchange induced by contamination of an unconfined aquifer at a road salt storage facility built upon a glacial till drumlin in eastern Massachusetts. A Gaines and Thomas selectivity coefficient K models the equilibrium sodium and divalent cation distribution in the groundwater and solid matrix, while an existing method of characteristics model describes the advective transport of total dissolved cations and sorbed sodium. Laboratory isotherms of split spoon soil samples from the drumlin calibrate K with an average value of 0.0048 (L/g)(1/2) for a measured cation exchange capacity of 0.057 meq/g dry soil. Ten years of monitoring well data document groundwater flow and the advection of conservative chloride due to outdoor storage and handling of road salt at the site. The monitoring well cation data and retarded transport model offer an independent K calibration of 0.0040 to 0.0047 (L/g)(1/2): the consistency of the field and laboratory selectivity coefficient calibrations endorse this application of the Gaines and Thomas and method of characteristics models. The advancing deicing agent plume releases divalent cations from the till into the groundwater, so that monitoring well samples do not reflect the chemical composition of the road salt. In this regard, dissolved divalent cation milliequivalent concentrations are as high as 80% of the total dissolved cationic concentrations in the salt contaminated monitoring well samples, far greater than their 2.5% level in the road salt stored at the site. Cation exchange can thus obscure attempts to hindcast stored road salt sodium water table concentration from monitoring well sample stoichiometry, or to predict sodium impacts on groundwater or receiving stream quality downgradient of the well.

  4. Solid state nuclear magnetic resonance investigation of polymer backbone dynamics in poly(ethylene oxide) based lithium and sodium polyether-ester-sulfonate ionomers.

    PubMed

    Roach, David J; Dou, Shichen; Colby, Ralph H; Mueller, Karl T

    2013-05-21

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T(g)) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting (13)C with (1)H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) (1)H-(13)C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and (1)H spin-lattice relaxation rate measurements. Previous (1)H and (7)Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of (13)C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time (1)H-(13)C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from (1)H to (13)C nuclei, becomes similar for T≳1.1 T(g) in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the dependence of backbone dynamics on cation density (and here, cation identity as well) in these amorphous PEO-based ionomer systems.

  5. The effect of dietary cation-anion difference concentration and cation source on milk production and feed efficiency in lactating dairy cows.

    PubMed

    Iwaniuk, M E; Weidman, A E; Erdman, R A

    2015-03-01

    Feed costs currently account for 55% or more of the total cost of milk production in US dairy herds, and dairy producers are looking for strategies to improve feed efficiency [FE; 3.5% fat-corrected milk (FCM) per dry matter (DM) intake]. Increasing dietary cation-anion difference [DCAD; Na+K-Cl (mEq/kg of DM)] has been shown to increase milk production, FCM, and FE. However, the optimal DCAD concentration for maximal FE has yet to be determined. The objectives of this research were to test the effects of DCAD concentration and cation source on dairy FE. Sixty Holstein dairy cows (20 cows per experiment) were used in three 4×4 Latin square design experiments with 3-wk experimental periods. In experiments 1 and 2, we tested the effect of DCAD concentration: cows were fed a basal diet containing ~250 mEq/kg of DM DCAD that was supplemented with potassium carbonate at 0, 50, 100, and 150 mEq/kg of DM or 0, 125, 250, and 375 mEq/kg of DM in experiments 1 and 2, respectively. In experiment 3, we tested the effect of cation source: sodium sesquicarbonate replaced 0, 33, 67, and 100% of the supplemental potassium carbonate (150 mEq/kg of DM DCAD). The DCAD concentration had no effect on milk production, milk protein concentration, or milk protein yield in experiments 1 and 2. Dry matter intake was not affected by DCAD concentration in experiment 1 or by cation source in experiment 3. However, DMI increased linearly with increasing DCAD in experiment 2. We detected a linear increase in milk fat concentration and yield with increasing DCAD in experiments 1 and 2 and by substituting sodium sesquicarbonate for potassium carbonate in experiment 3. Increased milk fat concentration with increasing DCAD led to increases in 3.5% FCM in experiments 1 and 2. Maximal dairy FE was achieved at a DCAD concentration of 426 mEq/kg of DM in experiments 1 and 2 and by substituting Na for K in experiment 3. The results of these experiments suggest that both DCAD concentration and the cation source used to alter DCAD concentration have effects on milk fat content and yield and dairy FE. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Alkyl ammonium cation stabilized biocidal polyiodides with adaptable high density and low pressure.

    PubMed

    He, Chunlin; Parrish, Damon A; Shreeve, Jean'ne M

    2014-05-26

    The effective application of biocidal species requires building the active moiety into a molecular back bone that can be delivered and decomposed on demand under conditions of low pressure and prolonged high-temperature detonation. The goal is to destroy storage facilities and their contents while utilizing the biocidal products arising from the released energy to destroy any remaining harmful airborne agents. Decomposition of carefully selected iodine-rich compounds can produce large amounts of the very active biocides, hydroiodic acid (HI) and iodine (I2). Polyiodide anions, namely, I3(-), I5(-), which are excellent sources of such biocides, can be stabilized through interactions with large, symmetric cations, such as alkyl ammonium salts. We have designed and synthesized suitable compounds of adaptable high density up to 3.33 g cm(-3) that are low-pressure polyiodides with various alkyl ammonium cations, deliverable iodine contents of which range between 58.0-90.9%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Globular, Sponge-like to Layer-like Morphological Transition in 1-n-Alkyl-3-methylimidazolium Octylsulfate Ionic Liquid Homologous Series.

    PubMed

    Kapoor, Utkarsh; Shah, Jindal K

    2018-01-11

    Segregation of polar and nonpolar domains in ionic liquids for which either the cation or anion is responsible for inducing nonpolar domains is well understood. On the other hand, information regarding the nanoscale heterogeneities originating due to the presence of nonpolar content on both the ions is rudimentary at this point. The present contribution is aimed at addressing this question and focuses on a molecular dynamics simulation study to probe nanoscale structural and aggregation features of the 1-n-alkyl-3-methylimidazolium [C n mim] octylsulfate [C 8 SO 4 ] ionic liquid homologous series (n = 2, 4, 6, 8, 10, and 12). The objective of this work is to determine the effect of increasing alkyl chain length in the cation on nonpolar domain formation, especially when the alkyl chain lengths from both the ions participate in defining such domains. The results indicate that all the ionic liquids form nonpolar domains, morphology of which gradually changes from globular, sponge-like to layer-like structure with increase in the cationic alkyl chain length. The length of the nonpolar domains calculated from the total structure factor for [C 10 mim][C 8 SO 4 ] is considerably higher than that reported for other imidazolium-based ionic liquid containing smaller anions. The structure factor for [C 12 mim][C 8 SO 4 ] ionic liquid contains multiple intermediate peaks separating the charge alternation peak and pre-peak, which points to nonpolar domains of varying lengths, an observation that remains to be validated. Analysis of the heterogeneous order parameters and orientational correlation functions of the alkyl chains further suggests an increase in the spatial heterogeneity and long-range order along the homologous series. The origin of rich diversity of structures obtained by introducing nonpolar content on both the ions is discussed.

  8. Mineral Content and Biochemical Variables of Aloe vera L. under Salt Stress

    PubMed Central

    Murillo-Amador, Bernardo; Córdoba-Matson, Miguel Víctor; Villegas-Espinoza, Jorge Arnoldo; Hernández-Montiel, Luis Guillermo; Troyo-Diéguez, Enrique; García-Hernández, José Luis

    2014-01-01

    Despite the proven economic importance of Aloe vera, studies of saline stress and its effects on the biochemistry and mineral content in tissues of this plant are scarce. The objective of this study was to grow Aloe under NaCl stress of 0, 30, 60, 90 and 120 mM and compare: (1) proline, total protein, and enzyme phosphoenolpyruvate carboxylase (PEP-case) in chlorenchyma and parenchyma tissues, and (2) ion content (Na, K, Ca, Mg, Cl, Fe, P. N, Zn, B, Mn, and Cu) in roots, stems, leaves and sprouts. Proline and PEP-case increased as salinity increased in both parenchyma and chlorenchyma, while total protein increased in parenchyma and decreased in chlorenchyma, although at similar salt concentrations total protein was always higher in chlorenchyma. As salinity increased Na and Cl ions increased in roots, stems, leaves, while K decreased only significantly in sprouts. Salinity increases typically caused mineral content in tissue to decrease, or not change significantly. In roots, as salinity increased Mg decreased, while all other minerals failed to show a specific trend. In stems, the mineral concentrations that changed were Fe and P which increased with salinity while Cu decreased. In leaves, Mg, Mn, N, and B decreased with salinity, while Cu increased. In sprouts, the minerals that decreased with increasing salinity were Mg, Mn, and Cu. Zinc did not exhibit a trend in any of the tissues. The increase in protein, proline and PEP-case activity, as well as the absorption and accumulation of cations under moderate NaCl stress caused osmotic adjustment which kept the plant healthy. These results suggest that Aloe may be a viable crop for soil irrigated with hard water or affected by salinity at least at concentrations used in the present study. PMID:24736276

  9. The impact of diets with different magnesium contents on magnesium and calcium in serum and tissues of the rat.

    PubMed

    Zimmermann, P; Weiss, U; Classen, H G; Wendt, B; Epple, A; Zollner, H; Temmel, W; Weger, M; Porta, S

    2000-07-14

    The impact of three different magnesium diets (70, 1,000 and 9,000 ppm) on total, ionized and bound magnesium as well as ionized calcium in serum and total calcium and magnesium in femoral bone, skeletal muscle, heart and liver of male Sprague-Dawley rats was investigated. The percentage of ionized serum magnesium was unproportionally high in rats fed a low magnesium (70 ppm) diet. Femoral magnesium was correlated with ionized and total serum magnesium. In contrast, there was generally no correlation between total serum magnesium and the magnesium fractions in skeletal muscle, heart and liver. In rats fed the magnesium deficient diet, total cardiac concentration of magnesium was even significantly increased along with total calcium content, while there were no effects on total muscle and liver magnesium. Within the single groups, ionized serum calcium was never proportional to dietary magnesium, but in all three magnesium diet groups together, it was inversely correlated with dietary magnesium. Moreover, ionized serum calcium was inversely correlated with both ionized and total serum magnesium. In all 3 groups together, the concentrations of total calcium and magnesium in heart and skeletal muscle were correlated, within the single groups correlation existed only in the 1000 ppm group. Magnesium influx via calcium channels during low magnesium intake has been seen in non cardiac tissues [35,36], but nothing similar is known about non selective channels for divalent cations in the heart [33]. Thus, magnesium uptake by cardiac cells along with calcium seems to be possible, especially at low intracellular magnesium concentrations, but is still poorly investigated. We suggest that the calcium-antagonistic effect of magnesium is related to the turnover rate of magnesium rather than to its tissue concentrations.

  10. Cadmium background concentrations to establish reference quality values for soils of São Paulo State, Brazil.

    PubMed

    de Oliveira, Vinicius Henrique; de Abreu, Cleide Aparecida; Coelho, Ricardo Marques; Melo, Leônidas Carrijo Azevedo

    2014-03-01

    Proper assessment of soil cadmium (Cd) concentrations is essential to establish legislative limits. The present study aimed to assess background Cd concentrations in soils from the state of São Paulo, Brazil, and to correlate such concentrations with several soil attributes. The topsoil samples (n = 191) were assessed for total Cd contents and for other metals using the USEPA 3051A method. The background concentration was determined according to the third quartile (75th). Principal component analysis, Spearman correlation, and multiple regressions between Cd contents and other soil attributes (pH, cation exchange capacity (CEC), clay content, sum of bases, organic matter, and total Fe, Al, Zn, and Pb levels) were performed. The mean Cd concentration of all 191 samples was 0.4 mg kg(-1), and the background concentration was 0.5 mg kg(-1). After the samples were grouped by parent material (rock origin) and soil type, the background Cd content varied, i.e., soils from igneous, metamorphic, and sedimentary rocks harbored 1.5, 0.4, and 0.2 mg kg(-1) of Cd, respectively. The background Cd content in Oxisols (0.8 mg kg(-1)) was higher than in Ultisols (0.3 mg kg(-1)). Multiple regression demonstrated that Fe was primarily attributed to the natural Cd contents in the soils (R (2) = 0.79). Instead of a single Cd background concentration value representing all São Paulo soils, we propose that the concentrations should be specific for at least Oxisols and Ultisols, which are the primary soil types.

  11. Geochemical and analytical implications of extensive sulfur retention in ash from Indonesian peats

    USGS Publications Warehouse

    Kane, Jean S.; Neuzil, Sandra G.

    1993-01-01

    Sulfur is an analyte of considerable importance to the complete major element analysis of ash from low-sulfur, low-ash Indonesian peats. Most analytical schemes for major element peat- and coal-ash analyses, including the inductively coupled plasma atomic emission spectrometry method used in this work, do not permit measurement of sulfur in the ash. As a result, oxide totals cannot be used as a check on accuracy of analysis. Alternative quality control checks verify the accuracy of the cation analyses. Cation and sulfur correlations with percent ash yield suggest that silicon and titanium, and to a lesser extent, aluminum, generally originate as minerals, whereas magnesium and sulfur generally originate from organic matter. Cation correlations with oxide totals indicate that, for these Indonesian peats, magnesium dominates sulfur fixation during ashing because it is considerably more abundant in the ash than calcium, the next most important cation in sulfur fixation.

  12. Study of change of hydrophysical properties of bore mud in process of its utilization into man-induced soil

    NASA Astrophysics Data System (ADS)

    Gaevaya, E. V.; Bogaychuk, Y. E.; Tarasova, S. S.; Skipin, L. N.; Zaharova, E. V.

    2017-10-01

    The article considers the results of studies of the chemical and granulometric content and the factor of bore mud filtration in the process of its utilization. When the phosphogypsum is added, hydrophysical properties of the bore mud improve. At the same time, gradation of soil from the water-proof to weakly permeable takes place. This phenomenon is connected with recovery of filterability at the expense of ion-exchange reaction and a decrease of the silt fraction content in the bore mud. During the adding of phosphogypsum in the bore mud, pH decreased and made up 7.6-7.8 U. The decrease of the concentration of chloride-ions and sulphate-ions took place at the expense of replacement of Na+ by cations of Ca2+ that contributed to the formation of the water-stable structure with good filterability. The content of total forms of heavy metals in man-induced soil was lower than MAC (APC) for the loams. Man-induced soil has a V class of danger for the surrounding environment.

  13. Characterization of Highly Sulfonated SIBS Polymer Partially Neutralized With Mg(+2) Cations

    DTIC Science & Technology

    2008-08-01

    protective clothing, block copolymer ionomer membranes emerge. They are highly ordered sequence of both ionic and nonionic blocks, in which the ionic ...incorporated into the ionic polymer. Fourier-transform infrared spectroscopy results revealed that a significant amount of ordering occurred as a result on...increasing Mg content. This band indicates Mg complexation formed when two or more sulfonate groups ionically bonded to the Mg+2 cation

  14. Natural zeolite reactivity towards ozone: the role of compensating cations.

    PubMed

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Analysis of glycosylated flavonoids extracted from sweet-cherry stems, as antibacterial agents against pathogenic Escherichia coli isolates.

    PubMed

    Aires, Alfredo; Dias, Carla; Carvalho, Rosa; Saavedra, Maria José

    2017-01-01

    The aim of this study was to evaluate the bioactivity of flavonoids extracted from sweet-cherry stems which are often used by a traditional system of medicine to treat gastro-intestinal and urinary tract infections but lacking any consistent scientific evidence; moreover the information about the class of phenolics, their content and the potential bioactivity of such material is very scarce. Thus, in this context, we have set a research study in which we evaluated the profile and content of phenolics extracted from sweet-cherry stems through a conventional (70ºC and 20 min) and ultrasound assisted extraction (40 kHz, room temperature and 20 min). The extracts were phytochemically characterized by using an HPLC-DAD-UV/VIS system and assayed by an in vitro minimum inhibitory concentration (MIC) bioassay against Escherichia coli isolates. Simultaneously, the total antioxidant activities were measured using the 2,2'-azinobis-3-ethylbenzothiazoline-6-sulphonate (ABTS •+ ) radical cation assay. Our results indicate that sweet-cherry stems have a high content of sakuranetin, ferulic acid, p-coumaric acid, p-coumaroylquinic acid, chlorogenic acid and its isomer neochlorogenic acid. Their average levels were highly affected by the extraction method used (p<0.001). The same trend was observed for total antioxidant activity and MIC values. The extracts produced with ultrasounds presented both, a higher total antioxidant activity and a lower minimum inhibitory concentration. Statistical analyses of our results showed a significant correlation (p<0.01) of total antioxidant activity and minimum inhibitory concentration with phenolics present in the extracts studied. Thus, we can conclude that cherry stems can be further exploited to purify compounds and produce coproducts with enhanced biologically added value for pharmaceutical industry.

  16. Theoretical Infrared Spectra for Polycyclic Aromatic Hydrocarbon Neutrals, Cations and Anions

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.

    1995-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of the neutrals and cations of thirteen polycyclic aromatic hydrocarbons (PAHs) up to the size of ovalene. Calculations are also carried out for a few PAH anions. The DFT harmonic frequencies, when uniformly scaled by the factor of 0.958 to account primarily for anharmonicity, agree with the matrix isolation fundamentals to within an average error of about 10 per centimeter. Electron correlation is found to significantly reduce the intensities of many of the cation harmonics, bringing them into much better agreement with the available experimental data. While the theoretical infrared spectra agree well with the experimental data for the neutral systems and for many of the cations, there are notable discrepancies with the experimental matrix isolation data for some PAH cations that are difficult to explain in terms of limitations in the calculations. In agreement with previous theoretical work, the present calculations show that the relative intensities for the astronomical unidentified infrared (UIR) bands agree reasonably well with those for a distribution of polycyclic aromatic hydrocarbon (PAH) cations, but not with a distribution of PAH neutrals. We also observe that the infrared spectra of highly symmetrical cations such as coronene agree much better with astronomical observations than do those of, for example, the polyacenes such as tetracene and pentacene. The total integrated intensities for the neutral species are found to increase linearly with size, while the total integrated intensities are much larger for the cations and scale more nearly quadratically with size. We conclude that emission from moderate-sized highly symmetric PAH cations such as coronene and larger could account for the UIR bands.

  17. Size Dependent Cation Channel in Nanoporous Prussian Blue Lattice

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Igarashi, Kazuhiro; Kim, Jungeun; Tanaka, Hiroshi

    2009-08-01

    Cation and/or molecule transfer within nanoporous materials can be utilized in, for example, electrochromic devices, hydrogen storage, molecular sensors, and molecular filters. Here, we investigated the mobilities of cations, Na+, K+, and Rb+, in vacancy-controlled Prussian blue film, NaxCo[Fe(CN)6]1-vzH2O (v is vacancy concentration) with a jungle gym structure. We found that only the smallest Na+ ions pass through the cubic planes of the lattice, while the larger cations, i.e., K+ and Rb+, take a detour channel along the [Fe(CN)6] vacancy. The size-dependent cation channel is well understood in terms of the potential curve derived by an ab initio total energy calculation.

  18. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  19. Comparison contemporary methods of regeneration sodium-cationic filters

    NASA Astrophysics Data System (ADS)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  20. A post audit and inverse modeling in reactive transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes

    NASA Astrophysics Data System (ADS)

    Karlsen, R. H.; Smits, F. J. C.; Stuyfzand, P. J.; Olsthoorn, T. N.; van Breukelen, B. M.

    2012-08-01

    SummaryThis article describes the post audit and inverse modeling of a 1-D forward reactive transport model. The model simulates the changes in water quality following artificial recharge of pre-treated water from the river Rhine in the Amsterdam Water Supply Dunes using the PHREEQC-2 numerical code. One observation dataset is used for model calibration, and another dataset for validation of model predictions. The total simulation time of the model is 50 years, from 1957 to 2007, with recharge composition varying on a monthly basis and the post audit is performed 26 years after the former model simulation period. The post audit revealed that the original model could reasonably predict conservative transport and kinetic redox reactions (oxygen and nitrate reduction coupled to the oxidation of soil organic carbon), but showed discrepancies in the simulation of cation exchange. Conceptualizations of the former model were inadequate to accurately simulate water quality changes controlled by cation exchange, especially concerning the breakthrough of potassium and magnesium fronts. Changes in conceptualization and model design, including the addition of five flow paths, to a total of six, and the use of parameter estimation software (PEST), resulted in a better model to measurement fit and system representation. No unique parameter set could be found for the model, primarily due to high parameter correlations, and an assessment of the predictive error was made using a calibration constrained Monte-Carlo method, and evaluated against field observations. The predictive error was found to be low for Na+ and Ca2+, except for greater travel times, while the K+ and Mg2+ error was restricted to the exchange fronts at some of the flow paths. Optimized cation exchange coefficients were relatively high, especially for potassium, but still within the observed range in literature. The exchange coefficient for potassium agrees with strong fixation on illite, a main clay mineral in the area. Optimized CEC values were systematically lower than clay and organic matter contents indicated, possibly reflecting preferential flow of groundwater through the more permeable but less reactive aquifer parts. Whereas the artificial recharge initially acted as an intrusion of relatively saline water triggering Na+ for Ca2+ exchange, further increasing total hardness of the recharged water, the gradual long-term reduction in salinity of the river Rhine since the mid 1970s has shifted to an intrusion of fresher water causing Ca2+ for Na+ exchange. As a result, seasonal and longer term reversal of the initial cation exchange processes was observed adding to the general long-term reduction in total hardness of the recharged Rhine water.

  1. Quantifying the Spatial and Seasonal Hydrodynamics of Subsurface Soil Salinity and Selenium Mobilization in the Pariette Watershed, Uintah Basin, UT

    NASA Astrophysics Data System (ADS)

    Amakor, X. N.; Jacobson, A. R.; Cardon, G. E.; Grossl, P. R.

    2011-12-01

    A recent water quality report recognized concentrations of salts and selenium above total maximum daily loads (TMDLs) in the Pariette Wetlands located in the Uintah Basin, Utah. Since the wetlands are located in the Pacific Migratory Flyway and frequented by numerous water fowl, the elevated levels of total dissolved solids and Se are of concern. To determine whether it possible to manage the mobilization of salts and associated contaminants through the watershed soils into the Pariette Wetlands, knowledge of the spatio-temporal dynamics and distribution of these contaminants is required. Thus, the objective of this study is to characterize the spatio-temporal mobilization of salts and total selenium in the Pariette Draw watershed. Intensive soil information is being collected along the streams feeding the wetlands from fields representing the dominant land-uses in the watershed (irrigated agricultural fields, fallow salt-crusted fields, oil and natural gas extraction fields) using both the noninvasive electromagnetic induction (EMI) sensing technique (EM38DD) and the invasive time-domain reflectometry (TDR). At each site, ground truth samples were collected from optimally determined points generated using the ESAP-RSSD program based on the bulk soil electrical conductivity survey information. Stable soil properties affecting the measurement of salinity (e.g., clay content, organic matter content, cation exchange capacity, bulk density) were also characterized at these points. Parameters affected by fluctuations in soil moisture content (e.g., pH, electrical conductivity of saturation paste extract (ECe), dissolved organic carbon (DOC), and total selenium in the dissolved saturation extract) are being measured repeatedly over a minimum of 1 year. Based on regression models of collocated EMI, TDR and ECe measurements, the dense survey data are transformed into ECe. Geostatistical kriging methods are applied to the transformed ECe and volumetric water content to reveal the complex spatio-temporal patterns of salinity, water content, and total selenium (based on the association between ECe and total Se) across portions of the watershed. Temporal changes are being compared using the paired t-test. Here we present the spatio-temporal correlations among the properties and over the sampling times for the 2011 summer and fall seasons with an initial evaluation of the underlying processes contributing to the elevated contaminant loads at the wetlands. Additional measurements will be made in 2012 to capture the effects of early spring snowmelt and runoff.

  2. Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite.

    PubMed

    Latifah, Omar; Ahmed, Osumanu Haruna; Susilawati, Kassim; Majid, Nik Muhamad

    2015-04-01

    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives. © The Author(s) 2015.

  3. Study on fluoride emission from soils at high temperature related to brick-making process.

    PubMed

    Xie, Z M; Wu, W H; Xu, J M

    2003-02-01

    Characteristics of fluoride emission from 12 soils at temperatures of 400-1,100 degrees C related to the brick-making process were studied. The results obtained in this study indicate that fluoride emission as gaseous HF and SiF4 was related to the firing temperature, soil total fluoride content, soil composition and calcium compounds added to soils. Soils began to release fluoride at temperatures between 500 and 700 degrees C. Marked increases of the average fluoride mission rate from 57.2% to 85.4% of soil total fluoride were noticed as the heating temperature was increased from 700 to 1,100 degrees C. It was found that the major proportion (over 50%) of the soil total fluoride was emitted from soils at approximate 800 degrees C. The amount of fluoride released into the atmosphere when heated depended on the total fluoride contents in the soils. Correlation analysis showed that the soil composition, such as cation exchange capacity, exchangeable calcium and CaCO3, had some influence on fluoride emission below 900 degrees C, but had no influence at temperatures above 900 degrees C. Addition of four calcium compounds (CaO, CaCO3, Ca(OH)2, and CaSO4) at 1.5% by weight raised the temperature at which fluoride began to be released to 700 degrees C. The greatest decrease in fluoride emission among the four calcium compound treatments was found with CaCO3.

  4. Ion pair and solvation dynamics of [Bmim][BF4 ] + water system.

    PubMed

    Cascão, João; Silva, Wagner; Ferreira, Ana S D; Cabrita, Eurico J

    2018-02-01

    In this work, 1-butyl-3-methylimidazolium tetrafluoroborate/water mixtures were analysed over the whole water composition (x w ) in order to study the rotational and translational behaviour of the ions. We employed a multinuclear NMR approach to determine anion/cation/water diffusion coefficients and longitudinal relaxation rates at different water content. In neat ionic liquids (IL), the cation diffuses faster than the anion, and at low x w , anions and cations share almost the same diffusion coefficient, but above a critical water concentration, the anion begins to diffuse faster than the cation. We identified this composition as approximately 10% x w where the ions share the same diffusion coefficient. We found that the water at this composition seems to have a much more dramatic effect in the rotational diffusion of the anion that decreases substantially and approaches that of the anion in the diluted IL. Translational and rotational dynamics of the ions suggest that water is first incorporated in pockets in the nanostructure of the IL allowing the ions to maintain most of the cation/anion interactions present in neat IL but already disrupting some anion/cation interactions due to preferential interaction with the anion. HOESY and NOESY data show that water displays contacts both with the cation and the anion in a positive NOE regime in contrary to the negative regime found for the cation/anion and cation/cation cross-relaxation. This is in accordance with the high relative diffusion coefficient of water and suggests that water molecules can exchange between preferential location sites that allow water to maintain contacts both with the anion and cation. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Electrode Edge Cobalt Cation Migration in an Operating Fuel Cell: An In Situ Micro-X-ray Fluorescence Study

    DOE PAGES

    Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.; ...

    2018-03-14

    PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less

  6. Electrode Edge Cobalt Cation Migration in an Operating Fuel Cell: An In Situ Micro-X-ray Fluorescence Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.

    PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less

  7. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    PubMed Central

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  8. Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium.

    PubMed

    Kyzioł-Komosińska, Joanna; Augustynowicz, Joanna; Lasek, Wojciech; Czupioł, Justyna; Ociński, Daniel

    2018-05-15

    The present study focused on the use of the dry mass of the macrophyte Callitriche cophocarpa as an effective biosorbent for chromium removal from concentrated solutions, typical for industrial effluents. In order to evaluate the usability of C. cophocarpa as the Cr(III) sorbent, its detailed physicochemical characterization has been performed as well as the preliminary adsorption studies. The biosorbent was characterized by specific surface area (SSA), porosity, total organic carbon (TOC), inorganic content as well as the cation exchange capacity (CEC), dominant exchangeable cations and anion exchange capacity (AEC), point of zero charge (pH pzc ) and buffering capacity. The effect of the initial chromium concentration, solution pH and co-existing anions on the sorption effectiveness have been investigated. Based on theoretical isotherm models, the maximum adsorption capacity of the dry C. cophocarpa has been determined as 77.1 mg Cr(III)/g. Finally, the strength of Cr-binding onto the plant biomass has been evaluated using the BCR extraction method, stating that chromium was strongly and - under environmental conditions - irreversibly bound to the plant biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. [Dependence of ion transport across the plasma membrane on cell culture density. II. Active and passive cation transport during the growth of L cell cultures].

    PubMed

    Marakhova, I I; Sal'nikov, K V; Vinogradova, T A

    1985-10-01

    Rubidium and lithium influxes as well as intracellular potassium and sodium contents were investigated in L cells during the culture growth. In sparse culture over the cell densities 0.5-3 X 10(4) cells/cm2 ouabain-sensitive rubidium influx is small and ouabain-resistant lithium influx in high. With the increase in culture density up to 4-5 X 10(4) cells/cm2 the active rubidium influx, mediated by ouabain-sensitive component, is enhanced, and ion "leakage" tested by lithium influx is diminished. Simultaneously with the exponential growth of culture the intracellular potassium content is increased and the intracellular sodium content is decreased resulting in the higher K/Na ratio in cell. During the further transition to dense culture and in stationary state (10-17 X 10(4) cells/cm2) the sodium content and lithium influx do not change significantly, but the potassium content is decreased. The decrease in intracellular potassium is correlated with that in the portion of cells in S-phase from 27-30 to 12%. Thus, in transformed cells the density-dependent alterations in membrane cation transport are observed.

  10. Hydration effect on ion exchange resin irradiated by swift heavy ions and gamma rays

    NASA Astrophysics Data System (ADS)

    Boughattas, I.; Labed, V.; Gerenton, A.; Ngono-Ravache, Y.; Dannoux-Papin, A.

    2018-06-01

    Gamma radiolysis of ion exchange resins (IER) is widely studied since the sixties, as a function of different parameters (resin type, dose, atmosphere, water content …). However, to our knowledge, there are very few data concerning hydrogen emission from anionic and cationic resins irradiated at high Linear Energy Transfers (LET). In the present work, we focus on the influence of hydration on hydrogen emission, in anionic and cationic resins irradiated under inert atmosphere using Swift Heavy Ions (SHI) and gamma irradiations. The radiation chemical yield of molecular hydrogen is nonlinear with water content for both resins. The molecular hydrogen production depends first on the water form in IER (free or linked) and second on the solubility of degradation products. Three steps have been observed: at lower water content where G(H2) is stable, at 50%, G(H2) increases due to reactions between water radiolytic species and the resin functional groups and at high water content, G(H2) decreases probably due to its accumulation in water and its consumption by hydroxyl radicals in the supernatant.

  11. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  12. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    DOE PAGES

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; ...

    2015-07-24

    We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) andmore » second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.« less

  13. Improvement of chemical monitoring of water-chemistry conditions at thermal power stations based on electric conductivity and pH measurements

    NASA Astrophysics Data System (ADS)

    Larin, A. B.; Larin, B. M.

    2016-05-01

    The increased requirements to the quality of the water heat conductor for working superhigh (SHP) and supercritical (SCP) pressure power plants and promising units, including combined-cycle gas turbine (CCGT) units and power plants with ultrasupercritical parameters (USCPs), can largely be satisfied through specific electric conductivity and pH measurements for cooled heat conductor samples combined with calculations of ionic equilibria and indirect measurements of several specified and diagnostic parameters. The possibility of calculating the ammonia and chloride concentrations and the total concentration of hardness and sodium cations in the feed water of drum-type boilers and the phosphate and salt contents in boiler water was demonstrated. An equation for evaluating the content of potentially acid substances in the feed water of monotube boilers was suggested. The potential of the developed procedure for evaluating the state of waterchemistry conditions (WCCs) in power plants with CCGT units was shown.

  14. Charge characteristics of humic and fulvic acids: comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model.

    PubMed

    Bratskaya, S; Golikov, A; Lutsenko, T; Nesterova, O; Dudarchik, V

    2008-09-01

    Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.

  15. Sr isotopic composition as a tracer of Ca sources in two forest ecosystems in Belgium.

    NASA Astrophysics Data System (ADS)

    Drouet, T.; Herbauts, J.; Demaiffe, D.

    2003-04-01

    The two main sources of Ca in forest ecosystem are the mineral weathering release and atmospheric inputs. We use the 87Sr/86Sr isotopic ratio (Sr is a proxy for Ca) to determine the Ca contribution from rain input in two forest ecosystems (beech stands) growing on soils formed from parent materials with distinct total Ca contents and contrasted isotopic ratios: Pleistocene loess in Central Belgium (leached brown soil) with present-day 87Sr/86Sr =0.72788 and Lower Devonian shales and sandstones in Ardennes (ochreous brown earth) with 87Sr/86Sr = 0.76913. The 87Sr/86Sr ratios and the Ca and Sr contents were measured in rainwater, vegetation (beech wood growth rings and leaves) and main soil horizons (total, labile and HCl 0.1 M soluble forms). The relative contributions of atmospheric input and soil mineral weathering to vegetation were calculated using mixing equations. Calculations based on the Sr isotope ratios of rainwater (endmember 1; 87Sr/86Sr close to seawater: 0.7090), labile soil fraction (endmember 2; 87Sr/86Sr: 0.71332 to 0.71785) and beech wood (mixing compartment) indicate that about 50 % (Central Belgium) to 35 % (Ardennes) of Ca uptake originate from atmospheric inputs. The choice of the appropriate 87Sr/86Sr ratio for the weathering endmember is however critical. The isotopic composition of the mineral source is theoretically determined by the mineralogical composition of the soil and the relative weatherability of the Sr-bearing minerals. Due to soil processes (weathering and clay illuviation), the distribution of minerals in both soil profiles is not homogeneous and varies from horizon to horizon. Which horizons are relevant and which kind of soil extract (labile soil fraction, acid soluble fraction, total soil,...) should be selected for isotopic measurement of weathering endmember, is therefore questionable. The different ways of estimation are discussed. Quantitative mineralogical reconstitutions of soil horizons and isotopic data indicate preferential weathering of plagioclase (high Sr content with low 87Sr/86Sr) rather than mica or K-feldspar (high 87Sr/86Sr). Our results emphasize the importance of the Ca atmospheric contribution to the tree mineral nutrition in these forest ecosystems. It is plausible that acid depositions associated with decreasing input of atmospheric cations (“acid rains”) could increase the depletion of soil available cation pool at a short-time scale.

  16. Large-scale synthesis of lead telluride (PbTe) nanotube-based nanocomposites with tunable morphology, crystallinity and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Park, Kee-Ryung; Cho, Hong-Baek; Song, Yoseb; Kim, Seil; Kwon, Young-Tae; Ryu, Seung Han; Lim, Jae-Hong; Lee, Woo-Jin; Choa, Yong-Ho

    2018-04-01

    A few millimeter-long lead telluride (PbTe) hollow nanofibers with thermoelectric properties was synthesized for the first time with high through manner via three-step sequential process of electrospinning, electrodeposition and cationic exchange reaction. As-synthesized electrospun Ag nanofibers with ultra-long aspect ratio of 10,000 were Te electrodeposited to obtain silver telluride nanotubes and underwent cationic exchange reaction in Pb(NO3)2 solution to obtain polycrystalline PbTe nanotubes with average diameter of 100 nm with 20 nm of wall thickness. Variation of the Ag-to-Pb ratio in the AgxTey-PbTe nanocomposites during the cationic exchange reaction enabled to control the thermoelectric properties of resulting 1D hollow nanofibers. The diameter of Ag nanofiber is the key factor to determine the final dimension of the PbTe nanotubes in the topotactic transformation and the content of Ag ion leads to the enhancement of thermoelectric properties in the AgxTey-PbTe nanocomposites. The synthesized 1D nanocomposite mats showed the highest value of Seebeck coefficient of 433 μV/K (at 300 K) when the remained Ag content was 30%, while the power factor reached highest to 0.567 μW/mK2 for the pure PbTe nanotubes. The enhancement of thermoelectric properties and the composite crystallinity are elucidated with relation to Ag contents in the resulting 1D nanocomposites.

  17. Serum magnesium and calcium levels in infertile women during a cycle of reproductive assistance.

    PubMed

    Grossi, Elena; Castiglioni, Sara; Moscheni, Claudia; Antonazzo, Patrizio; Cetin, Irene; Savasi, Valeria Maria

    2017-05-01

    Magnesium (Mg) and calcium (Ca) are essential cations for women's preconception health. It is well known that, in blood, the concentration of ionized form of these two cations is temporally altered during menstrual cycle, suggesting a correlation between sex steroid hormones and serum calcium and magnesium levels. Evidence from literature suggests that in assisted reproductive technology increasing estrogens during ovarian hyperstimulation may also modulate serum magnesium and calcium levels. Therefore, we first examined total serum magnesium and calcium levels during follicular phase in a large population of infertile patients who underwent intrauterine insemination (IUI). The results were compared to a group of fertile women. Successively, we studied the total serum magnesium and calcium concentrations in infertile patients before and after ovarian hyperstimulation for in vitro fertilization (IVF). Results highlight that total serum concentration of magnesium and calcium does not seem altered in infertile women. During stimulation with gonadotropins, the values of the two cations do not change significantly in ovarian-stimulated women. However, we found a downward trend in the total magnesium and calcium levels in relation to the rising estrogens.

  18. Predictions of diagenetic reactions in the presence of organic acids

    NASA Astrophysics Data System (ADS)

    Harrison, Wendy J.; Thyne, Geoffrey D.

    1992-02-01

    Stability constants have been estimated for cation complexes with anions of monofunctional and difunctional acids (combinations of Ca, Mg, Fe, Al, Sr, Mn, U, Th, Pb, Cu, Zn with formate, acetate, propionate, oxalate, malonate, succinate, and salicylate) between 0 and 200°C. Difunctional acid anions form much more stable complexes than monofunctional acid anions with aluminum; the importance of the aluminum-acetate complex is relatively minor in comparison to aluminum oxalate and malonate complexes. Divalent metal cations such as Mg, Ca, and Fe form more stable complexes with acetate than with difunctional acid anions. Aluminum-oxalate can dominate the species distribution of aluminum under acidic pH conditions, whereas the divalent cation-acetate and oxalate complexes rarely account for more than 60% of the total dissolved cation, and then only in more alkaline waters. Mineral thermodynamic affinities were calculated using the reaction path model EQ3/6 for waters having variable organic acid anion (OAA) contents under conditions representative of those found during normal burial diagenesis. The following scenarios are possible: 1) K-feldspar and albite are stable, anorthite dissolves 2) All feldpars are stable 3) Carbonates can be very unstable to slightly unstable, but never increase in stability. Organic acid anions are ineffective at neutral to alkaline pH in modifying stabilities of aluminosilicate minerals whereas the anions are variably effective under a wide range of pH in modifying carbonate mineral stabilities. Reaction path calculations demonstrate that the sequence of mineral reactions occurring in an arkosic sandstone-fluid system is only slightly modified by the presence of OAA. A spectrum of possible sandstone alteration mineralogies can be obtained depending on the selected boundary conditions: EQ3/6 predictions include quartz overgrowth, calcite replacement of plagioclase, albitization of plagioclase, and the formation of porosity-occluding calcite cement, smectite, and illite, all of which are commonly documented in rocks. Under some circumstances, OAA-bearing waters are less effective at producing porosity in an arkosic sandstone than are OAA-free waters. In the scenarios modeled in this study the role of OAA in fluid-rock interactions is to contribute to the total alteration assemblage but not necessarily to dominate it, except under exceptional circumstances that might include, for example, hydrocarbon contaminant plumes in aquifers, wetland environments, and within hydrocarbon source-rocks.

  19. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine.

    PubMed

    Cerqueira, Beatriz; Vega, Flora A; Silva, Luis F O; Andrade, Luisa

    2012-04-01

    Open cast mining has a strong impact on the environment, the intensity depending on the morphology of the deposit and on the nature of the minerals. At Touro mine (NW Spain) there is a large area covered by tailings, one of which, called the "sedimentation bank", was used to deposit sludge resulting from the extraction of copper in the flotation plant. Three zones were selected and the soils were sampled to analyse the changes brought about by vegetation on the chemical and mineralogical properties of the soils developed over the sedimentation bank and its development over time. The vegetation increased the pH, contents of organic material, nitrogen, clay and free oxides of Fe and Al, and the cationic exchange capacity of the soils. The decrease in the sulphide content, benefited by the vegetation process, led to a reduction in the total content of Cr and Cu. The vegetation also contributed towards the alteration of the primary minerals. The transformation of jarosite, the formation of nanocrystals of hematite, goethite, hydroxypolymers, and amorphous minerals that contained Cu, Cr and Pb were observed. Nevertheless the high Cu and Cr contents indicate that it is advisable to change the restoration process. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Cations Modulate Actin Bundle Mechanics, Assembly Dynamics, and Structure.

    PubMed

    Castaneda, Nicholas; Zheng, Tianyu; Rivera-Jacquez, Hector J; Lee, Hyun-Ju; Hyun, Jaekyung; Balaeff, Alexander; Huo, Qun; Kang, Hyeran

    2018-04-12

    Actin bundles are key factors in the mechanical support and dynamic reorganization of the cytoskeleton. High concentrations of multivalent counterions promote bundle formation through electrostatic attraction between actin filaments that are negatively charged polyelectrolytes. In this study, we evaluate how physiologically relevant divalent cations affect the mechanical, dynamic, and structural properties of actin bundles. Using a combination of total internal reflection fluorescence microscopy, transmission electron microscopy, and dynamic light scattering, we demonstrate that divalent cations modulate bundle stiffness, length distribution, and lateral growth. Molecular dynamics simulations of an all-atom model of the actin bundle reveal specific actin residues coordinate cation-binding sites that promote the bundle formation. Our work suggests that specific cation interactions may play a fundamental role in the assembly, structure, and mechanical properties of actin bundles.

  1. Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants

    PubMed Central

    Zhai, Jun; Teng, Houkai; Zhao, Chun; Zhao, Chuanliang; Liao, Yong

    2014-01-01

    The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance. PMID:25347394

  2. Distribution of Cd and other cations between the stroma and thylakoids: a quantitative approach to the search for Cd targets in chloroplasts.

    PubMed

    Lysenko, Eugene A; Klaus, Alexander A; Kartashov, Alexander V; Kusnetsov, Victor V

    2018-06-21

    Plant growth and photosynthetic activity are usually inhibited due to the overall action of Cd on a whole organism, though few cadmium cations can invade chloroplasts in vivo. We found that in vivo, the major portion of Cd in barley chloroplasts is located in the thylakoids (80%), and the minor portion is in the stroma (20%). Therefore, the electron-transport chain in the thylakoids would be the likely target for direct Cd action in vivo. In vitro, we found the distribution of Cd to be shifted to the stroma (40-60%). In barley chloroplasts, the major portions of Mg, Fe, Mn, and Cu were found to be located in the thylakoids, and most Ca, Zn, and K in the stroma. This finding was true for both control and Cu- or Fe-treated plants. Treatment with Cd affected the contents of all cations, and the largest portions of Ca and Zn were in the thylakoids. Alterations of the K and Mn contents were caused by Cd, Cu, or Fe treatment; the levels of other cations in chloroplasts were changed specifically by Cd treatment. The quantity of Cd in chloroplasts was small in comparison to that of Mg, Ca, and Fe. In thylakoids, the amount of Cd was similar to that of Cu and comparable to the levels of Zn and Mn. Accordingly, the possible targets for direct Cd action in thylakoids are the Mn cluster, plastocyanin, carbonic anhydrase, or FtsH protease. The quantity of Cd in thylakoids is sufficient to replace a cation nearly completely at one of these sites or partially (20-30%) at many of these sites.

  3. A combination of additives can synergically decrease acrylamide content in gingerbread without compromising sensory quality.

    PubMed

    Komprda, Tomáš; Pridal, Antonin; Mikulíková, Renata; Svoboda, Zdeněk; Cwiková, Olga; Nedomová, Šárka; Sýkora, Vladimír

    2017-02-01

    The present study tested whether replacement of the leavening agent ammonium carbonate by sodium hydrogen carbonate in combination with calcium cation and acidifying agent will synergically decrease acrylamide (AA) content in gingerbread. The type of leavening agent and the presence of Ca 2+ and citric acid accounted for 33.6%, 13.2% and 53.2% of the explained variability of the AA content, respectively (P < 0.01). The AA content in gingerbread produced with (NH 4 ) 2 CO 3 alone was 186.5 µg kg -1 . Irrespective of other tested additives, NaHCO 3 decreased (P < 0.05) AA content to 42% compared to (NH 4 ) 2 CO 3 . Combination of NaHCO 3 + CaCl 2 + citric acid in dough reduced (P < 0.05) AA content below the limit of detection (25 µg kg -1 ). The AA content in gingerbread (y; µg kg -1 ) decreased with an increasing number of additives used (x) according to the equation y = 158.8 - 47.94x (r 2 = 0.42; P < 0.0001). A comprehensive sensory analysis did not indicate any significant deterioration (P > 0.05) in the organoleptic quality of gingerbread produced using calcium cation and citric acid. The present study demonstrates that the combination of additives NaHCO 3 /Ca 2+ /citric acid synergically decreases AA content in gingerbread without compromising the sensory quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues.

    PubMed

    Kapasakalidis, Petros G; Rastall, Robert A; Gordon, Michael H

    2006-05-31

    The total phenol and anthocyanin contents of black currant pomace and black currant press residue (BPR) extracts, extracted with formic acid in methanol or with methanol/water/acetic acid, were studied. Anthocyanins and other phenols were identified by means of reversed phase HPLC, and differences between the two plant materials were monitored. In all BPR extracts, phenol levels, determined by the Folin-Ciocalteu method, were 8-9 times higher than in the pomace extracts. Acid hydrolysis liberated a much higher concentration of phenols from the pomace than from the black currant press residue. HPLC analysis revealed that delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside were the major anthocyanins and constituted the main phenol class ( approximately 90%) in both types of black currant tissues tested. However, anthocyanins were present in considerably lower amounts in the pomace than in the BPR. In accordance with the total phenol content, the antioxidant activity determined by scavenging of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, the ABTS(*)(+) assay, showed that BPR extracts prepared by solvent extraction exhibited significantly higher (7-10 times) radical scavenging activity than the pomace extracts, and BPR anthocyanins contributed significantly (74 and 77%) to the observed high radical scavenging capacity of the corresponding extracts.

  5. Antioxidant Properties of Artemisia annua Extracts in Model Food Emulsions

    PubMed Central

    Skowyra, Monika; Gallego, Maria Gabriela; Segovia, Francisco; Almajano, Maria Pilar

    2014-01-01

    Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin. Although artemisinin is a major bioactive component present in this Chinese herb, leaf flavonoids have shown a variety of biological activities. The polyphenolic profile of extract from leaves of A. annua was assessed as a source of natural antioxidants. Total phenolic content and total flavonoid content were established and three assays were used to measure the antioxidant capacity of the plant extract. The measurement of scavenging capacity against the 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation, the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) were 314.99 µM Trolox equivalents (TE)/g DW, 736.26 µM TE/g DW and 212.18 µM TE/g DW, respectively. A. annua extracts also showed good antioxidant properties in 10% sunflower oil-in-water emulsions during prolonged storage (45 days) at 32 °C. Artemisia extract at 2 g/L was as effective as butylated hydroxyanisole (BHA) at 0.02 g/L in slowing down the formation of hydroperoxides as measured by peroxide value and thiobarbituric acid reactive substances. The results of this study indicate that extract of A. annua may be suitable for use in the food matrix as substitutes for synthetic antioxidants. PMID:26784667

  6. Relationship between Al content and substitution mechanism of Al-bearing anhydrous bridgmanites

    NASA Astrophysics Data System (ADS)

    Noda, M.; Inoue, T.; Kakizawa, S.

    2017-12-01

    It is considered that two substitution mechanisms, Tschermak substitution and oxygen vacancy substitution, exist in MgSiO3 bridgmanite for the incorporation of Al in anhydrous condition. Kubo and Akaogi (2000) has conducted the phase equilibrium experiment in the system MgSiO3-Al2O3, and established the phase diagram up to 28 GPa. However the careful observation in the bridgmanite shows that the chemical compositions are slightly deviated from Tschermak substitution join. The same tendency can be also observed in the run products by Irifune et al. (1996). This result indicates that pure Tschermak substitution bridgmanite cannot be stable even in the MgSiO3-Al2O3 join experiment. However, the previous studies used powder samples as the starting materials, so the absorbed water may affect the results. Therefore, we tried to conduct the experiment in the join MgSiO3-Al2O3 in extremely anhydrous condition to clarify whether the pure Tschermak substitution bridgmanite can be stable or not. In addition, we also examined the stability of oxygen vacancy bridgmanite in the extremely anhydrous condition for the comparison. The high pressure synthesis experiments were conducted at 28 GPa and 1600-1700° for 1hour using a Kawai-type multi-anvil apparatus. Four different Al content samples were prepared as the starting materials along the ideal substitution line of Tschermak (Al=0.025, 0.05, 0.1, 0.15 mol) and oxygen-vacancy (Al=0.025, 0.05, 0.075, 0.1 mol) substitutions, respectively (when total cation of 2). The glass rods were used as the starting materials to eliminate the absorbed water on the sample surface. The chemical compositions of the synthesized bridgmanite could not be measured by EPMA because of small grain size less than submicron. Therefore the chemical compositions were estimated from the result of the XRD pattern by subtracting the amount of the other phases. The estimated chemical compositions of Tschermak substitution bridgmanites were consistent with the ideal compositions. On the other hand, oxygen-vacancy substitution bridgmanite was possible to be existed less than Al=0.25 mol on the basis of total cation of 2. These results show that both Tschermak and oxygen-vacancy substitution bridgmanites can exist in low Al content in anhydrous condition.

  7. The effect of topography and rock type on soil cation contents and stream solute and phosphorus concentrations of streams in the southwestern Brazilian Amazon basin.

    NASA Astrophysics Data System (ADS)

    Biggs, T. W.; Dunne, T.; Holmes, K.; Martinelli, L. A.

    2001-12-01

    Topography plays an important role in determining soil properties, stream solute concentrations and landscape denudation rates. Stallard (1985) suggested that catchment denudation rates should depend on soil thickness. Areas with low slopes are limited by the rate of transport of sediment, and typically contain thick soils that prevent interaction of stream waters with underlying bedrock [Stallard 1985]. Steep areas typically have thin soils, but a lower hydrologic residence time that may prevent soil water from coming into thermodynamic equilibrium with the soil-rock complex. In a survey of streams in the Brazilian Amazon basin, Biggs et al. (2001) found that stream solute concentrations correlate with soil cation contents in the humid tropics, but the mechanism underlying the correlation has not been determined. We combine chemical analyses of water samples from ~40 different streams with soil surveys, geology maps, and a 100m resolution DEM to examine the relationship between topography, rock type, soil cation contents, and stream solute concentrations in the Brazilian Amazon state of Rondônia. The basins are all more than 60% forested at the time of stream sampling and lie on granite-gneiss rocks, tertiary sediments, or sandstone. The catchment-averaged slope correlates positively with both soil cation contents and stream concentrations of P, Na, Ca, Mg, K, Si, ANC, and pH. Though we have no data about the relationship between soil depth and average slope, we assume an inverse correlation, so the data demonstrates that thick soils yield lower solute concentrations. Stream concentrations of Ca, Mg, ANC and pH reach a maximum at intermediate average slopes (3 degrees), suggesting that denudation rates may increase with slope up to a maximum, when the catchment becomes limited by the weathering rate of the basement rock. Catchments on mica-schists or mafic rocks have low average slopes and higher concentrations of Ca, Mg, Si, ANC, and pH than catchments on granite-gneiss, tertiary sediments or sandstone.

  8. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    NASA Astrophysics Data System (ADS)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that correspond with low soil organic carbon and cation exchange capacity and high content of sand. These areas are considered as management zones to improve crop productivity and soil properties responsible for soil quality and functions. We conclude that soil organic carbon, cation exchange capacity and pH should be included as indicators of soil quality in sandy soils. The study was funded by HORIZON 2020, European Commission, Programme H2020-SFS-2015-2: Soil Care for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021).

  9. Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles

    PubMed Central

    Serda, Rita E.; Blanco, Elvin; Mack, Aaron; Stafford, Susan J.; Amra, Sarah; Li, Qingpo; van de Ven, Anne L.; Tanaka, Takemi; Torchilin, Vladimir P.; Wiktorowicz, John E.; Ferrari, Mauro

    2014-01-01

    Mass transport of drug delivery vehicles is guided by particle properties, such as shape, composition and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light chain variable region, fibrinogen, and complement component 1 compared to their anionic counterparts. The anionic-surface favored equal accumulation of microparticles in the liver and spleen, while cationic-surfaces favored preferential accumulation in the spleen. Immunohistochemistry supported macrophage internalization of both anionic and cationic silicon microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution. PMID:21303614

  10. Structural and electronic properties Te62+ and Te82+: A DFT study

    NASA Astrophysics Data System (ADS)

    Sharma, Tamanna; Tamboli, Rohit; Kanhere, D. G.; Sharma, Raman

    2018-05-01

    Structural and electronic properties of Tellurium cluster (Ten) and their cations (Ten2+) (n = 6, 8) have been studied theoretically using VASP within generalized gradient approximation. Ground state geometries and higher energy isomers of these clusters have been examined on the basis of total free energy calculations. Lowest energy isomers of neutral clusters are ring like structures whereas the lowest energy isomers of cations are polyhedral cages. HOMO-LUMO gap in cationic clusters is small compared to its neutral clusters. Removal of two electrons from the neutral cluster raises the free energy. Analysis of free energy, HOMO-LUMO gap and density of states (DOS) show that neutral cluster are more stable than their cations.

  11. The impact of 90 years of drainage works on some chemical properties of raised peat bog organic soils - case study from valley of the Upper San river in Polish Bieszczady Mts. (Eastern Carpathians).

    NASA Astrophysics Data System (ADS)

    Stolarczyk, Mateusz

    2016-04-01

    Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works, increased pH values, changes in the morphology of the peat, high nitrogen contents and lower values of C/N ratios are noticed. The increased contents of calcium, occurred in soil layers comprised of moorsh forming process are probably the effect of peat mineralization process or changes in the chemistry and fluctuations of groundwater levels. As a result of above factors, increased calcium and magnesium concentrations in surface waters in the immediate vicinity of investigated bogs are observed.

  12. High Br- Content CsPb(Cl yBr1- y)3 Perovskite Nanocrystals with Strong Mn2+ Emission through Diverse Cation/Anion Exchange Engineering.

    PubMed

    Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z

    2018-04-11

    The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.

  13. Effect of vanadium doping on structural and magnetic properties of defective nano-nickel ferrite

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher; Almalowi, M. I.

    2018-04-01

    Nano-nickel ferrites defected by vanadium doping (NiV x Fe2-1.67 x O4, 0 ≤ x ≤ 0.25) were prepared using a simple sol gel method. Rietveld analysis revealed a nonmonotonic change in lattice parameter, oxygen parameter and magnetization upon doping with vanadium. Cation distributions suggested from either Rietveld analysis or from experimental magnetic moments were in a good agreement. For low doping values ( x = 0.05), vanadium was residing mainly in octahedral sites, while for samples with vanadium content ( x ≥ 0.1) a significant part of vanadium ions resided at tetrahedral sites; a result which has been confirmed by the analysis of Fourier-transform infrared (FTIR) spectrums obtained for the samples. The transmission electron microscope (TEM) image showed fine spherical particles with size of ˜ 11 nm. All samples showed a superparamagnetic nature with a nonmonotonic change of either magnetization ( M S) or coercivity (H C) with the content of nonmagnetic V5+. The cation occupancies indicated presence of an enormous number of vacancies through doping with high valence cation V5+, making present samples potential electrodes for Li- or Na-ion batteries.

  14. Tackling capacity fading in vanadium flow batteries with amphoteric membranes

    NASA Astrophysics Data System (ADS)

    Oldenburg, Fabio J.; Schmidt, Thomas J.; Gubler, Lorenz

    2017-11-01

    Capacity fading and poor electrolyte utilization caused by electrolyte imbalance effects are major drawbacks for the commercialization of vanadium flow batteries (VFB). The influence of membrane type (cationic, anionic, amphoteric) on these effects is studied by determining the excess and net flux of each vanadium ion in an operating VFB assembled with a cation exchange membrane (CEM), Nafion® NR212, an anion exchange membrane (AEM), Fumatech FAP-450, and an amphoteric ion exchange membrane (AIEM) synthesized in-house. It is shown that the net vanadium flux, accompanied by water transport, is directed towards the positive side for the CEM and towards the negative side for the AEM. The content of cation and anion exchange groups in the AIEM is adjusted via radiation grafting to balance the vanadium flux between the two electrolyte sides. With the AIEM the net vanadium flux is significantly reduced and capacity fading due to electrolyte imbalances can be largely eliminated. The membrane's influence on electrolyte imbalance effects is characterized and quantified in one single charge-discharge cycle by analyzing the content of the four different vanadium species in the two electrolytes. The experimental data recorded herewith conclusively explains the electrolyte composition after 80 cycles.

  15. Antioxidant and antigenotoxic activities in Acacia salicina extracts and its protective role against DNA strand scission induced by hydroxyl radical.

    PubMed

    Chatti, Ines Bouhlel; Boubaker, Jihed; Skandrani, Ines; Bhouri, Wissem; Ghedira, Kamel; Chekir Ghedira, Leila

    2011-08-01

    The antioxidant potency of Acacia salicina extracts was investigated. Total antioxidant capacity was determined using an ABTS(+) assay. Superoxide radical scavenging was measured using riboflavin-light-nitro blue tetrazolium (NBT) assay. In addition, the content of phenols, total flavonoids and sterols were measured in the tested extracts. The petroleum ether exhibited a potent scavenging activity toward ABTS radical cations. Whereas, chloroform extract showed the highest activity against superoxides radicals and was also able to protect pKS plasmid DNA against hydroxyl radicals induced DNA damages. The antimutagenicity of these extracts was assayed using the Ames assay against Salmonella typhimurium TA98 and S. typhimurium TA 1535 tester strains at different concentrations. These extracts decreased significantly the mutagenecity induced by sodium azide (SA) and 4-nitro-o-phenylenediamine (NOP). The antioxidant and antimutagenecity activities exhibited by A. salicina depended on the chemical composition of the tested extracts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effect of Sulfites on Antioxidant Activity, Total Polyphenols, and Flavonoid Measurements in White Wine

    PubMed Central

    Garaguso, Ivana

    2018-01-01

    Polyphenols content and antioxidant activity are directly related to the quality of wine. Wine also contains sulfites, which are added during the winemaking process. The present study aimed to evaluate the effects of sulfites on the assays commonly used to measure the antioxidant activity and polyphenols and flavonoids content of white wines. The effects of sulfites were explored both in the standard assays and in white wine. The addition of sulfites (at 1–10 μg) in the standard assays resulted in a significant, positive interference in the Folin–Ciocalteu’s assay used for polyphenols measurements and in both the Ferric Reducing Antioxidant Power and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation decolorization assays, which were used for antioxidant activity evaluation. A negative interference of sulfites (at 1–20 μg) was observed for the colorimetric aluminium-chloride flavonoids assay. The addition of sulfites to organic white wines (at 25–200 mg/L wine) clearly resulted in a significant overestimation of antioxidant activity and polyphenols content, and in an underestimation of flavonoids concentration. To overcome sulfite interferences, white wines were treated with cross-linked polyvinylpyrrolidone. The total polyphenols content and antioxidant activity measurements obtained after polyvinylpyrrolidone treatment were significantly lower than those obtained in the untreated wines. Flavonoids were expected to be higher after polyvinylpyrrolidone treatment, but were instead found to be lower than for untreated wines, suggesting that in addition to sulfites, other non-phenolic reducing compounds were present in white wine and interfered with the flavonoid assay. In view of our results, we advise that a purification procedure should be applied in order to evaluate the quality of white wine. PMID:29522434

  17. Physiological and physico-chemical characterization of dietary fibre from the green seaweed Ulva fasciata Delile.

    PubMed

    Carvalho, A F U; Portela, M C C; Sousa, M B; Martins, F S; Rocha, F C; Farias, D F; Feitosa, J P A

    2009-08-01

    This work aims to assess the potential of the green seaweed Ulva fasciata Delile as an alternative source of dietary fibre (DF). Total DF content was determined, some of its physico-chemical properties described and the physiological effects of U. fasciata meal on rats fed a hypercholesterolemic diet were investigated. U. fasciata may be considered a potential alternative source of DF with a total content of about 400 g.kg-1 (dry basis) and interesting physico-chemical properties: water retention capacity of 8.74 g/water.g-1 dry sample (seaweed meal) and 0.90 (seaweed carbohydrate extract), lipid adsorption capacity of 4.52 g/oil.g-1 dry sample (seaweed meal) and 5.70 (seaweed carbohydrate extract), intrinsic viscosity of 2.4 dl.g-1 (seaweed carbohydrate extract) and cation exchange capacity of 3.51 Eq.kg-1 (seaweed carbohydrate extract). The diet containing seaweed meal was able to keep rats' total cholesterol (TC) down without causing any undesirable increase in LDL-C fraction. No evidence of toxic and/or antinutritional components in the seaweed meal was detected. Rats showed a fecal volume much greater (13 g) than that fed on cellulose diet (7 g) (p < 0.05). These properties confer on the seaweed the potential to be used in food technology for the acquisition of low-calorie food and might be important in body weight control, reduction of blood TC and LDL-C as well as in prevention of gastrointestinal diseases.

  18. Impact of rhizobial inoculation and reduced N supply on biomass production and biological N2 fixation in common bean grown hydroponically.

    PubMed

    Kontopoulou, Charis-Konstantina; Liasis, Epifanios; Iannetta, Pietro Pm; Tampakaki, Anastasia; Savvas, Dimitrios

    2017-10-01

    Testing rhizobial inoculation of common bean (Phaseolus vulgaris L.) in hydroponics enables accurate quantification of biological N 2 fixation (BNF) and provides information about the potential of reducing inorganic N fertilizer use. In view of this background, common bean grown on pumice was inoculated with Rhizobium tropici CIAT899 (Rt) and supplied with either full-N (total nitrogen 11.2 mmol L -1 ), 1/3 of full-N or N-free nutrient solution (NS). BNF was quantified at the early pod-filling stage using the 15 N natural abundance method. Full-N supply to Rt-inoculated plants resulted in markedly smaller nodules than less- or zero-N supply, and no BNF. Rt inoculation of full-N-treated plants did not increase biomass and pod yield compared with non-inoculation. Restriction (1/3 of full-N) or omission of inorganic N resulted in successful nodulation and BNF (54.3 and 49.2 kg N ha -1 , corresponding to 58 and 100% of total plant N content respectively) but suppressed dry shoot biomass from 191.7 (full-N, +Rt) to 107.4 and 43.2 g per plant respectively. Nutrient cation uptake was reduced when inorganic N supply was less or omitted. Rt inoculation of hydroponic bean provides no advantage when full-N NS is supplied, while 1/3 of full-N or N-free NS suppresses plant biomass and yield, partly because the restricted NO 3 - supply impairs cation uptake. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Electronic and Electrochemical Properties of Li 1–x Mn 1.5 Ni 0.5 O 4 Spinel Cathodes As a Function of Lithium Content and Cation Ordering

    DOE PAGES

    Moorhead-Rosenberg, Zach; Huq, Ashfia; Goodenough, John B.; ...

    2015-10-05

    The electronic and electrochemical properties of the high-voltage spinel LiMn 1.5Ni 0.5O 4 as a function of cation ordering and lithium content have been investigated. Conductivity and activation energy measurements confirm that charge transfer occurs by small polaron hopping and the charge carrier conduction is easier in the Ni:3d band than in the in Mn:3d band. Seebeck coefficient data reveal that the Ni 2+/ 3+. and Ni 3+/ 4+ redox couples are combined in a single,3d band, and that maximum charge carrier concentration occurs where the average Ni oxidation state is close to 3+, corresponding to x = 0.5 inmore » Li Li 1-xMn 1.5Ni 0.5O 4. Furthermore, maximum electronic conductivity is found at x = 0.5, regardless of cation ordering. The thermodynamically stable phases formed during cycling were investigated by recording the X-ray diffraction (XRD) of chemically delithiated powders. The more ordered spinels maintained two separate two-phase regions upon lithium extraction, while the more disordered samples exhibited a solid-solubility region from LiMn 1.5Ni 0.5O 4 to Li 0.5Mn 1.5Ni 0.5O 4. The conductivity and phase-transformation data of four samples with varying degrees of cation ordering were compared to the electrochemical data collected with lithium cells. Only the most ordered spinel showed inferior rate performance, while the sample annealed for a shorter time performed comparable to the unannealed or disordered samples. Our results challenge the most common beliefs about high-voltage spinel: (i) low Mn 3+ content is responsible for poor rate performance and (ii) thermodynamically stable solid-solubility is critical for fast kinetics.« less

  20. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    USGS Publications Warehouse

    Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.

  1. Interaction of ammonium with birnessite: Evidence of a chemical and structural transformation in alkaline aqueous medium

    NASA Astrophysics Data System (ADS)

    Boumaiza, Hella; Coustel, Romain; Despas, Christelle; Ruby, Christian; Bergaoui, Latifa

    2018-02-01

    The ammonium cation interaction with Na-birnessite in aqueous alkaline medium was studied. Solution and solid analysis give evidence that birnessite is not only acting as a cationic exchanger toward NH4+. The surface analysis performed by XPS showed that N1s spectra are characterized by the existence of two different environments: one assignable to an interlayer NH4+ and the second to a chemisorbed N-species. Structural and chemical transformations were observed on birnessite with nitrogen mass balance deficit. The monitoring of NH4+, Na+, Mn2+, NO3- and NO2- and solid changes (average oxidation state of Mn, cation exchange capacity, solid nitrogen content and symmetry evolution identified by XRD and FTIR) indicate unambiguously that NH4+ reacts chemically with the birnessite.

  2. Characterization of cationic liposome formulations designed to exhibit extended plasma residence times and tumor vasculature targeting properties.

    PubMed

    Ho, Emmanuel A; Ramsay, Euan; Ginj, Mihaela; Anantha, Malathi; Bregman, Isaiah; Sy, Jonathan; Woo, Janet; Osooly-Talesh, Maryam; Yapp, Donald T; Bally, Marcel B

    2010-06-01

    Cationic liposomes exhibit a propensity to selectively target tumor-associated blood vessels demonstrating potential value as anti-cancer drug delivery vehicles. Their utility however, is hampered by their biological instability and rapid elimination following i.v. administration. Efforts to circumvent rapid plasma elimination have, to date, focused on decreasing cationic lipid content and incorporating polyethylene glycol (PEG)-modified lipids. In this study we wanted to determine whether highly charged cationic liposomes with surface-associated PEG could be designed to exhibit extended circulation lifetimes, while retaining tumor vascular targeting properties in an HT29 colorectal cancer xenograft model. Cationic liposomes prepared of DSPC, cationic lipids (DODAC, DOTAP, or DC-CHOL), and DSPE-PEG(2000) were studied. Our results demonstrate that formulations prepared with 50 mol% DODAC or DC-CHOL, and 20 mol% DSPE-PEG(2000) exhibited circulation half-lives ranging from 6.5 to 12.5 h. Biodistribution studies demonstrated that DC-CHOL formulations prepared with DSPE-PEG(2000) accumulated threefold higher in s.c. HT29 tumors than its PEG-free counterpart. Fluorescence microscopy studies suggested that the presence of DSPE-PEG(2000) did not adversely affect liposomal tumor vasculature targeting. We show for the first time that it is achievable to design highly charged, highly pegylated (20 mol% DSPE-PEG(2000)) cationic liposomes which exhibit both extended circulation lifetimes and tumor vascular targeting properties. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  3. Some physicochemical properties of surface layer soils shelterbelts in agricultural landscape

    NASA Astrophysics Data System (ADS)

    Jaskulska, R.; Szajdak, L.

    2009-04-01

    Shelterbelts belong to very efficient biogeochemical barriers. They decrease the migration of chemical compounds between ecosystems. The investigations were carried out in the Chlapowski's Agroecological Park in Turew situated 40 km South-West of Poznań, Poland. This area is located on loamy soils, which contains 70% cultivated fields and 14% shelterbelts and small afforestations. The shelterbelts represent different ages and the content of plants as well as humus quantity in surface layer. The first one is 100-year-old shelterbelt, where predominant species is Crataegus monogyna Jacq., Quercus rober L., and Fraxinus excelsior (L.) and is characterized by a well-developed humus level. The other one is 14-year-old shelterbelt. It includes 13 species of trees and revealed a small amount of humus. The soil under both shelterbelts is mineral, grey-brown podzolic in surface layer compound from light loamy sands and weakly loamy sands. The soil samples were taken from surface layer (0-20 cm). pH 1N KCl, hydrolytic acidity, cation-exchange capacity, total proper area, total organic carbon and dissociation constants were determined in soils. The study showed that the soil under shelterbelts revealed acidic properties. It was observed that soils of 100-year-old shelterbelt characterizing lowest values pH = 4.2 revealed highest values of hydrolytic acidity equaled to 7.8 cmol(+)ṡkg-1. The physicochemical properties of investigated soils shoved specific surface areas (22.8 m2ṡg-1), cationic sorptive capacity (12.9 cmol(+)ṡkg-1). TOC (1.6%) 100-year-old shelterbelt was higher than in 14-year-old shelterbelt. The dissociation constants were determined by potentiometric titration. This investigation revealed that the pK value was the highest in the humus of 100-year-old shelterbelt (pKa = 3.1). However, soils of 14-year-old shelterbelt characterized by the lovest pK equaled to 2.8. The surface layer soils shelterbelts in agricultural landscape with good humus development are the most acidic of the soils studied. Most values of acidity, full specific surface areas and sorption capacity are specific to the surface layer of 100-year-old shelterbelt with the highest total organic carbon content. This work was supported by a grant No. 2295/B/P01/2008/35 founded by Polish Ministry of Education.

  4. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  5. Zinc and magnesium in the uterus of the pregnant and pseudopregnant mouse and the effects of Mg2+ ions on uterine alkaline phosphatase.

    PubMed

    Buxton, L E; Murdoch, R N

    1981-01-01

    The levels of zinc and magnesium in the mouse uterus during early pregnancy and pseudopregnancy were determined using atomic absorption spectroscopy techniques. The total zinc and magnesium content of the uterus increased between days 5 and 12 of pregnancy and between days 5 and 9 of content of the pseudopregnancy when decidual cells were present. However, the metals were not accumulated at a rate sufficient to match increases in uterine weight and constant concentrations (micrograms of metals per gram wet weight ot tissue) were not maintained over the various reproductive stages studied. The accumulation of the metals was associated with the presence of decidual cells, and non-decidualized horns of pseudopregnant mice failed to increase their total content of zinc and magnesium between days 5 and 9. The magnesium content of each uterus was usually between 5- and 13-fold greater than the total zinc content. mg2+ in low concentration (0-2mM) stimulated both the pyrophosphatase and orthophosphatase activities of purified preparations of the mouse uterine metalloenzyme, alkaline phosphatase. Higher concentrations (up to 8 mM) of the cation decreased pyrophosphatase activity but did not alter orthophosphatase activity. Mg/+ was more effective, however, in increasing the orthophosphatase activity of the enzyme and its stimulating effects in this case were greater in carbonate-bicarbonate buffer than in glycine-NaOH buffer. Mg2+ did not significantly influence apparent Km values or the response of the enzyme to changes in temperature. Zn2+, however, was required to maintain the stability of alkaline phosphatase apoenzyme preparations. It was concluded that during normal pregnancy and pseudopregnancy zinc and magnesium would always be present in amounts considerably greater than those required to saturate alkaline phosphatase for full catalytic activity. Thus, while the metals exert major effects on the activity and stability of the enzyme in vitro, they may not be major factors involved in the in utero regulation of the enzyme during early pregnancy.

  6. Influence of He-Ne laser radiation on biogenic amines content and cytochemical parameters of polymorphonuclear leukocytes in short-term stress

    NASA Astrophysics Data System (ADS)

    Brill, Gregory E.; Dobrovolsky, Gennady A.; Romanova, Tatyana P.; Porozova, Svetlana G.; Brill, Alexander G.

    1997-06-01

    In experiments on white male rats short-term immobilization- sound stress was modelled. Decrease of glycogen content and myeloperoxidase activity, increase of lysosomal cationic proteins level and NBT-test parameters as well as fall of adrenaline, dopamine and 5-hydroxytryptamine amount in polymorphonuclear leukocytes were observed. Preliminary transcutaneous He-Ne laser irradiation modified metabolic reaction of leukocytes to stress and prevented stress- induced decrease of biogenic amines content in cells.

  7. Impact of a lead mining-smelting complex on the forest-floor litter arthropod fauna in the new lead belt region of southeast Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, A.P.; Van Hook, R.I.; Jackson, D.R.

    1976-07-01

    Studies of biological activity within the litter horizons of a watershed contaminated by emissions from a lead-ore processing complex focused on the litter-arthropod food chain as a means of detecting perturbations in a heavy-metal contaminated ecosystem. Both point sources (smelter stack emissions) and fugitive sources (ore-handling processes, yard dusts, and exposed concentrate piles) contributed to the Pb, Zn, Cu, and Cd levels in the study area. Arthropod trophic level density, biomass, and heavy metal content were determined by analysis of specimens removed from litter by von Tullgren funnel extraction, taxonomically classified, and segregated into the trophic categories. Changes in littermore » decomposition were reflected in the dynamics of the litter arthropod community. Food-chain dilution of Pb, Zn, Cu, and Cd from litter to litter consumer was occurring, as indicated by the mean concentration factors. Accumulation of Pb by litter consumers was much less than that found for the other three heavy metals. In contrast, predatory arthropods on Crooked Creek Watershed either concentrated or equilibrated with respect to Pb, Zn, and Cd from their prey, as indicated by mean total predator concentration factors. A significant depression of the Ca, Mg, and K content litter occurred relative to the control within 0.8 km of the stack. Two mechanisms were postulated to explain this result: increased leaching of cations through the litter induced by a loss of cation exchange capacity, a decrease in pH, and a decrease in microbial immobilization of macronutrients; and a decreased uptake of macronutrients due to root damage produced by heavy-metal concentrations.« less

  8. Selective monovalent cation association and exchange around Keplerate polyoxometalate macroanions in dilute aqueous solutions.

    PubMed

    Pigga, Joseph M; Teprovich, Joseph A; Flowers, Robert A; Antonio, Mark R; Liu, Tianbo

    2010-06-15

    The interaction between water-soluble Keplerate polyoxometalate {Mo(72)Fe(30)} macroions and small countercations is explored by laser light scattering, anomalous small-angle X-ray scattering (ASAXS), and isothermal titration calorimetry (ITC) techniques. The macroions are found to be able to select the type of associated counterions based upon the counterions' valence state and hydrated size, when multiple types of additional cations are present in solution (even among different monovalent cations). The preference goes to the cations with higher valences or smaller hydrated sizes if the valences are identical. This counterion exchange process changes the magnitude of the macroion-counterion interaction and, thus, is reflected in the dimension of the self-assembled {Mo(72)Fe(30)} blackberry supramolecular structures. The hydrophilic macroions exhibit a competitive recognition of various monovalent counterions in dilute solutions. A critical salt concentration (CSC) for each type of cation exists for the blackberry formation of {Mo(72)Fe(30)} macroions, above which the blackberry size increases significantly with the increasing total ionic strength in solution. The CSC values are much smaller for cations with higher valences and also decrease with the cations' hydrated size for various monovalent cations. The change of blackberry size corresponding to the change of ionic strength in solution is reversible.

  9. Potential Energy Surfaces and Dynamics of High Energy Species

    DTIC Science & Technology

    2009-04-13

    explored include ionic liquids and a range of high-nitrogen content and nitrogen-oxygen content species. Polyhedral oligomeric silisesquioxanes are...Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Several papers on ionic liquids have been published or submitted as a result of this...in energetic ionic liquids . These are variously substituted triazolium, tertazolium, and pentazolium cations. The heats of formation of all species

  10. DoD Message Protocol Report. Volume I. Message Protocol Specification.

    DTIC Science & Technology

    1981-12-15

    26L 2.6 STATUS-REPORTING SERVICES ........................................ 26 2.6.1 Acknowledgements and Processing Status...and data. Envelopes give processing instructions and/or descriptions of their contents. Data are not altered (as regards content) by the CBMS except...tailored to an individual user’s requirements, we view them as application-layer processes . The potential diversity of UAs makes verifi- cation difficult

  11. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using cation-exchange prior to hydridegeneration permits accurate arsenic(III) determinations in acid mine waters containing high concentrations of interfering metals. Stabilization of the arsenic redox species for as many as 15 months is demonstrated for samples that have been properly filtered and acidified with HCl in the field. The detection limits for the method described in this report are 0.1 micrograms per liter for total arsenic and 0.8 micrograms per liter for arsenic(III).

  12. Illitization of Potassium, Cesium, and Ammonium Exchanged Smectite

    NASA Astrophysics Data System (ADS)

    Mills, M. M.; Wang, Y.; Payne, C.; Sanchez, A. C.; Boisvert, L.; Matteo, E. N.

    2017-12-01

    Bentonite clay is a primary choice for engineered barrier systems within geologic repositories for disposal of radioactive wastes due to its low permeability at saturated states, warranting diffusion as the dominant transport mechanism, and large swelling pressures that promote sealing. In order to predict how well the barrier will function over time at repository relevant temperatures, it is important to understand thermal alteration effects on montmorillonite, better known as smectite, a main constituent of bentonite. One type of thermal alteration is the conversion to illite, when exposed to elevated temperatures and a sufficient amount of potassium ions, thereby weakening barrier functions. To facilitate the conversion of smectite to illite and examine the influence of interlayer cations, illitization experiments on cation exchanged smectite were performed within hydrothermal reaction vessels over one week timescales. The <2um fraction of a Na-rich smectite clay was first exchanged with 1M Cs, K, and NH4 salt solutions and further exposed to hydrous pyrolysis using a 1M KCl solution with various solid to liquid ratios at 200°C. Multiple analysis techniques were used to characterize the altered clay and identify extent of conversion, such as XRD, cation exchange capacity, and morphology changes by SEM. The pore-water chemistry was also analyzed by ICP-OES to detect any dissolved products and silica content. Results suggest the conversion rate is relatively fast, occurring within days, and is dependent on not only the amount of K, but also dissolved silica concentration related to total solid in solution. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7856A

  13. Formation, structure and bond dissociation thresholds of gas-phase vanadium oxide cluster ions

    NASA Astrophysics Data System (ADS)

    Bell, R. C.; Zemski, K. A.; Justes, D. R.; Castleman, A. W.

    2001-01-01

    The formation and structure of gas-phase vanadium oxide cluster anions are examined using a guided ion beam mass spectrometer coupled with a laser vaporization source. The dominant peaks in the anion total mass distribution correspond to clusters having stoichiometries of the form (VO2)n(VO3)m(O2)q-. Collision-induced dissociation studies of the vanadium oxide species V2O4-6-, V3O6-9-, V4O8-10-, V5O11-13-, V6O13-15-, and V7O16-18- indicate that VO2, VO3, and V2O5 units are the main building blocks of these clusters. There are many similarities between the anion mass distribution and that of the cation distribution studied previously. The principal difference is a shift to higher oxygen content by one additional oxygen atom for the stoichiometric anions (VxOy-) as compared to the cations with the same number of vanadium atoms, which is attributed to the extra pair of electrons of the anionic species. The oxygen-rich clusters, VxOy(O2)-, are shown to more tightly adsorb molecular oxygen than those of the corresponding cationic clusters. In addition, the bond dissociation thresholds for the vanadium oxide clusters ΔE(V+-O)=6.09±0.28 eV, ΔE(OV+-O)=3.51±0.36 eV, and ΔE(O2V--O)=5.43±0.31 eV are determined from the energy-dependent collision-induced dissociation cross sections with Xe as the collision partner. To the best of our knowledge, this is the first bond dissociation energy reported for the breaking of the V-O bond of a vanadium oxide anion.

  14. Physicochemical characterization of mozzarella cheese wheys and stretchwaters in comparison with several other sweet wheys.

    PubMed

    Gernigon, G; Piot, M; Beaucher, E; Jeantet, R; Schuck, P

    2009-11-01

    To better understand the origins of the problems occurring during mozzarella cheese whey concentration, lactose crystallization, and spray-drying steps, a physicochemical characterization was achieved. For this purpose, mozzarella cheese wheys were sampled and their content in different compounds such as total nitrogen, noncasein nitrogen, nonprotein nitrogen, lactate, citrate, chloride, sulfate, phosphate anions, calcium, magnesium, potassium, sodium cations, and the sugars glucose and galactose were measured. In a second step, the results were compared with the corresponding content in cheddar cheese wheys, raclette cheese wheys, soft cheese wheys, and Swiss-type cheese wheys. At the end of this survey, it was shown that mozzarella cheese wheys were more concentrated in lactate and in minerals--especially phosphate, calcium, and magnesium--than the other cheese wheys and that they contained galactose. These constituents are known to be hygroscopic. Complementary surveys are now necessary to compare the hygroscopicity of galactose and lactate and discover whether the amounts of these compounds found in mozzarella cheese wheys are a factor in the problems encountered during the concentration, lactose crystallization, and spray-drying steps.

  15. Identification and characterisation of DfCHS, a chalcone synthase gene regulated by temperature and ultraviolet in Dryopteris fragrans.

    PubMed

    Sun, L L; Li, Y; Li, S S; Wu, X J; Hu, B Z; Chang, Y

    2014-12-30

    Chalcone synthase (CHS) is an enzyme that catalyzes the first committed step in flavonoid biosynthesis, and its transcription level is regulated by light conditions. By using homology cloning and rapid amplification of cDNA ends, we cloned a chalcone synthase gene (DfCHS) from Dryopteris fragrans (L.) Schott. The full-length cDNA of DfCHS is 1,737 bp, with an open reading frame (ORF) of 1,122 bp (deposited in GenBank under Accession Number KF530802) encoding a predicted protein of 373 amino acids. The calculated molecular mass of DfCHS is 41.3 kDa. We studied the expression of DfCHS and total flavonoid contents in tissue culture seedlings cultured under the low temperature at 4ºC, high temperature at 35ºC and UV conditions, respectively. The results show that the expression of DfCHS are not the same, but all present rising trends, then flavonoid contents were increased. Overall, our results imply that the expression of DfCHS gene provide a certain theory basis in the status of evolution among ferns.

  16. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars.

    PubMed

    Claoston, N; Samsuri, A W; Ahmad Husni, M H; Mohd Amran, M S

    2014-04-01

    Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.

  17. Retention of potentially mobile radiocesium in forest surface soils affected by the Fukushima nuclear accident

    PubMed Central

    Koarashi, Jun; Moriya, Koichi; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Fujita, Hiroki; Nagaoka, Mika

    2012-01-01

    The fate of 137Cs derived from the Fukushima nuclear accident fallout and associated radiological hazards are largely dependent on its mobility in the surface soils of forest ecosystems. Thus, we quantified microbial and adsorptive retentions of 137Cs in forest surface (0–3 cm) soils. The K2SO4 extraction process liberated 2.1%–12.8% of the total 137Cs from the soils. Two soils with a higher content of clay- and silt-sized particles, organic carbon content, and cation exchange capacity showed higher 137Cs extractability. Microbial biomass was observed in all of the soils. However, the 137Cs extractability did not increase after destruction of the microbial biomass by chloroform fumigation, providing no evidence for microbial retention of the Fukushima-fallout 137Cs. The results indicate that uptake of 137Cs by soil microorganisms is less important for retention of potentially mobile 137Cs in the forest surface soils compared to ion-exchange adsorption on non-specific sites provided by abiotic components. PMID:23256039

  18. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica.

    PubMed

    Sewu, Divine Damertey; Boakye, Patrick; Jung, Hwansoo; Woo, Seung Han

    2017-11-01

    The potential of activating terrestrial biomass (spent mushroom substrate, SMS) with ash-laden marine biomass [kelp seaweed, KE] via co-pyrolysis in the field of adsorption was first investigated. KE biochar (KBC), SMS biochar (SMSBC), biochar (SK10BC) from 10%-KE added SMS, and biochar (ESBC) from KE-extract added SMS were used for the adsorption of cationic dye crystal violet (CV). ESBC had highest fixed carbon content (70.60%) and biochar yield (31.6%). SK10BC exhibited high ash content, abundant functional groups, coarser surface morphology and Langmuir maximum adsorptive capacity (610.1mg/g), which is 2.2 times higher than that of SMSBC (282.9mg/g). Biochar activated by a small amount of high ash-containing biomass such as seaweed via co-pyrolysis can serve as viable alternative adsorbent for cationic dye removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Algicidal effect of hybrid peptides as potential inhibitors of harmful algal blooms.

    PubMed

    Park, Seong-Cheol; Moon, Jeong Chan; Kim, Nam-Hong; Kim, Eun-Ji; Jeong, Jae-Eun; Nelson, Andrew D L; Jo, Beom-Ho; Jang, Mi-Kyeong; Lee, Jung Ro

    2016-05-01

    To biochemically characterize synthetic peptides to control harmful algal blooms (HABs) that cause red tides in marine water ecosystems. We present an analysis of several short synthetic peptides and their efficacy as algicidal agents. By altering the amino acid composition of the peptides we addressed the mode of algicidal action and determine the optimal balance of cationic and hydrophobic content for killing. In a controlled setting, these synthetic peptides disrupted both plasma and chloroplast membranes of several species known to result in HABs. This disruption was a direct result of the hydrophobic and cationic content of the peptide. Furthermore, by using an anti-HAB bioassay in scallops, we determined that these peptides were algicidal without being cytotoxic to other marine organisms. These synthetic peptides may prove promising for general marine ecosystem remediation where HABs have become widespread and resulted in serious economic loss.

  20. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.

    PubMed

    Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J

    2016-01-01

    Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.

  1. Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source.

    PubMed

    Tabassum, Riaz Ahmad; Shahid, Muhammad; Dumat, Camille; Niazi, Nabeel Khan; Khalid, Sana; Shah, Noor Samad; Imran, Muhammad; Khalid, Samina

    2018-02-10

    Currently, several news channels and research publications have highlighted the dilemma of arsenic (As)-contaminated groundwater in Pakistan. However, there is lack of data regarding groundwater As content of various areas in Pakistan. The present study evaluated As contamination and associated health risks in previously unexplored groundwater of Hasilpur-Pakistan. Total of 61 groundwater samples were collected from different areas (rural and urban), sources (electric pump, hand pump, and tubewell) and depths (35-430 ft or 11-131 m). The water samples were analyzed for As level and other parameters such as pH, electrical conductivity, total dissolved solids, cations, and anions. It was found that 41% (25 out of 61) water samples contained As (≥ 5 μg/L). Out of 25 As-contaminated water samples, 13 water samples exceeded the permissible level of WHO (10 μg/L). High As contents have been found in tubewell samples and at high sampling depths (> 300 ft). The major As-contaminated groundwater in Hasilpur is found in urban areas. Furthermore, health risk and cancer risk due to As contamination were also assessed with respect to average daily dose (ADD), hazard quotient (HQ), and carcinogenic risk (CR). The values of HQ and CR of As in Hasilpur were up to 58 and 0.00231, respectively. Multivariate analysis revealed a positive correlation between groundwater As contents, pH, and depth in Hasilpur. The current study proposed the proper monitoring and management of well water in Hasilpur to minimize the As-associated health hazards.

  2. Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure

    NASA Astrophysics Data System (ADS)

    Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.

    2018-04-01

    Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.

  3. Assessment of typical natural processes and human activities' impact on the quality of drinking water.

    PubMed

    Kurilić, Sanja Mrazovac; Ulniković, Vladanka Presburger; Marić, Nenad; Vasiljević, Milenko

    2015-11-01

    This paper provides insight into the quality of groundwater used for public water supply on the territory of Temerin municipality (Vojvodina, Serbia). The following parameters were measured: color, turbidity, pH, KMnO4 consumption, total dissolved solids (TDS), EC, NH4+, Cl-, NO2-, NO3-, Fe, Mn, As, Ca2+, Mg2+, SO4(2-), HCO3-, K+, and Na+. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from three analyzed sources is Na-HCO3 type. Elevated organic matter content, ammonium ion content, and arsene content are characteristic for these waters. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, and HCO3- content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main natural processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering. The dominant cause of As concentration in groundwater is the use of mineral fertilizers and of KMnO4 in urban area. The concentration of As and KMnO4 in the observed sources is inversely proportional to the distance from agricultural land and urban area. 2D model of distribution of As and KMnO4 is done, and it is applicable in detecting sources of pollution. By using this model, we can quantify the impact of certain pollutants on unfavorable content of some parameters in groundwater.

  4. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    PubMed Central

    Lacrămă, Ana-Maria; Putz, Mihai V.; Ostafe, Vasile

    2007-01-01

    Within the recently launched the spectral-structure activity relationship (S-SAR) analysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, along with the associated algebraic correlation factor in terms of the measured and predicted activity norms. The reliability of the present scheme is tested by assessing the Hansch factors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicity endpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium, choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, while confirming the cationic dominant influence when only lipophylicity is considered, demonstrate that the anionic effect dominates all other more specific interactions. It was also proved that the S-SAR vectorial model predicts considerably higher activity for the ionic liquids than for its anionic and cationic subsystems separately, in all considered cases. Moreover, through applying the least norm-correlation path principle, the complete toxicological hierarchies are presented, unfolding the ecological rules of combined cationic and anionic influences in ionic liquid toxicity.

  5. Results of chemical and stable isotopic analyses of water samples collected in the Patagonia Mountains, southern Arizona

    USGS Publications Warehouse

    Wanty, Richard B.; Shanks, Wayne C.; Lamothe, Paul; Meier, A.L.; Lichte, Fred; Briggs, Paul H.; Berger, Byron R.

    2001-01-01

    Water samples were collected in the Patagonia Mountains in February, 1997. Most of the samples were collected from portals of abandoned mines, or from stream drainages immediately downstream from abandoned mines. Most of the samples have low pH ( 1000 mg/L). Anion composition of the water samples is dominated by sulfate, while cation compositions range from calcium-dominated to mixed calcium-magnesium or calcium-sodium-dominated waters. Metals such as iron, manganese, copper, zinc, and aluminum contribute a significant portion (>10%) of the cation content to the water samples. Because of the low pH?s, protons contribute up to several percent of the cation character of the waters in some of the samples. The data are presented in tabular and graphical formats, with descriptions of data quality and brief descriptions of results.

  6. Relationship between soybean yield/quality and soil quality in a major soybean-producing area based on a 2D-QSAR model

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Li, Shiwei

    2017-05-01

    Based on experimental data of the soybean yield and quality from 30 sampling points, a quantitative structure-activity relationship model (2D-QSAR) was established using the soil quality (elements, pH, organic matter content and cation exchange capacity) as independent variables and soybean yield or quality as the dependent variable, with SPSS software. During the modeling, the full data set (30 and 14 compounds) was divided into a training set (24 and 11 compounds) for model generation and a test set (6 and 3 compounds) for model validation. The R2 values of the resulting models and data were 0.826 and 0.808 for soybean yield and quality, respectively, and all regression coefficients were significant (P < 0.05). The correlation coefficient R2pred of observed values and predicted values of the soybean yield and soybean quality in the test set were 0.961 and 0.956, respectively, indicating that the models had a good predictive ability. Moreover, the Mo, Se, K, N and organic matter contents and the cation exchange capacity of soil had a positive effect on soybean production, and the B, Mo, Se, K and N contents and cation exchange coefficient had a positive effect on soybean quality. The results are instructive for enhancing soils to improve the yield and quality of soybean, and this method can also be used to study other crops or regions, providing a theoretical basis to improving the yield and quality of crops.

  7. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    DOE PAGES

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; ...

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm –1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba 2+ and Mg 2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs + and Na +), which have relatively small hydration enthalpies.« less

  8. Enhancing Phenolic Contents and Antioxidant Potentials of Antidesma thwaitesianum by Supercritical Carbon Dioxide Extraction

    PubMed Central

    Poontawee, Warut; Natakankitkul, Surapol; Wongmekiat, Orawan

    2015-01-01

    Supercritical fluid extraction (SFE) has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae), or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae) were extracted using supercritical carbon dioxide (SC-CO2) and conventional solvents (ethanol, water). The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP) assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD) revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae), with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant. PMID:25977832

  9. [Effects of biochar application on greenhouse gas emission from paddy soil and its physical and chemical properties].

    PubMed

    Liu, Yu-xue; Wang, Yao-feng; Lü, Hao-hao; Chen, Yi; Tang, Xu; Wu, Chun-yan; Zhong, Zhe-ke; Yang, Sheng-mao

    2013-08-01

    A field experiment was conducted to investigate the effects of rice straw returning and rice straw biochar and life rubbish biochar application on the greenhouse gas (CH4, CO2 and N2O) emission from paddy soil, its physical and chemical properties, and rice grain yield. Compared with rice straw returning, applying rice straw biochar decreased the cumulative CH4 and N2O emissions from paddy soil significantly by 64.2% - 78.5% and 16.3% - 18.4%, respectively. Whether planting rice or not, the cumulative N2O emission from paddy soil under the applications of rice straw biochar and life rubbish biochar was decreased significantly, compared with that without biochar amendment. Under the condition of no rice planting, applying life rubbish biochar reduced the cumulative CO2 emission significantly by 25.3%. Rice straw biochar was superior to life rubbish biochar in improving soil pH and available potassium content. Both rice straw biochar and life rubbish biochar could increase the soil organic carbon content significantly, but had less effects on the soil bulk density, total nitrogen and available phosphorus contents, cation exchange capacity (CEC), and grain yield. It was suggested that compared with rice straw returning, straw biochar was more effective in improving rice grain yield.

  10. The proximate, mineral, and toxicant compositions of four possible food security crops from southeastern Nigeria.

    PubMed

    Ojiako, Okey A; Ogbuji, Chiza A; Agha, Ngozi C; Onwuliri, Viola A

    2010-10-01

    The proximate, nutritional, and antinutritional compositions of the raw, cooked, and roasted samples of four Nigerian indigenous seeds-Sphenostylis stenocarpa, Pentaclethra macrophylla, Mucuna flagellipes, and Citrullus colocynthis-were evaluated. Also estimated were zinc and divalent cation bioavailability of the seeds using millimolar ratios/kg dry weight of [calcium]/[phytate], [phytate]/[zinc], [calcium][phytate]/[Zn], and [phytate]/[total phosphorus]. The results obtained revealed that the seeds of P. macrophylla and C. colocynthis had high protein and lipid levels. All the seeds were also found to have high energy value and low moisture content. Mineral analysis showed the presence of Na, K, Ca, and Mg in appreciable quantities and Zn, I, Fe, and Se in minute quantities. Antinutritional analyses indicated the presence of traces of tannin, oxalate, phytate, saponin, and cyanide in the samples. The various processing techniques had significant (P ≤ .05) effects on the measured parameters. The calculated [Ca][phytate]/[Zn] molar ratios revealed that these seeds had values above the critical level of 0.5 mL/kg, thus indicating reduced bioavailability of zinc. In view of the high nutrient contents, low antinutritional contents after processing, and their superabundance, these seeds could be cheap nutrient sources. The implications of these findings with regards to food security are enormous.

  11. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2015-09-01

    Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.

  12. Structural and electronic transformations in substituted La-Sr manganites depending on cations and oxygen content

    NASA Astrophysics Data System (ADS)

    Karpasyuk, Vladimir; Badelin, Alexey; Merkulov, Denis; Derzhavin, Igor; Estemirova, Svetlana

    2018-05-01

    In the present research experimental data are obtained for the Jahn-Teller O‧ phase formation, phase transformation "orthorhombic-rhombohedral structure" and the change of the conductance type in the systems of manganites La3+1-c+xSr2+c-xMn3+1-c-x-2γMn4+c+2γZn2+xO3+γ, La3+1-c-xSr2+c+xMn3+1-c-x-2γMn4+c+2γGe4+xO3+γ, La3+1-cSr2+cMn3+1-x-c-2γMn4+c+2γ(Zn2+0.5Ge4+0.5)xO3+γ, where Mn4+ ions concentration is independent of "x". Ceramic samples were sintered in air at 1473 K. As-sintered samples had an excess of oxygen content. In order to provide stoichiometric oxygen content, the samples were annealed at 1223 K and partial pressure of oxygen PO2 = 10-1 Pа. Structural characteristics of the O‧ phase were obtained. The position of the phase boundary "orthorhombic-rhombohedral structure" and the temperature of the conductance type change depending on the cation composition of manganites and oxygen content were determined. Possible approaches to the interpretation of experimental results were suggested.

  13. Density functional theory computational study of ferroelectricity and piezoelectricity in BaTiO3/PbTiO3 (0 1 1) superlattices

    NASA Astrophysics Data System (ADS)

    Lou, Yaoding; Deng, Junkai; Zhe Liu, Jefferson

    2018-04-01

    The structure, ferroelectricity (FE), and piezoelectricity of epitaxial BaTiO3/PbTiO3 (BTO/PTO) (0 1 1) superlattices are studied using density functional theory calculations. Our results show that compressive strain arising from the SrTiO3 (0 1 1) substrate stabilizes the (BTO) m /(PTO) n (0 1 1) superlattices in orthorhombic phase with the FE polarization along [0 1 1] direction. Tuning the BTO contents significantly changes the structural, ferroelectric and piezoelectric properties. The FE polarization of superlattices significantly drops with increasing BTO contents, which can be attributed to depolarization of the PTO layers. The averaged c/a ratio of the whole superlattices exhibits anomalous non-monotonic relation with respect to BTO contents. Interestingly, our results predict the (0 1 1) superlattices can enhance the piezoelectric coefficient e 33 with a maximum value at ~67% BTO concentration. This result suggests a potential avenue to design high performance piezoelectric materials with less Pb contents. In-depth analysis reveals the B-site Ti cation as the origin for the enhanced e 33 value, which implies the potential of B-site cation engineering in perovskite heterostructure designs.

  14. Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups.

    PubMed

    Christ, Eva-Maria; Hobernik, Dominika; Bros, Matthias; Wagner, Manfred; Frey, Holger

    2015-10-12

    The cationic ring-opening copolymerization of 3,3-bis(hydroxymethyl)oxetane (BHMO) with glycidol using different comonomer ratios (BHMO content from 25 to 90%) and BF3OEt2 as an initiator has been studied. Apparent molecular weights of the resulting hyperbranched polyether copolymers ranged from 1400 to 3300 g mol(-1) (PDI: 1.21-1.48; method: SEC, linear PEG standards). Incorporation of both comonomers is evidenced by MALDI-TOF mass spectroscopy. All hyperbranched polyether polyols with high content of primary hydroxyl groups portray good solubility in water, which correlates with an increasing content of glycerol units. Detailed NMR characterization was employed to elucidate the copolymer microstructures. Kinetic studies via FTIR demonstrated a weak gradient-type character of the copolymers. MTT assays of the copolymers (up to 100 μg mL(-1)) on HEK and fibroblast cell lines (3T3, L929, WEHI) as well as viability tests on the fibroblast cells were carried out to assess the biocompatibility of the materials, confirming excellent biocompatibility. Transfection efficiency characterization by flow cytometry and confocal laser microscopy demonstrated cellular uptake of the copolymers. Antiadhesive properties of the materials on surfaces were assessed by adhesion assays with fibroblast cells.

  15. IR and TPD studies of the interaction of alkenes with Cu + sites in CuNaY and CuNaX zeolites of various Cu content. The heterogeneity of Cu + sites

    NASA Astrophysics Data System (ADS)

    Datka, J.; Kukulska-Zajaç, E.; Kozyra, P.

    2006-08-01

    Cu + ions in zeolites activate organic molecules containing π electrons by π back donation, which results in a distinct weakening of multiple bonds. In this study, we followed the activation of alkenes (ethene and propene) by Cu + ions in CuY and CuX zeolites of various Cu content. We also studied the strength of bonding of alkenes to Cu + ions. IR studies have shown that there are two kinds of Cu + sites of various electron donor properties. We suppose that they could be attributed to the presence of Cu + ions of various number of oxygen atoms surrounding the cation. IR studies have shown that Cu ions introduced into Y and X zeolites in the first-order (at low Cu content) form Cu + ions of stronger electron donor properties (i.e. activate alkenes to larger extend) than Cu ions introduced in the next order (at higher Cu content). IR and TPD studies of alkenes desorption evidenced that Cu + ions of stronger electron donor properties bond alkenes stronger than less electron donor ones. It suggests that π back donation has more important contribution to the strength of bonding alkenes to cation than π donation.

  16. Characterization of a novel xylanase gene from rumen content of Hu sheep.

    PubMed

    Wang, Qian; Luo, Yang; He, Bo; Jiang, Lin-Shu; Liu, Jian-Xin; Wang, Jia-Kun

    2015-12-01

    A novel xylanase gene, xyn-lxy, was cloned from a metagenomic fosmid library, which was previously constructed from the rumen contents of Hu sheep and was functionally characterized in Escherichia coli. The open reading frame was composed of 1923 bp and encoded for 640 amino acids, including a catalytic domain of glycosyl hydrolase family 10 and carbohydrate-binding module 9. The gene showed 97 % identity with uncultured bacterium Contig1552 but low similarity with xylanases from known cellulolytic-degrading microorganisms in the rumen. The recombinant XYN-LXY showed a specific activity of 664.7 U mg(-1). The optimal temperature and pH of the enzyme were 50 °C and 6.0, respectively. Specifically, XYN-LXY was exclusively activated by Mn(2+) among all of the cations and reducing agents tested in this study. An enzymatic hydrolysis assay revealed that XYN-LXY degraded birchwood xylan into xylooligosaccharide with a low degree of polymerization. After incubation for 4 h, the concentration of the dominant product, xylobiose, was 2.297 ± 0.175 mg ml(-1) (74.07 % of total product) followed by xylose with a concentration of 0.656 ± 0.010 mg ml(-1) (21.14 % of total product). The XYN-LXY exhibited deep degradation effects on the xylan substrate, which were rarely observed with endo-xylanase, making it a promising candidate for industrial application, especially in biofuel production.

  17. Characterization the potential of biochar from cow and pig manure for geoecology application

    NASA Astrophysics Data System (ADS)

    Gunamantha, I. M.; Widana, G. A. B.

    2018-03-01

    Biochar is a solid product generated from the carbonization of biomass with various potential benefits. The utilisation of biochar should be adapted to its characteristic which is mainly influenced by its feedstock. In this study, cow and pig manure biochar generated by a conventional process, were characterized by its physical and chemical analysis and its potential to be used as soil amendment. For this purpose, several main parameters were analyzed: organic carbon, Nutrient (total-N, available P and K) status, Cation Exchange Capacity (CEC), proximate data analysis (moisture content, ash, volatile matter and fixed carbon) and its ash composition. The comparison between biochar and feedstock will be based on these parameters. The results of this study show that the organic carbon, available P, ash, and fixed carbon content of pig-manure biochar is higher than cow manure-derived biochar; while total-N, available K, CEC and volatile matter is lower. On its ash composition, the pig manure-derived biochar is dominated by SiO2, Al2O3, Fe2O3, P2O5, and CaO while the cow manure-derived biochar is dominated by SiO2, CaO, Al2O3, K2O, and P2O5. However, both biochar show potential for improving soil quality and reducing carbon emission from animal manure.

  18. Cation-Pi Interaction: A Key Force for Sorption of Fluoroquinolone Antibiotics on Pyrogenic Carbonaceous Materials.

    PubMed

    Zhao, Qing; Zhang, Siyu; Zhang, Xuejiao; Lei, Lei; Ma, Wei; Ma, Chuanxin; Song, Lei; Chen, Jingwen; Pan, Bo; Xing, Baoshan

    2017-12-05

    Cation-pi attraction is a major force that determines macromolecular structures and drug-receptor interactions. However, the role of the cation-pi interaction in sorption of fluoroquinolone antibiotics by pyrogenic carbonaceous materials (PCMs) has not been addressed. We studied sorption of ciprofloxacin (CIP) on graphite to quantify the contribution of the cation-pi interaction. Through competition experiments, the decreased amount of sorbed CIP by sequential treatment with hexadecane, phenanthrene and benzylamine represents the contribution of hydrophobic, pi-pi and cation-pi interactions, respectively. Benzylamine competed more strongly with CIP than n-hexadecane and phenanthrene, indicating that cation-pi is a major force. Cation-pi interactions accounted for up to 72.6% of the total sorption at an initial CIP concentration of 0.000015 mmol/L. Importantly, species transformation (CIP(0) captures H + from water to form CIP(+1)) induced by cation-pi interactions was verified both experimentally and theoretically and can be used to explain the environmental behavior of other fluoroquinolone antibiotics and biochemical processes of amino acids that interact with aromatic moieties. Because of the significant role of cation-pi interactions, CIP desorption increased up to 2.32 times when Na + increased from 0.01 mM to 0.45 mM, which is an environmentally relevant scenario at river estuaries. Hence, behaviors of fluoroquinolone antibiotics that are affected by ionic strength changes need to be carefully evaluated, especially in river estuaries.

  19. Elemental composition of some essential cations in human ocular tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panessa-Warren, B.J.; Kraner, H.W.; Warren, J.B.

    1983-01-01

    To obtain data on the baseline elemental content in normal adult sensory retina, RPE and iris, normal non-diabetic eyes were analyzed and these results were used for comparison to similarly prepared samples from diabetic donor eyes. To determine if the concentrations of the cations, Ca, Ba and Zn were altered by the age, alimentation and exposure to light of the donor, tissue from children (from 25 weeks gestation to 8-1/2 years old) was also analyzed by x-ray fluorescence spectroscopy, proton induced x-ray emission spectroscopy, and light and electron (scanning and transmission) microscopy.

  20. Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology.

    PubMed

    Papouskova, Klara; Sychrova, Hana

    2006-04-03

    The family of Nha antiporters mediating the efflux of alkali metal cations in exchange for protons across the plasma membrane is conserved in all yeast species. Yarrowia lipolytica is a dimorphic yeast, phylogenetically very distant from the model yeast Saccharomyces cerevisiae. A search in its sequenced genome revealed two genes (designated as YlNHA1 and YlNHA2) with homology to the S. cerevisiae NHA1 gene, which encodes a plasma membrane alkali metal cation/H+ antiporter. Upon heterologous expression of both YlNHA genes in S. cerevisiae, we showed that Y. lipolytica antiporters differ not only in length and sequence, but also in their affinity for individual substrates. While the YlNha1 protein mainly increased cell tolerance to potassium, YlNha2p displayed a remarkable transport capacity for sodium. Thus, Y. lipolytica is the first example of a yeast species with two plasma membrane alkali metal cation/H+ antiporters differing in their putative functions in cell physiology; cell detoxification vs. the maintenance of stable intracellular pH, potassium content and cell volume.

  1. Cation distribution and optical properties of Cr-doped MgGa2O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Duan, Xiulan; Liu, Jian; Wang, Xinqiang; Jiang, Huaidong

    2014-11-01

    The distribution of cations in the spinel-type MgCr2yGa2-2yO4 (y = 0-0.6) nanocrystals and their optical properties as a function of annealing temperature and chromium content were investigated by using X-ray photoelectron spectroscopy (XPS) in combination with absorption spectroscopy. The cations in MgCr2yGa2-2yO4 nanocrystals are disorderly distributed with mixing of divalent and trivalent cations occupying the tetrahedral and octahedral sites. With the increase of annealing temperature, the inversion parameter (the fraction of Mg2+ ions in octahedral sites) decreases, which has the same varying tendency with the proportion of tetrahedral Ga3+ or Cr3+ ions. The inversion parameter increases with increasing Cr3+ concentration. The absorption spectra indicate that Cr3+ ions are located in the octahedral sites as well as in the tetrahedral sites. The fraction of tetrahedral Cr3+ decreases with Cr-enrichment. The optical absorption properties of Cr-doped MgGa2O4 nanocrystals may be tuned by varying the preparation temperature or Cr concentration.

  2. Ion Dynamics in a Mixed-Cation Alkoxy-Ammonium Ionic Liquid Electrolyte for Sodium Device Applications.

    PubMed

    Pope, Cameron R; Kar, Mega; MacFarlane, Douglas R; Armand, Michel; Forsyth, Maria; O'Dell, Luke A

    2016-10-18

    The ion dynamics in a novel sodium-containing room-temperature ionic liquid (IL) consisting of an ether-functionalised quaternary ammonium cation and bis(trifluoromethylsulfonyl)amide [NTf 2 ] anion with various concentrations of Na[NTf 2 ] have been characterised using differential scanning calorimetry, impedance spectroscopy, diffusometry and NMR relaxation measurements. The IL studied has been specifically designed to dissolve a relatively large concentration of Na[NTf 2 ] salt (over 2 mol kg -1 ) as this has been shown to improve ion transport and conductivity. Consistent with other studies, the measured ionic conductivity and diffusion coefficients show that the overall ionic mobility decreases with decreasing temperature and increasing salt content. NMR relaxation measurements provide evidence for correlated dynamics between the ether-functionalised ammonium and Na cations, possibly with the latter species acting as cross-links between multiple ammonium cations. Finally, preliminary cyclic voltammetry experiments show that this IL can undergo stable electrochemical cycling and could therefore be potentially useful as an electrolyte in a Na-based device. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A simple approach for morphology tailoring of alginate particles by manipulation ionic nature of polyurethanes.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2014-05-01

    A number of different ionic aqueous polyurethane dispersions (PUDs) were synthesized based on NCO-terminated prepolymers. Two different anionic and cationic polyurethane samples were synthesized using dimethylol propionic acid and N-methyldiethanolamine emulsifiers, respectively. Then, proper amounts of PUDs and sodium alginate were mixed to obtain a number of aqueous polyurethane dispersions-sodium alginate (PUD/SA) elastomers. The chemical structure, thermal, morphological, thermo-mechanical and mechanical properties, and hydrophilicity content of the prepared samples were studied by FTIR, EDX, DSC, TGA, SEM, DMTA, tensile testing and contact angle techniques. The cationic polyurethanes and their blends with sodium alginate showed excellent miscibility and highly stretchable properties, while the samples containing anionic polyurethanes and alginate illustrated a poor compatibility and no significant miscibility. The morphology of alginate particles shifted from nanoparticles to microparticles by changing the nature of PUDs from cationic to anionic types. The final cationic elastomers not only showed better mechanical properties but also were formulated easier than anionic samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Changes During Recovery from Sodium Deficiency in Atriplex

    PubMed Central

    Brownell, P. F.; Jackman, Margaret E.

    1966-01-01

    Although the concentration of sodium in leaves of Atriplex plants increased rapidly after receiving sodium, no growth response was detectable for about 6 days. It was found that respiration rate increased to its maximum within 3 days. Chlorophyll content also increased from an early stage, whereas the concentrations of sugars and starch did not increase, and ratios of soluble to total nitrogen did not decrease until later. The respiratory response appears to be specific to sodium as different salts of sodium caused similar responses, and no other univalent cation substituted for sodium. In addition, both growth response and respiration rate tended towards their maxima with the same concentration of applied sodium. The rate of anaerobic CO2 production increased when sodium was fed to leaves, suggesting that the effect of sodium is in the glycolytic sequence. PMID:16656296

  5. Steep declines in atmospheric base cations in regions of Europe and North America

    NASA Astrophysics Data System (ADS)

    Hedin, Lars O.; Granat, Lennart; Likens, Gene E.; Adri Buishand, T.; Galloway, James N.; Butler, Thomas J.; Rodhe, Henning

    1994-01-01

    HUMAN activities have caused marked changes in atmospheric chemistry over large regions of Europe and North America. Although considerable attention has been paid to the effects of changes in the deposition of acid anions (such as sulphate and nitrate) on terrestrial and aquatic ecosystems1-7, little is known about whether the concentrations of basic components of the atmosphere have changed over time8,9 and what the biogeochemical consequences of such potential changes might be. In particular, there has been some controversy8-12 as to whether declines in base-cation deposition have countered effects of recent reductions in SO2emission. Here we report evidence for steep declines in the atmospheric concentrations of base cations (sum of non-sea-salt Ca2+, Mg2+, K+ and Na+) over the past 10 to 26 years from high-quality precipitation chemistry records in Europe and North America. To varying but generally significant degrees, these base-cation trends have offset recent reductions in sulphate deposition in the regions examined. The observed trends seem to be ecologically important on decadal timescales, and support earlier contentions8-10 that declines in the deposition of base cations may have contributed to increased sensitivity of poorly buffered ecosystems.

  6. Former charcoal kiln sites where forest was cleared for cultivation: a case study of old biochar in cropland

    NASA Astrophysics Data System (ADS)

    Hardy, Brieuc; Dufey, Joseph E.; Cornelis, Jean-Thomas

    2014-05-01

    The use of biochar as a soil amendment is being increasingly investigated as a win-win solution for mitigating the anthropic CO2 emissions and improving soil fertility. However, data on the long term impact of chars on soil properties are scarce, although they are crucial for better understanding the implications of large scale application of highly persistent biochars to soil. In Wallonia (Belgium), old charcoal kilns are found in most of the area that was forested in the late 18th century. Since then, a non-negligible part of the forest has been cleared for cultivation. Today, old charcoal-making platforms can be seen on bare soils as circular or elliptic black spots due to charcoal enrichment. In order to assess the long-term (>200 years) effects of biochar on soil chemical properties, seventeen kiln sites were chosen in several cropland areas of Wallonia on loessic luvisols (14) and loamy cambisols (3). Composite samples were taken in the ploughing layer (0 - 25 cm) and the underlying horizon (35 - 50 cm) in and out the kiln sites. The pH, total carbon (C) and nitrogen (N) contents, oxidizable carbon (CW&B), available phosphorus (Pav), cation exchange capacity at pH 7 (CEC), exchangeable cations content (Ca++, Mg++, K+, Na+) and loss on ignition at 550°C (LI550) were measured. In order to assess the impact of cultivation on charcoal aging, we also sampled four kiln sites on loessic luvisols under forest. Here, we show that charcoal, diluted laterally by successive tillage, acts as a carbon surplus in the topsoil layer of the black spots. The charcoal-enriched horizon is characterized by higher CEC, C/N and C/LI550 ratio compared to the reference soil. Cultivation of former forest soils accelerates charcoal aging, likely due to a combined effect of mechanical (tillage splits charcoal fragments in smaller pieces and increases soil aeration) and biological actions (promoted by improved trophic conditions due to application of amendments and fertilizers over many decades). This is supported by (i) a decrease of charcoal C/N and C/LI550 ratios, (ii) a sharp increase in the CEC value per carbon unit (485 cmolc/kgC) and (iii) a greater ability to be oxidized by a K2Cr2O7 treatment as compared to forest sites. Additionally, we observe identical Pav contents in and out the charcoal kiln sites which may indicate that Pav is governed only by the native humic substance content. Exchangeable Ca++ and, to a lesser extent Mg++ are higher than in the reference soil, whereas the content of K+ is comparable. Considering the percentage of these cations on the CEC, we propose that the exchange complex of charcoal has a higher selectivity for Ca++ and Mg++, and a lower selectivity for K+ relative to that of native humic substances. Our results provide new insights into the long-term impact of biochar on soil properties in cropland subject to intense cultivation in temperate climate.

  7. Copper toxicity and organic matter: Resiliency of watersheds in the Duluth Complex, Minnesota, USA

    USGS Publications Warehouse

    Piatak, Nadine; Seal, Robert; Jones, Perry M.; Woodruff, Laurel G.

    2015-01-01

    We estimated copper (Cu) toxicity in surface water with high dissolved organic matter (DOM) for unmined mineralized watersheds of the Duluth Complex using the Biotic Ligand Model (BLM), which evaluates the effect of DOM, cation competition for biologic binding sites, and metal speciation. A sediment-based BLM was used to estimate stream-sediment toxicity; this approach factors in the cumulative effects of multiple metals, incorporation of metals into less bioavailable sulfides, and complexation of metals with organic carbon. For surface water, the formation of Cu-DOM complexes significantly reduces the amount of Cu available to aquatic organisms. The protective effects of cations, such as calcium (Ca) and magnesium (Mg), competing with Cu to complex with the biotic ligand is likely not as important as DOM in water with high DOM and low hardness. Standard hardness-based water quality criteria (WQC) are probably inadequate for describing Cu toxicity in such waters and a BLM approach may yield more accurate results. Nevertheless, assumptions about relative proportions of humic acid (HA) and fulvic acid (FA) in DOM significantly influence BLM results; the higher the HA fraction, the higher calculated resiliency of the water to Cu toxicity. Another important factor is seasonal variation in water chemistry, with greater resiliency to Cu toxicity during low flow compared to high flow.Based on generally low total organic carbon and sulfur content, and equivalent metal ratios from total and weak partial extractions, much of the total metal concentration in clastic streambedsediments may be in bioavailable forms, sorbed on clays or hydroxide phases. However, organicrich fine-grained sediment in the numerous wetlands may sequester significant amount of metals, limiting their bioavailability. A high proportion of organic matter in waters and some sediments will play a key role in the resiliency of these watersheds to potential additional metal loads associated with future mining operations.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Jonathan M.; Shamblin, Jacob; Lang, Maik

    Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho 2Zr 2O 7. In a recentmore » neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE 2Th 2O 7'' fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. Finally, the results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.« less

  9. Functional Teas from the Leaves of Arbutus unedo: Phenolic Content, Antioxidant Activity, and Detection of Efficient Radical Scavengers.

    PubMed

    Erkekoglou, Ioannis; Nenadis, Nikolaos; Samara, Efrosini; Mantzouridou, Fani Th

    2017-06-01

    The phenolic content/composition and antioxidant activity of hot/cold infusion and decoction from the leaves of Arbutus unedo were studied for the first time. 1,1-diphenyl-2-picrylhydrazyl (DPPH ● ), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS ●+ ), crocin-bleaching, copper-reducing, and liposome accelerated oxidation assays were used for the evaluation of the activity in vitro. In vivo, the extracts were examined for their ability to protect S. cerevisiae cells from H 2 O 2 induced oxidative stress. An on-line high-performance liquid chromatography-DPPH ● assay was applied to identify potent radical scavengers and comment on their contribution to the total activity. The addition of leaves to boiling water (decoction) was the most appropriate practice to apply since the highest phenol intake (220.2 mg gallic acid/cup served) was obtained. Additionally, its antioxidant activity was equal or superior to that of the other extracts. Flavonols (~51-61 mg/g dry extract) were the main phenols in all the extracts, with quercitrin accounting for ~20% of the total phenol amount. The on-line DPPH ● method verified the high potency of the decoction and indicated as the most active radical scavengers, two galloylquinic acid derivatives and myricitrin, accounting for ~28-45% and ~11-13% of the total scavenging, respectively. Present data may contribute to the future exploitation of A. unedo leaves by the food industry for health-promoting herbal tea preparations and dietary supplements.

  10. Modification of clay barriers with a cationic surfactant to improve the retention of pesticides in soils.

    PubMed

    Rodríguez-Cruz, M S; Sánchez-Martín, M J; Andrades, M S; Sánchez-Camazano, M

    2007-01-10

    In this work, the efficiency of reactive clay barriers in the immobilisation of organic pesticides in a sandy soil was studied. Reactive barriers were prepared by modification of montmorillonite, kaolinite and palygorskite clay minerals, and of a clayey soil with the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Percolation curves of the pesticides linuron, atrazine and metalaxyl of different hydrophobic character, were obtained in columns packed with a natural sandy soil with these barriers intercalated under saturated flow conditions. The cumulative curves in the unmodified soil indicated a leaching of pesticides greater than 85% of the total amount of compound added. After barrier intercalation, the breakthrough curves (BTC) indicated a dramatic decrease in the amounts of linuron leached in all columns and a significant modification of the leaching kinetics of atrazine and metalaxyl. Retardation factors, R, of the pesticides in the columns were significantly correlated with the organic matter content (OM) derived from the ODTMA of the organo clay/soil barriers (r2>or=0.78). Significant correlations were also found between these R factors and the pore volume values corresponding to the maximum peaks of the BTCs (r2=0.83; p<0.01) or the total volumes leached (r2=0.44; p<0.05) for the pesticides atrazine and metalaxyl. The results obtained point to the interest in the use of reactive clay barriers for almost complete immobilisation of hydrophobic pesticides or for decreasing the leaching of moderately hydrophobic pesticides coming from point-like sources of pollution. These barriers would avoid the generation of elevated concentrations of these compounds in the soils due to their rapid washing.

  11. Geoenvironmental factors related to high incidence of human urinary calculi (kidney stones) in Central Highlands of Sri Lanka.

    PubMed

    Abeywickarama, Buddhika; Ralapanawa, Udaya; Chandrajith, Rohana

    2016-10-01

    An area with extremely high incidence of urinary calculi was investigated in the view of identifying the relationship between the disease prevalence and the drinking water geochemistry. The prevalence of the kidney stone disease in the selected Padiyapelella-Hanguranketa area in Central Highlands of Sri Lanka is significantly higher compared with neighboring regions. Drinking water samples were collected from water sources that used by clinically identified kidney stone patients and healthy people. A total of 83 samples were collected and analyzed for major anions and cations. The anions in the area varied in the order HCO3 (-) > Cl(-) > SO4 (2-) > NO3 (-) and cations varied in the order Ca(2+) > Mg(2+) > Na(+) > K(+) > Fe(2+). The dissolved silica that occurs as silicic acid (H4SiO4) in natural waters varied from 8.8 to 84 mg/L in prevalence samples, while it was between 9.7 and 65 mg/L for samples from non-prevalence locations. Hydrogeochemical data obtained from the two groups were compared using the Wilcoxon rank-sum test. It showed that pH, total hardness, Na(+), Ca(2+) and Fe(2+) had significant difference (p < 0.005) between water sources used by patients and non-patients. Elemental ratio plots, Gibbs' plot and factor analysis indicated that the chemical composition of water sources in this area is strongly influenced by rock-water interactions, particularly the weathering of carbonate and silicate minerals. This study reveals a kind of association between stone formation and drinking water geochemistry as evident by the high hardness/calcium contents in spring water used by patients.

  12. Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught.

    PubMed

    Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael

    2013-10-01

    The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO 3  > CO 3  > Cl > F > SO 4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33-0.45.

  13. Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught

    PubMed Central

    Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael

    2013-01-01

    The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45. PMID:25843965

  14. Contaminants in arctic snow collected over northwest Alaskan sea ice

    USGS Publications Warehouse

    Garbarino, J.R.; Snyder-Conn, E.; Leiker, T.J.; Hoffman, G.L.

    2002-01-01

    Snow cores were collected over sea ice from four northwest Alaskan Arctic estuaries that represented the annual snowfall from the 1995-1996 season. Dissolved trace metals, major cations and anions, total mercury, and organochlorine compounds were determined and compared to concentrations in previous arctic studies. Traces (<4 nanograms per liter, ng L-1) of cis- and trans-chlordane, dimethyl 2,3,5,6-tetrachloroterephthalate, dieldrin, endosulfan II, and PCBs were detected in some samples, with endosulfan I consistently present. High chlorpyrifos concentrations (70-80 ng L-1) also were estimated at three sites. The snow was highly enriched in sulfates (69- 394 mg L-1), with high proportions of nonsea salt sulfates at three of five sites (9 of 15 samples), thus indicating possible contamination through long-distance transport and deposition of sulfate-rich atmospheric aerosols. Mercury, cadmium, chromium, molybdenum, and uranium were typically higher in the marine snow (n = 15) in relation to snow from arctic terrestrial studies, whereas cations associated with terrigenous sources, such as aluminum, frequently were lower over the sea ice. One Kasegaluk Lagoon site (Chukchi Sea) had especially high concentrations of total mercury (mean = 214 ng L-1, standard deviation = 5 ng L-1), but no methyl mercury was detected above the method detection limit (0.036 ng L-1) at any of the sites. Elevated concentrations of sulfate, mercury, and certain heavy metals might indicate mechanisms of contaminant loss from the arctic atmosphere over marine water not previously reported over land areas. Scavenging by snow, fog, or riming processes and the high content of deposited halides might facilitate the loss of such contaminants from the atmosphere. Both the mercury and chlorpyrifos concentrations merit further investigation in view of their toxicity to aquatic organisms at low concentrations.

  15. Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios.

    PubMed

    Bourgeois, J C; Walsh, M E; Gagnon, G A

    2004-03-01

    Spent filter backwash water (SFBW) and clarifier sludge generally comprise the majority of the waste residual volume generated and in relative terms, these can be collectively referred to as combined filter backwash water (CFBW). CFBW is essentially a low-solids wastewater with metal hydroxide flocs that are typically light and slow to settle. This study evaluates the impact of adding calcium and magnesium carbonates to CFBW in terms of assessing the impacts on the sedimentation and DAF separation processes. Representative CFBW samples were collected from two surface water treatment plants (WTP): Lake Major WTP (Dartmouth, Nova Scotia, Canada) and Victoria Park WTP (Truro, Nova Scotia, Canada). Bench-scale results indicated that improvements in the CFBW settled water quality could be achieved through the addition of the divalent cations, thereby adjusting the monovalent to divalent (M:D) ratios of the wastewater. In general, the DAF process required slightly higher M:D ratios than the sedimentation process. The optimum M:D ratios for DAF and sedimentation were determined to be 1:1 and 0.33:1, respectively. It was concluded that the optimisation of the cation balance between monovalent cations (e.g., Na(+), K(+)) and added divalent cations (i.e., Ca(2+), Mg(2+)) aided in the settling mechanism through charge neutralisation-precipitation. The increase in divalent cation concentrations within the waste residual stream promoted destabilisation of the negatively charged colour molecules within the CFBW, thereby causing the colloidal content to become more hydrophobic.

  16. [Flavouring estimation of quality of grape wines with use of methods of mathematical statistics].

    PubMed

    Yakuba, Yu F; Khalaphyan, A A; Temerdashev, Z A; Bessonov, V V; Malinkin, A D

    2016-01-01

    The questions of forming of wine's flavour integral estimation during the tasting are discussed, the advantages and disadvantages of the procedures are declared. As investigating materials we used the natural white and red wines of Russian manufactures, which were made with the traditional technologies from Vitis Vinifera, straight hybrids, blending and experimental wines (more than 300 different samples). The aim of the research was to set the correlation between the content of wine's nonvolatile matter and wine's tasting quality rating by mathematical statistics methods. The content of organic acids, amino acids and cations in wines were considered as the main factors influencing on the flavor. Basically, they define the beverage's quality. The determination of those components in wine's samples was done by the electrophoretic method «CAPEL». Together with the analytical checking of wine's samples quality the representative group of specialists simultaneously carried out wine's tasting estimation using 100 scores system. The possibility of statistical modelling of correlation of wine's tasting estimation based on analytical data of amino acids and cations determination reasonably describing the wine's flavour was examined. The statistical modelling of correlation between the wine's tasting estimation and the content of major cations (ammonium, potassium, sodium, magnesium, calcium), free amino acids (proline, threonine, arginine) and the taking into account the level of influence on flavour and analytical valuation within fixed limits of quality accordance were done with Statistica. Adequate statistical models which are able to predict tasting estimation that is to determine the wine's quality using the content of components forming the flavour properties have been constructed. It is emphasized that along with aromatic (volatile) substances the nonvolatile matter - mineral substances and organic substances - amino acids such as proline, threonine, arginine influence on wine's flavour properties. It has been shown the nonvolatile components contribute in organoleptic and flavour quality estimation of wines as aromatic volatile substances but they take part in forming the expert's evaluation.

  17. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  18. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

    DOE PAGES

    Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.; ...

    2017-10-17

    Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less

  19. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.

    Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less

  20. Low temperature oxidative desulfurization with hierarchically mesoporous titaniumsilicate Ti-SBA-2 single crystals.

    PubMed

    Shi, Chengxiang; Wang, Wenxuan; Liu, Ni; Xu, Xueyan; Wang, Danhong; Zhang, Minghui; Sun, Pingchuan; Chen, Tiehong

    2015-07-21

    Hierarchically porous Ti-SBA-2 with high framework Ti content (up to 5 wt%) was firstly synthesized by employing organic mesomorphous complexes of a cationic surfactant (CTAB) and an anionic polyelectrolyte (PAA) as templates. The material exhibited excellent performance in oxidative desulfurization of diesel fuel at low temperature (40 °C or 25 °C) due to the unique hierarchically porous structure and high framework Ti content.

  1. Chemical Denudation and Cation Depletion in a Semi-Arid Catchment of the Long-Term Agroecological Research Observatory

    NASA Astrophysics Data System (ADS)

    Shaljian, M.; Keller, C. K.; Jones, K. B.; Brooks, E. S.; Huggins, D. R.

    2016-12-01

    The Long-Term Agroecosystem Research (LTAR) network of the USDA is a nationwide observatory and decadal-timescale field-experimental study of sustainable food production. The LTAR thus supports investigation of hydroecological and biogeochemical processes that could affect agricultural sustainability over the course of the 21st century. Mineral-derived nutrient cations are essential to fertility, and acidification of soils due to chemical fertilization may result in unsustainable chemical denudation of the soil exchange pool. Mineral weathering also contributes to base cation denudation. This study investigated base cation losses for one year in drainage from a semi-arid, rain-fed catchment at the Cook Agronomy Farm (CAF) LTAR site in southeastern Washington. We measured flows, analyzed drainage samples and estimated hydrologic effluxes of base cations from the catchment. The total dissolved base cation denudation rate at CAF-LTAR is about 40 kg ha-1 yr-1, which is comparable to other catchments on silicate terranes. The 2.1keq ha-1 yr-1 of denuded cationic charge is dominated by Ca2+ (61%) and Mg2+ (35%). Principal counter-ions are HCO3- (43%), NO3- (38%) and SO42- (16%), suggesting that both H2CO3 and HNO3 are important acids. Comparing 2008 soil pH and base saturation at CAF-LTAR to a nearby native prairie site, we preliminarily estimate a loss of 120 keq ha-1 of base cations from the upper 1.5m of the soil exchangeable cation pool. Dividing this depletion by the estimated denudation flux returns 60 years, which is approximately the interval of chemically intensive agriculture here. This may suggest that the source of exported base cations in drainage is primarily cation exchange rather than mineral weathering. The LTAR observatory will support ongoing monitoring and experimentation necessary to better understand base cation depletion and how it interacts with agroecological changes over the next several decades.

  2. Milan hypertensive rat as a model for studying cation transport abnormality in genetic hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, P.; Barber, B.R.; Torielli, L.

    1987-11-01

    Environmental factors, genetic polymorphisms, and different experimental designs have been the main impediments to evaluating a genetic association between cell membrane cation transport abnormalities and human essential or genetic hypertension. We review the results obtained in the Milan hypertensive strain of rats (MHS) and in its appropriate control normotensive strain (MNS) to illustrate our approach to defining the role of cation transport abnormality in a type of genetic hypertension. Before the development of a difference in blood pressure between the two strains, the comparison of kidney and erythrocyte functions showed that MHS had an increased glomerular filtration rate and urinarymore » output, and lower plasma renin and urine osmolality. Kidney cross-transplantation between the strains showed that hypertension is transplanted with the kidney. Proximal tubular cell volume and sodium content were lower in MHS while sodium transport across the brush border membrane vesicles of MHS was faster. Erythrocytes in MHS were smaller and had lower sodium concentration, and Na+-K+ cotransport and passive permeability were faster. The differences in volume, sodium content, and Na+-K+ cotransport between erythrocytes of the two strains persisted after transplantation of bone marrow to irradiated F1 (MHS X MNS) hybrids. Moreover, in normal segregating F2 hybrid populations there was a positive correlation between blood pressure and Na+-K+ cotransport. These results suggest a genetic and functional link in MHS between cell membrane cation transport abnormalities and hypertension. Thus, erythrocyte cell membrane may be used for approaching the problem of defining the genetically determined molecular mechanism underlying the development of a type of essential hypertension. 35 references.« less

  3. Inferred cation reordering in natural titanomagnetites with implications for Curie temperature and other magnetic properties (Invited)

    NASA Astrophysics Data System (ADS)

    Bowles, J. A.; Jackson, M. J.; Berquo, T. S.; Solheid, P.; Lappe, S. L.; Gee, J. S.

    2013-12-01

    We will present the results of recent work demonstrating that some natural titanomagnetites of common composition undergo cation reordering on laboratory timescales and at temperatures just above or below the Curie temperature (TC). This cation reordering produces changes in Curie temperature that have important implications for paleomagnetic studies and our understanding of remanence acquisition when TC is a function of prior thermal history. The bulk composition of the titanomagnetites (Fe3-xTixO4) varies between approximately 0.2 < x < 0.4, with moderate degrees of Mg and Al substitution. This composition is extremely common in rocks of andesitic, dacitic, and rhyolitic composition, as well as in some basalts. Samples were annealed for 10-1 to 103 hr at 350-425°C, producing large and reversible changes in TC (up to 150°C) that are roughly linear with log(anneal time). By ruling out oxidation/reduction and compositional unmixing, we interpret the variations in TC as arising from the re-distribution of ferric and ferrous iron cations between the octahedral and tetrahedral sites. Mössbauer spectroscopy supports this interpretation. Unlike pure titanomagnetite, the kinetics of the reordering process in these Mg- and Al-substituted natural titanomagnetites are apparently slow enough that intermediate degrees of ordering can be preserved by rapid quenching. The magnitude of the variation in TC produced by annealing at moderate temperatures correlates most strongly with Mg and Ti content and weakly with Al content. While strong variations are observed in TC, no detectible variation is found in saturation magnetization, and blocking temperature variations only weakly correlate with TC variation.

  4. Differential effects of sporulation temperature on the high pressure resistance of Clostridium botulinum type E spores and the interconnection with sporulation medium cation contents.

    PubMed

    Lenz, Christian A; Vogel, Rudi F

    2015-04-01

    High pressure thermal (HPT) processing can be used to improve traditional preservation methods and increase food safety and durability, whereas quality related characteristics can be largely maintained. Clostridium (C.) botulinum type E is a non-proteolytic, psychrotrophic, toxin-producing spore former, commonly associated with aquatic environments in temperate regions of the northern hemisphere. Sporulation in nature is likely to occur under varying conditions including temperature and nutrient availability, which might affect resistance properties of resulting spores. In our study, we determined the effect of sporulation temperature (13-38 °C) on the resistance of three Clostridium botulinum type E strains to differently intense HPT treatments (200 MPa at 40 and 80 °C, and 800 MPa at 40 and 80 °C). Furthermore, the effect of cations on sporulation temperature-mediated alterations in HHP resistance was investigated. Results indicate that low and high sporulation temperatures can increase and decrease sporal HPT resistance, respectively, in a treatment-dependent (pressure level, treatment temperature) manner, whereas the trends observed are largely unaffected by pressure dwells (1 s-10 min). Furthermore, results show that the cation content of the sporulation medium (Ca(2+), Mg(2+), Mn(2+)) marginally influences and partially counteracts effects on the HPT resistance of spores grown at low and elevated temperatures, respectively. This suggests that sporulation temperature and medium cations provoke changes in some common spore resistance structures. Sporulation conditions can markedly affect spore resistance properties and, thus, should be considered for the experimental setup of worst case studies aiming to evaluate the effectiveness of food processes in terms of the inactivation of C. botulinum type E spores. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Sorption of citalopram, irbesartan and fexofenadine in soils: Estimation of sorption coefficients from soil properties.

    PubMed

    Klement, Aleš; Kodešová, Radka; Bauerová, Martina; Golovko, Oksana; Kočárek, Martin; Fér, Miroslav; Koba, Olga; Nikodem, Antonín; Grabic, Roman

    2018-03-01

    The sorption of 3 pharmaceuticals, which may exist in 4 different forms depending on the solution pH (irbesartan in cationic, neutral and anionic, fexofenadine in cationic, zwitter-ionic and anionic, and citalopram cationic and neutral), in seven different soils was studied. The measured sorption isotherms were described by Freundlich equations, and the sorption coefficients, K F (for the fixed n exponent for each compound), were related to the soil properties to derive relationships for estimating the sorption coefficients from the soil properties (i.e., pedotransfer rules). The largest sorption was obtained for citalopram (average K F value for n = 1 was 1838 cm 3  g -1 ) followed by fexofenadine (K F  = 35.1 cm 3/n μg 1-1/n g -1 , n = 1.19) and irbesartan (K F  = 3.96 cm 3/n μg 1-1/n g -1 , n = 1.10). The behavior of citalopram (CIT) in soils was different than the behaviors of irbesartan (IRB) and fexofenadine (FEX). Different trends were documented according to the correlation coefficients between the K F values for different compounds (R IRB,FEX  = 0.895, p-value<0.01; R IRB,CIT  = -0.835, p-value<0.05; R FEX,CIT  = -0.759, p-value<0.05) and by the reverse relationships between the K F values and soil properties in the pedotransfer functions. While the K F value for citalopram was positively related to base cation saturation (BCS) or sorption complex saturation (SCS) and negatively correlated to the organic carbon content (Cox), the K F values of irbesartan and fexofenadine were negatively related to BCS, SCS or the clay content and positively related to Cox. The best estimates were obtained by combining BCS and Cox for citalopram (R 2  = 93.4), SCS and Cox for irbesartan (R 2  = 96.3), and clay content and Cox for fexofenadine (R 2  = 82.9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Proximate Composition and Antioxidant Potential of Leaves from Three Varieties of Mulberry (Morus sp.): A Comparative Study

    PubMed Central

    Iqbal, Shahid; Younas, Umer; Sirajuddin; Chan, Kim Wei; Sarfraz, Raja Adil; Uddin, Kamal

    2012-01-01

    In this study, leaves of three indigenous varieties of Mulberry namely, Morus alba L., Morus nigra L. and Morus rubra L. were investigated for their antioxidant potential and their proximate composition was determined. The yields of 80% methanolic extracts ranged between 8.28–13.89%. The contents of total phenolics (TPC), total flavonoids (TFC) and ascorbic acid (AA) ranged between 16.21–24.37 mg gallic acid equivalent (GAE)/g, 26.41–31.28 mg rutin equivalent (RE)/g and 0.97–1.49 mg/g, respectively. The antioxidant activity of leaf extracts was evaluated by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging actity, 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid (ABTS•+) radical cation scavenging capacity and ferric ion reducing power and values ranged between 1.89–2.12, 6.12–9.89 and 0.56–0.97 mM Trolox equivalent/g of dried leaves, respectively. The investigated features reveal good nutritive and antioxidant attributes of all the varieties with mutually significant differences. PMID:22837655

  7. Characterization and quantification of biochar alkalinity.

    PubMed

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK a organic structural (0.03-0.34 meq g -1 ), other organic (0-0.92 meq g -1 ), carbonate (0.02-1.5 meq g -1 ), and other inorganic (0-0.26 meq g -1 ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions.

    PubMed

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-16

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = Ti(IV), Cu(II), Al(III), Sn(IV), Fe(III), Cr(III), Zr(IV) and Zn(II); for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with Ti(x)H(3-4x)PW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (Ti(x)H(3-4x)PW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  9. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    PubMed Central

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3−4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3−4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  10. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3-4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3-4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  11. Design principles from multiscale simulations to predict nanostructure in self-assembling ionic liquids

    DOE PAGES

    Nebgen, Benjamin Tyler; Magurudeniya, Harsha D.; Kwock, Kevin Wen Chi; ...

    2017-07-18

    Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinatingmore » anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. As a result, thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.« less

  12. Design principles from multiscale simulations to predict nanostructure in self-assembling ionic liquids.

    PubMed

    Nebgen, Benjamin T; Magurudeniya, Harsha D; Kwock, Kevin W C; Ringstrand, Bryan S; Ahmed, Towfiq; Seifert, Sönke; Zhu, Jian-Xin; Tretiak, Sergei; Firestone, Millicent A

    2017-12-14

    Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1 H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinating anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1 H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. Thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.

  13. Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems: the Critical Role of Divalent Cations

    PubMed Central

    2017-01-01

    The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting forces and to infer the microscopic origin of the resultant contact angle alteration. We focus, in particular, on two competing mechanisms debated in the literature, namely, double-layer expansion and divalent cation bridging. Our experiments involve aqueous droplets with a variable content of chloride salts of Na+, K+, Ca2+, and Mg2+, wetting surfaces of muscovite and amorphous silica, and an environment of ambient decane containing small amounts of fatty acids to represent polar oil components. By diluting the salt content in various manners, we demonstrate that the water contact angle on muscovite, not on silica, decreases by up to 25° as the divalent cation concentration is reduced from typical concentrations in seawater to zero. Decreasing the ionic strength at a constant divalent ion concentration, however, has a negligible effect on the contact angle. We discuss the consequences for the interpretation of core flooding experiments and the identification of a microscopic mechanism of low salinity water flooding, an increasingly popular, inexpensive, and environment-friendly technique for enhanced oil recovery. PMID:28332396

  14. Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems: the Critical Role of Divalent Cations.

    PubMed

    Haagh, M E J; Siretanu, I; Duits, M H G; Mugele, F

    2017-04-11

    The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting forces and to infer the microscopic origin of the resultant contact angle alteration. We focus, in particular, on two competing mechanisms debated in the literature, namely, double-layer expansion and divalent cation bridging. Our experiments involve aqueous droplets with a variable content of chloride salts of Na + , K + , Ca 2+ , and Mg 2+ , wetting surfaces of muscovite and amorphous silica, and an environment of ambient decane containing small amounts of fatty acids to represent polar oil components. By diluting the salt content in various manners, we demonstrate that the water contact angle on muscovite, not on silica, decreases by up to 25° as the divalent cation concentration is reduced from typical concentrations in seawater to zero. Decreasing the ionic strength at a constant divalent ion concentration, however, has a negligible effect on the contact angle. We discuss the consequences for the interpretation of core flooding experiments and the identification of a microscopic mechanism of low salinity water flooding, an increasingly popular, inexpensive, and environment-friendly technique for enhanced oil recovery.

  15. Mapping Optimal Charge Density and Length of ROMP-Based PTDMs for siRNA Internalization.

    PubMed

    Caffrey, Leah M; deRonde, Brittany M; Minter, Lisa M; Tew, Gregory N

    2016-10-10

    A fundamental understanding of how polymer structure impacts internalization and delivery of biologically relevant cargoes, particularly small interfering ribonucleic acid (siRNA), is of critical importance to the successful design of improved delivery reagents. Herein we report the use of ring-opening metathesis polymerization (ROMP) methods to synthesize two series of guanidinium-rich protein transduction domain mimics (PTDMs): one based on an imide scaffold that contains one guanidinium moiety per repeat unit, and another based on a diester scaffold that contains two guanidinium moieties per repeat unit. By varying both the degree of polymerization and, in effect, the relative number of cationic charges in each PTDM, the performances of the two ROMP backbones for siRNA internalization were evaluated and compared. Internalization of fluorescently labeled siRNA into Jurkat T cells demonstrated that fluorescein isothiocyanate (FITC)-siRNA internalization had a charge content dependence, with PTDMs containing approximately 40 to 60 cationic charges facilitating the most internalization. Despite this charge content dependence, the imide scaffold yielded much lower viabilities in Jurkat T cells than the corresponding diester PTDMs with similar numbers of cationic charges, suggesting that the diester scaffold is preferred for siRNA internalization and delivery applications. These developments will not only improve our understanding of the structural factors necessary for optimal siRNA internalization, but will also guide the future development of optimized PTDMs for siRNA internalization and delivery.

  16. New scheme for cation distribution and electrical characterization of nanocrystalline aluminum doped magnesium ferrite MgAlxFe2-xO4

    NASA Astrophysics Data System (ADS)

    Zaki, H. M.; Al-Heniti, S.; Al Shehri, N.

    2014-03-01

    MgAlxFe2-xO4 (x=0.0 up to 1 step 0.2) was prepared using co-precipitation method. The value of lattice constant is found to decrease with increasing Al3+ concentration. The particle size of the samples calculated using the Sherrer formula was obtained in the range of 15-28 nm. The two main bands corresponding to tetrahedral and octahedral sites were observed to be around 600 cm-1 and 450 cm-1, respectively. These bands are shifted to high frequencies with more doping of Al3+ ions which may be attributed to the decrease in the mean radius of the tetrahedral and octahedral sites. The threshold frequency (νth) for the electronic transition decreases with increasing the Al3+content. The tetrahedral force constant (KT) increases continuously with Al3+ concentration.The bandwidth of the tetrahedral site is found to increase gradually with the Al3+ content. The validity of the proposed cation distribution is confirmed by considering the X-ray intensity ratios of diffraction lines sensitive to the tetrahedral and octahedral sites. DC conductivity measurements exhibited metallic and semiconductor-like behavior with temperature for all compositions. The decrease of Curie temperature with the increase of non-magnetic ions of aluminum indicates their preference to the octahedral sites as well and confirms the validity of the cation distribution.

  17. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake.

    PubMed

    Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao

    2017-12-31

    Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils.

    PubMed

    Xiang, Lei; Sun, Teng-Fei; Zheng, Mei-Jie; Li, Yan-Wen; Li, Hui; Wong, Ming-Hung; Cai, Quan-Ying; Mo, Ce-Hui

    2016-08-01

    Quaternary ammonium compounds (QACs) used as cationic surfactants are intensively released into environment to be pollutants receiving more and more concerns. Sorption of dodecyltrimethylammonium chloride (DTAC), one of commonly used alkyl QACs, to five types of agricultural soils at low concentrations (1-50mg/L) was investigated using batch experiments. DTAC sorption followed pseudo-second-order kinetics and reached reaction equilibrium within 120min. Both Freundlich model and Langmuir model fitted well with DTAC isotherm data with the latter better. DTAC sorption was spontaneous and favorable, presenting a physical sorption dominated by ion exchanges. Sorption distribution coefficient and sorption affinity demonstrated that soil clay contents acted as a predominant phase of DTAC sorption. DTAC could display a higher mobility and potential accumulation in crops in the soils with lower clay contents and lower pH values. Sorption of DTAC was heavily affected by ions in solution with anion promotion and cation inhibition. Copyright © 2016. Published by Elsevier B.V.

  19. Chemical ordering in substituted fluorite oxides: a computational investigation of Ho2Zr2O7 and RE2Th2O7 (RE=Ho, Y, Gd, Nd, La).

    PubMed

    Solomon, Jonathan M; Shamblin, Jacob; Lang, Maik; Navrotsky, Alexandra; Asta, Mark

    2016-12-12

    Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho 2 Zr 2 O 7 . In a recent neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE 2 Th 2 O 7 fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. The results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.

  20. Chemical ordering in substituted fluorite oxides: a computational investigation of Ho2Zr2O7 and RE2Th2O7 (RE=Ho, Y, Gd, Nd, La)

    NASA Astrophysics Data System (ADS)

    Solomon, Jonathan M.; Shamblin, Jacob; Lang, Maik; Navrotsky, Alexandra; Asta, Mark

    2016-12-01

    Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho2Zr2O7. In a recent neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE2Th2O7 fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. The results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.

  1. Improved efficiency of budesonide nebulization using surface-active agents.

    PubMed

    Bouwman, A M; Heijstra, M P; Schaefer, N C; Duiverman, E J; Lesouëf, P N; Devadason, S G

    2006-01-01

    Our aim was to improve the efficiency of nebulised budesonide using surface-active agents. Cationic, anionic, and nonionic detergents were added to commercial budesonide suspension, and the particle size distribution during nebulization was measured using both cascade impaction and laser diffraction. Our results showed that the emitted dose was increased after addition of cationic (p < 0.001) and nonionic detergents (p < 0.01) compared with the commercial formulation alone. The respirable fraction was increased for all detergent formulations (p < 0.001) compared with the commercial formulation. We concluded that cationic and nonionic detergent increased the total output of budesonide from the Sidestream. All detergent formulations increased the respirable fraction of nebulized budesonide.

  2. Conversion of multiple analyte cation types to a single analyte anion type via ion/ion charge inversion.

    PubMed

    Hassell, Kerry M; LeBlanc, Yves; McLuckey, Scott A

    2009-11-01

    Charge inversion ion/ion reactions can convert several cation types associated with a single analyte molecule to a single anion type for subsequent mass analysis. Specifically, analyte ions present with one of a variety of cationizing agents, such as an excess proton, excess sodium ion, or excess potassium ion, can all be converted to the deprotonated molecule, provided that a stable anion can be generated for the analyte. Multiply deprotonated species that are capable of exchanging a proton for a metal ion serve as the reagent anions for the reaction. This process is demonstrated here for warfarin and for a glutathione conjugate. Examples for several other glutathione conjugates are provided as supplementary material to demonstrate the generality of the reaction. In the case of glutathione conjugates, multiple metal ions can be associated with the singly-charged analyte due to the presence of two carboxylate groups. The charge inversion reaction involves the removal of the excess cationizing agent, as well as any metal ions associated with anionic groups to yield a singly deprotonated analyte molecule. The ability to convert multiple cation types to a single anion type is analytically desirable in cases in which the analyte signal is distributed among several cation types, as is common in the electrospray ionization of solutions with relatively high salt contents. For analyte species that undergo efficient charge inversion, such as glutathione conjugates, there is the additional potential advantage for significantly improved signal-to-noise ratios when species that give rise to 'chemical noise' in the positive ion spectrum do not undergo efficient charge inversion.

  3. Effects of Chloride and Sulfate Salts on the Inhibition or Promotion of Sucrose Crystallization in Initially Amorphous Sucrose-Salt Blends.

    PubMed

    Thorat, Alpana A; Forny, Laurent; Meunier, Vincent; Taylor, Lynne S; Mauer, Lisa J

    2017-12-27

    The effects of salts on the stability of amorphous sucrose and its crystallization in different environments were investigated. Chloride (LiCl, NaCl, KCl, MgCl 2 , CaCl 2 , CuCl 2 , FeCl 2 , FeCl 3 , and AlCl 3 ) and sulfate salts with the same cations (Na 2 SO 4 , K 2 SO 4 , MgSO 4 , CuSO 4 , Fe(II)SO 4 , and Fe(III)SO 4 ) were studied. Samples (sucrose controls and sucrose:salt 1:0.1 molar ratios) were lyophilized, stored in controlled temperature and relative humidity (RH) conditions, and monitored for one month using X-ray diffraction. Samples were also analyzed by differential scanning calorimetry, microscopy, and moisture sorption techniques. All lyophiles were initially amorphous, but during storage the presence of a salt had a variable impact on sucrose crystallization. While all samples remained amorphous when stored at 11 and 23% RH at 25 °C, increasing the RH to 33 and 40% RH resulted in variations in crystallization onset times. The recrystallization time generally followed the order monovalent cations < sucrose < divalent cations < trivalent cations. The presence of a salt typically increased water sorption as compared to sucrose alone when stored at the same RH; however, anticrystallization effects were observed for sucrose combined with salts containing di- and trivalent cations in spite of the increased water content. The cation valency and hydration number played a major role in dictating the impact of the added salt on sucrose crystallization.

  4. Soil properties determine the elevational patterns of base cations and micronutrients in the plant-soil system up to the upper limits of trees and shrubs

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhen; Wang, Xue; Jiang, Yong; Cerdà, Artemi; Yin, Jinfei; Liu, Heyong; Feng, Xue; Shi, Zhan; Dijkstra, Feike A.; Li, Mai-He

    2018-03-01

    To understand whether base cations and micronutrients in the plant-soil system change with elevation, we investigated the patterns of base cations and micronutrients in both soils and plant tissues along three elevational gradients in three climate zones in China. Base cations (Ca, Mg, and K) and micronutrients (Fe, Mn, and Zn) were determined in soils, trees, and shrubs growing at lower and middle elevations as well as at their upper limits on Balang (subtropical, SW China), Qilian (dry temperate, NW China), and Changbai (wet temperate, NE China) mountains. No consistent elevational patterns were found for base cation and micronutrient concentrations in both soils and plant tissues (leaves, roots, shoots, and stem sapwood). Soil pH, soil organic carbon (SOC), total soil nitrogen (TN), the SOC to TN ratio (C : N), and soil extractable nitrogen (NO3- and NH4+) determined the elevational patterns of soil exchangeable Ca and Mg and available Fe, Mn, and Zn. However, the controlling role of soil pH and SOC was not universal as revealed by their weak correlations with soil base cations under tree canopies at the wet temperate mountain and with micronutrients under both tree and shrub canopies at the dry temperate mountain. In most cases, soil base cation and micronutrient availabilities played fundamental roles in determining the base cation and micronutrient concentrations in plant tissues. An exception existed for the decoupling of leaf K and Fe with their availabilities in the soil. Our results highlight the importance of soil physicochemical properties (mainly SOC, C : N, and pH) rather than elevation (i.e., canopy cover and environmental factors, especially temperature), in determining base cation and micronutrient availabilities in soils and subsequently their concentrations in plant tissues.

  5. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    USGS Publications Warehouse

    Ravichandran, Mahalingam; Aiken, George R.; Reddy, Michael M.; Ryan, Joseph N.

    1998-01-01

    Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release (up to 35 μM total dissolved mercury) from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca2+. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in DI water (pH = 6.0) had no detectable (<2.5 nM) dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates (determined by 13C NMR) correlated positively with enhanced cinnabar dissolution. ζ-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar (pHpzc = 4.0) at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

  6. What Is the Structure of the Naphthalene-Benzene Heterodimer Radical Cation? Binding Energy, Charge Delocalization, and Unexpected Charge-Transfer Interaction in Stacked Dimer and Trimer Radical Cations.

    PubMed

    Attah, Isaac K; Platt, Sean P; Meot-Ner Mautner, Michael; El-Shall, M Samy; Peverati, Roberto; Head-Gordon, Martin

    2015-04-02

    The binding energy of the naphthalene(+•)(benzene) heterodimer cation has been determined to be 7.9 ± 1 kcal/mol for C10H8(+•)(C6H6) and 8.1 ± 1 kcal/mol for C10H8(+•)(C6D6) by equilibrium thermochemical measurements using the mass-selected drift cell technique. A second benzene molecule binds to the C10H8(+•)(C6D6) dimer with essentially the same energy (8.4 ± 1 kcal/mol), suggesting that the two benzene molecules are stacked on opposite sides of the naphthalene cation in the (C6D6)C10H8(+•)(C6D6) heterotrimer. The lowest-energy isomers of the C10H8(+•)(C6D6) and (C6D6)C10H8(+•)(C6D6) dimer and trimer calculated using the M11/cc-pVTZ method have parallel stacked structures with enthalpies of binding (-ΔH°) of 8.4 and 9.0 kcal/mol, respectively, in excellent agreement with the experimental values. The stacked face-to-face class of isomers is calculated to have substantial charge-transfer stabilization of about 45% of the total interaction energy despite the large difference between the ionization energies of benzene and naphthalene. Similarly, significant delocalization of the positive charge is found among all three fragments of the (C6D6)C10H8(+•)(C6D6) heterotrimer, thus leaving only 46% of the total charge on the central naphthalene moiety. This unexpectedly high charge-transfer component results in activating two benzene molecules in the naphthalene(+•)(benzene)2 heterotrimer cation to associate with a third benzene molecule at 219 K to form a benzene trimer cation and a neutral naphthalene molecule. The global minimum of the C10H8(+•)(C6H6)2 heterotrimer is found to be the one where the naphthalene cation is sandwiched between two benzene molecules. It is remarkable, and rather unusual, that the binding energy of the second benzene molecule is essentially the same as that of the first. This is attributed to the enhanced charge-transfer interaction in the stacked trimer radical cation.

  7. Transport interactions of different organic cations during their excretion by the intact rat kidney.

    PubMed

    Pietruck, F; Ullrich, K J

    1995-06-01

    Organic cations, in addition to being filtrated, are secreted or reabsorbed in the proximal renal tubule whereby they have to pass the contraluminal and the luminal cell membrane. Interactions with the transport of other organic cations can occur at either cell side, leading to inhibition or stimulation of net secretion or net reabsorption. A qualitative evaluation of such processes is possible by using the in vivo bolus injection of an organic cation as test substance. Measuring its urinary excretion profile in relation to that of inulin, under control conditions and after application of interfering organic cations, in combination with simultaneous registration of its tissue concentration, allows the demonstration of interaction and also the tentative identification of the cell side at which interference has taken place. As test substance the fluorescent organic cation 4-(4-dimethylaminostyryl)-N-methylpyridinium (4-Di-1-ASP+; denotes permanent positively-charged organic cations was used, having a protein binding of 47% under the given experimental conditions. As interfering organic cations amiloride, benzylamiloride, choline+, cimetidine, and 2-methyl-4-(heptafluorobutoxy)-N-methylpyridinium+ were injected. It was found that: (1) 4-Di-1-ASP+ is filtered and net reabsorbed under control conditions (fractional excretion 0.54 +/- 0.1). All net secreted interfering substances, except bidirectional transported choline+, injected simultaneously with 4-Di-1-ASP+, showed an interference with renal excretion of net reabsorbed 4-Di-1-ASP+, by (2) instantaneously increasing its reabsorption, resulting in a 28 to 33% decrease in urinary excretion, and (3) augmenting its tissue concentration by 19 to 58%. (4) A prolonged effect of the interfering substrates could be observed after a third injection of 4-Di-1-ASP+ (without inhibitor) showing an increased tissue concentration of 4-Di-1-ASP+ of 36 to 46%. The complex interfering pattern of the applied organic cations can be explained by a trans-stimulation of 4-Di-1-ASP+ net reabsorption at the luminal cell side, leading to an increased intracellular content of 4-Di-1-ASP+.

  8. [Sodium and potassium content of various Chilean foods].

    PubMed

    Alvarez de Araya, C; Farah, M; Zuccarelli, M T; Masson, L

    1981-03-01

    Sodium and potassium contents of 40 high-protein dietary products were determined in order to complete the Table de Composición Química se Alimentos Chilenos (Chemical Composition Table of Chilean Foods). These cations' level must be strictly controlled in diets of many renal and heart patients. In Chile, Nutritionists who are in charge of preparing these diets, do not have a national composition table related to the sodium and potassium content for most of the food products. Samples of fluid cow's milk, dried milk with different fat contents, some cheeses, hen eggs, bovine entrails, some meat derivates and several meat cuts, including bovine, pork, lamb and chicken were studied.

  9. Alkaloid profiles of Mimosa tenuiflora and associated methods of analysis

    USDA-ARS?s Scientific Manuscript database

    The alkaloid contents of the leaves and seeds of M. tenuiflora collected from northeastern Brazil were studied. Alkaloids were isolated by classical acid/base extraction procedures and by cation exchange solid phase extraction. The crude alkaloid fractions were then analysed by thin layer chromatogr...

  10. A simplified regional-scale electromagnetic induction - Salinity calibration model using ANOCOVA modeling techniques

    USDA-ARS?s Scientific Manuscript database

    Directed soil sampling based on geospatial measurements of apparent soil electrical conductivity (ECa) is a potential means of characterizing the spatial variability of any soil property that influences ECa including soil salinity, water content, texture, bulk density, organic matter, and cation exc...

  11. Micro-Scale Distribution of CA4+ in Ex Vivo Human Articular Cartilage Detected with Contrast-Enhanced Micro-Computed Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Karhula, Sakari S.; Finnilä, Mikko A.; Freedman, Jonathan D.; Kauppinen, Sami; Valkealahti, Maarit; Lehenkari, Petri; Pritzker, Kenneth P. H.; Nieminen, Heikki J.; Snyder, Brian D.; Grinstaff, Mark W.; Saarakkala, Simo

    2017-08-01

    Contrast-enhanced micro-computed tomography (CEµCT) with cationic and anionic contrast agents reveals glycosaminoglycan (GAG) content and distribution in articular cartilage (AC). The advantage of using cationic stains (e.g. CA4+) compared to anionic stains (e.g. Hexabrix®), is that it distributes proportionally with GAGs, while anionic stain distribution in AC is inversely proportional to the GAG content. To date, studies using cationic stains have been conducted with sufficient resolution to study its distributions on the macro-scale, but with insufficient resolution to study its distributions on the micro-scale. Therefore, it is not known whether the cationic contrast agents accumulate in extra/pericellular matrix and if they interact with chondrocytes. The insufficient resolution has also prevented to answer the question whether CA4+ accumulation in chondrons could lead to an erroneous quantification of GAG distribution with low-resolution µCT setups. In this study, we use high-resolution µCT to investigate whether CA4+ accumulates in chondrocytes, and further, to determine whether it affects the low-resolution ex vivo µCT studies of CA4+ stained human AC with varying degree of osteoarthritis. Human osteochondral samples were immersed in three different concentrations of CA4+ (3 mgI/ml, 6mgI/ml, and 24 mgI/ml) and imaged with high-resolution µCT at several timepoints. Different uptake diffusion profiles of CA4+ were observed between the segmented chondrons and the rest of the tissue. While the X-ray -detected CA4+ concentration in chondrons was greater than in the rest of the AC, its contribution to the uptake into the whole tissue was negligible and in line with macro-scale GAG content detected from histology. The efficient uptake of CA4+ into chondrons and surrounding territorial matrix can be explained by the micro-scale distribution of GAG content. CA4+ uptake in chondrons occurred regardless of the progression stage of osteoarthritis in the samples and the relative difference between the interterritorial matrix and segmented chondron area was less than 4%. To conclude, our results suggest that GAG quantification with CEµCT is not affected by the chondron uptake of CA4+. This further confirms the use of CA4+ for macro-scale assessment of GAG throughout the AC, and highlight the capability of studying chondron properties in 3D at the micro scale.

  12. Effects of brash removal after clear felling on soil and soil-solution chemistry and field-layer biomass in an experimental nitrogen gradient.

    PubMed

    Ring, E; Högbom, L; Nohrstedt, H O

    2001-10-12

    Biofuels, such as brash from forest fellings, have been proposed as an alternative energy source. Brash removal may affect the sustainability of forest production, e.g., through a change in the availability of cations and N in the soil. We report initial effects of brash removal on inorganic N content in humus and mineral soil, soil-solution chemistry, and field-layer biomass after clear felling an N-fertilisation experiment in central Sweden. The experiment comprised six different fertiliser levels, ranging from 0 to 600 kg N ha(-1). Urea was given every 5th year during 1967 to 1982 to replicated plots, giving total doses of 0 to 2400 kg N ha(-1). Clear felling took place in 1995, 13 years after the last fertilisation. The removal of brash decreased the NO3- content in the humus layer after clear felling. A decrease in the NO3- concentration of the soil solution was indicated during most of the study period as well. No effect of the previous N fertilisation was found in the humus layer, but in the mineral soil there was an increase in NO3- content for the highest N dose after clear felling ( p = 0.06). The soil-solution chemistry and the field-layer biomass showed an irregular pattern with no consistent effects of brash removal or previous fertilisation.

  13. Changes in soil properties and in the growth of Lolium multiflorum in an acid soil amended with a solid waste from wineries.

    PubMed

    Nóvoa-Muñoz, J C; Simal-Gándara, J; Fernández-Calviño, D; López-Periago, E; Arias-Estévez, M

    2008-10-01

    The agronomic utility of a solid waste, waste perlite (WP), from wine companies was assessed. In this sense, the natural characteristics of the waste were measured, followed by the monitoring of its effects on the chemical properties of acid soils and the growth of Lolium multiflorum. Taking into account that heavy metals associated to the waste (such as Cu, Zn and Mn) could cause problems when used as amendment, the changes in their total levels and in their soil fractionation were also studied, together with their total contents in L. multiflorum. The high content in C (214gkg(-1)), N (25gkg(-1)), P (534mgkg(-1)) and K (106gkg(-1)) of WP turned it into an appropriate amendment to increase soil fertility, solving at the same time its disposal. WP contributed to increase soil pH (in 2 pH units) and cation exchange capacity (CEC increased in 3cmolckg(-1)units), but reduced the potential Cu phytotoxicity due to a change in Cu distribution towards less soluble fractions. The growth of L. multiflorum adequately responds to the treatment with WP at addition rates below 2.5gkg(-1), whereas the imbalance between nutrients can justify the reduction in biomass production at higher WP addition rates. The levels of heavy metals analyzed in L. multiflorum biomass (8-85gkg(-1)) do not seem to cause undesirable effects on its growth.

  14. Alterations of lead speciation by sulfate from addition of flue ...

    EPA Pesticide Factsheets

    This is the first study to evaluate the potential application of FGDG as an in situ Pb stabilizer in contaminated soils with two different compositions and to explain the underlying mechanisms. A smelter Pb contaminated soil (SM-soil), rich in ferrihydrite bound Pb (FH-Pb), cerussite and litharge with a total Pb content of 65,123 mg/kg and an organic matter rich orchard soil (BO-soil), rich in FH-Pb and humic acid bound Pb with a total Pb content of 1532 mg/kg were amended with 5% FGDG (w/w). We subjected the two soils to three leaching tests; toxicity characteristic leaching protocol (TCLP), synthetic precipitation leaching protocol (SPLP), kinetic batch leaching test (KBLT) and in-vitro bioaccessibility assay (IVBA) in order to evaluate the FGDG amendment on Pb stabilization. Solid residues of original and FGDG amended soil were analyzed using X-ray absorption spectroscopy (XAS) to identify changes in Pb speciation after each leaching test. The leachate Pb concentrations of FGDG amended soil were lowered compared to those of in non-amended soil. The linear combination fitting analysis of XAS confirmed the formation of anglesite and leadhillite in FGDG amended in soil. FGDG reduced the Pb desorption from ferrihydrite (FH), by forming FH-Pb-SO4 ternary complexes. FGDG decreased the Pb adsorption onto humic acid (HA) possibly due to the release of divalent cations such as Ca and Mg, which can compete with Pb to get adsorbed onto HA. The FGDG can successful

  15. Current status of non-viral gene therapy for CNS disorders

    PubMed Central

    Jayant, Rahul Dev; Sosa, Daniela; Kaushik, Ajeet; Atluri, Venkata; Vashist, Arti; Tomitaka, Asahi; Nair, Madhavan

    2017-01-01

    Introduction Viral and non-viral vectors have been used as methods of delivery in gene therapy for many CNS diseases. Currently, viral vectors such as adeno-associated viruses (AAV), retroviruses, lentiviruses, adenoviruses and herpes simplex viruses (HHV) are being used as successful vectors in gene therapy at clinical trial levels. However, many disadvantages have risen from their usage. Non-viral vectors like cationic polymers, cationic lipids, engineered polymers, nanoparticles, and naked DNA offer a much safer option and can therefore be explored for therapeutic purposes. Areas covered This review discusses different types of viral and non-viral vectors for gene therapy and explores clinical trials for CNS diseases that have used these types of vectors for gene delivery. Highlights include non-viral gene delivery and its challenges, possible strategies to improve transfection, regulatory issues concerning vector usage, and future prospects for clinical applications. Expert opinion Transfection efficiency of cationic lipids and polymers can be improved through manipulation of molecules used. Efficacy of cationic lipids is dependent on cationic charge, saturation levels, and stability of linkers. Factors determining efficacy of cationic polymers are total charge density, molecular weights, and complexity of molecule. All of the above mentioned parameters must be taken care for efficient gene delivery. PMID:27249310

  16. Phosphorus Elimination at Sodium Silicate from Quartz Sand Roasted with Complexation using Chitosan-EDTA

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Suharty, N. S.; Handayani, M.; Firdiyono, F.; Sulistiyono, E.; Munawaroh, H.; Sari, P. P.; Kristiawan, Y. R.

    2018-03-01

    A phosphorus elimination from sodium silicate solution has been studied. Phosphorus elimination was performed by adding chitosan-EDTA to remove cation phosphorus. Characterization of chitosan-EDTA material was performed using FT-IR, while the decreasing level of phosphorus content was analyzed by quantitative analysis using spectrophotometer UV-Vis refers to SNI 06-6989-2004. The results showed that the content of the sodium silicate can be reduced up to 67.1% through Chitosan-EDTA complexation with phosphorus.

  17. Relationship between apparent soil electrical conductivity (ECa) and soil attributes at an experimental parcel under pasture in a region of Galicia, Spain

    NASA Astrophysics Data System (ADS)

    Marinho, M. D.; Paz-Gonzalez, A.; Dafonte, J. D.; Armesto, M. V.; Raposo, J. R.

    2012-12-01

    Spatial characterization of the variability of soil properties is a central point in site-specific agricultural management and precision agriculture. Geospatial measures of geophysical attributes are useful not only to rapidly characterize the spatial variability of soil properties but also for soil sampling optimization. This work reports partial results obtained at an experimental parcel under pasture located at Castro de Ribeira do Lea (Lugo/ Galicia/ Spain). An ECa automated survey was conducted in September 2011 employing an EM-38 DD (Geonics Ltd.) installed in a nonmetallic car, according to parallel lines spaced 10m one from each other and oriented at the east-west direction. The ECa values were recorded every second with a field computer and the locations were geo-referenced using a GPS. The entire survey was carried out in 1hour and 45 minutes and corrections due to differences in temperature were made. A total of 9.581 ECa registers were retained, configuring a sampling intensity of approximately 1 register per 1.5 m2. Employing the software ESAP 2.35 and the computational tool ESAP-RSSD, eighty positions were selected at the field to extract disturbed and undisturbed soil samples at two depths: 0.0-0.2m, 0.2-0.4m. Ten physical attributes (clay, silt, total sand, coarse sand and fine sand contents, soil bulk density, particle density, total porosity, soil water content, percentage of gravels) and 17 chemical attributes (soil organic matter-SOM, pH, P, K, Ca, Mg, Al, H+Al, Sum of bases-S, Cation exchange capacity-CEC, Base saturation-V%, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined. The relationship between the geophysical variables and the soil attributes was performed using statistical and spatial analysis. There were significant correlations (p<0.01) between the geophysical variables and the textural attributes clay, silt, total sand and coarse sand contents. The biggest correlation (0.5623) was between ECa-V (vertical component) and clay content. Also, significant correlations (p<0.05) were found between the ECa-V and soil bulk density, total porosity, percentage of gravels and soil water content. Considering the chemical attributes, significant correlations (p< 0.01) were found between ECa-V and SOM and Cd, and between ECa-H (horizontal component) and SOM and Fe. Other significant correlations (p<0.05) were found between ECa-V and 6 soil chemical attributes: P, Ca, S, Fe, Ni and Pb. The biggest correlation was between ECa-V and SOM (-0.5942). In resume, clay content, SOM, Cd and Fe are the soil attributes better correlated with the observed variation of the ECa at the field. Additional analysis should be performed to compare the spatial patterns of these soil attributes and the ECa as a tool to proper define management zones in the area.

  18. Effect of the biota diversity on the composition of low-molecular-weight water-soluble organic compounds in southern tundra soils

    NASA Astrophysics Data System (ADS)

    Shamrikova, E. V.; Kubik, O. S.; Punegov, V. V.; Gruzdev, I. V.

    2014-03-01

    Water extracts from the organic horizons of southern-tundra loamy permafrost-affected soils (a surface-gleyed tundra soil, a surface-gleyed soddy tundra soil (Haplic Stagnosols (Gelic)), and a peaty tundra soil (Histic Cryosol (Reductaquic)) and their undecomposed moss layers have been analyzed. The total weight concentration of the cations (Ca2+, Mg2+, K+, and Na+) determined by the atomic absorption method reaches 20 mg/dm3 in the organic horizons and 40-90 mg/dm3 in the undecomposed moss layers. Potassium and calcium ions dominate in all the organic horizons (80-90% of the total weight); potassium ions prevail in the mosses (about 70%). The weight concentration of carbon in the water-soluble organic compounds is 0.04-0.07 g/dm3 in the organic horizons and 0.20-0.40 g/dm3 in the undecomposed moss layers. The content of low-molecular-weight organic compounds (alcohols, carbohydrates, and acids) identified by gas chromatography and chromatomass spectrometry is 1-30 mg/dm3 in the organic horizons of the soils and 80-180 mg/dm3 in the mosses, which does not exceed 26% of the total organic carbon in the extracts.

  19. Plasmid mediated colistin resistance in food animal intestinal contents detected by selective enrichment

    USDA-ARS?s Scientific Manuscript database

    Colistin (polymyxin E) is a cationic polypeptide antibiotic that has broad-spectrum activity against Gram-negative bacteria. It is classified as critically important in human medicine for treating hard-to-treat multi-drug resistant infections. Recently a plasmid-mediated colistin resistance gene (mc...

  20. [Effects of Rice Cultivar and Typical Soil Improvement Measures on the Uptake of Cd in Rice Grains].

    PubMed

    Wang, Mei-e; Peng, Chi; Chen, Wei-ping

    2015-11-01

    Cadmium pollution of rice is a big problem in agricultural food safety. The accident "Cd rice" occurred last year in Youxian County, Hunan Province caused serious social panic. In this study, trials on "Cd rice" controlling techniques specific to the Cd pollution in paddy soil in Youxian were investigated. It was suggested that the average Cd contents in rice grains of the rice variety "Zhu Liang You 06" in Datongqiao and Wangling were 0.167 and 0.127 mg x kg(-1), respectively, which were only equal to 20% of the contents of other varieties. The trials for stabilizing agents revealed that treatments of lime and mineral fertilizer decreased Cd contents in rice grains to 20-30% of the control. Plastic film-mulched treatment decreased the rice grain Cd to 50%. And combined treatment of plastic film-mulched and biochar and silicon foliar-fertilizer decreased 80% of rice Cd content. Single treatments of silicon foliar-fertilizer and combined treatment of silicon foliar-fertilizer and topdressing fertilizer decreased more than 90% of Cd content. Results of BCR revealed that the percentage of cationic exchangeable and/or carbonate associated Cd fraction was more than 55% for most of the soil samples. Lime treatment significantly decreased the percentage of cationic exchangeable and/or carbonate and oxides of Fe and Mn associated Cd and increased the crystalline structure of clay minerals associated Cd. The change rate reached about 20%. Our results suggested concentration of soil Cd and pH were the two significant factors impacting the uptake of Cd by rice grains.

  1. Uptake of cations under two different water regimes in a boreal scots pine forest.

    PubMed

    Plamboeck, A H; Nylén, T; Grip, H

    2000-07-10

    There is still much to find out about how trees react to changing nutrient conditions. In this cation uptake study, 134Cs and 22Na were injected between the humus and the mineral soil, and into a 20-cm depth in the mineral soil, respectively. Half of the experimental site was subjected to desiccation in 1995 and 1996, while the other half was subjected to irrigation in 1995, and desiccation in 1996. One month after the injections, the concentration of 134Cs in the xylem sap was higher in the irrigated plots (ID) than in the desiccated plots (DD). In August 1995, the difference in the 134Cs concentration in the xylem sap was even higher between the treatments. In 1995, 22Na was also higher in the xylem sap on the ID plots than on the DD plots, but not significantly. Exponential relationships were found between the amount of 134Cs and 22Na in the xylem sap; the relative water uptake from humus and 0-10-cm mineral soil (134Cs); and 10-25-cm mineral soil (22Na) in July 1995, when the tracers had not yet reached the top of the boles. The relative uptake of injected 22Na was larger than that of injected 134Cs, probably due to low exchangeability of Cs in the soil. One year after the injection (1996), more 134Cs was found in the wood, bark, needles and cones on the plots irrigated in 1995 than on the desiccated plots. The content of 134Cs in the stem wood and stump amounted to nearly 80% of the total uptake in the trees. The Cs distribution 1 year after the Chernobyl accident was dominated by Cs on/in needles and bark. After 10 years of redistribution, the Chernobyl Cs content of the different parts of the trees approached that of K.

  2. Seasonal Variation in Fluoride Content in Groundwaters of Langtang Area, Northcentral Nigeria

    NASA Astrophysics Data System (ADS)

    Dibal, H. U.; Dajilak, W. N.; Lekmang, I. C.; Nimze, L. W.; Yenne, E. Y.

    2017-06-01

    Thirty groundwater samples were collected at the peak of the rainy season and analysed for fluoride and other cations and anions in drinking water sources of Langtang area. For comparative purposes, thirty seven groundwater samples were collected in the dry season. The aim of the study was to determine variation in fluoride content with respect to the seasons. Fluoride in water was determined by the Ion Selective Electrode (ISE) and the cations by the Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The anion (sulphate) was determined by Multi - Ion Colorimeter, bicarbonate and chloride by titration method. In addition fluorine content in aquifer materials from a borehole section were determined by Fusion method. The two seasons show variation in content of fluoride in groundwater. Fluoride content in groundwater is higher in the dry season ranging from 0.13 - 10.3 mg/l compared to the 0.06 - 4.60 mg/l values in the rainy season. Content of fluorine (0.01 wt %) in the aquifer materials (sands) is low from depth of 0 to 7.95 m. However, fluorine content increases with depth, from 7.95 to 10.60 m with concentration of 0.04 wt %, 0.05 wt % from 10.60 to 13.25m, and 0.07 wt % from 13.25 to 15.70 m, the content of fluorine however, decreased at depth 15.70 to18.55m with concentration of 0.02 wt % even with fluorite mineral in the aquifer material at this depth. Dilution of fluoride ion as a result of rain input which recharges the aquifer may be the main reason for lower values recorded in the rainy season. Over fifty and sixty percent of waters in both dry and rainy season have fluoride concentration above the WHO upper limit of 1.5 mg/l. Consumption of these elevated values of fluoride in groundwater of the study area, clearly manifests as symptoms of dental fluorosis.

  3. Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields

    NASA Astrophysics Data System (ADS)

    Kimura, M.

    2004-12-01

    Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were leached from the plow layer by percolating water amounted to 170 kgC ha-1 in a Japanese rice field, among which 120 kgC of organic materials were adsorbed in the subsoil layer between 13 and 40 cm depth.

  4. Chemical ordering in substituted fluorite oxides: a computational investigation of Ho 2Zr 2O 7 and RE 2Th 2O 7 (RE=Ho, Y, Gd, Nd, La)

    DOE PAGES

    Solomon, Jonathan M.; Shamblin, Jacob; Lang, Maik; ...

    2016-12-12

    Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho 2Zr 2O 7. In a recentmore » neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE 2Th 2O 7'' fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. Finally, the results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.« less

  5. Chemical ordering in substituted fluorite oxides: a computational investigation of Ho2Zr2O7 and RE2Th2O7 (RE=Ho, Y, Gd, Nd, La)

    PubMed Central

    Solomon, Jonathan M.; Shamblin, Jacob; Lang, Maik; Navrotsky, Alexandra; Asta, Mark

    2016-01-01

    Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho2Zr2O7. In a recent neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE2Th2O7 fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. The results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination. PMID:27941870

  6. Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Xing, Meiying; Liu, J. Ping

    2018-05-01

    We demonstrate magnetic and hyperthermia properties of CoxFe3-xO4 (x = 0, 0.1, 0.3 and 0.5) nanoparticles synthesized via a simple cation exchange reaction of ˜12 nm Fe3O4 nanoparticles. The substitution of Fe cations with Co2+ ions leads to enhanced magnetocrystalline anisotropy and coercivity of the pristine superparamagnetic Fe3O4 nanoparticles. Hyperthermia measurement shows that by controlling the Co content (x = 0 to 0.5) in CoxFe3-xO4 nanoparticles, their specific absorption rate (SAR) can be greatly improved from 132 to 534 W/g. The strong enhancement in SAR value is attributed to the increased anisotropy and coercivity. Moreover, with the increase of ac magnetic field from 184 to 491 Oe, the SAR values of Fe3O4 and Co0.5Fe2.5O4 nanoparticles increase from 81 to 132 W/g and 220 to 534 W/g, respectively.

  7. Synthesis and characterization of a novel cationic hydrogel base on salecan-g-PMAPTAC.

    PubMed

    Wei, Wei; Qi, Xiaoliang; Li, Junjian; Zhong, Yin; Zuo, Gancheng; Pan, Xihao; Su, Ting; Zhang, Jianfa; Dong, Wei

    2017-08-01

    Salecan is a biological macromolecular and biocompatible polysaccharide that has been investigated for recent years. Herein, we report a novel cationic hydrogel fabricated by graft-polymerizing 3-(methacryloylamino)propyl-trimethylammonium chloride (MAPTAC) onto salecan chains. The obtained hydrogels were transparent, solid-elastic, macro-porous, ion-sensitive, and non-cytotoxic. The swelling ratios increased with salecan content, while mechanical strength does the opposite. Moreover, drug delivery test was studied as a potential application. Diclofenac sodium (DS) and insulin were selected as model drugs. Interestingly, in drug loading process, DS molecules exhibited highly affinity to these cationic hydrogels. Almost all the DS molecules in loading solution were absorbed and spread into the hydrogel. For drug release profiles, insulin-loaded hydrogel showed an initial rapid release and a sustained release. As a comparison, DS-loaded hydrogel exhibited a more sustained release profile. Results suggested salecan-g-PMAPTAC hydrogel could be a good candidate for anionic drug loading and delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Intensification of the Reverse Cationic Flotation of Hematite Ores with Optimization of Process and Hydrodynamic Parameters of Flotation Cell

    NASA Astrophysics Data System (ADS)

    Poperechnikova, O. Yu; Filippov, L. O.; Shumskaya, E. N.; Filippova, I. V.

    2017-07-01

    The demand of high grade iron ore concentrates is a major issue due to the depletion of rich iron-bearing ores and high competitiveness in the iron ore market. Iron ore production is forced out to upgrade flowsheets to decrease the silica content in the pelettes. Different types of ore have different mineral composition and texture-structural features which require different mineral processing methods and technologies. The paper presents a comparative study of the cationic and anionic flotation routes to process a fine-grain oxidized iron ore. The modified carboxymethyl cellulose was found as the most efficient depressant in reverse cationic flotation. The results of flotation optimization of hematite ores using matrix of second-order center rotatable uniform design allowed to define the collector concentration, impeller rotation speed and air flowrate as the main flotation parameters impacting on the iron ore concentrate quality and iron recovery in a laboratory flotation machine. These parameters have been selected as independent during the experiments.

  9. Polygalacturonase from Rhizopus stolonifer, an Elicitor of Casbene Synthetase Activity in Castor Bean (Ricinus communis L.) Seedlings 1

    PubMed Central

    Lee, Sung-Chul; West, Charles A.

    1981-01-01

    Apparently homogeneous polygalacturonase-elicitor purified from the filtrates of Rhizopus stolonifer cultures stimulates germinating castor bean seedlings to produce greatly increased levels of casbene synthetase activity. The purification procedure involved gel-filtration chromatography on Sephadex G-25 and G-75 columns followed by cation-exchange chromatography on a Sephadex CM C-50 column. Homogeneity of the purified preparation was indicated by the results of cationic polyacrylamide disc gel electrophoresis and isoelectric focusing (pI = 8.0). The identity of the casbene elicitor activity and polygalacturonase were indicated by the coincidence of the two activities at all stages of purification, the coincidence of both activities with the single protein-staining band detected on a cationic polyacrylamide disc gel and an isoelectric focusing gel, and the identical behavior of both activities on an agarose gel affinity column. The purified polygalacturonase-elicitor is a glycoprotein with approximately 20% carbohydrate content and an estimated molecular weight of 32,000 by polyacrylamide disc gel electrophoresis. PMID:16661728

  10. Structural investigation of the substituted pyrochlore AgSbO3 through total scattering techniques.

    PubMed

    Laurita, Geneva; Page, Katharine; Sleight, A W; Subramanian, M A

    2013-10-07

    Polycrystalline samples of the pyrochlore series Ag(1-x)M(n)(x)SbO(3+x[(n-1)/2]) (M = Na, K, and Tl) have been structurally analyzed through total scattering techniques. The upper limits of x obtained were 0.05 for Na, 0.16 for K, and 0.17 for Tl. The Ag(+) cation occupies a site with inversion symmetry on a 3-fold axis. When the smaller Na(+) cation substitutes for Ag(+), it is displaced by about 0.6 Å perpendicular to the 3-fold axis to achieve some shorter Na-O bond distances. When the larger Tl(+) cation substitutes for Ag(+), it is displaced by about 1.14 Å along the 3-fold axis and achieves an environment typical of a lone pair cation. Some of the Tl(3+) from the precursor remains unreduced, leading to a formula of Ag(0.772(1))Tl(+)(0.13(2))Tl(3+)(0.036(1))SbO(3.036(1)). The position of the K(+) dopant was effectively modeled assuming that K(+) occupied the same site as Ag(+). The expansion of the lattice caused by substitution of the larger K(+) and Tl(+) cations results in longer Ag-O bond lengths, which would reduce the overlap of the Ag 4d and O 2p orbitals that compose the valence band maximum. Substitution of the smaller Na(+) results in a decrease in the Ag-O bond distance, thus increasing the overlap of the Ag 4d and O 2p orbitals. This will have a direct influence on the band composition and observed properties of this material of interest.

  11. Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment.

    PubMed

    Li, Yun; Yang, Shu-Fang; Zhang, Jian-Jun; Li, Xiao-Yan

    2014-01-01

    In this study, gelation-facilitated biofilm formation as a new mechanism is proposed for the phenomenon of aerobic granulation in biological wastewater treatment. To obtain an experimental proof for the gelation-based theory, the granulation process was simulated in a chemical system using latex particles for bacterial cells and organic polymers (alginate and peptone) for extracellular polymeric substances (EPS) in a solution with the addition of cations (Ca²⁺, Mg²⁺ and Fe³⁺). The results showed that at a low alginate content (70 mg g⁻¹ mixed liquid suspended solids (MLSS)) flocculation was observed in the suspension with loose flocs. At a higher alginate content (180 mg g⁻¹ MLSS), together with discharge of small flocs, formation of artificial gel granules was successfully achieved leading to granulation. The artificial granules show a morphological property similar to that of actual microbial granules. However, if the protein content increased, granulation became difficult with little gel formation. The experimental work demonstrates the importance of the bonding interactions between EPS functional groups and cations in gel formation and granulation. The laboratory results on the formation of artificial granules provide a sound proof for the theory of gelation-facilitated biofilm formation as the main mechanism for aerobic granulation in sludge suspensions.

  12. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    DOE PAGES

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; ...

    2012-01-06

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T 1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T 1 values along with the presence of minima in T 1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similarmore » activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.« less

  13. Antibacterial activity of the soil-bound antimicrobials oxytetracycline and ofloxacin.

    PubMed

    Peng, Feng-Jiao; Zhou, Li-Jun; Ying, Guang-Guo; Liu, You-Sheng; Zhao, Jian-Liang

    2014-04-01

    Soil contamination of antimicrobials has become an increasing concern because of the potential risks to the soil microbial ecosystem and human health. The present study investigated sorption and desorption behaviors of oxytetracycline (OTC) and ofloxacin (OFL) in 3 typical soils (A, B, and C), and evaluated the antibacterial activity of soil-adsorbed compounds to a pure sensitive strain Escherichia coli ATCC 25922. The results showed different sorption and desorption behaviors of OTC and OFL in the 3 soils, behaviors that were mainly influenced by soil organic matter content and cation exchange capacity (CEC) as well as pH value. In addition, complexation and cation-exchange reactions were shown to be the main sorption mechanisms. Strong adsorption was found in soil B (with a high organic matter content) and in soil C (with high CEC), whereas enhanced desorption was observed in soil A (with low organic matter content). The results also demonstrated that soil-bound antimicrobials retained antibacterial activity toward E. coli. Opposite patterns of antibacterial activity were found for the 2 antimicrobials in the 3 soils: A>B>C for OFL; and C>B>A for OTC. This finding suggests that soil-bound antimicrobials could still exert selective pressure on soil bacteria although less effectively in comparison with the dissolved forms. © 2014 SETAC.

  14. Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities

    PubMed Central

    Shrestha, Ritu; Elsabahy, Mahmoud; Florez-Malaver, Stephanie; Samarajeewa, Sandani; Wooley, Karen L.

    2012-01-01

    Cationic shell crosslinked knedel-like nanoparticles (cSCKs) have emerged as a highly efficient transfection agent for nucleic acids delivery. In this study, a new class of cSCKs with tunable buffering capacities has been developed by altering the amounts of histamines and primary amines incorporated into their crosslinked shell regions. The effect of histamine content of these nanoparticles with a hydrodynamic diameter of ca. 20 nm, on the siRNA-binding affinity, cytotoxicity, immunogenicity, and transfection efficiency was investigated. The modification of cSCKs with histamine was found to reduce the siRNA-binding affinity and cellular binding. On the other hand, it significantly reduced the toxicity and immunogenicity of the nanoparticles with subsequent increase in the transfection efficiency. In addition, escape from endosomes was facilitated by having two species of low and high pKas (i.e. histamine and primary amine groups, respectively), as demonstrated by the potentiometric titration experiments and the effect of bafilomycin A1, an inhibitor of the endosomal acidification, on the transfection efficiency of cSCKs. Histamine modification of 15 mol% was a threshold, above which cSCKs with higher histamine content completely lost the ability to bind siRNA and to transfect cells. This study highlights the potential of histamine incorporation to augment the gene silencing activity of cationic nanoparticles, reduce their toxicity, and increase their biocompatibility, which is of particular importance in the design of nucleic acids delivery vectors. PMID:22901966

  15. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.

  16. The influence of ion content on mobility and ion aggregation in PEO-based single-ion conductors

    NASA Astrophysics Data System (ADS)

    Caldwell, David; Maranas, Janna

    2013-03-01

    PEO-based ionomers reduce concentration polarization in solid polymer electrolytes by binding the anion to the polymer backbone. Ionomers have significant ion aggregation compared to PEO/salt systems, and the influence of these aggregates is unclear. When ion transport is coupled to the segmental dynamics of the polymer, aggregation will always reduce ion motion and conductivity. However, the conductivity of PEO ionomers is not sensitive to the degree of aggregation. We present results of molecular dynamics simulations where ion content is systematically varied. We consider the influence of ion content on ion aggregation, polymer mobility and cation motion.

  17. Intakes of magnesium, potassium, and calcium and the risk of stroke among men.

    PubMed

    Adebamowo, Sally N; Spiegelman, Donna; Flint, Alan J; Willett, Walter C; Rexrode, Kathryn M

    2015-10-01

    Intakes of magnesium, potassium, and calcium have been inversely associated with the incidence of hypertension, a known risk factor for stroke. However, only a few studies have examined intakes of these cations in relation to risk of stroke. The aim of this study was to investigate whether high intake of magnesium, potassium, and calcium is associated with reduced stroke risk among men. We prospectively examined the associations between intakes of magnesium, potassium, and calcium from diet and supplements, and the risk of incident stroke among 42 669 men in the Health Professionals Follow-up Study, aged 40 to 75 years and free of diagnosed cardiovascular disease and cancer at baseline in 1986. We calculated the hazard ratio of total, ischemic, and haemorrhagic strokes by quintiles of each cation intake, and of a combined dietary score of all three cations, using multivariate Cox proportional hazard models. During 24 years of follow-up, 1547 total stroke events were documented. In multivariate analyses, the relative risks and 95% confidence intervals of total stroke for men in the highest vs. lowest quintile were 0·87 (95% confidence interval, 0·74-1·02; P, trend = 0·04) for dietary magnesium, 0·89 (95% confidence interval, 0·76-1·05; P, trend = 0·10) for dietary potassium, and 0·89 (95% confidence interval, 0·75-1·04; P, trend = 0·25) for dietary calcium intake. The relative risk of total stroke for men in the highest vs. lowest quintile was 0·74 (95% confidence interval, 0·59-0·93; P, trend = 0·003) for supplemental magnesium, 0·66 (95% confidence interval, 0·50-0·86; P, trend = 0·002) for supplemental potassium, and 1·01 (95% confidence interval, 0·84-1·20; P, trend = 0·83) for supplemental calcium intake. For total intake (dietary and supplemental), the relative risk of total stroke for men in the highest vs. lowest quintile was 0·83 (95% confidence interval, 0·70-0·99; P, trend = 0·04) for magnesium, 0·88 (95% confidence interval, 0·75-4; P, trend = 6) for potassium, and 3 (95% confidence interval, 79-09; P, trend = 84) for calcium. Men in the highest quintile for a combined dietary score of all three cations had a multivariate relative risk of 0·79 (95% confidence interval, 0·67-0·92; P, trend = 0·008) for total stroke, compared with those in the lowest. A diet rich in magnesium, potassium, and calcium may contribute to reduced risk of stroke among men. Because of significant collinearity, the independent contribution of each cation is difficult to define. © 2015 World Stroke Organization.

  18. Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots

    DOE PAGES

    Cusack, Daniela F.; Markesteijn, Lars; Condit, Richard; ...

    2018-01-02

    We report that tropical forests are the most carbon (C)- rich ecosystems on Earth, containing 25–40% of global terrestrial C stocks. While large-scale quantifi- cation of aboveground biomass in tropical forests has improved recently, soil C dynamics remain one of the largest sources of uncertainty in Earth system models, which inhibits our ability to predict future climate. Globally, soil texture and climate predict B 30% of the variation in soil C stocks, so ecosystem models often predict soil C using measures of aboveground plant growth. However, this approach can underestimate tropical soil C stocks, and has proven inaccurate when comparedmore » with data for soil C in data-rich northern ecosystems. By quantifying soil organic C stocks to 1 m depth for 48 humid tropical forest plots across gradients of rainfall and soil fertility in Panama, we show that soil C does not correlate with common predictors used in models, such as plant biomass or litter production. Instead, a structural equation model including base cations, soil clay content, and rainfall as exogenous factors and root biomass as an endogenous factor predicted nearly 50% of the variation in tropical soil C stocks, indicating a strong indirect effect of base cation availability on tropical soil C storage. Including soil base cations in C cycle models, and thus emphasizing mechanistic links among nutrients, root biomass, and soil C stocks, will improve prediction of climate-soil feedbacks in tropical forests.« less

  19. Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cusack, Daniela F.; Markesteijn, Lars; Condit, Richard

    We report that tropical forests are the most carbon (C)- rich ecosystems on Earth, containing 25–40% of global terrestrial C stocks. While large-scale quantifi- cation of aboveground biomass in tropical forests has improved recently, soil C dynamics remain one of the largest sources of uncertainty in Earth system models, which inhibits our ability to predict future climate. Globally, soil texture and climate predict B 30% of the variation in soil C stocks, so ecosystem models often predict soil C using measures of aboveground plant growth. However, this approach can underestimate tropical soil C stocks, and has proven inaccurate when comparedmore » with data for soil C in data-rich northern ecosystems. By quantifying soil organic C stocks to 1 m depth for 48 humid tropical forest plots across gradients of rainfall and soil fertility in Panama, we show that soil C does not correlate with common predictors used in models, such as plant biomass or litter production. Instead, a structural equation model including base cations, soil clay content, and rainfall as exogenous factors and root biomass as an endogenous factor predicted nearly 50% of the variation in tropical soil C stocks, indicating a strong indirect effect of base cation availability on tropical soil C storage. Including soil base cations in C cycle models, and thus emphasizing mechanistic links among nutrients, root biomass, and soil C stocks, will improve prediction of climate-soil feedbacks in tropical forests.« less

  20. Erythrocyte disorders leading to potassium loss and cellular dehydration.

    PubMed

    Glader, B E; Sullivan, D W

    1979-01-01

    RBC K loss and cellular dehydration are associated with a variety of normal and abnormal erythrocyte conditions. In some cases (normal RBC aging, pyruvate-kinase-deficient RBCs and irreversibly sickled cells) cation and water changes are related to adenosine triphosphate (ATP) depletion and to increased RBC calcium content. In other disorders, such as hereditary xerocytosis, cation depletion and cellular hydration are not related to altered energy or calcium metabolism. Rather, this condition is thought to be due to a structural membrane defect which is manifested by imbalanced cation leaks (K less greater than Na gain) for which the active cation transport is unable to compensate. None of the disorders described here are associated with known structural membrane alterations. The fact that K loss and cellular dehydration are common to several RBC disorders suggests that this phenomenon may have a direct role in membrane injury. This hypothesis is supported by two separate observations: 1)Formation of irreversible sickled cells in vitro is prevented if K and water loss are inhibited, and these effects are independent of ATP depletion and calcium accumulation; 2) the mean critical hemolytic volume is markedly reduced in K- and water-depleted normal RBCs. RBC dehydration without intracellular cation depletion, however, is not associated with changes in mean critical hemolytic volume. These data thus indicate that K loss may have a direct role in RBC membrane injury. The mechanism by which this occurs and the associated alterations in membrane structure, however, remain to be identified.

  1. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.

    PubMed

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2017-07-01

    Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Regional Monitoring of Acidic Lakes and Streams

    EPA Pesticide Factsheets

    This asset provides data on the acid-base status of lakes and streams. Key chemical indicators measured include: sulfate, nitrate, ammonium, chloride, Acid Neutralizing Capacity (ANC), pH, base cations, dissolved organic carbon (DOC), total aluminum. TIME and LTM are part of EPA's Environmental Monitoring and Assessment Program (EMAP). Long-term monitoring of the acid-base status (pH, ANC, SO4, NO3, NH4, DOC, base cations, Al) in lakes and streams. Monitoring is conducted in acid sensitive regions of the Eastern U.S.

  3. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral-water interactions.

  4. Research on plasma and saliva levels of some bivalent cations in patients with chronic periodontitis (salivary cations in chronic periodontitis).

    PubMed

    Manea, A; Nechifor, M

    2014-01-01

    The purpose of this study was to determine whether chronic periodontitis can stand behind modifications in the salivary and blood concentration of some bivalent cations (Calcium, Magnesium, Zinc and Copper). For this purpose, we formed a group of 30 adult patients with clinically onset chronic periodontitis, and another one of 30 healthy patients as control. Both groups were free from acute oral pathology and general illnesses. The groups were divided again according to the habit of smoking. Total saliva samples were obtained as "first time in the morning", then weighed and processed. Cations were read on Atomic Absorption Spectrophotometer and by Ion Chromatography (Magnesium). The same patients were required to undergo laboratory blood tests for Calcium, Magnesium and Zinc. Data obtained was normalised, then statistically interpreted using two-tailed heteroscedastic t-Student tests. Our data confirmed the existence of a connection between salivary calcium, magnesium, zinc and copper, and of blood magnesium, and chronic periodontitis. Salivary calcium and magnesium are affected by smoking.

  5. Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 - II. Calibration of a combined ordering model and mixing model

    USGS Publications Warehouse

    McSwiggen, P.L.

    1993-01-01

    Earlier attempts at solution models for the ternary carbonate system have been unable to adequately accommodate the cation ordering which occurs in some of the carbonate phases. The carbonate solution model of this study combines a Margules type of interaction model with a Bragg-Williams type of ordering model. The ordering model determines the equilibrium state of order for a crystal, from which the cation distribution within the lattice can be obtained. The interaction model addresses the effect that mixing different cation species within a given cation layer has on the total free energy of the system. An ordering model was derived, based on the Bragg-Williams approach; it is applicable to ternary systems involving three cations substituting on two sites, and contains three ordering energy parameters (WCaMg, WCaFe, and WCaMgFe). The solution model of this study involves six Margules-type interaction parameters (W12, W21, W13, W31, W23, and W32). Values for the two sets of energy parameters were calculated from experimental data and from compositional relationships in natural assemblages. ?? 1993 Springer-Verlag.

  6. Water stability of aggregates in subtropical and tropical soils (Georgia and China) and its relationships with the mineralogy and chemical properties

    NASA Astrophysics Data System (ADS)

    Alekseeva, T. V.; Sokolowska, Z.; Hajnos, M.; Alekseev, A. O.; Kalinin, P. I.

    2009-04-01

    Water-stable aggregates isolated from three subtropical and one tropical soil (Western Georgia and China) were studied for their organic carbon, cation exchange capacity (CEC), specific surface area, magnetic susceptibility, and total chemical elements. The soils were also studied for their particle-size distribution, mineralogy, and nonsilicate Fe and Al oxides. Describe the water stability, three indices have been used: the content of water-stable macroaggregates (>0.25 mm), the mean weighted diameter of the aggregates, and the numerical aggregation index. The yellow-cinnamonic soil (China) was neutral, and the three other soils were acid. The soils were degraded with a low content of organic matter. The yellow-cinnamonic soil was characterized by the lowest water stability due to the predominantly vermiculite composition of the clay. The high water stability of the Oxisol structure was determined by the kaolinites and high content of oxides. In three out of the four soils studied, the hierarchical levels of the soil structure organization were defined; they were identified by the content of organic matter and the Ca + Mg (in Oxisols). Iron oxides mainly participated in the formation of micro-aggregates; Al and Mn contributed to the formation of macroaggregates. The water-stable aggregates acted as sorption geochemical barriers and accumulated Pb, Zn, Cd, Cs, and other trace elements up to concentrations exceeding their levels in the soil by 5 times and more. The highest correlations were obtained with CEC, Mn, and P rather than with organic carbon and Fe.

  7. Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L. enhances stem elongation and modifies cation distribution.

    PubMed

    Pilling, J; Willmitzer, L; Fisahn, J

    2000-02-01

    Transgenic potato (Solanum tuberosum L.) plants were constructed with a Petunia inflata-derived cDNA encoding a pectin methyl esterase (PME; EC 3.1.1.11) in sense orientation under the control of the cauliflower mosaic virus 35S promoter. The PME activity was elevated in leaves and tubers of the transgenic lines but slightly reduced in apical segments of stems from mature plants. Stem segments from the base of juvenile PME-overexpressing plants did not differ in PME activity from the control, whereas in apical parts PME was less active than in the wild-type. During the early stages of development stems of these transgenic plants elongated more rapidly than those of the wild-type. Further evidence that overexpression of a plant-derived PME has an impact on plant development is based on modifications of tuber yield, which was reduced in the transgenic lines. Cell walls from transgenic tubers showed significant differences in their cation-binding properties in comparison with the wild-type. In particular, cell walls displayed increased affinity for sodium and calcium, while potassium binding was constant. Furthermore, the total ion content of transgenic potatoes was modified. Indications of PME-mediated differences in the distribution of ions in transgenic plants were also obtained by monitoring relaxations of the membrane potential of roots subsequent to changes in the ionic composition of the bathing solution. However, no effects on the chemical structure of pectin from tuber cell walls could be detected.

  8. Isolation and identification of phenolic antioxidants in black rice bran.

    PubMed

    Jun, Hyun-Il; Shin, Jae-Wook; Song, Geun-Seoup; Kim, Young-Soo

    2015-02-01

    Black rice bran contains phenolic compounds of a high antioxidant activity. In this study, the 40% acetone extract of black rice bran was sequentially fractionated to obtain 5 fractions. Out of the 5 fractions, ethyl acetate fraction was subfractionated using the Sephadex LH-20 chromatography. The antioxidant activity of phenolic compounds in the extracts was investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, 2,2-azino-bis-(3-ethylenebenzothiozoline-6-sulfonic acid) (ABTS) radical cation assay, reducing power. The subfraction 2 from ethyl acetate fraction had the highest total phenolic contents (TPC) (816.0 μg/mg) and the lowest EC50 values (47.8 μg/mL for DPPH radical assay, 112.8 μg/mL for ABTS radical cation assay, and 49.2 μg/mL for reducing power). These results were 3.1, 1.3, and 2.6 times lower than those of butylated hydroxytoluene (BHT), respectively. At a concentration of 100 μg/mL, the antioxidant activity and TPC of various extracts was closely correlated, with correlation coefficients (R(2) ) higher than 0.86. The major phenolic acid in subfraction 2 was identified as ferulic acid (178.3 μg/mg) by HPLC and LC-ESI/MS/MS analyses. Our finding identified ferulic acid as a major phenolic compound in black rice bran, and supports the potential use of black rice bran as a natural source of antioxidant. © 2015 Institute of Food Technologists®

  9. Organic hydrogels as potential sorbent materials for water purification

    NASA Astrophysics Data System (ADS)

    Linardatos, George; Bekiari, Vlasoula; Bokias, George

    2014-05-01

    Hydrogels are three-dimensional, hydrophilic, polymeric networks capable to adsorb large amounts of water or biological fluids. The networks are composed of homopolymers or copolymers and are insoluble due to the presence of chemical or physical cross-links. Depending on the nature of the structural units, swelling or shrinking of these gels can be activated by several external stimuli, such as solvent, heat, pH, electric stimuli. As a consequence, these materials are attractive for several applications in a variety of fields: drug delivery, muscle mimetic soft linear actuators, hosts of nanoparticles and semiconductors, regenerative medicine etc. Of special interest is the application of hydrogels for water purification, since they can effectively adsorb several water soluble pollutants such as metal ions, inorganic or organic anions, organic dyestaff, etc. In the present work, anionic hydrogels bearing negatively charged -COO- groups were prepared and investigated. These are based on the anionic monomer sodium acrylate (ANa) and the nonionic one N,N-dimethylacrylamide (DMAM). A series of copolymeric hydrogels (P(DMAM-co-ANax) were synthesized. The molar content x of ANa units (expressing the molar charged content of the hydrogel) varies from 0 (nonionic poly(N,N-dimethylacrylamide), PDMAM, hydrogel) up to 1 (fully charged poly(sodium acrylate), PANa, hydrogel). The hydrogels were used to extract organic or inorganic solutes from water. Cationic and anionic model dyes, as well as multivalent inorganic ions, have been studied. It is found that cationic dyes are strongly adsorbed and retained by the hydrogels, while adsorbance of anionic dyes was negligible. Both maximum adsorption and equilibrium binding constant depend on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. In the case of metal cations, adsorption depends mostly on the charge of the cation. In addition, crucial factors controlling the adsorption efficiency is the charge content of the hydrogel x, as well as the pH of the aqueous solution, since acrylic acid is a weak acid. ACKNOWLEDGMENTS. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Archimedes III. Investing in knowledge society through the European Social Fund; research project Archimedes III: "Synthesis and characterization of novel nanostructured materials and study of their use as water purification systems".

  10. Energetics of zirconia stabilized by cation and nitrogen substitution

    NASA Astrophysics Data System (ADS)

    Molodetsky, Irina

    Tetragonal and cubic zirconia are used in advanced structural ceramics, fuel cells, oxygen sensors, nuclear waste ceramics and many other applications. These zirconia phases are stabilized at room temperature (relative to monoclinic phase for pure zirconia) by cation and nitrogen substitution. This work is aimed at a better understanding of the mechanisms of stabilization of the high-temperature zirconia. phases. Experimental data are produced on the energetics of zirconia stabilized by yttria and calcia, energetics of nitrogen-oxygen substitution in zirconia and cation doped zirconia, and energetics of x-ray amorphous zirconia. obtained by low-temperature synthesis. High-temperature oxide melt solution enables direct measurement of enthalpies of formation of these refractory oxides. The enthalpy of the monoclinic to cubic phase transition of zirconia is DeltaHm-c = 12.2 +/- 1.2 kJ/mol. For cubic phases of YSZ at low yttria contents, a straight line DeltaH f,YSZ = -(52.4 +/- 3.6)x + (12.2 +/- 1.2) approximates the enthalpy of formation as a function of the yttria content, x (0. 1 < x < 0.3). Use of the quadratic fit DeltaHf,YSZ = 126.36 x 2 - 81.29 x + 12.37 (0.1 ≲ x ≲ 0.53) indicates that yttria stabilizes the cubic phase in enthalpy at low dopant content and destabilizes the cubic phase as yttria content increases. Positive entropy of mixing in YSZ and small enthalpy of long range ordering in 0.47ZrO2-0.53YO1.5, DeltaHord = -2.4 +/- 3.0 kJ/mol, indicate presence of short range ordering in YSZ. The enthalpy of formation of calcia stabilized zirconia as a function of calcia content x, is approximated as DeltaHf,c = (-91.4 +/- 3.8) x + (13.5 +/- 1.7) kJ/mol. The enthalpy of oxygen-nitrogen substitution, DeltaHO-N, in zirconium oxynitrides is a linear function of nitrogen content. DeltaH O-N ˜ -500 kJ/mol N is for Ca (Y)-Zr-N-O and Zr-N-O oxynitrides and DeltaHO-N ˜ -950 kJ/mol N is for Mg-Zr-N-O oxynitrides. X-ray amorphous zirconia is 58.6 +/- 3.3 kJ/mol less stable in enthalpy than monoclinic zirconia. The difference between the surface energies of amorphous and tetragonal zirconia phases is ˜1.19 +/- 0.05 J/m2, with a lower surface energy for the amorphous material.

  11. Variation in whole DNA methylation in red maple (Acer rubrum) populations from a mining region: association with metal contamination and cation exchange capacity (CEC) in podzolic soils.

    PubMed

    Kalubi, K N; Mehes-Smith, M; Spiers, G; Omri, A

    2017-04-01

    Although a number of publications have provided convincing evidence that abiotic stresses such as drought and high salinity are involved in DNA methylation reports on the effects of metal contamination, pH, and cation exchange on DNA modifications are limited. The main objective of the present study is to determine the relationship between metal contamination and Cation exchange capacity (CEC) on whole DNA modifications. Metal analysis confirms that nickel and copper are the main contaminants in sampled sites within the Greater Sudbury Region (Ontario, Canada) and liming has increased soil pH significantly even after 30 years following dolomitic limestone applications. The estimated CEC values varied significantly among sites, ranging between 1.8 and 10.5 cmol(+) kg -1 , with a strong relationship being observed between CEC and pH (r = 0.96**). Cation exchange capacity, significantly lower in highly metal contaminated sites compared to both reference and less contaminated sites, was higher in the higher organic matter limed compared to unlimed sites. There was a significant variation in the level of cytosine methylation among the metal-contaminated sites. Significant and strong negative correlations between [5mdC]/[dG] and bioavailable nickel (r = -0.71**) or copper (r = -0.72**) contents were observed. The analysis of genomic DNA for adenine methylation in this study showed a very low level of [6N-mdA]/dT] in Acer rubrum plants analyzed ranging from 0 to 0.08%. Significant and very strong positive correlation was observed between [6N-mdA]/dT] and soil bioavailable nickel (r = 0.78**) and copper (r = 0.88**) content. This suggests that the increased bioavailable metal levels associated with contamination by nickel and copper particulates are associated with cytosine and adenine methylation.

  12. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

    PubMed

    Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

    2008-01-01

    Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

  13. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.

    PubMed

    Owczarzy, Richard; Moreira, Bernardo G; You, Yong; Behlke, Mark A; Walder, Joseph A

    2008-05-13

    Accurate predictions of DNA stability in physiological and enzyme buffers are important for the design of many biological and biochemical assays. We therefore investigated the effects of magnesium, potassium, sodium, Tris ions, and deoxynucleoside triphosphates on melting profiles of duplex DNA oligomers and collected large melting data sets. An empirical correction function was developed that predicts melting temperatures, transition enthalpies, entropies, and free energies in buffers containing magnesium and monovalent cations. The new correction function significantly improves the accuracy of predictions and accounts for ion concentration, G-C base pair content, and length of the oligonucleotides. The competitive effects of potassium and magnesium ions were characterized. If the concentration ratio of [Mg (2+)] (0.5)/[Mon (+)] is less than 0.22 M (-1/2), monovalent ions (K (+), Na (+)) are dominant. Effects of magnesium ions dominate and determine duplex stability at higher ratios. Typical reaction conditions for PCR and DNA sequencing (1.5-5 mM magnesium and 20-100 mM monovalent cations) fall within this range. Conditions were identified where monovalent and divalent cations compete and their stability effects are more complex. When duplexes denature, some of the Mg (2+) ions associated with the DNA are released. The number of released magnesium ions per phosphate charge is sequence dependent and decreases surprisingly with increasing oligonucleotide length.

  14. Cation distribution correlated with magnetic properties of cobalt ferrite nanoparticles defective by vanadium doping

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Ahmed, S. I.

    2017-11-01

    Nanoparticles cobalt ferrite, vacancies defective through vanadium substitution for iron, were synthesized by a sol-gel method. Two systems CoFe2-xVxO4 (0.0 ≤ x ≤ 0.25) and CoFe2-1.67xVxO4 (x = 0.1, 0.2) were prepared. The crystal structure, microstructure and magnetic properties were investigated using XRD, SEM and VSM magnetometer. The occupancy of tetrahedral and octahedral sites by different cations was determined by Rietveld analysis and correlated with magnetic measurements. Vanadium resides at octahedral sites up to x = 0.10, while for higher values it resides mainly at octahedral sites with a lesser amount at the tetrahedrons. Upon increasing the vanadium content, the cell parameter decreases and the bond lengths of the tetrahedral and octahedral sites change opposite to each other. The change in the coercivity and saturation magnetization is correlated with cation distribution. For the same amount of doping x, the iron deficient samples CoFe2-1.67xVxO4 have saturation magnetization obviously reduced than the corresponding samples in CoFe2-xVxO4. The spin canting between cations in A- and B- sites was discussed in details based on Yafet-Kittel triangular arrangement model.

  15. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    Cationic hydroxyethyl cellulose (cHEC) , was fed to hamsters to determine if this new soluble fiber had an effect on hypercholesterolemia and dyslipidemia associated with cardiovascular disease. In this study, Golden Syrian hamsters were supplemented with 3-8% cHEC or microcrystalline cellulose (MC...

  16. Missouri Ozark forest soils: perspectives and realities

    Treesearch

    R. David. Hammer

    1997-01-01

    Ozark forest soils are dynamic in space and time, and most formed in multiple parent materials. Erosion and mass movement have been variable and extensive. Soil attributes including texture, cation exchange capacity, and mineralogy are related to geologic strata and to geomorphic conditions. Soil organic carbon content is influenced by surface shape, position in...

  17. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  18. Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.

    PubMed

    Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E

    2014-06-01

    Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed.

  19. Influence of the Toothpaste with Brazilian Ethanol Extract Propolis on the Oral Cavity Health

    PubMed Central

    Skaba, Dariusz; Morawiec, Tadeusz; Tanasiewicz, Marta; Bobela, Elżbieta; Skucha-Nowak, Małgorzata; Dawiec, Monika; Yamamoto, Rindai; Makita, Yuki; Redzynia, Małgorzata; Janoszka, Beata; Niedzielska, Iwona; Król, Wojciech

    2013-01-01

    Propolis-based therapeutic agents represent this potential for the development of new drugs in dental care. The aim of a clinical-cohort study was to determine the influence of application of toothpaste enriched with Brazilian extract of propolis (EEP) on health status of oral cavity. Laboratory analysis was conducted in order to assess the chemical composition of EEP including total phenolic compounds, the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, ABTS radical cation scavenging activity, and FRAP assay. Clinical research involved two groups of subjects comprising 32 adult patients, with assessment based on the preliminary evaluation of the state of their marginal periodontium. The investigation of oral health indices API, OHI, and SBI and microbiological examination of oral microflora were also carried out. Results obtained indicated time-dependent microbial action of EEP at 50 mg/L concentration, with antimicrobial activity against Gram-positive bacteria. The total decrease of API, OHI, and SBI mean values was observed. Hygienic preparations with 3% content of Brazilian ethanol extract of green propolis (EEP) efficiently support removal of dental plaque and improve the state of marginal periodontium. PMID:23861699

  20. Ca2+ and Mn2+ Influx Through Receptor-Mediated Activation of Nonspecific Cation Channels in Mast Cells

    NASA Astrophysics Data System (ADS)

    Fasolato, Cristina; Hoth, Markus; Matthews, Gary; Penner, Reinhold

    1993-04-01

    Whole-cell patch-clamp recordings of membrane currents and Fura-2 measurements of free intracellular calcium concentration ([Ca2+]_i) were used to study calcium influx through receptor-activated cation channels in rat peritoneal mast cells. Cation channels were activated by the secretagogue compound 48/80, whereas a possible concomitant Ca2+ entry through pathways activated by depletion of calcium stores was blocked by dialyzing cells with heparin. Heparin effectively suppressed the transient Ca2+ release induced by 48/80 and abrogated inositol 1,4,5-trisphosphate-induced calcium influx without affecting activation of 50-pS cation channels. There was a clear correlation between changes in [Ca2+]_i and the activity of 50-pS channels. The changes in [Ca2+]_i increased with elevation of extracellular Ca2+. At the same time, inward currents through 50-pS channels were diminished as more Ca2+ permeated. This effect was due to a decrease in slope conductance and a reduction in the open probability of the cation channels. In physiological solutions, 3.6% of the total current was carried by Ca2+. The cation channels were not only permeable to Ca2+ but also to Mn2+, as evidenced by the quench of Fura-2 fluorescence. Mn2+ current through 50-pS channels could not be resolved at the single-channel level. Our results suggest that 50-pS cation channels partially contribute to sustained increases of [Ca2+]_i in mast cells following receptor activation.

  1. Complex conductivity of oil-contaminated clayey soils

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Revil, A.; Shi, X.

    2017-12-01

    Non-intrusive hydrogeophysical techniques have been wildly applied to detect organic contaminants because of the difference of electrical properties for contaminated soil. Among them, spectral induced polarization (SIP) has emerged as a promising tool for the identification of contamination due to its sensitivity to the chemistry of pore water, solid-fluid interfaces and fluid content. Previous works have investigated the influences of oil on the electrical signatures of porous media, which demonstrated the potentials of SIP in the detection of hydrocarbon contamination. However, few works have done on the SIP response of oil in clayey soils. In this study, we perform a set of SIP measurements on the clayey samples under different water saturations. These clayey soils are characterized by relatively high cation exchange capacity. The objective in this work is to test the empirical relationships between the three exponents, including the cementation exponent (m), the saturation exponent (n) and the quadrature conductivity exponent (p), which is expected to reduce the model parameters needed in geophysical and hydraulic properties predictions. Our results show that the complex conductivity are saturation dependent. The magnitude of both in-phase and quadrature conductivities generally decrease with decreasing water saturation. The shape of quadrature conductivity spectra slightly changes when water saturation decreases in some cases. The saturation exponent slightly increases with cation exchange capacity, specific surface area and clay content, with an average value around 2.05. Compared to saturation exponent, the quadrature conductivity exponent apparently increases with cation exchange capacity and specific surface area while has little to do with the clay content. Further, the results indicate that the quadrature conductivity exponent p does not strictly obey to p=n-1 as proposed by Vinegar and Waxman (1984). Instead, it mostly ranges between p=n-1.5 and p=n-0.5. The relationship between the saturation exponent n and the cementation exponent m is comprised between m=n and m=n-0.5.

  2. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo.

    PubMed

    Nelson, Christopher E; Kintzing, James R; Hanna, Ann; Shannon, Joshua M; Gupta, Mukesh K; Duvall, Craig L

    2013-10-22

    A family of pH-responsive diblock polymers composed of poly[(ethylene glycol)-b-[(2-(dimethylamino)ethyl methacrylate)-co-(butyl methacrylate)], PEG-(DMAEMA-co-BMA), was reversible addition-fragmentation chain transfer (RAFT) synthesized with 0-75 mol % BMA in the second polymer block. The relative mole % of DMAEMA and BMA was varied in order to identify a polymer that can be used to formulate PEGylated, siRNA-loaded polyplex nanoparticles (NPs) with an optimized balance of cationic and hydrophobic content in the NP core based on siRNA packaging, cytocompatibility, blood circulation half-life, endosomal escape, and in vivo bioactivity. The polymer with 50:50 mol % of DMAEMA:BMA (polymer "50 B") in the RAFT-polymerized block efficiently condensed siRNA into 100 nm NPs that displayed pH-dependent membrane disruptive behavior finely tuned for endosomal escape. In vitro delivery of siRNA with polymer 50 B produced up to 94% protein-level knockdown of the model gene luciferase. The PEG corona of the NPs blocked nonspecific interactions with constituents of human whole blood, and the relative hydrophobicity of polymer 50 B increased NP stability in the presence of human serum or the polyanion heparin. When injected intravenously, 50 B NPs enhanced blood circulation half-life 3-fold relative to more standard PEG-DMAEMA (0 B) NPs (p < 0.05), due to improved stability and a reduced rate of renal clearance. The 50 B NPs enhanced siRNA biodistribution to the liver and other organs and significantly increased gene silencing in the liver, kidneys, and spleen relative to the benchmark polymer 0 B (p < 0.05). These collective findings validate the functional significance of tuning the balance of cationic and hydrophobic content of polyplex NPs utilized for systemic siRNA delivery in vivo.

  3. Highly stretchable nanoalginate based polyurethane elastomers.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2013-06-20

    Highly stretchable elastomeric samples based on cationic polyurethane dispersions-sodium alginate nanoparticles (CPUD/SA) were prepared by the solution blending of sodium alginate and aqueous polyurethane dispersions. CPUDs were synthesized by step growth polymerization technique using N-methyldiethanolamine (MDEA) as a source of cationic emulsifier. The chemical structure and thermal-mechanical properties of these systems were characterized using FTIR and DMTA, respectively. The presence of nanoalginate particles including nanobead and nanorod particles were proved by SEM and EDX. It was observed that thermal properties of composites increased with increasing SA content. All prepared samples were known as thermoplastic-elastomers with high percentages of elongation. Excellent compatibility of prepared nanocomposites was proved by the DMTA data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.

    PubMed

    Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa

    2007-09-01

    A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.

  5. Effect of land management on soil properties in flood irrigated citrus orchards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; García-Orenes, F.; Cerdà, A.

    2015-01-01

    Agricultural land management greatly affects soil properties. Microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. Citrus orchards frequently have degraded soils and this paper evaluates how land management in citrus orchards can improve soil quality. A field experiment was performed in an orchard of orange trees (Citrus Sinensis) in the Alcoleja Experimental Station (Eastern Spain) with clay-loam agricultural soils to assess the long-term effects of herbicides with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (P) and organic farming (O) on the soil microbial properties, and to study the relationship between them. Nine soil samples were taken from each agricultural management plot. In all the samples the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic matter, total nitrogen, available phosphorus, available potassium, aggregate stability, cation exchange capacity, pH, texture, macronutrients (Na, Ca and Mg), micronutrients (Fe, Mn, Zn and Cu), calcium carbonate equivalent, calcium carbonate content of limestone and enzimatic activities (urease, dehydrogenase, β-glucosidase and acid phosphatase) were determined. The results showed a substantial level of differentiation in the microbial properties, which were highly associated with soil organic matter content. The management practices including herbicides and intensive ploughing had similar results on microbial soil properties. O management contributed to an increase in the soil biology quality, aggregate stability and organic matter content.

  6. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    PubMed

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  7. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea.

    PubMed

    Kim, Jeong Myeong; Roh, An-Sung; Choi, Seung-Chul; Kim, Eun-Jeong; Choi, Moon-Tae; Ahn, Byung-Koo; Kim, Sun-Kuk; Lee, Young-Han; Joa, Jae-Ho; Kang, Seong-Soo; Lee, Shin Ae; Ahn, Jae-Hyung; Song, Jaekyeong; Weon, Hang-Yeon

    2016-12-01

    Soil microorganisms play an essential role in soil ecosystem processes such as organic matter decomposition, nutrient cycling, and plant nutrient availability. The land use for greenhouse cultivation has been increasing continuously, which involves an intensive input of agricultural materials to enhance productivity; however, relatively little is known about bacterial communities in greenhouse soils. To assess the effects of environmental factors on the soil bacterial diversity and community composition, a total of 187 greenhouse soil samples collected across Korea were subjected to bacterial 16S rRNA gene pyrosequencing analysis. A total of 11,865 operational taxonomic units at a 97% similarity cutoff level were detected from 847,560 sequences. Among nine soil factors evaluated; pH, electrical conductivity (EC), exchangeable cations (Ca 2+ , Mg 2+ , Na + , and K + ), available P 2 O 5 , organic matter, and NO 3 -N, soil pH was most strongly correlated with bacterial richness (polynomial regression, pH: R 2 = 0.1683, P < 0.001) and diversity (pH: R 2 = 0.1765, P < 0.001). Community dissimilarities (Bray-Curtis distance) were positively correlated with Euclidean distance for pH and EC (Mantel test, pH: r = 0.2672, P < 0.001; EC: r = 0.1473, P < 0.001). Among dominant phyla (> 1%), the relative abundances of Proteobacteria, Gemmatimonadetes, Acidobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes were also more strongly correlated with pH and EC values, compared with other soil cation contents, such as Ca 2+ , Mg 2+ , Na + , and K + . Our results suggest that, despite the heterogeneity of various environmental variables, the bacterial communities of the intensively cultivated greenhouse soils were particularly influenced by soil pH and EC. These findings therefore shed light on the soil microbial ecology of greenhouse cultivation, which should be helpful for devising effective management strategies to enhance soil microbial diversity and improving crop productivity.

  8. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine.

    PubMed

    Jung, Myung Chae

    2008-04-04

    Heavy metal concentrations were measured in soils and plants in and around a copper-tungsten mine in southeast Korea to investigate the influence of past base metal mining on the surface environment. The results of chemical analysis indicate that the heavy metals in soils decreased with distance from the source, controlled mainly by water movement and topography. The metal concentrations measured in plant species generally decreased in the order; spring onions > soybean leaves > perilla leaves » red pepper > corn grains » jujube grains, although this pattern varied moderately between different elements. The results agree with other reports that metal concentrations in leaves are usually much higher than those in grain. Factors influencing the bioavailability of metals and their occurrences in crops were found as soil pH, cation exchange capacity, organic matter content, soil texture, and interaction among the target elements. It is concluded that total metal concentrations in soils are the main controls on their contents in plants. Soil pH was also an important factor. A stepwise linear multiple regression analysis was also conducted to identify the dominant factors influencing metal uptake by plants. Metal concentrations in plants were also estimated by computer-aided statistical methods.

  9. Novel Proximal Sensing for Monitoring Soil Organic C Stocks and Condition.

    PubMed

    Viscarra Rossel, Raphael A; Lobsey, Craig R; Sharman, Chris; Flick, Paul; McLachlan, Gordon

    2017-05-16

    Soil information is needed for environmental monitoring to address current concerns over food, water and energy securities, land degradation, and climate change. We developed the Soil Condition ANalysis System (SCANS) to help address these needs. It integrates an automated soil core sensing system (CSS) with statistical analytics and modeling to characterize soil at fine depth resolutions and across landscapes. The CSS's sensors include a γ-ray attenuation densitometer to measure bulk density, digital cameras to image the measured soil, and a visible-near-infrared (vis-NIR) spectrometer to measure iron oxides and clay mineralogy. The spectra are also modeled to estimate total soil organic carbon (C), particulate, humus, and resistant organic C (POC, HOC, and ROC, respectively), clay content, cation exchange capacity (CEC), pH, volumetric water content, available water capacity (AWC), and their uncertainties. Measurements of bulk density and organic C are combined to estimate C stocks. Kalman smoothing is used to derive complete soil property profiles with propagated uncertainties. The SCANS provides rapid, precise, quantitative, and spatially explicit information about the properties of soil profiles with a level of detail that is difficult to obtain with other approaches. The information gained effectively deepens our understanding of soil and calls attention to the central role soil plays in our environment.

  10. Relationship between apparent soil electrical conductivity (ECa) and soil attributes at an experimental parcel under pasture in a region of Galicia, Spain.

    NASA Astrophysics Data System (ADS)

    Marinho, Mara de A.; Dafonte, Jorge D.; Armesto, Montserrat V.; Paz-González, Antonio; Raposo, Juan R.

    2013-04-01

    Spatial characterization of the variability of soil properties is a central point in site-specific agricultural management and precision agriculture. Geospatial measures of geophysical attributes are useful not only to rapidly characterize the spatial variability of soil properties but also for soil sampling optimization. This work reports partial results obtained at an experimental parcel under pasture located at Castro de Ribeira do Lea (Lugo/ Galicia/ Spain). An ECa automated survey was conducted in September 2011 employing an EM-38 DD (Geonics Ltd.) installed in a nonmetallic car, according to parallel lines spaced 10m one from each other and oriented at the east-west direction. The ECa values were recorded every second with a field computer and the locations were geo-referenced using a GPS. The entire survey was carried out in 1hour and 45 minutes and corrections due to differences in temperature were made. A total of 9.581 ECa registers were retained, configuring a sampling intensity of approximately 1 register per 1.5 m2. Employing the software ESAP 2.35 and the computational tool ESAP-RSSD, eighty positions were selected at the field to extract disturbed and undisturbed soil samples at two depths: 0.0-0.2m, 0.2-0.4m. Ten physical attributes (clay, silt, total sand, coarse sand and fine sand contents, soil bulk density, particle density, total porosity, soil water content, percentage of gravels) and 17 chemical attributes (soil organic matter-SOM, pH, P, K, Ca, Mg, Al, H+Al, Sum of bases-S, Cation exchange capacity-CEC, Base saturation-V%, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were determined. The relationship between the geophysical variables and the soil attributes was performed using statistical and spatial analysis. There were significant correlations (p<0.01) between the geophysical variables and the textural attributes clay, silt, total sand and coarse sand contents. The biggest correlation (0.5623) was between ECa-V (vertical component) and clay content. Also, significant correlations (p<0.05) were found between the ECa-V and soil bulk density, total porosity, percentage of gravels and soil water content. Considering the chemical attributes, significant correlations (p< 0.01) were found between ECa-V and SOM and Cd, and between ECa-H (horizontal component) and SOM and Fe. Other significant correlations (p<0.05) were found between ECa-V and 6 soil chemical attributes: P, Ca, S, Fe, Ni and Pb. The biggest correlation was between ECa-V and SOM (-0.5942). In resume, clay content, SOM, Cd and Fe are the soil attributes better correlated with the observed variation of the ECa at the field. Additional analysis should be performed to compare the spatial patterns of these soil attributes and the ECa as a tool to proper define management zones in the area. Acknowledgements: This work was funded in part by Spanish Ministry of Science and Innovation (MICINN) in the frame of project CGL2009-13700-C02. Financial support from CAPES/GOV., Brazil, is also acknowledged by Prof. M. de A. Marinho.

  11. Alkali metals in beryl and their role in the formation of derivative structural motifs: Comparative crystal chemistry of vorobyevite and pezzottaite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakubovich, O. V., E-mail: yakubol@geol.msu.ru; Pekov, I. V.; Steele, I. M.

    2009-05-15

    The crystal structures of high-alkali beryl, i.e., vorobyevite Cs{sub 0.08}Na{sub 0.42}(H{sub 2}O){sub 0.18+y} x [Al{sub 2}(Be{sub 2.35}Li{sub 0.65})Si{sub 6}O{sub 18}], (a = 9.2102(14) A, c = 9.2179(14) A, space group P6/mcc, Z = 2, {rho}{sub calcd}= 2.74 g/cm{sup 3}) and pezzottaite Cs{sub 0.75}Na{sub 0.23}(H{sub 2}O){sub 0.24}[Al{sub 2}Be{sub 2}Li(Si{sub 6}O{sub 18})] (a = 15.955(3) A, c = 27.810(8) A, space group, R3-barc, Z = 18, {rho}{sub calcd}= 3.13 g/cm{sup 3}), are determined at a temperature of 100 K. It is confirmed that, at a high lithium content in minerals of the beryl group, lithium is selectively incorporated into Be tetrahedra. Themore » positive charge deficit due to the replacement of Be{sup 2+} cations by Li{sup +} cations is compensated by incorporating large alkali cations into the 'zeolite' channel. It is shown that, when the lithium content becomes close to unity per the corresponding formula, the Li and Be atoms are ordered and the rhombohedral structure of pezzottaite is formed. It is proposed to retain the historical name vorobyevite for the lithium- and cesium-containing variety of beryl with a disordered distribution of Be and Li atoms.« less

  12. Soil Temperature and Moisture Effects on Soil Respiration and Microbial Community Abundance

    DTIC Science & Technology

    2015-04-13

    highest abundance of bacteria and archaea. Across all soils, if the moisture content was optimal but the temperature was around 5°C, the respiration...9 3.3 Abundance of soil bacteria and archaea ..................................................................... 10 4...ARTEMIS Army Terrestrial-Environmental Modeling and Intelligence System ATCC American Type Culture Collection Ca Calcium CEC Cation Exchange Capacity

  13. Evaluation of on-line desalter-inductively coupled plasma-mass spectrometry system for determination of Cr(III), Cr(VI), and total chromium concentrations in natural water and urine samples

    NASA Astrophysics Data System (ADS)

    Sun, Y. C.; Lin, C. Y.; Wu, S. F.; Chung, Y. T.

    2006-02-01

    We have developed a simple and convenient method for the determination of Cr(III), Cr(VI), and the total chromium concentrations in natural water and urine samples that use a flow injection on-line desalter-inductively coupled plasma-mass spectrometry system. When using aqueous ammonium chloride (pH 8) as the stripping solution, the severe interference from sodium in the matrix can be eliminated prior to inductively coupled plasma-mass spectrometry measurement, and the Cr(VI) level can be determined directly. To determine the total concentration of Cr in natural water and urine samples, we used H 2O 2 or HNO 3 to decompose the organic matter and convert all chromium species into the Cr(VI) oxidation state. To overcome the spectral interference caused by the matrix chloride ion in the resulting solutions, we employed cool plasma to successfully suppress chloride-based molecular ion interference during the inductively coupled plasma-mass spectrometry measurement. By significantly eliminating interference from the cationic and anionic components in the matrices prior to the inductively coupled plasma-mass spectrometry measurement, we found that the detection limit reached 0.18 μg L - 1 (based on 3 sigma). We validated this method through the analysis of the total chromium content in two reference materials (NIST 1643c and 2670E) and through measuring the recovery in spiked samples.

  14. [Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil].

    PubMed

    Wang, Ji-Dong; Qi, Bing-Jie; Zhang, Yong-Chun; Zhang, Ai-Jun; Ning, Yun-Wang; Xu, Xian-Ju; Zhang, Hui; Ma, Hong-Bo

    2012-04-01

    Soil samples (0-80 cm) were collected from a 30-year fertilization experimental site in Xuzhou, Jiangsu Province of East China to study the variations of the pH, calcium carbonate and active calcium carbonate contents, and pH buffer capacity of sandy loam calcareous fluvor-aquic soil under different fertilization treatments. Thirty-year continuous application of different fertilizers accelerated the acidification of topsoil (0-20 cm), with the soil pH decreased by 0.41-0.70. Under different fertilization, the soil pH buffer capacity (pHBC) varied from 15.82 to 21.96 cmol x kg(-1). As compared with no fertilization, single N fertilization decreased the pHBC significantly, but N fertilization combined with organic fertilization could significantly increase the pHBC. The soil pHBC had significant positive correlations with soil calcium carbonate and active calcium carbonate contents, but less correlation with soil organic matter content and soil cation exchange capacity, suggesting that after a long-term fertilization, the sandy loam calcareous fluvor-aquic soil was still of an elementary calcium carbonate buffer system, and soil organic matter and cation exchange capacity contributed little to the buffer system. The soil calcium carbonate and active calcium carbonate contents were greater in 0-40 cm than in 40-80 cm soil layer. Comparing with soil calcium carbonate, soil active calcium carbonate was more sensitive to reflect the changes of soil physical and chemical properties, suggesting that the calcium carbonate buffer system could be further classified as soil active calcium carbonate buffer system.

  15. Effect of the presence of cationic polyacrylamide on the surface properties of aqueous alumina suspension-stability mechanism

    NASA Astrophysics Data System (ADS)

    Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa

    2014-11-01

    The effects of solution pH and the content of cationic groups in polyacrylamide (PAM) macromolecules on the stability mechanism of aqueous alumina suspension were investigated. The following experimental techniques were applied: spectrophotometry, potentiometric titration, microelectrophoresis, viscosimetry and turbidimetry. They enable determination of polymer adsorbed amount, surface charge density and zeta potential of solid particles in the presence and absence of PAM, as well as thickness of polymer adsorption layer, size of macromolecules in the solution and stability of the Al2O3-polymer systems, respectively. The obtained results indicate that adsorption of PAM increases with the increasing pH, whereas the thickness of polymeric adsorption layer decreases. Additionally, the greater the number of cationic groups in the PAM chains is, the higher adsorption was found. The polymer presence influences on the alumina suspension stability. At pH 3 and 6 the slight deterioration of stability conditions of solid particle covered with polyacrylamide was observed. At pH 9 the systems containing polymer are unstable, similarly to the suspension without PAM, but the mechanism of their destabilization is different.

  16. Selective digestion of Ba2+/Ca2+ alginate gel microdroplets for single-cell handling

    NASA Astrophysics Data System (ADS)

    Odaka, Masao; Hattori, Akihiro; Matsuura, Kenji; Yasuda, Kenji

    2018-06-01

    Cells encapsuled by polymer microdroplets are an effective platform for the identification and separation of individual cells for single-cell-based analysis. However, a key challenge is to maintain and release the captured cells in the microdroplets selectively, nondestructively, and noninvasively. We developed a simple method of encapsulating cells in alginate microdroplets having different digestion characteristics. Cells were diluted with an alginate polymer of sol state and encapsulated into microdroplets with Ba2+ and Ca2+ by a spray method. When a chelating buffer was applied, alginate gel microdroplets were digested according to the difference in chelating efficiency of linkage-divalent cations; hence, two types of alginate microdroplets were formed. Moreover, we examined the capability of the alginate gel to exchange linkage-divalent cations and found that both Ca2+ exchange in Ba-alginate microdroplets and Ba2+ exchange in Ca-alginate microdroplets occurred. These results indicate that the potential applications of a mixture of alginate microdroplets with different divalent cations control the selective digestion of microdroplets to improve the high-throughput, high-content microdroplet-based separation, analysis, or storage of single cells.

  17. Covalent Incorporation of Ionic Liquid into Ion-Conductive Networks via Thiol-Ene Photopolymerization.

    PubMed

    Tibbits, Andrew C; Yan, Yushan S; Kloxin, Christopher J

    2017-07-01

    Ene-functionalized ionic liquids with a range of different cationic groups and counteranions react stoichiometrically within a tetrathiol-divinyl ether formulation within 20 minutes to form thiol-ene polymers with measurable ionic conductivities via a photoinitiated polymerization and crosslinking reaction. Dynamic mechanical analysis indicates that these networks are more spatially heterogeneous and possess higher glass transition temperatures (T g ) compared with thiol-ene formulations without charge. While tuning the molar content of ionic liquid monomer is one method for adjusting the crosslink and charge densities of the thiol-ene polymeric ionic liquid networks, the presence of cation-anion interactions also plays a critical role in dictating the thermomechanical and conductive properties. Particularly, while cationic structure effects are not significant on the polymer properties, the use of a weakly coordinating hydrophobic anion (bistriflimide) instead of bromide-based networks results in an apparent decrease in hydrated ion conductivity (7.4 to 1.5 mS cm -1 ) and T g (-9.6 to -17.8 °C). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Impact of cationic substances on biofilm formation from sieved fine particles of anaerobic granular sludge at high salinity.

    PubMed

    Kobayashi, Takuro; Hu, Yong; Xu, Kai-Qin

    2018-06-01

    This study investigated early stages of biofilm formation from sieved fine particles of anaerobic granules in the presence of various cationic substances using a quartz crystal sensor to improve biofilm formation in the anaerobic treatment of saline wastewater. The biomass attached on the sensor was greatly increased with Ca within the low range (8-16 mM), which was not affected by 50 mM of Na. However, the positive effect of 16 mM of Ca was strongly reduced in the co-presence of Ca and Na when Na concentrations were in the range from 25 to 150 mM because Ca may compete with Na for the limited binding sites in biofilm. The addition of cationic polymer at 150 mM of Na increased biomass adhesion by several folds at only 10-80 mg/L compared to the addition of 16 mM of Ca. Moreover, no methanogenic inhibition was presented below the polymer content of 20 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Sorption mechanism of enrofloxacin on humic acids extracted from Brazilian soils.

    PubMed

    Martínez-Mejía, Mónica J; Sato, Isabela; Rath, Susanne

    2017-07-01

    Veterinary antimicrobials are emerging environmental contaminants of concern. In this study, the sorption of enrofloxacin (ENR) onto humic acids (HAs) extracted from three Brazilian soils was evaluated. HAs were characterized by elemental analysis and solid 13 C nuclear magnetic resonance spectroscopy. The sorption of ENR onto HAs was at least 20-fold higher than onto the soils from which they were separated. Ionic and cation bridging are the primary interactions involved. The interactions driven by cation exchange are predominant on HAs, which appear to have abundant carboxylic groups and a relatively high proportion of H-bond donor moieties with carbohydrate-like structures. Interactions explained by cation bridging and/or surface complexation on HAs are facilitated by moieties containing conjugated ligands, significant content of oxygen-containing functional groups, such as phenolic-OH or lignin-like structures. HAs containing electron-donating phenolic moieties and carboxylic acid ligand groups exhibit a sorption mechanism that is primarily driven by strong metal binding, favoring the formation of ternary complexes between functional groups of the organic matter and drugs.

  20. Flavonoid and Antioxidant Capacity of Propolis Prediction Using Near Infrared Spectroscopy.

    PubMed

    Betances-Salcedo, Eddy; Revilla, Isabel; Vivar-Quintana, Ana M; González-Martín, M Inmaculada

    2017-07-18

    The use of propolis as a dietary supplement or as an ingredient in different food products is increasing, due to its antioxidant and bactericidal properties. These nutritional properties directly depend on its phenolic composition. For this reason, this study analysed the total contents of flavones and flavonols, flavanones and dihydroflavonols, and the antioxidant capacity by using the methods of ABTS and linoleic acid/ β -carotene in 99 samples of propolis from Spain and Chile. A rapid method was developed for quantifying these parameters in raw propolis using near infrared (NIR) spectroscopy with a remote reflectance fibre-optic probe applied directly to the ground-up sample. The models developed allow for the determination of the total flavones and flavonols (0-183 mg quercetin/g propolis and 0-72 mg rutin/g propolis), of the total flavanones and dihydroflavonols (9-109 mg pinocembrin/g propolis extract), and of its antioxidant capacity by the ABTS method based on the reduction of the 2.2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation(0-3212.6 nmol Trolox/mg of propolis) and of linoleic acid/ β -carotene (22-86% inhibition). The NIR spectroscopy models were applied in external validation to different samples of the calibration group, which led to the conclusion that the methods developed provide significantly identical data to the initial chemical data of reference.

  1. How do silanes affect the lubricating properties of cationic double chain surfactant on silica surfaces?

    PubMed

    Beauvais, Muriel; Serreau, Laurence; Heitz, Caroline; Barthel, Etienne

    2009-03-01

    The effect of an aminosilane on the lubricant properties of a C(18) double-chained cationic surfactant has been investigated in the context of glass fiber forming process. The surfactant adsorption was studied on silica by Fourier transform infrared (FT-IR) spectroscopy in the attenuated total reflexion (ATR) mode as a function of the aminosilane concentration in an organic water based formulation (sizing) used to coat the glass fibers during the process. A reciprocating ball-on-plate tribometer was used to compare friction properties of silica in contact with the aminosilane-surfactant mixture and in presence of each component of the sizing. Surface forces were measured between silica and an atomic force microscope (AFM) silicon nitride tip in the sizing and in the pure cationic surfactant solution. The aminosilane on its own has no lubricant property and reduces or even suppresses the cationic surfactant adsorption on silica. However, the silica-silica contact is lubricated even if the infrared spectroscopy does not detect any surfactant adsorption. The repeated contacts and shear due to the friction experiment itself induce accumulation, organization and compactness of surfactant bilayers.

  2. Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, Virendra Bahadur; Ramanathan, Al; Pottakkal, Jose George; Sharma, Parmanand; Linda, Anurag; Azam, Mohd Farooq; Chatterjee, C.

    2012-06-01

    A detailed analytical study of major cations (Ca2 + , Mg2 + , Na + , K + ) and anions (SO4^{2-}, HCO3-, Cl - , NO3-) of meltwater draining from Gangotri Glacier was carried out to understand major ion chemistry and to get an insight into geochemical weathering processes controlling hydrochemistry of the glacier. In the meltwater, the abundance order of cations and anions varied as follows: Ca2 + > Mg2 + > K + > Na + and SO4^{2-} > HCO3- > Cl - > NO3-, respectively. Calcium and magnesium are dominant cations while sulphate and bicarbonate are dominant anions. Weathering of rocks is the dominant mechanism controlling the hydrochemistry of drainage basin. The relative high contribution of (Ca+Mg) to the total cations (TZ + ), high (Ca+Mg)/(Na+K) ratio (2.63) and low (Na+K)/TZ + ratio (0.29) indicate the dominance of carbonate weathering as a major source for dissolved ions in the glacier meltwater. Sulphide oxidation and carbonation are the main proton supplying geochemical reactions controlling the rock weathering in the study area. Statistical analysis was done to identify various factors controlling the dissolved ionic strength of Gangotri Glacier meltwater.

  3. Liquid-liquid distribution of ion associates of tetrabromoindate(III) with quaternary ammonium counter ions.

    PubMed

    Yamamoto, K; Matsumoto, A

    1997-11-01

    The solvent extraction of an ion associate of tetrabromoindate(III) ion, InBr(-)(4), with quaternary ammonium cations (Q(+)) has been studied. The extraction constant (K(ex)) were determined for the ion associates of InBr(-)(4) with Q(+) between an aqueous phase and several organic phases (chloroform, chlorobenzene, benzene and toluene). A linear relationship was found between log K(ex) and the total number of carbon atoms in Q(+); from the slope of the lines, the contribution of a methylene group to log K(ex) was calculated to be 0.91 for the chloroform extraction system and 0.52 for the other extraction systems. The extractability with alkyltrimethylammonium cations was larger than that with symmetrical tetraalkylammonium cations and the mean difference in log K(ex) for two cations (one of each type) with the same number of carbon atoms was about 1.3. From the extraction constant obtained, the extractability of InBr(-)(4) among metal-halogeno complex anions was in the order TlBr(-)(4) > BiI(-)(4) > AuBr(-)(4) > AuCl(-)(4) > TlCl(-)(4) > InBr(-)(4) > CuCl(-)(2).

  4. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and Their Ions. 7; Phenazine, a Dual Substituted Polycyclic Aromatic Nitrogen Heterocycle

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W., Jr.; Allamandola, L. J.

    2004-01-01

    The matrix-isolation technique has been employed to measure the mid-infrared spectra of phenazine (C12H8N2), a dual substituted Polycyclic Aromatic Nitrogen Heterocycle (PANH), in the neutral, cationic and anionic forms. The experimentally measured band frequencies and intensities are tabulated and compared with their calculated values as well as those of the non-substituted parent molecule, anthracene. The theoretical band positions and intensities were calculated using both the 3-31 G as well as the larger 6-3lG* Basis Sets. A comparison of the results can be found in the tables. The spectroscopic properties of phenazine and its cation are similar to those observed in mono-substituted PANHs, with one exception. The presence of a second nitrogen atom results in an additional enhancement of the cation's total integrated intensity, for the 1500-1000 cm(sup -1) (6.7 to 10 micron) region, over that observed for a mono-substituted PANH cation. The significance of this enhancement and the astrobiological implications of these results are discussed.

  5. Geochemical controls on lead concentrations in stream water and sediments

    USGS Publications Warehouse

    Hem, J.D.

    1976-01-01

    The equilibrium distribution of lead in solution and adsorbed on cation exchange sites in sediment theoretically may be calculated from equations representing selectivities of substrate for lead over H+, Ca2+ and Na+, and the stabilities of lead solute species. Such calculations include consideration of total concentrations of major ions, cation exchange capacity (CEC) of substrate, and pH, at values expected in various natural systems. Measurements of CEC and selectivity coefficients were made for synthetic halloysite, a finely divided amorphous 1:1 clay prepared by precipitation from a mixture of solutions of aluminum and silica. Where suspended sediment having the same properties is present in concentrations of 10-1,000 mg/1 at pH 6-8, more than 90% of the lead present can be adsorbed on sediment surfaces. The cation exchange behavior of lead and other minor cationic species in natural systems could be predicted by this type of model if enough other supporting information were available. Information of the type needed describing natural stream sediments, however, is presently inadequate for accurate predictions. ?? 1976.

  6. An enhanced cerium(IV)-rhodamine 6G chemiluminescence system using guest-host interactions in a lab-on-a-chip platform for estimating the total phenolic content in food samples.

    PubMed

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2016-04-01

    Two chemiluminescence-microfluidic (CL-MF) systems, e.g., Ce(IV)-rhodamine B (RB) and Ce(IV)-rhodamine 6G (R6G), for the determination of the total phenolic content in teas and some sweeteners were evaluated. The results indicated that the Ce(IV)-R6G system was more sensitive in comparison to the Ce(IV)-RB CL system. Therefore, a simple (CL-MF) method based on the CL of Ce(IV)-R6G was developed, and the sensitivity, selectivity and stability of this system were evaluated. Selected phenolic compounds (PCs), such as quercetin (QRC), catechin (CAT), rutin (RUT), gallic acid (GA), caffeic acid (CA) and syringic acid (SA), produced analytically useful chemiluminescence signals with low detection limits ranging from 0.35 nmol L(-1) for QRC to 11.31 nmol L(-1) for SA. The mixing sequence and the chip design were crucial, as the sensitivity and reproducibility could be substantially affected by these two factors. In addition, the anionic surfactant (i.e., sodium dodecyl sulfate (SDS)) can significantly enhance the CL signal intensity by as much as 300% for the QRC solution. Spectroscopic studies indicated that the enhancement was due to a strong guest-host interaction between the cationic R6G molecules and the anionic amphiphilic environment. Other parameters that could affect the CL intensities of the PCs were carefully optimized. Finally, the method was successfully applied to tea and sweetener samples. Six different tea samples exhibited total phenolic/antioxidant levels from 7.32 to 13.5 g per 100g of sample with respect to GA. Four different sweetener samples were also analyzed and exhibited total phenolic/antioxidant levels from 500.9 to 3422.9 mg kg(-1) with respect to GA. The method was selective, rapid and sensitive when used to estimate the total phenolic/antioxidant level, and the results were in good agreement with those reported for honey and tea samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Solute deposition from cloud water to the canopy of a puerto rican montane forest

    NASA Astrophysics Data System (ADS)

    Asbury, Clyde E.; McDowell, William H.; Trinidad-Pizarro, Roberto; Berrios, Samuel

    Deposition of cloud water and dissolved solutes onto vegetation was studied by sampling clouds, throughfall and stemflow during 12 cloud-only events at Pico Del Este, a tropical cloud forest in the Luquillo Mountains of Puerto Rico. Liquid water content of the sampled clouds was low (0.016 g m -3), but deposition of water (1.3 mm d -1)was comparable to other sites, apparently due to efficient capture of clouds by epiphyte-laden vegetation. Elemental deposition by cloud water was similar to that in other, more polluted sites, but was only 8-30% of total deposition (cloud-only plus rain) due to the high rainfall at the site (approximately 5 m). Na and CI from marine aerosols dominated cloud chemistry, with concentrations of 400 μeqδ -1. Sulfate and nitrate concentrations were 180 and 60 μedδ -1, respectively. After passage through the canopy, concentrations of base cations in deposited cloud water increased, and concentrations of nitrogen decreased.

  8. Simulated Gastrointestinal pH Condition Improves Antioxidant Properties of Wheat and Rice Flours

    PubMed Central

    Chan, Kim Wei; Khong, Nicholas M. H.; Iqbal, Shahid; Ismail, Maznah

    2012-01-01

    The present study was conducted to evaluate the antioxidant properties of wheat and rice flours under simulated gastrointestinal pH condition. After subjecting the wheat and rice flour slurries to simulated gastrointestinal pH condition, both slurries were centrifuged to obtain the crude phenolic extracts for further analyses. Extraction yield, total contents of phenolic and flavonoids were determined as such (untreated) and under simulated gastrointestinal pH condition (treated). 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) scavenging activity, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radical cation (ABTS•+) scavenging activity, ferric reducing antioxidant power (FRAP), beta-carotene bleaching (BCB) and iron chelating activity assays were employed for the determination of antioxidant activity of the tested samples. In almost all of the assays performed, significant improvements in antioxidant properties (p < 0.05) were observed in both flours after treatment, suggesting that wheat and rice flours contain considerably heavy amounts of bound phenolics, and that their antioxidant properties might be improved under gastrointestinal digestive conditions. PMID:22837707

  9. BOREAS TE-1 SSA Soil Lab Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Nerbas, Tim; Anderson, Darwin

    2000-01-01

    This data set was collected by TE-1 to provide a set of soil properties for BOREAS investigators in the SSA. The soil samples were collected at sets of soil pits in 1993 and 1994. Each set of soil pits was in the vicinity of one of the five flux towers in the BOREAS SSA. The collected soil samples were sent to a lab, where the major soil properties were determined. These properties include, but are not limited to, soil horizon; dry soil color; pH; bulk density; total, organic, and inorganic carbon; electric conductivity; cation exchange capacity; exchangeable sodium, potassium, calcium, magnesium, and hydrogen; water content at 0.01, 0.033, and 1.5 MPascals; nitrogen; phosphorus; particle size distribution; texture; pH of the mineral soil and of the organic soil; extractable acid; and sulfur. The data are stored in tabular ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. Evaluation of Environmental Risk of Metal Contaminated Soils and Sediments Near Mining Sites in Aguascalientes, Mexico.

    PubMed

    Mitchell, Kerry Nigel; Ramos Gómez, Magdalena Samanta; Guerrero Barrera, Alma Lilian; Yamamoto Flores, Laura; Flores de la Torre, Juan Armando; Avelar González, Francisco Javier

    2016-08-01

    A total of sixteen composite soil and sediment samples were collected during the rainy and dry season in Asientos, Aguascalientes, Mexico, an area recently affected by increased mining operations. Physicochemical characterization showed that substrates were moderately to strongly calcareous with predominantly neutral to slightly alkaline pH, moderate to high cation-exchange capacity and high organic matter content. Due to these conditions, Cd, Pb, Cu and Zn were not water leachable despite high concentrations; up to 105.3, 7052.8, 414.7 and 12,263.2 mg kg(-1) respectively. However, Cd and Pb were considered to be easily mobilizable as they were found predominantly associated with exchangeable and carbonate fractions, whereas Cu and Zn were found associated with Fe/Mn oxide and organic matter fractions. The results highlighted the influence of physicochemical substrate properties on the mobility of metals and its importance during the evaluation of the potential current and future risk metal contamination presents in affected areas.

  11. Assessment of the spatio-temporal distribution of soil properties in East Kolkata wetland ecosystem (A Ramsar site: 1208)

    NASA Astrophysics Data System (ADS)

    Pal, S.; Manna, S.; Aich, A.; Chattopadhyay, B.; Mukhopadhyay, S. K.

    2014-06-01

    The present investigation was made to characterize spatial and temporal variations in soil properties and to evaluate possible differences that could be dependent on the tannery effluent discharges, municipal sewage discharges, vegetation cover, soil settlement rate, crop rotation, etc. Soil total organic matter (TOM), cations like, Sodium (Na), Ammonium (NH4), Potassium (K), Calcium (Ca) and Magnesium (Mg) contents in the bank soils and bottom sediments were recorded from seven different characteristic sites in East Kolkata wetland ecosystem, a Ramsar site (Ramsar site No. 1208). The profile maps were constructed by geostatistical methods to describe the spatial distribution as well as temporal variations of all the factors to identify the influences of composite wastewaters. The work was initiated to identify causes and consequences of the waste dumping in the concerned region for the past hundred years and thereby to suggest necessary precautionary measures to prevent further loss of soil quality.

  12. Retardation of ammonium and potassium transport through a contaminated sand and gravel aquifer: The Role of cation exchange

    USGS Publications Warehouse

    Ceazan, M.L.; Thurman, E.M.; Smith, R.L.

    1989-01-01

    The role of cation exchange in the retardation of ammonium (NH4+) and potassium (K+) transport in a shallow sand and gravel aquifer was evaluated by use of observed distributions of NH4+ and K+ within a plume of sewage-contaminated groundwater, small-scale tracer injection tests, and batch sorption experiments on aquifer material. Both NH4+ and K+ were transported ???2 km in the 4-km-long contaminant plume (retardation factor, Rf = 2.0). Sediments from the NH4+-containing zone of the plume contained significant quantities of KCl-extractable NH4+ (extraction distribution coefficient, Kd,extr = 0.59-0.87 mL/g of dry sediment), and when added to uncontaminated sediments, NH4+ sorption followed a linear isotherm. Small-scale tracer tests demonstrated that NH4+ and K+ were retarded (Rf =3.5) relative to a nonreactive tracer (Br-). Sorption of dissolved NH4+ was accompanied by concomitant release of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) from aquifer sediments, suggesting involvement of cation exchange. In contrast, nitrate (NO3-) was not retarded and cleanly separated from NH4+ and K+ in the small-scale tracer tests. This study demonstrates that transport of NH4+ and K+ through a sand and gravel aquifer can be markedly affected by cation-exchange processes even at a clay content less than 0.1%.

  13. Salt taste inhibition by cathodal current.

    PubMed

    Hettinger, Thomas P; Frank, Marion E

    2009-09-28

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.

  14. Nazarov cyclization initiated by peracid oxidation: the total synthesis of (+/-)-rocaglamide.

    PubMed

    Malona, John A; Cariou, Kevin; Frontier, Alison J

    2009-06-10

    The total syntheses of aglafolin, rocagloic acid, and rocaglamide using Nazarov cyclization are described. Generation of the necessary oxyallyl cation intermediate was accomplished via peracid oxidation of an allenol ether to generate an unusual oxycarbenium ion species that undergoes cyclization. The synthesis is efficient, highly diastereoselective, and strategically distinct from previous syntheses of rocaglamide.

  15. Biocompatible water softening system using cationic protein from moringa oleifera extract

    NASA Astrophysics Data System (ADS)

    Nisha, R. R.; Jegathambal, P.; Parameswari, K.; Kirupa, K.

    2017-10-01

    In developing countries like India, the deciding factors for the selection of the specific water purification system are the flow rate, cost of implementation and maintenance, availability of materials for fabrication or assembling, technical manpower, energy requirement and reliability. But most of them are energy and cost intensive which necessitate the development of cost-effective water purification system. In this study, the feasibility of development of an efficient and cost-effective water purifier using Moringa oleifera cationic protein coated sand column to treat drinking water is presented. Moringa oleifera seeds contain cationic antimicrobial protein which acts as biocoagulant in the removal of turbidity and also aids in water softening. The main disadvantage of using Moringa seeds in water purification is that the dissolved organic matter (DOM) which is left over in the water contributes to growth of any pathogens that come into contact with the stored water. To overcome this limitation, the Moringa oleifera cationic protein coated sand (MOCP c-sand) is prepared in which the flocculant and antimicrobial properties of the MOCP are maintained and the DOM to be rinsed away. The efficiency of MOCP c-sand in removing suspended particles and reducing total hardness (TH), chloride, total dissolved solids (TDS), electrical conductivity (EC) was also studied. Also, it is shown that the functionalized sand showed the same treatment efficiency even after being stored dry and in dehydrated condition for 3 months. This confirms MOCP c-sand's potential as a locally sustainable water treatment option for developing countries since other chemicals used in water purification are expensive.

  16. Vegetarians have a reduced skeletal muscle carnitine transport capacity.

    PubMed

    Stephens, Francis B; Marimuthu, Kanagaraj; Cheng, Yi; Patel, Nitin; Constantin, Despina; Simpson, Elizabeth J; Greenhaff, Paul L

    2011-09-01

    Ninety-five percent of the body carnitine pool resides in skeletal muscle where it plays a vital role in fuel metabolism. However, vegetarians obtain negligible amounts of carnitine from their diet. We tested the hypothesis that muscle carnitine uptake is elevated in vegetarians compared with that in nonvegetarians to maintain a normal tissue carnitine content. Forty-one young (aged ≈22 y) vegetarian and nonvegetarian volunteers participated in 2 studies. The first study consisted of a 5-h intravenous infusion of l-carnitine while circulating insulin was maintained at a physiologically high concentration (≈170 mU/L; to stimulate muscle carnitine uptake) or at a fasting concentration (≈6 mU/L). The second study consisted of oral ingestion of 3 g l-carnitine. Basal plasma total carnitine (TC) concentration, 24-h urinary TC excretion, muscle TC content, and muscle carnitine transporter [organic cation transporter 2 (OCTN2)] messenger RNA and protein expressions were 16% (P < 0.01), 58% (P < 0.01), 17% (P < 0.05), 33% (P < 0.05), and 37% (P = 0.09) lower, respectively, in vegetarian volunteers. However, although nonvegetarians showed a 15% increase (P < 0.05) in muscle TC during l-carnitine infusion with hyperinsulinemia, l-carnitine infusion in the presence or absence of hyperinsulinemia had no effect on muscle TC content in vegetarians. Nevertheless, 24-h urinary TC excretion was 55% less in vegetarians after l-carnitine ingestion. Vegetarians have a lower muscle TC and reduced capacity to transport carnitine into muscle than do nonvegetarians, possibly because of reduced muscle OCTN2 content. Thus, the greater whole-body carnitine retention observed after a single dose of l-carnitine in vegetarians was not attributable to increased muscle carnitine storage.

  17. Cation export by overland flow in a recently burnt forest area in north-central Portugal.

    PubMed

    Machado, A I; Serpa, D; Ferreira, R V; Rodríguez-Blanco, M L; Pinto, R; Nunes, M I; Cerqueira, M A; Keizer, J J

    2015-08-15

    The current fire regime in the Mediterranean Basin constitutes a serious threat to natural ecosystems because it drastically enhances surface runoff and soil erosion in the affected areas. Besides soil particles themselves, soil cations can be lost by fire-enhanced overland flow, increasing the risk of fertility loss of the typically shallow and nutrient poor Mediterranean soils. Although the importance of cations for land-use sustainability is widely recognized, cation losses by post-fire runoff have received little research attention. The present study aimed to address this research gap by assessing total exports of Na(+), K(+), Ca(2+) and Mg(2+) in a recently burnt forest area in north-central Portugal. These exports were compared for two types of planted forest (eucalypt vs. maritime pine plantations), two types of parent materials (schist vs. granite) and for two spatial scales (micro-plot vs. hill slope). The study sites were a eucalypt plantation on granite (BEG), a eucalypt plantation on schist (BES) and a maritime pine plantation on schist (BPS). Overland flow samples were collected during the first six months after the wildfire. Cation losses differed strikingly between the two forest types on schist, being higher at the eucalypt than pine site. This difference was evident at both spatial scales, and probably due to the extensive cover of a needle cast from the scorched pine crowns. The role of parent material in cation export was less straightforward as it varied with spatial scale. Cation losses were higher for the eucalypt plantation on schist than for that on granite at the micro-plot scale, whereas the reverse was observed at the hill slope scale. Finally, cation yields were higher at the micro-plot than slope scale, in agreement with the general notion of scaling-effect in runoff generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Limitations of experiments performed in artificially made OECD standard soils for predicting cadmium, lead and zinc toxicity towards organisms living in natural soils.

    PubMed

    Sydow, Mateusz; Chrzanowski, Łukasz; Cedergreen, Nina; Owsianiak, Mikołaj

    2017-08-01

    Development of comparative toxicity potentials of cationic metals in soils for applications in hazard ranking and toxic impact assessment is currently jeopardized by the availability of experimental effect data. To compensate for this deficiency, data retrieved from experiments carried out in standardized artificial soils, like OECD soils, could potentially be tapped as a source of effect data. It is, however, unknown whether such data are applicable to natural soils where the variability in pore water concentrations of dissolved base cations is large, and where mass transfer limitations of metal uptake can occur. Here, free ion activity models (FIAM) and empirical regression models (ERM, with pH as a predictor) were derived from total metal EC50 values (concentration with effects in 50% of individuals) using speciation for experiments performed in artificial OECD soils measuring ecotoxicological endpoints for terrestrial earthworms, potworms, and springtails. The models were validated by predicting total metal based EC50 values using backward speciation employing an independent set of natural soils with missing information about ionic composition of pore water, as retrieved from a literature review. ERMs performed better than FIAMs. Pearson's r for log 10 -transformed total metal based EC50s values (ERM) ranged from 0.25 to 0.74, suggesting a general correlation between predicted and measured values. Yet, root-mean-square-error (RMSE) ranged from 0.16 to 0.87 and was either smaller or comparable with the variability of measured EC50 values, suggesting modest performance. This modest performance was mainly due to the omission of pore water concentrations of base cations during model development and their validation, as verified by comparisons with predictions of published terrestrial biotic ligand models. Thus, the usefulness of data from artificial OECD soils for global-scale assessment of terrestrial ecotoxic impacts of Cd, Pb and Zn in soils is limited due to relatively small variability of pore water concentrations of dissolved base cations in OECD soils, preventing their inclusion in development of predictive models. Our findings stress the importance of considering differences in ionic composition of soil pore water when characterizing terrestrial ecotoxicity of cationic metals in natural soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The effect of cation source and dietary cation-anion difference on rumen ion concentrations in lactating dairy cows.

    PubMed

    Catterton, T L; Erdman, R A

    2016-08-01

    Many studies have focused on the influence of dietary cation-anion difference (DCAD) on animal performance but few have examined the effect of DCAD on the rumen ionic environment. The objective of this study was to examine the effects of DCAD, cation source (Na vs. K), and anion source (Cl vs. bicarbonate or carbonate) on rumen environment and fermentation. The study used 5 rumen-fistulated dairy cows and 5 dietary treatments that were applied using a 5×5 Latin square design with 2-wk experimental periods. Treatments consisted of (1) the basal total mixed ration (TMR); (2) the basal TMR plus 340mEq/kg of Na (dry matter basis) using NaCl; (3) the basal TMR plus 340mEq/kg of K using KCl; (4) the basal TMR plus 340mEq/kg of Na using NaHCO3; and (5) the basal TMR plus 340mEq/kg of K using K2CO3. On the last day of each experimental period, rumen samples were collected and pooled from 5 different locations at 0, 1.5, 3, 4.5, 6, 9, and 12h postfeeding for measurement of rumen pH and concentrations of strong ions and volatile fatty acids (VFA). Dietary supplementation of individual strong ions increased the corresponding rumen ion concentration. Rumen Na was decreased by 24mEq/L when K was substituted for Na in the diet, but added dietary Na had no effect on rumen K. Rumen Cl was increased by 10mEq/L in diets supplemented with Cl. Cation source had no effect on rumen pH or total VFA concentration. Increased DCAD increased rumen pH by 0.10 pH units and increased rumen acetate by 4mEq/L but did not increase total VFA. This study demonstrated that rumen ion concentrations can be manipulated by dietary ion concentrations. If production and feed efficiency responses to DCAD and ionophores in the diet are affected by rumen Na and K concentrations, then manipulating dietary Na and K could be used either to enhance or diminish those responses. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. [Antioxidant activity of cationic whey protein isolate].

    PubMed

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (p<0,05) with oral feeding. Thus, significantly cationic whey protein isolate has an antioxidant effect in model experimental systems, and so can be considered as a factor that can regulate the intensity of lipid oxidation.

  1. Effect of alterations in glomerular charge on deposition of cationic and anionic antibodies to fixed glomerular antigens in the rat.

    PubMed

    Adler, S; Baker, P; Pritzl, P; Couser, W G

    1985-07-01

    Reduction of the negative charge of the glomerular capillary wall alters its charge- and size-selective properties. To investigate the effect of alteration in glomerular charge properties on antibody localization, we prepared cationic and anionic fractions of antibodies to subepithelial and glomerular basement membrane (GBM) antigens, and compared their deposition in normal rats and rats treated with protamine sulfate or aminonucleoside of puromycin to reduce capillary wall charge. IgG antibodies were eluted from kidneys of rats with active Heymann's nephritis (AICN), passive Heymann's nephritis (PHN), or anti-GBM nephritis (NTN), separated into cationic and anionic fractions, and radiolabeled with iodine 125 or iodine 131. Relative antibody content of each fraction was determined by incubation with an excess of glomerular antigen. Varying amounts of cationic and anionic IgG eluted from kidneys of rats with AICN or PHN were injected into 24 normal or protamine sulfate-treated rats. Glomerular binding of all antibodies was highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 4 hours was 1.08 +/- 0.07 for AICN eluate and 0.37 +/- 0.04 for PHN eluate. The ratios were not significantly different in animals pretreated with protamine sulfate (1.15 +/- 0.06 and 0.44 +/- 0.06, respectively; P greater than 0.05). Varying amounts of cationic and anionic IgG eluted from kidneys of rats with NTN were injected into 10 normal rats and four rats treated with aminonucleoside of puromycin. Glomerular binding of antibody was again highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 1 hour was 1.03 +/- 0.06, and was not significantly altered in rats treated with aminonucleoside of puromycin (1.05 +/- 0.03, P greater than 0.5). Proteinuria in PHN rats was also unaffected by treatment with protamine sulfate for 5 days (controls: 68 +/- 21 mg/day; protamine sulfate-treated: 65 +/- 14 mg/day; n = 25, P greater than 0.08). These results demonstrate that treatment to reduce glomerular polyanion does not significantly alter the ratio of cationic to anionic antibodies to fixed glomerular antigens that deposit in the glomerulus, or reduce proteinuria caused by deposition of antibody to a fixed subepithelial antigen.

  2. Chlorhexidine gluconate, its properties and applications in endodontics

    PubMed Central

    Mohammadi, Zahed

    2008-01-01

    The major objective in endodontic therapy is to disinfect the entire root canal system. This requires that the pulpal content be eliminated as sources of infection. This goal may be accomplished by mechanical instrumentation and chemical irrigation, in conjunction with medication of the root canal between treatment sessions. Microorganisms and their by-products are considered to be the major cause of pulpal and periradicular pathosis. In order to reduce or eliminate bacteria from the root canal system, various irrigants have been used during treatment. Chlorhexidine is a cationic solution which can be used during treatment. It has a wide range of antimicrobial activity. Furthermore, because of its cationic structure, chlorhexidine has a unique property named substantivity. The purpose of this paper is to review different aspects of chlorhexidine in endodontics. PMID:24265633

  3. The influence of adsorbed molecules on the framework vibrations of Na-Faujasites studied with FT Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferwerda, R.; van der Maas, J. H.

    1995-11-01

    The use of FT Raman spectroscopy in the elucidation of the structural parameters of Faujasitic zeolites is investigated. Because fluorescence is less of a problem on excitation with a near-infrared laser, FT Raman spectroscopy allows one to probe the effects of in situ heat treatments on the zeolite structure. A correlation is found between the bending vibrations of the Y zeolites and their unit cell size. The vibrations, however, are severely influenced by the charge distribution within the zeolite. Hence, the position of the charge-balancing cations and the water content affect the Raman spectra. Pyridine adsorption results in a rearrangement of the cations or water molecules still present in the structure after activation, and thus alters the vibrations of the zeolite lattice.

  4. Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus.

    PubMed

    Xia, Yilu; Liu, Dingdong; Dong, Ying; Chen, Jiazheng; Liu, Huijun

    2018-03-01

    The rapid increase in the production and practical application of ionic liquids (ILs) could pose potential threats to aquatic systems. In this study, we investigated the effects of four ILs with different cations and anions, including 1-hexyl-3-methylimidazolium nitrate ([HMIM]NO 3 ), 1-hexyl-3-methylimidazolium chloride ([HMIM]Cl), N-hexyl-3-metylpyridinium chloride ([HMPy]Cl), and N-hexyl-3-metylpyridinium bromide ([HMPy]Br), on photosystem and cellular structure of Scenedesmus obliquus. The results indicated that ILs are phytotoxic to S. obliquus. The contents of chlorophyll a, chlorophyll b and total chlorophyll decreased with increasing ILs concentrations. The chlorophyll fluorescence parameters of photosynthetic system II (PSII), including minimal fluorescence yield (F 0 ), potential efficiency of PSII (F v /F o ), maximum quantum efficiency of PSII photochemistry (F v /F m ), yield of photochemical quantum [Y(II)], and non-photochemical quenching coefficient without measuring F 0 ' (NPQ), were all affected. This indicates that ILs could damage PSII, inhibit the primary reaction of photosynthesis, interdict the process of electron-transfer and lead to loss of heat-dissipating ability. ILs also increased cell membrane permeability of S. obliquus, influenced the cellular ultrastructure, changed the morphology of algae cells and destroyed the cell wall, cell membrane and organelles. The results indicated that imidazolium ILs had greater effect than pyridinium ILs, NO 3 - -IL and Br - -IL had greater effect than Cl - -IL. To minimize threats to the environment, the structure of ILs should be taken into consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The [C{sub 6}H{sub 10}]{sup {sm{underscore}bullet}+} hypersurface: The parent radical cation Diels-Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M.; Schaefer, H.F. III

    1999-07-21

    Various possible reaction pathways between ethene and butadiene radical cation (cis- and trans-), have been investigated at different levels of theory up to UCCSD(T)/DZP/UMP2(fc)/DZP and with density functional theory at B3LYP/DZP. A stepwise addition involving open chain intermediates and leading to the Diels-Alder product, the cyclohexene radical cation, was found to have a total activation barrier {Delta}G{sup 298{ne}} = 6.3 kcal mol{sup {minus}1} and a change in free Gibbs energy, {Delta}G{sup 298}, of {minus}33.5 kcal mol{sup {minus}1}. On the E{degree} potential energy surface, all transition states are lower in energy than separated ethene and butadiene, the exothermicity {Delta}E = -45.6more » kcal mol{sup {minus}1}. A more direct path could be characterized as stepwise with one intermediate only at the SCF level but not at electron-correlated levels and hence might actually be a concerted strongly asynchronous addition with a very small or no activation barrier (UCCSD(T)/DZP/UHF/6-31G* gives a {Delta}G{sup 298{ne}} of 0.8 kcal mol{sup {minus}1}). The critical step for another alternative, the cyclobutanation-vinylcyclobutane/cyclohexene rearrangement, is a 1,3-alkyl shift which involves a barrier ({Delta}G{sup 298{ne}}) only 1.7 kcal mol{sup {minus}1} higher than that of stop use addition for both cis-, and trans-butadiene radical cation. However, from the (ethene and trans-butadiene) reactions, ring expansion of the vinylcyclobutane radical cation intermediate, to a methylene cyclopentane radical cation, requires an activation only 1.3 kcal mol{sup {minus}1} larger than for (trans-butadiene radical). While cis/trans isomerization of free butadiene radical cation requires a high activation (24.9 kcal mol{sup {minus}1}), a reaction sequence involving addition of ethene (to stepwise give an open chain intermediate and vinyl cyclobutane radical cation) has a barrier of only 3.5 kcal mol{sup {minus}1} ({Delta}G{sup 298{ne}}). This sequence also makes ethene and butadiene radical cations to exchange terminal methylene groups.« less

  6. Predictive modeling of low solubility semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Rodriguez, Garrett V.; Millunchick, Joanna M.

    2016-09-01

    GaAsBi is of great interest for applications in high efficiency optoelectronic devices due to its highly tunable bandgap. However, the experimental growth of high Bi content films has proven difficult. Here, we model GaAsBi film growth using a kinetic Monte Carlo simulation that explicitly takes cation and anion reactions into account. The unique behavior of Bi droplets is explored, and a sharp decrease in Bi content upon Bi droplet formation is demonstrated. The high mobility of simulated Bi droplets on GaAsBi surfaces is shown to produce phase separated Ga-Bi droplets as well as depressions on the film surface. A phase diagram for a range of growth rates that predicts both Bi content and droplet formation is presented to guide the experimental growth of high Bi content GaAsBi films.

  7. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    Treesearch

    Kevin T. Smith; Jean Christophe Balouet; Walter C. Shortle; Michel Chalot; François Beaujard; Hakan Grudd; Don A. Vroblesky; Joel G. Burken

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to...

  8. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.

    PubMed

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB.

  9. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars

    PubMed Central

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB. PMID:27144922

  10. Decreased Soil Cation Exchange Capacity Across Northern China's Grasslands Over the Last Three Decades

    NASA Astrophysics Data System (ADS)

    Fang, Kai; Kou, Dan; Wang, Guanqin; Chen, Leiyi; Ding, Jinzhi; Li, Fei; Yang, Guibiao; Qin, Shuqi; Liu, Li; Zhang, Qiwen; Yang, Yuanhe

    2017-11-01

    Cation exchange capacity (CEC) helps soils hold nutrients and buffer pH, making it vital for maintaining basic function of terrestrial ecosystems. However, little is known about the temporal dynamics of CEC over broad geographical scales. In this study, we used random forest method to compare historical CEC data from the 1980s with new data from the 2010s across northern China's grasslands. We found that topsoil CEC in the 2010s was significantly lower than in the 1980s, with an overall decline of about 14%. Topsoil CEC decreased significantly in alpine meadow, alpine steppe, meadow steppe, and typical steppe by 11%, 20%, 27%, and 9%, respectively. Desert steppe was the only ecosystem type that experienced no significant change. CEC was positively related to soil carbon content, silt content, and mean annual precipitation, suggesting that the decline was potentially associated with soil organic carbon loss, soil degradation, soil acidification, and extreme precipitation across northern China's grasslands since the 1980s. Overall, our results demonstrate topsoil CEC loss due to environmental changes, which may alter the vegetation community composition and its productivity and thus trigger grassland dynamics under a changing environment.

  11. Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils.

    PubMed

    Shi, Renyong; Li, Jiuyu; Jiang, Jun; Mehmood, Khalid; Liu, Yuan; Xu, Renkou; Qian, Wei

    2017-05-01

    The chemical characteristics, element contents, mineral compositions, and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity, and higher Ca and Mg levels in biomass ashes, which made them particularly good at ameliorating effects on soil acidity. However, heavy metal contents, such as Cr, Cu, and Zn in the ashes, were relatively high. The incorporation of all ashes increased soil pH, exchangeable base cations, and available phosphorus, but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore, the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments. Copyright © 2016. Published by Elsevier B.V.

  12. N2O emission from urine in the soil in the beef production in Southeast Brazil: soil moisture content and temperature effects

    NASA Astrophysics Data System (ADS)

    Simões Barneze, Arlete; Mancebo Mazzetto, Andre; Fernandes Zani, Caio; Siqueira Neto, Marcos; Clemente Cerri, Carlos

    2014-05-01

    Pasture expansion in Brazil has shown an increase in 4.5% per year, and a total cattle herd of about 200 millions in 2010. Associated to animal husbandry there are emissions of N2O (nitrous oxide) and other gases to the atmosphere. The liquid manure contributes to emitte 5% of the total N2O emissions. The urea content of cattle urine will readily hydrolyze to form ammonium after deposition to the soil. Nitrous oxide may then be emitted through the microbiological processes of nitrification and denitrification. Important factors can influence on these processes and consequently in nitrous oxide emissions, as soil water content and temperature (Bolan et al., 2004; Luo et al., 2008). The main goal of this research was to determine the soil water content and temperature influence on N2O emissions from urine depositions on the soil. In order to achieve the objective, soil incubation experiment was conducted in laboratory conditions at three levels of water-filled pore space (40%, 60% and 80% WFPS) and two temperatures (25ºC and 35ºC) with and without urine, with five replicates each. The soil used in this study was collected from the 0-10 cm layer of a grassland field in Southeast of Brazil and classified as Nitisols. For each measurement, the Kilner jar was hermetically sealed by replacing the lid and a first gas sample was immediately taken (time-zero, t0 sample) using a syringe and stored in a pre-evacuated gas vial. After 30 minutes the headspace of each jar was sampled again (time-thirty, t_30 sample). The lids were then removed and kept off until the next sampling day. Nitrous oxide concentrations in the sampled air were measured using a SRI Gas Chromatograph (Model 8610C). Gas fluxes were calculated by fitting linear regressions through the data collected at t0 and t_30 and were corrected for temperature and amount of soil incubated. Gas measurements were carried out up to 55 days. To determine the statistical significance, Tukey tests were carried out at 0.05 probability level. Nitrogen mineralization and nitri?cation were higher at the higher temperature and higher soil water content. Significant effects of urine application and moisture were found (P

  13. An ammonia-stabilized mixed-cation borohydride: synthesis, structure and thermal decomposition behavior.

    PubMed

    Yang, Yanjing; Liu, Yongfeng; Wu, Hui; Zhou, Wei; Gao, Mingxia; Pan, Hongge

    2014-01-07

    We demonstrate the synthesis, crystal structure and thermal decomposition behavior of a novel ammonia-stabilized mixed-cation borohydride where the NH3 groups enable the coexistence of Li and Mg cations as an "assistant". Li2Mg(BH4)4·6NH3, which is comprised of orderly arranged Mg[NH3]6(2+) ammine complexes and Li2[BH4]4(2-) complex anions, was synthesized by the mechanochemical reaction between Mg(BH4)2·6NH3 and LiBH4. This novel compound crystallizes in a tetragonal P4(3)2(1)2 (No. 96) structure with lattice parameters a = b = 10.7656(8) Å and c = 13.843(1) Å with very short dihydrogen bonds, which determine a very low onset temperature of 80 °C for hydrogen release and are also responsible for the nucleation of Li2Mg(BH4)4·3NH3 as a decomposition intermediate. Mechanistic investigations on the thermal decomposition showed that the H(δ+)-H(δ-) combination in the ammonia-stabilized mixed-cation borohydride was significantly enhanced due to the strengthened Mg-N bonds. Upon heating, 11.02 moles of H2 (equivalent to 11.1 wt%) and 3.07 moles of NH3 are evolved from one mole of Li2Mg(BH4)4·6NH3 with a three-step reaction. The insights into the formation mechanism of ammonia-stabilized mixed-cation borohydride and the role played by NH3 group are very useful as a guideline for the design and synthesis of novel B-N-based materials with high hydrogen content.

  14. Multiple Cationic Amphiphiles Induce a Niemann-Pick C Phenotype and Inhibit Ebola Virus Entry and Infection

    PubMed Central

    Shoemaker, Charles J.; Schornberg, Kathryn L.; Delos, Sue E.; Scully, Corinne; Pajouhesh, Hassan; Olinger, Gene G.; Johansen, Lisa M.; White, Judith M.

    2013-01-01

    Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC50 1.6 to 8.0 µM) at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann–Pick C1 protein (NPC1), a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents) inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target. PMID:23441171

  15. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport.

    PubMed

    Pottosin, Igor; Dobrovinskaya, Oxana

    2014-05-15

    Both in vacuolar and plasma membranes, in addition to truly K(+)-selective channels there is a variety of non-selective channels, which conduct K(+) and other ions with little preference. Many non-selective channels in the plasma membrane are active at depolarized potentials, thus, contributing to K(+) efflux rather than to K(+) uptake. They may play important roles in xylem loading or contribute to a K(+) leak, induced by salt or oxidative stress. Here, three currents, expressed in root cells, are considered: voltage-insensitive cation current, non-selective outwardly rectifying current, and low-selective conductance, activated by reactive oxygen species. The latter two do not only poorly discriminate between different cations (like K(+)vs Na(+)), but also conduct anions. Such solute channels may mediate massive electroneutral transport of salts and might be involved in osmotic adjustment or volume decrease, associated with cell death. In the tonoplast two major currents are mediated by SV (slow) and FV (fast) vacuolar channels, respectively, which are virtually impermeable for anions. SV channels conduct mono- and divalent cations indiscriminately and are activated by high cytosolic Ca(2+) and depolarized voltages. FV channels are inhibited by micromolar cytosolic Ca(2+), Mg(2+), and polyamines, and conduct a variety of monovalent cations, including K(+). Strikingly, both SV and FV channels sense the K(+) content of vacuoles, which modulates their voltage dependence, and in case of SV, also alleviates channel's inhibition by luminal Ca(2+). Therefore, SV and FV channels may operate as K(+)-sensing valves, controlling K(+) distribution between the vacuole and the cytosol. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis.

    PubMed

    Zou, Yi; Garcia-Borràs, Marc; Tang, Mancheng C; Hirayama, Yuichiro; Li, Dehai H; Li, Li; Watanabe, Kenji; Houk, K N; Tang, Yi

    2017-03-01

    Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Brønsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis.

  17. [Ag2M(Te2O5)2]SO4 (M = CeIV or ThIV): A New Purely Inorganic d/f-Heterometallic Cationic Material.

    PubMed

    Poe, Todd N; White, Frankie D; Proust, Vanessa; Villa, Eric M; Polinski, Matthew J

    2018-05-07

    Two new isotypic d/f-heterometallic purely inorganic cationic materials, [Ag 2 M(Te 2 O 5 ) 2 ]SO 4 (M = Ce IV or Th IV ), were synthesized using the metal oxides (MO 2 and TeO 2 ), silver nitrate, and sulfuric acid under mild hydrothermal conditions. The prepared materials were characterized via single-crystal X-ray diffraction, which revealed that the materials possess a 3D framework of corner-sharing Te 2 O 5 2- units. The tellurite framework creates four unique pores, three of which are occupied by the M IV and Ag I metal centers. The tellurite network, metal coordination, and total charge yield a cationic framework, which is charge-balanced by electrostatically bound sulfate anions residing in the largest of the four framework pores. These materials also possess Ag I in a ligand-imposed linear geometry.

  18. Surface-induced dissociation of methanol cations: A non-ergodic process

    DOE PAGES

    Shukla, Anil K.

    2017-09-01

    Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less

  19. Surface-induced dissociation of methanol cations: A non-ergodic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil K.

    Here, dissociation of methanol molecular cations, CH 3OH +, to CH 2OH + on collision with a self-assembled monolayer surface of fluorinated alkyl thiol on gold 111 crystal has been studied at 12.5 eV collision energy. Two energetically and spatially distinct processes contribute to the dissociation process: one involving loss of very large amount of energy approaching the initial kinetic energy of the primary ions with scattering of fragment ions over a broad angular range between surface normal and surface parallel while the second process results from small amount of energy loss with fragment ions scattered over a narrow angularmore » range close to the surface parallel. There is a third process with relatively small contribution to total dissociation whose characteristics are very similar to the low energy loss process. Finally, these results demonstrate that surface-induced dissociation of methanol cations via hydrogen loss is non-ergodic.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun

    Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less

  1. Removal of total cyanide in coking wastewater during a coagulation process: significance of organic polymers.

    PubMed

    Shen, Jian; Zhao, He; Cao, Hongbin; Zhang, Yi; Chen, Yongsheng

    2014-02-01

    Whether a cationic organic polymer can remove more total cyanide (TCN) than a non-ionic organic polymer during the same flocculation system has not been reported previously. In this study, the effects of organic polymers with different charge density on the removal mechanisms of TCN in coking wastewater are investigated by polyferric sulfate (PFS) with a cationic organic polymer (PFS-C) or a non-ionic polymer (PFS-N). The coagulation experiments results show that residual concentrations of TCN (Fe(CN)6(3-)) after PFS-C flocculation (TCN < 0.2 mg/L) are much lower than that after PFS-N precipitation. This can be attributed to the different TCN removal mechanisms of the individual organic polymers. To investigate the roles of organic polymers, physical and structural characteristics of the flocs are analyzed by FT-IR, XPS, TEM and XRD. Owing to the presence of N+ in PFS-C, Fe(CN)6(3-) and negative flocs (Fe(CN)6(3-) adsorbed on ferric hydroxides) can be removed via charge neutralization and electrostatic patch flocculation by the cationic organic polymer. However, non-ionic N in PFS-N barely reacts with cyanides through sweeping or bridging, which indicates that the non-ionic polymer has little influence on TCN removal.

  2. Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation

    NASA Astrophysics Data System (ADS)

    Tan, Kok-Hou; Cham, Hooi-Ying; Awala, Hussein; Ling, Tau Chuan; Mukti, Rino R.; Wong, Ka-Lun; Mintova, Svetlana; Ng, Eng-Poh

    2015-06-01

    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li+, Na+, K+, Ca2+) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils.

  3. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    PubMed

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.

  4. Moessbauer spectroscopy analysis of {sup 57}Fe-doped YBaCo{sub 4}O{sub 7+{delta}}: Effects of oxygen intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsipis, E.V.; Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro; Waerenborgh, J.C.

    2009-03-15

    Moessbauer spectroscopy of layered YBaCo{sub 3.96}Fe{sub 0.04}O{sub 7+{delta}} ({delta}=0.02 and 0.80), where 1% cobalt is substituted with {sup 57}Fe isotope, revealed no evidence of charge ordering at 4-293 K. The predominant state of iron cations was found trivalent, irrespective of their coordination and oxygen stoichiometry variations determined by thermogravimetric analysis. The extremely slow kinetics of isothermal oxidation at 598 K in air, and the changes of Fe{sup 3+} fractions in the alternating triangular and Kagome layers in oxidized YBaCo{sub 3.96}Fe{sub 0.04}O{sub 7.80}, may suggest that oxygen intercalation is accompanied with a substantial structural reconstruction stagnated due to sluggish cation diffusion.more » Decreasing temperature below 75-80 K leads to gradual freezing of the iron magnetic moments in inverse correlation with the content of extra oxygen. The formation of metal-oxygen octahedra and resultant structural distortions extend the temperature range where the paramagnetic and frozen states co-exist, down to 45-50 K. - Graphical abstract: Moessbauer spectroscopy of layered YBaCo{sub 3.96}Fe{sub 0.04}O{sub 7+{delta}} ({delta}=0.02 and 0.80), with 1% {sup 57}Fe isotope substituted for cobalt, revealed no evidence of charge ordering at 4-293 K. The predominant state of iron cations was found trivalent, irrespective of their coordination and oxygen stoichiometry variations determined by thermogravimetric analysis. Decreasing temperature below 75-80 K leads to gradual freezing of the iron magnetic moments in inverse correlation with the content of extra oxygen extending the temperature range where the paramagnetic and frozen states co-exist down to 45-50 K.« less

  5. Hydrothermal treatment of hazardous energetic materials waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brill, T.B.; Schoppelrei, J.W.; Maiella, P.G.

    1995-12-31

    Destruction of energetic materials by hydrothermal methods presents a potential for strongly exothermic oxidation-reduction reactions, which, if localized at a site in the reactor, create {open_quotes}hot spots{close_quotes}. To investigate highly exothermic hydrothermal reactions, real-time spectroscopic measurements in the stream by infrared and Raman spectroscopy offer opportunities. Flow reactor-spectroscopy cells were developed for such studies, focusing on approximately oxygen-balanced nitrate salts for which highly exothermic reactions can occur. In addition, the kinetics of formation of later stage products were studied because these products are likely to be released to the environment and to be regulated. An experiment was designed to simulatemore » the occurence of a phase separation in a reactor followed by rapid exothermic reaction. By varying the pressure, water content, and hydrogen content in the reaction volume of the cell, the freeze out temperatures required to set the carbon monoxide/carbon dioxide ratio were determined to be 1300 to 1470 K. Such high temperatures suggest that localized hot spots can exist which greatly exceed the overall set temperature of the reactor. This scenario can occur if a phase separation occurs to isolate ethylenediammonium dinitrate in quantities as small as tenths of milligrams. Studies of the oxidation-reduction reactions of nitrate ion with the counter ion show that the oxidizing power of the nitrate ion is realized provided a readily oxidizable cation such as hydroxylammonium is present. When the cation has a low reactivity, such as quanidinium, a much higher reaction temperature is required before the nitrate ion reacts. At this temperature, the cation may have already begun to decompose by a hydrothermal route.« less

  6. An investigation on the physicochemical properties of the nanostructured [(4-X)PMAT][N(CN)2] ion pairs as energetic and tunable aryl alkyl amino tetrazolium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Khalili, Behzad; Rimaz, Mehdi

    2017-06-01

    In this study the different class of tunable and high nitrogen content ionic liquids termed TAMATILs (Tunable Aryl Methyl Amino Tetrazolium based Ionic Liquids) were designed. The physicochemical properties of the nanostructured TAMATILs composed of para substituted phenyl methyl amino tetrazolium cations [(4-X)PMAT]+ (X = H, Me, OCH3, OH, NH2, NO2, F, CN, CHO, CF3, COMe and CO2Me) and dicyanimide anion [N(CN)2]- were fully investigated using M06-2X functional in conjunction with the 6-311++G(2d,2p) basis set. For all of the studied nanostructured ILs the structural parameters, interaction energy, cation's enthalpy of formation, natural charges, charge transfer values and topological properties were calculated and discussed. The substituent effect on the interaction energy and physicochemical properties also is taking into account. The results showed that the strength of interaction has a linear correlation with electron content of the phenyl ring in a way the substituents with electron withdrawing effects lead to make more stable ion pairs with higher interaction energies. Some of the main physical properties of ILs such as surface tension, melting point, critical-point temperature, electrochemical stability and conductivity are discussed and estimated for studying ion pairs using quantum chemical computationally obtained thermochemical data. Finally the enthalpy and Gibbs free energy of formation for twelve nanostructured individual cations with the general formula of [(4-X)PMAT]+ (X = 4-H, 4-Me, 4-OMe, 4-OH, 4-NH2, 4-NO2, 4-F, 4-CN, 4-CHO, 4-CF3, 4-COMe and 4-CO2Me) are calculated.

  7. Development of a composite soil degradation assessment index for cocoa agroecosystems in southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Adenrele Adeniyi, Sunday; de Clercq, Willem Petrus; van Niekerk, Adriaan

    2017-08-01

    Cocoa agroecosystems are a major land-use type in the tropical rainforest belt of West Africa, reportedly associated with several ecological changes, including soil degradation. This study aims to develop a composite soil degradation assessment index (CSDI) for determining the degradation level of cocoa soils under smallholder agroecosystems of southwestern Nigeria. Plots where natural forests have been converted to cocoa agroecosystems of ages 1-10, 11-40, and 41-80 years, respectively representing young cocoa plantations (YCPs), mature cocoa plantations (MCPs), and senescent cocoa plantations (SCPs), were identified to represent the biological cycle of the cocoa tree. Soil samples were collected at a depth of 0 to 20 cm in each plot and analysed in terms of their physical, chemical, and biological properties. Factor analysis of soil data revealed four major interacting soil degradation processes: decline in soil nutrients, loss of soil organic matter, increase in soil acidity, and the breakdown of soil textural characteristics over time. These processes were represented by eight soil properties (extractable zinc, silt, soil organic matter (SOM), cation exchange capacity (CEC), available phosphorus, total porosity, pH, and clay content). These soil properties were subjected to forward stepwise discriminant analysis (STEPDA), and the result showed that four soil properties (extractable zinc, cation exchange capacity, SOM, and clay content) are the most useful in separating the studied soils into YCP, MCP, and SCP. In this way, we have sufficiently eliminated redundancy in the final selection of soil degradation indicators. Based on these four soil parameters, a CSDI was developed and used to classify selected cocoa soils into three different classes of degradation. The results revealed that 65 % of the selected cocoa farms are moderately degraded, while 18 % have a high degradation status. The numerical value of the CSDI as an objective index of soil degradation under cocoa agroecosystems was statistically validated. The results of this study reveal that soil management should promote activities that help to increase organic matter and reduce Zn deficiency over the cocoa growth cycle. Finally, the newly developed CSDI can provide an early warning of soil degradation processes and help farmers and extension officers to implement rehabilitation practices on degraded cocoa soils.

  8. Changes in Physical and Chemical Soil Properties on Burnt Shrub Areas in Mediterranean Mountains, Northern Portugal

    NASA Astrophysics Data System (ADS)

    Fonseca, Felícia; de Figueiredo, Tomás; Leite, Micaela

    2014-05-01

    Human induced fire in scrublands to obtain better pastures for cattle is a relatively common practice in North Portugal. During burning, plant cover and litter layers are consumed, and the mineral soil is heated, resulting in changes to physical, chemical, mineralogical, and biological soil properties. Aiming at evaluating the effect of this kind of fires on a set of physical and chemical soil properties, two study areas were selected in contrasting mountain environments: Edroso, Vinhais municipality, NE Portugal, with typical Mediterranean climate, and Revelhe, Fafe, NW Portugal, with a strong ocean-influenced climate. In both, sampling was carried out in contiguous areas burnt and not burnt, covered by shrub vegetation, predominantly Cytisus multiflorus and Ulex europeus. In each study area (Edroso and Revelhe) 16 locations were selected for soil sampling (8 in the burned area and 8 in the not burnt area), six months after fire occurrence. Disturbed soil samples were collected in the layers 0-5, 5-10, 10-15, 15-20 and 20-30 cm depth, for assessing organic matter, N, P and K concentration, cation exchange capacity and related determinations, soil pH, electrical conductivity and soil texture. Undisturbed samples were collected, in 100 cm3 cylinders, to determine bulk density in the same above mentioned layers, and permeability in the 0-5 cm layer. Compared results of burnt and not burnt areas in Edroso and Revelhe study sites, show that coarse elements content and permeability decreased and bulk density slightly increased with the fire effect. Chemical properties in both sites changed with after fire, as organic matter content, exchangeable Al and cation exchange capacity increased, the opposite trend being found for phosphorus, sum of exchangeable bases and electrical conductivity. Potassium, total nitrogen and exchangeable acidity showed different soil responses to fire in the two study areas. Results stress the clear effects of fire on fertility related soil properties, not only chemical but also physical, which is decisive for the post-fire recover of burnt shrub communities, in terms of vegetation and soil functions in these marginal mountain environments.

  9. Oral zinc sulphate causes murine hair hypopigmentation and is a potent inhibitor of eumelanogenesis in vivo.

    PubMed

    Plonka, P M; Handjiski, B; Michalczyk, D; Popik, M; Paus, R

    2006-07-01

    C57BL/6 a/a mice have been widely used to study melanogenesis, including in electron paramagnetic resonance (EPR) studies. Zinc cations modulate melanogenesis, but the net effect of Zn2+ in vivo is unclear, as the reported effects of Zn2+ on melanogenesis are ambiguous: zinc inhibits tyrosinase and glutathione reductase in vitro, but also enhances the activity of dopachrome tautomerase (tyrosinase-related protein-2) and has agonistic effects on melanocortin receptor signalling. To determine in a C57BL/6 a/a murine pilot study whether excess zinc ions inhibit, enhance or in any other way alter hair follicle melanogenesis in vivo, and to test the usefulness of EPR for this study. ZnSO(4).7H2O was continuously administered orally to C57BL/6 a/a mice during spontaneous and depilation-induced hair follicle cycling (20 mg mL-1; in drinking water; mean+/-SD daily dose 1.2+/-0.53 mL), and hair pigmentation was examined macroscopically, by routine histology and by EPR. Oral zinc cations induced a bright brown lightening of new hair shafts produced during anagen, but without inducing an EPR-detectable switch from eumelanogenesis to phaeomelanogenesis. The total content of melanin in the skin and hair shafts during the subsequent telogen phase, i.e. after completion of a full hair cycle, was significantly reduced in Zn-treated mice (P=0.0005). Compared with controls, melanin granules in precortical hair matrix keratinocytes, hair bulb melanocytes and hair shafts of zinc-treated animals were reduced and poorly pigmented. Over the course of several hair cycles, lasting hair shaft depigmentation was seen during long-term exposure to high-dose oral Zn2+. High-dose oral Zn2+ is a potent downregulator of eumelanin content in murine hair shafts in vivo. The C57BL/6 mouse model offers an excellent tool for further dissecting the as yet unclear underlying molecular basis of this phenomenon, while EPR technology is well suited for the rapid, qualitative and quantitative monitoring of hair pigmentation changes.

  10. Laboratory Evaluation of the Effects of 3-Chloride Compounds on the Geotechnical Properties of an Expansive Subgrade Soil

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Anjan Kumar, M.; Raju, G. V. R. Prasada

    2017-12-01

    Expansive soils are known to be problematic due to their nature and behavior. These soils show volume changes due to changes in moisture content, which cause distortions to structures constructed on them. Relentless efforts are being made all over the world to find solution to the problems of expansive soils. In the case of flexible pavements, unless the subgrade is appropriately treated during the construction stage, the maintenance cost will increase substantially due to deterioration. There are many methods of stabilising expansive subgrade soils. Chemical stabilisation is one such technique employed in improving the engineering properties of the expansive soil. Investigations on chemical stabilization of expansive soils revealed that conventionally used lime could be replaced by the chloride compound chemicals because of their ready dissolvability in water, ease of mixing with soil and supply of sufficient cations for ready cation exchange. The main objective of this work is to study the effectiveness of three chloride compound chemicals, ammonium chloride (NH4Cl), magnesium chloride (MgCl2) and aluminum chloride (AlCl3) on the geotechnical properties of an expansive soil. The chemicals content up to 2% were added to the soil and its effect on the index limits, swell pressure, compaction characteristics as well as California bearing ratio are studied. It was observed that aluminum chloride chemical content has a significantly higher influence than the other two chemicals and it could be recognized as an effective chemical stabilizer.

  11. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response.

    PubMed

    Kim, Hyuck-Soo; Kim, Kwon-Rae; Yang, Jae E; Ok, Yong Sik; Owens, Gary; Nehls, Thomas; Wessolek, Gerd; Kim, Kye-Hoon

    2016-01-01

    Reclaimed tidal land soil (RTLS) often contains high levels of soluble salts and exchangeable Na that can adversely affect plant growth. The current study examined the effect of biochar on the physicochemical properties of RTLS and subsequently the influence on plant growth performance. Rice hull derived biochar (BC) was applied to RTLS at three different rates (1%, 2%, and 5% (w/w)) and maize (Zea mays L.) subsequently cultivated for 6weeks. While maize was cultivated, 0.1% NaCl solution was supplied from the bottom of the pots to simulate the natural RTLS conditions. Biochar induced changes in soil properties were evaluated by the water stable aggregate (WSA) percentage, exchangeable sodium percentage (ESP), soil organic carbon contents, cation exchange capacity, and exchangeable cations. Plant response was measured by growth rate, nutrient contents, and antioxidant enzyme activity of ascorbate peroxidase (APX) and glutathione reductase (GR). Application of rice hull derived biochar increased the soil organic carbon content and the percentage of WSA by 36-69%, while decreasing the ESP. The highest dry weight maize yield was observed from soil which received 5% BC (w/w), which was attributed to increased stability of water-stable aggregates and elevated levels of phosphate in BC incorporated soils. Moreover, increased potassium, sourced from the BC, induced mitigation of Na uptake by maize and consequently, reduced the impact of salt stress as evidenced by overall declines in the antioxidant activities of APX and GR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Episodic Salinization of Urban Rivers: Potential Impacts on Carbon, Cation, and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Haq, S.; Kaushal, S.

    2017-12-01

    Human dominated watersheds are subjected to an array of salt inputs (e.g. road salts), and in urban areas, infrastructure and impervious surfaces quickly drain applied road salts into the river channel. As a result, many streams experience episodic salinization over the course of hours to days following a snow event (e.g. road salt pulse), and long-term salinization over the course of seasons to decades. Salinization of streams can release contaminants (e.g. heavy metals), reduce biodiversity, and degrade drinking water quality. We investigated the water quality effects of episodic salinization in urban streams. Sediment and streamwater were incubated from twelve sites in the Baltimore-Washington Metropolitan Area under a range of sodium chloride treatments in a lab environment to mimic a vertical stream column with a sediment-water interface undergoing episodic salinization, and to characterize relationships between experimental salinization and nutrient/cation fluxes. Eight sites (Baltimore) exhibit a land use gradient and are routinely monitored within the Baltimore Ecosystem Study LTER project, and four sites (Washington DC) are suburban and offer a contrasting lithology and physiographic province. Our research suggests that salinization can mobilize total dissolved nitrogen, soluble reactive phosphorous, and base cations; potentially due to coupled biotic-abiotic processes, such as ion exchange, rapid nitrification, pH changes, and chloride-organic matter dispersal. The impact of salinization on dissolved inorganic and organic carbon varied between sites, potentially due to sediment composition, organic matter content, and ambient water quality. We contrasted the experimental results with measurements of salinization (specific conductance) and nutrients (nitrate) from real-time sensors operated by the US Geological Survey that encompass the same watersheds as our experimental sites. Sensor data was analyzed to provide insight on the timescales of salinity-nutrient interactions, and on underlying mechanisms and controls. The magnitude/frequency of salt pulses may increase in the future due to the interactive effect of climate change and urbanization. An improved understanding of the salinization-nutrients interactions is necessary to better manage aquatic resources.

  13. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (<250 µm) was mixed with water and ultrasonically dispersed by application of 100, 200, 400, 500, 1000, 1500 and 2000 J cm-3 energy. After centrifugation the supernatant was filtered and the solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.

  14. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  15. Nutrients, Antioxidant Capacity and Safety of Hot Water Extract from Sugar Maple (Acer saccharum M.) and Red Maple (Acer rubrum L.) Bark.

    PubMed

    Bhatta, Sagar; Ratti, Cristina; Poubelle, Patrice E; Stevanovic, Tatjana

    2018-03-01

    Sugar maple (Acer saccharum M.) and red maple (Acer rubrum L.) barks were treated with hot water to extract nutrients in order to explore, for the first time, its potential as safe dietary antioxidants. The organic and inorganic nutrients of these extracts, as well as their safety on human PLB-985 cells differentiated into neutrophils-like cells, were determined. Proximate analysis showed that both bark extracts were low in moisture and fat. Sugar maple bark extract (SM-BX) showed crude protein and ash content higher than those found in red maple bark extract (RM-BX). In addition, SM-BX had total sugars higher than those evaluated in RM-BX, while complex sugars (oligo- and/or poly-saccharides) were similarly abundant in both bark extracts. Furthermore, SM-BX demonstrated a wide array of vital minerals (K, Ca, Mg, P, Na, Fe and Cu) in quantity larger than that evaluated in RM-BX, whereas RM-BX have Zn and Mn levels higher than those found in SM-BX. Phytochemical analyses showed that RM-BX exhibited total phenolic and flavonoid contents higher than those measured in SM-BX. Consequently, RM-BX presented an antioxidant activity higher than that of SM-BX: 2.85-fold ABTS radical cation scavenging capacity and 1.9-fold oxygen radical absorbance capacity. Finally, RM-BX and SM-BX were greatly safe since, at concentration up to 100 μg/ml, they did not modify the viability of neutrophils as determined by flow-cytometry assay using Annexin V-FITC/Propidum Iodide as markers. In conclusion, our in vitro studies indicate that both red and sugar maple bark extracts have a real potential as food additives.

  16. Peanut cultivar selection for BLSS in terms of the biomass productivity, nutritional quality, photosynthetic character and mineral ions up-take by PTNDS cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Wang, Minjuan; Fu, Yuming; Liu, Hong

    2016-11-01

    Peanut (Arachis hypogaea L.) has been selected as one of the crop candidates for BLSS, because its seeds have high nutritional value, being rich in vegetable oil and protein. Porous-Tube Nutrient Delivery System (PTNDS) has been successfully used for crop cultivation in controllable environments. In this paper, four peanut cultivars ('HY25', 'HY28', 'HY31' and 'BS1016') were evaluated in terms of yield, photosynthetic efficiency, insoluble fiber and ions uptake efficiency. Besides protein, total oil content and fatty acid composition were monitored in the seeds. 'HY25' plants showed much higher yield and harvest index, in addition to the lower lignin content of inedible biomass. Data showed that 'HY25' had the higher photosynthetic capacity of peanut leaves with regard to highest photosynthetic rate, qP and ΦPSII, lowest energy dissipation (qN) values, whereas instantaneous carboxylation efficiency and water use efficiency carotenoids content were no difference with the other cultivars. 'BS1016‧ showed the lowest photosynthetic capacity contrarily. These suggested that 'HY25‧ could be the most suitable for the cultivation in a closed controlled environment with PTNDS. While, both cations and anions except NH4+ and H2PO4-, were accumulated excessively compared to controls, especially with anions in PTNDS. Hence, further studies are needed in order to improve the nutritional quality of seeds and modify the fertilization strategy of this cultivar in the growth environment feasible during a closed environment and space mission.

  17. Hydrogeochemical and isotopic evidences of groundwater salinization in coastal aquifers: A case study in Jeju volcanic island, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, D.; Lee, K.; Koh, D.; Lee, S.; Park, W.; Koh, G.; Woo, N.

    2001-12-01

    In order to clearly identify the origin of saline groundwaters in the eastern part of Jeju volcanic island, Korea the hydrogeochemical and isotopic studies have been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid (TDS) contents of groundwater samples are highly variable (77 to 21,782 mg/L). Most of the groundwaters in the study area are classified into Na-Cl type except a few samples showing Ca-Cl type. Hydrochemical characteristics based on bivariate and triangular diagrams of major ions show that the changes of chemical compositions of groundwaters were mainly controlled by the salinization process linked to cation-exchange reactions. The oxygen, hydrogen, sulfur, and strontium isotopic data explicitly show a simple mixing trend of groundwater and seawater. Using two-components fractional mixing model on the basis of 18O contents as well as Br and Cl contents, the proportion of seawater in fresh groundwater was quantitatively determined as high as 60 %. Sr isotopic compositions and Br/Cl ratios strongly suggest that the source of groundwater salinization is present-day seawater intrusion rather than paleoseawater or formation water, which can also be supported by the I/Cl ratios. The highly permeable aquifers in the east coastal region characterized by low hydraulic gradient and recharge rate and high hydraulic conductivity comparing with other regions are advantageous to the groundwater salinization. Based on the Cl, ¥ä18O, and 87Sr/86Sr it was determined that seawater has intruded into inland 2.5 km from coastline.

  18. Assessing Radium Activity in Shale Gas Produced Brine

    NASA Astrophysics Data System (ADS)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2015-12-01

    The high volumes and salinity associated with shale gas produced water can make finding suitable storage or disposal options a challenge, especially when deep well brine disposal or recycling for additional well completions is not an option. In such cases, recovery of commodity salts from the high total dissolved solids (TDS) of the brine wastewater may be desirable, yet the elevated concentrations of the naturally occurring radionuclides such as Ra-226 and Ra-228 in produced waters (sometimes substantially greater than the EPA limit of 5 pCi/L) may concentrate during these steps and limit salt recovery options. Therefore, assessing the potential presence of these Ra radionuclides in produced water from shale gas reservoir properties is desirable. In this study, we seek to link U and Th content within a given shale reservoir to the expected Ra content of produced brine by accounting for secular equilibrium within the rock and subsequent release to Ra to native brines. Produced brine from a series of Antrim shale wells and flowback from a single Utica-Collingwood shale well in Michigan were sampled and analyzed via ICP-MS to measure Ra content. Gamma spectroscopy was used to verify the robustness of this new Ra analytical method. Ra concentrations were observed to be up to an order of magnitude higher in the Antrim flowback water samples compared to those collected from the Utica-Collingwood well. The higher Ra content in Antrim produced brines correlates well with higher U content in the Antrim (19 ppm) relative to the Utica-Collingwood (3.5 ppm). We also observed an increase in Ra activity with increasing TDS in the Antrim samples. This Ra-TDS relationship demonstrates the influence of competing divalent cations in controlling Ra mobility in these clay-rich reservoirs. In addition, we will present a survey of geochemical data from other shale gas plays in the U.S. correlating shale U, Th content with produced brine Ra content. A goal of this study is to develop a method to predict the expected Ra activity in shale gas produced brines on a regional or play-specific basis in an effort to guide wastewater management practices or optimize regional treatment strategies.

  19. Impact of forested fallows on fertility and mercury content in soils of the Tapajós River region, Brazilian Amazon.

    PubMed

    Patry, Cynthia; Davidson, Robert; Lucotte, Marc; Béliveau, Annie

    2013-08-01

    Recent research on slash-and-burn agriculture conducted in the Amazonian basin has suggested that soils must be left under forested fallows for at least 10 to 15 years to regain fertility levels comparable to non-disturbed forests in order to allow for short cycle crop cultivation. However, small scale farmers tend nowadays to re-burn secondary forests as soon as after 3 to 5 years, thus could contribute to further reduce soil fertility and could enhance the transfer of mercury (Hg) naturally present in soils of the region towards water courses. The present research project sets out to characterize the impact of forested fallows of differing age and land-use history on soils properties (fertility and Hg contents) in the region of the Tapajós River, an active pioneer front of the Brazilian Amazon. To do this, soil samples in forested fallows of variable age and in control primary forests were retrieved. In general, soil fertility of grouped forested fallows of different ages was similar to that of the primary forests. But when discriminating soils according to their texture, forested fallows on coarse grained soils still had much higher NH4/NO3 ratios, NH4 and Ca contents than primary forests, this even 15 years after burning. The impact of repeated burnings was also assessed. Fallows on coarse grained soils showed an impoverishment for all variables related to fertility when the number of burnings was 5 or more. For fallows on fine grained soils that underwent 5 or more burnings, NO3 contents were low although a cation enrichment was observed. Total soil Hg content was also sensitive to repeated burnings, showing similar losses for forested fallows established on both types of soil. However, Hg linked to coarse particles appeared to migrate back towards fine particles at the surface of coarse grained soils in fallows older than 7 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    PubMed

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.

  1. Estimation of the basicity of the donor strength of terminal groups in cationic polymethine dyes

    NASA Astrophysics Data System (ADS)

    Kachkovsky, Alexey; Obernikhina, Nataliya; Prostota, Yaroslav; Naumenko, Antonina; Melnyk, Dmitriy; Yashchuk, Valeriy

    2018-02-01

    The well-known conception of the basicity of the terminal groups in the cationic polymethine dyes showing their donor properties is examined (considered) in detail. The various approachs are proposed to quantitative quantum-chemical estimation of a donor strength of the terminal groups in cationic polymethine dyes: shift of the frontier levels upon introducing terminal residues in comparison with unsybstituted polymethine cation; transferring of the electron density from the terminal groups to the polymethine chain and hence manifested itself as a redistribution of total positive charge between molecular fragments; changes of the charge alternation at carbon atoms along the chain. All approach correlate between them and agree with the concept of the basicity as a capability of terminal heterocycles to show its donor properties in the polymethine dyes. The results of the fulfilled calculations of numerous examples are presented; the proposed parameters point correctly the tendency in the change donor strength upon varying of the chemical constitution: the dimension of cycle, introducing of various heteroatoms, linear or angular annelating by benzene ring; as well as direct to take into consideration the existence of local levels.

  2. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    PubMed Central

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  3. Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals

    USGS Publications Warehouse

    Kerns, Raymond L.; Mankin, Charles J.

    1968-01-01

    Previous investigations have demonstrated the influences of interlayer cation composition, relative humidity, temperature, and magnitude of interlayer surface charge on the interlayer hydration of montmorillonites and vermiculites. It has been suggested that the sites of layer charge deficiencies may also have an influence upon the amount of hydration that can take place in the interlayers of expandable clay minerals. If the interlayer cation-to-layer bonds are considered as ideally electrostatic, the magnitude of the forces resisting expansion may be expressed as a form of Coulomb's law. If this effect is significant, expandable structures in which the charge-deficiency sites are predominantly in the tetrahedral sheet should have less pronounced swelling properties than should structures possessing charge deficiencies located primarily in the octahedral sheet.Three samples that differed in location of layer charge sites were selected for study. An important selection criterion was a non-correlation between tetrahedral charge sites and high surface-charge density, and between octahedral charge sites and low surface-charge density.The effects of differences in interlayer cation composition were eliminated by saturating portions of each sample with the same cations. Equilibrium (001) d values at controlled constant humidities were used as a measure of the relative degree of interlayer hydration.Although no correlation could be made between the degree of interlayer hydration and total surface-charge density, the investigation does not eliminate total surface-charge density as being significant to the swelling properties of three-sheet clay-mineral structures. The results do indicate a correlation between more intense expandability and predominance of charge deficiencies in the octahedral sheet. Conversely, less intense swelling behavior is associated with predominantly tetrahedral charge deficiencies.

  4. Worldwide Report, Telecommunications Policy, Research and Development, No. 283.

    DTIC Science & Technology

    1983-08-10

    JPRS 84082 10 August 1983 ;-yry^7S-.-•-■■:■? TT h Worldwide Report TELECOMMUNICATIONS POLICY, RESEARCH AND DEVELOPMENT No. 283 tmC...POLICY, RESEARCH AND DEVELOPMENT No, 283 CONTENTS WORLDWIDE AFFAIRS Satellite Hookup Between Moscow, California TV (Moscow Domestic Television...and mass communi- cations. One even talks about the world turning, from the viewpoint of all-permeating information, into one global village. It

  5. Uranium isotopes in rivers, estuaries and adjacent coastal sediments of western India: their weathering, transport and oceanic budget

    NASA Astrophysics Data System (ADS)

    Borole, D. V.; Krishnaswami, S.; Somayajulu, B. L. K.

    1982-02-01

    The two major river systems on the west coast of India, Narbada and Tapti, their estuaries and the coastal Arabian sea sediments have been extensively studied for their uranium concentrations and 238U /238U activity ratios. The 238U concentrations in the aqueous phase of these river systems exhibit a strong positive correlation with the sum of the major cations, σ Na + K + Mg + Ca, and with the HCO 3- ion contents. The abundance ratio of dissolved U to the sum of the major cations in these waters is similar to their ratio in typical crustal rocks. These findings lead us to conclude that 238U is brought into the aqueous phase along with major cations and bicarbonate. The strong positive correlation between 238U and total dissolved salts for selected rivers of the world yield an annual dissolved 238U flux of 0.88 × 10 10g/ yr to the oceans, a value very similar to its removal rate from the oceans, 1.05 × 10 10g/ yr, estimated based on its correlation with HCO 3- contents of rivers. In the estuaries, both 238U and its great-grand daughter 234U behave conservatively beyond chlorosities 0.14 g/l. These data confirm our earlier findings in other Indian estuaries. The behavior of uranium isotopes in the chlorosity zone 0.02-0.14 g/l, was studied in the Narbada estuary in some detail. The results, though not conclusive, seem to indicate a minor removal of these isotopes in this region. Reexamination of the results for the Gironde and Zaire estuaries (Martin et al., 1978a and b) also appear to confirm the conservative behavior of U isotopes in unpolluted estuaries. It is borne out from all the available data that estuaries beyond 0.14 g/l chlorosities act neither as a sink nor as a source for uranium isotopes, the behavior in the low chlorosity zones warrants further detailed investigation. A review of the uranium isotope measurements in river waters yield a discharge weighted-average 238U concentration of 0.22 μg/l with a 234U /238U activity ratio of 1.20 ± 0.06 ismissing. The residence time of uranium isotopes in the oceans estimated from the 238U concentration and the 234U /238U A. R. of the rivers yield conflicting results; the material balance of uranium isotopes in the marine environment still remains a paradox. If the disparity between the results is real, then an additional 234U flux of about 0.25 dpm/cm 2·10 3 yr into the oceans (about 20% of its river supply) is necessitated.

  6. Photoinitiated Polymerization of Cationic Acrylamide in Aqueous Solution: Synthesis, Characterization, and Sludge Dewatering Performance

    PubMed Central

    Zheng, Huaili; Liao, Yi; Zheng, Meizhen; Zhu, Chuanjun; Ji, Fangying; Ma, Jiangya; Fan, Wei

    2014-01-01

    A copolymer of acrylamide (AM) with acryloyloxyethyl trimethyl ammonium chloride (DAC) as the cationic monomer was synthesized under the irradiation of high-pressure mercury lamp with 2,2-azobis(2-amidinopropane) dihydrochloride (V-50) as the photoinitiator. The compositions of the photoinduced copolymer were characterized by Fourier transform infrared spectra (FTIR), ultraviolet spectra (UV), and scanning electron microscope (SEM). The effects of 6 important factors, that is, photo-initiators concentration, monomers concentration, CO(NH2)2 (urea) concentrations, pH value, mass ratio of AM to DAC, and irradiation time on the molecular weight and dissolving time, were investigated. The optimal reaction conditions were that the photo-initiators concentration was 0.3%, monomers concentration was 30 wt.%, irradiation time was 60 min, urea concentration was 0.4%, pH value was 5.0, and mass ratio of AM to DAC was 6 : 4. Its flocculation properties were evaluated with activated sludge using jar test. The zeta potential of supernatant at different cationic monomer contents was simultaneously measured. The results demonstrated the superiority of the copolymer over the commercial polyacrylamide as a flocculant. PMID:24683343

  7. Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Lin, Qianqian; Chmiel, Francis P.; Sakai, Nobuya; Herz, Laura M.; Snaith, Henry J.

    2017-09-01

    Perovskite solar cells are remarkably efficient; however, they are prone to degradation in water, oxygen and ultraviolet light. Cation engineering in 3D perovskite absorbers has led to reduced degradation. Alternatively, 2D Ruddlesden-Popper layered perovskites exhibit improved stability, but have not delivered efficient solar cells so far. Here, we introduce n-butylammonium cations into a mixed-cation lead mixed-halide FA0.83Cs0.17Pb(IyBr1-y)3 3D perovskite. We observe the formation of 2D perovskite platelets, interspersed between highly orientated 3D perovskite grains, which suppress non-radiative charge recombination. We investigate the relationship between thin-film composition, crystal alignment and device performance. Solar cells with an optimal butylammonium content exhibit average stabilized power conversion efficiency of 17.5 ± 1.3% with a 1.61-eV-bandgap perovskite and 15.8 ± 0.8% with a 1.72-eV-bandgap perovskite. The stability under simulated sunlight is also enhanced. Cells sustain 80% of their 'post burn-in' efficiency after 1,000 h in air, and close to 4,000 h when encapsulated.

  8. Efficient luminescent solar cells based on tailored mixed-cation perovskites

    PubMed Central

    Bi, Dongqin; Tress, Wolfgang; Dar, M. Ibrahim; Gao, Peng; Luo, Jingshan; Renevier, Clémentine; Schenk, Kurt; Abate, Antonio; Giordano, Fabrizio; Correa Baena, Juan-Pablo; Decoppet, Jean-David; Zakeeruddin, Shaik Mohammed; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Hagfeldt, Anders

    2016-01-01

    We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2 and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar cells that achieve a maximum power-conversion efficiency of 20.8% for a PbI2/FAI molar ratio of 1.05 in the precursor solution. Rietveld analysis of x-ray diffraction data reveals that the excess PbI2 content incorporated into such a film is about 3 weight percent. Time-resolved photoluminescence decay measurements show that the small excess of PbI2 suppresses nonradiative charge carrier recombination. This in turn augments the external electroluminescence quantum efficiency to values of about 0.5%, a record for perovskite photovoltaics approaching that of the best silicon solar cells. Correspondingly, the open-circuit photovoltage reaches 1.18 V under AM 1.5 sunlight. PMID:26767196

  9. Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Tarantilis, P. A.; Antonyuk, L. P.; Bespalova, L. A.; Polissiou, M. G.; Colina, M.; Gardiner, P. H. E.; Ignatov, V. V.

    2001-05-01

    Structural and compositional features of bacterial cell samples and of lipopolysaccharide-protein complex isolated from the cell surface of the plant-growth-promoting rhizobacterium Azospirillum brasilense (wild-type strain Sp7) were characterised using Fourier transform (FT) Raman spectroscopy. The structural spectroscopic information obtained is analysed and considered together with analytical data on the content of metal cations (Co 2+, Cu 2+ and Zn 2+) in the bacterial cells grown in a standard medium as well as in the presence of each of the cations (0.2 mM). The latter, being taken up by bacterial cells from the culture medium in significant amounts, were shown to induce certain metabolic changes in the bacterium revealed in FT-Raman spectra, which is discussed from the viewpoint of bacterial response to environmental stresses.

  10. Water vapor diffusion membrane development. [for water recovery purposes onboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1974-01-01

    The phase separator component used as a membrane in the vapor diffusion process (VRD) for the recovery of potable water from urine on manned space missions of extended duration was investigated, with particular emphasis on cation-selective membranes because of their noted mechanical strength, superior resistance to acids, oxidants, and germicides, and their potential resistance to organic foulants. Two of the membranes were tested for 700 hours continuously, and were selected on the basis of criteria deemed important to an effective water reclamation system onboard spacecraft. The samples of urine were successfully processed by removing 93 percent of their water content in 70 hours using the selected membranes. Pretreatment with an acid-oxidant formulation improved product quality. Cation exchange membranes were shown to possess superior mechanical strength and chemical resistance, as compared to cellulosic membranes.

  11. Cationic drug pharmacokinetics in diseased livers determined by fibrosis index, hepatic protein content, microsomal activity, and nature of drug.

    PubMed

    Hung, Daniel Y; Chang, Ping; Cheung, Kee; McWhinney, Brett; Masci, Paul P; Weiss, Michael; Roberts, Michael S

    2002-06-01

    The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl(4))-induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)-acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P(app)) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl(4)-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P(app) or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.

  12. Simultaneous determination of cations, zwitterions and neutral compounds using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography.

    PubMed

    Li, Jingyi; Shao, Shan; Jaworsky, Markian S; Kurtulik, Paul T

    2008-03-28

    A novel mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography (HPLC) method is described to simultaneously determine four related impurities of cations, zwitterions and neutral compounds in developmental Drug A. The commercial column is Primesep 200 containing hydrophobic alkyl chains with embedded acidic groups in H(+) form on a silica support. The mobile phase variables of acid additives, contents of acetonitrile and concentrations of potassium chloride have been thoroughly investigated to optimize the separation. The retention factors as a function of the concentrations of potassium chloride and the percentages of acetonitrile in the mobile phases are investigated to get an insight into the retention and separation mechanisms of each related impurity and Drug A. Furthermore, the elution orders of the related impurities and Drug A in an ion-pair chromatography (IPC) are compared to those in the mixed-mode HPLC to further understand the chromatographic retention behaviors of each related impurity and Drug A. The study found that the positively charged Degradant 1, Degradant 2 and Drug A were retained by both ion-exchange and reversed-phase partitioning mechanisms. RI2, a small ionic compound, was primarily retained by ion-exchange. RI4, a neutral compound, was retained through reversed-phase partitioning without ion-exchange. Moreover, the method performance characteristics of selectivity, sensitivity and accuracy have been demonstrated to be suitable to determine the related impurities in the capsules of Drug A.

  13. Improving the mining soil quality for a vegetation cover after addition of sewage sludges: inorganic ions and low-molecular-weight organic acids in the soil solution.

    PubMed

    Peña, Aránzazu; Mingorance, Mª Dolores; Guzmán-Carrizosa, Ignacio; Fernández-Espinosa, Antonio J

    2015-03-01

    We assessed the effects of applying stabilized sewage sludge (SSL) and composted sewage sludge (CLV), at 5 and 10% to an acid mining soil. Limed soil (NCL) amended or not with SSL and CLV was incubated for 47 days. We studied the cations and organic and inorganic anions in the soil solution by means of ion chromatography. Liming led to big increases in Ca(2+) and SO4(2-) and to significant decreases in K(+), Mg(2+), NH4(+) and NO3(-). Addition of both organic amendments increased some cations (NH4(+), K(+), Mg(2+), Na(+)) and anions (Cl(-), NO3(-) only with CLV and PO4(3-) only with SSL) and provided a greater amount of low-molecular-weight organic acids (LMWOAs) (SSL more than CLV). Incubation led to decreases in all cations, particularly remarkable for Ca(2+) and Mg(2+) in SSL-10. A decrease in NH4(+) was associated with variations in NO2(-) and NO3(-) resulting from nitrification reactions. During incubation the LMWOAs content tended to decrease similarly to the cations, especially in SSL-10. Chemometric tools revealed a clear discrimination between SSL, CLV and NCL. Furthermore, treatment effects depended upon dose, mainly in SSL. Amendment nature and dose affect the quality of a mining soil and improve conditions for plant establishment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    PubMed

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  15. Strain-specific variations in cation content and transport in mouse erythrocytes

    PubMed Central

    Rivera, Alicia; Zee, Robert Y. L.; Alper, Seth L.; Peters, Luanne L.

    2013-01-01

    Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na+, K+, and Mg2+, and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains. PMID:23482811

  16. Strain-specific variations in cation content and transport in mouse erythrocytes.

    PubMed

    Rivera, Alicia; Zee, Robert Y L; Alper, Seth L; Peters, Luanne L; Brugnara, Carlo

    2013-05-01

    Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na(+), K(+), and Mg(2+), and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains.

  17. Optimization of multicore-shell Fe3O4-SiO2 magnetic nanocomposites synthesis and retention in cellulose pulp

    NASA Astrophysics Data System (ADS)

    Buteica, Dan; Borbath, Istvan; Nicolae, Ionel Valentin; Turcu, Rodica; Marinica, Oana; Socoliuc, Vlad

    2017-12-01

    The use of magnetite nanoparticles to produce magnetic paper has a severe effect on the color of the paper, which is worth searching means to alleviate. Multicore-shell Fe3O4-SiO2 magnetic nanocomposites were synthesized. The nanocomposite powder was dispersed in cellulose pulp and paper was produced by dehydration on a Rapid Kothen machine. The nanocomposite retention efficiency was investigated in correlation with nanocomposite shell thickness, the resinous vs. deciduous fiber content of the cellulose pulp, the long and short fibers' grinding degree, the cationic starch and polymeric retention agent content of the pulp. The whiteness and magnetization was measured for all paper samples. It was proved that the use of multi-core shell magnetic nanocomposites leads to weaker paper coloring. This effect is enhanced by increasing the polymeric retention agent content of the pulp, in spite of higher composite content.

  18. Investigation of structural, morphological and electromagnetic properties of Mg0.25Mn0.25Zn0.5-xSrxFe2O4 ferrites

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. D.; Nusrat, Tania; Maleque, Rumana; Hossain, A. K. M. Akther

    2018-04-01

    Polycrystalline Mg0.25Mn0.25Zn0.5-xSrxFe2O4 (0 ≤ x ≤ 0.20) ferrites were synthesized using the solid state reaction sintering at 1373 K and 1473 K for 4 h. The XRD patterns revealed the formation of single phase cubic spinel with Sr2FeO4 and SrFe12O19 as impurity phases. The decrement in the lattice parameter for Sr2+ substituted samples is attributed to the difference in ionic radii of cations. The crystallite size decreases with increase in Sr2+ content. Low frequency dielectric dispersion is attributed due to the Maxwell-Wagner interfacial polarization. The appearance of the peak in dielectric loss spectrum for x = 0.15 and 0.20 at 1373 K and x = 0.20 at 1473 K suggests the presence of relaxing dipoles. The loss peak shifts towards lower frequency side with Sr2+ content at 1373 K which is due to the strengthening of dipole-dipole interactions. The complex impedance spectra clearly revealed that the both grain and grain boundary effects on the electrical properties. A complex electric modulus spectrum indicates that a non-Debye type of conductivity relaxation exists. The saturation magnetization and remanence gradually decreases with Sr2+ substitution which may be due to the existence of non-magnetic phase in the space between the magnetic particles and the substitution of Zn2+ cation in Mg0.25Mn0.25Zn0.5Fe2O4 ferrite lattice by Sr2+ content. The permeability decreases significantly while the cut-off frequency increases with the Sr2+ content at 1373 K and decreases at 1473 K, obeying the Snoek's law. The decrease in permeability with Sr2+ content is attributed due to the decrease in magnetization because non-magnetic ions weaken the inter-site exchange interaction.

  19. Effects of baking conditions, dough fermentation, and bran particle size on antioxidant properties of whole-wheat pizza crusts.

    PubMed

    Moore, Jeffrey; Luther, Marla; Cheng, Zhihong; Yu, Liangli Lucy

    2009-02-11

    This study investigated the effects of processing conditions including bran particle size, dough fermentation time, and baking time and temperature on the extractable antioxidant properties of whole-wheat pizza crust. Experiments were carried out using two different varieties of hard white winter wheat, Trego and Lakin. Antioxidant properties examined included oxygen radical absorbing capacity (ORAC), hydroxyl radical scavenging capacity (HOSC), relative 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity (RDSC), cation 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging capacity, total phenolic contents (TPC), and ferulic acid contents. Results indicated that bran particle size had no effect on the antioxidant properties evaluated. Increasing dough fermentation time from 0 to 48 h had no significant influence on antioxidant properties except HOSC, which increased as much as 28%, possibly as a result of increase in soluble free ferulic acid, which increased as much as 130%. Increasing baking temperature from 204 to 288 degrees C with a 7 min bake time increased all evaluated antioxidant properties by as much as 82%. Increasing baking time from 7 to 14 min with 204 degrees C baking temperature might increase some antioxidant properties as much as 60%. The results from this study suggest that longer dough fermentation times and increased baking time or temperature may be potential approaches to increase the antioxidant availability in whole-wheat pizza crust.

  20. Antioxidant and Cytoprotective Effects of Lotus (Nelumbo nucifera) Leaves Phenolic Fraction

    PubMed Central

    Lee, Da-Bin; Kim, Do-Hyung; Je, Jae-Young

    2015-01-01

    Phenolic rich ethyl acetate fraction (EAF) from lotus leaves was prepared and its bioactive components, antioxidant and cytoprotective effects were investigated. EAF showed high total phenolic content and flavonoid content and contained rutin (11,331.3±4.5 mg/100 g EAF), catechin (10,853.8±5.8 mg/100 g EAF), sinapic acid (1,961.3±5.6 mg/100 g EAF), chlorogenic acid (631.9±2.3 mg/100 g EAF), syringic acid (512.3±2.5 mg/100 g EAF), and quercetin (415.0±2.1 mg/100 g EAF). EAF exerted the IC50 of 4.46 μg/mL and 5.35 μg/mL toward DPPH and ABTS cation radicals, respectively, and showed strong reducing power, which was better than that of ascorbic acid, a positive control. Additionally, EAF protected hydroxyl radical-induced DNA damage indicated by the conversion of supercoiled pBR322 plasmid DNA to the open circular form and inhibited lipid peroxidation of polyunsaturated fatty acid in a linoleic acid emulsion. In cultured hepatocytes, EAF exerted a cytoprotective effect against oxidative stress by inhibiting intracellular reactive oxygen species formation and membrane lipid peroxidation. In addition, depletion of glutathione under oxidative stress was remarkably restored by treatment with EAF. The results suggest that EAF have great potential to be used against oxidative stress-induced health conditions. PMID:25866746

  1. Chemical investigations of aquifers affected by pyrite oxidation in the Bitterfeld lignite district.

    PubMed

    Grützmacher, G; Hindel, R; Kantor, W; Wimmer, R

    2001-01-01

    In a large area around the former open-pit lignite mines near Bitterfeld, Germany, groundwater taken from wells was analyzed for the major cations, anions, and trace elements. Quaternary and Tertiary sediments were collected from aquifers exposed on the sides of the pits and from boreholes outside the mines and analyzed for major and trace elements, as well as for carbonate, pyritic sulfur and total organic carbon. The pH and electrical conductivity of the sediments in suspension were measured. Significant differences were determined between the Tertiary sediments of the aquifers that were exposed to atmospheric oxygen during the lowering of the groundwater table and those outside the cone of depression. The greatest differences were found in the pyrite content, the pH values, and the electrical conductivity. In order to map the degree to which the mining of the lignite has affected the quality of the groundwater in the study area, the water samples were divided into six classes on the basis of their sulfate content. The neutralization potential was calculated to estimate the potential for acidification. Prediction of future groundwater quality is based on both (i) the present composition of the groundwater, surface water, and Quaternary and Tertiary aquifer sediments and (ii) the present and future groundwater flow directions. These studies have shown which parameters are important for future groundwater monitoring.

  2. QUANTITATIVE DETERMINATION OF THE URANIUM CONTENT OF URANIUM ORES TECHNOLOGICAL PRODUCTS BY ION EXCHANGE-COMPLEXON SEPARATION (in Hungarian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fodor, M.

    An ion exchange-complexion separation meihod was developed for the removal of interfering elements in the determination of the uranium content of recovery solutions. By adding (ethylenediamine)tetraacetic acid to the solution, most of the interfering elements can be brought into an anionic complex. Adjusting the soluiion to pH 7 and letting it pass through an Amberlite IRC-50 type cation exchanger of hydrogen form, the uranium remains on the column whereas the interfering elements pass into the effluent. The method was successfully applied in analyzing the recovery solutions of uranium ores. (auth)

  3. [Histochemical study of the digestive organs of rats after a flight on "Kosmos-605"].

    PubMed

    Shubich, M G; Goriacheva, L L; Dudetskiĭ, V I; Lutsenko, N M; Mogil'naia, G M

    1977-01-01

    The histochemical study of the stomach, small and large intestines and pancreas of rats flown aboard the biosatellite Cosmos-605 as well as of synchronous and vivarium controls demonstrated a significant decline in the mucine producing capacity of epithelial cells of the stomach of the flight rats on the R + 1 day. The study showed an increased content of sialo- and sulphosaccharides in goblet cells of cryptae of large intestine and a reduced content of free cation protein in the acinar cells of the pancreas of flight rats. The changes were transient and disappeared by the R + 26 day.

  4. Ionic force field optimization based on single-ion and ion-pair solvation properties: Going beyond standard mixing rules

    NASA Astrophysics Data System (ADS)

    Fyta, Maria; Netz, Roland R.

    2012-03-01

    Using molecular dynamics (MD) simulations in conjunction with the SPC/E water model, we optimize ionic force-field parameters for seven different halide and alkali ions, considering a total of eight ion-pairs. Our strategy is based on simultaneous optimizing single-ion and ion-pair properties, i.e., we first fix ion-water parameters based on single-ion solvation free energies, and in a second step determine the cation-anion interaction parameters (traditionally given by mixing or combination rules) based on the Kirkwood-Buff theory without modification of the ion-water interaction parameters. In doing so, we have introduced scaling factors for the cation-anion Lennard-Jones (LJ) interaction that quantify deviations from the standard mixing rules. For the rather size-symmetric salt solutions involving bromide and chloride ions, the standard mixing rules work fine. On the other hand, for the iodide and fluoride solutions, corresponding to the largest and smallest anion considered in this work, a rescaling of the mixing rules was necessary. For iodide, the experimental activities suggest more tightly bound ion pairing than given by the standard mixing rules, which is achieved in simulations by reducing the scaling factor of the cation-anion LJ energy. For fluoride, the situation is different and the simulations show too large attraction between fluoride and cations when compared with experimental data. For NaF, the situation can be rectified by increasing the cation-anion LJ energy. For KF, it proves necessary to increase the effective cation-anion Lennard-Jones diameter. The optimization strategy outlined in this work can be easily adapted to different kinds of ions.

  5. Understanding ion association states and molecular dynamics using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Masser, Hanqing

    A molecular level understanding of the ion transport mechanism within polymer electrolytes is crucial to the further development for advanced energy storage applications. This can be achieved by the identification and quantitative measurement of different ion species in the system and further relating them to the ion conductivity. In the first part of this thesis, research is presented towards understanding the ion association states (free ions, ion pairs and ion aggregates) in ionomer systems, and the correlation of ion association states, ion conduction, polymer dynamics, and morphology. Ion conductivity in ionomers can be improved by lowering glass transition temperature, increasing polymer ion solvation ability, and adjusting ionomer structural variables such as ion content, cation type and side chain structure. These effects are studied in three ionomer systems respectively, using a combination of characterization methods. Fourier Transform Infrared Spectroscopy (FTIR) identifies and quantifies the ion association states. Dielectric Spectroscopy (DRS) characterizes ion conductivity and polymer and ion dynamics. X-ray scattering reveals changes in morphology. The influence of a cation solvating plasticizer on a polyester ionomer is systematically investigated with respect to ion association states, ion and polymer dynamics and morphology. A decrease in the number ratio of ion aggregates with increased plasticizer content and a slight increase at elevated temperature are observed in FTIR. Similar results are also detected by X-ray scattering. As determined from dielectric spectroscopy, ion conductivity increases with plasticizer content, in accordance with the decrease in glass transition temperature. Research on copolymer of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) based ionomers further develops an understanding of the trade-off between ion solvation and segmental dynamics. Upon the incorporation of PTMO, the majority of the PTMO microphase separates from the PEO-rich microphase, and ionic groups are preferentially solvated by PEO chains and reside in the PEO-rich microphase. As the ratio of PTMO increases, the fraction of aggregates increases, resulting in more highly coordinated aggregation states. Results on ion association states are in good agreement with previous results on ion conductivity, polymer dynamics and morphology. The effects of ion content, cation type and ionic side chain structure on ion association states are systemically studied in a series of ionomers with short ethylene oxide and ionic sulfonated styrene side chains, and then correlated to the ion and polymer dynamic characterization. It is found that ionomers with modest ion content, large cation and styrene ionic side chain have the most "free ions" and ion pairs, and highest ion conductivity. Ion conduction in ionomers is optimized by systematically changing their chemical structures. In addition to knowledge of ion association states, a IR band shape also contains information on molecular dynamics. In companion investigation, the vibrational relaxation and dynamic transitions of conformationally insensitive normal modes in two different polymer systems (atactic polystyrene and deuterated poly(methyl methacrylate)) are studied. The information on vibrational relaxations is resolved by conducting precisely controlled FTIR experiments, applying specialized curve resolving data analysis, and calculating time correlation functions through numerical Fourier transformation. The vibrational relaxations of these modes can be described by a two process model: a fast process on the time scale of 0.01 ps, which is inhomogeneously broadened by a slow process on the time scale of picoseconds.

  6. Evaluation of soil sustainability along the Rio Grande in West Texas: changes in salt loading and organic nutrients due to farming practices

    NASA Astrophysics Data System (ADS)

    Cox, C. L.; Ganjegunte, G.; Borrok, D. M.; Lougheed, V.; Ma, L.; Jin, L.

    2011-12-01

    Growing populations demand an increase in the amount of food being produced, which in turn, puts pressure on the productivity and sustainability of soils. The use of flood irrigation from the Rio Grande, which contains high salinity, has greatly increased the sodicity and enhanced leaching of the nutrients in the Rio Grande Basin. To evaluate soil health in this area, Rio Grande, soil water, drainage water, and soils from four different sites were collected during the 2011 irrigation season. Sample sites include two pecan fields (Pecan1 and Pecan 2), one cotton field (Cotton), and one alfalfa field (Alfalfa). Each site was equipped with ECH2O-5TE sensors (Decagon Devices Inc., Pullman, WA) to measure soil moisture, temperature, and electrical conductivity (EC), along with lysimeters at depths of 15, 30, and 60 cm to collect soil water samples. Soil solution, irrigation water and drainage water were analyzed for pH, EC (measure of salinity), major cation (Ca, Mg, Na and K) concentrations and soils were analyzed for sodium adsorption ratio (SAR, a measure of sodicity) using standard methods. Soil extraction data suggests that water-soluble cation concentrations increase with depth and are significantly higher in clay-rich soils than sandy ones. Na is the most dominant water-soluble cation with it's concentrations ranging from 0.4 to 5.6 cmolc kg-1. Among all crop types, Cotton soils have the highest amount of water-soluble cations. Preliminary data shows that in the Cotton, Pecan 1 and Pecan 2 sites, soil sodicity increases with depth and becomes greater than 13 mmols1/2 L-1/2 at 30 cm below ground surface, while Alfalfa soils are generally less sodic. Overall, Cotton soils had the highest sodicity, up to 19.2 mmols1/2 L-1/2, which is well above the tolerance level of this crop. Sodicity affects soil permeability, and coincides with areas of high clay content. These observations are in agreement with the facts that pecan orchards are more intensively irrigated and thus have higher salt loading, and that Cotton has a higher clay content. The EC values continuously increase from irrigation water to soil waters, suggesting that as water travels through the soil profile it increases in salinity. Consistent with this observation, cation concentrations in soil waters increased with depth. Therefore, the salts within the soils are mobilized during irrigation. 5TE sensors at all three depths in the field showed spikes in EC, and soil moisture during each period of flood irrigation. Data also suggests a lower bulk EC between irrigation periods which might result from a lower soil moisture content which doesn't solublize the salts. The carbonate- and gypsum- rich soils and surface water in the Rio Grande Basin change with intensity and amount of irrigation, addition of fertilizers, and other agricultural practices. Results from this project contribute to our understanding of salt loading and nutrient cycling in the vulnerable area of the Rio Grande Valley in West Texas.

  7. The role of multivalent metal cations and organic complexing agents in bitumen-mineral interactions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gan, Weibing

    A systematic investigation was carried out to study the interactions between bitumen (or hexadecane) and minerals (quartz, kaolinite and illite) in aqueous solutions containing multivalent metal cations Ca2+, Mg2+ and Fe2+/Fe3+, in the absence and presence of organic complexing agents (oxalic acid, EDTA and citric acid). A range of experimental techniques, including coagulation measurement, visualization of bitumen-mineral attachment, metal ion adsorption measurement, zeta potential measurement, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopic analyses, were employed in the investigation. Free energy changes of adsorption of metal cations on the minerals and bitumen were evaluated using the James & Healy thermodynamic model. Total interaction energies between the minerals and bitumen were calculated using classical DLVO theory. It was observed that while the tested minerals showed varying degrees of mutual-coagulation with bitumen (or hexadecane), the presence of the multivalent metal cations could prominently increase the mutual coagulation. It was also found that such enhancement of the mutual coagulation was only significant when the metal cations formed first-order hydroxyl complexes (such as CaOH +, MgOH+, etc.) or metal hydroxides (such as Fe(OH) 3, Mg(OH)2, etc.). Therefore, the increase of the bitumen-mineral mutual coagulation by the metal cations was strongly pH dependent. Organic complexing agents (oxalic acid, citric acid and EDTA) used in this study, citric acid in particular, significantly reduced or virtually eliminated the mutual coagulation between bitumen (or hexadecane) and minerals caused by metal cations Ca2+, Mg2+, Fe 2+ and Fe3+. Due to its ability to substantially lower the mutual coagulation between bitumen and mineral particles, citric acid was found the most effective in improving bitumen-mineral liberation in solutions containing the multivalent metal cations at pH 8--10. In small scale flotation experiments to recover the residual bitumen from Syncrude Froth Treatment Tailings, the addition of up to 2x10-3 mol/L citric acid improved the separation efficiency by 24 percentage points. The sequential additions of 1.5x10-3 mol/L citric acid and 30 mg/L polyacrylamide further increased the flotation separation efficiency, which was attributed to the improved liberation of bitumen from the minerals by the citric acid, and the flocculation of the liberated minerals fines by the polyacrylamide. The latter was expected to reduce the mechanical entrainment of the liberated mineral fines. Pretreatment of the Froth Treatment Tailings in an ultrasonic bath was also effective for bitumen liberation and recovery from the Froth Treatment Tailings. Through measurements of zeta potentials of the minerals and adsorption densities of the metal cations on mineral surfaces, coupled with speciation diagrams, it was shown that the multivalent metal cations functioned in the studied systems through three distinctly different mechanisms. These included electrical double layer compression by the metal cations; adsorption of the first-order metal hydroxyl species; and adsorption of the metal hydroxides on the mineral particles. Reversibility of adsorption and analyses by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that the adsorption of the first-order metal hydroxyl species on quartz and kaolinite was through electrostatic attraction, while that of metal hydroxides was possibly through chemisorption. It was also shown that classical DLVO theory could be used to describe and predict bitumen-mineral interactions with and without the presence of citric acid. The energy barriers for the interaction between bitumen and the minerals were greatly raised in the presence of citric acid, as a contribution to the repulsive electrical double layers interaction between bitumen droplets and mineral particles.

  8. Influence of long-term land use (arable and forest) and soil mineralogy on organic carbon stocks as well as composition and stability of soil organic matter

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Ellerbrock, R. H.; Wulf, M.; Dultz, S.; Hierath, C.; Sommer, M.

    2009-04-01

    The function of soils to sequester organic carbon (OC) and their related potential to mitigate the greenhouse effect is strongly affected by land use and soil mineralogy. This study is aimed to clarify long-term impacts of arable and forest land use as well as soil mineralogy on topsoil soil organic carbon (SOC) stocks as well as soil organic matter (SOM) composition and stability. Topsoil samples were taken from deciduous forest and adjacent arable sites (within Germany) that are continuously used for more than 100 years. The soils are different in genesis (Albic and Haplic Luvisol (AL, HL), Colluvic and Haplic Regosol (CR, HR), Haplic and Vertic Cambisol (HC, VC), Haplic Stagnosol (HSt)). First, particulate and water soluble organic matter were separated from the topsoil samples (Ap and Ah horizons). From the remaining solid extraction residues the Na-pyrophosphate soluble organic matter fractions (OM(PY)) were extracted, analysed for its OC content (OC(PY)) and characterized by FTIR spectroscopy and 14C analyses. The SOC stocks calculated for 0-40 cm depth are in general larger for the forest as compared to the adjacent arable soils (except VC). The largest difference between forest and arable topsoils was detected for the HR site (5.9 kg m-2) and seemed to be caused by a two times larger stock of exchangeable Ca of the forest topsoil. For the arable topsoils multiple regression analyses indicate a strong influence of clay, oxalate soluble Al and pyrophosphate soluble Mg on the content of OC(PY) weighted with its C=O content. Such relation is not found for the forest topsoils. Further, a positive relation between Δ14C values of OM(PY) and the following independent variables: (i) specific mineral surface area, (ii) relative C=O group content in OM(PY) and (iii) soil pH is found for the arable topsoils (pH 6.7 - 7.5) suggesting an increase in OM(PY) stability with increasing interactions between OM(PY) and soil mineral surfaces via cation bridging. A similar relation is found for the forest topsoils (pH < 5) if the specific mineral surface area is excluded from the multiple regression. This finding and the higher OC(PY) content of the forest topsoils suggest that in these soils the OM(PY) components are mainly cross-linked by cations and did not interact with mineral surfaces. We assume cross-linking to be less effective for OM stabilization as compared to cation bridging with mineral surfaces since Δ14C data indicate the OM(PY) from the forest topsoils to be less stable than that from arable topsoils.

  9. Solubility of polyvalent cations in fogwater at an urban site in Strasbourg (France)

    NASA Astrophysics Data System (ADS)

    Millet, M.; Wortham, H.; Mirabel, Ph.

    The concentrations in the soluble and total (soluble + insoluble) fractions of Mg, Ca, Fe, Mn, Zn, Al, Cd and Pb have been analysed by "inductively coupled plasma (ICP)" in 14 fog events collected in 1992 at an urban site in France (Strasbourg). For each fog event, two droplet size categories (2-6 μm and 5-8 μm) have been collected separately. For the analysis of the polyvalent cations in the soluble and total fractions, an analytical procedure using ICP and filtration on cellulose/PVC filters has been developed. The study of the solubility of some polyvalent cations has shown that two of the most important factors controlling the partitioning between the soluble and insoluble fraction are the nature of the particles and the pH of the fogwater. The influence of pH depended on the element. The solubility of Pb, Cd, Al, Fe, Mg, and Ca were pH dependent whereas, Zn and Mn solubility varied but no relationship with pH existed, ranging between 25 and 100% and 10 and 100%, respectively. On the other hand, Mg, Pb and Ca were predominantly present in the soluble phase, whereas Al was prevalent in the insoluble fraction. In the case of Cd and Fe., the presence in the soluble or insoluble phase depended largely on the fogwater pH.

  10. Two cation exchange models for direct and inverse modelling of solution major cation composition in equilibrium with illite surfaces

    NASA Astrophysics Data System (ADS)

    Tournassat, Christophe; Gailhanou, Hélène; Crouzet, Catherine; Braibant, Gilles; Gautier, Anne; Lassin, Arnault; Blanc, Philippe; Gaucher, Eric C.

    2007-03-01

    Na/K, Na/Ca and Na/Mg exchange isotherms were performed on the fine fraction (<2 μm) of Imt-2 illite samples at a total normality of about 0.005 mol/L in anionic chloride medium. The derived selectivity coefficients for Na/K, Na/Ca and Na/Mg were found to vary as a function of the exchanger composition and compared well with the data collected in the literature for similar experimental conditions. Two models were built to reproduce the data: the first was a multi(2)-site model with constant Gaines and Thomas selectivity coefficients; the second was a one-site model taking into account surface species activity coefficients. The results of the models were in rather good agreement with both our data and literature data. The multi-site model proved to be efficient in predicting the exchanger composition as a function of the Na/Ca/Mg/K concentrations in solution, whereas the one-site model proved to be a better approach to derive the Na/Ca/Mg/K concentrations in solution based on the knowledge of the exchanger composition and the total normality of the solution. The interest of this approach is illustrated by the need for major cation solute concentration predictions in compacted clay for the characterization of nuclear deep disposal host rock repositories.

  11. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    PubMed

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition.

  12. Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils.

    PubMed

    Christiansen, Karen S; Borggaard, Ole K; Holm, Peter E; Vijver, Martina G; Hauschild, Michael Z; Peijnenburg, Willie J G M

    2015-04-01

    Accurate knowledge about factors and conditions determining copper (Cu) toxicity in soil is needed for predicting plant growth in various Cu-contaminated soils. Therefore, effects of Cu on growth (biomass production) of lettuce (Lactuca sativa) were tested on seven selected, very different soils spiked with Cu and aged for 2 months at 35 °C. Cu toxicity was expressed as pEC50(Cu(2+)), i.e., the negative logarithm of the EC50(Cu(2+)) activity to plant growth. The determined pEC50(Cu(2+)) was significantly and positively correlated with both the analytically readily available soil pH and concentration of dissolved organic carbon [DOC] which together could explain 87% of the pEC50(Cu(2+)) variation according to the simple equation: pEC50(Cu(2+)) = 0.98 × pH + 345 × [DOC] - 0.27. Other soil characteristics, including the base cation concentrations (Na(+), K(+), Ca(2+), Mg(2+)), the cation exchange capacity at soil pH (ECEC), and at pH 7 (CEC7), soil organic carbon, clay content, and electric conductivity as well as the distribution coefficient (Kd) calculated as the ratio between total soil Cu and water-extractable Cu did not correlate significantly with pEC50(Cu(2+)). Consequently, Cu toxicity, expressed as the negative log of the Cu(2+) activity, to plant growth increases at increasing pH and DOC, which needs to be considered in future management of plant growth on Cu-contaminated soils. The developed regression equation allows identification of soil types in which the phytotoxicity potential of Cu is highest.

  13. Cation distribution effect on static and dynamic magnetic properties of Co1-xZnxFe2O4 ferrite powders

    NASA Astrophysics Data System (ADS)

    Barrera, G.; Coisson, M.; Celegato, F.; Raghuvanshi, S.; Mazaleyrat, F.; Kane, S. N.; Tiberto, P.

    2018-06-01

    Co1-xZnxFe2O4 (0.08 ≤ x ≤ 0.56) powders prepared by a sol-gel auto-combustion method have been investigated through the combined use of structural and dc/ac-magnetization measurements under a wide range of applied magnetic field values. EDS spectra are performed to evaluate the samples chemical composition, whereas the X-ray diffraction measurements indicate the formation of the typical nanocrystalline mixed cubic spinel structure and allow to determine the cationic distribution as well as the lattice parameter and the oxygen position as function of Zn content. Magnetic characterization improves the knowledge about the correlation between the structural properties and magnetic behavior. The magnetization curves show a hysteretic behavior at room temperature and they are analyzed as function of Zn content taking in account the Yafet-Kittel's model. The replacement of non-zero magnetic moment Co2+ ions with zero magnetic moment Zn2+ ions induces a gradual reduction of magnetocrystalline anisotropy and a lowering of the magnetic coercivity. The energy lost in a static and alternating magnetic field (frequency of 69 kHz) at selected vertex field values for the studied samples has been calculated in order to evaluate their prospective usage to operate in different field conditions.

  14. Temperature Dependence Discontinuity in the Stability of Manganese doped Ceria Nanocrystals

    DOE PAGES

    Wu, Longjia; Dholabhai, Pratik; Uberuaga, Blas P.; ...

    2017-01-05

    CeO 2 has strong potential for chemical-looping water splitting. It has been shown that manganese doping decreases interface energies of CeO 2, allowing increased stability of high surface areas in this oxygen carrier oxide. The phenomenon is related to the segregation of Mn3+ at interfaces, which causes a measurable decrease in excess energy. Here in the present work, it is shown that, despite the stability of nanocrystals of manganese-doped CeO 2 with relation to undoped CeO 2, the effect is strongly dependent on the oxidation state of manganese, i.e., on the temperature. At temperatures below 800 °C, Mn is inmore » the 3+ valence state, and coarsening is hindered by the reduced interface energetics, showing smaller crystal sizes with increasing Mn content. At temperatures above 800 °C, Mn is reduced to its 2+ valence state, and coarsening is enhanced with increasing Mn content. Atomistic simulations show the segregation of Mn to grain boundaries is relatively insensitive to the charge state of the dopant. However, point defect modeling finds that the reduced state causes a decrease in cation vacancy concentration and an increase in cation interstitials, reducing drag forces for grain boundary mobility and increasing growth rates.« less

  15. Tree species effects on topsoil properties in an old tropical plantation

    NASA Astrophysics Data System (ADS)

    Bauters, Marijn; Boeckx, Pascal; Ampoorter, Evy; Verbeeck, Hans; Döetterl, Sebastian; Baert, Geert; Verheyen, Kris

    2016-04-01

    Forest biogeochemistry is strongly linked to the functional strategies of the tree community and the topsoil. Research has long documented that tree species affect soil properties in forests. Our current understanding on this interaction is mainly based on common garden experiments in temperate forest and needs to be extended to other ecosystems if we want to understand this interaction in natural forests worldwide. Using a 77-year-old tropical experimental plantation from central Africa, we examined the relationship between canopy and litter chemical traits and topsoil properties. By the current diversity in this site, the unique setup allowed us to extend the current knowledge from temperate and simplified systems to near-natural tropical forests, and thus bridge the gap between planted monocultures in common gardens, and correlative studies in natural systems. We linked the species-specific leaf and litter chemical traits to the topsoil cation composition, acidity, pH and soil organic matter. We found that average canopy trait values were a better predictor for the topsoil than the litter chemistry. Canopy base cation content positively affected topsoil pH and negatively affected acidity. These, in turn strongly determined the soil organic carbon contents of the topsoil, which ranged a tree-fold in the experiment.

  16. Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils.

    PubMed

    Zampella, Mariavittoria; Adamo, Paola

    2010-01-01

    A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.

  17. Spatial Distribution of Heavy Metals and the Environmental Quality of Soil in the Northern Plateau of Spain by Geostatistical Methods.

    PubMed

    Santos-Francés, Fernando; Martínez-Graña, Antonio; Zarza, Carmelo Ávila; Sánchez, Antonio García; Rojo, Pilar Alonso

    2017-05-26

    The environmental quality of soil in the central part of the Northern Plateau of Spain has been analyzed by studying the heavy metal content of 166 samples belonging to the horizons A, B and C of 89 soil profiles. The analysis to assess the environmental risk of heavy metals in the soil was carried out by means of the spatial distribution of nine heavy metals and the use of several pollution indices. The results showed that the concentration values of heavy metals (x ± S) in the superficial soil horizons were the following: With a total of 6.71 ± 3.51 mg kg -1, the contents of Cd is 0.08 ± 0.06 mg kg-1, Co is 6.49 ± 3.21 mg kg-1, Cu is 17.19 ± 10.69 mg kg-1, Cr is 18.68 ± 12.28 mg kg-1, Hg is 0.083 ± 0.063 mg kg-1, Ni is 12.05 ± 6.76 mg kg-1, Pb is 14.10 ± 11.32 mg kg-1 and Zn is 35.31 ± 14.63 mg kg-1. These nine metals exceed the values of the natural geological background level of Tertiary period sediments and rocks that form part of the Northern Plateau in Spain. Nemerow and Potential Ecological Risk indices were calculated, with the "improved" Nemerow index allowing pollution within the soil superficial horizons to be determined. The data obtained indicated that the majority of the soil (54.61%) showed low to moderate contamination, 22.31% showed moderate contamination and 21.54% of the samples were not contaminated. If we consider the Potential of Ecological Risk Index (RI), the largest percentage of soil samples showed low (70.79%) to moderate (25.38%) ecological risk of potential contamination, where the rest of the soil presented a considerable risk of contamination. The nine trace elements were divided into three principal components: PC1 (Cu, Cr, Ni, Co and Zn), PC2 (As and Hg) and PC3 (Cd). All metals accumulated in the soil came from parent rock, agricultural practices and the run-off of residual waters towards rivers and streams caused by industrial development and an increase in population density. Finally, cartography of the spatial distribution of the heavy metal contents in the soil of the Northern Plateau of Spain was generated using Kriging interpolation methods. Furthermore, the total heavy metal contents in three soil orders present in the area, namely Entisols, Inceptisols, and Alfisols, were analyzed. Other soil parameters, such as the organic matter content, pH, clay content and cation exchange capacity, was measured to determine their influence on and correlation with the heavy metal contents.

  18. Spectral reflectance of surface soils: Relationships with some soil properties

    NASA Technical Reports Server (NTRS)

    Kiesewetter, C. H.

    1983-01-01

    Using a published atlas of reflectance curves and physicochemical properties of soils, a statistical analysis was carried out. Reflectance bands which correspond to five of the wavebands used by NASA's Thematic Mapper were examined for relationships to specific soil properties. The properties considered in this study include: Sand Content, Silt Content, Clay Content, Organic Matter Content, Cation Exchange Capacity, Iron Oxide Content and Moisture Content. Regression of these seven properties on the mean values of five TM bands produced results that indicate that the predictability of the properties can be increased by stratifying the data. The data was stratified by parent material, taxonomic order, temperature zone, moisture zone and climate (combined temperature and moisture). The best results were obtained when the sample was examined by climatic classes. The middle Infra-red bands, 5 and 7, as well as the visible bands, 2 and 3, are significant in the model. The near Infra-red band, band 4, is almost as useful and should be included in any studies. General linear modeling procedures examined relationships of the seven properties with certain wavebands in the stratified samples.

  19. Bioavailability of Lead in Small Arms Range Soils

    DTIC Science & Technology

    2009-08-01

    titanium TOC total organic carbon USEPA U.S. Environmental Protection Agency XRF X-ray fluorescence Zn zinc Zr zirconium 1 1.0 EXECUTIVE...particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and physical properties may influence the absorption...zirconium, Pb=lead, Cu=copper, Mn=manganese, Si=silicon, Zn= zinc , As=arsenic, Cd=cadmium, CEC= cation exchange capacity, TOC = total organic carbon, Sb

  20. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation.

    PubMed

    Erel, Ozcan

    2004-04-01

    To develop a novel colorimetric and automated direct measurement method for total antioxidant capacity (TAC). A new generation, more stable, colored 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(*+)) was employed. The ABTS(*+) is decolorized by antioxidants according to their concentrations and antioxidant capacities. This change in color is measured as a change in absorbance at 660 nm. This process is applied to an automated analyzer and the assay is calibrated with Trolox. The novel assay is linear up to 6 mmol Trolox equivalent/l, its precision values are lower than 3%, and there is no interference from hemoglobin, bilirubin, EDTA, or citrate. The method developed is significantly correlated with the Randox- total antioxidant status (TAS) assay (r = 0.897, P < 0.0001; n = 91) and with the ferric reducing ability of plasma (FRAP) assay (r = 0.863, P < 0.0001; n = 110). Serum TAC level was lower in patients with major depression (1.69 +/- 0.11 mmol Trolox equivalent/l) than in healthy subjects (1.75 +/- 0.08 mmol Trolox equivalent/l, P = 0.041). This easy, stable, reliable, sensitive, inexpensive, and fully automated method described can be used to measure total antioxidant capacity.

  1. USDA research enables total quat release from cotton nonwoven disinfecting wipes

    USDA-ARS?s Scientific Manuscript database

    The adsorption of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on various cotton, cotton-blend, and synthetic nonwoven fabrics was investigated at varying surfactant concentrations using UV-Vis absorption spectroscopy. Modifying ...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, Roland D.; Diedrich, Jolene K.; Yates, III, John R.

    Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Furthermore, the level of cation-mediatedmore » inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.« less

  3. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.

    PubMed

    Bayat Tork, Mahya; Khalilzadeh, Rasoul; Kouchakzadeh, Hasan

    2017-11-01

    Harvesting involves nearly thirty percent of total production cost of microalgae that needs to be done efficiently. Utilizing inexpensive and highly available biopolymer-based flocculants can be a solution for reducing the harvest costs. Herein, flocculation process of Chlorella vulgaris microalgae using cationic starch nanoparticles (CSNPs) was evaluated and optimized through the response surface methodology (RSM). pH, microalgae and CSNPs concentrations were considered as the main independent variables. Under the optimum conditions of microalgae concentration 0.75gdry weight/L, CSNPs concentration 7.1mgdry weight/L and pH 11.8, the maximum flocculation efficiency (90%) achieved. Twenty percent increase in flocculation efficiency observed with the use of CSNPs instead of the non-particulate starch which can be due to the more electrostatic interactions between the cationic nanoparticles and the microalgae. Therefore, the synthesized CSNPs can be employed as a convenient and economical flocculants for efficient harvest of Chlorella vulgaris microalgae at large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Separation of patatins and protease inhibitors from potato fruit juice with clay minerals as cation exchangers.

    PubMed

    Ralla, Kathrin; Sohling, Ulrich; Suck, Kirstin; Kasper, Cornelia; Ruf, Friedrich; Scheper, Thomas

    2012-07-01

    Potato fruit juice as a by-product of the starch industry contains proteins with interesting functionalities such as protease inhibitors or patatin with its high nutritional value. Due to their functional properties, these proteins are principally of industrial interest. A drawback for the application of these potato proteins is the separation and isolation under maintenance of the biological activity. So far, there are no methods in literature, which are satisfying concerning the costs or the separation performance. In this study, we show a chromatographic approach using natural clay minerals as cation exchangers to separate two protein fractions in potato fruit juice. Additionally, the content of glycoalkaloids naturally occurring in potatoes is significantly reduced in a single step together with the separation of the patatins and the protease inhibitors. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Role of cholesterol on the transfection barriers of cationic lipid/DNA complexes

    NASA Astrophysics Data System (ADS)

    Pozzi, Daniela; Cardarelli, Francesco; Salomone, Fabrizio; Marchini, Cristina; Amenitsch, Heinz; Barbera, Giorgia La; Caracciolo, Giulio

    2014-08-01

    Most lipid formulations need cholesterol for efficient transfection, but the precise motivation remains unclear. Here, we have investigated the effect of cholesterol on the transfection efficiency (TE) of cationic liposomes made of 1,2-dioleoyl-3-trimethylammonium-propane and dioleoylphosphocholine in Chinese hamster ovary cells. The transfection mechanisms of cholesterol-containing lipoplexes have been investigated by TE, synchrotron small angle X-ray scattering, and laser scanning confocal microscopy experiments. We prove that cholesterol-containing lipoplexes enter the cells using different endocytosis pathways. Formulations with high cholesterol content efficiently escape from endosomes and exhibit a lamellar-nonlamellar phase transition in mixture with biomembrane mimicking lipid formulations. This might explain both the DNA release ability and the high transfection efficiency. These studies highlight the enrichment in cholesterol as a decisive factor for transfection and will contribute to the rational design of lipid nanocarriers with superior TE.

  6. Kinetic parameters of rubidium transport pathways are normal in cystic fibrosis red cells.

    PubMed

    Joiner, C H

    1988-10-01

    The abnormalities in ion transport in cystic fibrosis (CF) respiratory and sweat duct epithelia have prompted studies of ion permeability in CF red blood cells (RBC) although previous reports have been contradictory. In this study, the kinetic characteristics of the three major cation transport systems in RBC were evaluated by measuring rubidium (Rb) uptake at various external Rb concentrations. The maximal velocity and affinity for external Rb (K1/2) of the NaK pump were normal in CF RBC, as were the maximal velocity and Km for Rb of the NaK cotransport system. Residual (ouabain and bumetanide insensitive) Rb uptake, and steady state RBC Na and K contents were also normal. These data indicate the NaK pump and cotransport system do not exhibit primary or secondary perturbations in CF RBC, and suggest that the noncarrier-mediated membrane permeability to cations is also normal in these cells.

  7. Analytical Expressions for Thermo-Osmotic Permeability of Clays

    NASA Astrophysics Data System (ADS)

    Gonçalvès, J.; Ji Yu, C.; Matray, J.-M.; Tremosa, J.

    2018-01-01

    In this study, a new formulation for the thermo-osmotic permeability of natural pore solutions containing monovalent and divalent cations is proposed. The mathematical formulation proposed here is based on the theoretical framework supporting thermo-osmosis which relies on water structure alteration in the pore space of surface-charged materials caused by solid-fluid electrochemical interactions. The ionic content balancing the surface charge of clay minerals causes a disruption in the hydrogen bond network when more structured water is present at the clay surface. Analytical expressions based on our heuristic model are proposed and compared to the available data for NaCl solutions. It is shown that the introduction of divalent cations reduces the thermo-osmotic permeability by one third compared to the monovalent case. The analytical expressions provided here can be used to advantage for safety calculations in deep underground nuclear waste repositories.

  8. Water soluble cations and the fluvial history of Mars

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.; Munoz, E. F.

    1975-01-01

    The electrical conductivity and water soluble Na, K, Ca, and Mg of aqueous solutions of terrestrial soils and finely divided igneous and metamorphic rocks were determined. Soils from dry terrestrial basins with a history of water accumulation as well as soils from the topographic lows of valleys accumulated water soluble cations, particularly Na and Ca. These soils as a group can be distinguished from the rocks or a second group of soils (leached upland soils and soils from sites other than the topographic lows of valleys) by significant differences in their mean electrical conductivity and water-soluble Na + Ca content. Similar measurements on multiple samples from the surface of Mars, collected by an automated long-range roving vehicle along a highlands-to-basin transect at sites with morphological features resembling dry riverlike channels, are suggested to determine the fluvial history of the planet.

  9. Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola.

    PubMed

    Andreeva, Nadezhda; Ryazanova, Lubov; Dmitriev, Vladimir; Kulakovskaya, Tatiana; Kulaev, Igor

    2014-09-01

    The basidiomycetous yeast Cryptococcus humicola was shown to be tolerant to manganese, cobalt, nickel, zinc, lanthanum, and cadmium cations at a concentration of 2.5 mmol/L, which is toxic for many yeasts. The basidiomycetous yeast Cryptococcus terreus was sensitive to all these ions and did not grow at the above concentration. In the presence of heavy metal cations, С. humicola, as opposed to C. terreus, was characterized by the higher content of acid-soluble inorganic polyphosphates. In vivo 4',6'-diamino-2-phenylindole dihydrochloride staining revealed polyphosphate accumulation in the cell wall and cytoplasmic inclusions of С. humicola in the presence of heavy metals. In C. terreus, polyphosphates in the presence of heavy metals accumulate mainly in vacuoles, which results in morphological changes in these organelles and, probably, disturbance of their function. The role of polyphosphate accumulation and cellular localization as factors of heavy metal tolerance of Cryptococcus humicola is discussed.

  10. High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization.

    PubMed

    Zerfaß, Christian; Braukmann, Sandra; Nietzsche, Sandor; Hobe, Stephan; Paulsen, Harald

    2015-04-01

    We report the recombinant bacterial expression and purification at high yields of a polycationic oligopeptide, P5S3. The sequence of P5S3 was inspired by a diatom silaffin, a silica precipitating peptide. Like its native model, P5S3 exhibits silica biomineralizing activity, but furthermore has unusual self-assembling properties. P5S3 is efficiently expressed in Escherichia coli as fusion with ketosteroid isomerase (KSI), which causes deposition in inclusion bodies. After breaking the fusion by cyanogen bromide reaction, P5S3 was purified by cation exchange chromatography, taking advantage of the exceptionally high content of basic amino acids. The numerous cationic charges do not prevent, but may even promote counterion-independent self-assembly which in turn leads to silica precipitation. Enzymatic phosphorylation, a common modification in native silica biomineralizing peptides, can be used to modify the precipitation activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Self-assembling of impurity clusters in AlN:(Ga, BV, CV), (BV, CV = P, As; P, Sb; As, Sb)

    NASA Astrophysics Data System (ADS)

    Elyukhin, V. A.

    2015-11-01

    The self-assembling conditions of arrays of tetrahedral impurity clusters of two types in zinc blende AlN:(Ga, BV, CV), (BV, CV = P, As; P, Sb; As, Sb) are represented. Doping with one cation and two anion isoelectronic impurities transforms AlN into AlN-rich GaxAl1-xBVyCVzN1-y-z alloy of GaBV, GaCV, GaN, AlBV, AlCV and AlN. The cause of self-assembling is the preference of GaBV, GaCV and AlN bonding over that of GaN, AlBV, AlCV. The conditions are considered from 0 °C to 1000 °C in the dilute and ultra dilute limits for the cation and anion impurities, correspondingly. The temperature ranges between the cluster occurrence and self-assembling completion when the same anion impurities are in clusters are very small. 1P4Ga and 1As4Ga cluster occurrence temperatures are equal, correspondingly, to 797 °C and 736 °C at Ga content 2% and P and As contents 0.01%. 1P4Ga and 1Sb4Ga cluster occurrence temperatures are equal, correspondingly, to 976 °C and 736 °C at the same impurity contents. The cluster densities in AlN:(Ga, As, Sb) are close to those in AlN:(Ga, P, Sb). The results demonstrate that studied semiconductors are promising materials to produce arrays of identical ∼1 nm low band gap objects of two types embedded in the wide band gap matrix.

  12. Holocene environmental change and development of the nutrient budget of histosols in North Iceland

    NASA Astrophysics Data System (ADS)

    Möckel, Susanne Claudia; Erlendsson, Egill; Gísladóttir, Guðrún

    2017-04-01

    Backround and aims: Little is known about vegetation changes in Icelandic peatlands in the context of soil chemical properties. By connecting soil chemical and physical characteristics with palaeobotanical data we examined interactions between climate, histosols, vegetation and land use during the Holocene. Methods: Exchangeable base cations, cation exchange capacity (CEC), base saturation (BS), and decomposition rates using carbon:nitrogen ratio (C:N) and von Post humification and soil physical properties were determined. Vegetation development was reconstructed based on pollen analysis. The impact of geographic location was examined by comparing results from three sloping fens (coastal, inland and highland fringe). Results: Minerogenic content was highest in the proximity of the active volcanic belt, reflected in higher C:N and nutrient content. The site closest to the sea revealed exceptionally high BS. C:N was either stable throughout the profile or increased with depth. Plant species richness, species evenness, and pollen concentrations were greatest at the site with lowest nutrient levels. Conclusions: Minerogenic content facilitates the ability to bind nutrients. Lower fertility levels optimize plant growth. C:N alone is not a reliable indicator of decomposition rates, but depends on the quality of the organic parent material. Environmental conditions driven by climate changes caused alterations in vegetation and soil properties before the settlement. Nevertheless, overall the histosols showed resilience towards severe degradation. After the settlement (c. AD 870), the soils struggled to buffer the impact caused by destruction of vegetation and increased erosion. This study increases our understanding of environmental and anthropogenic determinants of soil- and vegetation development.

  13. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    PubMed

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  14. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects.

    PubMed

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Rasera, Gabriela Boscariol; Canniatti-Brazaca, Solange Guidolin; do Prado-Silva, Leonardo; Alvarenga, Verônica Ortiz; Sant'Ana, Anderson S; Shahidi, Fereidoon

    2017-12-15

    Peanut skin (PS) and meal from dry-blanched peanuts (MDBP) were evaluated as sources of phenolic compounds. PS rendered the highest total phenolic content, antioxidant capacity towards ABTS radical cation, DPPH and hydroxyl radicals as well as reducing power. Phenolic acids were present in PS and MDBP whereas proanthocyanidins and monomeric flavonoids were found only in PS as identified by HPLC-DAD-ESI-MS n . Procyanidin-rich extracts prevented oxidation in non-irradiated and gamma-irradiated fish model system. Both extracts inhibited the growth of gram-positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Geobacillus stearothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli). Regardless of the strain, phenolic acid-rich extracts showed the lowest minimum inhibitory capacity (MIC); therefore presenting higher antibacterial effect. The MIC of phenolic acid-rich extracts (24-49μgphenolics/mL) was higher but comparable to Ampicillin (10μg/mL). Thus, phenolics in PS and MDBP may serve as antioxidants and antimicrobial compounds. Copyright © 2017. Published by Elsevier Ltd.

  15. Distinguishing Biologically Relevant Hexoses by Water Adduction to the Lithium-Cationized Molecule.

    PubMed

    Campbell, Matthew T; Chen, Dazhe; Wallbillich, Nicholas J; Glish, Gary L

    2017-10-03

    A method to distinguish the four most common biologically relevant underivatized hexoses, d-glucose, d-galactose, d-mannose, and d-fructose, using only mass spectrometry with no prior separation/derivatization step has been developed. Electrospray of a solution containing hexose and a lithium salt generates [Hexose+Li] + . The lithium-cationized hexoses adduct water in a quadrupole ion trap. The rate of this water adduction reaction can be used to distinguish the four hexoses. Additionally, for each hexose, multiple lithiation sites are possible, allowing for multiple structures of [Hexose+Li] + . Electrospray produces at least one structure that reacts with water and at least one that does not. The ratio of unreactive lithium-cationized hexose to total lithium-cationized hexose is unique for the four hexoses studied, providing a second method for distinguishing the isomers. Use of the water adduction reaction rate or the unreactive ratio provides two separate methods for confidently (p ≤ 0.02) distinguishing the most common biologically relevant hexoses using only femtomoles of hexose. Additionally, binary mixtures of glucose and fructose were studied. A calibration curve was created by measuring the reaction rate of various samples with different ratios of fructose and glucose. The calibration curve was used to accurately measure the percentage of fructose in three samples of high fructose corn syrup (<4% error).

  16. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2015-10-01

    The biotic ligand model (BLM) approach is used to assess metal toxicity, taking into account the competition of other cations with the free metal ions for binding to the biotic ligand sites of aquatic and soil organisms. The bioavailable fraction of metals, represented by the free metal ion, is a better measure than the total concentration for assessing their potential risk to the environment. Because BLMs are relating toxicity to the fraction of biotic ligands occupied by the metal, they can be useful for investigating factors affecting metal bioaccumulation and toxicity. In the present review, the effects of major cations on the toxicity of metals to soil and aquatic organisms were comprehensively studied by performing a meta-analysis of BLM literature data. Interactions at the binding sites were shown to be species- and metal-specific. The main factors affecting the relationships between toxicity and conditional binding constants for metal binding at the biotic ligand appeared to be Ca(2+) , Mg(2+) , and protons. Other important characteristics of the exposure medium, such as levels of dissolved organic carbon and concentrations of other cations, should also be considered to obtain a proper assessment of metal toxicity to soil and aquatic organisms. © 2015 SETAC.

  17. Adjusting the introduction of cations (MA, Cs or Rb) to obtain highly efficient and stable perovskite solar cells based on (FAPbI3)0.9(FAPbBr3)0.1.

    PubMed

    Liu, Guozhen; Zheng, Haiying; Zhu, Liangzheng; Alsaedi, Ahmed; Hayat, Tasawar; Pan, Xu; Mo, Li'e; Dai, Songyuan

    2018-05-29

    Although power conversion efficiency (PCE) of perovskite solar cells (PSCs) has increased to 22.7%, the instability when exposed to moisture and heat hindered their further practical development. In this study, to gain highly efficient and stable perovskite component, MA, Cs and Rb cations are respectively introduced into the (FAPbI3)0.9(FAPbBr3)0.1 film which is rarely used due to the poor photovoltaic performance. The effects of different contents of MA, Cs or Rb cations on the performance of (FAPbI3)0.9(FAPbBr3)0.1 films and devices are systematically studied. The results show that the devices with Cs cation exhibit markedly improved photovoltaic performance and stability, attributing to the obviously enhanced quality of films and their intrinsic stability. The (FAPbI3)0.9(FAPbBr3)0.1 devices with 10% Cs obtain a PCE as high as 19.94%. More importantly, the unsealed devices retain about 80% and 90% of the initial PCE at 85 °C after 260 h and under 45±5% relative humidity (RH) after 1440 h, respectively, which are more brilliant than that with 15% MA and 5% Rb under the same condition. It indicates that a highly efficient and stable perovskite component has been achieved and the PSCs based on this component will expect to promote the further development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Water quality mapping and assessment, and weathering processes of selected aflaj in Oman.

    PubMed

    Ghrefat, Habes Ahmad; Jamarh, Ahmad; Al-Futaisi, Ahmed; Al-Abri, Badr

    2011-10-01

    There are more than 4,000 falaj (singular of a peculiar dug channel) distributed in different regions in Oman. The chemical characteristics of the water in 42 falaj were studied to evaluate the major ion chemistry; geochemical processes controlling water composition; and suitability of water for drinking, domestic, and irrigation uses. GIS-based maps indicate that the spatial distribution of chemical properties and concentrations vary within the same region and the different regions as well. The molar ratios of (Ca + Mg)/Total cations, (Na + K)/Total cations, (Ca + Mg)/(Na + K), (Ca + Mg)/(HCO₃ + SO₄), and Na/Cl reveal that the water chemistry of the majority of aflaj are dominated by carbonate weathering and evaporite dissolution, with minor contribution of silicate weathering. The concentrations of most of the elements were less than the permissible limits of Omani standards and WHO guidelines for drinking water and domestic use and do not generally pose any health and environmental problems. Some aflaj in ASH Sharqiyah and Muscat regions can be used for irrigation with slight to severe restriction because of the high levels of electrical conductivity, total dissolved solids, chloride, and sodium absorption ratio.

  19. Colloid, adhesive and release properties of nanoparticular ternary complexes between cationic and anionic polysaccharides and basic proteins like bone morphogenetic protein BMP-2.

    PubMed

    Petzold, R; Vehlow, D; Urban, B; Grab, A L; Cavalcanti-Adam, E A; Alt, V; Müller, M

    2017-03-01

    Herein we describe an interfacial local drug delivery system for bone morphogenetic protein 2 (BMP-2) based on coatings of polyelectrolyte complex (PEC) nanoparticles (NP). The application horizon is the functionalization of bone substituting materials (BSM) used for the therapy of systemic bone diseases. Nanoparticular ternary complexes of cationic and anionic polysaccharides and BMP-2 or two further model proteins, respectively, were prepared in dependence of the molar mixing ratio, pH value and of the cationic polysaccharide. As further proteins chymotrypsin (CHY) and papain (PAP) were selected, which served as model proteins for BMP-2 due to similar isoelectric points and molecular weights. As charged polysaccharides ethylenediamine modified cellulose (EDAC) and trimethylammonium modified cellulose (PQ10) were combined with cellulose sulphatesulfate (CS). Mixing diluted cationic and anionic polysaccharide and protein solutions according to a slight either anionic or cationic excess charge colloidal ternary dispersions formed, which were cast onto germanium model substrates by water evaporation. Dynamic light scattering (DLS) demonstrated, that these dispersions were colloidally stable for at least one week. Fourier Transform Infrared (FTIR) showed, that the cast protein loaded PEC NP coatings were irreversibly adhesive at the model substrate in contact to HEPES buffer and solely CHY, PAP and BMP-2 were released within long-term time scale. Advantageously, out of the three proteins BMP-2 showed the smallest initial burst and the slowest release kinetics and around 25% of the initial BMP-2 content were released within 14days. Released BMP-2 showed significant activity in the myoblast cells indicating the ability to regulate the formation of new bone. Therefore, BMP-2 loaded PEC NP are suggested as novel promising tool for the functionalization of BSM used for the therapy of systemic bone diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Using ultrasonic (US)-initiated template copolymerization for preparation of an enhanced cationic polyacrylamide (CPAM) and its application in sludge dewatering.

    PubMed

    Feng, Li; Liu, Shuang; Zheng, Huaili; Liang, Jianjun; Sun, Yongjun; Zhang, Shixin; Chen, Xin

    2018-06-01

    In this study, the ultrasonic (US)-initiated template copolymerization was employed to synthesize a novel cationic polyacrylamide (CPAM) characterized by a microblock structure using dimethyldiallylammonium chloride (DMDAAC) and acrylamide (AM) as monomers, and sodium polyacrylate (NaPAA) as template. The polymers structure property was analyzed by Fourier transform infrared spectroscopy (FT-IR), 1 H nuclear magnetic resonance spectroscopy ( 1 H NMR) and thermogravimetric analysis (TGA). The results showed that a novel cationic microblock structure was successfully synthesized in the template copolymer of DMDAAC and AM (TPADM). Meanwhile, the analysis result of association constant (M K ) provided powerful support for a I Zip-up (ZIP) template polymerization mechanism and the formation of the microblock structure. The factors affecting the polymerization were investigated, including ultrasonic power, ultrasonic time, monomer concentration, initiator concentration, m AM :m DMDAAC and n NaPAA :n DMDAAC . The sludge dewatering performance of the polymers was evaluated in terms of specific resistance to filtration (SRF), filter cake moisture content (FCMC), floc size (d 50 ) and fractal dimension (D f ). Flocculation mechanism was also analyzed and discussed. The sludge dewatering results revealed that the polymer with the novel microblock structure showed a more excellent flocculation performance than those with randomly distributed cationic units. A desirable flocculation performance with a SRF of 4.5 × 10 12  m kg -1 , FCMC of 73.1%, d 50 of 439.156 µm and D f of 1.490 were obtained at pH of 7.0, dosage of 40 mg L -1 and the molecular weight of 5.0 × 10 6  Da. The cationic microblock extremely enhanced the polymer charge neutralization and bridging ability, thus obtaining the excellent sludge dewatering performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Aluminium substitution in iron(II-III)-layered double hydroxides: Formation and cationic order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruby, Christian; Abdelmoula, Mustapha; Aissa, Rabha

    The formation and the modifications of the structural properties of an aluminium-substituted iron(II-III)-layered double hydroxide (LDH) of formula Fe{sub 4}{sup II}Fe{sub (2-6y)}{sup III}Al{sub 6y}{sup III} (OH){sub 12} SO{sub 4}, 8H{sub 2}O are followed by pH titration curves, Moessbauer spectroscopy and high-resolution X-ray powder diffraction using synchrotron radiation. Rietveld refinements allow to build a structural model for hydroxysulphate green rust, GR(SO{sub 4}{sup 2-}), i.e. y=0, in which a bilayer of sulphate anions points to the Fe{sup 3+} species. A cationic order is proposed to occur in both GR(SO{sub 4}{sup 2-}) and aluminium-substituted hydroxysulphate green rust when y<0.08. Variation of the cellmore » parameters and a sharp decrease in average crystal size and anisotropy are detected for an aluminium content as low as y=0.01. The formation of Al-GR(SO{sub 4}{sup 2-}) is preceded by the successive precipitation of Fe{sup III} and Al{sup III} (oxy)hydroxides. Adsorption of more soluble Al{sup III} species onto the initially formed ferric oxyhydroxide may be responsible for this slowdown of crystal growth. Therefore, the insertion of low aluminium amount (y{approx}0.01) could be an interesting way for increasing the surface reactivity of iron(II-III) LDH that maintains constant the quantity of the reactive Fe{sup II} species of the material. - Graphical abstract: (a) Crystallographical structure of sulphated green rust: SO{sub 4}{sup 2-} point to the Fe{sup 3+} cations (red) that form an ordered array with the Fe{sup 2+} cations (green). (b) Width and asymmetry of the synchrotron XRD peaks increase rapidly when some Al{sup 3+} species substitute the Fe{sup 3+} cations; z is molar ratio Al{sup 3+}/Fe{sup 3+}.« less

  2. The influence of cation exchange treatment on the final characteristics of red wines.

    PubMed

    Lasanta, Cristina; Caro, Ildefonso; Pérez, Luis

    2013-06-01

    Ion exchange technology has been applied to adjust the pH of red wine and improve its tartaric and oxidative stability. Ion exchange appears to be a useful technique to achieve these objectives. Regarding the effect of ion exchange on organoleptic characteristics and the quality of the obtained wines, a slight decrease in both anthocyanin and tannin contents was observed along with a small drop in the aromatic content. However, the treated wines had lower hue and higher colour intensity and gave better punctuations in the sensory evaluation. These results confirm that ion exchange is an interesting technique for application in red winemaking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Phytosociological study of the dwarf shrub heath of Simeonof Wilderness, Shumagin Islands, Southwestern Alaska

    USGS Publications Warehouse

    Daniels, F.J.A.; Talbot, S. S.; Looman, Talbot S.; Schofield, W.B.

    2004-01-01

    The maritime dwarf shrub heath vegetation of the Northern Pacific, Simeonof Island, Shumagin Islands, Southwestern Alaska, was studied according to the Braun-Blanquet approach. Based on 30 releve??s of 16 m2 that include vascular plants, bryophytes, and lichens, two new associations could be described belonging to the class Loiseleurio-Vaccinietea (order Rhododendro-Vaccinietalia): Rubo-Empetretum nigri and Carici-Empetretum nigri. The wind-sheltered Rubo-Empetretum nigri (alliance Phyllodoco-Vaccinion) mainly occurs in the lowlands on level terrain or sloping sites at lower foot slopes of mountains on deeper, mesic soil; this association is the zonal vegetation of the lowlands. Boreal, widespread and amphi-Beringian species are prominent in the distribution-type spectrum of the vascular plants. Two variants of Rubo-Empetretum nigri are described. A Geranium erianthum variant occurs on south-facing slopes and is rich in vascular plants species. A Plagiothecium undulatum variant is restricted to northern exposures and is rich in bryophytes and lichens. A Carici-Empetretum nigri (alliance Loiseleurio-Diapension) occurs on shallow soil on wind exposed sites at higher elevations in the mountains. It is very rich in lichen species of arctic-alpine distribution. Canonical correspondence analysis (CCA) suggests that altitude, nutrient content of the soil and exposition are the most important differential ecological factors. Soil depth, total carbon and nitrogen content, plant available phosphorus and all other measured cation contents are higher in Rubo-Empetretum than in Carici-Empetretum. Literature comparisons confirm the occurrence of both associations in other areas on the Southwest Alaska Peninsula and Aleutian Islands. Presumably both associations have an amphi-Beringian distribution. The syntaxonomy of boreal-montane dwarf shrub heaths and synecological aspects are briefly discussed. ?? 2004 Gebru??der Borntraeger.

  4. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate.

    PubMed

    Larsen, Erik H; Lobinski, Ryszard; Burger-Meÿer, Karin; Hansen, Marianne; Ruzik, Rafal; Mazurowska, Lena; Rasmussen, Peter Have; Sloth, Jens J; Scholten, Olga; Kik, Chris

    2006-07-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 microg g(-1) (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that gamma-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of gamma-glutamyl-Se-methyl-selenocysteine and gamma-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry.

  5. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  6. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes.

    PubMed

    Wang, Dawei; Kou, Ronghui; Ren, Yang; Sun, Cheng-Jun; Zhao, Hu; Zhang, Ming-Jian; Li, Yan; Huq, Ashifia; Ko, J Y Peter; Pan, Feng; Sun, Yang-Kook; Yang, Yong; Amine, Khalil; Bai, Jianming; Chen, Zonghai; Wang, Feng

    2017-10-01

    Nickel-rich layered transition metal oxides, LiNi 1- x (MnCo) x O 2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi 0.7 Mn 0.15 Co 0.15 O 2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dawei; Kou, Ronghui; Ren, Yang

    Nickel-rich layered transition metal oxides, LiNi 1-x(MnCo) xO 2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi 0.7Mn 0.15Co 0.15O 2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strongmore » temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs« less

  8. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes

    DOE PAGES

    Kusuma, Victor A.; Macala, Megan K.; Liu, Jian; ...

    2018-10-02

    Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less

  9. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusuma, Victor A.; Macala, Megan K.; Liu, Jian

    Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less

  10. Influence of cations on the partition behavior of perfluoroheptanoate (PFHpA) and perfluorohexanesulfonate (PFHxS) on wastewater sludge.

    PubMed

    Wang, Fei; Shih, Kaimin; Ma, Ruowei; Li, Xiao-yan

    2015-07-01

    The effects of different cations on the sorption behavior of PFHpA and PFHxS on two types of sludge were investigated in this study. The sodium and potassium ions did not significantly affect PFHpA and PFHxS sorption on different sludge. For calcium and magnesium, the sorption amount of PFAS increased with calcium and magnesium concentration increasing from 1 to 30 mM and then decreased with those increasing from 30 to 100 mM. The sorption level of PFHxS or PFHpA greatly increased with increasing Al3+ and Fe3+ cation concentrations due to the strong sorption and coagulation effects by the formation of aluminum hydroxide (or ferric hydroxide) colloids or precipitates. After the organics in sludge has been removed by thermal treatment, the PFAS sorption on sludge was greatly reduced. Such finding indicated that sorption to organic matter is more important for anionic PFASs than adsorption to mineral surfaces. However, due to the higher content of biological organics, a secondary activated sludge has higher affinity toward PFAS species than chemically enhanced primary treatment sludge. It indicated that the organic types in sludge were also crucial to the sorption levels of PFASs by sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-10-01

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca2+ and Mg2+) were more than 31-fold of that for monovalent cation (Na+ and K+). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X-100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment.

  12. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils

    NASA Astrophysics Data System (ADS)

    Farahani, Elham; Emami, Hojat; Keller, Thomas

    2018-01-01

    In this study, we investigated the impact of adding solutions with different potassium and sodium concentrations on dispersible clay, water retention characteristics, air permeability, and soil shrinkage behaviour using two agricultural soils from Switzerland with different clay content but similar organic carbon to clay ratio. Three different solutions (including only Na, only K, and the combination of both) were added to soil samples at three different cation ratio of soil structural stability levels, and the soil samples were incubated for one month. Our findings showed that the amount of readily dispersible clay increased with increasing Na concentrations and with increasing cation ratio of soil structural stability. The treatment with the maximum Na concentration resulted in the highest water retention and in the lowest shrinkage capacity. This was was associated with high amounts of readily dispersible clay. Air permeability generally increased during incubation due to moderate wetting and drying cycles, but the increase was negatively correlated with readily dispersible clay. Readily dispersible clay decreased with increasing K, while readily dispersible clay increased with increasing K in Iranian soil (Part I of our study). This can be attributed to the different clay mineralogy of the studied soils (muscovite in Part I and illite in Part II).

  13. Removal of calcium and magnesium ions from shale gas flowback water by chemically activated zeolite.

    PubMed

    Chang, Haiqing; Liu, Teng; He, Qiping; Li, Duo; Crittenden, John; Liu, Baicang

    2017-07-01

    Shale gas has become a new sweet spot of global oil and gas exploration, and the large amount of flowback water produced during shale gas extraction is attracting increased attention. Internal recycling of flowback water for future hydraulic fracturing is currently the most effective, and it is necessary to decrease the content of divalent cations for eliminating scaling and maintaining effectiveness of friction reducer. Zeolite has been widely used as a sorbent to remove cations from wastewater. This work was carried out to investigate the effects of zeolite type, zeolite form, activation chemical, activation condition, and sorption condition on removal of Ca 2+ and Mg 2+ from shale gas flowback water. Results showed that low removal of Ca 2+ and Mg 2+ was found for raw zeolite 4A and zeolite 13X, and the efficiency of the mixture of both zeolites was slightly higher. Compared with the raw zeolites, the zeolites after activation using NaOH and NaCl greatly improved the sorption performance, and there was no significant difference between dynamic activation and static activation. Dynamic sorption outperformed static sorption, the difference exceeding 40% and 7-70% for removal of Ca 2+ and Mg 2+ , respectively. Moreover, powdered zeolites outperformed granulated zeolites in divalent cation removal.

  14. Amphiphilically modified chitosan cationic nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    You, Jie; Li, Wenfeng; Yu, Chang; Zhao, Chengguang; Jin, Langping; Zhou, Yili; Xu, Xuzhong; Dong, Siyang; Lu, Xincheng; Wang, Ouchen

    2013-12-01

    A series of amphiphilic N-(2-hydroxy)propyl-3-trimethylammonium-chitosan-cholic acid (HPTA-CHI-CA) polymers were synthesized by grafting cholic acid (CA) and glycidyltrimethylammonium chloride onto chitosan. The self-assembly behavior of HPTA-CHI-CA was studied by fluorescence technique. The polymers were able to self-assemble into NPs in phosphate buffered saline with a critical aggregation concentration (CAC) in the range of 66-26 mg/L and the CAC decreased with the increasing of the degree of substitution (DS) of CA. The size of cationic HPTA-CHI-CA NPs ranges from 170 to 220 nm (PDI < 0.2). It was found that doxorubicin (DOX) could be encapsulated into HPTA-CHI-CA NPs based on self-assembly. The drug loading content and efficiency varies depending on the DS of CA and feeding ratio of DOX to polymer. In vitro release studies suggested that DOX released slowly from HPTA-CHI-CA NPs without any burst initial release. Besides, the confocal microscopic measurements indicated that DOX-HPTA-CHI-CA NPs could easily be uptaken by breast cancer (MCF-7) cells and release DOX in cytoplasm. Anti-tumor efficacy results showed that DOX-HPTA-CHI-CA NPs have a significant activity of inhibition MCF-7 cells growth. These results suggest cationic HPTA-CHI-CA may have great potential for anticancer drug delivery.

  15. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    DOE PAGES

    Wang, Dawei; Kou, Ronghui; Ren, Yang; ...

    2017-08-25

    Nickel-rich layered transition metal oxides, LiNi 1-x(MnCo) xO 2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi 0.7Mn 0.15Co 0.15O 2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strongmore » temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs« less

  16. Calorimetric and counterion binding studies of the interactions between micelles and ions. The observation of lyotropic series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, J.W.; Magid, L.J.

    1974-09-04

    Heats of transfer of a variety of salts from water to solutions of hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and sodium dodecyl sulfate (NaLS) were measured. Lyotropic series for both cations and anions were observed for all soaps, the series for the 2 cationic soaps being almost identical. The dependence of the observed heats of transfer for anions from H/sub 2/O to CTAB and DTAB solutions and for cations from H2O to NaLS solutions on the hydrated radii of the ions involved supports the contention that favorable binding of counterions depends on how closely they can approach the charged micellarmore » surfaces. It is clear that a lyotropic series similar to that existing for proteins exists for ion binding to micelles. The controlling factor in this binding seems to be the distance of closest approach of the ion to the micelle, although polarizable organic ions may be the exceptions. Chain length has little effect on binding. It is felt that the work discussed has established the usefulness of a calorimetric investigation and the use of ion-specific electrodes for characterizing surfactant systems containing more than one species of counterions. (37 refs.)« less

  17. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    DOE PAGES

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; ...

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less

  18. Comparative study of bending characteristics of ionic polymer actuators containing ionic liquids for modeling actuation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kunitomo; Sakamoto, Takumi; Tsuchitani, Shigeki; Asaka, Kinji

    2011-04-01

    Ionic polymer metal composites (IPMCs) that can operate in air have recently been developed by incorporating an ionic liquid in ionic polymers. To understand transduction in these composites, it is important to determine the role of the ionic liquid in the ionic polymer (Nafion®), to identify the counter cation, and to investigate the interaction of IPMCs with water vapor in the air. We used Fourier-transform infrared spectroscopy to analyze three Nafion® membranes, which were soaked in mixtures of water and an ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIBF4), 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6)). The results demonstrate that only cations (EMI+ and BMI+) in the ionic liquids are taken into the Nafion® membranes as counter ions and that the water content of the membranes in air is less than ˜4% that of Nafion® swollen with water. Based on the experimental results, a transduction model is proposed for an IPMC with an ionic liquid. In this model, bending is caused by local swelling due to the volume effect of the bulky counter cations. This model can explain 30-50% of the experimentally observed bending curvature.

  19. Influence of Oxygen Stoichiometry Variations on the Properties of CaMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Goehringer, Tyler; Yong, Grace; Otouloumougoye, Brenda; Keshavarz, Camron; Sharma, Prahash; Tanyi, E. Kevin; Schaefer, David; Kolagani, Rajeswari

    2013-03-01

    The family of alkaline-earth doped rare earth manganese oxides RE1-xAExMnO3 exhibit a rich variety of electronic phases depending on the cation stoichiometry. In thin films of these materials, the oxygen stoichiometry is also a variable, and together with cation stoichiometry is known to play a key role in determining the equilibrium phase. The cation and oxygen stoichiometry variations influence electrical and magnetic properties through changes in the mixed valence state of Mn, i.e. the ratio of Mn3+ to Mn4+ ions. CaMnO3 is one of the end members of this family with x =1. Stoichiometric CaMnO3 is a canted antiferromagnetic insulator with the Mn ion in the Mn4+ valence state. We will present our results on the effects of oxygen content variation on the structural, electrical, and magnetoresistive properties CaMnO3 thin films grown by Pulsed Laser Deposition. These results will be compared to the effects of oxygen stoichiometry variation in thin films of its doped counter-part La1-xCaxMnO3. We will also discuss surface morphology changes associated with variation in oxygen stoichiometry which may be associated with different surface terminations. We acknowledge support from the NSF grant ECCS 1128586 at Towson University.

  20. Cationic Contrast Agent Diffusion Differs Between Cartilage and Meniscus.

    PubMed

    Honkanen, Juuso T J; Turunen, Mikael J; Freedman, Jonathan D; Saarakkala, Simo; Grinstaff, Mark W; Ylärinne, Janne H; Jurvelin, Jukka S; Töyräs, Juha

    2016-10-01

    Contrast enhanced computed tomography (CECT) is a non-destructive imaging technique used for the assessment of composition and structure of articular cartilage and meniscus. Due to structural and compositional differences between these tissues, diffusion and distribution of contrast agents may differ in cartilage and meniscus. The aim of this study is to determine the diffusion kinematics of a novel iodine based cationic contrast agent (CA(2+)) in cartilage and meniscus. Cylindrical cartilage and meniscus samples (d = 6 mm, h ≈ 2 mm) were harvested from healthy bovine knee joints (n = 10), immersed in isotonic cationic contrast agent (20 mgI/mL), and imaged using a micro-CT scanner at 26 time points up to 48 h. Subsequently, normalized X-ray attenuation and contrast agent diffusion flux, as well as water, collagen and proteoglycan (PG) contents in the tissues were determined. The contrast agent distributions within cartilage and meniscus were different. In addition, the normalized attenuation and diffusion flux were higher (p < 0.05) in cartilage. Based on these results, diffusion kinematics vary between cartilage and meniscus. These tissue specific variations can affect the interpretation of CECT images and should be considered when cartilage and meniscus are assessed simultaneously.

  1. Hereditary stomatocytosis: association of low 2,3-diphosphoglycerate with increased cation pumping by the red cell.

    PubMed

    Wiley, J S; Cooper, R A; Adachi, K; Asakura, T

    1979-01-01

    The levels of glycolytic intermediates have been measured in red cells from patients with both overhydrated and dehydrated varieties of the hereditary stomatocytosis syndrome. Red cell 2,3-diphosphoglycerate was reduced by 33% below normal in all patients with either stomatocyte or target cell morphologies (i.e. over or under hydrated varieties respectively). The relative decrement in 2,3-diphosphoglycerate was even greater when abnormal cells were compared with control cells with similar reticulocytosis. Red cell ADP concentrations in stomatocytosis were significantly increased above normal but ATP concentrations were not significantly changed. Whole blood oxygen affinity in stomatocytosis was increased in proportion to the lowered content of diphosphoglycerate. Some new parameters of membrane transport in hereditary stomatocytosis have been measured. Platelet K+ and Na+ concentrations and platelet K+ permeability were normal in stomatocytosis. The number of 3H-uridine transport sites in stomatocytes were increased by 9-39% above normal and this increment was the same as the increment in red cell lipids (0-38%). Hereditary stomatocytes contain 2-10-fold more cation pumps than normal and the increased active cation pumping may explain the high ADP, the low 2,3-diphosphoglycerate concentration and the increased oxygen affinity in this syndrome.

  2. Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins

    PubMed Central

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219

  3. Spectroscopy `outside the box': Towards wider application of NMR to minerals and glasses with abundant paramagnetic cations - Fe, Ni, Co, and Cu silicates

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2017-12-01

    Since the early applications of solid-state NMR (Nuclear Magnetic Resonance) to silicates in the early 1980's, this powerful method has been widely applied to problems of short- to medium-range structure, particularly for materials in which order/disorder is critical, such as crystalline solid solutions, glasses, and even melts. However, almost all such work has been on materials with low (< a few %) contents of ions with unpaired electron spins. Such spins interact strongly with NMR-observed nuclear spins, and can cause severe line broadening and loss of information, in some cases making spectra nearly unobservable. Many groups of minerals with abundant, paramagnetic transition metals (notably Fe2+) and rare earth cations, as well as wide, petrologically important ranges of glass composition have thus been excluded. Inspired by in-depth NMR studies of 31P, 7Li, and other nuclides in lithium-transition metal oxide and phosphate battery materials (C. Grey and others), and with some serendipitous discovery plus persistence to look far outside of "normal" parameter space, we have recently shown that high resolution, structurally informative spectra can actually be obtained for silicate, oxide, and phosphate solid solutions with moderate (0.1 up to 10%) contents of paramagnetic cations such as Fe2+, Ni2+, Co2+ and REE3+. Very recently we have extended this to observe some of the first quantitative NMR spectra of silicate minerals in which a paramagnetic transition metal is the major cation, obtaining useful data for a series of Cu2+ silicates, fayalite (Fe2SiO4) and Ni- and Co- equivalents of diopside (CaMSi2O6). New data for glasses of the latter compositions may be the first such accurate results for any transition metal-rich glass. Although we are still far from a detailed theoretical understanding of these data, the spectra for the glasses are quite different from those of the crystals, suggesting the possibility of medium-range ordering and clustering of NiO and CoO-rich regions. If this conclusion holds up, it may have major implications for thermodynamic models of activities of such components in melts, which in turn are important for a number of geothermometers and barometers based on mineral-melt partitioning.

  4. Correlation of polyphenolic content with radical-scavenging capacity and anthelmintic effects of Rubus ulmifolius (Rosaceae) against Haemonchus contortus.

    PubMed

    Akkari, Hafidh; Hajaji, Soumaya; B'chir, Fatma; Rekik, Mourad; Gharbi, Mohamed

    2016-05-15

    Phenolic content, antioxidant and anthelmintic activities of herbal extracts are of particular interest to drug industry; plant extracts with significant anthelmintic activity have the potential to be used as alternatives to conventional chemical drugs. In the present study, Rubus ulmifolius fruit extracts obtained using solvents of increasing polarity (water, methanol, chloroform and hexane) were examined for their antioxidant and anthelmintic activities in correlation with their polyphenolic content. In vitro antioxidant activity of all extracts was carried out using free radical-scavenging activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethilenebenzotiazolin)-6-sulfonic acid (ABTS) radical cation. In vitro anthelmintic activities were investigated on the egg and adult worms of Haemonchus contortus from sheep in comparison to albendazole. Total polyphenol content of R. ulmifolius was higher in more polar extract, ranging from 64.5 in aqueous extract to 1.57 mg gallic acid equivalents per gram of dry weight (GAE/g DW) in hexanic extract. Likewise, highest amounts of flavonoids and condensed tannins were found in aqueous extract (28.06 mg QE/g and 7.42 mg CE/g DW, respectively) compared to hexanic extract (0.71 mg QE/g and 0.29 mg CE/g DW, respectively) (p<0.05). Both DPPH and ABTS antioxidant assays showed that all tested extracts possess free radical scavenging activity, while the inhibitory concentration 50% (IC50) range values were similar for both assays (2.13-45.54 μg/mL and 1.2-43.82 μg/mL, respectively). All plant extracts showed ovicidal activity at all tested concentrations. Fruit methanolic (IC50=2.76mg/mL) and aqueous (IC50=2.08 mg/mL) extracts showed higher inhibitory effects than chloroformic (IC50=7.62 mg/mL) and hexanic (IC50=12.93 mg/mL) extracts on egg hatching (p<0.05). There was a significant correlation of total polyphenol, flavonoids and tannins content with scavenging of either DPPH (r=0.722, 0.764 and 0.752, p<0.01, respectively) or ABTS radicals (r=0.893, 0.765 and 0.722, p<0.01, respectively) and with inhibition of egg hatching (r=0.874, 0.883 and 0.862, p<0.01, respectively). Highest inhibition of motility (100%) of worms was observed 8h post-exposure in aqueous and methanolic extract at 8 mg/mL. To our knowledge, these results depict for the first time that R. ulmifolius possesses in vitro anthelmintic properties. Published by Elsevier B.V.

  5. Determination of ephedrine alkaloids in botanicals and dietary supplements by HPLC-UV: collaborative study.

    PubMed

    Roman, Mark C

    2004-01-01

    An international collaborative study was conducted of a high-performance liquid chromatography (HPLC)-UV method for the determination of the major (ephedrine [EP] and pseudoephedrine [PS]) and minor (norephedrine [NE], norpseudoephedrine [NP], methylephedrine [ME], and methylpseudoephedrine [MP]) alkaloids in selected dietary supplements representative of the commercially available products. Ten collaborating laboratories determined the ephedrine-type alkaloid content in 8 blind replicate samples. Five products contained ephedra ground herb or ephedra extract. These 5 products included ground botanical raw material of Ephedra sinica, a common powdered extract of Ephedra sinica, a finished product containing only Ephedra sinica ground botanical raw material, a complex multicomponent dietary supplement containing Ma Huang, and a high-protein chocolate flavored drink mix containing Ma Huang extract. In addition, collaborating laboratories received a negative control and negative control spiked with ephedrine alkaloids at high and low levels for recovery studies. Test extracts were treated to solid-phase extraction using a strong-cation exchange column to help remove interferences. The HPLC analyses were performed on a polar-embedded phenyl column using UV detection at 210 nm. Repeatability relative standard deviations (RSDr) ranged from 0.64-3.0% for EP and 2.0-6.6% for PS, excluding the high protein drink mix. Reproducibility relative standard deviations (RSDR) ranged from 2.1-6.6% for EP and 9.0-11.4% for PS, excluding the high protein drink mix. Recoveries ranged from 84.7-87.2% for EP and 84.6-98.2% for PS. The data developed for the minor alkaloids are more variable with generally unsatisfactory HORRATS (i.e., >2). However, since these alkaloids generally add little to the total alkaloid content of the products, the method gives satisfactory results in measuring total alkaloid content (RSDr 0.85-3.13%; RSDR 2.03-10.97%, HORRAT 0.69-3.23, exclusive of the results from the high protein drink). On the basis of these results, the method is recommended for Official First Action for determination of EP and PS in dietary supplements exclusive of the high protein drinks.

  6. Geohydrology and ground-water quality at selected sites in Meade County, Kentucky, 1987-88

    USGS Publications Warehouse

    Mull, D.S.; Alexander, A.G.; Schultz, P.E.

    1989-01-01

    Meade County in north-central Kentucky is about 305 sq mi in size, and is underlain by thick beds of limestone and dolomite which are the principal sources of drinking water for about 8 ,500 residents. About half the area contains mature, karst terrain with abundant sinkholes, springs, and caves. Because of this karst terrain, groundwater is susceptible to rapid changes in water quality and contamination from human sources. Thirty-seven wells and 12 springs were selected as sampling points to characterize groundwater quality in the area. Water was analyzed for major anions and cations, nitrates, trace elements, and organic compounds. Water from selected sites was also analyzed for fecal species of coliform streptococci bacteria and total coliform content. Except for fluoride and lead, the water quality was within the range expected for carbonate aquifers.The fluoride content was significantly higher in water from wells than in water from springs. Concentrations of detectable lead ranged from 10 to 50 micrograms/L and had a median value of 7.5 microg/L. Dissolved solids ranged from 100 to 2,200 mg/L and the median value was 512 mg/L. Hardness ranged from 20 to 1,100 mg/L and the median value was 290 mg/L. Organic compounds detected by the gas chromatographic/flame ionization detection scans, did not indicate evidence of concentrations in excess of the current Federal drinking water standards. Analysis for specific organic compounds indicated that the presence of these compounds was associated with agricultural chemicals, usually pesticides. Total coliform content exceeded drinking water standards in water from all 12 springs and in 18 wells. Statistical analysis of the groundwater quality data indicates that the variance of the concentrations of fluoride and chloride may be attributed to the site type. There was strong correlation between hardness and dissolved solids, hardness and sulfate, and sulfate and dissolved solids. No apparent relations were detected between water quality and the geographic location of sampling sites. However, seasonal variations were detected in the concentrations of dissolved solids, hardness, and iron. (Lantz-PTT)

  7. Adsorption and transport of charged vs. neutral hydrophobic molecules at the membrane of murine erythroleukemia (MEL) cells.

    PubMed

    Zeng, Jia; Eckenrode, Heather M; Dai, Hai-Lung; Wilhelm, Michael J

    2015-03-01

    The adsorption and transport of hydrophobic molecules at the membrane surface of pre- and post-DMSO induced differentiated murine erythroleukemia (MEL) cells were examined by time- and wavelength-resolved second harmonic light scattering. Two medium (<600 Da) hydrophobic molecules, cationic malachite green (MG) and neutral bromocresol purple (BCP), were investigated. While it was observed that the MG cation adsorbs onto the surface of the MEL cell, neutral BCP does not. It is suggested that an electrostatic interaction between the opposite charges of the cation and the MEL cell surface is the primary driving force for adsorption. Comparisons of adsorption density and free energy, measured at different pH and cell morphology, indicate that the interaction is predominantly through sialic acid carboxyl groups. MG cation adsorption densities have been determined as (0.6±0.3)×10(6) μm(-2) on the surface of undifferentiated MEL cells, and (1.8±0.5)×10(7) μm(-2) on differentiated MEL cells, while the deduced adsorption free energies are effectively identical (ca. -10.9±0.1 and -10.8±0.1 kcal mol(-1), respectively). The measured MG densities indicate that the total number of surface carboxyl groups is largely conserved following differentiation, and therefore the density of carboxylic groups is much larger on the differentiated cell surface than the undifferentiated one. Finally, in contrast to synthetic liposomes and bacterial membranes, surface adsorbed MG cations are unable to traverse the MEL cell membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Highly efficient one-pot labeling of new phosphonium cations with fluorine-18 as potential PET agents for myocardial perfusion imaging.

    PubMed

    Zhao, Zuoquan; Yu, Qian; Mou, Tiantian; Liu, Chang; Yang, Wenjiang; Fang, Wei; Peng, Cheng; Lu, Jie; Liu, Yu; Zhang, Xianzhong

    2014-11-03

    Lipophilic cations such as phosphonium salts can accumulate in mitochondria of heart in response to the negative inner-transmembrane potentials. Two phosphonium salts [(18)F]FMBTP and [(18)F]mFMBTP were prepared and evaluated as potential myocardial perfusion imaging (MPI) agents in this study. The cations were radiolabeled via a simplified one-pot method starting from [(18)F]fluoride and followed by physicochemical property tests, in vitro cellular uptake assay, ex vivo mouse biodistribution, and in vivo rat microPET imaging. The total radiosynthesis time was less than 60 min including HPLC purification. The [(18)F] labeled compounds were obtained in high radiolabeling yield (∼50%) and good radiochemical purity (>99%). Both compounds were electropositive, and their log P values at pH 7.4 were 1.16 ± 0.003 (n = 3) and 1.05 ± 0.01 (n = 3), respectively. Both [(18)F]FMBTP and [(18)F]mFMBTP had high heart uptake (25.24 ± 2.97% ID/g and 31.02 ± 0.33% ID/g at 5 min postinjection (p.i.)) in mice with good retention (28.99 ± 3.54% ID/g and 26.82 ± 3.46% ID/g at 120 min p.i.). From the PET images in rats, the cations exhibited high myocardium uptake and fast clearance from liver and small intestine to give high-contrast images across all time points. These phosphonium cations were radiosynthesized via a highly efficient one-pot procedure for potential MPI offering high heart accumulation and rapid nontarget clearance.

  9. Impact of an intense rainfall event on soil properties following a wildfire in a Mediterranean environment (North-East Spain).

    PubMed

    Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Mataix-Solera, Jorge; Úbeda, Xavier

    2016-12-01

    Intense rainfall events after severe wildfires can have an impact on soil properties, above all in the Mediterranean environment. This study seeks to examine the immediate impact and the effect after a year of an intense rainfall event on a Mediterranean forest affected by a high severity wildfire. The work analyses the following soil properties: soil aggregate stability, total nitrogen, total carbon, organic and inorganic carbon, the C/N ratio, carbonates, pH, electrical conductivity, extractable calcium, magnesium, sodium, potassium, available phosphorous and the sodium and potassium adsorption ratio (SPAR). We sampled soils in the burned area before, immediately after and one year after the rainfall event. The results showed that the intense rainfall event did not have an immediate impact on soil aggregate stability, but a significant difference was recorded one year after. The intense precipitation did not result in any significant changes in soil total nitrogen, total carbon, inorganic carbon, the C/N ratio and carbonates during the study period. Differences were only registered in soil organic carbon. The soil organic carbon content was significantly higher after the rainfall than in the other sampling dates. The rainfall event did increase soil pH, electrical conductivity, major cations, available phosphorous and the SPAR. One year after the fire, a significant decrease in soil aggregate stability was observed that can be attributed to high SPAR levels and human intervention, while the reduction in extractable elements can be attributed to soil leaching and vegetation consumption. Overall, the intense rainfall event, other post-fire rainfall events and human intervention did not have a detrimental impact on soil properties in all probability owing to the flat plot topography. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 2− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 −–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 +–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 −–N and NH4 +–N was ~31.38% and ~20.50% for the contents of NO3 −–N and NH4 +–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  11. Ion Homeostasis in Chloroplasts under Salinity and Mineral Deficiency 1

    PubMed Central

    Schröppel-Meier, Gabriele; Kaiser, Werner M.

    1988-01-01

    Spinach (Spinacia oleracea var “Yates”) plants in hydroponic culture were exposed to stepwise increased concentrations of NaCl or NaNO3 up to a final concentration of 300 millimoles per liter, at constant Ca2+-concentration. Leaf cell sap and extracts from aqueously isolated spinach chloroplasts were analyzed for mineral cations, anions, amino acids, sugars, and quarternary ammonium compounds. Total osmolality of leaf sap and photosynthetic capacity of leaves were also measured. For comparison, leaf sap from salt-treated pea plants was also analyzed. Spinach plants under NaCl or NaNO3 salinity took up large amounts of sodium (up to 400 millimoles per liter); nitrate as the accompanying anion was taken up less (up to 90 millimoles per liter) than chloride (up to 450 millimoles per liter). Under chloride salinity, nitrate content in leaves decreased drastically, but total amino acid concentrations remained constant. This response was much more pronounced (and occurred at lower salt concentrations) in leaves from the glycophyte (pea, Pisum sativum var “Kleine Rheinländerin”) than from moderately salt-tolerant spinach. In spinach, sodium chloride or nitrate taken up into leaves was largely sequestered in the vacuoles; both salts induced synthesis of quarternary ammonium compounds, which were accumulated mainly in chloroplasts (and cytosol). This prevented impairment of metabolism, as indicated by an unchanged photosynthetic capacity of leaves. PMID:16666232

  12. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  13. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  14. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  15. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  16. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  17. Biochar affected by composting with farmyard manure.

    PubMed

    Prost, Katharina; Borchard, Nils; Siemens, Jan; Kautz, Timo; Séquaris, Jean-Marie; Möller, Andreas; Amelung, Wulf

    2013-01-01

    Biochar applications to soils can improve soil fertility by increasing the soil's cation exchange capacity (CEC) and nutrient retention. Because biochar amendment may occur with the applications of organic fertilizers, we tested to which extent composting with farmyard manure increases CEC and nutrient content of charcoal and gasification coke. Both types of biochar absorbed leachate generated during the composting process. As a result, the moisture content of gasification coke increased from 0.02 to 0.94 g g, and that of charcoal increased from 0.03 to 0.52 g g. With the leachate, the chars absorbed organic matter and nutrients, increasing contents of water-extractable organic carbon (gasification coke: from 0.09 to 7.00 g kg; charcoal: from 0.03 to 3.52 g kg), total soluble nitrogen (gasification coke: from not detected to 705.5 mg kg; charcoal: from 3.2 to 377.2 mg kg), plant-available phosphorus (gasification coke: from 351 to 635 mg kg; charcoal: from 44 to 190 mg kg), and plant-available potassium (gasification coke: from 6.0 to 15.3 g kg; charcoal: from 0.6 to 8.5 g kg). The potential CEC increased from 22.4 to 88.6 mmol kg for the gasification coke and from 20.8 to 39.0 mmol kg for the charcoal. There were little if any changes in the contents and patterns of benzene polycarboxylic acids of the biochars, suggesting that degradation of black carbon during the composting process was negligible. The surface area of the biochars declined during the composting process due to the clogging of micropores by sorbed compost-derived materials. Interactions with composting substrate thus enhance the nutrient loads but alter the surface properties of biochars. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Seasonal dynamics of total flavonoid contents and antioxidant activity of Dryopteris erythrosora.

    PubMed

    Xie, Yinghua; Zheng, Yunxia; Dai, Xiling; Wang, Quanxi; Cao, Jianguo; Xiao, Jianbo

    2015-11-01

    The seasonal dynamics of the total flavonoid contents in various parts of Dryopteris erythrosora, a traditional Chinese medicinal fern, and their antioxidant activity were investigated. The total flavonoids content in various parts of D. erythrosora showed an obvious seasonal dynamic change. The total flavonoid contents in stems (from 4.3% to 12.5%) were much higher than that in leaves with an average content of 2.01%. In spring, the total flavonoid contents in stems were relatively low, but increased rapidly from summer to winter. However, the seasonal dynamics of total flavonoid contents in leaves showed different model. The total flavonoid contents in the stems showed a negative correlation with that in the leaves from January to July. The correlation coefficient of about -0.7 was obtained. The antioxidant activity of the extracts also altered in proportion to the change of total flavonoid contents. In general, the extracts from stems always showed highest antioxidant potentials and it was suggested that the stems can be used as crude medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    PubMed

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  20. Atomic-level structural correlations across the morphotropic phase boundary of a ferroelectric solid solution: xBiMg 1/2Ti 1/2O 3-(1$-$x)PbTiO 3

    DOE PAGES

    Datta, Kaustuv; Neder, Reinhard B.; Chen, Jun; ...

    2017-03-28

    Revelation of unequivocal structural information at the atomic level for complex systems is uniquely important for deeper and generic understanding of the structure property connections and a key challenge in materials science. Here in this paper we report an experimental study of the local structure by applying total elastic scattering and Raman scattering analyses to an important non-relaxor ferroelectric solid solution exhibiting the so-called composition-induced morphotropic phase boundary (MPB), where concomitant enhancement of physical properties have been detected. The powerful combination of static and dynamic structural probes enabled us to derive direct correspondence between the atomic-level structural correlations and reportedmore » properties. The atomic pair distribution functions obtained from the neutron total scattering experiments were analysed through big-box atom-modelling implementing reverse Monte Carlo method, from which distributions of magnitudes and directions of off-centred cationic displacements were extracted. We found that an enhanced randomness of the displacement-directions for all ferroelectrically active cations combined with a strong dynamical coupling between the A- and B-site cations of the perovskite structure, can explain the abrupt amplification of piezoelectric response of the system near MPB. Finally, altogether this provides a more fundamental basis in inferring structure-property connections in similar systems including important implications in designing novel and bespoke materials.« less

  1. Biodistribution of charged 17.1A photoimmunoconjugates in a murine model of hepatic metastasis of colorectal cancer

    PubMed Central

    Hamblin, M R; Governatore, M Del; Rizvi, I; Hasan, T

    2000-01-01

    Optimizing photodynamic therapy involves attempting to increase both the absolute tumour content of photosensitizer and the selectivity between tumour and surrounding normal tissue. One reason why photodynamic therapy has not been considered suitable for treatment of metastatic tumours in the liver, is the poor selectivity of conventional photosensitizers for tumour compared to normal liver. This report details an alternative approach to increasing this selectivity by the use of antibody-targeted photosensitizers (or photoimmunoconjugates) to target intrahepatic tumours caused by human colorectal cancer cells in the nude mouse, and explores the role of molecular charge on the tumour-targeting efficiency of macromolecules. The murine monoclonal antibody 17.1A (which recognizes an antigen expressed on HT 29 cells) was used to prepare site-specific photoimmunoconjugates with the photosensitizer chlorine6. The conjugates had either a predominant cationic or anionic charge and were injected i.v. into tumour-bearing mice. Biodistribution 3 or 24 h later was measured by extraction of tissue samples and quantitation of chlorine6 content by fluorescence spectroscopy. The photoimmunoconjugates were compared to the polylysine conjugates in an attempt to define the effect of molecular charge as well as antibody targeting. The anionic 17.1A conjugate delivered more than twice as much photosensitizer to the tumour at 3 h than other species (5 times more than the cationic 17.1A conjugate) and had a tumour:normal liver ratio of 2.5. Tumour-to-liver ratios were greater than one for most compounds at 3 h but declined at 24 h. Tumour-to-skin ratios were high (> 38) for all conjugates but not for free chlorine6. Cationic species had a high uptake in the lungs compared to anionic species. The photoimmunoconjugates show an advantage over literature reports of other photosensitizers, which can result in tumour:normal liver ratios of less than 1. © 2000 Cancer Research Campaign http://www.bjcancer.com PMID:11076666

  2. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Density and Surface Tension

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; Lv, Xueming; Bai, Chenguang

    2018-03-01

    The effects of the Al2O3 concentration and Al2O3/SiO2 ratio on the density and surface tension of molten aluminosilicate CaO-SiO2-Al2O3-9 mass pct MgO-1 mass pct TiO2 slag were investigated at temperatures from 1723 K to 1823 K (1450 °C to 1550 °C) using the Archimedean method and the maximum bubble pressure (MBP) technique, respectively. The mechanism of the changes in density and surface tension with composition was analyzed from the viewpoint of the degree of polymerization in the structure and the types of oxygen species in the melts. At a fixed CaO/SiO2 ratio of 1.20, the density decreased with increasing Al2O3 content up to 25 mass pct, subsequently increasing. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.92 caused an increase in the density at a fixed CaO content, and the density decreased slightly when the Al2O3/SiO2 ratio was greater than 0.92. Based on the structural information, the density decreased when the Al2O3 content enhanced the network structure and increased when the (Q 2 + Q 3)/(Q 0 + Q 1) ratio and structural complexity decreased. The surface tension increased with increasing Al2O3 content and Al2O3/SiO2 ratio. On the one hand, the surface-active component of SiO2 decreased; on the other hand, the concentration of [AlO4]5- tetrahedra and metal cations that act as charge compensators increased at the melt surface. A model based on the anionic and cationic radii and the Butler equation was employed to predict the surface tension, and an iso-surface tension diagram was obtained at 1773 K (1500 °C).

  3. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Density and Surface Tension

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; Lv, Xueming; Bai, Chenguang

    2018-06-01

    The effects of the Al2O3 concentration and Al2O3/SiO2 ratio on the density and surface tension of molten aluminosilicate CaO-SiO2-Al2O3-9 mass pct MgO-1 mass pct TiO2 slag were investigated at temperatures from 1723 K to 1823 K (1450 °C to 1550 °C) using the Archimedean method and the maximum bubble pressure (MBP) technique, respectively. The mechanism of the changes in density and surface tension with composition was analyzed from the viewpoint of the degree of polymerization in the structure and the types of oxygen species in the melts. At a fixed CaO/SiO2 ratio of 1.20, the density decreased with increasing Al2O3 content up to 25 mass pct, subsequently increasing. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.92 caused an increase in the density at a fixed CaO content, and the density decreased slightly when the Al2O3/SiO2 ratio was greater than 0.92. Based on the structural information, the density decreased when the Al2O3 content enhanced the network structure and increased when the ( Q 2 + Q 3)/( Q 0 + Q 1) ratio and structural complexity decreased. The surface tension increased with increasing Al2O3 content and Al2O3/SiO2 ratio. On the one hand, the surface-active component of SiO2 decreased; on the other hand, the concentration of [AlO4]5- tetrahedra and metal cations that act as charge compensators increased at the melt surface. A model based on the anionic and cationic radii and the Butler equation was employed to predict the surface tension, and an iso-surface tension diagram was obtained at 1773 K (1500 °C).

  4. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    PubMed Central

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  5. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    PubMed

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  6. Tunnel Structured α-MnO 2 with Different Tunnel Cations (H + , K + , Ag + ) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry

    DOE PAGES

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo; ...

    2017-07-12

    α-MnO 2 type manganese dioxide is an interesting prospective cathode material for reversible lithium insertion owing to its cation accessible tunnels (0.46nm x 0.46nm), high voltage, and low cost. The tunneled structure is synthetically formed by the assistance of cations acting as structure directing agents where the cations may remain in the tunnel. The electrochemistry of this family of materials is strongly dependent on the morphological and physicochemical (i.e. surface area, crystallite size, and average manganese oxidation state) properties as well as tunnel occupancy. For this work, we prepared a set of materials Mn 8O 16·0.81H 2O, K 0.81Mn 8Omore » 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O with similar nanorod morphology, crystallite size, surface area, and tunnel water content. This set of samples allowed us to investigate the role of tunnel cations in the electrochemistry of α-MnO 2 type manganese dioxide in a lithium based environment while minimizing the effects of the other parameters. The electrochemistry was evaluated using cyclic voltammetry, galvanostatic cycling, rate capability, and galvanostatic intermittent titration type testing. Mn 8O 16·0.81H 2O showed higher loaded voltages, improved capacity retention, and higher specific energy relative to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O. After 100 cycles, Mn 8O 16·0.81H 2O delivered ~200% more capacity than Ag 1.33Mn 8O 16·0.95H 2O (64 vs. 129 mAh/g) and ~35% more capacity than K 0.81Mn 8O 16·0.78H 2O (85 vs. 129 mAh/g). Mn 8O 16·0.81H 2O also showed higher effective lithium diffusion coefficients (DLi+) and higher rate capability compared to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O suggesting faster Li+ ion diffusion in the absence of large metal tunnel cations.« less

  7. Tunnel Structured α-MnO 2 with Different Tunnel Cations (H + , K + , Ag + ) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo

    α-MnO 2 type manganese dioxide is an interesting prospective cathode material for reversible lithium insertion owing to its cation accessible tunnels (0.46nm x 0.46nm), high voltage, and low cost. The tunneled structure is synthetically formed by the assistance of cations acting as structure directing agents where the cations may remain in the tunnel. The electrochemistry of this family of materials is strongly dependent on the morphological and physicochemical (i.e. surface area, crystallite size, and average manganese oxidation state) properties as well as tunnel occupancy. For this work, we prepared a set of materials Mn 8O 16·0.81H 2O, K 0.81Mn 8Omore » 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O with similar nanorod morphology, crystallite size, surface area, and tunnel water content. This set of samples allowed us to investigate the role of tunnel cations in the electrochemistry of α-MnO 2 type manganese dioxide in a lithium based environment while minimizing the effects of the other parameters. The electrochemistry was evaluated using cyclic voltammetry, galvanostatic cycling, rate capability, and galvanostatic intermittent titration type testing. Mn 8O 16·0.81H 2O showed higher loaded voltages, improved capacity retention, and higher specific energy relative to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O. After 100 cycles, Mn 8O 16·0.81H 2O delivered ~200% more capacity than Ag 1.33Mn 8O 16·0.95H 2O (64 vs. 129 mAh/g) and ~35% more capacity than K 0.81Mn 8O 16·0.78H 2O (85 vs. 129 mAh/g). Mn 8O 16·0.81H 2O also showed higher effective lithium diffusion coefficients (DLi+) and higher rate capability compared to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O suggesting faster Li+ ion diffusion in the absence of large metal tunnel cations.« less

  8. Pre-Clinical and Clinical Investigation of the Impact of Obesity on Ovarian Cancer Pathogenesis

    DTIC Science & Technology

    2015-12-01

    Atorvastatin on the Endometrium of Endometrial Cancer Patients: A Pre-Operative Window Study May 2015- April 2016 $50,000 (total and direct costs... atorvastatin in endometrial cancer patients American Cancer Society Research Scholar Grant – RSG CCE 128826 Obesity, Cation-Selective Transporters and

  9. The effect of the ground water of three different locations on some morphometric measurements of broiler chicken in Jeddah-Saudi Arabia.

    PubMed

    El-Ghazaly, N; Bin Dohaish, E; Alsolamy, S

    2008-02-15

    In this study, the ground water from three different regions in Saudi Arabia; Hada El-Sham (G0), Om Al-Jood (G1) and El-Wazeria (G2) were tested to evaluate their suitability of using. For this purpose, the ground water were analysed and the physico-chemical characteristics were determined. The measured parameters were; pH, Total Dissolved Salts (TDS), Total Hardness (TH), Total Alkalinity (TA), cation (Na, K, Ca, Mg) and anion (NO3, SO4) concentrations. One hundred and currently from 21 day to six weeks broiler chicken were reared on the ground water of these locations and their morphometric measurements (body weight, feed and water consumption and feed assimilation) were recorded. From this study, it was noted that the ground water of G0 and G1 are very pure to be used in irrigation and drinking as they contain TDS less than 1100 ppm, whereas water of G2 cannot be used as the TDS value is 2650 ppm. However, the ground water of the three regions is not suitable for any kind of industry. Reared chicken in G0 were characterized by the highest growth rate despite of their lower rates of feed and water consumption. In G1, chicken had medium rates of growth and water consumption with higher rate of feed consumption. While chicken from G2 recorded the lowest growth rate and highest rate of water consumption due to the higher salt content of this water.

  10. Soil quality and soil degradation in agricultural loess soils in Central Europe - impacts of traditional small-scale and modernized large-scale agriculture

    NASA Astrophysics Data System (ADS)

    Schneider, Christian

    2017-04-01

    The study analyzes the impact of different farming systems on soil quality and soil degradation in European loess landscapes. The analyses are based on geo-chemical soil properties, landscape metrics and geomorphological indicators. The German Middle Saxonian Loess Region represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in large-scale high-input farming systems. The Polish Proszowice Plateau is still characterized by a traditional small-scale peasant agriculture. The research areas were analyzed on different scale levels combining GIS, field, and laboratory methods. A digital terrain classification was used to identify representative catchment basins for detailed pedological studies which were focused on soil properties that responded to soil management within several years, like pH-value, total carbon (TC), total nitrogen (TN), inorganic carbon (IC), soil organic carbon (TOC=TC-IC), hot-water extractable carbon (HWC), hot-water extractable nitrogen (HWN), total phosphorus, plant-available phosphorus (P), plant-available potassium (K) and the potential cation exchange capacity (CEC). The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.

  11. Synthesis of Bioactive Chlorogenic Acid-Silica Hybrid Materials via the Sol–Gel Route and Evaluation of Their Biocompatibility

    PubMed Central

    Pacifico, Severina

    2017-01-01

    Natural phenol compounds are gaining a great deal of attention because of their potential use as prophylactic and therapeutic agents in many diseases, as well as in applied science for their preventing role in oxidation deterioration. With the aim to synthetize new phenol-based materials, the sol–gel method was used to embed different content of the phenolic antioxidant chlorogenic acid (CGA) within silica matrices to obtain organic-inorganic hybrid materials. Fourier transform infrared (FTIR) measurements were used to characterize the prepared materials. The new materials were screened for their bioactivity and antioxidant potential. To this latter purpose, direct DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) methods were applied: radical scavenging capability appeared strongly dependent on the phenol amount in investigated hybrids, and became pronounced, mainly toward the ABTS radical cation, when materials with CGA content equal to 15 wt% and 20 wt% were analyzed. The in vitro biocompatibility of the synthetized materials was estimated by using the MTT assay towards fibroblast NIH 3T3 cells, human keratinocyte HaCaT cells, and the neuroblastoma SH-SY5Y cell line. As cell viability and morphology of tested cell lines seemed to be unaffected by new materials, the attenuated total reflectance (ATR)-FTIR method was applied to deeply measure the effects of the hybrids in the three different cell lines. PMID:28773198

  12. Synthesis of Bioactive Chlorogenic Acid-Silica Hybrid Materials via the Sol-Gel Route and Evaluation of Their Biocompatibility.

    PubMed

    Catauro, Michelina; Pacifico, Severina

    2017-07-21

    Natural phenol compounds are gaining a great deal of attention because of their potential use as prophylactic and therapeutic agents in many diseases, as well as in applied science for their preventing role in oxidation deterioration. With the aim to synthetize new phenol-based materials, the sol-gel method was used to embed different content of the phenolic antioxidant chlorogenic acid (CGA) within silica matrices to obtain organic-inorganic hybrid materials. Fourier transform infrared (FTIR) measurements were used to characterize the prepared materials. The new materials were screened for their bioactivity and antioxidant potential. To this latter purpose, direct DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) methods were applied: radical scavenging capability appeared strongly dependent on the phenol amount in investigated hybrids, and became pronounced, mainly toward the ABTS radical cation, when materials with CGA content equal to 15 wt% and 20 wt% were analyzed. The in vitro biocompatibility of the synthetized materials was estimated by using the MTT assay towards fibroblast NIH 3T3 cells, human keratinocyte HaCaT cells, and the neuroblastoma SH-SY5Y cell line. As cell viability and morphology of tested cell lines seemed to be unaffected by new materials, the attenuated total reflectance (ATR)-FTIR method was applied to deeply measure the effects of the hybrids in the three different cell lines.

  13. Standardization of the water heat carrier quality at Russian thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Larin, A. B.; Suslov, S. Yu.; Kirilina, A. V.

    2017-04-01

    The necessity of developing a new industry-specific standard of the heat carrier quality for the operating, newly commissioned, and prospective power-generating units of the thermal power plants is substantiated. The need of extending the scope of the automatic chemical monitoring and the possibility of indirect measurements of some basic standardized and diagnostic indices of the water chemistry using the specific conductance are shown. Investigations proved the possibility of automatic chemical monitoring of the phosphating of the drum boilers and quantitative control of potentially acidic impurities in the feed water in oncethrough boilers. The normative STO NP INVEL document developed at OAO VTI in 2009 is proposed as the basis for alterations and amendments. A new index, the total organic carbon, is introduced into this document. The standardized value of this index in the drum boiler feed water and steam is 100 μg/dm3. According to the above normative document, the scope of the chemical monitoring should be extended by measurements of the specific conductance of the direct and H-cation samples of both the feed and the boiler water. The content of chlorides should also be standardized. For the first time, normative restrictions are suggested on amine-containing water chemistry of the power-generating units with the combined cycle gas turbines. Flowcharts are proposed for pretreatment of the make-up water on the basis of low-mineralized natural waters with high organic substance contents, which reduces the oxidizability by 70-80%.

  14. Iron, transferrin and myelinogenesis

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Baron, B.; Guillou, F.

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  15. Functional Gene Differences in Soil Microbial Communities from Conventional, Low-Input, and Organic Farmlands

    PubMed Central

    Xue, Kai; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy; Robertson, Philip G.; Schmidt, Thomas M.

    2013-01-01

    Various agriculture management practices may have distinct influences on soil microbial communities and their ecological functions. In this study, we utilized GeoChip, a high-throughput microarray-based technique containing approximately 28,000 probes for genes involved in nitrogen (N)/carbon (C)/sulfur (S)/phosphorus (P) cycles and other processes, to evaluate the potential functions of soil microbial communities under conventional (CT), low-input (LI), and organic (ORG) management systems at an agricultural research site in Michigan. Compared to CT, a high diversity of functional genes was observed in LI. The functional gene diversity in ORG did not differ significantly from that of either CT or LI. Abundances of genes encoding enzymes involved in C/N/P/S cycles were generally lower in CT than in LI or ORG, with the exceptions of genes in pathways for lignin degradation, methane generation/oxidation, and assimilatory N reduction, which all remained unchanged. Canonical correlation analysis showed that selected soil (bulk density, pH, cation exchange capacity, total C, C/N ratio, NO3−, NH4+, available phosphorus content, and available potassium content) and crop (seed and whole biomass) variables could explain 69.5% of the variation of soil microbial community composition. Also, significant correlations were observed between NO3− concentration and denitrification genes, NH4+ concentration and ammonification genes, and N2O flux and denitrification genes, indicating a close linkage between soil N availability or process and associated functional genes. PMID:23241975

  16. Soil formation in the Tsauchab Valley, Namibia

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Bens, Oliver; Ramisch, Arne; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    The BMBF-funded project GeoArchives (Spaces) investigates soils and sediments in Southern Africa. A focus area lies on the Tsauchab Valley (Namibia), South of the Naukluft mountain range (24°26'40'' S, 16°10'40'' E). On a gently sloping alluvial fan facing East towards the river, the surface is characterized by a desert pavement covering soils used as farmland. The landscape units were mapped and the area at the lower slope of a hill was divided into three units: a rinsing surface and a gravel plain, separated by a channel. On these surfaces soil profiles were excavated. Profile description followed the German system (Bodenkundliche Kartieranleitung KA 5) and disturbed samples were taken at various depths and analysed in the lab. Undisturbed soil cores with a volume of 100 cm³ were taken just below the surface at a depth of ~1-6 cm. Lab analyses included texture and gravel content, colour, pH, electrical conductivity, carbonates, CNS, cation exchange capacity, pedogenic oxides, main and trace elements (XRF), and clay mineral distribution (XRD). Undisturbed samples were used to determine soil water retention curve, air permeability and bulk density. The profiles revealed moderately developed cambic soils rich in clay minerals and with total carbon contents ranging up to 1.8 %, bearing shrubs and after episodic rainfall a dense grass vegetation. Their genesis is discussed and interpreted in the context of the landscape and climate history of this semi-desert environment.

  17. Content of phenolic compounds and free polyamines in black chokeberry (Aronia melanocarpa) after application of polyamine biosynthesis regulators.

    PubMed

    Hudec, Jozef; Bakos, Dusan; Mravec, Dusan; Kobida, L'ubomír; Burdová, Maria; Turianica, Ivan; Hlusek, Jaroslav

    2006-05-17

    The total contents of anthocyanins, flavonoids, and phenolics in 60 samples of black chokeberries (Aronia melanocarpa), after treating with catabolites of polyamine biosynthesis (KPAb) and ornithine decarboxylase inhibitor, were analyzed spectrophotometrically, and quercetin and free polyamine contents were analyzed by RP-HPLC with UV detection. The average total contents of the individual substances and phenolic subgroups in control berries were as follows (mg x kg(-1)): anthocyanines, 6408; flavonoids, 664; phenolics, 37,600; quercetin, 349. KPAb decreased total contents of anthocyanines and phenolics only slightly but significantly increased the content of flavonoids. This caused an important change in the abundance of flavonoids in the pigment complex. The absolute content of quercetin was increased, but its ratio to flavonoids content was decreased. Ornithine decarboxylase inhibitor had a markedly different effect as it significantly increased total content of anthocyanins and total phenolics, inhibited the total content of free polyamines, and stimulated the processes of saccharides transformation to phenolic pigments.

  18. Energy value of paraquat-treated and resin-soaked lobolly pine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kossuth, S.V.; Roberts, D.R.; Huffman, J.B.

    1984-07-01

    With a basal injector, loblolly pines were treated with 5% paraquat cation (weight/weight basis) and harvested after 18 months. The resin acid, turpentine, moisture content (MC) and energy value were measured in three bolts of the stem. In bolt 1, the first 152 cm above the injection site, the increase in resin acids was 392% and in turpentine, 564%. Within the whole stem (the first two 152 cm bolts and the third bolt to a 7.6 cm inside-bark diameter) resin acids and turpentine increased 203 and 296% respectively. Moisture content was reduced 9%, 8%, and 8% in bolts 1, 2more » and 3, respectively. Turpentine from treated and untreated trees had an average heating value of 19,369 cal/g. When weighted for volume, net energy content was 7.8% greater for treated than control trees because of the increase in resin, including turpentine and the lowered MC.« less

  19. Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content.

    PubMed

    Huang, Chen; Wu, Xinxing; Huang, Yang; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2016-11-01

    The effect of prewashing process prior to the liquid hot water (LHW) pretreatment of high free ash content waste wheat straw (WWS) was investigated. It was found that prewashing process decreased the ash content of WWS greatly, from 29.48% to 9.82%. This contributed to the lower pH value of prehydrolyzate and higher xylan removal in the following LHW pretreatment. More importantly, the prewashing process effectively increased the cellulose enzymatic hydrolysis efficiency of pretreated WWS, from 53.04% to 84.15%. The acid buffering capacity (ABC) and cation exchange capacity (CEC) of raw and prewashed WWS were examined. The majority of free ash removal from WWS by prewashing resulted in the decrease of the ABC of the WWS from 211.74 to 61.81mmol/pH-kg, and potentially enhancing the efficiency of the follow-up LHW pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L.

    PubMed Central

    Nikalje, Ganesh C.; Variyar, P. S.; Joshi, M. V.; Nikam, T. D.

    2018-01-01

    Salinity is an important environmental constraint limiting plant productivity. Understanding adaptive responses of halophytes to high saline environments may offer clues to manage and improve salt stress in crop plants. We have studied physiological, biochemical and metabolic changes in a perennial, fast growing halophyte, Sesuvium portulacastrum under 0 mM (control), 150 mM (low salt, LS) and 500 mM (high salt, HS) NaCl treatments. The changes in growth, relative water content, cation, osmolyte accumulation, H2O2 and antioxidant enzyme activity (SOD, CAT and APX) were observed under different treatment conditions. A positive correlation was revealed for sodium ion accumulation with malondialdehyde (r2 = 0.77), proline (r2 = 0.88) and chlorophyll content (r2 = 0.82) under salt treatment while a negative correlation was observed with relative tissue water content (r2 = -0.73). The roots and leaves showed contrasting accumulation of potassium and sodium ions under LS treatment. Temporal and spatial study of sodium and potassium ion content indicated differential accumulation pattern in roots and leaves, and, high potassium levels in root. Higher H2O2 content was recorded in roots than leaves and the antioxidant enzyme activities also showed significant induction under salt treatment conditions. Gene expression profiling of sodium transporters, Sodium proton exchanger (NHX3), Vacuolar ATPase (vATPase) and Salt overly sensitive1 (SOS1) showed up regulation under salt stress after 6–24 hr of NaCl treatment. Metabolite changes in the salt stressed leaves showed increased accumulation of flavonoids (3,5-dihydroxy-6,4’-dimethoxy-flavone-7-O-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside], and3,5-dihydroxy-6,3’,4’-trimethoxy-flavone-7-O-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside] in both LS and HS treatments, while a glycolipid, 1-O-linolenyl-2-O-(palmitoyl)-3-O-galactopyranosyl glycerol, accumulated more in LS over HS treatments and control. The results suggest that differential spatial and temporal cation levels in roots and leaves, and accumulation of flavanoid and glycolipid could be responsible for salt adaptation of S. portulacastrum. PMID:29641593

  1. Structural changes and thermal stability of charged LiNixMnyCozO₂ cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy.

    PubMed

    Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan

    2014-12-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time-resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3̅m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3̅m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.

  2. The role of urban forest to reduce rain acid in urban industrial areas

    NASA Astrophysics Data System (ADS)

    Slamet, B.; Agustiarni, Y.; Hidayati; Basyuni, M.

    2018-03-01

    Urban forest has many functions mainly on improving the quality of the urban environment. One of the functions is to increase pH and reduce dangerous chemical content. The aim of the research is to find out the role of vegetation density of urban forest around the industrial area in reducing the acid rain. The condition of land cover was classified into four classes which are dense, medium, sparse and open area. The water of the throughfall and stemflow was taken from each type of land cover except in the open area. Parameters measured in this study are water acidity (pH), anion content (SO4 2- and NO3 -), cation content (Ca2+, Mg2+, and NH4 +) and electrical conductivity (EC). The results indicated that urban forest vegetation was able to increase the pH of rain water from 5.42 which is in an open area without vegetation to be 7.13 and 7.32 in dense and moderate vegetation cover by throughfall mechanism, respectively. Rain water acidity also decreased through stemflow mechanism with a pH ranged from 5.92 - 6.43. Urban forest vegetation decreased sulfate content (SO42-) from 528.67 mg/l in open area to 44 - 118 mg/l by throughfall mechanism and ranged from 90 to 366.67 mg/l through stemflow mechanism. Urban forest vegetation significantly decreased the rainwater nitrate content from 27 mg/l to 0.03 - 0.70 mg/l through the mechanism of throughfall and between 1.53 - 8.82 mg/l through the stemflow mechanism. Urban forest vegetation also increased the concentration of cations (NH4+, Ca2+, Mg2+, Na+) compared with open areas. Urban forest vegetation showed increased the electrical conductivity (EC) from 208.12 μmhos/cm to 344.67 - 902.17 μmhos/cm through the through fall mechanism and 937.67 - 1058.70 μmhos/cm through the stemflow mechanism. The study suggested that urban forests play a significant role in reducing rainwater acidity and improving the quality of rainwater that reached the soil surface.

  3. Structural changes and thermal stability of charged LiNi xMn yCo zO 2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy

    DOE PAGES

    Bak, Seong -Min; Hu, Enyuan; Zhou, Yongning; ...

    2014-11-24

    Thermal stability of charged LiNi xMn yCo zO 2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and themore » larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3¯m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3¯m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. As a result, this systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.« less

  4. Zn(1-x)MnxTe diluted magnetic semiconductor nanowires grown by molecular beam epitaxy.

    PubMed

    Zaleszczyk, Wojciech; Janik, Elzbieta; Presz, Adam; Dłuzewski, Piotr; Kret, Sławomir; Szuszkiewicz, Wojciech; Morhange, Jean-François; Dynowska, Elzbieta; Kirmse, Holm; Neumann, Wolfgang; Petroutchik, Aleksy; Baczewski, Lech T; Karczewski, Grzegorz; Wojtowicz, Tomasz

    2008-11-01

    It is shown that the growth of II-VI diluted magnetic semiconductor nanowires is possible by the catalytically enhanced molecular beam epitaxy (MBE). Zn(1-x)MnxTe NWs with manganese content up to x=0.60 were produced by this method. X-ray diffraction, Raman spectroscopy, and temperature dependent photoluminescence measurements confirm the incorporation of Mn(2+) ions in the cation substitutional sites of the ZnTe matrix of the NWs.

  5. Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis).

    PubMed

    Andolfo, Immacolata; Russo, Roberta; Manna, Francesco; Shmukler, Boris E; Gambale, Antonella; Vitiello, Giuseppina; De Rosa, Gianluca; Brugnara, Carlo; Alper, Seth L; Snyder, L Michael; Iolascon, Achille

    2015-10-01

    Dehydrated hereditary stomatocytosis (DHSt) is an autosomal dominant congenital hemolytic anemia with moderate splenomegaly and often compensated hemolysis. Affected red cells are characterized by a nonspecific cation leak of the red cell membrane, reflected in elevated sodium content, decreased potassium content, elevated MCHC and MCV, and decreased osmotic fragility. The majority of symptomatic DHSt cases reported to date have been associated with gain-of-function mutations in the mechanosensitive cation channel gene, PIEZO1. A recent study has identified two families with DHSt associated with a single mutation in the KCNN4 gene encoding the Gardos channel (KCa3.1), the erythroid Ca(2+) -sensitive K(+) channel of intermediate conductance, also expressed in many other cell types. We present here, in the second report of DHSt associated with KCNN4 mutations, two previously undiagnosed DHSt families. Family NA exhibited the same de novo missense mutation as that recently described, suggesting a hot spot codon for DHSt mutations. Family WO carried a novel, inherited missense mutation in the ion transport domain of the channel. The patients' mild hemolytic anemia did not improve post-splenectomy, but splenectomy led to no serious thromboembolic events. We further characterized the expression of KCNN4 in the mutated patients and during erythroid differentiation of CD34+ cells and K562 cells. We also analyzed KCNN4 expression during mouse embryonic development. © 2015 Wiley Periodicals, Inc.

  6. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States

    DOE PAGES

    Enriquez, Erik; Chen, Aiping; Harrell, Zach; ...

    2017-04-18

    Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less

  7. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Erik; Chen, Aiping; Harrell, Zach

    Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less

  8. Contrast-Enhanced CT using a Cationic Contrast Agent Enables Non-Destructive Assessment of the Biochemical and Biomechanical Properties of Mouse Tibial Plateau Cartilage

    PubMed Central

    Lakin, Benjamin A.; Patel, Harsh; Holland, Conor; Freedman, Jonathan D.; Shelofsky, Joshua S.; Snyder, Brian D.; Stok, Kathryn S.; Grinstaff, Mark W.

    2017-01-01

    Mouse models of osteoarthritis (OA) are commonly used to study the disease’s pathogenesis and efficacy of potential treatments. However, measuring the biochemical and mechanical properties of articular cartilage in these models currently requires destructive and time-consuming histology and mechanical testing. Therefore, we examined the feasibility of using contrast-enhanced CT (CECT) to rapidly and non-destructively image and assess the glycosaminoglycan (GAG) content. Using three ex vivo C57BL/6 mouse tibial plateaus, we determined the time required for the cationic contrast agent CA4+ to equilibrate in the cartilage. The whole-joint coefficient of friction (μ) of thirteen mouse knees (some digested with Chondroitenase ABC to introduce variation in GAG) was evaluated using a modified Stanton pendulum. For both the medial and lateral tibial plateau cartilage of these knees, linear regression was used to compare the equilibrium CECT attenuations to μ, as well as each side’s indentation equilibrium modulus (E) and Safranin-O determined GAG content. CA4+ equilibrated in the cartilage in 30.9 ± 0.95 min (mean ± SD, tau value of 6.17 ± 0.19 min). The mean medial and lateral CECT attenuation was correlated with μ (R2=0.69, p<0.05), and the individual medial and lateral CECT attenuations correlated with their respective GAG contents (R2≥0.63, p<0.05) and E (R2≥0.63, p<0.05). In conclusion, CECT using CA4+ is a simple, non-destructive technique for three-dimensional imaging of ex vivo mouse cartilage, and significant correlations between CECT attenuation and GAG, E, and μ are observed. PMID:26697956

  9. Empirical and mechanistic evaluation of NH4(+) release kinetic in calcareous soils.

    PubMed

    Ranjbar, F; Jalali, M

    2014-05-01

    Release, fixation, and distribution of ammonium (NH4(+)) as a source of nitrogen can play an important role in soil fertility and plant nutrition. In this study, ten surface soils, after addition of 1,000 mg NH4(+) kg(-1,) were incubated for 1 week at the field capacity moisture and 25 ± 2 °C temperature, and then NH4(+) release kinetic was investigated by sequential extractions with 10 mM CaCl2. Furthermore, NH4(+) distribution among three fractions, including water-soluble, exchangeable, and non-exchangeable, was determined in all soil samples. NH4(+) release was initially rapid followed by a slower reaction, and this was described well with the Elovich equation as an empirical model. The cumulative NH4(+) concentration released in spiked soil samples had a positive significant correlation with sand content and negative ones with pH, exchangeable Ca(2+)m and K(+), cation exchange capacity (CEC), equivalent calcium carbonate (ECC), and clay content. The cation exchange model in the PHREEQC program was successful in mechanistic simulation of the release trend of native and added NH4(+) in all control and spiked soil samples. The results of fractionation experiments showed that the non-exchangeable fraction in control and spiked soil samples was greater than that in water-soluble and exchangeable fractions. Soil properties, such as pH, exchangeable Ca(2+) and K(+), CEC, ECC, and contents of sand and clay, had significant influences on the distribution of NH4(+) among three measured fractions. This study indicated that both native and recently fixed NH4(+), added to soil through the application of fertilizers, were readily available for plant roots during 1 week after exposure.

  10. Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars.

    PubMed

    Kloss, Stefanie; Zehetner, Franz; Buecker, Jannis; Oburger, Eva; Wenzel, Walter W; Enders, Akio; Lehmann, Johannes; Soja, Gerhard

    2015-03-01

    Various biochar (BC) types have been investigated as soil amendment; however, information on their effects on trace element (TE) biogeochemistry in the soil-water-plant system is still scarce. In the present study, we determined aqua-regia (AR) and water-extractable TEs of four BC types (woodchips (WC), wheat straw (WS), vineyard pruning (VP), pyrolyzed at 525 °C, of which VP was also pyrolyzed at 400 °C) and studied their effects on TE concentrations in leachates and mustard (Sinapis alba L.) tissue in a greenhouse pot experiment. We used an acidic, sandy agricultural soil and a BC application rate of 3% (w/w). Our results show that contents and extractability of TEs in the BCs and effectuated changes of TE biogeochemistry in the soil-water-plant system strongly varied among the different BC types. High AR-digestable Cu was found in VP and high B contents in WC. WS had the highest impact on TEs in leachates showing increased concentrations of As, Cd, Mo, and Se, whereas WC application resulted in enhanced leaching of B. All BC types increased Mo and decreased Cu concentrations in the plant tissue; however, they showed diverging effects on Cu in the leachates with decreased concentrations for WC and WS, but increased concentrations for both VPs. Our results demonstrate that BCs may release TEs into the soil-water-plant system. A BC-induced liming effect in acidic soils may lead to decreased plant uptake of cationic TEs, including Pb and Cd, but may enhance the mobility of anionic TEs like Mo and As. We also found that BCs with high salt contents (e.g., straw-based BCs) may lead to increased mobility of both anionic and cationic TEs in the short term.

  11. Spatial distribution and vertical migration of (137)Cs in soils of Belgrade (Serbia) 25 years after the Chernobyl accident.

    PubMed

    Petrović, Jelena; Ćujić, Mirjana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan; Dragović, Snežana

    2013-06-01

    In this study, the specific activity of (137)Cs was determined by gamma-ray spectrometry in 72 surface soil samples and 11 soil profiles collected from the territory of Belgrade 25 years after the Chernobyl accident. Based on the data obtained the external effective gamma dose rates due to (137)Cs were assessed and geographically mapped. The influence of pedogenic factors (pH, specific electrical conductivity, cation exchange capacity, organic matter content, soil particle size and carbonate content) on the spatial and vertical distribution of (137)Cs in soil was estimated through Pearson correlations. The specific activity of (137)Cs in surface soil samples ranged from 1.00 to 180 Bq kg(-1), with a mean value of 29.9 Bq kg(-1), while in soil profiles they ranged from 0.90 to 58.0 Bq kg(-1), with a mean value of 15.3 Bq kg(-1). The mean external effective gamma dose at 1 m above the ground due to (137)Cs in the soil was calculated to be 1.96 nSv h(-1). Geographic mapping of the external effective gamma dose rates originating from (137)Cs revealed much higher dose rates in southern parts of Belgrade city and around the confluence of the Sava and Danube. Negative Pearson correlation coefficients were found between pH, cation exchange capacity and (137)Cs specific activity in surface soil. There were positive correlations between organic matter and (137)Cs specific activity in surface soil; and between specific electrical conductivity, organic matter, silt content and (137)Cs specific activity in soil profiles.

  12. Using the Rasch model as an objective and probabilistic technique to integrate different soil properties

    NASA Astrophysics Data System (ADS)

    Rebollo, Francisco J.; Jesús Moral García, Francisco

    2016-04-01

    Soil apparent electrical conductivity (ECa) is one of the simplest, least expensive soil measurements that integrates many soil properties affecting crop productivity, including, for instance, soil texture, water content, and cation exchange capacity. The ECa measurements obtained with a 3100 Veris sensor, operating in both shallow (0-30 cm), ECs, and deep (0-90 cm), ECd, mode, can be used as an additional and essential information to be included in a probabilistic model, the Rasch model, with the aim of quantifying the overall soil fertililty potential in an agricultural field. This quantification should integrate the main soil physical and chemical properties, with different units. In this work, the formulation of the Rasch model integrates 11 soil properties (clay, silt and sand content, organic matter -OM-, pH, total nitrogen -TN-, available phosphorus -AP- and potassium -AK-, cation exchange capacity -CEC-, ECd, and ECs) measured at 70 locations in a field. The main outputs of the model include a ranking of all soil samples according to their relative fertility potential and the unexpected behaviours of some soil samples and properties. In the case study, the considered soil variables fit the model reasonably, having an important influence on soil fertility, except pH, probably due to its homogeneity in the field. Moreover, ECd, ECs are the most influential properties on soil fertility and, on the other hand, AP and AK the less influential properties. The use of the Rasch model to estimate soil fertility potential (always in a relative way, taking into account the characteristics of the studied soil) constitutes a new application of great practical importance, enabling to rationally determine locations in a field where high soil fertility potential exists and establishing those soil samples or properties which have any anomaly; this information can be necessary to conduct site-specific treatments, leading to a more cost-effective and sustainable field management. Furthermore, from the measures of soil fertility potential at sampled locations, estimates can be computed using, for instance, a geostatistical algorithm, and these estimates can be utilized to map soil fertility potential and delineate with a rational basis the management zones in the field. Keywords: Rasch model; soil management; soil electrical conductivity; probabilistic algorithm.

  13. Nano-Al{sub 2}O{sub 3} multilayer film deposition on cotton fabrics by layer-by-layer deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugur, Sule S., E-mail: sule@mmf.sdu.edu.tr; Sariisik, Merih; Aktas, A. Hakan

    Highlights: {yields} Cationic charges were created on the cotton fibre surfaces with 2,3-epoxypropyltrimethylammonium chloride. {yields} Al{sub 2}O{sub 3} nanoparticles were deposited on the cotton fabrics by layer-by-layer deposition. {yields} The fabrics deposited with the Al{sub 2}O{sub 3} nanoparticles exhibit better UV-protection and significant flame retardancy properties. {yields} The mechanical properties were improved after surface film deposition. -- Abstract: Al{sub 2}O{sub 3} nanoparticles were used for fabrication of multilayer nanocomposite film deposition on cationic cotton fabrics by electrostatic self-assembly to improve the mechanical, UV-protection and flame retardancy properties of cotton fabrics. Cotton fabric surface was modified with a chemical reaction tomore » build-up cationic charge known as cationization. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy were used to verify the presence of deposited nanolayers. Air permeability, whiteness value, tensile strength, UV-transmittance and Limited Oxygen Index properties of cotton fabrics were analyzed before and after the treatment of Al{sub 2}O{sub 3} nanoparticles by electrostatic self-assemblies. It was proved that the flame retardancy, tensile strength and UV-transmittance of cotton fabrics can be improved by Al{sub 2}O{sub 3} nanoparticle additive through electrostatic self-assembly process.« less

  14. Water quality monitoring of Jialing-River in Chongqing using advanced ion chromatographic system.

    PubMed

    Tanaka, Kazuhiko; Shi, Chao-Hong; Nakagoshi, Nobukazu

    2012-04-01

    The water quality monitoring operation to evaluate the water quality of polluted river is an extremely important task for the river-watershed management/control based on the environmental policy. In this study, the novel, simple and convenient water quality monitoring of Jialing-River in Chongqing, China was carried out using an advanced ion chromatography (IC) consisting of ion-exclusion/cation-exchange chromatography (IEC/CEC) with conductivity detection for determining simultaneously the common anions such as SO4(2-), Cl(-), and NO3(-) and the cations such as Na+, NH4+, K+, Mg2+, and Ca2+, the ion-exclusion chromatography (IEC) with visible detection for determining simultaneously the nutrient components such as phosphate and silicate ions, and the IEC with the enhanced conductivity detection using a post column of K+-form cation-exchange resin for determining HCO3(-)-alkalinity as an inorganic-carbon source for biomass synthesis in biological reaction process under the aerobic conditions. According to the ionic balance theory between the total equivalent concentrations of anions and cations, the water quality evaluation of the Jialing-River waters taking at different sampling sites in Chongqing metropolitan area was carried out using the advanced IC system. As a result, the effectiveness of this novel water quality monitoring methodology using the IC system was demonstrated on the several practical applications to a typical biological sewage treatment plant on Jialing-River of Chongqing.

  15. Inorganic–organic hybrids presenting high basic center content: SBA-15 incorporation, toxic metals sorption and energetic behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Fernando J.V.E.; Melo, Maurício A.; Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br

    2013-03-15

    Highlights: ► Mesoporous SBA-15 silicas were organofunctionalized with new silylant agents. ► Thiocarbamate was used to enhance the silylating agent chains and basic centers. ► The synthesized pendant chains contain nitrogen and sulfur basic centers. ► The new hybrids sorb toxic cations from aqueous solutions with high efficiency. ► The thermodynamic data demonstrated favorable cation/basic center interactions. - Abstract: Mesoporous SBA-15 samples were organofunctionalized with mono, di- and tri-aminosilanes that previously reacted with thiocarbamide to enhance the organic chains and attach nitrogen and sulfur basic centers to the surface of the solids. These new organosilanes were synthesized through a non-solventmore » approach to reduce both cost and hazardous wastes. The high affinities for both hard and soft Lewis acids due to the combination of nitrogen and sulfur atoms attached to the same pendant chain enabled favorable sorption capacities for Cu{sup 2+}, Cd{sup 2+} and Pb{sup 2+} cations, with maximum capacities of 1.90, 3.48 and 5.30 mmol g{sup −1}, respectively, for the most efficient mesoporous silica. Microcalorimetric investigations allowed the calculation of the thermodynamic data at the solid/liquid interface. All Gibbs energy are negative as expected for spontaneous cation/basic center interactions and the positive entropic values from 49 ± 3 to 108 ± 5 J K{sup −1} mol{sup −1}, also reinforced this favorable interactive process in heterogeneous system. The designed organosilanes covalently bonded to the inorganic siliceous skeleton can be suggested as new materials for toxic metal removal from a wastewater with high efficiency.« less

  16. Effect of experimental variables onto Co(2+) and Sr(2+) sorption behavior in red mud-water suspensions.

    PubMed

    Milenković, Aleksandra S; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Živković, Ljiljana S; Vukelić, Nikola S

    2016-07-02

    The prospects of rinsed red mud (alumina production residue) utilization for liquid radioactive waste treatment have been investigated, with Co(2+) and Sr(2+) as model cations of radioactive elements. To evaluate the sorption effectiveness and corresponding binding mechanisms, the process was analyzed in batch conditions, by varying experimental conditions (pH, Co(2+) and Sr(2+) concentrations in single solutions and binary mixtures, contact time, and the concentration of competing cations and ligands common in liquid radioactive waste). Comparison of the Co(2+) and Sr(2+) sorption pH edges with the red mud isoelectric point has revealed that Co(2+) removal took place at both positive and negative red mud surface, while Sr(2+) sorption abruptly increased when the surface became negatively charged. The increase of initial cation content and pH resulted in increased equilibrium times and sorption capacity and decreased rate constants. From single metal solutions and various binary mixtures, Co(2+) was sorbed more efficiently and selectively than Sr(2+). While Sr(2+) sorption was reduced by coexisting cations in the order Al(3+) ≥ Ca(2+) >Na(+) ≥Cs(+), removal of Co(2+) was affected by Al(3+) species and complexing agents (EDTA and citrate). Desorption of Co(2+) was negligible in Ca(2+) and Sr(2+) containing media and in solutions with initial pH 4-7. Sr(2+) desorption was generally more pronounced, especially at low pH and in the presence of Co(2+). Collected macroscopic data signify that Co(2+) sorption by red mud minerals occurred via strong chemical bonds, while Sr(2+) was retained mainly by weaker ion-exchange or electrostatic interactions. Results indicate that the rinsed red mud represent an efficient, low-cost sorbent for Co(2+) and Sr(2+) immobilization.

  17. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    PubMed

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  18. Layered inorganic/organic mercaptopropyl pendant chain hybrid for chelating heavy cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macedo, Thais R.; Petrucelli, Giovanni C.; Pinto, Alane A.

    2011-12-15

    Graphical abstract: Crystalline lamellar silicate RUB-18 was immobilized with mercaptopropyl groups at the surface and then used as support for cadmium and lead removal from aqueous solutions. Highlights: Black-Right-Pointing-Pointer Synthetic methodology requires intercalation. Black-Right-Pointing-Pointer Organofunctionalized ilerite compound as sorbent. Black-Right-Pointing-Pointer Active mercaptopropyl groups remove cations. Black-Right-Pointing-Pointer High maximum sorption capacity for cadmium. -- Abstract: Heavy metal sorbents with uptake capacities for divalent cadmium and lead cation removal from aqueous solutions have been synthesized by grafting mercaptopropyltrimethoxysilane onto the surface of two different precursors obtained from lamellar ilerite, its acidic and the cetyltrimethylammonium exchanged forms. The organofunctionalization was carried out bymore » two different procedures: reflux and solvent evaporation methodologies. Elemental analysis data based on carbon content gave 1.37 and 3.53 mmol of organic pendant groups per gram of hybrid by the reflux method, when starting from acidic ilerite and the surfactant form. X-ray diffraction corroborated the maintenance of the original crystallinity. Infrared spectroscopy and nuclear magnetic resonance for {sup 29}Si and {sup 13}C nuclei are in agreement with the success of the proposed method. The sulfur basic centers attached to the lamellar structure are used to coordinate both cations at the solid/liquid interface. The isotherms were obtained through the batchwise process and the experimental data were adjusted to the Freundlich model. The maximum sorption capacities of 5.55 and 5.12 mmol g{sup -1} for lead and 6.10 and 7.10 mmol g{sup -1} for cadmium were obtained for organofunctionalized ilerite and its surfactant form, synthesized by reflux methodology. This behavior suggested that these hybrids could be employed as promising sorbents with a polluted system.« less

  19. Effects of cation contaminants in conductive TiO2 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, M. F.; Rhodes, W. W.

    1982-12-01

    Ten cation contaminants, namely Al, Ga, Co, Fe, Mg, Zn, Zr, Ca, Sr, and Ba were investigated for their effects on the electrical properties, microstructures, and discoloration of conductive TiO2 ceramics. It was found that Al, Ga, Co, Fe, and Mg cause discoloration and increase the electrical resistivity by a factor of 104 to 106 in Nb-doped TiO2 ceramics. The other dopants do not introduce such changes in TiO2. The electrical properties, microstructures, and discoloration were measured in specimens of AlxNb0.007Ti0.993-xO2 with 0≤x≤0.01. When the Al content exceeds a critical value, ranging from 0.48% at 1400 °C to 0.25% at 1200 °C, the electrical resistivities and grain size increase rapidly, and the specimen is discolored from the original black to an ivory white color. Color boundary migration induced by Al diffusion in Nb-doped TiO2 was quantitatively measured. From the kinetics of the boundary migration, the Al diffusivity (D) was calculated to be D=2.67 exp(-53.3 kcal/mole/RT) cm2/s in the temperature range of 1200 to 1400 °C. The rapid diffusion of the small cations, namely Al, Ga, Co, Fe, and Mg, results from an interstitial diffusion mechanism. However, other cations, having a radius larger than the interstitial channel (˜0.77 Å radius), cannot diffuse by this mechanism. Defect reactions are proposed to explain the increase in the electrical resistivity and microstructural changes due to Al diffusion. These defect reactions also show that the problem of acceptor contamination cannot be avoided by adding an excess quantity of donor dopant if the solubility of the donor is much less than that of the acceptor contaminant.

  20. Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration.

    PubMed

    Shovsky, Alexander; Varga, Imre; Makuska, Ricardas; Claesson, Per M

    2009-06-02

    The formation of complexes with stoichiometric (1:1) as well as nonstoichiometric (2:1) and (1:2) compositions between oppositely charged synthetic polyelectrolytes carrying strong ionic groups and significantly different molecular weights is reported in this contribution. Poly(sodium styrenesulfonate) (NaPSS) was used as polyanion, and a range of copolymers with various molar ratios of the poly(methacryloxyethyltrimethylammonium) chloride, poly(METAC), and the nonionic poly(ethylene oxide) ether methacrylate, poly(PEO45MEMA), were used as polycations. Formation and stability of PECs have been investigated by dynamic and static light scattering (LS), turbidity, and electrophoretic mobility measurements as a function of polyelectrolyte solution concentration, charge density of the cationic polyelectrolyte, and mixing ratio. The data obtained demonstrate that in the absence of PEO45 side chains the 100% charged polymer (polyMETAC) formed insoluble PECs with PSS that precipitate from solution when exact stoichiometry is achieved. In nonstoichiometric complexes (1:2) and (2:1) large colloidally stable aggregates were formed. The presence of even a relatively small amount of PEO45 side chains (25%) in the cationic copolymer was sufficient for preventing precipitation of the formed stoichiometric and nonstoichiometric complexes. These PEC's are sterically stabilized by the PEO45 chains. By further increasing the PEO45 side-chain content (50 and 75%) of the cationic copolymer, small, water-soluble molecular complexes could be formed. The data suggest that PSS molecules and the charged backbone of the cationic brush form a compact core, and with sufficiently high PEO45 chain density (above 25%) molecular complexes are formed that are stable over prolonged times.

Top