A Nonparametric Approach to Estimate Classification Accuracy and Consistency
ERIC Educational Resources Information Center
Lathrop, Quinn N.; Cheng, Ying
2014-01-01
When cut scores for classifications occur on the total score scale, popular methods for estimating classification accuracy (CA) and classification consistency (CC) require assumptions about a parametric form of the test scores or about a parametric response model, such as item response theory (IRT). This article develops an approach to estimate CA…
ERIC Educational Resources Information Center
Furey, William M.; Marcotte, Amanda M.; Hintze, John M.; Shackett, Caroline M.
2016-01-01
The study presents a critical analysis of written expression curriculum-based measurement (WE-CBM) metrics derived from 3- and 10-min test lengths. Criterion validity and classification accuracy were examined for Total Words Written (TWW), Correct Writing Sequences (CWS), Percent Correct Writing Sequences (%CWS), and Correct Minus Incorrect…
Analyzing thematic maps and mapping for accuracy
Rosenfield, G.H.
1982-01-01
Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by either the row totals or the column totals from the original classification error matrices. In hypothesis testing, when the results of tests of multiple sample cases prove to be significant, some form of statistical test must be used to separate any results that differ significantly from the others. In the past, many analyses of the data in this error matrix were made by comparing the relative magnitudes of the percentage of correct classifications, for either individual categories, the entire map or both. More rigorous analyses have used data transformations and (or) two-way classification analysis of variance. A more sophisticated step of data analysis techniques would be to use the entire classification error matrices using the methods of discrete multivariate analysis or of multiviariate analysis of variance.
Two Approaches to Estimation of Classification Accuracy Rate under Item Response Theory
ERIC Educational Resources Information Center
Lathrop, Quinn N.; Cheng, Ying
2013-01-01
Within the framework of item response theory (IRT), there are two recent lines of work on the estimation of classification accuracy (CA) rate. One approach estimates CA when decisions are made based on total sum scores, the other based on latent trait estimates. The former is referred to as the Lee approach, and the latter, the Rudner approach,…
NASA Astrophysics Data System (ADS)
Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.
2013-05-01
Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.
Schmidt, Robert L; Walker, Brandon S; Cohen, Michael B
2015-03-01
Reliable estimates of accuracy are important for any diagnostic test. Diagnostic accuracy studies are subject to unique sources of bias. Verification bias and classification bias are 2 sources of bias that commonly occur in diagnostic accuracy studies. Statistical methods are available to estimate the impact of these sources of bias when they occur alone. The impact of interactions when these types of bias occur together has not been investigated. We developed mathematical relationships to show the combined effect of verification bias and classification bias. A wide range of case scenarios were generated to assess the impact of bias components and interactions on total bias. Interactions between verification bias and classification bias caused overestimation of sensitivity and underestimation of specificity. Interactions had more effect on sensitivity than specificity. Sensitivity was overestimated by at least 7% in approximately 6% of the tested scenarios. Specificity was underestimated by at least 7% in less than 0.1% of the scenarios. Interactions between verification bias and classification bias create distortions in accuracy estimates that are greater than would be predicted from each source of bias acting independently. © 2014 American Cancer Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zbijewski, W., E-mail: wzbijewski@jhu.edu; Gang, G. J.; Xu, J.
2014-02-15
Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee withmore » intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a fixed iodine concentration of 5 mg/ml and reconstructions maximizing overall accuracy across the range of insert diameters, the minimum diameter classified with accuracy >80% was ∼15 mm for FBP and PLQ and ∼10 mm for PLTV, improving to ∼7 mm for FBP and PLQ and ∼3 mm for PLTV at 15.6 mGy. The results indicate similar performance for FBP and PLQ and showed improved classification accuracy with edge-preserving PLTV. A slight preference for increased smoothing of the HE data was found. DE CBCT discrimination of iodine and bone in the knee was demonstrated with FBP and PLTV at 6.2 mGy total dose. Conclusions: For iodine concentrations >5 mg/ml and detail size ∼20 mm, material classification accuracy of >90% was achieved in DE CBCT with both FBP and PL at total doses <10 mGy. Optimal performance was attained by selection of reconstruction parameters based on the differences in noise between HE and LE data, typically favoring stronger smoothing of the HE data, and by using penalties matched to the imaging task (e.g., edge-preserving PLTV in areas of uniform enhancement)« less
ANALYSIS OF A CLASSIFICATION ERROR MATRIX USING CATEGORICAL DATA TECHNIQUES.
Rosenfield, George H.; Fitzpatrick-Lins, Katherine
1984-01-01
Summary form only given. A classification error matrix typically contains tabulation results of an accuracy evaluation of a thematic classification, such as that of a land use and land cover map. The diagonal elements of the matrix represent the counts corrected, and the usual designation of classification accuracy has been the total percent correct. The nondiagonal elements of the matrix have usually been neglected. The classification error matrix is known in statistical terms as a contingency table of categorical data. As an example, an application of these methodologies to a problem of remotely sensed data concerning two photointerpreters and four categories of classification indicated that there is no significant difference in the interpretation between the two photointerpreters, and that there are significant differences among the interpreted category classifications. However, two categories, oak and cottonwood, are not separable in classification in this experiment at the 0. 51 percent probability. A coefficient of agreement is determined for the interpreted map as a whole, and individually for each of the interpreted categories. A conditional coefficient of agreement for the individual categories is compared to other methods for expressing category accuracy which have already been presented in the remote sensing literature.
Stinchfield, Randy; McCready, John; Turner, Nigel E; Jimenez-Murcia, Susana; Petry, Nancy M; Grant, Jon; Welte, John; Chapman, Heather; Winters, Ken C
2016-09-01
The DSM-5 was published in 2013 and it included two substantive revisions for gambling disorder (GD). These changes are the reduction in the threshold from five to four criteria and elimination of the illegal activities criterion. The purpose of this study was to twofold. First, to assess the reliability, validity and classification accuracy of the DSM-5 diagnostic criteria for GD. Second, to compare the DSM-5-DSM-IV on reliability, validity, and classification accuracy, including an examination of the effect of the elimination of the illegal acts criterion on diagnostic accuracy. To compare DSM-5 and DSM-IV, eight datasets from three different countries (Canada, USA, and Spain; total N = 3247) were used. All datasets were based on similar research methods. Participants were recruited from outpatient gambling treatment services to represent the group with a GD and from the community to represent the group without a GD. All participants were administered a standardized measure of diagnostic criteria. The DSM-5 yielded satisfactory reliability, validity and classification accuracy. In comparing the DSM-5 to the DSM-IV, most comparisons of reliability, validity and classification accuracy showed more similarities than differences. There was evidence of modest improvements in classification accuracy for DSM-5 over DSM-IV, particularly in reduction of false negative errors. This reduction in false negative errors was largely a function of lowering the cut score from five to four and this revision is an improvement over DSM-IV. From a statistical standpoint, eliminating the illegal acts criterion did not make a significant impact on diagnostic accuracy. From a clinical standpoint, illegal acts can still be addressed in the context of the DSM-5 criterion of lying to others.
Byun, Wonwoo; Lee, Jung-Min; Kim, Youngwon; Brusseau, Timothy A
2018-03-26
This study examined the accuracy of the Fitbit activity tracker (FF) for quantifying sedentary behavior (SB) and varying intensities of physical activity (PA) in 3-5-year-old children. Twenty-eight healthy preschool-aged children (Girls: 46%, Mean age: 4.8 ± 1.0 years) wore the FF and were directly observed while performing a set of various unstructured and structured free-living activities from sedentary to vigorous intensity. The classification accuracy of the FF for measuring SB, light PA (LPA), moderate-to-vigorous PA (MVPA), and total PA (TPA) was examined calculating Pearson correlation coefficients (r), mean absolute percent error (MAPE), Cohen's kappa ( k ), sensitivity (Se), specificity (Sp), and area under the receiver operating curve (ROC-AUC). The classification accuracies of the FF (ROC-AUC) were 0.92, 0.63, 0.77 and 0.92 for SB, LPA, MVPA and TPA, respectively. Similarly, values of kappa, Se, Sp and percentage of correct classification were consistently high for SB and TPA, but low for LPA and MVPA. The FF demonstrated excellent classification accuracy for assessing SB and TPA, but lower accuracy for classifying LPA and MVPA. Our findings suggest that the FF should be considered as a valid instrument for assessing time spent sedentary and overall physical activity in preschool-aged children.
Baltzer, Pascal A T; Dietzel, Matthias; Kaiser, Werner A
2013-08-01
In the face of multiple available diagnostic criteria in MR-mammography (MRM), a practical algorithm for lesion classification is needed. Such an algorithm should be as simple as possible and include only important independent lesion features to differentiate benign from malignant lesions. This investigation aimed to develop a simple classification tree for differential diagnosis in MRM. A total of 1,084 lesions in standardised MRM with subsequent histological verification (648 malignant, 436 benign) were investigated. Seventeen lesion criteria were assessed by 2 readers in consensus. Classification analysis was performed using the chi-squared automatic interaction detection (CHAID) method. Results include the probability for malignancy for every descriptor combination in the classification tree. A classification tree incorporating 5 lesion descriptors with a depth of 3 ramifications (1, root sign; 2, delayed enhancement pattern; 3, border, internal enhancement and oedema) was calculated. Of all 1,084 lesions, 262 (40.4 %) and 106 (24.3 %) could be classified as malignant and benign with an accuracy above 95 %, respectively. Overall diagnostic accuracy was 88.4 %. The classification algorithm reduced the number of categorical descriptors from 17 to 5 (29.4 %), resulting in a high classification accuracy. More than one third of all lesions could be classified with accuracy above 95 %. • A practical algorithm has been developed to classify lesions found in MR-mammography. • A simple decision tree consisting of five criteria reaches high accuracy of 88.4 %. • Unique to this approach, each classification is associated with a diagnostic certainty. • Diagnostic certainty of greater than 95 % is achieved in 34 % of all cases.
Cognitive-motivational deficits in ADHD: development of a classification system.
Gupta, Rashmi; Kar, Bhoomika R; Srinivasan, Narayanan
2011-01-01
The classification systems developed so far to detect attention deficit/hyperactivity disorder (ADHD) do not have high sensitivity and specificity. We have developed a classification system based on several neuropsychological tests that measure cognitive-motivational functions that are specifically impaired in ADHD children. A total of 240 (120 ADHD children and 120 healthy controls) children in the age range of 6-9 years and 32 Oppositional Defiant Disorder (ODD) children (aged 9 years) participated in the study. Stop-Signal, Task-Switching, Attentional Network, and Choice Delay tests were administered to all the participants. Receiver operating characteristic (ROC) analysis indicated that percentage choice of long-delay reward best classified the ADHD children from healthy controls. Single parameters were not helpful in making a differential classification of ADHD with ODD. Multinominal logistic regression (MLR) was performed with multiple parameters (data fusion) that produced improved overall classification accuracy. A combination of stop-signal reaction time, posterror-slowing, mean delay, switch cost, and percentage choice of long-delay reward produced an overall classification accuracy of 97.8%; with internal validation, the overall accuracy was 92.2%. Combining parameters from different tests of control functions not only enabled us to accurately classify ADHD children from healthy controls but also in making a differential classification with ODD. These results have implications for the theories of ADHD.
Das, Dev Kumar; Ghosh, Madhumala; Pal, Mallika; Maiti, Asok K; Chakraborty, Chandan
2013-02-01
The aim of this paper is to address the development of computer assisted malaria parasite characterization and classification using machine learning approach based on light microscopic images of peripheral blood smears. In doing this, microscopic image acquisition from stained slides, illumination correction and noise reduction, erythrocyte segmentation, feature extraction, feature selection and finally classification of different stages of malaria (Plasmodium vivax and Plasmodium falciparum) have been investigated. The erythrocytes are segmented using marker controlled watershed transformation and subsequently total ninety six features describing shape-size and texture of erythrocytes are extracted in respect to the parasitemia infected versus non-infected cells. Ninety four features are found to be statistically significant in discriminating six classes. Here a feature selection-cum-classification scheme has been devised by combining F-statistic, statistical learning techniques i.e., Bayesian learning and support vector machine (SVM) in order to provide the higher classification accuracy using best set of discriminating features. Results show that Bayesian approach provides the highest accuracy i.e., 84% for malaria classification by selecting 19 most significant features while SVM provides highest accuracy i.e., 83.5% with 9 most significant features. Finally, the performance of these two classifiers under feature selection framework has been compared toward malaria parasite classification. Copyright © 2012 Elsevier Ltd. All rights reserved.
Epithelial cancer detection by oblique-incidence optical spectroscopy
NASA Astrophysics Data System (ADS)
Garcia-Uribe, Alejandro; Balareddy, Karthik C.; Zou, Jun; Wang, Kenneth K.; Duvic, Madeleine; Wang, Lihong V.
2009-02-01
This paper presents a study on non-invasive detection of two common epithelial cancers (skin and esophagus) based on oblique incidence diffuse reflectance spectroscopy (OIDRS). An OIDRS measurement system, which combines fiber optics and MEMS technologies, was developed. In our pilot studies, a total number of 137 cases have been measured in-vivo for skin cancer detection and a total number of 20 biopsy samples have been measured ex-vivo for esophageal cancer detection. To automatically differentiate the cancerous cases from benign ones, a statistical software classification program was also developed. An overall classification accuracy of 90% and 100% has been achieved for skin and esophageal cancer classification, respectively.
Novianti, Putri W; Roes, Kit C B; Eijkemans, Marinus J C
2014-01-01
Classification methods used in microarray studies for gene expression are diverse in the way they deal with the underlying complexity of the data, as well as in the technique used to build the classification model. The MAQC II study on cancer classification problems has found that performance was affected by factors such as the classification algorithm, cross validation method, number of genes, and gene selection method. In this paper, we study the hypothesis that the disease under study significantly determines which method is optimal, and that additionally sample size, class imbalance, type of medical question (diagnostic, prognostic or treatment response), and microarray platform are potentially influential. A systematic literature review was used to extract the information from 48 published articles on non-cancer microarray classification studies. The impact of the various factors on the reported classification accuracy was analyzed through random-intercept logistic regression. The type of medical question and method of cross validation dominated the explained variation in accuracy among studies, followed by disease category and microarray platform. In total, 42% of the between study variation was explained by all the study specific and problem specific factors that we studied together.
Diagnosis of periodontal diseases using different classification algorithms: a preliminary study.
Ozden, F O; Özgönenel, O; Özden, B; Aydogdu, A
2015-01-01
The purpose of the proposed study was to develop an identification unit for classifying periodontal diseases using support vector machine (SVM), decision tree (DT), and artificial neural networks (ANNs). A total of 150 patients was divided into two groups such as training (100) and testing (50). The codes created for risk factors, periodontal data, and radiographically bone loss were formed as a matrix structure and regarded as inputs for the classification unit. A total of six periodontal conditions was the outputs of the classification unit. The accuracy of the suggested methods was compared according to their resolution and working time. DT and SVM were best to classify the periodontal diseases with a high accuracy according to the clinical research based on 150 patients. The performances of SVM and DT were found 98% with total computational time of 19.91 and 7.00 s, respectively. ANN had the worst correlation between input and output variable, and its performance was calculated as 46%. SVM and DT appeared to be sufficiently complex to reflect all the factors associated with the periodontal status, simple enough to be understandable and practical as a decision-making aid for prediction of periodontal disease.
NASA Astrophysics Data System (ADS)
Seo, Young Wook; Yoon, Seung Chul; Park, Bosoon; Hinton, Arthur; Windham, William R.; Lawrence, Kurt C.
2013-05-01
Salmonella is a major cause of foodborne disease outbreaks resulting from the consumption of contaminated food products in the United States. This paper reports the development of a hyperspectral imaging technique for detecting and differentiating two of the most common Salmonella serotypes, Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST), from background microflora that are often found in poultry carcass rinse. Presumptive positive screening of colonies with a traditional direct plating method is a labor intensive and time consuming task. Thus, this paper is concerned with the detection of differences in spectral characteristics among the pure SE, ST, and background microflora grown on brilliant green sulfa (BGS) and xylose lysine tergitol 4 (XLT4) agar media with a spread plating technique. Visible near-infrared hyperspectral imaging, providing the spectral and spatial information unique to each microorganism, was utilized to differentiate SE and ST from the background microflora. A total of 10 classification models, including five machine learning algorithms, each without and with principal component analysis (PCA), were validated and compared to find the best model in classification accuracy. The five machine learning (classification) algorithms used in this study were Mahalanobis distance (MD), k-nearest neighbor (kNN), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM). The average classification accuracy of all 10 models on a calibration (or training) set of the pure cultures on BGS agar plates was 98% (Kappa coefficient = 0.95) in determining the presence of SE and/or ST although it was difficult to differentiate between SE and ST. The average classification accuracy of all 10 models on a training set for ST detection on XLT4 agar was over 99% (Kappa coefficient = 0.99) although SE colonies on XLT4 agar were difficult to differentiate from background microflora. The average classification accuracy of all 10 models on a validation set of chicken carcass rinses spiked with SE or ST and incubated on BGS agar plates was 94.45% and 83.73%, without and with PCA for classification, respectively. The best performing classification model on the validation set was QDA without PCA by achieving the classification accuracy of 98.65% (Kappa coefficient=0.98). The overall best performing classification model regardless of using PCA was MD with the classification accuracy of 94.84% (Kappa coefficient=0.88) on the validation set.
A neural network approach for enhancing information extraction from multispectral image data
Liu, J.; Shao, G.; Zhu, H.; Liu, S.
2005-01-01
A back-propagation artificial neural network (ANN) was applied to classify multispectral remote sensing imagery data. The classification procedure included four steps: (i) noisy training that adds minor random variations to the sampling data to make the data more representative and to reduce the training sample size; (ii) iterative or multi-tier classification that reclassifies the unclassified pixels by making a subset of training samples from the original training set, which means the neural model can focus on fewer classes; (iii) spectral channel selection based on neural network weights that can distinguish the relative importance of each channel in the classification process to simplify the ANN model; and (iv) voting rules that adjust the accuracy of classification and produce outputs of different confidence levels. The Purdue Forest, located west of Purdue University, West Lafayette, Indiana, was chosen as the test site. The 1992 Landsat thematic mapper imagery was used as the input data. High-quality airborne photographs of the same Lime period were used for the ground truth. A total of 11 land use and land cover classes were defined, including water, broadleaved forest, coniferous forest, young forest, urban and road, and six types of cropland-grassland. The experiment, indicated that the back-propagation neural network application was satisfactory in distinguishing different land cover types at US Geological Survey levels II-III. The single-tier classification reached an overall accuracy of 85%. and the multi-tier classification an overall accuracy of 95%. For the whole test, region, the final output of this study reached an overall accuracy of 87%. ?? 2005 CASI.
An Evaluation of Item Response Theory Classification Accuracy and Consistency Indices
ERIC Educational Resources Information Center
Wyse, Adam E.; Hao, Shiqi
2012-01-01
This article introduces two new classification consistency indices that can be used when item response theory (IRT) models have been applied. The new indices are shown to be related to Rudner's classification accuracy index and Guo's classification accuracy index. The Rudner- and Guo-based classification accuracy and consistency indices are…
Zemp, Roland; Tanadini, Matteo; Plüss, Stefan; Schnüriger, Karin; Singh, Navrag B; Taylor, William R; Lorenzetti, Silvio
2016-01-01
Occupational musculoskeletal disorders, particularly chronic low back pain (LBP), are ubiquitous due to prolonged static sitting or nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration sensors to determine the accuracy of automatically identifying the user's sitting position by applying five different machine learning methods (Support Vector Machines, Multinomial Regression, Boosting, Neural Networks, and Random Forest). Forty-one subjects were requested to sit four times in seven different prescribed sitting positions (total 1148 samples). Sixteen force sensor values and the backrest angle were used as the explanatory variables (features) for the classification. The different classification methods were compared by means of a Leave-One-Out cross-validation approach. The best performance was achieved using the Random Forest classification algorithm, producing a mean classification accuracy of 90.9% for subjects with which the algorithm was not familiar. The classification accuracy varied between 81% and 98% for the seven different sitting positions. The present study showed the possibility of accurately classifying different sitting positions by means of the introduced instrumented office chair combined with machine learning analyses. The use of such novel approaches for the accurate assessment of chair usage could offer insights into the relationships between sitting position, sitting behaviour, and the occurrence of musculoskeletal disorders.
Activity classification using realistic data from wearable sensors.
Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka
2006-01-01
Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.
Calès, P; Boursier, J; Lebigot, J; de Ledinghen, V; Aubé, C; Hubert, I; Oberti, F
2017-04-01
In chronic hepatitis C, the European Association for the Study of the Liver and the Asociacion Latinoamericana para el Estudio del Higado recommend performing transient elastography plus a blood test to diagnose significant fibrosis; test concordance confirms the diagnosis. To validate this rule and improve it by combining a blood test, FibroMeter (virus second generation, Echosens, Paris, France) and transient elastography (constitutive tests) into a single combined test, as suggested by the American Association for the Study of Liver Diseases and the Infectious Diseases Society of America. A total of 1199 patients were included in an exploratory set (HCV, n = 679) or in two validation sets (HCV ± HIV, HBV, n = 520). Accuracy was mainly evaluated by correct diagnosis rate for severe fibrosis (pathological Metavir F ≥ 3, primary outcome) by classical test scores or a fibrosis classification, reflecting Metavir staging, as a function of test concordance. Score accuracy: there were no significant differences between the blood test (75.7%), elastography (79.1%) and the combined test (79.4%) (P = 0.066); the score accuracy of each test was significantly (P < 0.001) decreased in discordant vs. concordant tests. Classification accuracy: combined test accuracy (91.7%) was significantly (P < 0.001) increased vs. the blood test (84.1%) and elastography (88.2%); accuracy of each constitutive test was significantly (P < 0.001) decreased in discordant vs. concordant tests but not with combined test: 89.0 vs. 92.7% (P = 0.118). Multivariate analysis for accuracy showed an interaction between concordance and fibrosis level: in the 1% of patients with full classification discordance and severe fibrosis, non-invasive tests were unreliable. The advantage of combined test classification was confirmed in the validation sets. The concordance recommendation is validated. A combined test, expressed in classification instead of score, improves this rule and validates the recommendation of a combined test, avoiding 99% of biopsies, and offering precise staging. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.
2018-04-01
The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.
Lee, Jong Hoon; Jang, Hong Seok; Kim, Jun-Gi; Lee, Myung Ah; Kim, Dae Yong; Kim, Tae Hyun; Oh, Jae Hwan; Park, Sung Chan; Kim, Sun Young; Baek, Ji Yeon; Park, Hee Chul; Kim, Hee Cheol; Nam, Taek-Keun; Chie, Eui Kyu; Jung, Ji-Han; Oh, Seong Taek
2014-10-01
The reported overall accuracy of MRI in predicting the pathologic stage of nonirradiated rectal cancer is high. However, the role of MRI in restaging rectal tumors after neoadjuvant CRT is contentious. Thus, we evaluate the accuracy of restaging magnetic resonance imaging (MRI) for rectal cancer patients who receive preoperative chemoradiotherapy (CRT). We analyzed 150 patients with locally advanced rectal cancer (T3-4N0-2) who had received preoperative CRT. Pre-CRT MRI was performed for local tumor and nodal staging. All patients underwent restaging MRI followed by total mesorectal excision after the end of radiotherapy. The primary endpoint of the present study was to estimate the accuracy of post-CRT MRI as compared with pathologic staging. Pathologic T classification matched the post-CRT MRI findings in 97 (64.7%) of 150 patients. 36 (24.0%) of 150 patients were overstaged in T classification, and the concordance degree was moderate (k=0.33, p<0.01). Pathologic N classification matched the post-CRI MRI findings in 85 (56.6%) of 150 patients. 54 (36.0%) of 150 patients were overstaged in N classification. 26 patients achieved downstaging (ycT0-2N0) on restaging MRI after CRT. 23 (88.5%) of 26 patients who had been downstaged on MRI after CRT were confirmed on the pathological staging, and the concordance degree was good (k=0.72, p<0.01). Restaging MRI has low accuracy for the prediction of the pathologic T and N classifications in rectal cancer patients who received preoperative CRT. The diagnostic accuracy of restaging MRI is relatively high in rectal cancer patients who achieved clinical downstaging after CRT. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Android Malware Classification Using K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah
2017-08-01
Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.
NASA Astrophysics Data System (ADS)
Dondurur, Mehmet
The primary objective of this study was to determine the degree to which modern SAR systems can be used to obtain information about the Earth's vegetative resources. Information obtainable from microwave synthetic aperture radar (SAR) data was compared with that obtainable from LANDSAT-TM and SPOT data. Three hypotheses were tested: (a) Classification of land cover/use from SAR data can be accomplished on a pixel-by-pixel basis with the same overall accuracy as from LANDSAT-TM and SPOT data. (b) Classification accuracy for individual land cover/use classes will differ between sensors. (c) Combining information derived from optical and SAR data into an integrated monitoring system will improve overall and individual land cover/use class accuracies. The study was conducted with three data sets for the Sleeping Bear Dunes test site in the northwestern part of Michigan's lower peninsula, including an October 1982 LANDSAT-TM scene, a June 1989 SPOT scene and C-, L- and P-Band radar data from the Jet Propulsion Laboratory AIRSAR. Reference data were derived from the Michigan Resource Information System (MIRIS) and available color infrared aerial photos. Classification and rectification of data sets were done using ERDAS Image Processing Programs. Classification algorithms included Maximum Likelihood, Mahalanobis Distance, Minimum Spectral Distance, ISODATA, Parallelepiped, and Sequential Cluster Analysis. Classified images were rectified as necessary so that all were at the same scale and oriented north-up. Results were analyzed with contingency tables and percent correctly classified (PCC) and Cohen's Kappa (CK) as accuracy indices using CSLANT and ImagePro programs developed for this study. Accuracy analyses were based upon a 1.4 by 6.5 km area with its long axis east-west. Reference data for this subscene total 55,770 15 by 15 m pixels with sixteen cover types, including seven level III forest classes, three level III urban classes, two level II range classes, two water classes, one wetland class and one agriculture class. An initial analysis was made without correcting the 1978 MIRIS reference data to the different dates of the TM, SPOT and SAR data sets. In this analysis, highest overall classification accuracy (PCC) was 87% with the TM data set, with both SPOT and C-Band SAR at 85%, a difference statistically significant at the 0.05 level. When the reference data were corrected for land cover change between 1978 and 1991, classification accuracy with the C-Band SAR data increased to 87%. Classification accuracy differed from sensor to sensor for individual land cover classes, Combining sensors into hypothetical multi-sensor systems resulted in higher accuracies than for any single sensor. Combining LANDSAT -TM and C-Band SAR yielded an overall classification accuracy (PCC) of 92%. The results of this study indicate that C-Band SAR data provide an acceptable substitute for LANDSAT-TM or SPOT data when land cover information is desired of areas where cloud cover obscures the terrain. Even better results can be obtained by integrating TM and C-Band SAR data into a multi-sensor system.
Prakash, Bhaskaran David; Esuvaranathan, Kesavan; Ho, Paul C; Pasikanti, Kishore Kumar; Chan, Eric Chun Yong; Yap, Chun Wei
2013-05-21
A fully automated and computationally efficient Pearson's correlation change classification (APC3) approach is proposed and shown to have overall comparable performance with both an average accuracy and an average AUC of 0.89 ± 0.08 but is 3.9 to 7 times faster, easier to use and have low outlier susceptibility in contrast to other dimensional reduction and classification combinations using only the total ion chromatogram (TIC) intensities of GC/MS data. The use of only the TIC permits the possible application of APC3 to other metabonomic data such as LC/MS TICs or NMR spectra. A RapidMiner implementation is available for download at http://padel.nus.edu.sg/software/padelapc3.
ERIC Educational Resources Information Center
Montoye, Alexander H. K.; Pivarnik, James M.; Mudd, Lanay M.; Biswas, Subir; Pfeiffer, Karin A.
2016-01-01
The purpose of this article is to compare accuracy of activity type prediction models for accelerometers worn on the hip, wrists, and thigh. Forty-four adults performed sedentary, ambulatory, lifestyle, and exercise activities (14 total, 10 categories) for 3-10 minutes each in a 90-minute semi-structured laboratory protocol. Artificial neural…
Sugimoto, Katsutoshi; Shiraishi, Junji; Moriyasu, Fuminori; Doi, Kunio
2009-04-01
To develop a computer-aided diagnostic (CAD) scheme for classifying focal liver lesions (FLLs) by use of physicians' subjective classification of echogenic patterns of FLLs on baseline and contrast-enhanced ultrasonography (US). A total of 137 hepatic lesions in 137 patients were evaluated with B-mode and NC100100 (Sonazoid)-enhanced pulse-inversion US; lesions included 74 hepatocellular carcinomas (HCCs) (23: well-differentiated, 36: moderately differentiated, 15: poorly differentiated HCCs), 33 liver metastases, and 30 liver hemangiomas. Three physicians evaluated single images at B-mode and arterial phases with a cine mode. Physicians were asked to classify each lesion into one of eight B-mode and one of eight enhancement patterns, but did not make a diagnosis. To classify five types of FLLs, we employed a decision tree model with four decision nodes and four artificial neural networks (ANNs). The results of the physicians' pattern classifications were used successively for four different ANNs in making decisions at each of the decision nodes in the decision tree model. The classification accuracies for the 137 FLLs were 84.8% for metastasis, 93.3% for hemangioma, and 98.6% for all HCCs. In addition, the classification accuracies for histological differentiation types of HCCs were 65.2% for well-differentiated HCC, 41.7% for moderately differentiated HCC, and 80.0% for poorly differentiated HCC. This CAD scheme has the potential to improve the diagnostic accuracy of liver lesions. However, the accuracy in the histologic differential diagnosis of HCC based on baseline and contrast-enhanced US is still limited.
Variance approximations for assessments of classification accuracy
R. L. Czaplewski
1994-01-01
Variance approximations are derived for the weighted and unweighted kappa statistics, the conditional kappa statistic, and conditional probabilities. These statistics are useful to assess classification accuracy, such as accuracy of remotely sensed classifications in thematic maps when compared to a sample of reference classifications made in the field. Published...
NASA Astrophysics Data System (ADS)
Kamal, Muhammad; Johansen, Kasper
2017-10-01
Effective mangrove management requires spatially explicit information of mangrove tree crown map as a basis for ecosystem diversity study and health assessment. Accuracy assessment is an integral part of any mapping activities to measure the effectiveness of the classification approach. In geographic object-based image analysis (GEOBIA) the assessment of the geometric accuracy (shape, symmetry and location) of the created image objects from image segmentation is required. In this study we used an explicit area-based accuracy assessment to measure the degree of similarity between the results of the classification and reference data from different aspects, including overall quality (OQ), user's accuracy (UA), producer's accuracy (PA) and overall accuracy (OA). We developed a rule set to delineate the mangrove tree crown using WorldView-2 pan-sharpened image. The reference map was obtained by visual delineation of the mangrove tree crowns boundaries form a very high-spatial resolution aerial photograph (7.5cm pixel size). Ten random points with a 10 m radius circular buffer were created to calculate the area-based accuracy assessment. The resulting circular polygons were used to clip both the classified image objects and reference map for area comparisons. In this case, the area-based accuracy assessment resulted 64% and 68% for the OQ and OA, respectively. The overall quality of the calculation results shows the class-related area accuracy; which is the area of correctly classified as tree crowns was 64% out of the total area of tree crowns. On the other hand, the overall accuracy of 68% was calculated as the percentage of all correctly classified classes (tree crowns and canopy gaps) in comparison to the total class area (an entire image). Overall, the area-based accuracy assessment was simple to implement and easy to interpret. It also shows explicitly the omission and commission error variations of object boundary delineation with colour coded polygons.
Ramsey, Elijah W.; Nelson, Gene A.; Sapkota, Sijan
1998-01-01
A progressive classification of a marsh and forest system using Landsat Thematic Mapper (TM), color infrared (CIR) photograph, and ERS-1 synthetic aperture radar (SAR) data improved classification accuracy when compared to classification using solely TM reflective band data. The classification resulted in a detailed identification of differences within a nearly monotypic black needlerush marsh. Accuracy percentages of these classes were surprisingly high given the complexities of classification. The detailed classification resulted in a more accurate portrayal of the marsh transgressive sequence than was obtainable with TM data alone. Individual sensor contribution to the improved classification was compared to that using only the six reflective TM bands. Individually, the green reflective CIR and SAR data identified broad categories of water, marsh, and forest. In combination with TM, SAR and the green CIR band each improved overall accuracy by about 3% and 15% respectively. The SAR data improved the TM classification accuracy mostly in the marsh classes. The green CIR data also improved the marsh classification accuracy and accuracies in some water classes. The final combination of all sensor data improved almost all class accuracies from 2% to 70% with an overall improvement of about 20% over TM data alone. Not only was the identification of vegetation types improved, but the spatial detail of the classification approached 10 m in some areas.
A machine learning approach to multi-level ECG signal quality classification.
Li, Qiao; Rajagopalan, Cadathur; Clifford, Gari D
2014-12-01
Current electrocardiogram (ECG) signal quality assessment studies have aimed to provide a two-level classification: clean or noisy. However, clinical usage demands more specific noise level classification for varying applications. This work outlines a five-level ECG signal quality classification algorithm. A total of 13 signal quality metrics were derived from segments of ECG waveforms, which were labeled by experts. A support vector machine (SVM) was trained to perform the classification and tested on a simulated dataset and was validated using data from the MIT-BIH arrhythmia database (MITDB). The simulated training and test datasets were created by selecting clean segments of the ECG in the 2011 PhysioNet/Computing in Cardiology Challenge database, and adding three types of real ECG noise at different signal-to-noise ratio (SNR) levels from the MIT-BIH Noise Stress Test Database (NSTDB). The MITDB was re-annotated for five levels of signal quality. Different combinations of the 13 metrics were trained and tested on the simulated datasets and the best combination that produced the highest classification accuracy was selected and validated on the MITDB. Performance was assessed using classification accuracy (Ac), and a single class overlap accuracy (OAc), which assumes that an individual type classified into an adjacent class is acceptable. An Ac of 80.26% and an OAc of 98.60% on the test set were obtained by selecting 10 metrics while 57.26% (Ac) and 94.23% (OAc) were the numbers for the unseen MITDB validation data without retraining. By performing the fivefold cross validation, an Ac of 88.07±0.32% and OAc of 99.34±0.07% were gained on the validation fold of MITDB. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.
Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki
2016-07-01
We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.
ERIC Educational Resources Information Center
Wang, Wenyi; Song, Lihong; Chen, Ping; Meng, Yaru; Ding, Shuliang
2015-01-01
Classification consistency and accuracy are viewed as important indicators for evaluating the reliability and validity of classification results in cognitive diagnostic assessment (CDA). Pattern-level classification consistency and accuracy indices were introduced by Cui, Gierl, and Chang. However, the indices at the attribute level have not yet…
Classification of breast cancer cytological specimen using convolutional neural network
NASA Astrophysics Data System (ADS)
Żejmo, Michał; Kowal, Marek; Korbicz, Józef; Monczak, Roman
2017-01-01
The paper presents a deep learning approach for automatic classification of breast tumors based on fine needle cytology. The main aim of the system is to distinguish benign from malignant cases based on microscopic images. Experiment was carried out on cytological samples derived from 50 patients (25 benign cases + 25 malignant cases) diagnosed in Regional Hospital in Zielona Góra. To classify microscopic images, we used convolutional neural networks (CNN) of two types: GoogLeNet and AlexNet. Due to the very large size of images of cytological specimen (on average 200000 × 100000 pixels), they were divided into smaller patches of size 256 × 256 pixels. Breast cancer classification usually is based on morphometric features of nuclei. Therefore, training and validation patches were selected using Support Vector Machine (SVM) so that suitable amount of cell material was depicted. Neural classifiers were tuned using GPU accelerated implementation of gradient descent algorithm. Training error was defined as a cross-entropy classification loss. Classification accuracy was defined as the percentage ratio of successfully classified validation patches to the total number of validation patches. The best accuracy rate of 83% was obtained by GoogLeNet model. We observed that more misclassified patches belong to malignant cases.
Ralston, Barbara E.; Davis, Philip A.; Weber, Robert M.; Rundall, Jill M.
2008-01-01
A vegetation database of the riparian vegetation located within the Colorado River ecosystem (CRE), a subsection of the Colorado River between Glen Canyon Dam and the western boundary of Grand Canyon National Park, was constructed using four-band image mosaics acquired in May 2002. A digital line scanner was flown over the Colorado River corridor in Arizona by ISTAR Americas, using a Leica ADS-40 digital camera to acquire a digital surface model and four-band image mosaics (blue, green, red, and near-infrared) for vegetation mapping. The primary objective of this mapping project was to develop a digital inventory map of vegetation to enable patch- and landscape-scale change detection, and to establish randomized sampling points for ground surveys of terrestrial fauna (principally, but not exclusively, birds). The vegetation base map was constructed through a combination of ground surveys to identify vegetation classes, image processing, and automated supervised classification procedures. Analysis of the imagery and subsequent supervised classification involved multiple steps to evaluate band quality, band ratios, and vegetation texture and density. Identification of vegetation classes involved collection of cover data throughout the river corridor and subsequent analysis using two-way indicator species analysis (TWINSPAN). Vegetation was classified into six vegetation classes, following the National Vegetation Classification Standard, based on cover dominance. This analysis indicated that total area covered by all vegetation within the CRE was 3,346 ha. Considering the six vegetation classes, the sparse shrub (SS) class accounted for the greatest amount of vegetation (627 ha) followed by Pluchea (PLSE) and Tamarix (TARA) at 494 and 366 ha, respectively. The wetland (WTLD) and Prosopis-Acacia (PRGL) classes both had similar areal cover values (227 and 213 ha, respectively). Baccharis-Salix (BAXX) was the least represented at 94 ha. Accuracy assessment of the supervised classification determined that accuracies varied among vegetation classes from 90% to 49%. Causes for low accuracies were similar spectral signatures among vegetation classes. Fuzzy accuracy assessment improved classification accuracies such that Federal mapping standards of 80% accuracies for all classes were met. The scale used to quantify vegetation adequately meets the needs of the stakeholder group. Increasing the scale to meet the U.S. Geological Survey (USGS)-National Park Service (NPS)National Mapping Program's minimum mapping unit of 0.5 ha is unwarranted because this scale would reduce the resolution of some classes (e.g., seep willow/coyote willow would likely be combined with tamarisk). While this would undoubtedly improve classification accuracies, it would not provide the community-level information about vegetation change that would benefit stakeholders. The identification of vegetation classes should follow NPS mapping approaches to complement the national effort and should incorporate the alternative analysis for community identification that is being incorporated into newer NPS mapping efforts. National Vegetation Classification is followed in this report for association- to formation-level categories. Accuracies could be improved by including more environmental variables such as stage elevation in the classification process and incorporating object-based classification methods. Another approach that may address the heterogeneous species issue and classification is to use spectral mixing analysis to estimate the fractional cover of species within each pixel and better quantify the cover of individual species that compose a cover class. Varying flights to capture vegetation at different times of the year might also help separate some vegetation classes, though the cost may be prohibitive. Lastly, photointerpretation instead of automated mapping could be tried. Photointerpretation would likely not improve accuracies in this case, howev
Automatic Estimation of Osteoporotic Fracture Cases by Using Ensemble Learning Approaches.
Kilic, Niyazi; Hosgormez, Erkan
2016-03-01
Ensemble learning methods are one of the most powerful tools for the pattern classification problems. In this paper, the effects of ensemble learning methods and some physical bone densitometry parameters on osteoporotic fracture detection were investigated. Six feature set models were constructed including different physical parameters and they fed into the ensemble classifiers as input features. As ensemble learning techniques, bagging, gradient boosting and random subspace (RSM) were used. Instance based learning (IBk) and random forest (RF) classifiers applied to six feature set models. The patients were classified into three groups such as osteoporosis, osteopenia and control (healthy), using ensemble classifiers. Total classification accuracy and f-measure were also used to evaluate diagnostic performance of the proposed ensemble classification system. The classification accuracy has reached to 98.85 % by the combination of model 6 (five BMD + five T-score values) using RSM-RF classifier. The findings of this paper suggest that the patients will be able to be warned before a bone fracture occurred, by just examining some physical parameters that can easily be measured without invasive operations.
Comparison of accelerometer cut points for predicting activity intensity in youth.
Trost, Stewart G; Loprinzi, Paul D; Moore, Rebecca; Pfeiffer, Karin A
2011-07-01
The absence of comparative validity studies has prevented researchers from reaching consensus regarding the application of intensity-related accelerometer cut points for children and adolescents. This study aimed to evaluate the classification accuracy of five sets of independently developed ActiGraph cut points using energy expenditure, measured by indirect calorimetry, as a criterion reference standard. A total of 206 participants between the ages of 5 and 15 yr completed 12 standardized activity trials. Trials consisted of sedentary activities (lying down, writing, computer game), lifestyle activities (sweeping, laundry, throw and catch, aerobics, basketball), and ambulatory activities (comfortable walk, brisk walk, brisk treadmill walk, running). During each trial, participants wore an ActiGraph GT1M, and V˙O2 was measured breath-by-breath using the Oxycon Mobile portable metabolic system. Physical activity intensity was estimated using five independently developed cut points: Freedson/Trost (FT), Puyau (PU), Treuth (TR), Mattocks (MT), and Evenson (EV). Classification accuracy was evaluated via weighted κ statistics and area under the receiver operating characteristic curve (ROC-AUC). Across all four intensity levels, the EV (κ=0.68) and FT (κ=0.66) cut points exhibited significantly better agreement than TR (κ=0.62), MT (κ=0.54), and PU (κ=0.36). The EV and FT cut points exhibited significantly better classification accuracy for moderate- to vigorous-intensity physical activity (ROC-AUC=0.90) than TR, PU, or MT cut points (ROC-AUC=0.77-0.85). Only the EV cut points provided acceptable classification accuracy for all four levels of physical activity intensity and performed well among children of all ages. The widely applied sedentary cut point of 100 counts per minute exhibited excellent classification accuracy (ROC-AUC=0.90). On the basis of these findings, we recommend that researchers use the EV ActiGraph cut points to estimate time spent in sedentary, light-, moderate-, and vigorous-intensity activity in children and adolescents.
[Accuracy improvement of spectral classification of crop using microwave backscatter data].
Jia, Kun; Li, Qiang-Zi; Tian, Yi-Chen; Wu, Bing-Fang; Zhang, Fei-Fei; Meng, Ji-Hua
2011-02-01
In the present study, VV polarization microwave backscatter data used for improving accuracies of spectral classification of crop is investigated. Classification accuracy using different classifiers based on the fusion data of HJ satellite multi-spectral and Envisat ASAR VV backscatter data are compared. The results indicate that fusion data can take full advantage of spectral information of HJ multi-spectral data and the structure sensitivity feature of ASAR VV polarization data. The fusion data enlarges the spectral difference among different classifications and improves crop classification accuracy. The classification accuracy using fusion data can be increased by 5 percent compared to the single HJ data. Furthermore, ASAR VV polarization data is sensitive to non-agrarian area of planted field, and VV polarization data joined classification can effectively distinguish the field border. VV polarization data associating with multi-spectral data used in crop classification enlarges the application of satellite data and has the potential of spread in the domain of agriculture.
NASA Technical Reports Server (NTRS)
Justice, C.; Townshend, J. (Principal Investigator)
1981-01-01
Two unsupervised classification procedures were applied to ratioed and unratioed LANDSAT multispectral scanner data of an area of spatially complex vegetation and terrain. An objective accuracy assessment was undertaken on each classification and comparison was made of the classification accuracies. The two unsupervised procedures use the same clustering algorithm. By on procedure the entire area is clustered and by the other a representative sample of the area is clustered and the resulting statistics are extrapolated to the remaining area using a maximum likelihood classifier. Explanation is given of the major steps in the classification procedures including image preprocessing; classification; interpretation of cluster classes; and accuracy assessment. Of the four classifications undertaken, the monocluster block approach on the unratioed data gave the highest accuracy of 80% for five coarse cover classes. This accuracy was increased to 84% by applying a 3 x 3 contextual filter to the classified image. A detailed description and partial explanation is provided for the major misclassification. The classification of the unratioed data produced higher percentage accuracies than for the ratioed data and the monocluster block approach gave higher accuracies than clustering the entire area. The moncluster block approach was additionally the most economical in terms of computing time.
Howard, Daniel M.; Wylie, Bruce K.; Tieszen, Larry L.
2012-01-01
With an ever expanding population, potential climate variability and an increasing demand for agriculture-based alternative fuels, accurate agricultural land-cover classification for specific crops and their spatial distributions are becoming critical to researchers, policymakers, land managers and farmers. It is important to ensure the sustainability of these and other land uses and to quantify the net impacts that certain management practices have on the environment. Although other quality crop classification products are often available, temporal and spatial coverage gaps can create complications for certain regional or time-specific applications. Our goal was to develop a model capable of classifying major crops in the Greater Platte River Basin (GPRB) for the post-2000 era to supplement existing crop classification products. This study identifies annual spatial distributions and area totals of corn, soybeans, wheat and other crops across the GPRB from 2000 to 2009. We developed a regression tree classification model based on 2.5 million training data points derived from the National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) in relation to a variety of other relevant input environmental variables. The primary input variables included the weekly 250 m US Geological Survey Earth Observing System Moderate Resolution Imaging Spectroradiometer normalized differential vegetation index, average long-term growing season temperature, average long-term growing season precipitation and yearly start of growing season. An overall model accuracy rating of 78% was achieved for a test sample of roughly 215 000 independent points that were withheld from model training. Ten 250 m resolution annual crop classification maps were produced and evaluated for the GPRB region, one for each year from 2000 to 2009. In addition to the model accuracy assessment, our validation focused on spatial distribution and county-level crop area totals in comparison with the NASS CDL and county statistics from the US Department of Agriculture (USDA) Census of Agriculture. The results showed that our model produced crop classification maps that closely resembled the spatial distribution trends observed in the NASS CDL and exhibited a close linear agreement with county-by-county crop area totals from USDA census data (R 2 = 0.90).
Zhou, Tao; Li, Zhaofu; Pan, Jianjun
2018-01-27
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.
Sidek, Khairul; Khali, Ibrahim
2012-01-01
In this paper, a person identification mechanism implemented with Cardioid based graph using electrocardiogram (ECG) is presented. Cardioid based graph has given a reasonably good classification accuracy in terms of differentiating between individuals. However, the current feature extraction method using Euclidean distance could be further improved by using Mahalanobis distance measurement producing extracted coefficients which takes into account the correlations of the data set. Identification is then done by applying these extracted features to Radial Basis Function Network. A total of 30 ECG data from MITBIH Normal Sinus Rhythm database (NSRDB) and MITBIH Arrhythmia database (MITDB) were used for development and evaluation purposes. Our experimentation results suggest that the proposed feature extraction method has significantly increased the classification performance of subjects in both databases with accuracy from 97.50% to 99.80% in NSRDB and 96.50% to 99.40% in MITDB. High sensitivity, specificity and positive predictive value of 99.17%, 99.91% and 99.23% for NSRDB and 99.30%, 99.90% and 99.40% for MITDB also validates the proposed method. This result also indicates that the right feature extraction technique plays a vital role in determining the persistency of the classification accuracy for Cardioid based person identification mechanism.
Can segmentation evaluation metric be used as an indicator of land cover classification accuracy?
NASA Astrophysics Data System (ADS)
Švab Lenarčič, Andreja; Đurić, Nataša; Čotar, Klemen; Ritlop, Klemen; Oštir, Krištof
2016-10-01
It is a broadly established belief that the segmentation result significantly affects subsequent image classification accuracy. However, the actual correlation between the two has never been evaluated. Such an evaluation would be of considerable importance for any attempts to automate the object-based classification process, as it would reduce the amount of user intervention required to fine-tune the segmentation parameters. We conducted an assessment of segmentation and classification by analyzing 100 different segmentation parameter combinations, 3 classifiers, 5 land cover classes, 20 segmentation evaluation metrics, and 7 classification accuracy measures. The reliability definition of segmentation evaluation metrics as indicators of land cover classification accuracy was based on the linear correlation between the two. All unsupervised metrics that are not based on number of segments have a very strong correlation with all classification measures and are therefore reliable as indicators of land cover classification accuracy. On the other hand, correlation at supervised metrics is dependent on so many factors that it cannot be trusted as a reliable classification quality indicator. Algorithms for land cover classification studied in this paper are widely used; therefore, presented results are applicable to a wider area.
NASA Astrophysics Data System (ADS)
Gutierrez-Velez, V. H.; DeFries, R. S.
2011-12-01
Oil palm expansion has led to clearing of extensive forest areas in the tropics. However quantitative assessments of the magnitude of oil palm expansion to deforestation have been challenging due in large part to the limitations presented by conventional optical data sets for discriminating plantations from forests and other tree cover vegetations. Recently available information from active remote sensors has opened the possibility of using these data sources to overcome these limitations. The purpose of this analysis is to evaluate the accuracy of oil palm classification when using ALOS/PALSAR active satellite data in conjunction with Landsat information, compared to the use of Landsat data only. The analysis takes place in a focused region around the city of Pucallpa in the Ucayali province of the Peruvian Amazon for the year 2010. Oil palm plantations were separated in five categories consisting of four age classes (0-3, 3-5, 5-10 and > 10 yrs) and an additional class accounting for degraded plantations older than 15 yr. Other land covers were water bodies, unvegetated land, short and tall grass, fallow, secondary vegetation, and forest. Classifications were performed using random forests. Training points for calibration and validation consisted of 411 polygons measured in areas representative of the land covers of interest and totaled 6,367 ha. Overall classification accuracy increased from 89.9% using only Landsat data sets to 94.3% using both Landast and ALOS/PALSAR. Both user's and producer's accuracy increased in all classes when using both data sets except for producer's accuracy in short grass which decreased by 1%. The largest increase in user's accuracy was obtained in oil palm plantations older than 10 years from 62 to 80% while producer's accuracy improved the most in plantations in age class 3-5 from 63 to 80%. Results demonstrate the suitability of data from ALOS/PALSAR and other active remote sensors to improve classification of oil palm plantations in age classes and discriminate them from other land covers. Results suggest a potential for improving discrimination of other tree cover types using a combination of active and conventional optical remote sensors.
Real-data comparison of data mining methods in prediction of diabetes in iran.
Tapak, Lily; Mahjub, Hossein; Hamidi, Omid; Poorolajal, Jalal
2013-09-01
Diabetes is one of the most common non-communicable diseases in developing countries. Early screening and diagnosis play an important role in effective prevention strategies. This study compared two traditional classification methods (logistic regression and Fisher linear discriminant analysis) and four machine-learning classifiers (neural networks, support vector machines, fuzzy c-mean, and random forests) to classify persons with and without diabetes. The data set used in this study included 6,500 subjects from the Iranian national non-communicable diseases risk factors surveillance obtained through a cross-sectional survey. The obtained sample was based on cluster sampling of the Iran population which was conducted in 2005-2009 to assess the prevalence of major non-communicable disease risk factors. Ten risk factors that are commonly associated with diabetes were selected to compare the performance of six classifiers in terms of sensitivity, specificity, total accuracy, and area under the receiver operating characteristic (ROC) curve criteria. Support vector machines showed the highest total accuracy (0.986) as well as area under the ROC (0.979). Also, this method showed high specificity (1.000) and sensitivity (0.820). All other methods produced total accuracy of more than 85%, but for all methods, the sensitivity values were very low (less than 0.350). The results of this study indicate that, in terms of sensitivity, specificity, and overall classification accuracy, the support vector machine model ranks first among all the classifiers tested in the prediction of diabetes. Therefore, this approach is a promising classifier for predicting diabetes, and it should be further investigated for the prediction of other diseases.
NASA Astrophysics Data System (ADS)
Efremova, T. T.; Avrova, A. F.; Efremov, S. P.
2016-09-01
The approaches of multivariate statistics have been used for the numerical classification of morphogenetic types of moss litters in swampy spruce forests according to their physicochemical properties (the ash content, decomposition degree, bulk density, pH, mass, and thickness). Three clusters of moss litters— peat, peaty, and high-ash peaty—have been specified. The functions of classification for identification of new objects have been calculated and evaluated. The degree of decomposition and the ash content are the main classification parameters of litters, though all other characteristics are also statistically significant. The final prediction accuracy of the assignment of a litter to a particular cluster is 86%. Two leading factors participating in the clustering of litters have been determined. The first factor—the degree of transformation of plant remains (quality)—specifies 49% of the total variance, and the second factor—the accumulation rate (quantity)— specifies 26% of the total variance. The morphogenetic structure and physicochemical properties of the clusters of moss litters are characterized.
Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad
2011-06-01
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.
A classification of marked hijaiyah letters' pronunciation using hidden Markov model
NASA Astrophysics Data System (ADS)
Wisesty, Untari N.; Mubarok, M. Syahrul; Adiwijaya
2017-08-01
Hijaiyah letters are the letters that arrange the words in Al Qur'an consisting of 28 letters. They symbolize the consonant sounds. On the other hand, the vowel sounds are symbolized by harokat/marks. Speech recognition system is a system used to process the sound signal to be data so that it can be recognized by computer. To build the system, some stages are needed i.e characteristics/feature extraction and classification. In this research, LPC and MFCC extraction method, K-Means Quantization vector and Hidden Markov Model classification are used. The data used are the 28 letters and 6 harakat with the total class of 168. After several are testing done, it can be concluded that the system can recognize the pronunciation pattern of marked hijaiyah letter very well in the training data with its highest accuracy of 96.1% using the feature of LPC extraction and 94% using the MFCC. Meanwhile, when testing system is used, the accuracy decreases up to 41%.
NASA Astrophysics Data System (ADS)
Massey, Richard
Cropland characteristics and accurate maps of their spatial distribution are required to develop strategies for global food security by continental-scale assessments and agricultural land use policies. North America is the major producer and exporter of coarse grains, wheat, and other crops. While cropland characteristics such as crop types are available at country-scales in North America, however, at continental-scale cropland products are lacking at fine sufficient resolution such as 30m. Additionally, applications of automated, open, and rapid methods to map cropland characteristics over large areas without the need of ground samples are needed on efficient high performance computing platforms for timely and long-term cropland monitoring. In this study, I developed novel, automated, and open methods to map cropland extent, crop intensity, and crop types in the North American continent using large remote sensing datasets on high-performance computing platforms. First, a novel method was developed in this study to fuse pixel-based classification of continental-scale Landsat data using Random Forest algorithm available on Google Earth Engine cloud computing platform with an object-based classification approach, recursive hierarchical segmentation (RHSeg) to map cropland extent at continental scale. Using the fusion method, a continental-scale cropland extent map for North America at 30m spatial resolution for the nominal year 2010 was produced. In this map, the total cropland area for North America was estimated at 275.2 million hectares (Mha). This map was assessed for accuracy using randomly distributed samples derived from United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-Food Canada (AAFC) annual crop inventory (ACI), Servicio de Informacion Agroalimentaria y Pesquera (SIAP), Mexico's agricultural boundaries, and photo-interpretation of high-resolution imagery. The overall accuracies of the map are 93.4% with a producer's accuracy for crop class at 85.4% and user's accuracy of 74.5% across the continent. The sub-country statistics including state-wise and county-wise cropland statistics derived from this map compared well in regression models resulting in R2 > 0.84. Secondly, an automated phenological pattern matching (PPM) method to efficiently map cropping intensity was also developed in this study. This study presents a continental-scale cropping intensity map for the North American continent at 250m spatial resolution for 2010. In this map, the total areas for single crop, double crop, continuous crop, and fallow were estimated to be 123.5 Mha, 11.1 Mha, 64.0 Mha, and 83.4 Mha, respectively. This map was assessed using limited country-level reference datasets derived from United States Department of Agriculture cropland data layer and Agriculture and Agri-Food Canada annual crop inventory with overall accuracies of 79.8% and 80.2%, respectively. Third, two novel and automated decision tree classification approaches to map crop types across the conterminous United States (U.S.) using MODIS 250 m resolution data: 1) generalized, and 2) year-specific classification were developed. The classification approaches use similarities and dissimilarities in crop type phenology derived from NDVI time-series data for the two approaches. Annual crop type maps were produced for 8 major crop types in the United States using the generalized classification approach for 2001-2014 and the year-specific approach for 2008, 2010, 2011 and 2012. The year-specific classification had overall accuracies greater than 78%, while the generalized classifier had accuracies greater than 75% for the conterminous U.S. for 2008, 2010, 2011, and 2012. The generalized classifier enables automated and routine crop type mapping without repeated and expensive ground sample collection year after year with overall accuracies > 70% across all independent years. Taken together, these cropland products of extent, cropping intensity, and crop types, are significantly beneficial in agricultural and water use planning and monitoring to formulate policies towards global and North American food security issues.
Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.
Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott
2011-01-01
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.
Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery
LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT
2011-01-01
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311
Kaufmann, Liane; Huber, Stefan; Mayer, Daniel; Moeller, Korbinian; Marksteiner, Josef
2018-04-01
Adverse effects of heavy drinking on cognition have frequently been reported. In the present study, we systematically examined for the first time whether clinical neuropsychological assessments may be sensitive to alcohol abuse in elderly patients with suspected minor neurocognitive disorder. A total of 144 elderly with and without alcohol abuse (each group n=72; mean age 66.7 years) were selected from a patient pool of n=738 by applying propensity score matching (a statistical method allowing to match participants in experimental and control group by balancing various covariates to reduce selection bias). Accordingly, study groups were almost perfectly matched regarding age, education, gender, and Mini Mental State Examination score. Neuropsychological performance was measured using the CERAD (Consortium to Establish a Registry for Alzheimer's Disease). Classification analyses (i.e., decision tree and boosted trees models) were conducted to examine whether CERAD variables or total score contributed to group classification. Decision tree models disclosed that groups could be reliably classified based on the CERAD variables "Word List Discriminability" (tapping verbal recognition memory, 64% classification accuracy) and "Trail Making Test A" (measuring visuo-motor speed, 59% classification accuracy). Boosted tree analyses further indicated the sensitivity of "Word List Recall" (measuring free verbal recall) for discriminating elderly with versus without a history of alcohol abuse. This indicates that specific CERAD variables seem to be sensitive to alcohol-related cognitive dysfunctions in elderly patients with suspected minor neurocognitive disorder. (JINS, 2018, 24, 360-371).
Classification of right-hand grasp movement based on EMOTIV Epoc+
NASA Astrophysics Data System (ADS)
Tobing, T. A. M. L.; Prawito, Wijaya, S. K.
2017-07-01
Combinations of BCT elements for right-hand grasp movement have been obtained, providing the average value of their classification accuracy. The aim of this study is to find a suitable combination for best classification accuracy of right-hand grasp movement based on EEG headset, EMOTIV Epoc+. There are three movement classifications: grasping hand, relax, and opening hand. These classifications take advantage of Event-Related Desynchronization (ERD) phenomenon that makes it possible to differ relaxation, imagery, and movement state from each other. The combinations of elements are the usage of Independent Component Analysis (ICA), spectrum analysis by Fast Fourier Transform (FFT), maximum mu and beta power with their frequency as features, and also classifier Probabilistic Neural Network (PNN) and Radial Basis Function (RBF). The average values of classification accuracy are ± 83% for training and ± 57% for testing. To have a better understanding of the signal quality recorded by EMOTIV Epoc+, the result of classification accuracy of left or right-hand grasping movement EEG signal (provided by Physionet) also be given, i.e.± 85% for training and ± 70% for testing. The comparison of accuracy value from each combination, experiment condition, and external EEG data are provided for the purpose of value analysis of classification accuracy.
Classification of Focal and Non Focal Epileptic Seizures Using Multi-Features and SVM Classifier.
Sriraam, N; Raghu, S
2017-09-02
Identifying epileptogenic zones prior to surgery is an essential and crucial step in treating patients having pharmacoresistant focal epilepsy. Electroencephalogram (EEG) is a significant measurement benchmark to assess patients suffering from epilepsy. This paper investigates the application of multi-features derived from different domains to recognize the focal and non focal epileptic seizures obtained from pharmacoresistant focal epilepsy patients from Bern Barcelona database. From the dataset, five different classification tasks were formed. Total 26 features were extracted from focal and non focal EEG. Significant features were selected using Wilcoxon rank sum test by setting p-value (p < 0.05) and z-score (-1.96 > z > 1.96) at 95% significance interval. Hypothesis was made that the effect of removing outliers improves the classification accuracy. Turkey's range test was adopted for pruning outliers from feature set. Finally, 21 features were classified using optimized support vector machine (SVM) classifier with 10-fold cross validation. Bayesian optimization technique was adopted to minimize the cross-validation loss. From the simulation results, it was inferred that the highest sensitivity, specificity, and classification accuracy of 94.56%, 89.74%, and 92.15% achieved respectively and found to be better than the state-of-the-art approaches. Further, it was observed that the classification accuracy improved from 80.2% with outliers to 92.15% without outliers. The classifier performance metrics ensures the suitability of the proposed multi-features with optimized SVM classifier. It can be concluded that the proposed approach can be applied for recognition of focal EEG signals to localize epileptogenic zones.
A new pre-classification method based on associative matching method
NASA Astrophysics Data System (ADS)
Katsuyama, Yutaka; Minagawa, Akihiro; Hotta, Yoshinobu; Omachi, Shinichiro; Kato, Nei
2010-01-01
Reducing the time complexity of character matching is critical to the development of efficient Japanese Optical Character Recognition (OCR) systems. To shorten processing time, recognition is usually split into separate preclassification and recognition stages. For high overall recognition performance, the pre-classification stage must both have very high classification accuracy and return only a small number of putative character categories for further processing. Furthermore, for any practical system, the speed of the pre-classification stage is also critical. The associative matching (AM) method has often been used for fast pre-classification, because its use of a hash table and reliance solely on logical bit operations to select categories makes it highly efficient. However, redundant certain level of redundancy exists in the hash table because it is constructed using only the minimum and maximum values of the data on each axis and therefore does not take account of the distribution of the data. We propose a modified associative matching method that satisfies the performance criteria described above but in a fraction of the time by modifying the hash table to reflect the underlying distribution of training characters. Furthermore, we show that our approach outperforms pre-classification by clustering, ANN and conventional AM in terms of classification accuracy, discriminative power and speed. Compared to conventional associative matching, the proposed approach results in a 47% reduction in total processing time across an evaluation test set comprising 116,528 Japanese character images.
Pan, Jianjun
2018-01-01
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073
Estimating Classification Consistency and Accuracy for Cognitive Diagnostic Assessment
ERIC Educational Resources Information Center
Cui, Ying; Gierl, Mark J.; Chang, Hua-Hua
2012-01-01
This article introduces procedures for the computation and asymptotic statistical inference for classification consistency and accuracy indices specifically designed for cognitive diagnostic assessments. The new classification indices can be used as important indicators of the reliability and validity of classification results produced by…
Satellite inventory of Minnesota forest resources
NASA Technical Reports Server (NTRS)
Bauer, Marvin E.; Burk, Thomas E.; Ek, Alan R.; Coppin, Pol R.; Lime, Stephen D.; Walsh, Terese A.; Walters, David K.; Befort, William; Heinzen, David F.
1993-01-01
The methods and results of using Landsat Thematic Mapper (TM) data to classify and estimate the acreage of forest covertypes in northeastern Minnesota are described. Portions of six TM scenes covering five counties with a total area of 14,679 square miles were classified into six forest and five nonforest classes. The approach involved the integration of cluster sampling, image processing, and estimation. Using cluster sampling, 343 plots, each 88 acres in size, were photo interpreted and field mapped as a source of reference data for classifier training and calibration of the TM data classifications. Classification accuracies of up to 75 percent were achieved; most misclassification was between similar or related classes. An inverse method of calibration, based on the error rates obtained from the classifications of the cluster plots, was used to adjust the classification class proportions for classification errors. The resulting area estimates for total forest land in the five-county area were within 3 percent of the estimate made independently by the USDA Forest Service. Area estimates for conifer and hardwood forest types were within 0.8 and 6.0 percent respectively, of the Forest Service estimates. A trial of a second method of estimating the same classes as the Forest Service resulted in standard errors of 0.002 to 0.015. A study of the use of multidate TM data for change detection showed that forest canopy depletion, canopy increment, and no change could be identified with greater than 90 percent accuracy. The project results have been the basis for the Minnesota Department of Natural Resources and the Forest Service to define and begin to implement an annual system of forest inventory which utilizes Landsat TM data to detect changes in forest cover.
The effect of finite field size on classification and atmospheric correction
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1981-01-01
The atmospheric effect on the upward radiance of sunlight scattered from the Earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. For a given atmospheric turbidity, the atmospheric effect on classification of surface features is much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface do not account for the nonuniformity of the surface have only a slight effect on the classification accuracy; in other cases the classification accuracy descreases. The radiances above finite fields were computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) was used to test the effect of the size of the background reflectance and the optical thickness of the atmosphere on classification accuracy. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, have to be developed to improve significantly the classification accuracy.
Yang, Xiaoyan; Chen, Longgao; Li, Yingkui; Xi, Wenjia; Chen, Longqian
2015-07-01
Land use/land cover (LULC) inventory provides an important dataset in regional planning and environmental assessment. To efficiently obtain the LULC inventory, we compared the LULC classifications based on single satellite imagery with a rule-based classification based on multi-seasonal imagery in Lianyungang City, a coastal city in China, using CBERS-02 (the 2nd China-Brazil Environmental Resource Satellites) images. The overall accuracies of the classification based on single imagery are 78.9, 82.8, and 82.0% in winter, early summer, and autumn, respectively. The rule-based classification improves the accuracy to 87.9% (kappa 0.85), suggesting that combining multi-seasonal images can considerably improve the classification accuracy over any single image-based classification. This method could also be used to analyze seasonal changes of LULC types, especially for those associated with tidal changes in coastal areas. The distribution and inventory of LULC types with an overall accuracy of 87.9% and a spatial resolution of 19.5 m can assist regional planning and environmental assessment efficiently in Lianyungang City. This rule-based classification provides a guidance to improve accuracy for coastal areas with distinct LULC temporal spectral features.
Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf
NASA Astrophysics Data System (ADS)
Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.
2012-08-01
A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.
Austin, Peter C; Lee, Douglas S
2011-01-01
Purpose: Classification trees are increasingly being used to classifying patients according to the presence or absence of a disease or health outcome. A limitation of classification trees is their limited predictive accuracy. In the data-mining and machine learning literature, boosting has been developed to improve classification. Boosting with classification trees iteratively grows classification trees in a sequence of reweighted datasets. In a given iteration, subjects that were misclassified in the previous iteration are weighted more highly than subjects that were correctly classified. Classifications from each of the classification trees in the sequence are combined through a weighted majority vote to produce a final classification. The authors' objective was to examine whether boosting improved the accuracy of classification trees for predicting outcomes in cardiovascular patients. Methods: We examined the utility of boosting classification trees for classifying 30-day mortality outcomes in patients hospitalized with either acute myocardial infarction or congestive heart failure. Results: Improvements in the misclassification rate using boosted classification trees were at best minor compared to when conventional classification trees were used. Minor to modest improvements to sensitivity were observed, with only a negligible reduction in specificity. For predicting cardiovascular mortality, boosted classification trees had high specificity, but low sensitivity. Conclusions: Gains in predictive accuracy for predicting cardiovascular outcomes were less impressive than gains in performance observed in the data mining literature. PMID:22254181
Montgomery, Valencia; Harris, Katie; Stabler, Anthony; Lu, Lisa H
2017-05-01
To examine how the duration of time delay between Wechsler Memory Scale (WMS) Logical Memory I and Logical Memory II (LM) affected participants' recall performance. There are 46,146 total Logical Memory administrations to participants diagnosed with either Alzheimer's disease (AD), vascular dementia (VaD), or normal cognition in the National Alzheimer's Disease Coordinating Center's Uniform Data Set. Only 50% of the sample was administered the standard 20-35 min of delay as specified by WMS-R and WMS-III. We found a significant effect of delay time duration on proportion of information retained for the VaD group compared to its control group, which remained after adding LMI raw score as a covariate. There was poorer retention of information with longer delay for this group. This association was not as strong for the AD and cognitively normal groups. A 24.5-min delay was most optimal for differentiating AD from VaD participants (47.7% classification accuracy), an 18.5-min delay was most optimal for differentiating AD versus normal participants (51.7% classification accuracy), and a 22.5-min delay was most optimal for differentiating VaD versus normal participants (52.9% classification accuracy). Considering diagnostic implications, our findings suggest that test administration should incorporate precise tracking of delay periods. We recommend a 20-min delay with 18-25-min range. Poor classification accuracy based on LM data alone is a reminder that story memory performance is only one piece of data that contributes to complex clinical decisions. However, strict adherence to the recommended range yields optimal data for diagnostic decisions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Di-codon Usage for Gene Classification
NASA Astrophysics Data System (ADS)
Nguyen, Minh N.; Ma, Jianmin; Fogel, Gary B.; Rajapakse, Jagath C.
Classification of genes into biologically related groups facilitates inference of their functions. Codon usage bias has been described previously as a potential feature for gene classification. In this paper, we demonstrate that di-codon usage can further improve classification of genes. By using both codon and di-codon features, we achieve near perfect accuracies for the classification of HLA molecules into major classes and sub-classes. The method is illustrated on 1,841 HLA sequences which are classified into two major classes, HLA-I and HLA-II. Major classes are further classified into sub-groups. A binary SVM using di-codon usage patterns achieved 99.95% accuracy in the classification of HLA genes into major HLA classes; and multi-class SVM achieved accuracy rates of 99.82% and 99.03% for sub-class classification of HLA-I and HLA-II genes, respectively. Furthermore, by combining codon and di-codon usages, the prediction accuracies reached 100%, 99.82%, and 99.84% for HLA major class classification, and for sub-class classification of HLA-I and HLA-II genes, respectively.
NASA Technical Reports Server (NTRS)
Cibula, William G.; Nyquist, Maurice O.
1987-01-01
An unsupervised computer classification of vegetation/landcover of Olympic National Park and surrounding environs was initially carried out using four bands of Landsat MSS data. The primary objective of the project was to derive a level of landcover classifications useful for park management applications while maintaining an acceptably high level of classification accuracy. Initially, nine generalized vegetation/landcover classes were derived. Overall classification accuracy was 91.7 percent. In an attempt to refine the level of classification, a geographic information system (GIS) approach was employed. Topographic data and watershed boundaries (inferred precipitation/temperature) data were registered with the Landsat MSS data. The resultant boolean operations yielded 21 vegetation/landcover classes while maintaining the same level of classification accuracy. The final classification provided much better identification and location of the major forest types within the park at the same high level of accuracy, and these met the project objective. This classification could now become inputs into a GIS system to help provide answers to park management coupled with other ancillary data programs such as fire management.
NASA Astrophysics Data System (ADS)
Gao, Yan; Marpu, Prashanth; Morales Manila, Luis M.
2014-11-01
This paper assesses the suitability of 8-band Worldview-2 (WV2) satellite data and object-based random forest algorithm for the classification of avocado growth stages in Mexico. We tested both pixel-based with minimum distance (MD) and maximum likelihood (MLC) and object-based with Random Forest (RF) algorithm for this task. Training samples and verification data were selected by visual interpreting the WV2 images for seven thematic classes: fully grown, middle stage, and early stage of avocado crops, bare land, two types of natural forests, and water body. To examine the contribution of the four new spectral bands of WV2 sensor, all the tested classifications were carried out with and without the four new spectral bands. Classification accuracy assessment results show that object-based classification with RF algorithm obtained higher overall higher accuracy (93.06%) than pixel-based MD (69.37%) and MLC (64.03%) method. For both pixel-based and object-based methods, the classifications with the four new spectral bands (overall accuracy obtained higher accuracy than those without: overall accuracy of object-based RF classification with vs without: 93.06% vs 83.59%, pixel-based MD: 69.37% vs 67.2%, pixel-based MLC: 64.03% vs 36.05%, suggesting that the four new spectral bands in WV2 sensor contributed to the increase of the classification accuracy.
Thanh Noi, Phan; Kappas, Martin
2017-01-01
In previous classification studies, three non-parametric classifiers, Random Forest (RF), k-Nearest Neighbor (kNN), and Support Vector Machine (SVM), were reported as the foremost classifiers at producing high accuracies. However, only a few studies have compared the performances of these classifiers with different training sample sizes for the same remote sensing images, particularly the Sentinel-2 Multispectral Imager (MSI). In this study, we examined and compared the performances of the RF, kNN, and SVM classifiers for land use/cover classification using Sentinel-2 image data. An area of 30 × 30 km2 within the Red River Delta of Vietnam with six land use/cover types was classified using 14 different training sample sizes, including balanced and imbalanced, from 50 to over 1250 pixels/class. All classification results showed a high overall accuracy (OA) ranging from 90% to 95%. Among the three classifiers and 14 sub-datasets, SVM produced the highest OA with the least sensitivity to the training sample sizes, followed consecutively by RF and kNN. In relation to the sample size, all three classifiers showed a similar and high OA (over 93.85%) when the training sample size was large enough, i.e., greater than 750 pixels/class or representing an area of approximately 0.25% of the total study area. The high accuracy was achieved with both imbalanced and balanced datasets. PMID:29271909
Thanh Noi, Phan; Kappas, Martin
2017-12-22
In previous classification studies, three non-parametric classifiers, Random Forest (RF), k-Nearest Neighbor (kNN), and Support Vector Machine (SVM), were reported as the foremost classifiers at producing high accuracies. However, only a few studies have compared the performances of these classifiers with different training sample sizes for the same remote sensing images, particularly the Sentinel-2 Multispectral Imager (MSI). In this study, we examined and compared the performances of the RF, kNN, and SVM classifiers for land use/cover classification using Sentinel-2 image data. An area of 30 × 30 km² within the Red River Delta of Vietnam with six land use/cover types was classified using 14 different training sample sizes, including balanced and imbalanced, from 50 to over 1250 pixels/class. All classification results showed a high overall accuracy (OA) ranging from 90% to 95%. Among the three classifiers and 14 sub-datasets, SVM produced the highest OA with the least sensitivity to the training sample sizes, followed consecutively by RF and kNN. In relation to the sample size, all three classifiers showed a similar and high OA (over 93.85%) when the training sample size was large enough, i.e., greater than 750 pixels/class or representing an area of approximately 0.25% of the total study area. The high accuracy was achieved with both imbalanced and balanced datasets.
Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry.
Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor
2015-05-01
Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT ), retardance (RT ), depolarization(ΔT ), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT , ΔL, RT ,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DTa nd DL showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues.
NASA Astrophysics Data System (ADS)
Park, Eunsu; Moon, Yong-Jae
2017-08-01
A Convolutional Neural Network(CNN) is one of the well-known deep-learning methods in image processing and computer vision area. In this study, we apply CNN to two kinds of flare forecasting models: flare classification and occurrence. For this, we consider several pre-trained models (e.g., AlexNet, GoogLeNet, and ResNet) and customize them by changing several options such as the number of layers, activation function, and optimizer. Our inputs are the same number of SOHO)/MDI images for each flare class (None, C, M and X) at 00:00 UT from Jan 1996 to Dec 2010 (total 1600 images). Outputs are the results of daily flare forecasting for flare class and occurrence. We build, train, and test the models on TensorFlow, which is well-known machine learning software library developed by Google. Our major results from this study are as follows. First, most of the models have accuracies more than 0.7. Second, ResNet developed by Microsoft has the best accuracies : 0.86 for flare classification and 0.84 for flare occurrence. Third, the accuracies of these models vary greatly with changing parameters. We discuss several possibilities to improve the models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongjun; Lim, Jonghyuck; Kim, Namkug
2013-05-15
Purpose: To investigate the effect of using different computed tomography (CT) scanners on the accuracy of high-resolution CT (HRCT) images in classifying regional disease patterns in patients with diffuse lung disease, support vector machine (SVM) and Bayesian classifiers were applied to multicenter data. Methods: Two experienced radiologists marked sets of 600 rectangular 20 Multiplication-Sign 20 pixel regions of interest (ROIs) on HRCT images obtained from two scanners (GE and Siemens), including 100 ROIs for each of local patterns of lungs-normal lung and five of regional pulmonary disease patterns (ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). Each ROI was assessedmore » using 22 quantitative features belonging to one of the following descriptors: histogram, gradient, run-length, gray level co-occurrence matrix, low-attenuation area cluster, and top-hat transform. For automatic classification, a Bayesian classifier and a SVM classifier were compared under three different conditions. First, classification accuracies were estimated using data from each scanner. Next, data from the GE and Siemens scanners were used for training and testing, respectively, and vice versa. Finally, all ROI data were integrated regardless of the scanner type and were then trained and tested together. All experiments were performed based on forward feature selection and fivefold cross-validation with 20 repetitions. Results: For each scanner, better classification accuracies were achieved with the SVM classifier than the Bayesian classifier (92% and 82%, respectively, for the GE scanner; and 92% and 86%, respectively, for the Siemens scanner). The classification accuracies were 82%/72% for training with GE data and testing with Siemens data, and 79%/72% for the reverse. The use of training and test data obtained from the HRCT images of different scanners lowered the classification accuracy compared to the use of HRCT images from the same scanner. For integrated ROI data obtained from both scanners, the classification accuracies with the SVM and Bayesian classifiers were 92% and 77%, respectively. The selected features resulting from the classification process differed by scanner, with more features included for the classification of the integrated HRCT data than for the classification of the HRCT data from each scanner. For the integrated data, consisting of HRCT images of both scanners, the classification accuracy based on the SVM was statistically similar to the accuracy of the data obtained from each scanner. However, the classification accuracy of the integrated data using the Bayesian classifier was significantly lower than the classification accuracy of the ROI data of each scanner. Conclusions: The use of an integrated dataset along with a SVM classifier rather than a Bayesian classifier has benefits in terms of the classification accuracy of HRCT images acquired with more than one scanner. This finding is of relevance in studies involving large number of images, as is the case in a multicenter trial with different scanners.« less
Corn and soybean Landsat MSS classification performance as a function of scene characteristics
NASA Technical Reports Server (NTRS)
Batista, G. T.; Hixson, M. M.; Bauer, M. E.
1982-01-01
In order to fully utilize remote sensing to inventory crop production, it is important to identify the factors that affect the accuracy of Landsat classifications. The objective of this study was to investigate the effect of scene characteristics involving crop, soil, and weather variables on the accuracy of Landsat classifications of corn and soybeans. Segments sampling the U.S. Corn Belt were classified using a Gaussian maximum likelihood classifier on multitemporally registered data from two key acquisition periods. Field size had a strong effect on classification accuracy with small fields tending to have low accuracies even when the effect of mixed pixels was eliminated. Other scene characteristics accounting for variability in classification accuracy included proportions of corn and soybeans, crop diversity index, proportion of all field crops, soil drainage, slope, soil order, long-term average soybean yield, maximum yield, relative position of the segment in the Corn Belt, weather, and crop development stage.
A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm
NASA Astrophysics Data System (ADS)
Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina
The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.
Nationwide forestry applications program. Analysis of forest classification accuracy
NASA Technical Reports Server (NTRS)
Congalton, R. G.; Mead, R. A.; Oderwald, R. G.; Heinen, J. (Principal Investigator)
1981-01-01
The development of LANDSAT classification accuracy assessment techniques, and of a computerized system for assessing wildlife habitat from land cover maps are considered. A literature review on accuracy assessment techniques and an explanation for the techniques development under both projects are included along with listings of the computer programs. The presentations and discussions at the National Working Conference on LANDSAT Classification Accuracy are summarized. Two symposium papers which were published on the results of this project are appended.
NASA Technical Reports Server (NTRS)
Hoffbeck, Joseph P.; Landgrebe, David A.
1994-01-01
Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.
NASA Astrophysics Data System (ADS)
Salvaris, Mathew; Sepulveda, Francisco
2010-10-01
Brain-computer interfaces (BCIs) rely on various electroencephalography methodologies that allow the user to convey their desired control to the machine. Common approaches include the use of event-related potentials (ERPs) such as the P300 and modulation of the beta and mu rhythms. All of these methods have their benefits and drawbacks. In this paper, three different selective attention tasks were tested in conjunction with a P300-based protocol (i.e. the standard counting of target stimuli as well as the conduction of real and imaginary movements in sync with the target stimuli). The three tasks were performed by a total of 10 participants, with the majority (7 out of 10) of the participants having never before participated in imaginary movement BCI experiments. Channels and methods used were optimized for the P300 ERP and no sensory-motor rhythms were explicitly used. The classifier used was a simple Fisher's linear discriminant. Results were encouraging, showing that on average the imaginary movement achieved a P300 versus No-P300 classification accuracy of 84.53%. In comparison, mental counting, the standard selective attention task used in previous studies, achieved 78.9% and real movement 90.3%. Furthermore, multiple trial classification results were recorded and compared, with real movement reaching 99.5% accuracy after four trials (12.8 s), imaginary movement reaching 99.5% accuracy after five trials (16 s) and counting reaching 98.2% accuracy after ten trials (32 s).
Salvaris, Mathew; Sepulveda, Francisco
2010-10-01
Brain-computer interfaces (BCIs) rely on various electroencephalography methodologies that allow the user to convey their desired control to the machine. Common approaches include the use of event-related potentials (ERPs) such as the P300 and modulation of the beta and mu rhythms. All of these methods have their benefits and drawbacks. In this paper, three different selective attention tasks were tested in conjunction with a P300-based protocol (i.e. the standard counting of target stimuli as well as the conduction of real and imaginary movements in sync with the target stimuli). The three tasks were performed by a total of 10 participants, with the majority (7 out of 10) of the participants having never before participated in imaginary movement BCI experiments. Channels and methods used were optimized for the P300 ERP and no sensory-motor rhythms were explicitly used. The classifier used was a simple Fisher's linear discriminant. Results were encouraging, showing that on average the imaginary movement achieved a P300 versus No-P300 classification accuracy of 84.53%. In comparison, mental counting, the standard selective attention task used in previous studies, achieved 78.9% and real movement 90.3%. Furthermore, multiple trial classification results were recorded and compared, with real movement reaching 99.5% accuracy after four trials (12.8 s), imaginary movement reaching 99.5% accuracy after five trials (16 s) and counting reaching 98.2% accuracy after ten trials (32 s).
Land cover classification of VHR airborne images for citrus grove identification
NASA Astrophysics Data System (ADS)
Amorós López, J.; Izquierdo Verdiguier, E.; Gómez Chova, L.; Muñoz Marí, J.; Rodríguez Barreiro, J. Z.; Camps Valls, G.; Calpe Maravilla, J.
Managing land resources using remote sensing techniques is becoming a common practice. However, data analysis procedures should satisfy the high accuracy levels demanded by users (public or private companies and governments) in order to be extensively used. This paper presents a multi-stage classification scheme to update the citrus Geographical Information System (GIS) of the Comunidad Valenciana region (Spain). Spain is the first citrus fruit producer in Europe and the fourth in the world. In particular, citrus fruits represent 67% of the agricultural production in this region, with a total production of 4.24 million tons (campaign 2006-2007). The citrus GIS inventory, created in 2001, needs to be regularly updated in order to monitor changes quickly enough, and allow appropriate policy making and citrus production forecasting. Automatic methods are proposed in this work to facilitate this update, whose processing scheme is summarized as follows. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution aerial images (0.5 m). Next, several automatic classifiers (decision trees, artificial neural networks, and support vector machines) are trained and combined to improve the final classification accuracy. Finally, the citrus GIS is automatically updated if a high enough level of confidence, based on the agreement between classifiers, is achieved. This is the case for 85% of the parcels and accuracy results exceed 94%. The remaining parcels are classified by expert photo-interpreters in order to guarantee the high accuracy demanded by policy makers.
A fuzzy hill-climbing algorithm for the development of a compact associative classifier
NASA Astrophysics Data System (ADS)
Mitra, Soumyaroop; Lam, Sarah S.
2012-02-01
Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.
NASA Astrophysics Data System (ADS)
Zhu, Zhe; Gallant, Alisa L.; Woodcock, Curtis E.; Pengra, Bruce; Olofsson, Pontus; Loveland, Thomas R.; Jin, Suming; Dahal, Devendra; Yang, Limin; Auch, Roger F.
2016-12-01
The U.S. Geological Survey's Land Change Monitoring, Assessment, and Projection (LCMAP) initiative is a new end-to-end capability to continuously track and characterize changes in land cover, use, and condition to better support research and applications relevant to resource management and environmental change. Among the LCMAP product suite are annual land cover maps that will be available to the public. This paper describes an approach to optimize the selection of training and auxiliary data for deriving the thematic land cover maps based on all available clear observations from Landsats 4-8. Training data were selected from map products of the U.S. Geological Survey's Land Cover Trends project. The Random Forest classifier was applied for different classification scenarios based on the Continuous Change Detection and Classification (CCDC) algorithm. We found that extracting training data proportionally to the occurrence of land cover classes was superior to an equal distribution of training data per class, and suggest using a total of 20,000 training pixels to classify an area about the size of a Landsat scene. The problem of unbalanced training data was alleviated by extracting a minimum of 600 training pixels and a maximum of 8000 training pixels per class. We additionally explored removing outliers contained within the training data based on their spectral and spatial criteria, but observed no significant improvement in classification results. We also tested the importance of different types of auxiliary data that were available for the conterminous United States, including: (a) five variables used by the National Land Cover Database, (b) three variables from the cloud screening "Function of mask" (Fmask) statistics, and (c) two variables from the change detection results of CCDC. We found that auxiliary variables such as a Digital Elevation Model and its derivatives (aspect, position index, and slope), potential wetland index, water probability, snow probability, and cloud probability improved the accuracy of land cover classification. Compared to the original strategy of the CCDC algorithm (500 pixels per class), the use of the optimal strategy improved the classification accuracies substantially (15-percentage point increase in overall accuracy and 4-percentage point increase in minimum accuracy).
Derivation of an artificial gene to improve classification accuracy upon gene selection.
Seo, Minseok; Oh, Sejong
2012-02-01
Classification analysis has been developed continuously since 1936. This research field has advanced as a result of development of classifiers such as KNN, ANN, and SVM, as well as through data preprocessing areas. Feature (gene) selection is required for very high dimensional data such as microarray before classification work. The goal of feature selection is to choose a subset of informative features that reduces processing time and provides higher classification accuracy. In this study, we devised a method of artificial gene making (AGM) for microarray data to improve classification accuracy. Our artificial gene was derived from a whole microarray dataset, and combined with a result of gene selection for classification analysis. We experimentally confirmed a clear improvement of classification accuracy after inserting artificial gene. Our artificial gene worked well for popular feature (gene) selection algorithms and classifiers. The proposed approach can be applied to any type of high dimensional dataset. Copyright © 2011 Elsevier Ltd. All rights reserved.
SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W. M.; Li, R. K.; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases. PMID:25295306
Classification of urban features using airborne hyperspectral data
NASA Astrophysics Data System (ADS)
Ganesh Babu, Bharath
Accurate mapping and modeling of urban environments are critical for their efficient and successful management. Superior understanding of complex urban environments is made possible by using modern geospatial technologies. This research focuses on thematic classification of urban land use and land cover (LULC) using 248 bands of 2.0 meter resolution hyperspectral data acquired from an airborne imaging spectrometer (AISA+) on 24th July 2006 in and near Terre Haute, Indiana. Three distinct study areas including two commercial classes, two residential classes, and two urban parks/recreational classes were selected for classification and analysis. Four commonly used classification methods -- maximum likelihood (ML), extraction and classification of homogeneous objects (ECHO), spectral angle mapper (SAM), and iterative self organizing data analysis (ISODATA) - were applied to each data set. Accuracy assessment was conducted and overall accuracies were compared between the twenty four resulting thematic maps. With the exception of SAM and ISODATA in a complex commercial area, all methods employed classified the designated urban features with more than 80% accuracy. The thematic classification from ECHO showed the best agreement with ground reference samples. The residential area with relatively homogeneous composition was classified consistently with highest accuracy by all four of the classification methods used. The average accuracy amongst the classifiers was 93.60% for this area. When individually observed, the complex recreational area (Deming Park) was classified with the highest accuracy by ECHO, with an accuracy of 96.80% and 96.10% Kappa. The average accuracy amongst all the classifiers was 92.07%. The commercial area with relatively high complexity was classified with the least accuracy by all classifiers. The lowest accuracy was achieved by SAM at 63.90% with 59.20% Kappa. This was also the lowest accuracy in the entire analysis. This study demonstrates the potential for using the visible and near infrared (VNIR) bands from AISA+ hyperspectral data in urban LULC classification. Based on their performance, the need for further research using ECHO and SAM is underscored. The importance incorporating imaging spectrometer data in high resolution urban feature mapping is emphasized.
Classification of large-scale fundus image data sets: a cloud-computing framework.
Roychowdhury, Sohini
2016-08-01
Large medical image data sets with high dimensionality require substantial amount of computation time for data creation and data processing. This paper presents a novel generalized method that finds optimal image-based feature sets that reduce computational time complexity while maximizing overall classification accuracy for detection of diabetic retinopathy (DR). First, region-based and pixel-based features are extracted from fundus images for classification of DR lesions and vessel-like structures. Next, feature ranking strategies are used to distinguish the optimal classification feature sets. DR lesion and vessel classification accuracies are computed using the boosted decision tree and decision forest classifiers in the Microsoft Azure Machine Learning Studio platform, respectively. For images from the DIARETDB1 data set, 40 of its highest-ranked features are used to classify four DR lesion types with an average classification accuracy of 90.1% in 792 seconds. Also, for classification of red lesion regions and hemorrhages from microaneurysms, accuracies of 85% and 72% are observed, respectively. For images from STARE data set, 40 high-ranked features can classify minor blood vessels with an accuracy of 83.5% in 326 seconds. Such cloud-based fundus image analysis systems can significantly enhance the borderline classification performances in automated screening systems.
Wang, Wei; Ackland, David C; McClelland, Jodie A; Webster, Kate E; Halgamuge, Saman
2018-01-01
Quantitative gait analysis is an important tool in objective assessment and management of total knee arthroplasty (TKA) patients. Studies evaluating gait patterns in TKA patients have tended to focus on discrete data such as spatiotemporal information, joint range of motion and peak values of kinematics and kinetics, or consider selected principal components of gait waveforms for analysis. These strategies may not have the capacity to capture small variations in gait patterns associated with each joint across an entire gait cycle, and may ultimately limit the accuracy of gait classification. The aim of this study was to develop an automatic feature extraction method to analyse patterns from high-dimensional autocorrelated gait waveforms. A general linear feature extraction framework was proposed and a hierarchical partial least squares method derived for discriminant analysis of multiple gait waveforms. The effectiveness of this strategy was verified using a dataset of joint angle and ground reaction force waveforms from 43 patients after TKA surgery and 31 healthy control subjects. Compared with principal component analysis and partial least squares methods, the hierarchical partial least squares method achieved generally better classification performance on all possible combinations of waveforms, with the highest classification accuracy . The novel hierarchical partial least squares method proposed is capable of capturing virtually all significant differences between TKA patients and the controls, and provides new insights into data visualization. The proposed framework presents a foundation for more rigorous classification of gait, and may ultimately be used to evaluate the effects of interventions such as surgery and rehabilitation.
Real-time, resource-constrained object classification on a micro-air vehicle
NASA Astrophysics Data System (ADS)
Buck, Louis; Ray, Laura
2013-12-01
A real-time embedded object classification algorithm is developed through the novel combination of binary feature descriptors, a bag-of-visual-words object model and the cortico-striatal loop (CSL) learning algorithm. The BRIEF, ORB and FREAK binary descriptors are tested and compared to SIFT descriptors with regard to their respective classification accuracies, execution times, and memory requirements when used with CSL on a 12.6 g ARM Cortex embedded processor running at 800 MHz. Additionally, the effect of x2 feature mapping and opponent-color representations used with these descriptors is examined. These tests are performed on four data sets of varying sizes and difficulty, and the BRIEF descriptor is found to yield the best combination of speed and classification accuracy. Its use with CSL achieves accuracies between 67% and 95% of those achieved with SIFT descriptors and allows for the embedded classification of a 128x192 pixel image in 0.15 seconds, 60 times faster than classification with SIFT. X2 mapping is found to provide substantial improvements in classification accuracy for all of the descriptors at little cost, while opponent-color descriptors are offer accuracy improvements only on colorful datasets.
NASA Astrophysics Data System (ADS)
Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher
2012-10-01
Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.
Information extraction with object based support vector machines and vegetation indices
NASA Astrophysics Data System (ADS)
Ustuner, Mustafa; Abdikan, Saygin; Balik Sanli, Fusun
2016-07-01
Information extraction through remote sensing data is important for policy and decision makers as extracted information provide base layers for many application of real world. Classification of remotely sensed data is the one of the most common methods of extracting information however it is still a challenging issue because several factors are affecting the accuracy of the classification. Resolution of the imagery, number and homogeneity of land cover classes, purity of training data and characteristic of adopted classifiers are just some of these challenging factors. Object based image classification has some superiority than pixel based classification for high resolution images since it uses geometry and structure information besides spectral information. Vegetation indices are also commonly used for the classification process since it provides additional spectral information for vegetation, forestry and agricultural areas. In this study, the impacts of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) on the classification accuracy of RapidEye imagery were investigated. Object based Support Vector Machines were implemented for the classification of crop types for the study area located in Aegean region of Turkey. Results demonstrated that the incorporation of NDRE increase the classification accuracy from 79,96% to 86,80% as overall accuracy, however NDVI decrease the classification accuracy from 79,96% to 78,90%. Moreover it is proven than object based classification with RapidEye data give promising results for crop type mapping and analysis.
Bolin, Jocelyn Holden; Finch, W Holmes
2014-01-01
Statistical classification of phenomena into observed groups is very common in the social and behavioral sciences. Statistical classification methods, however, are affected by the characteristics of the data under study. Statistical classification can be further complicated by initial misclassification of the observed groups. The purpose of this study is to investigate the impact of initial training data misclassification on several statistical classification and data mining techniques. Misclassification conditions in the three group case will be simulated and results will be presented in terms of overall as well as subgroup classification accuracy. Results show decreased classification accuracy as sample size, group separation and group size ratio decrease and as misclassification percentage increases with random forests demonstrating the highest accuracy across conditions.
Classifying environmentally significant urban land uses with satellite imagery.
Park, Mi-Hyun; Stenstrom, Michael K
2008-01-01
We investigated Bayesian networks to classify urban land use from satellite imagery. Landsat Enhanced Thematic Mapper Plus (ETM(+)) images were used for the classification in two study areas: (1) Marina del Rey and its vicinity in the Santa Monica Bay Watershed, CA and (2) drainage basins adjacent to the Sweetwater Reservoir in San Diego, CA. Bayesian networks provided 80-95% classification accuracy for urban land use using four different classification systems. The classifications were robust with small training data sets with normal and reduced radiometric resolution. The networks needed only 5% of the total data (i.e., 1500 pixels) for sample size and only 5- or 6-bit information for accurate classification. The network explicitly showed the relationship among variables from its structure and was also capable of utilizing information from non-spectral data. The classification can be used to provide timely and inexpensive land use information over large areas for environmental purposes such as estimating stormwater pollutant loads.
Three-Category Classification of Magnetic Resonance Hearing Loss Images Based on Deep Autoencoder.
Jia, Wenjuan; Yang, Ming; Wang, Shui-Hua
2017-09-11
Hearing loss, a partial or total inability to hear, is known as hearing impairment. Untreated hearing loss can have a bad effect on normal social communication, and it can cause psychological problems in patients. Therefore, we design a three-category classification system to detect the specific category of hearing loss, which is beneficial to be treated in time for patients. Before the training and test stages, we use the technology of data augmentation to produce a balanced dataset. Then we use deep autoencoder neural network to classify the magnetic resonance brain images. In the stage of deep autoencoder, we use stacked sparse autoencoder to generate visual features, and softmax layer to classify the different brain images into three categories of hearing loss. Our method can obtain good experimental results. The overall accuracy of our method is 99.5%, and the time consuming is 0.078 s per brain image. Our proposed method based on stacked sparse autoencoder works well in classification of hearing loss images. The overall accuracy of our method is 4% higher than the best of state-of-the-art approaches.
Summer Crop Classification by Multi-Temporal COSMO-SkyMed® Data
NASA Astrophysics Data System (ADS)
Guarini, Rocchina; Bruzzone, Lorenzo; Santoni, Massimo; Vuolo, Francesco; Luigi, Dini
2016-08-01
In this study, we propose a multi-temporal and multi- polarization approach to discriminate different crop types in the Marchefel region, Austria. The sensitivity of X-band COSMO-SkyMed® (CSK®) data with respect to five crop classes, namely carrot, corn, potato, soybean and sugarbeet is investigated. In particular, the capabilities of dual-polarization (StripMap PingPong) HH/HV, and single-polarization (StripMap Himage), HH and VH, in distinguishing among the five crop types are evaluated. A total of twenty-one Himage and ten PingPong images were acquired in a seven-months period, from April to October 2014. Therefore, the backscattering coefficient was extracted for each dataset and the classification was performed using a pixel-based support vector machine (SVM) approach. The accuracy of the obtained crop classifications was assessed by comparing them with ground truth. The dual-polarization results are contrasted between the HH and HV polarization, and with single-polarization ones (HH and VH polarizations). The best accuracy is obtained by using time-series of StripMap Himage data, at VH polarization, covering the whole season period.
Groom, Madeleine J; Young, Zoe; Hall, Charlotte L; Gillott, Alinda; Hollis, Chris
2016-09-30
There is a clinical need for objective evidence-based measures that are sensitive and specific to ADHD when compared with other neurodevelopmental disorders. This study evaluated the incremental validity of adding an objective measure of activity and computerised cognitive assessment to clinical rating scales to differentiate adult ADHD from Autism spectrum disorders (ASD). Adults with ADHD (n=33) or ASD (n=25) performed the QbTest, comprising a Continuous Performance Test with motion-tracker to record physical activity. QbTest parameters measuring inattention, impulsivity and hyperactivity were combined to provide a summary score ('QbTotal'). Binary stepwise logistic regression measured the probability of assignment to the ADHD or ASD group based on scores on the Conners Adult ADHD Rating Scale-subscale E (CAARS-E) and Autism Quotient (AQ10) in the first step and then QbTotal added in the second step. The model fit was significant at step 1 (CAARS-E, AQ10) with good group classification accuracy. These predictors were retained and QbTotal was added, resulting in a significant improvement in model fit and group classification accuracy. All predictors were significant. ROC curves indicated superior specificity of QbTotal. The findings present preliminary evidence that adding QbTest to clinical rating scales may improve the differentiation of ADHD and ASD in adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Minimum distance classification in remote sensing
NASA Technical Reports Server (NTRS)
Wacker, A. G.; Landgrebe, D. A.
1972-01-01
The utilization of minimum distance classification methods in remote sensing problems, such as crop species identification, is considered. Literature concerning both minimum distance classification problems and distance measures is reviewed. Experimental results are presented for several examples. The objective of these examples is to: (a) compare the sample classification accuracy of a minimum distance classifier, with the vector classification accuracy of a maximum likelihood classifier, and (b) compare the accuracy of a parametric minimum distance classifier with that of a nonparametric one. Results show the minimum distance classifier performance is 5% to 10% better than that of the maximum likelihood classifier. The nonparametric classifier is only slightly better than the parametric version.
Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan
2018-01-01
The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.
NASA Astrophysics Data System (ADS)
Musa Abbagoni, Baba; Yeung, Hoi
2016-08-01
The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas-liquid flow regimes objectively with the gas-liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor.
Selective classification for improved robustness of myoelectric control under nonideal conditions.
Scheme, Erik J; Englehart, Kevin B; Hudgins, Bernard S
2011-06-01
Recent literature in pattern recognition-based myoelectric control has highlighted a disparity between classification accuracy and the usability of upper limb prostheses. This paper suggests that the conventionally defined classification accuracy may be idealistic and may not reflect true clinical performance. Herein, a novel myoelectric control system based on a selective multiclass one-versus-one classification scheme, capable of rejecting unknown data patterns, is introduced. This scheme is shown to outperform nine other popular classifiers when compared using conventional classification accuracy as well as a form of leave-one-out analysis that may be more representative of real prosthetic use. Additionally, the classification scheme allows for real-time, independent adjustment of individual class-pair boundaries making it flexible and intuitive for clinical use.
Multi-source remotely sensed data fusion for improving land cover classification
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Bo; Xu, Bing
2017-02-01
Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.
Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel
2017-08-18
Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.
Comparison of wheat classification accuracy using different classifiers of the image-100 system
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Chen, S. C.; Moreira, M. A.; Delima, A. M.
1981-01-01
Classification results using single-cell and multi-cell signature acquisition options, a point-by-point Gaussian maximum-likelihood classifier, and K-means clustering of the Image-100 system are presented. Conclusions reached are that: a better indication of correct classification can be provided by using a test area which contains various cover types of the study area; classification accuracy should be evaluated considering both the percentages of correct classification and error of commission; supervised classification approaches are better than K-means clustering; Gaussian distribution maximum likelihood classifier is better than Single-cell and Multi-cell Signature Acquisition Options of the Image-100 system; and in order to obtain a high classification accuracy in a large and heterogeneous crop area, using Gaussian maximum-likelihood classifier, homogeneous spectral subclasses of the study crop should be created to derive training statistics.
Affective Computing and the Impact of Gender and Age
Rukavina, Stefanie; Gruss, Sascha; Hoffmann, Holger; Tan, Jun-Wen; Walter, Steffen; Traue, Harald C.
2016-01-01
Affective computing aims at the detection of users’ mental states, in particular, emotions and dispositions during human-computer interactions. Detection can be achieved by measuring multimodal signals, namely, speech, facial expressions and/or psychobiology. Over the past years, one major approach was to identify the best features for each signal using different classification methods. Although this is of high priority, other subject-specific variables should not be neglected. In our study, we analyzed the effect of gender, age, personality and gender roles on the extracted psychobiological features (derived from skin conductance level, facial electromyography and heart rate variability) as well as the influence on the classification results. In an experimental human-computer interaction, five different affective states with picture material from the International Affective Picture System and ULM pictures were induced. A total of 127 subjects participated in the study. Among all potentially influencing variables (gender has been reported to be influential), age was the only variable that correlated significantly with psychobiological responses. In summary, the conducted classification processes resulted in 20% classification accuracy differences according to age and gender, especially when comparing the neutral condition with four other affective states. We suggest taking age and gender specifically into account for future studies in affective computing, as these may lead to an improvement of emotion recognition accuracy. PMID:26939129
Goshvarpour, Ateke; Goshvarpour, Atefeh
2018-04-30
Heart rate variability (HRV) analysis has become a widely used tool for monitoring pathological and psychological states in medical applications. In a typical classification problem, information fusion is a process whereby the effective combination of the data can achieve a more accurate system. The purpose of this article was to provide an accurate algorithm for classifying HRV signals in various psychological states. Therefore, a novel feature level fusion approach was proposed. First, using the theory of information, two similarity indicators of the signal were extracted, including correntropy and Cauchy-Schwarz divergence. Applying probabilistic neural network (PNN) and k-nearest neighbor (kNN), the performance of each index in the classification of meditators and non-meditators HRV signals was appraised. Then, three fusion rules, including division, product, and weighted sum rules were used to combine the information of both similarity measures. For the first time, we propose an algorithm to define the weights of each feature based on the statistical p-values. The performance of HRV classification using combined features was compared with the non-combined features. Totally, the accuracy of 100% was obtained for discriminating all states. The results showed the strong ability and proficiency of division and weighted sum rules in the improvement of the classifier accuracies.
Accuracy of Remotely Sensed Classifications For Stratification of Forest and Nonforest Lands
Raymond L. Czaplewski; Paul L. Patterson
2001-01-01
We specify accuracy standards for remotely sensed classifications used by FIA to stratify landscapes into two categories: forest and nonforest. Accuracy must be highest when forest area approaches 100 percent of the landscape. If forest area is rare in a landscape, then accuracy in the nonforest stratum must be very high, even at the expense of accuracy in the forest...
NASA Astrophysics Data System (ADS)
Shahriari Nia, Morteza; Wang, Daisy Zhe; Bohlman, Stephanie Ann; Gader, Paul; Graves, Sarah J.; Petrovic, Milenko
2015-01-01
Hyperspectral images can be used to identify savannah tree species at the landscape scale, which is a key step in measuring biomass and carbon, and tracking changes in species distributions, including invasive species, in these ecosystems. Before automated species mapping can be performed, image processing and atmospheric correction is often performed, which can potentially affect the performance of classification algorithms. We determine how three processing and correction techniques (atmospheric correction, Gaussian filters, and shade/green vegetation filters) affect the prediction accuracy of classification of tree species at pixel level from airborne visible/infrared imaging spectrometer imagery of longleaf pine savanna in Central Florida, United States. Species classification using fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction outperformed ATCOR in the majority of cases. Green vegetation (normalized difference vegetation index) and shade (near-infrared) filters did not increase classification accuracy when applied to large and continuous patches of specific species. Finally, applying a Gaussian filter reduces interband noise and increases species classification accuracy. Using the optimal preprocessing steps, our classification accuracy of six species classes is about 75%.
NASA Astrophysics Data System (ADS)
Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie
2018-04-01
The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.
Comparing Features for Classification of MEG Responses to Motor Imagery.
Halme, Hanna-Leena; Parkkonen, Lauri
2016-01-01
Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest. MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns (CSP), filter-bank common spatial patterns (FBCSP), spatio-spectral decomposition (SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject. The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%) and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results. We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction methods utilizing both the spatial and spectral profile of MI-related signals provided the best classification results, suggesting good performance of these methods in an online MEG neurofeedback system.
PCA based feature reduction to improve the accuracy of decision tree c4.5 classification
NASA Astrophysics Data System (ADS)
Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.
2018-03-01
Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.
Improving crop classification through attention to the timing of airborne radar acquisitions
NASA Technical Reports Server (NTRS)
Brisco, B.; Ulaby, F. T.; Protz, R.
1984-01-01
Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.
Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm.
Al-Saffar, Ahmed; Awang, Suryanti; Tao, Hai; Omar, Nazlia; Al-Saiagh, Wafaa; Al-Bared, Mohammed
2018-01-01
Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach.
Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm
Awang, Suryanti; Tao, Hai; Omar, Nazlia; Al-Saiagh, Wafaa; Al-bared, Mohammed
2018-01-01
Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach. PMID:29684036
IMPACTS OF PATCH SIZE AND LANDSCAPE HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY
Impacts of Patch Size and Landscape Heterogeneity on Thematic Image Classification Accuracy.
Currently, most thematic accuracy assessments of classified remotely sensed images oily account for errors between the various classes employed, at particular pixels of interest, thu...
Method of Grassland Information Extraction Based on Multi-Level Segmentation and Cart Model
NASA Astrophysics Data System (ADS)
Qiao, Y.; Chen, T.; He, J.; Wen, Q.; Liu, F.; Wang, Z.
2018-04-01
It is difficult to extract grassland accurately by traditional classification methods, such as supervised method based on pixels or objects. This paper proposed a new method combing the multi-level segmentation with CART (classification and regression tree) model. The multi-level segmentation which combined the multi-resolution segmentation and the spectral difference segmentation could avoid the over and insufficient segmentation seen in the single segmentation mode. The CART model was established based on the spectral characteristics and texture feature which were excavated from training sample data. Xilinhaote City in Inner Mongolia Autonomous Region was chosen as the typical study area and the proposed method was verified by using visual interpretation results as approximate truth value. Meanwhile, the comparison with the nearest neighbor supervised classification method was obtained. The experimental results showed that the total precision of classification and the Kappa coefficient of the proposed method was 95 % and 0.9, respectively. However, the total precision of classification and the Kappa coefficient of the nearest neighbor supervised classification method was 80 % and 0.56, respectively. The result suggested that the accuracy of classification proposed in this paper was higher than the nearest neighbor supervised classification method. The experiment certificated that the proposed method was an effective extraction method of grassland information, which could enhance the boundary of grassland classification and avoid the restriction of grassland distribution scale. This method was also applicable to the extraction of grassland information in other regions with complicated spatial features, which could avoid the interference of woodland, arable land and water body effectively.
Tahmasian, Masoud; Jamalabadi, Hamidreza; Abedini, Mina; Ghadami, Mohammad R; Sepehry, Amir A; Knight, David C; Khazaie, Habibolah
2017-05-22
Sleep disturbance is common in chronic post-traumatic stress disorder (PTSD). However, prior work has demonstrated that there are inconsistencies between subjective and objective assessments of sleep disturbance in PTSD. Therefore, we investigated whether subjective or objective sleep assessment has greater clinical utility to differentiate PTSD patients from healthy subjects. Further, we evaluated whether the combination of subjective and objective methods improves the accuracy of classification into patient versus healthy groups, which has important diagnostic implications. We recruited 32 chronic war-induced PTSD patients and 32 age- and gender-matched healthy subjects to participate in this study. Subjective (i.e. from three self-reported sleep questionnaires) and objective sleep-related data (i.e. from actigraphy scores) were collected from each participant. Subjective, objective, and combined (subjective and objective) sleep data were then analyzed using support vector machine classification. The classification accuracy, sensitivity, and specificity for subjective variables were 89.2%, 89.3%, and 89%, respectively. The classification accuracy, sensitivity, and specificity for objective variables were 65%, 62.3%, and 67.8%, respectively. The classification accuracy, sensitivity, and specificity for the aggregate variables (combination of subjective and objective variables) were 91.6%, 93.0%, and 90.3%, respectively. Our findings indicate that classification accuracy using subjective measurements is superior to objective measurements and the combination of both assessments appears to improve the classification accuracy for differentiating PTSD patients from healthy individuals. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pawłuszek, Kamila; Borkowski, Andrzej
2016-06-01
Since the availability of high-resolution Airborne Laser Scanning (ALS) data, substantial progress in geomorphological research, especially in landslide analysis, has been carried out. First and second order derivatives of Digital Terrain Model (DTM) have become a popular and powerful tool in landslide inventory mapping. Nevertheless, an automatic landslide mapping based on sophisticated classifiers including Support Vector Machine (SVM), Artificial Neural Network or Random Forests is often computationally time consuming. The objective of this research is to deeply explore topographic information provided by ALS data and overcome computational time limitation. For this reason, an extended set of topographic features and the Principal Component Analysis (PCA) were used to reduce redundant information. The proposed novel approach was tested on a susceptible area affected by more than 50 landslides located on Rożnów Lake in Carpathian Mountains, Poland. The initial seven PCA components with 90% of the total variability in the original topographic attributes were used for SVM classification. Comparing results with landslide inventory map, the average user's accuracy (UA), producer's accuracy (PA), and overall accuracy (OA) were calculated for two models according to the classification results. Thereby, for the PCA-feature-reduced model UA, PA, and OA were found to be 72%, 76%, and 72%, respectively. Similarly, UA, PA, and OA in the non-reduced original topographic model, was 74%, 77% and 74%, respectively. Using the initial seven PCA components instead of the twenty original topographic attributes does not significantly change identification accuracy but reduce computational time.
Global Optimization Ensemble Model for Classification Methods
Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab
2014-01-01
Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382
Porras-Alfaro, Andrea; Liu, Kuan-Liang; Kuske, Cheryl R; Xie, Gary
2014-02-01
We compared the classification accuracy of two sections of the fungal internal transcribed spacer (ITS) region, individually and combined, and the 5' section (about 600 bp) of the large-subunit rRNA (LSU), using a naive Bayesian classifier and BLASTN. A hand-curated ITS-LSU training set of 1,091 sequences and a larger training set of 8,967 ITS region sequences were used. Of the factors evaluated, database composition and quality had the largest effect on classification accuracy, followed by fragment size and use of a bootstrap cutoff to improve classification confidence. The naive Bayesian classifier and BLASTN gave similar results at higher taxonomic levels, but the classifier was faster and more accurate at the genus level when a bootstrap cutoff was used. All of the ITS and LSU sections performed well (>97.7% accuracy) at higher taxonomic ranks from kingdom to family, and differences between them were small at the genus level (within 0.66 to 1.23%). When full-length sequence sections were used, the LSU outperformed the ITS1 and ITS2 fragments at the genus level, but the ITS1 and ITS2 showed higher accuracy when smaller fragment sizes of the same length and a 50% bootstrap cutoff were used. In a comparison using the larger ITS training set, ITS1 and ITS2 had very similar accuracy classification for fragments between 100 and 200 bp. Collectively, the results show that any of the ITS or LSU sections we tested provided comparable classification accuracy to the genus level and underscore the need for larger and more diverse classification training sets.
Liu, Kuan-Liang; Kuske, Cheryl R.
2014-01-01
We compared the classification accuracy of two sections of the fungal internal transcribed spacer (ITS) region, individually and combined, and the 5′ section (about 600 bp) of the large-subunit rRNA (LSU), using a naive Bayesian classifier and BLASTN. A hand-curated ITS-LSU training set of 1,091 sequences and a larger training set of 8,967 ITS region sequences were used. Of the factors evaluated, database composition and quality had the largest effect on classification accuracy, followed by fragment size and use of a bootstrap cutoff to improve classification confidence. The naive Bayesian classifier and BLASTN gave similar results at higher taxonomic levels, but the classifier was faster and more accurate at the genus level when a bootstrap cutoff was used. All of the ITS and LSU sections performed well (>97.7% accuracy) at higher taxonomic ranks from kingdom to family, and differences between them were small at the genus level (within 0.66 to 1.23%). When full-length sequence sections were used, the LSU outperformed the ITS1 and ITS2 fragments at the genus level, but the ITS1 and ITS2 showed higher accuracy when smaller fragment sizes of the same length and a 50% bootstrap cutoff were used. In a comparison using the larger ITS training set, ITS1 and ITS2 had very similar accuracy classification for fragments between 100 and 200 bp. Collectively, the results show that any of the ITS or LSU sections we tested provided comparable classification accuracy to the genus level and underscore the need for larger and more diverse classification training sets. PMID:24242255
Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua
2013-01-01
Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts. PMID:24236224
NASA Astrophysics Data System (ADS)
Perry, Daniel; Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua
2012-03-01
Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts.
Van Cott, Andrew; Hastings, Charles E; Landsiedel, Robert; Kolle, Susanne; Stinchcombe, Stefan
2018-02-01
In vivo acute systemic testing is a regulatory requirement for agrochemical formulations. GHS specifies an alternative computational approach (GHS additivity formula) for calculating the acute toxicity of mixtures. We collected acute systemic toxicity data from formulations that contained one of several acutely-toxic active ingredients. The resulting acute data set includes 210 formulations tested for oral toxicity, 128 formulations tested for inhalation toxicity and 31 formulations tested for dermal toxicity. The GHS additivity formula was applied to each of these formulations and compared with the experimental in vivo result. In the acute oral assay, the GHS additivity formula misclassified 110 formulations using the GHS classification criteria (48% accuracy) and 119 formulations using the USEPA classification criteria (43% accuracy). With acute inhalation, the GHS additivity formula misclassified 50 formulations using the GHS classification criteria (61% accuracy) and 34 formulations using the USEPA classification criteria (73% accuracy). For acute dermal toxicity, the GHS additivity formula misclassified 16 formulations using the GHS classification criteria (48% accuracy) and 20 formulations using the USEPA classification criteria (36% accuracy). This data indicates the acute systemic toxicity of many formulations is not the sum of the ingredients' toxicity (additivity); but rather, ingredients in a formulation can interact to result in lower or higher toxicity than predicted by the GHS additivity formula. Copyright © 2018 Elsevier Inc. All rights reserved.
Computational approaches for the classification of seed storage proteins.
Radhika, V; Rao, V Sree Hari
2015-07-01
Seed storage proteins comprise a major part of the protein content of the seed and have an important role on the quality of the seed. These storage proteins are important because they determine the total protein content and have an effect on the nutritional quality and functional properties for food processing. Transgenic plants are being used to develop improved lines for incorporation into plant breeding programs and the nutrient composition of seeds is a major target of molecular breeding programs. Hence, classification of these proteins is crucial for the development of superior varieties with improved nutritional quality. In this study we have applied machine learning algorithms for classification of seed storage proteins. We have presented an algorithm based on nearest neighbor approach for classification of seed storage proteins and compared its performance with decision tree J48, multilayer perceptron neural (MLP) network and support vector machine (SVM) libSVM. The model based on our algorithm has been able to give higher classification accuracy in comparison to the other methods.
Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection
NASA Astrophysics Data System (ADS)
Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.
2015-04-01
SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.
NASA Astrophysics Data System (ADS)
Geelen, Christopher D.; Wijnhoven, Rob G. J.; Dubbelman, Gijs; de With, Peter H. N.
2015-03-01
This research considers gender classification in surveillance environments, typically involving low-resolution images and a large amount of viewpoint variations and occlusions. Gender classification is inherently difficult due to the large intra-class variation and interclass correlation. We have developed a gender classification system, which is successfully evaluated on two novel datasets, which realistically consider the above conditions, typical for surveillance. The system reaches a mean accuracy of up to 90% and approaches our human baseline of 92.6%, proving a high-quality gender classification system. We also present an in-depth discussion of the fundamental differences between SVM and RF classifiers. We conclude that balancing the degree of randomization in any classifier is required for the highest classification accuracy. For our problem, an RF-SVM hybrid classifier exploiting the combination of HSV and LBP features results in the highest classification accuracy of 89.9 0.2%, while classification computation time is negligible compared to the detection time of pedestrians.
NASA Astrophysics Data System (ADS)
Tamimi, E.; Ebadi, H.; Kiani, A.
2017-09-01
Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.
CSE database: extended annotations and new recommendations for ECG software testing.
Smíšek, Radovan; Maršánová, Lucie; Němcová, Andrea; Vítek, Martin; Kozumplík, Jiří; Nováková, Marie
2017-08-01
Nowadays, cardiovascular diseases represent the most common cause of death in western countries. Among various examination techniques, electrocardiography (ECG) is still a highly valuable tool used for the diagnosis of many cardiovascular disorders. In order to diagnose a person based on ECG, cardiologists can use automatic diagnostic algorithms. Research in this area is still necessary. In order to compare various algorithms correctly, it is necessary to test them on standard annotated databases, such as the Common Standards for Quantitative Electrocardiography (CSE) database. According to Scopus, the CSE database is the second most cited standard database. There were two main objectives in this work. First, new diagnoses were added to the CSE database, which extended its original annotations. Second, new recommendations for diagnostic software quality estimation were established. The ECG recordings were diagnosed by five new cardiologists independently, and in total, 59 different diagnoses were found. Such a large number of diagnoses is unique, even in terms of standard databases. Based on the cardiologists' diagnoses, a four-round consensus (4R consensus) was established. Such a 4R consensus means a correct final diagnosis, which should ideally be the output of any tested classification software. The accuracy of the cardiologists' diagnoses compared with the 4R consensus was the basis for the establishment of accuracy recommendations. The accuracy was determined in terms of sensitivity = 79.20-86.81%, positive predictive value = 79.10-87.11%, and the Jaccard coefficient = 72.21-81.14%, respectively. Within these ranges, the accuracy of the software is comparable with the accuracy of cardiologists. The accuracy quantification of the correct classification is unique. Diagnostic software developers can objectively evaluate the success of their algorithm and promote its further development. The annotations and recommendations proposed in this work will allow for faster development and testing of classification software. As a result, this might facilitate cardiologists' work and lead to faster diagnoses and earlier treatment.
Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok
2016-12-05
High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.
Baker, Erich J; Walter, Nicole A R; Salo, Alex; Rivas Perea, Pablo; Moore, Sharon; Gonzales, Steven; Grant, Kathleen A
2017-03-01
The Monkey Alcohol Tissue Research Resource (MATRR) is a repository and analytics platform for detailed data derived from well-documented nonhuman primate (NHP) alcohol self-administration studies. This macaque model has demonstrated categorical drinking norms reflective of human drinking populations, resulting in consumption pattern classifications of very heavy drinking (VHD), heavy drinking (HD), binge drinking (BD), and low drinking (LD) individuals. Here, we expand on previous findings that suggest ethanol drinking patterns during initial drinking to intoxication can reliably predict future drinking category assignment. The classification strategy uses a machine-learning approach to examine an extensive set of daily drinking attributes during 90 sessions of induction across 7 cohorts of 5 to 8 monkeys for a total of 50 animals. A Random Forest classifier is employed to accurately predict categorical drinking after 12 months of self-administration. Predictive outcome accuracy is approximately 78% when classes are aggregated into 2 groups, "LD and BD" and "HD and VHD." A subsequent 2-step classification model distinguishes individual LD and BD categories with 90% accuracy and between HD and VHD categories with 95% accuracy. Average 4-category classification accuracy is 74%, and provides putative distinguishing behavioral characteristics between groupings. We demonstrate that data derived from the induction phase of this ethanol self-administration protocol have significant predictive power for future ethanol consumption patterns. Importantly, numerous predictive factors are longitudinal, measuring the change of drinking patterns through 3 stages of induction. Factors during induction that predict future heavy drinkers include being younger at the time of first intoxication and developing a shorter latency to first ethanol drink. Overall, this analysis identifies predictive characteristics in future very heavy drinkers that optimize intoxication, such as having increasingly fewer bouts with more drinks. This analysis also identifies characteristic avoidance of intoxicating topographies in future low drinkers, such as increasing number of bouts and waiting longer before the first ethanol drink. Copyright © 2017 The Authors Alcoholism: Clinical & Experimental Research published by Wiley Periodicals, Inc. on behalf of Research Society on Alcoholism.
Peatland classification of West Siberia based on Landsat imagery
NASA Astrophysics Data System (ADS)
Terentieva, I.; Glagolev, M.; Lapshina, E.; Maksyutov, S. S.
2014-12-01
Increasing interest in peatlands for prediction of environmental changes requires an understanding of its geographical distribution. West Siberia Plain is the biggest peatland area in Eurasia and is situated in the high latitudes experiencing enhanced rate of climate change. West Siberian taiga mires are important globally, accounting for about 12.5% of the global wetland area. A number of peatland maps of the West Siberia was developed in 1970s, but their accuracy is limited. Here we report the effort in mapping West Siberian peatlands using 30 m resolution Landsat imagery. As a first step, peatland classification scheme oriented on environmental parameter upscaling was developed. The overall workflow involves data pre-processing, training data collection, image classification on a scene-by-scene basis, regrouping of the derived classes into final peatland types and accuracy assessment. To avoid misclassification peatlands were distinguished from other landscapes using threshold method: for each scene, Green-Red Vegetation Indices was used for peatland masking and 5th channel was used for masking water bodies. Peatland image masks were made in Quantum GIS, filtered in MATLAB and then classified in Multispec (Purdue Research Foundation) using maximum likelihood algorithm of supervised classification method. Training sample selection was mostly based on spectral signatures due to limited ancillary and high-resolution image data. As an additional source of information, we applied our field knowledge resulting from more than 10 years of fieldwork in West Siberia summarized in an extensive dataset of botanical relevés, field photos, pH and electrical conductivity data from 40 test sites. After the classification procedure, discriminated spectral classes were generalized into 12 peatland types. Overall accuracy assessment was based on 439 randomly assigned test sites showing final map accuracy was 80%. Total peatland area was estimated at 73.0 Mha. Various ridge-hollow and ridge-hollow-pool bog complexes prevail here occupying 34.5 Mha. They are followed by lakes (11.1 Mha), fens (10.7 Mha), pine-dwarf-shrub sphagnum bogs (9.3 Mha) and palsa complexes (7.4 Mha).
A review of supervised object-based land-cover image classification
NASA Astrophysics Data System (ADS)
Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue
2017-08-01
Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.
Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.
Liao, Shih-Cheng; Wu, Chien-Te; Huang, Hao-Chuan; Cheng, Wei-Teng; Liu, Yi-Hung
2017-06-14
Major depressive disorder (MDD) has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP). The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs) are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA) to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total). Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM) classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be achieved by the KEFP-CSP feature and the SVM classifier with only several trials, and this level of accuracy seems to become stable as more trials (i.e., <7 trials) are used. These findings therefore suggest that the proposed method has a great potential for developing an efficient (required only a few 6-s EEG signals from the 8 electrodes over the temporal) and effective (~80% classification accuracy) EEG-based brain-computer interface (BCI) system which may, in the future, help psychiatrists provide individualized and effective treatments for MDD patients.
Sub-pixel image classification for forest types in East Texas
NASA Astrophysics Data System (ADS)
Westbrook, Joey
Sub-pixel classification is the extraction of information about the proportion of individual materials of interest within a pixel. Landcover classification at the sub-pixel scale provides more discrimination than traditional per-pixel multispectral classifiers for pixels where the material of interest is mixed with other materials. It allows for the un-mixing of pixels to show the proportion of each material of interest. The materials of interest for this study are pine, hardwood, mixed forest and non-forest. The goal of this project was to perform a sub-pixel classification, which allows a pixel to have multiple labels, and compare the result to a traditional supervised classification, which allows a pixel to have only one label. The satellite image used was a Landsat 5 Thematic Mapper (TM) scene of the Stephen F. Austin Experimental Forest in Nacogdoches County, Texas and the four cover type classes are pine, hardwood, mixed forest and non-forest. Once classified, a multi-layer raster datasets was created that comprised four raster layers where each layer showed the percentage of that cover type within the pixel area. Percentage cover type maps were then produced and the accuracy of each was assessed using a fuzzy error matrix for the sub-pixel classifications, and the results were compared to the supervised classification in which a traditional error matrix was used. The overall accuracy of the sub-pixel classification using the aerial photo for both training and reference data had the highest (65% overall) out of the three sub-pixel classifications. This was understandable because the analyst can visually observe the cover types actually on the ground for training data and reference data, whereas using the FIA (Forest Inventory and Analysis) plot data, the analyst must assume that an entire pixel contains the exact percentage of a cover type found in a plot. An increase in accuracy was found after reclassifying each sub-pixel classification from nine classes with 10 percent interval each to five classes with 20 percent interval each. When compared to the supervised classification which has a satisfactory overall accuracy of 90%, none of the sub-pixel classification achieved the same level. However, since traditional per-pixel classifiers assign only one label to pixels throughout the landscape while sub-pixel classifications assign multiple labels to each pixel, the traditional 85% accuracy of acceptance for pixel-based classifications should not apply to sub-pixel classifications. More research is needed in order to define the level of accuracy that is deemed acceptable for sub-pixel classifications.
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; ...
2017-04-03
Here, the feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validationmore » results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.« less
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang
Here, the feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validationmore » results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.« less
Application of visible and near-infrared spectroscopy to classification of Miscanthus species.
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J; Peng, Junhua
2017-01-01
The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.
Application of visible and near-infrared spectroscopy to classification of Miscanthus species
Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J.; Peng, Junhua
2017-01-01
The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species. PMID:28369059
Practical Issues in Estimating Classification Accuracy and Consistency with R Package cacIRT
ERIC Educational Resources Information Center
Lathrop, Quinn N.
2015-01-01
There are two main lines of research in estimating classification accuracy (CA) and classification consistency (CC) under Item Response Theory (IRT). The R package cacIRT provides computer implementations of both approaches in an accessible and unified framework. Even with available implementations, there remains decisions a researcher faces when…
Variance estimates and confidence intervals for the Kappa measure of classification accuracy
M. A. Kalkhan; R. M. Reich; R. L. Czaplewski
1997-01-01
The Kappa statistic is frequently used to characterize the results of an accuracy assessment used to evaluate land use and land cover classifications obtained by remotely sensed data. This statistic allows comparisons of alternative sampling designs, classification algorithms, photo-interpreters, and so forth. In order to make these comparisons, it is...
HEp-2 cell image classification method based on very deep convolutional networks with small datasets
NASA Astrophysics Data System (ADS)
Lu, Mengchi; Gao, Long; Guo, Xifeng; Liu, Qiang; Yin, Jianping
2017-07-01
Human Epithelial-2 (HEp-2) cell images staining patterns classification have been widely used to identify autoimmune diseases by the anti-Nuclear antibodies (ANA) test in the Indirect Immunofluorescence (IIF) protocol. Because manual test is time consuming, subjective and labor intensive, image-based Computer Aided Diagnosis (CAD) systems for HEp-2 cell classification are developing. However, methods proposed recently are mostly manual features extraction with low accuracy. Besides, the scale of available benchmark datasets is small, which does not exactly suitable for using deep learning methods. This issue will influence the accuracy of cell classification directly even after data augmentation. To address these issues, this paper presents a high accuracy automatic HEp-2 cell classification method with small datasets, by utilizing very deep convolutional networks (VGGNet). Specifically, the proposed method consists of three main phases, namely image preprocessing, feature extraction and classification. Moreover, an improved VGGNet is presented to address the challenges of small-scale datasets. Experimental results over two benchmark datasets demonstrate that the proposed method achieves superior performance in terms of accuracy compared with existing methods.
Caminiti, Silvia Paola; Ballarini, Tommaso; Sala, Arianna; Cerami, Chiara; Presotto, Luca; Santangelo, Roberto; Fallanca, Federico; Vanoli, Emilia Giovanna; Gianolli, Luigi; Iannaccone, Sandro; Magnani, Giuseppe; Perani, Daniela
2018-01-01
In this multicentre study in clinical settings, we assessed the accuracy of optimized procedures for FDG-PET brain metabolism and CSF classifications in predicting or excluding the conversion to Alzheimer's disease (AD) dementia and non-AD dementias. We included 80 MCI subjects with neurological and neuropsychological assessments, FDG-PET scan and CSF measures at entry, all with clinical follow-up. FDG-PET data were analysed with a validated voxel-based SPM method. Resulting single-subject SPM maps were classified by five imaging experts according to the disease-specific patterns, as "typical-AD", "atypical-AD" (i.e. posterior cortical atrophy, asymmetric logopenic AD variant, frontal-AD variant), "non-AD" (i.e. behavioural variant FTD, corticobasal degeneration, semantic variant FTD; dementia with Lewy bodies) or "negative" patterns. To perform the statistical analyses, the individual patterns were grouped either as "AD dementia vs. non-AD dementia (all diseases)" or as "FTD vs. non-FTD (all diseases)". Aβ42, total and phosphorylated Tau CSF-levels were classified dichotomously, and using the Erlangen Score algorithm. Multivariate logistic models tested the prognostic accuracy of FDG-PET-SPM and CSF dichotomous classifications. Accuracy of Erlangen score and Erlangen Score aided by FDG-PET SPM classification was evaluated. The multivariate logistic model identified FDG-PET "AD" SPM classification (Expβ = 19.35, 95% C.I. 4.8-77.8, p < 0.001) and CSF Aβ42 (Expβ = 6.5, 95% C.I. 1.64-25.43, p < 0.05) as the best predictors of conversion from MCI to AD dementia. The "FTD" SPM pattern significantly predicted conversion to FTD dementias at follow-up (Expβ = 14, 95% C.I. 3.1-63, p < 0.001). Overall, FDG-PET-SPM classification was the most accurate biomarker, able to correctly differentiate either the MCI subjects who converted to AD or FTD dementias, and those who remained stable or reverted to normal cognition (Expβ = 17.9, 95% C.I. 4.55-70.46, p < 0.001). Our results support the relevant role of FDG-PET-SPM classification in predicting progression to different dementia conditions in prodromal MCI phase, and in the exclusion of progression, outperforming CSF biomarkers.
On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.
Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing
2018-03-19
In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.
Belgiu, Mariana; Dr Guţ, Lucian
2014-10-01
Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing 'optimal segmentation'. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.
Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk
Ramirez-Villegas, Juan F.; Lam-Espinosa, Eric; Ramirez-Moreno, David F.; Calvo-Echeverry, Paulo C.; Agredo-Rodriguez, Wilfredo
2011-01-01
Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis. PMID:21386966
Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?
NASA Astrophysics Data System (ADS)
Turner, Joseph A.; Babcock, Russell C.; Hovey, Renae; Kendrick, Gary A.
2018-05-01
Numerous machine-learning classifiers are available for benthic habitat map production, which can lead to different results. This study highlights the performance of the Random Forest (RF) classifier, which was significantly better than Classification Trees (CT), Naïve Bayes (NB), and a multi-model ensemble in terms of overall accuracy, Balanced Error Rate (BER), Kappa, and area under the curve (AUC) values. RF accuracy was often higher than 90% for each substratum class, even at the most detailed level of the substratum classification and AUC values also indicated excellent performance (0.8-1). Total agreement between classifiers was high at the broadest level of classification (75-80%) when differentiating between hard and soft substratum. However, this sharply declined as the number of substratum categories increased (19-45%) including a mix of rock, gravel, pebbles, and sand. The model ensemble, produced from the results of all three classifiers by majority voting, did not show any increase in predictive performance when compared to the single RF classifier. This study shows how a single classifier may be sufficient to produce benthic seabed maps and model ensembles of multiple classifiers.
NASA Astrophysics Data System (ADS)
Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco
2016-10-01
The classification of remote sensing hyperspectral images for land cover applications is a very intensive topic. In the case of supervised classification, Support Vector Machines (SVMs) play a dominant role. Recently, the Extreme Learning Machine algorithm (ELM) has been extensively used. The classification scheme previously published by the authors, and called WT-EMP, introduces spatial information in the classification process by means of an Extended Morphological Profile (EMP) that is created from features extracted by wavelets. In addition, the hyperspectral image is denoised in the 2-D spatial domain, also using wavelets and it is joined to the EMP via a stacked vector. In this paper, the scheme is improved achieving two goals. The first one is to reduce the classification time while preserving the accuracy of the classification by using ELM instead of SVM. The second one is to improve the accuracy results by performing not only a 2-D denoising for every spectral band, but also a previous additional 1-D spectral signature denoising applied to each pixel vector of the image. For each denoising the image is transformed by applying a 1-D or 2-D wavelet transform, and then a NeighShrink thresholding is applied. Improvements in terms of classification accuracy are obtained, especially for images with close regions in the classification reference map, because in these cases the accuracy of the classification in the edges between classes is more relevant.
Comparing Features for Classification of MEG Responses to Motor Imagery
Halme, Hanna-Leena; Parkkonen, Lauri
2016-01-01
Background Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest. Methods MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns (CSP), filter-bank common spatial patterns (FBCSP), spatio—spectral decomposition (SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject. Results The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%) and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results. Conclusions We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction methods utilizing both the spatial and spectral profile of MI-related signals provided the best classification results, suggesting good performance of these methods in an online MEG neurofeedback system. PMID:27992574
A lung sound classification system based on the rational dilation wavelet transform.
Ulukaya, Sezer; Serbes, Gorkem; Sen, Ipek; Kahya, Yasemin P
2016-08-01
In this work, a wavelet based classification system that aims to discriminate crackle, normal and wheeze lung sounds is presented. While the previous works related with this problem use constant low Q-factor wavelets, which have limited frequency resolution and can not cope with oscillatory signals, in the proposed system, the Rational Dilation Wavelet Transform, whose Q-factors can be tuned, is employed. Proposed system yields an accuracy of 95 % for crackle, 97 % for wheeze, 93.50 % for normal and 95.17 % for total sound signal types using energy feature subset and proposed approach is superior to conventional low Q-factor wavelet analysis.
Søndergaard, Christian Baastrup; Scheie, David; Sehested, Astrid Marie; Skjøth-Rasmussen, Jane
2017-07-01
In 2016, the WHO classification of diffuse astrocytoma began to include isocitrate dehydrogenase (IDH) mutation in addition to histology. We here demonstrate a case where a 14-year-old boy presented with a parietal tumor with no histological evidence of neoplasia but with an IDH1 mutation. Due to the IDH1 R132H mutation, the patient was diagnosed with diffuse astrocytoma WHO grade II and underwent successful gross total resection of this near-eloquently located tumor. This case exemplifies how inclusion of immunohistochemistry in tumor classification alters surgical strategy and might improve accuracy and time to diagnosis.
Ortega, Alonso; Labrenz, Stephan; Markowitsch, Hans J; Piefke, Martina
2013-01-01
In the last decade, different statistical techniques have been introduced to improve assessment of malingering-related poor effort. In this context, we have recently shown preliminary evidence that a Bayesian latent group model may help to optimize classification accuracy using a simulation research design. In the present study, we conducted two analyses. Firstly, we evaluated how accurately this Bayesian approach can distinguish between participants answering in an honest way (honest response group) and participants feigning cognitive impairment (experimental malingering group). Secondly, we tested the accuracy of our model in the differentiation between patients who had real cognitive deficits (cognitively impaired group) and participants who belonged to the experimental malingering group. All Bayesian analyses were conducted using the raw scores of a visual recognition forced-choice task (2AFC), the Test of Memory Malingering (TOMM, Trial 2), and the Word Memory Test (WMT, primary effort subtests). The first analysis showed 100% accuracy for the Bayesian model in distinguishing participants of both groups with all effort measures. The second analysis showed outstanding overall accuracy of the Bayesian model when estimates were obtained from the 2AFC and the TOMM raw scores. Diagnostic accuracy of the Bayesian model diminished when using the WMT total raw scores. Despite, overall diagnostic accuracy can still be considered excellent. The most plausible explanation for this decrement is the low performance in verbal recognition and fluency tasks of some patients of the cognitively impaired group. Additionally, the Bayesian model provides individual estimates, p(zi |D), of examinees' effort levels. In conclusion, both high classification accuracy levels and Bayesian individual estimates of effort may be very useful for clinicians when assessing for effort in medico-legal settings.
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.
Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R; Nguyen, Tuan N; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T
2017-01-01
This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively.
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks
Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R.; Nguyen, Tuan N.; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T.
2017-01-01
This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively. PMID:28326009
Zhang, Xiaoheng; Wang, Lirui; Cao, Yao; Wang, Pin; Zhang, Cheng; Yang, Liuyang; Li, Yongming; Zhang, Yanling; Cheng, Oumei
2018-02-01
Diagnosis of Parkinson's disease (PD) based on speech data has been proved to be an effective way in recent years. However, current researches just care about the feature extraction and classifier design, and do not consider the instance selection. Former research by authors showed that the instance selection can lead to improvement on classification accuracy. However, no attention is paid on the relationship between speech sample and feature until now. Therefore, a new diagnosis algorithm of PD is proposed in this paper by simultaneously selecting speech sample and feature based on relevant feature weighting algorithm and multiple kernel method, so as to find their synergy effects, thereby improving classification accuracy. Experimental results showed that this proposed algorithm obtained apparent improvement on classification accuracy. It can obtain mean classification accuracy of 82.5%, which was 30.5% higher than the relevant algorithm. Besides, the proposed algorithm detected the synergy effects of speech sample and feature, which is valuable for speech marker extraction.
A neural network approach to cloud classification
NASA Technical Reports Server (NTRS)
Lee, Jonathan; Weger, Ronald C.; Sengupta, Sailes K.; Welch, Ronald M.
1990-01-01
It is shown that, using high-spatial-resolution data, very high cloud classification accuracies can be obtained with a neural network approach. A texture-based neural network classifier using only single-channel visible Landsat MSS imagery achieves an overall cloud identification accuracy of 93 percent. Cirrus can be distinguished from boundary layer cloudiness with an accuracy of 96 percent, without the use of an infrared channel. Stratocumulus is retrieved with an accuracy of 92 percent, cumulus at 90 percent. The use of the neural network does not improve cirrus classification accuracy. Rather, its main effect is in the improved separation between stratocumulus and cumulus cloudiness. While most cloud classification algorithms rely on linear parametric schemes, the present study is based on a nonlinear, nonparametric four-layer neural network approach. A three-layer neural network architecture, the nonparametric K-nearest neighbor approach, and the linear stepwise discriminant analysis procedure are compared. A significant finding is that significantly higher accuracies are attained with the nonparametric approaches using only 20 percent of the database as training data, compared to 67 percent of the database in the linear approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getman, Daniel J
2008-01-01
Many attempts to observe changes in terrestrial systems over time would be significantly enhanced if it were possible to improve the accuracy of classifications of low-resolution historic satellite data. In an effort to examine improving the accuracy of historic satellite image classification by combining satellite and air photo data, two experiments were undertaken in which low-resolution multispectral data and high-resolution panchromatic data were combined and then classified using the ECHO spectral-spatial image classification algorithm and the Maximum Likelihood technique. The multispectral data consisted of 6 multispectral channels (30-meter pixel resolution) from Landsat 7. These data were augmented with panchromatic datamore » (15m pixel resolution) from Landsat 7 in the first experiment, and with a mosaic of digital aerial photography (1m pixel resolution) in the second. The addition of the Landsat 7 panchromatic data provided a significant improvement in the accuracy of classifications made using the ECHO algorithm. Although the inclusion of aerial photography provided an improvement in accuracy, this improvement was only statistically significant at a 40-60% level. These results suggest that once error levels associated with combining aerial photography and multispectral satellite data are reduced, this approach has the potential to significantly enhance the precision and accuracy of classifications made using historic remotely sensed data, as a way to extend the time range of efforts to track temporal changes in terrestrial systems.« less
2011-01-01
Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043
Adebileje, Sikiru Afolabi; Ghasemi, Keyvan; Aiyelabegan, Hammed Tanimowo; Saligheh Rad, Hamidreza
2017-04-01
Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Wyse, Adam E.; Babcock, Ben
2016-01-01
A common suggestion made in the psychometric literature for fixed-length classification tests is that one should design tests so that they have maximum information at the cut score. Designing tests in this way is believed to maximize the classification accuracy and consistency of the assessment. This article uses simulated examples to illustrate…
Liljeqvist, Henning T G; Muscatello, David; Sara, Grant; Dinh, Michael; Lawrence, Glenda L
2014-09-23
Syndromic surveillance in emergency departments (EDs) may be used to deliver early warnings of increases in disease activity, to provide situational awareness during events of public health significance, to supplement other information on trends in acute disease and injury, and to support the development and monitoring of prevention or response strategies. Changes in mental health related ED presentations may be relevant to these goals, provided they can be identified accurately and efficiently. This study aimed to measure the accuracy of using diagnostic codes in electronic ED presentation records to identify mental health-related visits. We selected a random sample of 500 records from a total of 1,815,588 ED electronic presentation records from 59 NSW public hospitals during 2010. ED diagnoses were recorded using any of ICD-9, ICD-10 or SNOMED CT classifications. Three clinicians, blinded to the automatically generated syndromic grouping and each other's classification, reviewed the triage notes and classified each of the 500 visits as mental health-related or not. A "mental health problem presentation" for the purposes of this study was defined as any ED presentation where either a mental disorder or a mental health problem was the reason for the ED visit. The combined clinicians' assessment of the records was used as reference standard to measure the sensitivity, specificity, and positive and negative predictive values of the automatic classification of coded emergency department diagnoses. Agreement between the reference standard and the automated coded classification was estimated using the Kappa statistic. Agreement between clinician's classification and automated coded classification was substantial (Kappa = 0.73. 95% CI: 0.58 - 0.87). The automatic syndromic grouping of coded ED diagnoses for mental health-related visits was found to be moderately sensitive (68% 95% CI: 46%-84%) and highly specific at 99% (95% CI: 98%-99.7%) when compared with the reference standard in identifying mental health related ED visits. Positive predictive value was 81% (95% CI: 0.57 - 0.94) and negative predictive value was 98% (95% CI: 0.97-0.99). Mental health presentations identified using diagnoses coded with various classifications in electronic ED presentation records offers sufficient accuracy for application in near real-time syndromic surveillance.
The Accuracy and Reliability of Crowdsource Annotations of Digital Retinal Images
Mitry, Danny; Zutis, Kris; Dhillon, Baljean; Peto, Tunde; Hayat, Shabina; Khaw, Kay-Tee; Morgan, James E.; Moncur, Wendy; Trucco, Emanuele; Foster, Paul J.
2016-01-01
Purpose Crowdsourcing is based on outsourcing computationally intensive tasks to numerous individuals in the online community who have no formal training. Our aim was to develop a novel online tool designed to facilitate large-scale annotation of digital retinal images, and to assess the accuracy of crowdsource grading using this tool, comparing it to expert classification. Methods We used 100 retinal fundus photograph images with predetermined disease criteria selected by two experts from a large cohort study. The Amazon Mechanical Turk Web platform was used to drive traffic to our site so anonymous workers could perform a classification and annotation task of the fundus photographs in our dataset after a short training exercise. Three groups were assessed: masters only, nonmasters only and nonmasters with compulsory training. We calculated the sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic (ROC) plots for all classifications compared to expert grading, and used the Dice coefficient and consensus threshold to assess annotation accuracy. Results In total, we received 5389 annotations for 84 images (excluding 16 training images) in 2 weeks. A specificity and sensitivity of 71% (95% confidence interval [CI], 69%–74%) and 87% (95% CI, 86%–88%) was achieved for all classifications. The AUC in this study for all classifications combined was 0.93 (95% CI, 0.91–0.96). For image annotation, a maximal Dice coefficient (∼0.6) was achieved with a consensus threshold of 0.25. Conclusions This study supports the hypothesis that annotation of abnormalities in retinal images by ophthalmologically naive individuals is comparable to expert annotation. The highest AUC and agreement with expert annotation was achieved in the nonmasters with compulsory training group. Translational Relevance The use of crowdsourcing as a technique for retinal image analysis may be comparable to expert graders and has the potential to deliver timely, accurate, and cost-effective image analysis. PMID:27668130
Classification of visual and linguistic tasks using eye-movement features.
Coco, Moreno I; Keller, Frank
2014-03-07
The role of the task has received special attention in visual-cognition research because it can provide causal explanations of goal-directed eye-movement responses. The dependency between visual attention and task suggests that eye movements can be used to classify the task being performed. A recent study by Greene, Liu, and Wolfe (2012), however, fails to achieve accurate classification of visual tasks based on eye-movement features. In the present study, we hypothesize that tasks can be successfully classified when they differ with respect to the involvement of other cognitive domains, such as language processing. We extract the eye-movement features used by Greene et al. as well as additional features from the data of three different tasks: visual search, object naming, and scene description. First, we demonstrated that eye-movement responses make it possible to characterize the goals of these tasks. Then, we trained three different types of classifiers and predicted the task participants performed with an accuracy well above chance (a maximum of 88% for visual search). An analysis of the relative importance of features for classification accuracy reveals that just one feature, i.e., initiation time, is sufficient for above-chance performance (a maximum of 79% accuracy in object naming). Crucially, this feature is independent of task duration, which differs systematically across the three tasks we investigated. Overall, the best task classification performance was obtained with a set of seven features that included both spatial information (e.g., entropy of attention allocation) and temporal components (e.g., total fixation on objects) of the eye-movement record. This result confirms the task-dependent allocation of visual attention and extends previous work by showing that task classification is possible when tasks differ in the cognitive processes involved (purely visual tasks such as search vs. communicative tasks such as scene description).
The Accuracy and Reliability of Crowdsource Annotations of Digital Retinal Images.
Mitry, Danny; Zutis, Kris; Dhillon, Baljean; Peto, Tunde; Hayat, Shabina; Khaw, Kay-Tee; Morgan, James E; Moncur, Wendy; Trucco, Emanuele; Foster, Paul J
2016-09-01
Crowdsourcing is based on outsourcing computationally intensive tasks to numerous individuals in the online community who have no formal training. Our aim was to develop a novel online tool designed to facilitate large-scale annotation of digital retinal images, and to assess the accuracy of crowdsource grading using this tool, comparing it to expert classification. We used 100 retinal fundus photograph images with predetermined disease criteria selected by two experts from a large cohort study. The Amazon Mechanical Turk Web platform was used to drive traffic to our site so anonymous workers could perform a classification and annotation task of the fundus photographs in our dataset after a short training exercise. Three groups were assessed: masters only, nonmasters only and nonmasters with compulsory training. We calculated the sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic (ROC) plots for all classifications compared to expert grading, and used the Dice coefficient and consensus threshold to assess annotation accuracy. In total, we received 5389 annotations for 84 images (excluding 16 training images) in 2 weeks. A specificity and sensitivity of 71% (95% confidence interval [CI], 69%-74%) and 87% (95% CI, 86%-88%) was achieved for all classifications. The AUC in this study for all classifications combined was 0.93 (95% CI, 0.91-0.96). For image annotation, a maximal Dice coefficient (∼0.6) was achieved with a consensus threshold of 0.25. This study supports the hypothesis that annotation of abnormalities in retinal images by ophthalmologically naive individuals is comparable to expert annotation. The highest AUC and agreement with expert annotation was achieved in the nonmasters with compulsory training group. The use of crowdsourcing as a technique for retinal image analysis may be comparable to expert graders and has the potential to deliver timely, accurate, and cost-effective image analysis.
Developing collaborative classifiers using an expert-based model
Mountrakis, G.; Watts, R.; Luo, L.; Wang, Jingyuan
2009-01-01
This paper presents a hierarchical, multi-stage adaptive strategy for image classification. We iteratively apply various classification methods (e.g., decision trees, neural networks), identify regions of parametric and geographic space where accuracy is low, and in these regions, test and apply alternate methods repeating the process until the entire image is classified. Currently, classifiers are evaluated through human input using an expert-based system; therefore, this paper acts as the proof of concept for collaborative classifiers. Because we decompose the problem into smaller, more manageable sub-tasks, our classification exhibits increased flexibility compared to existing methods since classification methods are tailored to the idiosyncrasies of specific regions. A major benefit of our approach is its scalability and collaborative support since selected low-accuracy classifiers can be easily replaced with others without affecting classification accuracy in high accuracy areas. At each stage, we develop spatially explicit accuracy metrics that provide straightforward assessment of results by non-experts and point to areas that need algorithmic improvement or ancillary data. Our approach is demonstrated in the task of detecting impervious surface areas, an important indicator for human-induced alterations to the environment, using a 2001 Landsat scene from Las Vegas, Nevada. ?? 2009 American Society for Photogrammetry and Remote Sensing.
Compensatory neurofuzzy model for discrete data classification in biomedical
NASA Astrophysics Data System (ADS)
Ceylan, Rahime
2015-03-01
Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.
NASA Astrophysics Data System (ADS)
Hayana Hasibuan, Eka; Mawengkang, Herman; Efendi, Syahril
2017-12-01
The use of Partical Swarm Optimization Algorithm in this research is to optimize the feature weights on the Voting Feature Interval 5 algorithm so that we can find the model of using PSO algorithm with VFI 5. Optimization of feature weight on Diabetes or Dyspesia data is considered important because it is very closely related to the livelihood of many people, so if there is any inaccuracy in determining the most dominant feature weight in the data will cause death. Increased accuracy by using PSO Algorithm ie fold 1 from 92.31% to 96.15% increase accuracy of 3.8%, accuracy of fold 2 on Algorithm VFI5 of 92.52% as well as generated on PSO Algorithm means accuracy fixed, then in fold 3 increase accuracy of 85.19% Increased to 96.29% Accuracy increased by 11%. The total accuracy of all three trials increased by 14%. In general the Partical Swarm Optimization algorithm has succeeded in increasing the accuracy to several fold, therefore it can be concluded the PSO algorithm is well used in optimizing the VFI5 Classification Algorithm.
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.
1976-01-01
The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.
The use of Landsat data to inventory cotton and soybean acreage in North Alabama
NASA Technical Reports Server (NTRS)
Downs, S. W., Jr.; Faust, N. L.
1980-01-01
This study was performed to determine if Landsat data could be used to improve the accuracy of the estimation of cotton acreage. A linear classification algorithm and a maximum likelihood algorithm were used for computer classification of the area, and the classification was compared with ground truth. The classification accuracy for some fields was greater than 90 percent; however, the overall accuracy was 71 percent for cotton and 56 percent for soybeans. The results of this research indicate that computer analysis of Landsat data has potential for improving upon the methods presently being used to determine cotton acreage; however, additional experiments and refinements are needed before the method can be used operationally.
NASA Technical Reports Server (NTRS)
Card, Don H.; Strong, Laurence L.
1989-01-01
An application of a classification accuracy assessment procedure is described for a vegetation and land cover map prepared by digital image processing of LANDSAT multispectral scanner data. A statistical sampling procedure called Stratified Plurality Sampling was used to assess the accuracy of portions of a map of the Arctic National Wildlife Refuge coastal plain. Results are tabulated as percent correct classification overall as well as per category with associated confidence intervals. Although values of percent correct were disappointingly low for most categories, the study was useful in highlighting sources of classification error and demonstrating shortcomings of the plurality sampling method.
Na, Tong; Xie, Jianyang; Zhao, Yitian; Zhao, Yifan; Liu, Yue; Wang, Yongtian; Liu, Jiang
2018-05-09
Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries/veins classification are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A nonlocal total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel-based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. The proposed segmentation method yields competitive results on three public data sets (STARE, DRIVE, and IOSTAR), and it has superior performance when compared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to five public databases (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries/veins classification based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. The experimental results show that the proposed framework has effectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology reconstruction. The vascular topology information significantly improves the accuracy on arteries/veins classification. © 2018 American Association of Physicists in Medicine.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-01-01
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification. PMID:28025525
Janousova, Eva; Schwarz, Daniel; Kasparek, Tomas
2015-06-30
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer-aided diagnostics of neuropsychiatric diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-12-22
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.
Automatic classification of protein structures using physicochemical parameters.
Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam
2014-09-01
Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.
Classification accuracy for stratification with remotely sensed data
Raymond L. Czaplewski; Paul L. Patterson
2003-01-01
Tools are developed that help specify the classification accuracy required from remotely sensed data. These tools are applied during the planning stage of a sample survey that will use poststratification, prestratification with proportional allocation, or double sampling for stratification. Accuracy standards are developed in terms of an âerror matrix,â which is...
NASA Astrophysics Data System (ADS)
Selim, Serdar; Sonmez, Namik Kemal; Onur, Isin; Coslu, Mesut
2017-10-01
Connection of similar landscape patches with ecological corridors supports habitat quality of these patches, increases urban ecological quality, and constitutes an important living and expansion area for wild life. Furthermore, habitat connectivity provided by urban green areas is supporting biodiversity in urban areas. In this study, possible ecological connections between landscape patches, which were achieved by using Expert classification technique and modeled with probabilistic connection index. Firstly, the reflection responses of plants to various bands are used as data in hypotheses. One of the important features of this method is being able to use more than one image at the same time in the formation of the hypothesis. For this reason, before starting the application of the Expert classification, the base images are prepared. In addition to the main image, the hypothesis conditions were also created for each class with the NDVI image which is commonly used in the vegetation researches. Besides, the results of the previously conducted supervised classification were taken into account. We applied this classification method by using the raster imagery with user-defined variables. Hereupon, to provide ecological connections of the tree cover which was achieved from the classification, we used Probabilistic Connection (PC) index. The probabilistic connection model which is used for landscape planning and conservation studies via detecting and prioritization critical areas for ecological connection characterizes the possibility of direct connection between habitats. As a result we obtained over % 90 total accuracy in accuracy assessment analysis. We provided ecological connections with PC index and we created inter-connected green spaces system. Thus, we offered and implicated green infrastructure system model takes place in the agenda of recent years.
Metric learning for automatic sleep stage classification.
Phan, Huy; Do, Quan; Do, The-Luan; Vu, Duc-Lung
2013-01-01
We introduce in this paper a metric learning approach for automatic sleep stage classification based on single-channel EEG data. We show that learning a global metric from training data instead of using the default Euclidean metric, the k-nearest neighbor classification rule outperforms state-of-the-art methods on Sleep-EDF dataset with various classification settings. The overall accuracy for Awake/Sleep and 4-class classification setting are 98.32% and 94.49% respectively. Furthermore, the superior accuracy is achieved by performing classification on a low-dimensional feature space derived from time and frequency domains and without the need for artifact removal as a preprocessing step.
ERIC Educational Resources Information Center
Bramley, Tom
2010-01-01
Background: A recent article published in "Educational Research" on the reliability of results in National Curriculum testing in England (Newton, "The reliability of results from national curriculum testing in England," "Educational Research" 51, no. 2: 181-212, 2009) suggested that: (1) classification accuracy can be…
Bahadure, Nilesh Bhaskarrao; Ray, Arun Kumar; Thethi, Har Pal
2018-01-17
The detection of a brain tumor and its classification from modern imaging modalities is a primary concern, but a time-consuming and tedious work was performed by radiologists or clinical supervisors. The accuracy of detection and classification of tumor stages performed by radiologists is depended on their experience only, so the computer-aided technology is very important to aid with the diagnosis accuracy. In this study, to improve the performance of tumor detection, we investigated comparative approach of different segmentation techniques and selected the best one by comparing their segmentation score. Further, to improve the classification accuracy, the genetic algorithm is employed for the automatic classification of tumor stage. The decision of classification stage is supported by extracting relevant features and area calculation. The experimental results of proposed technique are evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on segmentation score, accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 92.03% accuracy, 91.42% specificity, 92.36% sensitivity, and an average segmentation score between 0.82 and 0.93 demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 93.79% dice similarity index coefficient, which indicates better overlap between the automated extracted tumor regions with manually extracted tumor region by radiologists.
Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska
Selkowitz, D.J.; Stehman, S.V.
2011-01-01
The National Land Cover Database (NLCD) 2001 Alaska land cover classification is the first 30-m resolution land cover product available covering the entire state of Alaska. The accuracy assessment of the NLCD 2001 Alaska land cover classification employed a geographically stratified three-stage sampling design to select the reference sample of pixels. Reference land cover class labels were determined via fixed wing aircraft, as the high resolution imagery used for determining the reference land cover classification in the conterminous U.S. was not available for most of Alaska. Overall thematic accuracy for the Alaska NLCD was 76.2% (s.e. 2.8%) at Level II (12 classes evaluated) and 83.9% (s.e. 2.1%) at Level I (6 classes evaluated) when agreement was defined as a match between the map class and either the primary or alternate reference class label. When agreement was defined as a match between the map class and primary reference label only, overall accuracy was 59.4% at Level II and 69.3% at Level I. The majority of classification errors occurred at Level I of the classification hierarchy (i.e., misclassifications were generally to a different Level I class, not to a Level II class within the same Level I class). Classification accuracy was higher for more abundant land cover classes and for pixels located in the interior of homogeneous land cover patches. ?? 2011.
NASA Astrophysics Data System (ADS)
Kurniawan, Dian; Suparti; Sugito
2018-05-01
Population growth in Indonesia has increased every year. According to the population census conducted by the Central Bureau of Statistics (BPS) in 2010, the population of Indonesia has reached 237.6 million people. Therefore, to control the population growth rate, the government hold Family Planning or Keluarga Berencana (KB) program for couples of childbearing age. The purpose of this program is to improve the health of mothers and children in order to manifest prosperous society by controlling births while ensuring control of population growth. The data used in this study is the updated family data of Semarang city in 2016 that conducted by National Family Planning Coordinating Board (BKKBN). From these data, classifiers with kernel discriminant analysis will be obtained, and also classification accuracy will be obtained from that method. The result of the analysis showed that normal kernel discriminant analysis gives 71.05 % classification accuracy with 28.95 % classification error. Whereas triweight kernel discriminant analysis gives 73.68 % classification accuracy with 26.32 % classification error. Using triweight kernel discriminant for data preprocessing of family planning participation of childbearing age couples in Semarang City of 2016 can be stated better than with normal kernel discriminant.
Madison, Matthew J; Bradshaw, Laine P
2015-06-01
Diagnostic classification models are psychometric models that aim to classify examinees according to their mastery or non-mastery of specified latent characteristics. These models are well-suited for providing diagnostic feedback on educational assessments because of their practical efficiency and increased reliability when compared with other multidimensional measurement models. A priori specifications of which latent characteristics or attributes are measured by each item are a core element of the diagnostic assessment design. This item-attribute alignment, expressed in a Q-matrix, precedes and supports any inference resulting from the application of the diagnostic classification model. This study investigates the effects of Q-matrix design on classification accuracy for the log-linear cognitive diagnosis model. Results indicate that classification accuracy, reliability, and convergence rates improve when the Q-matrix contains isolated information from each measured attribute.
The study of vehicle classification equipment with solutions to improve accuracy in Oklahoma.
DOT National Transportation Integrated Search
2014-12-01
The accuracy of vehicle counting and classification data is vital for appropriate future highway and road : design, including determining pavement characteristics, eliminating traffic jams, and improving safety. : Organizations relying on vehicle cla...
Leucocyte classification for leukaemia detection using image processing techniques.
Putzu, Lorenzo; Caocci, Giovanni; Di Ruberto, Cecilia
2014-11-01
The counting and classification of blood cells allow for the evaluation and diagnosis of a vast number of diseases. The analysis of white blood cells (WBCs) allows for the detection of acute lymphoblastic leukaemia (ALL), a blood cancer that can be fatal if left untreated. Currently, the morphological analysis of blood cells is performed manually by skilled operators. However, this method has numerous drawbacks, such as slow analysis, non-standard accuracy, and dependences on the operator's skill. Few examples of automated systems that can analyse and classify blood cells have been reported in the literature, and most of these systems are only partially developed. This paper presents a complete and fully automated method for WBC identification and classification using microscopic images. In contrast to other approaches that identify the nuclei first, which are more prominent than other components, the proposed approach isolates the whole leucocyte and then separates the nucleus and cytoplasm. This approach is necessary to analyse each cell component in detail. From each cell component, different features, such as shape, colour and texture, are extracted using a new approach for background pixel removal. This feature set was used to train different classification models in order to determine which one is most suitable for the detection of leukaemia. Using our method, 245 of 267 total leucocytes were properly identified (92% accuracy) from 33 images taken with the same camera and under the same lighting conditions. Performing this evaluation using different classification models allowed us to establish that the support vector machine with a Gaussian radial basis kernel is the most suitable model for the identification of ALL, with an accuracy of 93% and a sensitivity of 98%. Furthermore, we evaluated the goodness of our new feature set, which displayed better performance with each evaluated classification model. The proposed method permits the analysis of blood cells automatically via image processing techniques, and it represents a medical tool to avoid the numerous drawbacks associated with manual observation. This process could also be used for counting, as it provides excellent performance and allows for early diagnostic suspicion, which can then be confirmed by a haematologist through specialised techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Surface Water Detection Using Fused Synthetic Aperture Radar, Airborne LiDAR and Optical Imagery
NASA Astrophysics Data System (ADS)
Braun, A.; Irwin, K.; Beaulne, D.; Fotopoulos, G.; Lougheed, S. C.
2016-12-01
Each remote sensing technique has its unique set of strengths and weaknesses, but by combining techniques the classification accuracy can be increased. The goal of this project is to underline the strengths and weaknesses of Synthetic Aperture Radar (SAR), LiDAR and optical imagery data and highlight the opportunities where integration of the three data types can increase the accuracy of identifying water in a principally natural landscape. The study area is located at the Queen's University Biological Station, Ontario, Canada. TerraSAR-X (TSX) data was acquired between April and July 2016, consisting of four single polarization (HH) staring spotlight mode backscatter intensity images. Grey-level thresholding is used to extract surface water bodies, before identifying and masking zones of radar shadow and layover by using LiDAR elevation models to estimate the canopy height and applying simple geometry algorithms. The airborne LiDAR survey was conducted in June 2014, resulting in a discrete return dataset with a density of 1 point/m2. Radiometric calibration to correct for range and incidence angle is applied, before classifying the points as water or land based on corrected intensity, elevation, roughness, and intensity density. Panchromatic and multispectral (4-band) imagery from Quickbird was collected in September 2005 at spatial resolutions of 0.6m and 2.5m respectively. Pixel-based classification is applied to identify and distinguish water bodies from land. A classification system which inputs SAR-, LiDAR- and optically-derived water presence models in raster formats is developed to exploit the strengths and weaknesses of each technique. The total percentage of water detected in the sample area for SAR backscatter, LiDAR intensity, and optical imagery was 27%, 19% and 18% respectively. The output matrix of the classification system indicates that in over 72% of the study area all three methods agree on the classification. Analysis was specifically targeted towards areas where the methods disagree, highlighting how each technique should be properly weighted over these areas to increase the classification accuracy of water. The conclusions and techniques developed in this study are applicable to other areas where similar environmental conditions and data availability exist.
Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds.
Sur, Maitreyi; Suffredini, Tony; Wessells, Stephen M; Bloom, Peter H; Lanzone, Michael; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd
2017-01-01
Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data.
Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds
Suffredini, Tony; Wessells, Stephen M.; Bloom, Peter H.; Lanzone, Michael; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd
2017-01-01
Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data. PMID:28403159
Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds
Sur, Maitreyi; Suffredini, Tony; Wessells, Stephen M.; Bloom, Peter H.; Lanzone, Michael J.; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd
2017-01-01
Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data.
Ground Truth Sampling and LANDSAT Accuracy Assessment
NASA Technical Reports Server (NTRS)
Robinson, J. W.; Gunther, F. J.; Campbell, W. J.
1982-01-01
It is noted that the key factor in any accuracy assessment of remote sensing data is the method used for determining the ground truth, independent of the remote sensing data itself. The sampling and accuracy procedures developed for nuclear power plant siting study are described. The purpose of the sampling procedure was to provide data for developing supervised classifications for two study sites and for assessing the accuracy of that and the other procedures used. The purpose of the accuracy assessment was to allow the comparison of the cost and accuracy of various classification procedures as applied to various data types.
[Research on Rapid Discrimination of Edible Oil by ATR Infrared Spectroscopy].
Ma, Xiao; Yuan, Hong-fu; Song, Chun-feng; Hu, Ai-qin; Li, Xiao-yu; Zhao, Zhong; Li, Xiu-qin; Guo Zhen; Zhu, Zhi-qiang
2015-07-01
A rapid discrimination method of edible oils, KL-BP model, was proposed by attenuated total reflectance infrared spectroscopy. The model extracts the characteristic of classification from source data by KL and reduces data dimension at the same time. Then the neural network model is constructed by the new data which as the input of the model. 84 edible oil samples which include sesame oil, corn oil, canola oil, blend oil, sunflower oil, peanut oil, olive oil, soybean oil and tea seed oil, were collected and their infrared spectra determined using an ATR FT-IR spectrometer. In order to compare the method performance, principal component analysis (PCA) direct-classification model, KL direct-classification model, PLS-DA model, PCA-BP model and KL-BP model are constructed in this paper. The results show that the recognition rates of PCA, PCA-BP, KL, PLS-DA and KL-BP are 59.1%, 68.2%, 77.3%, 77.3% and 90.9% for discriminating the 9 kinds of edible oils, respectively. KL extracts the eigenvector which make the distance between different class and distance of every class ratio is the largest. So the method can get much more classify information than PCA. BP neural network can effectively enhance the classification ability and accuracy. Taking full of the advantages of KL in extracting more category information in dimension reducing and the features of BP neural network in self-learning, adaptive, nonlinear, the KL-BP method has the best classification ability and recognition accuracy and great importance for rapidly recognizing edible oil in practice.
Multi-Temporal Classification and Change Detection Using Uav Images
NASA Astrophysics Data System (ADS)
Makuti, S.; Nex, F.; Yang, M. Y.
2018-05-01
In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A set of state of the art features have been used in the tests: colour features (HSV), textural features (GLCM) and 3D geometric features. For classification purposes Conditional Random Field (CRF) has been used: the unary potential was determined using the Random Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed using the overall accuracy, where by post classification have an accuracy of up to 62.6 % and the pre classification change detection have an accuracy of 46.5 %. These results represent a first useful indication for future works and developments.
Automated structural classification of lipids by machine learning.
Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T
2015-03-01
Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.
1984-01-01
An initial analysis of LANDSAT 4 Thematic Mapper (TM) data for the discrimination of agricultural, forested wetland, and urban land covers is conducted using a scene of data collected over Arkansas and Tennessee. A classification of agricultural lands derived from multitemporal LANDSAT Multispectral Scanner (MSS) data is compared with a classification of TM data for the same area. Results from this comparative analysis show that the multitemporal MSS classification produced an overall accuracy of 80.91% while the TM classification yields an overall classification accuracy of 97.06% correct.
NASA Astrophysics Data System (ADS)
Deng, S.; Katoh, M.; Takenaka, Y.; Cheung, K.; Ishii, A.; Fujii, N.; Gao, T.
2017-10-01
This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS) data and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical position of each tree was collected using a Global Navigation Satellite System (GNSS) device. Tree crowns were manually detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB), 3D point clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns were classified into two classes for the first level (coniferous and broadleaved trees), four classes for the second level (Pinus densiflora, Larix kaempferi, Cryptomeria japonica, and broadleaved trees), and 13 classes for the third level (three coniferous and ten broadleaved species), using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 90 % at the first and second levels but less than 60 % at the third level. The classifications using the best combinations of features had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features.
NASA Technical Reports Server (NTRS)
Rignot, Eric; Williams, Cynthia; Way, Jobea; Viereck, Leslie
1993-01-01
A maximum a posteriori Bayesian classifier for multifrequency polarimetric SAR data is used to perform a supervised classification of forest types in the floodplains of Alaska. The image classes include white spruce, balsam poplar, black spruce, alder, non-forests, and open water. The authors investigate the effect on classification accuracy of changing environmental conditions, and of frequency and polarization of the signal. The highest classification accuracy (86 percent correctly classified forest pixels, and 91 percent overall) is obtained combining L- and C-band frequencies fully polarimetric on a date where the forest is just recovering from flooding. The forest map compares favorably with a vegetation map assembled from digitized aerial photos which took five years for completion, and address the state of the forest in 1978, ignoring subsequent fires, changes in the course of the river, clear-cutting of trees, and tree growth. HV-polarization is the most useful polarization at L- and C-band for classification. C-band VV (ERS-1 mode) and L-band HH (J-ERS-1 mode) alone or combined yield unsatisfactory classification accuracies. Additional data acquired in the winter season during thawed and frozen days yield classification accuracies respectively 20 percent and 30 percent lower due to a greater confusion between conifers and deciduous trees. Data acquired at the peak of flooding in May 1991 also yield classification accuracies 10 percent lower because of dominant trunk-ground interactions which mask out finer differences in radar backscatter between tree species. Combination of several of these dates does not improve classification accuracy. For comparison, panchromatic optical data acquired by SPOT in the summer season of 1991 are used to classify the same area. The classification accuracy (78 percent for the forest types and 90 percent if open water is included) is lower than that obtained with AIRSAR although conifers and deciduous trees are better separated due to the presence of leaves on the deciduous trees. Optical data do not separate black spruce and white spruce as well as SAR data, cannot separate alder from balsam poplar, and are of course limited by the frequent cloud cover in the polar regions. Yet, combining SPOT and AIRSAR offers better chances to identify vegetation types independent of ground truth information using a combination of NDVI indexes from SPOT, biomass numbers from AIRSAR, and a segmentation map from either one.
NASA Astrophysics Data System (ADS)
Karakacan Kuzucu, A.; Bektas Balcik, F.
2017-11-01
Accurate and reliable land use/land cover (LULC) information obtained by remote sensing technology is necessary in many applications such as environmental monitoring, agricultural management, urban planning, hydrological applications, soil management, vegetation condition study and suitability analysis. But this information still remains a challenge especially in heterogeneous landscapes covering urban and rural areas due to spectrally similar LULC features. In parallel with technological developments, supplementary data such as satellite-derived spectral indices have begun to be used as additional bands in classification to produce data with high accuracy. The aim of this research is to test the potential of spectral vegetation indices combination with supervised classification methods and to extract reliable LULC information from SPOT 7 multispectral imagery. The Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation Index (RATIO), the Soil Adjusted Vegetation Index (SAVI) were the three vegetation indices used in this study. The classical maximum likelihood classifier (MLC) and support vector machine (SVM) algorithm were applied to classify SPOT 7 image. Catalca is selected region located in the north west of the Istanbul in Turkey, which has complex landscape covering artificial surface, forest and natural area, agricultural field, quarry/mining area, pasture/scrubland and water body. Accuracy assessment of all classified images was performed through overall accuracy and kappa coefficient. The results indicated that the incorporation of these three different vegetation indices decrease the classification accuracy for the MLC and SVM classification. In addition, the maximum likelihood classification slightly outperformed the support vector machine classification approach in both overall accuracy and kappa statistics.
The Effect of Normalization in Violence Video Classification Performance
NASA Astrophysics Data System (ADS)
Ali, Ashikin; Senan, Norhalina
2017-08-01
Basically, data pre-processing is an important part of data mining. Normalization is a pre-processing stage for any type of problem statement, especially in video classification. Challenging problems that arises in video classification is because of the heterogeneous content, large variations in video quality and complex semantic meanings of the concepts involved. Therefore, to regularize this problem, it is thoughtful to ensure normalization or basically involvement of thorough pre-processing stage aids the robustness of classification performance. This process is to scale all the numeric variables into certain range to make it more meaningful for further phases in available data mining techniques. Thus, this paper attempts to examine the effect of 2 normalization techniques namely Min-max normalization and Z-score in violence video classifications towards the performance of classification rate using Multi-layer perceptron (MLP) classifier. Using Min-Max Normalization range of [0,1] the result shows almost 98% of accuracy, meanwhile Min-Max Normalization range of [-1,1] accuracy is 59% and for Z-score the accuracy is 50%.
Noor, Siti Salwa Md; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang
2017-11-16
In our preliminary study, the reflectance signatures obtained from hyperspectral imaging (HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with subtle differences. Here we present image enhancement algorithms that can be used to improve the interpretability of data into clinically relevant information to facilitate diagnostics. A total of 25 corneal epithelium images without the application of eye staining were used. Three image feature extraction approaches were applied for image classification: (i) image feature classification from histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF); (ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs) only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate that our chosen image features from the histogram and length-scale parameter were able to classify with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI has high potential as a method that could surpass current technologies regarding speed, objectivity, and reliability.
2011-01-01
Background The aim of this study was to develop a child-specific classification system for long bone fractures and to examine its reliability and validity on the basis of a prospective multicentre study. Methods Using the sequentially developed classification system, three samples of between 30 and 185 paediatric limb fractures from a pool of 2308 fractures documented in two multicenter studies were analysed in a blinded fashion by eight orthopaedic surgeons, on a total of 5 occasions. Intra- and interobserver reliability and accuracy were calculated. Results The reliability improved with successive simplification of the classification. The final version resulted in an overall interobserver agreement of κ = 0.71 with no significant difference between experienced and less experienced raters. Conclusions In conclusion, the evaluation of the newly proposed classification system resulted in a reliable and routinely applicable system, for which training in its proper use may further improve the reliability. It can be recommended as a useful tool for clinical practice and offers the option for developing treatment recommendations and outcome predictions in the future. PMID:21548939
A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389
NASA Astrophysics Data System (ADS)
Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude
2010-02-01
Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.
Li, Linyi; Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440
Visual modifications on the P300 speller BCI paradigm
NASA Astrophysics Data System (ADS)
Salvaris, M.; Sepulveda, F.
2009-08-01
The best known P300 speller brain-computer interface (BCI) paradigm is the Farwell and Donchin paradigm. In this paper, various changes to the visual aspects of this protocol are explored as well as their effects on classification. Changes to the dimensions of the symbols, the distance between the symbols and the colours used were tested. The purpose of the present work was not to achieve the highest possible accuracy results, but to ascertain whether these simple modifications to the visual protocol will provide classification differences between them and what these differences will be. Eight subjects were used, with each subject carrying out a total of six different experiments. In each experiment, the user spelt a total of 39 characters. Two types of classifiers were trained and tested to determine whether the results were classifier dependant. These were a support vector machine (SVM) with a radial basis function (RBF) kernel and Fisher's linear discriminant (FLD). The single-trial classification results and multiple-trial classification results were recorded and compared. Although no visual protocol was the best for all subjects, the best performances, across both classifiers, were obtained with the white background (WB) visual protocol. The worst performance was obtained with the small symbol size (SSS) visual protocol.
Protein classification based on text document classification techniques.
Cheng, Betty Yee Man; Carbonell, Jaime G; Klein-Seetharaman, Judith
2005-03-01
The need for accurate, automated protein classification methods continues to increase as advances in biotechnology uncover new proteins. G-protein coupled receptors (GPCRs) are a particularly difficult superfamily of proteins to classify due to extreme diversity among its members. Previous comparisons of BLAST, k-nearest neighbor (k-NN), hidden markov model (HMM) and support vector machine (SVM) using alignment-based features have suggested that classifiers at the complexity of SVM are needed to attain high accuracy. Here, analogous to document classification, we applied Decision Tree and Naive Bayes classifiers with chi-square feature selection on counts of n-grams (i.e. short peptide sequences of length n) to this classification task. Using the GPCR dataset and evaluation protocol from the previous study, the Naive Bayes classifier attained an accuracy of 93.0 and 92.4% in level I and level II subfamily classification respectively, while SVM has a reported accuracy of 88.4 and 86.3%. This is a 39.7 and 44.5% reduction in residual error for level I and level II subfamily classification, respectively. The Decision Tree, while inferior to SVM, outperforms HMM in both level I and level II subfamily classification. For those GPCR families whose profiles are stored in the Protein FAMilies database of alignments and HMMs (PFAM), our method performs comparably to a search against those profiles. Finally, our method can be generalized to other protein families by applying it to the superfamily of nuclear receptors with 94.5, 97.8 and 93.6% accuracy in family, level I and level II subfamily classification respectively. Copyright 2005 Wiley-Liss, Inc.
Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang
2016-08-01
Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.
Rifai Chai; Naik, Ganesh R; Tran, Yvonne; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T
2015-08-01
An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p <; 0.05).
Forest tree species discrimination in western Himalaya using EO-1 Hyperion
NASA Astrophysics Data System (ADS)
George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.
2014-05-01
The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.
Boursier, Jérôme; Bertrais, Sandrine; Oberti, Frédéric; Gallois, Yves; Fouchard-Hubert, Isabelle; Rousselet, Marie-Christine; Zarski, Jean-Pierre; Calès, Paul
2011-11-30
Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test.
2011-01-01
Background Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Methods Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. Results In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). Conclusions The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test. PMID:22129438
NASA Astrophysics Data System (ADS)
Hall-Brown, Mary
The heterogeneity of Arctic vegetation can make land cover classification vey difficult when using medium to small resolution imagery (Schneider et al., 2009; Muller et al., 1999). Using high radiometric and spatial resolution imagery, such as the SPOT 5 and IKONOS satellites, have helped arctic land cover classification accuracies rise into the 80 and 90 percentiles (Allard, 2003; Stine et al., 2010; Muller et al., 1999). However, those increases usually come at a high price. High resolution imagery is very expensive and can often add tens of thousands of dollars onto the cost of the research. The EO-1 satellite launched in 2002 carries two sensors that have high specral and/or high spatial resolutions and can be an acceptable compromise between the resolution versus cost issues. The Hyperion is a hyperspectral sensor with the capability of collecting 242 spectral bands of information. The Advanced Land Imager (ALI) is an advanced multispectral sensor whose spatial resolution can be sharpened to 10 meters. This dissertation compares the accuracies of arctic land cover classifications produced by the Hyperion and ALI sensors to the classification accuracies produced by the Systeme Pour l' Observation de le Terre (SPOT), the Landsat Thematic Mapper (TM) and the Landsat Enhanced Thematic Mapper Plus (ETM+) sensors. Hyperion and ALI images from August 2004 were collected over the Upper Kuparuk River Basin, Alaska. Image processing included the stepwise discriminant analysis of pixels that were positively classified from coinciding ground control points, geometric and radiometric correction, and principle component analysis. Finally, stratified random sampling was used to perform accuracy assessments on satellite derived land cover classifications. Accuracy was estimated from an error matrix (confusion matrix) that provided the overall, producer's and user's accuracies. This research found that while the Hyperion sensor produced classfication accuracies that were equivalent to the TM and ETM+ sensor (approximately 78%), the Hyperion could not obtain the accuracy of the SPOT 5 HRV sensor. However, the land cover classifications derived from the ALI sensor exceeded most classification accuracies derived from the TM and ETM+ senors and were even comparable to most SPOT 5 HRV classifications (87%). With the deactivation of the Landsat series satellites, the monitoring of remote locations such as in the Arctic on an uninterupted basis thoughout the world is in jeopardy. The utilization of the Hyperion and ALI sensors are a way to keep that endeavor operational. By keeping the ALI sensor active at all times, uninterupted observation of the entire Earth can be accomplished. Keeping the Hyperion sensor as a "tasked" sensor can provide scientists with additional imagery and options for their studies without overburdening storage issues.
Evaluation of space SAR as a land-cover classification
NASA Technical Reports Server (NTRS)
Brisco, B.; Ulaby, F. T.; Williams, T. H. L.
1985-01-01
The multidimensional approach to the mapping of land cover, crops, and forests is reported. Dimensionality is achieved by using data from sensors such as LANDSAT to augment Seasat and Shuttle Image Radar (SIR) data, using different image features such as tone and texture, and acquiring multidate data. Seasat, Shuttle Imaging Radar (SIR-A), and LANDSAT data are used both individually and in combination to map land cover in Oklahoma. The results indicates that radar is the best single sensor (72% accuracy) and produces the best sensor combination (97.5% accuracy) for discriminating among five land cover categories. Multidate Seasat data and a single data of LANDSAT coverage are then used in a crop classification study of western Kansas. The highest accuracy for a single channel is achieved using a Seasat scene, which produces a classification accuracy of 67%. Classification accuracy increases to approximately 75% when either a multidate Seasat combination or LANDSAT data in a multisensor combination is used. The tonal and textural elements of SIR-A data are then used both alone and in combination to classify forests into five categories.
Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification
NASA Astrophysics Data System (ADS)
Sharif, I.; Khare, S.
2014-11-01
With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.
NASA Astrophysics Data System (ADS)
Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng
2016-09-01
It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image classification activities. Currently, the approach is used only on high resolution optical three-band remote sensing imagery. The feasibility using the approach on other kinds of remote sensing images or involving additional bands in classification will be studied in future.
Research on Remote Sensing Image Classification Based on Feature Level Fusion
NASA Astrophysics Data System (ADS)
Yuan, L.; Zhu, G.
2018-04-01
Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.
Hwang, Yoo Na; Lee, Ju Hwan; Kim, Ga Young; Jiang, Yuan Yuan; Kim, Sung Min
2015-01-01
This paper focuses on the improvement of the diagnostic accuracy of focal liver lesions by quantifying the key features of cysts, hemangiomas, and malignant lesions on ultrasound images. The focal liver lesions were divided into 29 cysts, 37 hemangiomas, and 33 malignancies. A total of 42 hybrid textural features that composed of 5 first order statistics, 18 gray level co-occurrence matrices, 18 Law's, and echogenicity were extracted. A total of 29 key features that were selected by principal component analysis were used as a set of inputs for a feed-forward neural network. For each lesion, the performance of the diagnosis was evaluated by using the positive predictive value, negative predictive value, sensitivity, specificity, and accuracy. The results of the experiment indicate that the proposed method exhibits great performance, a high diagnosis accuracy of over 96% among all focal liver lesion groups (cyst vs. hemangioma, cyst vs. malignant, and hemangioma vs. malignant) on ultrasound images. The accuracy was slightly increased when echogenicity was included in the optimal feature set. These results indicate that it is possible for the proposed method to be applied clinically.
AVHRR composite period selection for land cover classification
Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.
2002-01-01
Multitemporal satellite image datasets provide valuable information on the phenological characteristics of vegetation, thereby significantly increasing the accuracy of cover type classifications compared to single date classifications. However, the processing of these datasets can become very complex when dealing with multitemporal data combined with multispectral data. Advanced Very High Resolution Radiometer (AVHRR) biweekly composite data are commonly used to classify land cover over large regions. Selecting a subset of these biweekly composite periods may be required to reduce the complexity and cost of land cover mapping. The objective of our research was to evaluate the effect of reducing the number of composite periods and altering the spacing of those composite periods on classification accuracy. Because inter-annual variability can have a major impact on classification results, 5 years of AVHRR data were evaluated. AVHRR biweekly composite images for spectral channels 1-4 (visible, near-infrared and two thermal bands) covering the entire growing season were used to classify 14 cover types over the entire state of Colorado for each of five different years. A supervised classification method was applied to maintain consistent procedures for each case tested. Results indicate that the number of composite periods can be halved-reduced from 14 composite dates to seven composite dates-without significantly reducing overall classification accuracy (80.4% Kappa accuracy for the 14-composite data-set as compared to 80.0% for a seven-composite dataset). At least seven composite periods were required to ensure the classification accuracy was not affected by inter-annual variability due to climate fluctuations. Concentrating more composites near the beginning and end of the growing season, as compared to using evenly spaced time periods, consistently produced slightly higher classification values over the 5 years tested (average Kappa) of 80.3% for the heavy early/late case as compared to 79.0% for the alternate dataset case).
Hao, Pengyu; Wang, Li; Niu, Zheng
2015-01-01
A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies, multiple voting (M-voting) and probabilistic fusion (P-fusion), for crop classification using NDVI time series were tested with different training sample sizes at both pixel and object levels, and two representative counties in north Xinjiang were selected as study area. The single classifiers employed in this research included Random Forest (RF), Support Vector Machine (SVM), and See 5 (C 5.0). The results indicated that classification performance improved (increased the mean overall accuracy by 5%~10%, and reduced standard deviation of overall accuracy by around 1%) substantially with the training sample number, and when the training sample size was small (50 or 100 training samples), hybrid classifiers substantially outperformed single classifiers with higher mean overall accuracy (1%~2%). However, when abundant training samples (4,000) were employed, single classifiers could achieve good classification accuracy, and all classifiers obtained similar performances. Additionally, although object-based classification did not improve accuracy, it resulted in greater visual appeal, especially in study areas with a heterogeneous cropping pattern. PMID:26360597
Koch, Stefan P.; Hägele, Claudia; Haynes, John-Dylan; Heinz, Andreas; Schlagenhauf, Florian; Sterzer, Philipp
2015-01-01
Functional neuroimaging has provided evidence for altered function of mesolimbic circuits implicated in reward processing, first and foremost the ventral striatum, in patients with schizophrenia. While such findings based on significant group differences in brain activations can provide important insights into the pathomechanisms of mental disorders, the use of neuroimaging results from standard univariate statistical analysis for individual diagnosis has proven difficult. In this proof of concept study, we tested whether the predictive accuracy for the diagnostic classification of schizophrenia patients vs. healthy controls could be improved using multivariate pattern analysis (MVPA) of regional functional magnetic resonance imaging (fMRI) activation patterns for the anticipation of monetary reward. With a searchlight MVPA approach using support vector machine classification, we found that the diagnostic category could be predicted from local activation patterns in frontal, temporal, occipital and midbrain regions, with a maximal cluster peak classification accuracy of 93% for the right pallidum. Region-of-interest based MVPA for the ventral striatum achieved a maximal cluster peak accuracy of 88%, whereas the classification accuracy on the basis of standard univariate analysis reached only 75%. Moreover, using support vector regression we could additionally predict the severity of negative symptoms from ventral striatal activation patterns. These results show that MVPA can be used to substantially increase the accuracy of diagnostic classification on the basis of task-related fMRI signal patterns in a regionally specific way. PMID:25799236
2013-01-01
Background and purpose Guidelines for fracture treatment and evaluation require a valid classification. Classifications especially designed for children are available, but they might lead to reduced accuracy, considering the relative infrequency of childhood fractures in a general orthopedic department. We tested the reliability and accuracy of the Müller classification when used for long bone fractures in children. Methods We included all long bone fractures in children aged < 16 years who were treated in 2008 at the surgical ward of Stavanger University Hospital. 20 surgeons recorded 232 fractures. Datasets were generated for intra- and inter-rater analysis, as well as a reference dataset for accuracy calculations. We present proportion of agreement (PA) and kappa (K) statistics. Results For intra-rater analysis, overall agreement (κ) was 0.75 (95% CI: 0.68–0.81) and PA was 79%. For inter-rater assessment, K was 0.71 (95% CI: 0.61–0.80) and PA was 77%. Accuracy was estimated: κ = 0.72 (95% CI: 0.64–0.79) and PA = 76%. Interpretation The Müller classification (slightly adjusted for pediatric fractures) showed substantial to excellent accuracy among general orthopedic surgeons when applied to long bone fractures in children. However, separate knowledge about the child-specific fracture pattern, the maturity of the bone, and the degree of displacement must be considered when the treatment and the prognosis of the fractures are evaluated. PMID:23245225
Rabin, Laura A.; Paré, Nadia; Saykin, Andrew J.; Brown, Michael J.; Wishart, Heather A.; Flashman, Laura A.; Santulli, Robert B.
2011-01-01
Episodic memory is the first and most severely affected cognitive domain in Alzheimer's disease (AD), and it is also the key early marker in prodromal stages including amnestic mild cognitive impairment (MCI). The relative ability of memory tests to discriminate between MCI and normal aging has not been well characterized. We compared the classification value of widely used verbal memory tests in distinguishing healthy older adults (n = 51) from those with MCI (n = 38). Univariate logistic regression indicated that the total learning score from the California Verbal Learning Test-II (CVLT-II) ranked highest in terms of distinguishing MCI from normal aging (sensitivity = 90.2; specificity = 84.2). Inclusion of the delayed recall condition of a story memory task (i.e., WMS-III Logical Memory, Story A) enhanced the overall accuracy of classification (sensitivity = 92.2; specificity = 94.7). Combining Logical Memory recognition and CVLT-II long delay best predicted progression from MCI to AD over a 4-year period (accurate classification = 87.5%). Learning across multiple trials may provide the most sensitive index for initial diagnosis of MCI, but inclusion of additional variables may enhance overall accuracy and may represent the optimal strategy for identifying individuals most likely to progress to dementia. PMID:19353345
A Fault Alarm and Diagnosis Method Based on Sensitive Parameters and Support Vector Machine
NASA Astrophysics Data System (ADS)
Zhang, Jinjie; Yao, Ziyun; Lv, Zhiquan; Zhu, Qunxiong; Xu, Fengtian; Jiang, Zhinong
2015-08-01
Study on the extraction of fault feature and the diagnostic technique of reciprocating compressor is one of the hot research topics in the field of reciprocating machinery fault diagnosis at present. A large number of feature extraction and classification methods have been widely applied in the related research, but the practical fault alarm and the accuracy of diagnosis have not been effectively improved. Developing feature extraction and classification methods to meet the requirements of typical fault alarm and automatic diagnosis in practical engineering is urgent task. The typical mechanical faults of reciprocating compressor are presented in the paper, and the existing data of online monitoring system is used to extract fault feature parameters within 15 types in total; the inner sensitive connection between faults and the feature parameters has been made clear by using the distance evaluation technique, also sensitive characteristic parameters of different faults have been obtained. On this basis, a method based on fault feature parameters and support vector machine (SVM) is developed, which will be applied to practical fault diagnosis. A better ability of early fault warning has been proved by the experiment and the practical fault cases. Automatic classification by using the SVM to the data of fault alarm has obtained better diagnostic accuracy.
Selection-Fusion Approach for Classification of Datasets with Missing Values
Ghannad-Rezaie, Mostafa; Soltanian-Zadeh, Hamid; Ying, Hao; Dong, Ming
2010-01-01
This paper proposes a new approach based on missing value pattern discovery for classifying incomplete data. This approach is particularly designed for classification of datasets with a small number of samples and a high percentage of missing values where available missing value treatment approaches do not usually work well. Based on the pattern of the missing values, the proposed approach finds subsets of samples for which most of the features are available and trains a classifier for each subset. Then, it combines the outputs of the classifiers. Subset selection is translated into a clustering problem, allowing derivation of a mathematical framework for it. A trade off is established between the computational complexity (number of subsets) and the accuracy of the overall classifier. To deal with this trade off, a numerical criterion is proposed for the prediction of the overall performance. The proposed method is applied to seven datasets from the popular University of California, Irvine data mining archive and an epilepsy dataset from Henry Ford Hospital, Detroit, Michigan (total of eight datasets). Experimental results show that classification accuracy of the proposed method is superior to those of the widely used multiple imputations method and four other methods. They also show that the level of superiority depends on the pattern and percentage of missing values. PMID:20212921
Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.
Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens
2016-01-01
MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.
Word pair classification during imagined speech using direct brain recordings
NASA Astrophysics Data System (ADS)
Martin, Stephanie; Brunner, Peter; Iturrate, Iñaki; Millán, José Del R.; Schalk, Gerwin; Knight, Robert T.; Pasley, Brian N.
2016-05-01
People that cannot communicate due to neurological disorders would benefit from an internal speech decoder. Here, we showed the ability to classify individual words during imagined speech from electrocorticographic signals. In a word imagery task, we used high gamma (70-150 Hz) time features with a support vector machine model to classify individual words from a pair of words. To account for temporal irregularities during speech production, we introduced a non-linear time alignment into the SVM kernel. Classification accuracy reached 88% in a two-class classification framework (50% chance level), and average classification accuracy across fifteen word-pairs was significant across five subjects (mean = 58% p < 0.05). We also compared classification accuracy between imagined speech, overt speech and listening. As predicted, higher classification accuracy was obtained in the listening and overt speech conditions (mean = 89% and 86%, respectively; p < 0.0001), where speech stimuli were directly presented. The results provide evidence for a neural representation for imagined words in the temporal lobe, frontal lobe and sensorimotor cortex, consistent with previous findings in speech perception and production. These data represent a proof of concept study for basic decoding of speech imagery, and delineate a number of key challenges to usage of speech imagery neural representations for clinical applications.
Word pair classification during imagined speech using direct brain recordings
Martin, Stephanie; Brunner, Peter; Iturrate, Iñaki; Millán, José del R.; Schalk, Gerwin; Knight, Robert T.; Pasley, Brian N.
2016-01-01
People that cannot communicate due to neurological disorders would benefit from an internal speech decoder. Here, we showed the ability to classify individual words during imagined speech from electrocorticographic signals. In a word imagery task, we used high gamma (70–150 Hz) time features with a support vector machine model to classify individual words from a pair of words. To account for temporal irregularities during speech production, we introduced a non-linear time alignment into the SVM kernel. Classification accuracy reached 88% in a two-class classification framework (50% chance level), and average classification accuracy across fifteen word-pairs was significant across five subjects (mean = 58%; p < 0.05). We also compared classification accuracy between imagined speech, overt speech and listening. As predicted, higher classification accuracy was obtained in the listening and overt speech conditions (mean = 89% and 86%, respectively; p < 0.0001), where speech stimuli were directly presented. The results provide evidence for a neural representation for imagined words in the temporal lobe, frontal lobe and sensorimotor cortex, consistent with previous findings in speech perception and production. These data represent a proof of concept study for basic decoding of speech imagery, and delineate a number of key challenges to usage of speech imagery neural representations for clinical applications. PMID:27165452
Comparing ecoregional classifications for natural areas management in the Klamath Region, USA
Sarr, Daniel A.; Duff, Andrew; Dinger, Eric C.; Shafer, Sarah L.; Wing, Michael; Seavy, Nathaniel E.; Alexander, John D.
2015-01-01
We compared three existing ecoregional classification schemes (Bailey, Omernik, and World Wildlife Fund) with two derived schemes (Omernik Revised and Climate Zones) to explore their effectiveness in explaining species distributions and to better understand natural resource geography in the Klamath Region, USA. We analyzed presence/absence data derived from digital distribution maps for trees, amphibians, large mammals, small mammals, migrant birds, and resident birds using three statistical analyses of classification accuracy (Analysis of Similarity, Canonical Analysis of Principal Coordinates, and Classification Strength). The classifications were roughly comparable in classification accuracy, with Omernik Revised showing the best overall performance. Trees showed the strongest fidelity to the classifications, and large mammals showed the weakest fidelity. We discuss the implications for regional biogeography and describe how intermediate resolution ecoregional classifications may be appropriate for use as natural areas management domains.
a Gsa-Svm Hybrid System for Classification of Binary Problems
NASA Astrophysics Data System (ADS)
Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan
2011-06-01
This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.
Typicality effects in artificial categories: is there a hemisphere difference?
Richards, L G; Chiarello, C
1990-07-01
In category classification tasks, typicality effects are usually found: accuracy and reaction time depend upon distance from a prototype. In this study, subjects learned either verbal or nonverbal dot pattern categories, followed by a lateralized classification task. Comparable typicality effects were found in both reaction time and accuracy across visual fields for both verbal and nonverbal categories. Both hemispheres appeared to use a similarity-to-prototype matching strategy in classification. This indicates that merely having a verbal label does not differentiate classification in the two hemispheres.
Zhao, Dehua; Jiang, Hao; Yang, Tangwu; Cai, Ying; Xu, Delin; An, Shuqing
2012-03-01
Classification trees (CT) have been used successfully in the past to classify aquatic vegetation from spectral indices (SI) obtained from remotely-sensed images. However, applying CT models developed for certain image dates to other time periods within the same year or among different years can reduce the classification accuracy. In this study, we developed CT models with modified thresholds using extreme SI values (CT(m)) to improve the stability of the models when applying them to different time periods. A total of 903 ground-truth samples were obtained in September of 2009 and 2010 and classified as emergent, floating-leaf, or submerged vegetation or other cover types. Classification trees were developed for 2009 (Model-09) and 2010 (Model-10) using field samples and a combination of two images from winter and summer. Overall accuracies of these models were 92.8% and 94.9%, respectively, which confirmed the ability of CT analysis to map aquatic vegetation in Taihu Lake. However, Model-10 had only 58.9-71.6% classification accuracy and 31.1-58.3% agreement (i.e., pixels classified the same in the two maps) for aquatic vegetation when it was applied to image pairs from both a different time period in 2010 and a similar time period in 2009. We developed a method to estimate the effects of extrinsic (EF) and intrinsic (IF) factors on model uncertainty using Modis images. Results indicated that 71.1% of the instability in classification between time periods was due to EF, which might include changes in atmospheric conditions, sun-view angle and water quality. The remainder was due to IF, such as phenological and growth status differences between time periods. The modified version of Model-10 (i.e. CT(m)) performed better than traditional CT with different image dates. When applied to 2009 images, the CT(m) version of Model-10 had very similar thresholds and performance as Model-09, with overall accuracies of 92.8% and 90.5% for Model-09 and the CT(m) version of Model-10, respectively. CT(m) decreased the variability related to EF and IF and thereby improved the applicability of the models to different time periods. In both practice and theory, our results suggested that CT(m) was more stable than traditional CT models and could be used to map aquatic vegetation in time periods other than the one for which the model was developed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Padma, A; Sukanesh, R
2013-01-01
A computer software system is designed for the segmentation and classification of benign from malignant tumour slices in brain computed tomography (CT) images. This paper presents a method to find and select both the dominant run length and co-occurrence texture features of region of interest (ROI) of the tumour region of each slice to be segmented by Fuzzy c means clustering (FCM) and evaluate the performance of support vector machine (SVM)-based classifiers in classifying benign and malignant tumour slices. Two hundred and six tumour confirmed CT slices are considered in this study. A total of 17 texture features are extracted by a feature extraction procedure, and six features are selected using Principal Component Analysis (PCA). This study constructed the SVM-based classifier with the selected features and by comparing the segmentation results with the experienced radiologist labelled ground truth (target). Quantitative analysis between ground truth and segmented tumour is presented in terms of segmentation accuracy, segmentation error and overlap similarity measures such as the Jaccard index. The classification performance of the SVM-based classifier with the same selected features is also evaluated using a 10-fold cross-validation method. The proposed system provides some newly found texture features have an important contribution in classifying benign and malignant tumour slices efficiently and accurately with less computational time. The experimental results showed that the proposed system is able to achieve the highest segmentation and classification accuracy effectiveness as measured by jaccard index and sensitivity and specificity.
Multi-site evaluation of IKONOS data for classification of tropical coral reef environments
Andrefouet, S.; Kramer, Philip; Torres-Pulliza, D.; Joyce, K.E.; Hochberg, E.J.; Garza-Perez, R.; Mumby, P.J.; Riegl, Bernhard; Yamano, H.; White, W.H.; Zubia, M.; Brock, J.C.; Phinn, S.R.; Naseer, A.; Hatcher, B.G.; Muller-Karger, F. E.
2003-01-01
Ten IKONOS images of different coral reef sites distributed around the world were processed to assess the potential of 4-m resolution multispectral data for coral reef habitat mapping. Complexity of reef environments, established by field observation, ranged from 3 to 15 classes of benthic habitats containing various combinations of sediments, carbonate pavement, seagrass, algae, and corals in different geomorphologic zones (forereef, lagoon, patch reef, reef flats). Processing included corrections for sea surface roughness and bathymetry, unsupervised or supervised classification, and accuracy assessment based on ground-truth data. IKONOS classification results were compared with classified Landsat 7 imagery for simple to moderate complexity of reef habitats (5-11 classes). For both sensors, overall accuracies of the classifications show a general linear trend of decreasing accuracy with increasing habitat complexity. The IKONOS sensor performed better, with a 15-20% improvement in accuracy compared to Landsat. For IKONOS, overall accuracy was 77% for 4-5 classes, 71% for 7-8 classes, 65% in 9-11 classes, and 53% for more than 13 classes. The Landsat classification accuracy was systematically lower, with an average of 56% for 5-10 classes. Within this general trend, inter-site comparisons and specificities demonstrate the benefits of different approaches. Pre-segmentation of the different geomorphologic zones and depth correction provided different advantages in different environments. Our results help guide scientists and managers in applying IKONOS-class data for coral reef mapping applications. ?? 2003 Elsevier Inc. All rights reserved.
Transportation Modes Classification Using Sensors on Smartphones.
Fang, Shih-Hau; Liao, Hao-Hsiang; Fei, Yu-Xiang; Chen, Kai-Hsiang; Huang, Jen-Wei; Lu, Yu-Ding; Tsao, Yu
2016-08-19
This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user's transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes.
Transportation Modes Classification Using Sensors on Smartphones
Fang, Shih-Hau; Liao, Hao-Hsiang; Fei, Yu-Xiang; Chen, Kai-Hsiang; Huang, Jen-Wei; Lu, Yu-Ding; Tsao, Yu
2016-01-01
This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user’s transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes. PMID:27548182
Brain-Computer Interface Based on Generation of Visual Images
Bobrov, Pavel; Frolov, Alexander; Cantor, Charles; Fedulova, Irina; Bakhnyan, Mikhail; Zhavoronkov, Alexander
2011-01-01
This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier. PMID:21695206
NASA Technical Reports Server (NTRS)
Mulligan, P. J.; Gervin, J. C.; Lu, Y. C.
1985-01-01
An area bordering the Eastern Shore of the Chesapeake Bay was selected for study and classified using unsupervised techniques applied to LANDSAT-2 MSS data and several band combinations of LANDSAT-4 TM data. The accuracies of these Level I land cover classifications were verified using the Taylor's Island USGS 7.5 minute topographic map which was photointerpreted, digitized and rasterized. The the Taylor's Island map, comparing the MSS and TM three band (2 3 4) classifications, the increased resolution of TM produced a small improvement in overall accuracy of 1% correct due primarily to a small improvement, and 1% and 3%, in areas such as water and woodland. This was expected as the MSS data typically produce high accuracies for categories which cover large contiguous areas. However, in the categories covering smaller areas within the map there was generally an improvement of at least 10%. Classification of the important residential category improved 12%, and wetlands were mapped with 11% greater accuracy.
NASA Astrophysics Data System (ADS)
Roychowdhury, K.
2016-06-01
Landcover is the easiest detectable indicator of human interventions on land. Urban and peri-urban areas present a complex combination of landcover, which makes classification challenging. This paper assesses the different methods of classifying landcover using dual polarimetric Sentinel-1 data collected during monsoon (July) and winter (December) months of 2015. Four broad landcover classes such as built up areas, water bodies and wetlands, vegetation and open spaces of Kolkata and its surrounding regions were identified. Polarimetric analyses were conducted on Single Look Complex (SLC) data of the region while ground range detected (GRD) data were used for spectral and spatial classification. Unsupervised classification by means of K-Means clustering used backscatter values and was able to identify homogenous landcovers over the study area. The results produced an overall accuracy of less than 50% for both the seasons. Higher classification accuracy (around 70%) was achieved by adding texture variables as inputs along with the backscatter values. However, the accuracy of classification increased significantly with polarimetric analyses. The overall accuracy was around 80% in Wishart H-A-Alpha unsupervised classification. The method was useful in identifying urban areas due to their double-bounce scattering and vegetated areas, which have more random scattering. Normalized Difference Built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) obtained from Landsat 8 data over the study area were used to verify vegetation and urban classes. The study compares the accuracies of different methods of classifying landcover using medium resolution SAR data in a complex urban area and suggests that polarimetric analyses present the most accurate results for urban and suburban areas.
Ensemble Pruning for Glaucoma Detection in an Unbalanced Data Set.
Adler, Werner; Gefeller, Olaf; Gul, Asma; Horn, Folkert K; Khan, Zardad; Lausen, Berthold
2016-12-07
Random forests are successful classifier ensemble methods consisting of typically 100 to 1000 classification trees. Ensemble pruning techniques reduce the computational cost, especially the memory demand, of random forests by reducing the number of trees without relevant loss of performance or even with increased performance of the sub-ensemble. The application to the problem of an early detection of glaucoma, a severe eye disease with low prevalence, based on topographical measurements of the eye background faces specific challenges. We examine the performance of ensemble pruning strategies for glaucoma detection in an unbalanced data situation. The data set consists of 102 topographical features of the eye background of 254 healthy controls and 55 glaucoma patients. We compare the area under the receiver operating characteristic curve (AUC), and the Brier score on the total data set, in the majority class, and in the minority class of pruned random forest ensembles obtained with strategies based on the prediction accuracy of greedily grown sub-ensembles, the uncertainty weighted accuracy, and the similarity between single trees. To validate the findings and to examine the influence of the prevalence of glaucoma in the data set, we additionally perform a simulation study with lower prevalences of glaucoma. In glaucoma classification all three pruning strategies lead to improved AUC and smaller Brier scores on the total data set with sub-ensembles as small as 30 to 80 trees compared to the classification results obtained with the full ensemble consisting of 1000 trees. In the simulation study, we were able to show that the prevalence of glaucoma is a critical factor and lower prevalence decreases the performance of our pruning strategies. The memory demand for glaucoma classification in an unbalanced data situation based on random forests could effectively be reduced by the application of pruning strategies without loss of performance in a population with increased risk of glaucoma.
Sex estimation of the tibia in modern Turkish: A computed tomography study.
Ekizoglu, Oguzhan; Er, Ali; Bozdag, Mustafa; Akcaoglu, Mustafa; Can, Ismail Ozgur; García-Donas, Julieta G; Kranioti, Elena F
2016-11-01
The utilization of computed tomography is beneficial for the analysis of skeletal remains and it has important advantages for anthropometric studies. The present study investigated morphometry of left tibia using CT images of a contemporary Turkish population. Seven parameters were measured on 203 individuals (124 males and 79 females) within the 19-92-years age group. The first objective of this study was to provide population-specific sex estimation equations for the contemporary Turkish population based on CT images. A second objective was to test the sex estimation formulae on Southern Europeans by Kranioti and Apostol (2015). Univariate discriminant functions resulted in classification accuracy that ranged from 66 to 86%. The best single variable was found to be upper epiphyseal breadth (86%) followed by lower epiphyseal breadth (85%). Multivariate discriminant functions resulted in classification accuracy for cross-validated data ranged from 79 to 86%. Applying the multivariate sex estimation formulae on Southern Europeans (SE) by Kranioti and Apostol in our sample resulted in very high classification accuracy ranging from 81 to 88%. In addition, 35.5-47% of the total Turkish sample is correctly classified with over 95% posterior probability, which is actually higher than the one reported for the original sample (25-43%). We conclude that the tibia is a very useful bone for sex estimation in the contemporary Turkish population. Moreover, our test results support the hypothesis that the SE formulae are sufficient for the contemporary Turkish population and they can be used safely for criminal investigations when posterior probabilities are over 95%. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sex estimation standards for medieval and contemporary Croats
Bašić, Željana; Kružić, Ivana; Jerković, Ivan; Anđelinović, Deny; Anđelinović, Šimun
2017-01-01
Aim To develop discriminant functions for sex estimation on medieval Croatian population and test their application on contemporary Croatian population. Methods From a total of 519 skeletons, we chose 84 adult excellently preserved skeletons free of antemortem and postmortem changes and took all standard measurements. Sex was estimated/determined using standard anthropological procedures and ancient DNA (amelogenin analysis) where pelvis was insufficiently preserved or where sex morphological indicators were not consistent. We explored which measurements showed sexual dimorphism and used them for developing univariate and multivariate discriminant functions for sex estimation. We included only those functions that reached accuracy rate ≥80%. We tested the applicability of developed functions on modern Croatian sample (n = 37). Results From 69 standard skeletal measurements used in this study, 56 of them showed statistically significant sexual dimorphism (74.7%). We developed five univariate discriminant functions with classification rate 80.6%-85.2% and seven multivariate discriminant functions with an accuracy rate of 81.8%-93.0%. When tested on the modern population functions showed classification rates 74.1%-100%, and ten of them reached aimed accuracy rate. Females showed higher classification rates in the medieval populations, whereas males were better classified in the modern populations. Conclusion Developed discriminant functions are sufficiently accurate for reliable sex estimation in both medieval Croatian population and modern Croatian samples and may be used in forensic settings. The methodological issues that emerged regarding the importance of considering external factors in development and application of discriminant functions for sex estimation should be further explored. PMID:28613039
A practical approach to Sasang constitutional diagnosis using vocal features
2013-01-01
Background Sasang constitutional medicine (SCM) is a type of tailored medicine that divides human beings into four Sasang constitutional (SC) types. Diagnosis of SC types is crucial to proper treatment in SCM. Voice characteristics have been used as an essential clue for diagnosing SC types. In the past, many studies tried to extract quantitative vocal features to make diagnosis models; however, these studies were flawed by limited data collected from one or a few sites, long recording time, and low accuracy. We propose a practical diagnosis model having only a few variables, which decreases model complexity. This in turn, makes our model appropriate for clinical applications. Methods A total of 2,341 participants’ voice recordings were used in making a SC classification model and to test the generalization ability of the model. Although the voice data consisted of five vowels and two repeated sentences per participant, we used only the sentence part for our study. A total of 21 features were extracted, and an advanced feature selection method—the least absolute shrinkage and selection operator (LASSO)—was applied to reduce the number of variables for classifier learning. A SC classification model was developed using multinomial logistic regression via LASSO. Results We compared the proposed classification model to the previous study, which used both sentences and five vowels from the same patient’s group. The classification accuracies for the test set were 47.9% and 40.4% for male and female, respectively. Our result showed that the proposed method was superior to the previous study in that it required shorter voice recordings, is more applicable to practical use, and had better generalization performance. Conclusions We proposed a practical SC classification method and showed that our model having fewer variables outperformed the model having many variables in the generalization test. We attempted to reduce the number of variables in two ways: 1) the initial number of candidate features was decreased by considering shorter voice recording, and 2) LASSO was introduced for reducing model complexity. The proposed method is suitable for an actual clinical environment. Moreover, we expect it to yield more stable results because of the model’s simplicity. PMID:24200041
NASA Astrophysics Data System (ADS)
Akay, S. S.; Sertel, E.
2016-06-01
Urban land cover/use changes like urbanization and urban sprawl have been impacting the urban ecosystems significantly therefore determination of urban land cover/use changes is an important task to understand trends and status of urban ecosystems, to support urban planning and to aid decision-making for urban-based projects. High resolution satellite images could be used to accurately, periodically and quickly map urban land cover/use and their changes by time. This paper aims to determine urban land cover/use changes in Gaziantep city centre between 2010 and 2105 using object based images analysis and high resolution SPOT 5 and SPOT 6 images. 2.5 m SPOT 5 image obtained in 5th of June 2010 and 1.5 m SPOT 6 image obtained in 7th of July 2015 were used in this research to precisely determine land changes in five-year period. In addition to satellite images, various ancillary data namely Normalized Difference Vegetation Index (NDVI), Difference Water Index (NDWI) maps, cadastral maps, OpenStreetMaps, road maps and Land Cover maps, were integrated into the classification process to produce high accuracy urban land cover/use maps for these two years. Both images were geometrically corrected to fulfil the 1/10,000 scale geometric accuracy. Decision tree based object oriented classification was applied to identify twenty different urban land cover/use classes defined in European Urban Atlas project. Not only satellite images and satellite image-derived indices but also different thematic maps were integrated into decision tree analysis to create rule sets for accurate mapping of each class. Rule sets of each satellite image for the object based classification involves spectral, spatial and geometric parameter to automatically produce urban map of the city centre region. Total area of each class per related year and their changes in five-year period were determined and change trend in terms of class transformation were presented. Classification accuracy assessment was conducted by creating a confusion matrix to illustrate the thematic accuracy of each class.
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F.; Joules, Richard; Catani, Marco; Williams, Steve C. R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no “magic bullet” for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis. PMID:25076868
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis.
NASA Technical Reports Server (NTRS)
Fagan, Matthew E.; Defries, Ruth S.; Sesnie, Steven E.; Arroyo-Mora, J. Pablo; Soto, Carlomagno; Singh, Aditya; Townsend, Philip A.; Chazdon, Robin L.
2015-01-01
An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data (Landsat) to accurately classify (1) general forest types and (2) tree plantations by species composition. Following a linear discriminant analysis to reduce data dimensionality, we compared four Random Forest classification models: hyperspectral data (HD) alone; HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; and all three models combined. The fourth, combined model achieved overall accuracy of 88.5%. Adding multitemporal data significantly improved classification accuracy (p less than 0.0001) of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral data alone classified six species of tree plantations with 75% to 93% producer's accuracy; adding multitemporal spectral data increased accuracy only for two species with dense canopies. Non-native tree species had higher classification accuracy overall and made up the majority of tree plantations in this landscape. Our results indicate that combining occasionally acquired hyperspectral data with widely available multitemporal satellite imagery enhances mapping and monitoring of reforestation in tropical landscapes.
NASA Technical Reports Server (NTRS)
Spann, G. W.; Faust, N. L.
1974-01-01
It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.
NASA Astrophysics Data System (ADS)
Park, M.; Stenstrom, M. K.
2004-12-01
Recognizing urban information from the satellite imagery is problematic due to the diverse features and dynamic changes of urban landuse. The use of Landsat imagery for urban land use classification involves inherent uncertainty due to its spatial resolution and the low separability among land uses. To resolve the uncertainty problem, we investigated the performance of Bayesian networks to classify urban land use since Bayesian networks provide a quantitative way of handling uncertainty and have been successfully used in many areas. In this study, we developed the optimized networks for urban land use classification from Landsat ETM+ images of Marina del Rey area based on USGS land cover/use classification level III. The networks started from a tree structure based on mutual information between variables and added the links to improve accuracy. This methodology offers several advantages: (1) The network structure shows the dependency relationships between variables. The class node value can be predicted even with particular band information missing due to sensor system error. The missing information can be inferred from other dependent bands. (2) The network structure provides information of variables that are important for the classification, which is not available from conventional classification methods such as neural networks and maximum likelihood classification. In our case, for example, bands 1, 5 and 6 are the most important inputs in determining the land use of each pixel. (3) The networks can be reduced with those input variables important for classification. This minimizes the problem without considering all possible variables. We also examined the effect of incorporating ancillary data: geospatial information such as X and Y coordinate values of each pixel and DEM data, and vegetation indices such as NDVI and Tasseled Cap transformation. The results showed that the locational information improved overall accuracy (81%) and kappa coefficient (76%), and lowered the omission and commission errors compared with using only spectral data (accuracy 71%, kappa coefficient 62%). Incorporating DEM data did not significantly improve overall accuracy (74%) and kappa coefficient (66%) but lowered the omission and commission errors. Incorporating NDVI did not much improve the overall accuracy (72%) and k coefficient (65%). Including Tasseled Cap transformation reduced the accuracy (accuracy 70%, kappa 61%). Therefore, additional information from the DEM and vegetation indices was not useful as locational ancillary data.
NASA Astrophysics Data System (ADS)
Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.
Zhu, Xiangbin; Qiu, Huiling
2016-01-01
Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.
High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections
2016-01-01
Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved. PMID:27893761
NASA Technical Reports Server (NTRS)
Sadowski, F. E.; Sarno, J. E.
1976-01-01
First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.
Toward improving fine needle aspiration cytology by applying Raman microspectroscopy
NASA Astrophysics Data System (ADS)
Becker-Putsche, Melanie; Bocklitz, Thomas; Clement, Joachim; Rösch, Petra; Popp, Jürgen
2013-04-01
Medical diagnosis of biopsies performed by fine needle aspiration has to be very reliable. Therefore, pathologists/cytologists need additional biochemical information on single cancer cells for an accurate diagnosis. Accordingly, we applied three different classification models for discriminating various features of six breast cancer cell lines by analyzing Raman microspectroscopic data. The statistical evaluations are implemented by linear discriminant analysis (LDA) and support vector machines (SVM). For the first model, a total of 61,580 Raman spectra from 110 single cells are discriminated at the cell-line level with an accuracy of 99.52% using an SVM. The LDA classification based on Raman data achieved an accuracy of 94.04% by discriminating cell lines by their origin (solid tumor versus pleural effusion). In the third model, Raman cell spectra are classified by their cancer subtypes. LDA results show an accuracy of 97.45% and specificities of 97.78%, 99.11%, and 98.97% for the subtypes basal-like, HER2+/ER-, and luminal, respectively. These subtypes are confirmed by gene expression patterns, which are important prognostic features in diagnosis. This work shows the applicability of Raman spectroscopy and statistical data handling in analyzing cancer-relevant biochemical information for advanced medical diagnosis on the single-cell level.
NASA Astrophysics Data System (ADS)
Fujita, Yusuke; Mitani, Yoshihiro; Hamamoto, Yoshihiko; Segawa, Makoto; Terai, Shuji; Sakaida, Isao
2017-03-01
Ultrasound imaging is a popular and non-invasive tool used in the diagnoses of liver disease. Cirrhosis is a chronic liver disease and it can advance to liver cancer. Early detection and appropriate treatment are crucial to prevent liver cancer. However, ultrasound image analysis is very challenging, because of the low signal-to-noise ratio of ultrasound images. To achieve the higher classification performance, selection of training regions of interest (ROIs) is very important that effect to classification accuracy. The purpose of our study is cirrhosis detection with high accuracy using liver ultrasound images. In our previous works, training ROI selection by MILBoost and multiple-ROI classification based on the product rule had been proposed, to achieve high classification performance. In this article, we propose self-training method to select training ROIs effectively. Evaluation experiments were performed to evaluate effect of self-training, using manually selected ROIs and also automatically selected ROIs. Experimental results show that self-training for manually selected ROIs achieved higher classification performance than other approaches, including our conventional methods. The manually ROI definition and sample selection are important to improve classification accuracy in cirrhosis detection using ultrasound images.
The impact of OCR accuracy on automated cancer classification of pathology reports.
Zuccon, Guido; Nguyen, Anthony N; Bergheim, Anton; Wickman, Sandra; Grayson, Narelle
2012-01-01
To evaluate the effects of Optical Character Recognition (OCR) on the automatic cancer classification of pathology reports. Scanned images of pathology reports were converted to electronic free-text using a commercial OCR system. A state-of-the-art cancer classification system, the Medical Text Extraction (MEDTEX) system, was used to automatically classify the OCR reports. Classifications produced by MEDTEX on the OCR versions of the reports were compared with the classification from a human amended version of the OCR reports. The employed OCR system was found to recognise scanned pathology reports with up to 99.12% character accuracy and up to 98.95% word accuracy. Errors in the OCR processing were found to minimally impact on the automatic classification of scanned pathology reports into notifiable groups. However, the impact of OCR errors is not negligible when considering the extraction of cancer notification items, such as primary site, histological type, etc. The automatic cancer classification system used in this work, MEDTEX, has proven to be robust to errors produced by the acquisition of freetext pathology reports from scanned images through OCR software. However, issues emerge when considering the extraction of cancer notification items.
NASA Astrophysics Data System (ADS)
Dash, Jatindra K.; Kale, Mandar; Mukhopadhyay, Sudipta; Khandelwal, Niranjan; Prabhakar, Nidhi; Garg, Mandeep; Kalra, Naveen
2017-03-01
In this paper, we investigate the effect of the error criteria used during a training phase of the artificial neural network (ANN) on the accuracy of the classifier for classification of lung tissues affected with Interstitial Lung Diseases (ILD). Mean square error (MSE) and the cross-entropy (CE) criteria are chosen being most popular choice in state-of-the-art implementations. The classification experiment performed on the six interstitial lung disease (ILD) patterns viz. Consolidation, Emphysema, Ground Glass Opacity, Micronodules, Fibrosis and Healthy from MedGIFT database. The texture features from an arbitrary region of interest (AROI) are extracted using Gabor filter. Two different neural networks are trained with the scaled conjugate gradient back propagation algorithm with MSE and CE error criteria function respectively for weight updation. Performance is evaluated in terms of average accuracy of these classifiers using 4 fold cross-validation. Each network is trained for five times for each fold with randomly initialized weight vectors and accuracies are computed. Significant improvement in classification accuracy is observed when ANN is trained by using CE (67.27%) as error function compared to MSE (63.60%). Moreover, standard deviation of the classification accuracy for the network trained with CE (6.69) error criteria is found less as compared to network trained with MSE (10.32) criteria.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
Edwards, T.C.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, Gretchen G.
2006-01-01
We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen species irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all species and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE tree models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE tree models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen species, with 11 of the 12 possible species and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification tree structures also differed considerably both among and within the modelled species, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE tree models ranged from only 20% to 38%, indicating the classification trees fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sukawattanavijit, Chanika; Srestasathiern, Panu
2017-10-01
Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.
The Analysis of Object-Based Change Detection in Mining Area: a Case Study with Pingshuo Coal Mine
NASA Astrophysics Data System (ADS)
Zhang, M.; Zhou, W.; Li, Y.
2017-09-01
Accurate information on mining land use and land cover change are crucial for monitoring and environmental change studies. In this paper, RapidEye Remote Sensing Image (Map 2012) and SPOT7 Remote Sensing Image (Map 2015) in Pingshuo Mining Area are selected to monitor changes combined with object-based classification and change vector analysis method, we also used R in highresolution remote sensing image for mining land classification, and found the feasibility and the flexibility of open source software. The results show that (1) the classification of reclaimed mining land has higher precision, the overall accuracy and kappa coefficient of the classification of the change region map were 86.67 % and 89.44 %. It's obvious that object-based classification and change vector analysis which has a great significance to improve the monitoring accuracy can be used to monitor mining land, especially reclaiming mining land; (2) the vegetation area changed from 46 % to 40 % accounted for the proportion of the total area from 2012 to 2015, and most of them were transformed into the arable land. The sum of arable land and vegetation area increased from 51 % to 70 %; meanwhile, build-up land has a certain degree of increase, part of the water area was transformed into arable land, but the extent of the two changes is not obvious. The result illustrated the transformation of reclaimed mining area, at the same time, there is still some land convert to mining land, and it shows the mine is still operating, mining land use and land cover are the dynamic procedure.
Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li
2011-01-01
Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice. PMID:21359184
Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li
2011-02-16
Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.
NASA Astrophysics Data System (ADS)
Melville, Bethany; Lucieer, Arko; Aryal, Jagannath
2018-04-01
This paper presents a random forest classification approach for identifying and mapping three types of lowland native grassland communities found in the Tasmanian Midlands region. Due to the high conservation priority assigned to these communities, there has been an increasing need to identify appropriate datasets that can be used to derive accurate and frequently updateable maps of community extent. Therefore, this paper proposes a method employing repeat classification and statistical significance testing as a means of identifying the most appropriate dataset for mapping these communities. Two datasets were acquired and analysed; a Landsat ETM+ scene, and a WorldView-2 scene, both from 2010. Training and validation data were randomly subset using a k-fold (k = 50) approach from a pre-existing field dataset. Poa labillardierei, Themeda triandra and lowland native grassland complex communities were identified in addition to dry woodland and agriculture. For each subset of randomly allocated points, a random forest model was trained based on each dataset, and then used to classify the corresponding imagery. Validation was performed using the reciprocal points from the independent subset that had not been used to train the model. Final training and classification accuracies were reported as per class means for each satellite dataset. Analysis of Variance (ANOVA) was undertaken to determine whether classification accuracy differed between the two datasets, as well as between classifications. Results showed mean class accuracies between 54% and 87%. Class accuracy only differed significantly between datasets for the dry woodland and Themeda grassland classes, with the WorldView-2 dataset showing higher mean classification accuracies. The results of this study indicate that remote sensing is a viable method for the identification of lowland native grassland communities in the Tasmanian Midlands, and that repeat classification and statistical significant testing can be used to identify optimal datasets for vegetation community mapping.
Estimation of different data compositions for early-season crop type classification.
Hao, Pengyu; Wu, Mingquan; Niu, Zheng; Wang, Li; Zhan, Yulin
2018-01-01
Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer's accuracies (PAs) and user's accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.
Estimation of different data compositions for early-season crop type classification
Wu, Mingquan; Wang, Li; Zhan, Yulin
2018-01-01
Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study. PMID:29868265
Semi-supervised classification tool for DubaiSat-2 multispectral imagery
NASA Astrophysics Data System (ADS)
Al-Mansoori, Saeed
2015-10-01
This paper addresses a semi-supervised classification tool based on a pixel-based approach of the multi-spectral satellite imagery. There are not many studies demonstrating such algorithm for the multispectral images, especially when the image consists of 4 bands (Red, Green, Blue and Near Infrared) as in DubaiSat-2 satellite images. The proposed approach utilizes both unsupervised and supervised classification schemes sequentially to identify four classes in the image, namely, water bodies, vegetation, land (developed and undeveloped areas) and paved areas (i.e. roads). The unsupervised classification concept is applied to identify two classes; water bodies and vegetation, based on a well-known index that uses the distinct wavelengths of visible and near-infrared sunlight that is absorbed and reflected by the plants to identify the classes; this index parameter is called "Normalized Difference Vegetation Index (NDVI)". Afterward, the supervised classification is performed by selecting training homogenous samples for roads and land areas. Here, a precise selection of training samples plays a vital role in the classification accuracy. Post classification is finally performed to enhance the classification accuracy, where the classified image is sieved, clumped and filtered before producing final output. Overall, the supervised classification approach produced higher accuracy than the unsupervised method. This paper shows some current preliminary research results which point out the effectiveness of the proposed technique in a virtual perspective.
Classification Consistency and Accuracy for Complex Assessments Using Item Response Theory
ERIC Educational Resources Information Center
Lee, Won-Chan
2010-01-01
In this article, procedures are described for estimating single-administration classification consistency and accuracy indices for complex assessments using item response theory (IRT). This IRT approach was applied to real test data comprising dichotomous and polytomous items. Several different IRT model combinations were considered. Comparisons…
Conceptual Scoring and Classification Accuracy of Vocabulary Testing in Bilingual Children
ERIC Educational Resources Information Center
Anaya, Jissel B.; Peña, Elizabeth D.; Bedore, Lisa M.
2018-01-01
Purpose: This study examined the effects of single-language and conceptual scoring on the vocabulary performance of bilingual children with and without specific language impairment. We assessed classification accuracy across 3 scoring methods. Method: Participants included Spanish-English bilingual children (N = 247) aged 5;1 (years;months) to…
Classification with spatio-temporal interpixel class dependency contexts
NASA Technical Reports Server (NTRS)
Jeon, Byeungwoo; Landgrebe, David A.
1992-01-01
A contextual classifier which can utilize both spatial and temporal interpixel dependency contexts is investigated. After spatial and temporal neighbors are defined, a general form of maximum a posterior spatiotemporal contextual classifier is derived. This contextual classifier is simplified under several assumptions. Joint prior probabilities of the classes of each pixel and its spatial neighbors are modeled by the Gibbs random field. The classification is performed in a recursive manner to allow a computationally efficient contextual classification. Experimental results with bitemporal TM data show significant improvement of classification accuracy over noncontextual pixelwise classifiers. This spatiotemporal contextual classifier should find use in many applications of remote sensing, especially when the classification accuracy is important.
Gastric precancerous diseases classification using CNN with a concise model.
Zhang, Xu; Hu, Weiling; Chen, Fei; Liu, Jiquan; Yang, Yuanhang; Wang, Liangjing; Duan, Huilong; Si, Jianmin
2017-01-01
Gastric precancerous diseases (GPD) may deteriorate into early gastric cancer if misdiagnosed, so it is important to help doctors recognize GPD accurately and quickly. In this paper, we realize the classification of 3-class GPD, namely, polyp, erosion, and ulcer using convolutional neural networks (CNN) with a concise model called the Gastric Precancerous Disease Network (GPDNet). GPDNet introduces fire modules from SqueezeNet to reduce the model size and parameters about 10 times while improving speed for quick classification. To maintain classification accuracy with fewer parameters, we propose an innovative method called iterative reinforced learning (IRL). After training GPDNet from scratch, we apply IRL to fine-tune the parameters whose values are close to 0, and then we take the modified model as a pretrained model for the next training. The result shows that IRL can improve the accuracy about 9% after 6 iterations. The final classification accuracy of our GPDNet was 88.90%, which is promising for clinical GPD recognition.
Convolutional neural network with transfer learning for rice type classification
NASA Astrophysics Data System (ADS)
Patel, Vaibhav Amit; Joshi, Manjunath V.
2018-04-01
Presently, rice type is identified manually by humans, which is time consuming and error prone. Therefore, there is a need to do this by machine which makes it faster with greater accuracy. This paper proposes a deep learning based method for classification of rice types. We propose two methods to classify the rice types. In the first method, we train a deep convolutional neural network (CNN) using the given segmented rice images. In the second method, we train a combination of a pretrained VGG16 network and the proposed method, while using transfer learning in which the weights of a pretrained network are used to achieve better accuracy. Our approach can also be used for classification of rice grain as broken or fine. We train a 5-class model for classifying rice types using 4000 training images and another 2- class model for the classification of broken and normal rice using 1600 training images. We observe that despite having distinct rice images, our architecture, pretrained on ImageNet data boosts classification accuracy significantly.
Monteiro-Soares, M; Martins-Mendes, D; Vaz-Carneiro, A; Sampaio, S; Dinis-Ribeiro, M
2014-10-01
We systematically review the available systems used to classify diabetic foot ulcers in order to synthesize their methodological qualitative issues and accuracy to predict lower extremity amputation, as this may represent a critical point in these patients' care. Two investigators searched, in EBSCO, ISI, PubMed and SCOPUS databases, and independently selected studies published until May 2013 and reporting prognostic accuracy and/or reliability of specific systems for patients with diabetic foot ulcer in order to predict lower extremity amputation. We included 25 studies reporting a prevalence of lower extremity amputation between 6% and 78%. Eight different diabetic foot ulcer descriptions and seven prognostic stratification classification systems were addressed with a variable (1-9) number of factors included, specially peripheral arterial disease (n = 12) or infection at the ulcer site (n = 10) or ulcer depth (n = 10). The Meggitt-Wagner, S(AD)SAD and Texas University Classification systems were the most extensively validated, whereas ten classifications were derived or validated only once. Reliability was reported in a single study, and accuracy measures were reported in five studies with another eight allowing their calculation. Pooled accuracy ranged from 0.65 (for gangrene) to 0.74 (for infection). There are numerous classification systems for diabetic foot ulcer outcome prediction, but only few studies evaluated their reliability or external validity. Studies rarely validated several systems simultaneously and only a few reported accuracy measures. Further studies assessing reliability and accuracy of the available systems and their composing variables are needed. Copyright © 2014 John Wiley & Sons, Ltd.
Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.
Subasi, Abdulhamit
2013-06-01
Support vector machine (SVM) is an extensively used machine learning method with many biomedical signal classification applications. In this study, a novel PSO-SVM model has been proposed that hybridized the particle swarm optimization (PSO) and SVM to improve the EMG signal classification accuracy. This optimization mechanism involves kernel parameter setting in the SVM training procedure, which significantly influences the classification accuracy. The experiments were conducted on the basis of EMG signal to classify into normal, neurogenic or myopathic. In the proposed method the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT) and a set of statistical features were extracted from these sub-bands to represent the distribution of wavelet coefficients. The obtained results obviously validate the superiority of the SVM method compared to conventional machine learning methods, and suggest that further significant enhancements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. The PSO-SVM yielded an overall accuracy of 97.41% on 1200 EMG signals selected from 27 subject records against 96.75%, 95.17% and 94.08% for the SVM, the k-NN and the RBF classifiers, respectively. PSO-SVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of PSO-SVM for diagnosis of neuromuscular disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn
2016-06-01
Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.
Jiang, Hao; Zhao, Dehua; Cai, Ying; An, Shuqing
2012-01-01
In previous attempts to identify aquatic vegetation from remotely-sensed images using classification trees (CT), the images used to apply CT models to different times or locations necessarily originated from the same satellite sensor as that from which the original images used in model development came, greatly limiting the application of CT. We have developed an effective normalization method to improve the robustness of CT models when applied to images originating from different sensors and dates. A total of 965 ground-truth samples of aquatic vegetation types were obtained in 2009 and 2010 in Taihu Lake, China. Using relevant spectral indices (SI) as classifiers, we manually developed a stable CT model structure and then applied a standard CT algorithm to obtain quantitative (optimal) thresholds from 2009 ground-truth data and images from Landsat7-ETM+, HJ-1B-CCD, Landsat5-TM and ALOS-AVNIR-2 sensors. Optimal CT thresholds produced average classification accuracies of 78.1%, 84.7% and 74.0% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. However, the optimal CT thresholds for different sensor images differed from each other, with an average relative variation (RV) of 6.40%. We developed and evaluated three new approaches to normalizing the images. The best-performing method (Method of 0.1% index scaling) normalized the SI images using tailored percentages of extreme pixel values. Using the images normalized by Method of 0.1% index scaling, CT models for a particular sensor in which thresholds were replaced by those from the models developed for images originating from other sensors provided average classification accuracies of 76.0%, 82.8% and 68.9% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. Applying the CT models developed for normalized 2009 images to 2010 images resulted in high classification (78.0%–93.3%) and overall (92.0%–93.1%) accuracies. Our results suggest that Method of 0.1% index scaling provides a feasible way to apply CT models directly to images from sensors or time periods that differ from those of the images used to develop the original models.
Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio
NASA Astrophysics Data System (ADS)
Nababan, A. A.; Sitompul, O. S.; Tulus
2018-04-01
K- Nearest Neighbor (KNN) is a good classifier, but from several studies, the result performance accuracy of KNN still lower than other methods. One of the causes of the low accuracy produced, because each attribute has the same effect on the classification process, while some less relevant characteristics lead to miss-classification of the class assignment for new data. In this research, we proposed Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio as a parameter to see the correlation between each attribute in the data and the Gain Ratio also will be used as the basis for weighting each attribute of the dataset. The accuracy of results is compared to the accuracy acquired from the original KNN method using 10-fold Cross-Validation with several datasets from the UCI Machine Learning repository and KEEL-Dataset Repository, such as abalone, glass identification, haberman, hayes-roth and water quality status. Based on the result of the test, the proposed method was able to increase the classification accuracy of KNN, where the highest difference of accuracy obtained hayes-roth dataset is worth 12.73%, and the lowest difference of accuracy obtained in the abalone dataset of 0.07%. The average result of the accuracy of all dataset increases the accuracy by 5.33%.
NASA Technical Reports Server (NTRS)
Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.
2013-01-01
Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification steps. Within this chapter, each of the four approaches is described in terms of scale and accuracy classifying urban land use and urban land cover; and for its range of urban applications. We demonstrate the overview of four main classification groups in Figure 1 while Table 1 details the approaches with respect to classification requirements and procedures (e.g., reflectance conversion, steps before training sample selection, training samples, spatial approaches commonly used, classifiers, primary inputs for classification, output structures, number of output layers, and accuracy assessment). The chapter concludes with a brief summary of the methods reviewed and the challenges that remain in developing new classification methods for improving the efficiency and accuracy of mapping urban areas.
Wang, Xueyi; Davidson, Nicholas J.
2011-01-01
Ensemble methods have been widely used to improve prediction accuracy over individual classifiers. In this paper, we achieve a few results about the prediction accuracies of ensemble methods for binary classification that are missed or misinterpreted in previous literature. First we show the upper and lower bounds of the prediction accuracies (i.e. the best and worst possible prediction accuracies) of ensemble methods. Next we show that an ensemble method can achieve > 0.5 prediction accuracy, while individual classifiers have < 0.5 prediction accuracies. Furthermore, for individual classifiers with different prediction accuracies, the average of the individual accuracies determines the upper and lower bounds. We perform two experiments to verify the results and show that it is hard to achieve the upper and lower bounds accuracies by random individual classifiers and better algorithms need to be developed. PMID:21853162
NASA Astrophysics Data System (ADS)
Ren, B.; Wen, Q.; Zhou, H.; Guan, F.; Li, L.; Yu, H.; Wang, Z.
2018-04-01
The purpose of this paper is to provide decision support for the adjustment and optimization of crop planting structure in Jingxian County. The object-oriented information extraction method is used to extract corn and cotton from Jingxian County of Hengshui City in Hebei Province, based on multi-period GF-1 16-meter images. The best time of data extraction was screened by analyzing the spectral characteristics of corn and cotton at different growth stages based on multi-period GF-116-meter images, phenological data, and field survey data. The results showed that the total classification accuracy of corn and cotton was up to 95.7 %, the producer accuracy was 96 % and 94 % respectively, and the user precision was 95.05 % and 95.9 % respectively, which satisfied the demand of crop monitoring application. Therefore, combined with multi-period high-resolution images and object-oriented classification can be a good extraction of large-scale distribution of crop information for crop monitoring to provide convenient and effective technical means.
Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features
NASA Astrophysics Data System (ADS)
Nguyen, Chuong H.; Karavas, George K.; Artemiadis, Panagiotis
2018-02-01
Objective. In this paper, we investigate the suitability of imagined speech for brain-computer interface (BCI) applications. Approach. A novel method based on covariance matrix descriptors, which lie in Riemannian manifold, and the relevance vector machines classifier is proposed. The method is applied on electroencephalographic (EEG) signals and tested in multiple subjects. Main results. The method is shown to outperform other approaches in the field with respect to accuracy and robustness. The algorithm is validated on various categories of speech, such as imagined pronunciation of vowels, short words and long words. The classification accuracy of our methodology is in all cases significantly above chance level, reaching a maximum of 70% for cases where we classify three words and 95% for cases of two words. Significance. The results reveal certain aspects that may affect the success of speech imagery classification from EEG signals, such as sound, meaning and word complexity. This can potentially extend the capability of utilizing speech imagery in future BCI applications. The dataset of speech imagery collected from total 15 subjects is also published.
Landenburger, L.; Lawrence, R.L.; Podruzny, S.; Schwartz, C.C.
2008-01-01
Moderate resolution satellite imagery traditionally has been thought to be inadequate for mapping vegetation at the species level. This has made comprehensive mapping of regional distributions of sensitive species, such as whitebark pine, either impractical or extremely time consuming. We sought to determine whether using a combination of moderate resolution satellite imagery (Landsat Enhanced Thematic Mapper Plus), extensive stand data collected by land management agencies for other purposes, and modern statistical classification techniques (boosted classification trees) could result in successful mapping of whitebark pine. Overall classification accuracies exceeded 90%, with similar individual class accuracies. Accuracies on a localized basis varied based on elevation. Accuracies also varied among administrative units, although we were not able to determine whether these differences related to inherent spatial variations or differences in the quality of available reference data.
NASA Astrophysics Data System (ADS)
Stock, M.; Lapierre, J. L.; Zhu, Y.
2017-12-01
Recently, the Geostationary Lightning Mapper (GLM) began collecting optical data to locate lightning events and flashes over the North and South American continents. This new instrument promises uniformly high detection efficiency (DE) over its entire field of view, with location accuracy on the order of 10 km. In comparison, Earth Networks Total Lightning Networks (ENTLN) has a less uniform coverage, with higher DE in regions with dense sensor coverage, and lower DE with sparse sensor coverage. ENTLN also offers better location accuracy, lightning classification, and peak current estimation for their lightning locations. It is desirable to produce an integrated dataset, combining the strong points of GLM and ENTLN. The easiest way to achieve this is to simply match located lightning processes from each system using time and distance criteria. This simple method will be limited in scope by the uneven coverage of the ground based network. Instead, we will use GLM group locations to look up the electric field change data recorded by ground sensors near each GLM group, vastly increasing the coverage of the ground network. The ground waveforms can then be used for: improvements to differentiation between glint and lightning for GLM, higher precision lighting location, current estimation, and lightning process classification. Presented is an initial implementation of this type of integration using preliminary GLM data, and waveforms from ENTLN.
Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara
2018-01-01
Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.
NASA Technical Reports Server (NTRS)
Wrigley, R. C.; Acevedo, W.; Alexander, D.; Buis, J.; Card, D.
1984-01-01
An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance.
Md Noor, Siti Salwa; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang
2017-01-01
In our preliminary study, the reflectance signatures obtained from hyperspectral imaging (HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with subtle differences. Here we present image enhancement algorithms that can be used to improve the interpretability of data into clinically relevant information to facilitate diagnostics. A total of 25 corneal epithelium images without the application of eye staining were used. Three image feature extraction approaches were applied for image classification: (i) image feature classification from histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF); (ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs) only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate that our chosen image features from the histogram and length-scale parameter were able to classify with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI has high potential as a method that could surpass current technologies regarding speed, objectivity, and reliability. PMID:29144388
Multiple confidence estimates as indices of eyewitness memory.
Sauer, James D; Brewer, Neil; Weber, Nathan
2008-08-01
Eyewitness identification decisions are vulnerable to various influences on witnesses' decision criteria that contribute to false identifications of innocent suspects and failures to choose perpetrators. An alternative procedure using confidence estimates to assess the degree of match between novel and previously viewed faces was investigated. Classification algorithms were applied to participants' confidence data to determine when a confidence value or pattern of confidence values indicated a positive response. Experiment 1 compared confidence group classification accuracy with a binary decision control group's accuracy on a standard old-new face recognition task and found superior accuracy for the confidence group for target-absent trials but not for target-present trials. Experiment 2 used a face mini-lineup task and found reduced target-present accuracy offset by large gains in target-absent accuracy. Using a standard lineup paradigm, Experiments 3 and 4 also found improved classification accuracy for target-absent lineups and, with a more sophisticated algorithm, for target-present lineups. This demonstrates the accessibility of evidence for recognition memory decisions and points to a more sensitive index of memory quality than is afforded by binary decisions.
Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.
Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong
2018-05-24
This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.
NASA Technical Reports Server (NTRS)
Stoner, E. R.; May, G. A.; Kalcic, M. T. (Principal Investigator)
1981-01-01
Sample segments of ground-verified land cover data collected in conjunction with the USDA/ESS June Enumerative Survey were merged with LANDSAT data and served as a focus for unsupervised spectral class development and accuracy assessment. Multitemporal data sets were created from single-date LANDSAT MSS acquisitions from a nominal scene covering an eleven-county area in north central Missouri. Classification accuracies for the four land cover types predominant in the test site showed significant improvement in going from unitemporal to multitemporal data sets. Transformed LANDSAT data sets did not significantly improve classification accuracies. Regression estimators yielded mixed results for different land covers. Misregistration of two LANDSAT data sets by as much and one half pixels did not significantly alter overall classification accuracies. Existing algorithms for scene-to scene overlay proved adequate for multitemporal data analysis as long as statistical class development and accuracy assessment were restricted to field interior pixels.
Examining the Classification Accuracy of a Vocabulary Screening Measure with Preschool Children
ERIC Educational Resources Information Center
Marcotte, Amanda M.; Clemens, Nathan H.; Parker, Christopher; Whitcomb, Sara A.
2016-01-01
This study investigated the classification accuracy of the "Dynamic Indicators of Vocabulary Skills" (DIVS) as a preschool vocabulary screening measure. With a sample of 240 preschoolers, fall and winter DIVS scores were used to predict year-end vocabulary risk using the 25th percentile on the "Peabody Picture Vocabulary Test--Third…
ERIC Educational Resources Information Center
Daniels, Brian; Volpe, Robert J.; Fabiano, Gregory A.; Briesch, Amy M.
2017-01-01
This study examines the classification accuracy and teacher acceptability of a problem-focused screener for academic and disruptive behavior problems, which is directly linked to evidence-based intervention. Participants included 39 classroom teachers from 2 public school districts in the Northeastern United States. Teacher ratings were obtained…
ERIC Educational Resources Information Center
Zhang, Bo
2010-01-01
This article investigates how measurement models and statistical procedures can be applied to estimate the accuracy of proficiency classification in language testing. The paper starts with a concise introduction of four measurement models: the classical test theory (CTT) model, the dichotomous item response theory (IRT) model, the testlet response…
ERIC Educational Resources Information Center
Pena, Elizabeth D.; Gillam, Ronald B.; Malek, Melynn; Ruiz-Felter, Roxanna; Resendiz, Maria; Fiestas, Christine; Sabel, Tracy
2006-01-01
Two experiments examined reliability and classification accuracy of a narration-based dynamic assessment task. Purpose: The first experiment evaluated whether parallel results were obtained from stories created in response to 2 different wordless picture books. If so, the tasks and measures would be appropriate for assessing pretest and posttest…
The Potential Impact of Not Being Able to Create Parallel Tests on Expected Classification Accuracy
ERIC Educational Resources Information Center
Wyse, Adam E.
2011-01-01
In many practical testing situations, alternate test forms from the same testing program are not strictly parallel to each other and instead the test forms exhibit small psychometric differences. This article investigates the potential practical impact that these small psychometric differences can have on expected classification accuracy. Ten…
Emotion recognition from multichannel EEG signals using K-nearest neighbor classification.
Li, Mi; Xu, Hongpei; Liu, Xingwang; Lu, Shengfu
2018-04-27
Many studies have been done on the emotion recognition based on multi-channel electroencephalogram (EEG) signals. This paper explores the influence of the emotion recognition accuracy of EEG signals in different frequency bands and different number of channels. We classified the emotional states in the valence and arousal dimensions using different combinations of EEG channels. Firstly, DEAP default preprocessed data were normalized. Next, EEG signals were divided into four frequency bands using discrete wavelet transform, and entropy and energy were calculated as features of K-nearest neighbor Classifier. The classification accuracies of the 10, 14, 18 and 32 EEG channels based on the Gamma frequency band were 89.54%, 92.28%, 93.72% and 95.70% in the valence dimension and 89.81%, 92.24%, 93.69% and 95.69% in the arousal dimension. As the number of channels increases, the classification accuracy of emotional states also increases, the classification accuracy of the gamma frequency band is greater than that of the beta frequency band followed by the alpha and theta frequency bands. This paper provided better frequency bands and channels reference for emotion recognition based on EEG.
Zourmand, Alireza; Ting, Hua-Nong; Mirhassani, Seyed Mostafa
2013-03-01
Speech is one of the prevalent communication mediums for humans. Identifying the gender of a child speaker based on his/her speech is crucial in telecommunication and speech therapy. This article investigates the use of fundamental and formant frequencies from sustained vowel phonation to distinguish the gender of Malay children aged between 7 and 12 years. The Euclidean minimum distance and multilayer perceptron were used to classify the gender of 360 Malay children based on different combinations of fundamental and formant frequencies (F0, F1, F2, and F3). The Euclidean minimum distance with normalized frequency data achieved a classification accuracy of 79.44%, which was higher than that of the nonnormalized frequency data. Age-dependent modeling was used to improve the accuracy of gender classification. The Euclidean distance method obtained 84.17% based on the optimal classification accuracy for all age groups. The accuracy was further increased to 99.81% using multilayer perceptron based on mel-frequency cepstral coefficients. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Peijun; Tan, Kun; Xing, Xiaoshi
2010-12-01
Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.
NASA Astrophysics Data System (ADS)
Hwang, Han-Jeong; Lim, Jeong-Hwan; Kim, Do-Won; Im, Chang-Hwan
2014-07-01
A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promising neuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focused on enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated the performances of a variety of mental task combinations in order to determine the mental task pairs that are best suited for customized NIRS-based BCIs. To this end, we recorded event-related hemodynamic responses while seven participants performed eight different mental tasks. Classification accuracies were then estimated for all possible pairs of the eight mental tasks (C=28). Based on this analysis, mental task combinations with relatively high classification accuracies frequently included the following three mental tasks: "mental multiplication," "mental rotation," and "right-hand motor imagery." Specifically, mental task combinations consisting of two of these three mental tasks showed the highest mean classification accuracies. It is expected that our results will be a useful reference to reduce the time needed for preliminary tests when discovering individual-specific mental task combinations.
Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian; Huliraj, N; Revadi, S S
2017-06-08
Auscultation is a medical procedure used for the initial diagnosis and assessment of lung and heart diseases. From this perspective, we propose assessing the performance of the extreme learning machine (ELM) classifiers for the diagnosis of pulmonary pathology using breath sounds. Energy and entropy features were extracted from the breath sound using the wavelet packet transform. The statistical significance of the extracted features was evaluated by one-way analysis of variance (ANOVA). The extracted features were inputted into the ELM classifier. The maximum classification accuracies obtained for the conventional validation (CV) of the energy and entropy features were 97.36% and 98.37%, respectively, whereas the accuracies obtained for the cross validation (CRV) of the energy and entropy features were 96.80% and 97.91%, respectively. In addition, maximum classification accuracies of 98.25% and 99.25% were obtained for the CV and CRV of the ensemble features, respectively. The results indicate that the classification accuracy obtained with the ensemble features was higher than those obtained with the energy and entropy features.
Impacts of land use/cover classification accuracy on regional climate simulations
NASA Astrophysics Data System (ADS)
Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.
2007-03-01
Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.
SU-F-R-14: PET Based Radiomics to Predict Outcomes in Patients with Hodgkin Lymphoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Aristophanous, M; Akhtari, M
Purpose: To identify PET-based radiomics features associated with high refractory/relapsed disease risk for Hodgkin lymphoma patients. Methods: A total of 251 Hodgkin lymphoma patients including 19 primary refractory and 9 relapsed patients were investigated. All patients underwent an initial pre-treatment diagnostic FDG PET/CT scan. All cancerous lymph node regions (ROIs) were delineated by an experienced physician based on thresholding each volume of disease in the anatomical regions to SUV>2.5. We extracted 122 image features and evaluated the effect of ROI selection (the largest ROI, the ROI with highest mean SUV, merged ROI, and a single anatomic region [e.g. mediastinum]) onmore » classification accuracy. Random forest was used as a classifier and ROC analysis was used to assess the relationship between selected features and patient’s outcome status. Results: Each patient had between 1 and 9 separate ROIs, with much intra-patient variability in PET features. The best model, which used features from a single anatomic region (the mediastinal ROI, only volumes>5cc: 169 patients with 12 primary refractory) had a classification accuracy of 80.5% for primary refractory disease. The top five features, based on Gini index, consist of shape features (max 3D-diameter and volume) and texture features (correlation and information measure of correlation1&2). In the ROC analysis, sensitivity and specificity of the best model were 0.92 and 0.80, respectively. The area under the ROC (AUC) and the accuracy were 0.86 and 0.86, respectively. The classification accuracy was less than 60% for other ROI models or when ROIs less than 5cc were included. Conclusion: This study showed that PET-based radiomics features from the mediastinal lymph region are associated with primary refractory disease and therefore may play an important role in predicting outcomes in Hodgkin lymphoma patients. These features could be additive beyond baseline tumor and clinical characteristics, and may warrant more aggressive treatment.« less
Geographical classification of apple based on hyperspectral imaging
NASA Astrophysics Data System (ADS)
Guo, Zhiming; Huang, Wenqian; Chen, Liping; Zhao, Chunjiang; Peng, Yankun
2013-05-01
Attribute of apple according to geographical origin is often recognized and appreciated by the consumers. It is usually an important factor to determine the price of a commercial product. Hyperspectral imaging technology and supervised pattern recognition was attempted to discriminate apple according to geographical origins in this work. Hyperspectral images of 207 Fuji apple samples were collected by hyperspectral camera (400-1000nm). Principal component analysis (PCA) was performed on hyperspectral imaging data to determine main efficient wavelength images, and then characteristic variables were extracted by texture analysis based on gray level co-occurrence matrix (GLCM) from dominant waveband image. All characteristic variables were obtained by fusing the data of images in efficient spectra. Support vector machine (SVM) was used to construct the classification model, and showed excellent performance in classification results. The total classification rate had the high classify accuracy of 92.75% in the training set and 89.86% in the prediction sets, respectively. The overall results demonstrated that the hyperspectral imaging technique coupled with SVM classifier can be efficiently utilized to discriminate Fuji apple according to geographical origins.
NASA Astrophysics Data System (ADS)
Liu, Wanjun; Liang, Xuejian; Qu, Haicheng
2017-11-01
Hyperspectral image (HSI) classification is one of the most popular topics in remote sensing community. Traditional and deep learning-based classification methods were proposed constantly in recent years. In order to improve the classification accuracy and robustness, a dimensionality-varied convolutional neural network (DVCNN) was proposed in this paper. DVCNN was a novel deep architecture based on convolutional neural network (CNN). The input of DVCNN was a set of 3D patches selected from HSI which contained spectral-spatial joint information. In the following feature extraction process, each patch was transformed into some different 1D vectors by 3D convolution kernels, which were able to extract features from spectral-spatial data. The rest of DVCNN was about the same as general CNN and processed 2D matrix which was constituted by by all 1D data. So that the DVCNN could not only extract more accurate and rich features than CNN, but also fused spectral-spatial information to improve classification accuracy. Moreover, the robustness of network on water-absorption bands was enhanced in the process of spectral-spatial fusion by 3D convolution, and the calculation was simplified by dimensionality varied convolution. Experiments were performed on both Indian Pines and Pavia University scene datasets, and the results showed that the classification accuracy of DVCNN improved by 32.87% on Indian Pines and 19.63% on Pavia University scene than spectral-only CNN. The maximum accuracy improvement of DVCNN achievement was 13.72% compared with other state-of-the-art HSI classification methods, and the robustness of DVCNN on water-absorption bands noise was demonstrated.
Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification
Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander
2013-01-01
Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138
Classification of ECG beats using deep belief network and active learning.
G, Sayantan; T, Kien P; V, Kadambari K
2018-04-12
A new semi-supervised approach based on deep learning and active learning for classification of electrocardiogram signals (ECG) is proposed. The objective of the proposed work is to model a scientific method for classification of cardiac irregularities using electrocardiogram beats. The model follows the Association for the Advancement of medical instrumentation (AAMI) standards and consists of three phases. In phase I, feature representation of ECG is learnt using Gaussian-Bernoulli deep belief network followed by a linear support vector machine (SVM) training in the consecutive phase. It yields three deep models which are based on AAMI-defined classes, namely N, V, S, and F. In the last phase, a query generator is introduced to interact with the expert to label few beats to improve accuracy and sensitivity. The proposed approach depicts significant improvement in accuracy with minimal queries posed to the expert and fast online training as tested on the MIT-BIH Arrhythmia Database and the MIT-BIH Supra-ventricular Arrhythmia Database (SVDB). With 100 queries labeled by the expert in phase III, the method achieves an accuracy of 99.5% in "S" versus all classifications (SVEB) and 99.4% accuracy in "V " versus all classifications (VEB) on MIT-BIH Arrhythmia Database. In a similar manner, it is attributed that an accuracy of 97.5% for SVEB and 98.6% for VEB on SVDB database is achieved respectively. Graphical Abstract Reply- Deep belief network augmented by active learning for efficient prediction of arrhythmia.
NASA Astrophysics Data System (ADS)
Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.
2018-04-01
The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987
Hierarchical vs non-hierarchical audio indexation and classification for video genres
NASA Astrophysics Data System (ADS)
Dammak, Nouha; BenAyed, Yassine
2018-04-01
In this paper, Support Vector Machines (SVMs) are used for segmenting and indexing video genres based on only audio features extracted at block level, which has a prominent asset by capturing local temporal information. The main contribution of our study is to show the wide effect on the classification accuracies while using an hierarchical categorization structure based on Mel Frequency Cepstral Coefficients (MFCC) audio descriptor. In fact, the classification consists in three common video genres: sports videos, music clips and news scenes. The sub-classification may divide each genre into several multi-speaker and multi-dialect sub-genres. The validation of this approach was carried out on over 360 minutes of video span yielding a classification accuracy of over 99%.
Mapping the Philippines' mangrove forests using Landsat imagery
Long, Jordan; Giri, Chandra
2011-01-01
Current, accurate, and reliable information on the areal extent and spatial distribution of mangrove forests in the Philippines is limited. Previous estimates of mangrove extent do not illustrate the spatial distribution for the entire country. This study, part of a global assessment of mangrove dynamics, mapped the spatial distribution and areal extent of the Philippines’ mangroves circa 2000. We used publicly available Landsat data acquired primarily from the Global Land Survey to map the total extent and spatial distribution. ISODATA clustering, an unsupervised classification technique, was applied to 61 Landsat images. Statistical analysis indicates the total area of mangrove forest cover was approximately 256,185 hectares circa 2000 with overall classification accuracy of 96.6% and a kappa coefficient of 0.926. These results differ substantially from most recent estimates of mangrove area in the Philippines. The results of this study may assist the decision making processes for rehabilitation and conservation efforts that are currently needed to protect and restore the Philippines’ degraded mangrove forests.
Acosta-Mesa, Héctor-Gabriel; Rechy-Ramírez, Fernando; Mezura-Montes, Efrén; Cruz-Ramírez, Nicandro; Hernández Jiménez, Rodolfo
2014-06-01
In this work, we present a novel application of time series discretization using evolutionary programming for the classification of precancerous cervical lesions. The approach optimizes the number of intervals in which the length and amplitude of the time series should be compressed, preserving the important information for classification purposes. Using evolutionary programming, the search for a good discretization scheme is guided by a cost function which considers three criteria: the entropy regarding the classification, the complexity measured as the number of different strings needed to represent the complete data set, and the compression rate assessed as the length of the discrete representation. This discretization approach is evaluated using a time series data based on temporal patterns observed during a classical test used in cervical cancer detection; the classification accuracy reached by our method is compared with the well-known times series discretization algorithm SAX and the dimensionality reduction method PCA. Statistical analysis of the classification accuracy shows that the discrete representation is as efficient as the complete raw representation for the present application, reducing the dimensionality of the time series length by 97%. This representation is also very competitive in terms of classification accuracy when compared with similar approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Mapping and Change Analysis in Mangrove Forest by Using Landsat Imagery
NASA Astrophysics Data System (ADS)
Dan, T. T.; Chen, C. F.; Chiang, S. H.; Ogawa, S.
2016-06-01
Mangrove is located in the tropical and subtropical regions and brings good services for native people. Mangrove in the world has been lost with a rapid rate. Therefore, monitoring a spatiotemporal distribution of mangrove is thus critical for natural resource management. This research objectives were: (i) to map the current extent of mangrove in the West and Central Africa and in the Sundarbans delta, and (ii) to identify change of mangrove using Landsat data. The data were processed through four main steps: (1) data pre-processing including atmospheric correction and image normalization, (2) image classification using supervised classification approach, (3) accuracy assessment for the classification results, and (4) change detection analysis. Validation was made by comparing the classification results with the ground reference data, which yielded satisfactory agreement with overall accuracy 84.1% and Kappa coefficient of 0.74 in the West and Central Africa and 83.0% and 0.73 in the Sundarbans, respectively. The result shows that mangrove areas have changed significantly. In the West and Central Africa, mangrove loss from 1988 to 2014 was approximately 16.9%, and only 2.5% was recovered or newly planted at the same time, while the overall change of mangrove in the Sundarbans increased approximately by 900 km2 of total mangrove area. Mangrove declined due to deforestation, natural catastrophes deforestation and mangrove rehabilitation programs. The overall efforts in this study demonstrated the effectiveness of the proposed method used for investigating spatiotemporal changes of mangrove and the results could provide planners with invaluable quantitative information for sustainable management of mangrove ecosystems in these regions.
Classification of EEG Signals Based on Pattern Recognition Approach.
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.
Classification of EEG Signals Based on Pattern Recognition Approach
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190
Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data
NASA Astrophysics Data System (ADS)
Elhag, Mohamed; Boteva, Silvena
2016-10-01
Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.
Evaluation of airborne image data for mapping riparian vegetation within the Grand Canyon
Davis, Philip A.; Staid, Matthew I.; Plescia, Jeffrey B.; Johnson, Jeffrey R.
2002-01-01
This study examined various types of remote-sensing data that have been acquired during a 12-month period over a portion of the Colorado River corridor to determine the type of data and conditions for data acquisition that provide the optimum classification results for mapping riparian vegetation. Issues related to vegetation mapping included time of year, number and positions of wavelength bands, and spatial resolution for data acquisition to produce accurate vegetation maps versus cost of data. Image data considered in the study consisted of scanned color-infrared (CIR) film, digital CIR, and digital multispectral data, whose resolutions from 11 cm (photographic film) to 100 cm (multispectral), that were acquired during the Spring, Summer, and Fall seasons in 2000 for five long-term monitoring sites containing riparian vegetation. Results show that digitally acquired data produce higher and more consistent classification accuracies for mapping vegetation units than do film products. The highest accuracies were obtained from nine-band multispectral data; however, a four-band subset of these data, that did not include short-wave infrared bands, produced comparable mapping results. The four-band subset consisted of the wavelength bands 0.52-0.59 µm, 0.59-0.62 µm, 0.67-0.72 µm, and 0.73-0.85 µm. Use of only three of these bands that simulate digital CIR sensors produced accuracies for several vegetation units that were 10% lower than those obtained using the full multispectral data set. Classification tests using band ratios produced lower accuracies than those using band reflectance for scanned film data; a result attributed to the relatively poor radiometric fidelity maintained by the film scanning process, whereas calibrated multispectral data produced similar classification accuracies using band reflectance and band ratios. This suggests that the intrinsic band reflectance of the vegetation is more important than inter-band reflectance differences in attaining high mapping accuracies. These results also indicate that radiometrically calibrated sensors that record a wide range of radiance produce superior results and that such sensors should be used for monitoring purposes. When texture (spatial variance) at near-infrared wavelength is combined with spectral data in classification, accuracy increased most markedly (20-30%) for the highest resolution (11-cm) CIR film data, but decreased in its effect on accuracy in lower-resolution multi-spectral image data; a result observed in previous studies (Franklin and McDermid 1993, Franklin et al. 2000, 2001). While many classification unit accuracies obtained from the 11-cm film CIR band with texture data were in fact higher than those produced using the 100-cm, nine-band multispectral data with texture, the 11-cm film CIR data produced much lower accuracies than the 100-cm multispectral data for the more sparsely populated vegetation units due to saturation of picture elements during the film scanning process in vegetation units with a high proportion of alluvium. Overall classification accuracies obtained from spectral band and texture data range from 36% to 78% for all databases considered, from 57% to 71% for the 11-cm film CIR data, and from 54% to 78% for the 100-cm multispectral data. Classification results obtained from 20-cm film CIR band and texture data, which were produced by applying a Gaussian filter to the 11-cm film CIR data, showed increases in accuracy due to texture that were similar to those observed using the original 11-cm film CIR data. This suggests that data can be collected at the lower resolution and still retain the added power of vegetation texture. Classification accuracies for the riparian vegetation units examined in this study do not appear to be influenced by season of data acquisition, although data acquired under direct sunlight produced higher overall accuracies than data acquired under overcast conditions. The latter observation, in addition to the importance of band reflectance for classification, implies that data should be acquired near summer solstice when sun elevation and reflectance is highest and when shadows cast by steep canyon walls are minimized.
AVNM: A Voting based Novel Mathematical Rule for Image Classification.
Vidyarthi, Ankit; Mittal, Namita
2016-12-01
In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Shahid, Mohammad; Shahzad Cheema, Muhammad; Klenner, Alexander; Younesi, Erfan; Hofmann-Apitius, Martin
2013-03-01
Systems pharmacological modeling of drug mode of action for the next generation of multitarget drugs may open new routes for drug design and discovery. Computational methods are widely used in this context amongst which support vector machines (SVM) have proven successful in addressing the challenge of classifying drugs with similar features. We have applied a variety of such SVM-based approaches, namely SVM-based recursive feature elimination (SVM-RFE). We use the approach to predict the pharmacological properties of drugs widely used against complex neurodegenerative disorders (NDD) and to build an in-silico computational model for the binary classification of NDD drugs from other drugs. Application of an SVM-RFE model to a set of drugs successfully classified NDD drugs from non-NDD drugs and resulted in overall accuracy of ∼80 % with 10 fold cross validation using 40 top ranked molecular descriptors selected out of total 314 descriptors. Moreover, SVM-RFE method outperformed linear discriminant analysis (LDA) based feature selection and classification. The model reduced the multidimensional descriptors space of drugs dramatically and predicted NDD drugs with high accuracy, while avoiding over fitting. Based on these results, NDD-specific focused libraries of drug-like compounds can be designed and existing NDD-specific drugs can be characterized by a well-characterized set of molecular descriptors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Use of collateral information to improve LANDSAT classification accuracies
NASA Technical Reports Server (NTRS)
Strahler, A. H. (Principal Investigator)
1981-01-01
Methods to improve LANDSAT classification accuracies were investigated including: (1) the use of prior probabilities in maximum likelihood classification as a methodology to integrate discrete collateral data with continuously measured image density variables; (2) the use of the logit classifier as an alternative to multivariate normal classification that permits mixing both continuous and categorical variables in a single model and fits empirical distributions of observations more closely than the multivariate normal density function; and (3) the use of collateral data in a geographic information system as exercised to model a desired output information layer as a function of input layers of raster format collateral and image data base layers.
NASA Astrophysics Data System (ADS)
Szuflitowska, B.; Orlowski, P.
2017-08-01
Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.
NASA Astrophysics Data System (ADS)
Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan
2015-12-01
In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.
Landcover classification in MRF context using Dempster-Shafer fusion for multisensor imagery.
Sarkar, Anjan; Banerjee, Anjan; Banerjee, Nilanjan; Brahma, Siddhartha; Kartikeyan, B; Chakraborty, Manab; Majumder, K L
2005-05-01
This work deals with multisensor data fusion to obtain landcover classification. The role of feature-level fusion using the Dempster-Shafer rule and that of data-level fusion in the MRF context is studied in this paper to obtain an optimally segmented image. Subsequently, segments are validated and classification accuracy for the test data is evaluated. Two examples of data fusion of optical images and a synthetic aperture radar image are presented, each set having been acquired on different dates. Classification accuracies of the technique proposed are compared with those of some recent techniques in literature for the same image data.
Random forests for classification in ecology
Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J.
2007-01-01
Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature. ?? 2007 by the Ecological Society of America.
Application of Sensor Fusion to Improve Uav Image Classification
NASA Astrophysics Data System (ADS)
Jabari, S.; Fathollahi, F.; Zhang, Y.
2017-08-01
Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.
Convolutional Neural Network for Histopathological Analysis of Osteosarcoma.
Mishra, Rashika; Daescu, Ovidiu; Leavey, Patrick; Rakheja, Dinesh; Sengupta, Anita
2018-03-01
Pathologists often deal with high complexity and sometimes disagreement over osteosarcoma tumor classification due to cellular heterogeneity in the dataset. Segmentation and classification of histology tissue in H&E stained tumor image datasets is a challenging task because of intra-class variations, inter-class similarity, crowded context, and noisy data. In recent years, deep learning approaches have led to encouraging results in breast cancer and prostate cancer analysis. In this article, we propose convolutional neural network (CNN) as a tool to improve efficiency and accuracy of osteosarcoma tumor classification into tumor classes (viable tumor, necrosis) versus nontumor. The proposed CNN architecture contains eight learned layers: three sets of stacked two convolutional layers interspersed with max pooling layers for feature extraction and two fully connected layers with data augmentation strategies to boost performance. The use of a neural network results in higher accuracy of average 92% for the classification. We compare the proposed architecture with three existing and proven CNN architectures for image classification: AlexNet, LeNet, and VGGNet. We also provide a pipeline to calculate percentage necrosis in a given whole slide image. We conclude that the use of neural networks can assure both high accuracy and efficiency in osteosarcoma classification.
Retinal vasculature classification using novel multifractal features
NASA Astrophysics Data System (ADS)
Ding, Y.; Ward, W. O. C.; Duan, Jinming; Auer, D. P.; Gowland, Penny; Bai, L.
2015-11-01
Retinal blood vessels have been implicated in a large number of diseases including diabetic retinopathy and cardiovascular diseases, which cause damages to retinal blood vessels. The availability of retinal vessel imaging provides an excellent opportunity for monitoring and diagnosis of retinal diseases, and automatic analysis of retinal vessels will help with the processes. However, state of the art vascular analysis methods such as counting the number of branches or measuring the curvature and diameter of individual vessels are unsuitable for the microvasculature. There has been published research using fractal analysis to calculate fractal dimensions of retinal blood vessels, but so far there has been no systematic research extracting discriminant features from retinal vessels for classifications. This paper introduces new methods for feature extraction from multifractal spectra of retinal vessels for classification. Two publicly available retinal vascular image databases are used for the experiments, and the proposed methods have produced accuracies of 85.5% and 77% for classification of healthy and diabetic retinal vasculatures. Experiments show that classification with multiple fractal features produces better rates compared with methods using a single fractal dimension value. In addition to this, experiments also show that classification accuracy can be affected by the accuracy of vessel segmentation algorithms.
Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E; Moran, Emilio
2008-01-01
Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.
Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E.; Moran, Emilio
2009-01-01
Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin. PMID:19789716
Paraskevaidi, Maria; Morais, Camilo L M; Lima, Kássio M G; Ashton, Katherine M; Stringfellow, Helen F; Martin-Hirsch, Pierre L; Martin, Francis L
2018-06-07
The current lack of an accurate, cost-effective and non-invasive test that would allow for screening and diagnosis of gynaecological carcinomas, such as endometrial and ovarian cancer, signals the necessity for alternative approaches. The potential of spectroscopic techniques in disease investigation and diagnosis has been previously demonstrated. Here, we used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to analyse urine samples from women with endometrial (n = 10) and ovarian cancer (n = 10), as well as from healthy individuals (n = 10). After applying multivariate analysis and classification algorithms, biomarkers of disease were pointed out and high levels of accuracy were achieved for both endometrial (95% sensitivity, 100% specificity; accuracy: 95%) and ovarian cancer (100% sensitivity, 96.3% specificity; accuracy 100%). The efficacy of this approach, in combination with the non-invasive method for urine collection, suggest a potential diagnostic tool for endometrial and ovarian cancers.
Heo, Jeong; Baek, Hyun Jae; Hong, Seunghyeok; Chang, Min Hye; Lee, Jeong Su; Park, Kwang Suk
2017-05-01
Patients with total locked-in syndrome are conscious; however, they cannot express themselves because most of their voluntary muscles are paralyzed, and many of these patients have lost their eyesight. To improve the quality of life of these patients, there is an increasing need for communication-supporting technologies that leverage the remaining senses of the patient along with physiological signals. The auditory steady-state response (ASSR) is an electro-physiologic response to auditory stimulation that is amplitude-modulated by a specific frequency. By leveraging the phenomenon whereby ASSR is modulated by mind concentration, a brain-computer interface paradigm was proposed to classify the selective attention of the patient. In this paper, we propose an auditory stimulation method to minimize auditory stress by replacing the monotone carrier with familiar music and natural sounds for an ergonomic system. Piano and violin instrumentals were employed in the music sessions; the sounds of water streaming and cicadas singing were used in the natural sound sessions. Six healthy subjects participated in the experiment. Electroencephalograms were recorded using four electrodes (Cz, Oz, T7 and T8). Seven sessions were performed using different stimuli. The spectral power at 38 and 42Hz and their ratio for each electrode were extracted as features. Linear discriminant analysis was utilized to classify the selections for each subject. In offline analysis, the average classification accuracies with a modulation index of 1.0 were 89.67% and 87.67% using music and natural sounds, respectively. In online experiments, the average classification accuracies were 88.3% and 80.0% using music and natural sounds, respectively. Using the proposed method, we obtained significantly higher user-acceptance scores, while maintaining a high average classification accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spatial modeling and classification of corneal shape.
Marsolo, Keith; Twa, Michael; Bullimore, Mark A; Parthasarathy, Srinivasan
2007-03-01
One of the most promising applications of data mining is in biomedical data used in patient diagnosis. Any method of data analysis intended to support the clinical decision-making process should meet several criteria: it should capture clinically relevant features, be computationally feasible, and provide easily interpretable results. In an initial study, we examined the feasibility of using Zernike polynomials to represent biomedical instrument data in conjunction with a decision tree classifier to distinguish between the diseased and non-diseased eyes. Here, we provide a comprehensive follow-up to that work, examining a second representation, pseudo-Zernike polynomials, to determine whether they provide any increase in classification accuracy. We compare the fidelity of both methods using residual root-mean-square (rms) error and evaluate accuracy using several classifiers: neural networks, C4.5 decision trees, Voting Feature Intervals, and Naïve Bayes. We also examine the effect of several meta-learning strategies: boosting, bagging, and Random Forests (RFs). We present results comparing accuracy as it relates to dataset and transformation resolution over a larger, more challenging, multi-class dataset. They show that classification accuracy is similar for both data transformations, but differs by classifier. We find that the Zernike polynomials provide better feature representation than the pseudo-Zernikes and that the decision trees yield the best balance of classification accuracy and interpretability.
AVHRR channel selection for land cover classification
Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.
2002-01-01
Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized interannual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more appropriate choice. Substituting the thermal channel with a single elevation layer resulted in equivalent classification accuracies and inter-annual variability.
Activity classification using the GENEA: optimum sampling frequency and number of axes.
Zhang, Shaoyan; Murray, Peter; Zillmer, Ruediger; Eston, Roger G; Catt, Michael; Rowlands, Alex V
2012-11-01
The GENEA shows high accuracy for classification of sedentary, household, walking, and running activities when sampling at 80 Hz on three axes. It is not known whether it is possible to decrease this sampling frequency and/or the number of axes without detriment to classification accuracy. The purpose of this study was to compare the classification rate of activities on the basis of data from a single axis, two axes, and three axes, with sampling rates ranging from 5 to 80 Hz. Sixty participants (age, 49.4 yr (6.5 yr); BMI, 24.6 kg·m (3.4 kg·m)) completed 10-12 semistructured activities in the laboratory and outdoor environment while wearing a GENEA accelerometer on the right wrist. We analyzed data from single axis, dual axes, and three axes at sampling rates of 5, 10, 20, 40, and 80 Hz. Mathematical models based on features extracted from mean, SD, fast Fourier transform, and wavelet decomposition were built, which combined one of the numbers of axes with one of the sampling rates to classify activities into sedentary, household, walking, and running. Classification accuracy was high irrespective of the number of axes for data collected at 80 Hz (96.93% ± 0.97%), 40 Hz (97.4% ± 0.73%), 20 Hz (96.86% ± 1.12%), and 10 Hz (97.01% ± 1.01%) but dropped for data collected at 5 Hz (94.98% ± 1.36%). Sampling frequencies >10 Hz and/or more than one axis of measurement were not associated with greater classification accuracy. Lower sampling rates and measurement of a single axis would result in a lower data load, longer battery life, and higher efficiency of data processing. Further research should investigate whether a lower sampling rate and a single axis affects classification accuracy when considering a wider range of activities.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
Accurate crop classification using hierarchical genetic fuzzy rule-based systems
NASA Astrophysics Data System (ADS)
Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.
2014-10-01
This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.
Linder, Roland; Orth, Isabelle; Hagen, E Christian; van der Woude, Fokko J; Schmitt, Wilhelm H
2011-06-01
To investigate the operating characteristics of the American College of Rheumatology (ACR) traditional format criteria for Wegener's granulomatosis (WG), the Sørensen criteria for WG and microscopic polyangiitis (MPA), and the Chapel Hill nomenclature for WG and MPA. Further, to develop and validate improved criteria for distinguishing WG from MPA by an artificial neural network (ANN) and by traditional approaches [classification tree (CT), logistic regression (LR)]. All criteria were applied to 240 patients with WG and 78 patients with MPA recruited by a multicenter study. To generate new classification criteria (ANN, CT, LR), 23 clinical measurements were assessed. Validation was performed by applying the same approaches to an independent monocenter cohort of 46 patients with WG and 21 patients with MPA. A total of 70.8% of the patients with WG and 7.7% of the patients with MPA from the multicenter cohort fulfilled the ACR criteria for WG (accuracy 76.1%). The accuracy of the Chapel Hill criteria for WG and MPA was only 35.0% and 55.3% (Sørensen criteria: 67.2% and 92.4%). In contrast, the ANN and CT achieved an accuracy of 94.3%, based on 4 measurements (involvement of nose, sinus, ear, and pulmonary nodules), all associated with WG. LR led to an accuracy of 92.8%. Inclusion of antineutrophil cytoplasmic antibodies did not improve the allocation. Validation of methods resulted in accuracy of 91.0% (ANN and CT) and 88.1% (LR). The ACR, Sørensen, and Chapel Hill criteria did not reliably separate WG from MPA. In contrast, an appropriately trained ANN and a CT differentiated between these disorders and performed better than LR.
NASA Technical Reports Server (NTRS)
Spruce, J. P.; Smoot, James; Ellis, Jean; Hilbert, Kent; Swann, Roberta
2012-01-01
This paper discusses the development and implementation of a geospatial data processing method and multi-decadal Landsat time series for computing general coastal U.S. land-use and land-cover (LULC) classifications and change products consisting of seven classes (water, barren, upland herbaceous, non-woody wetland, woody upland, woody wetland, and urban). Use of this approach extends the observational period of the NOAA-generated Coastal Change and Analysis Program (C-CAP) products by almost two decades, assuming the availability of one cloud free Landsat scene from any season for each targeted year. The Mobile Bay region in Alabama was used as a study area to develop, demonstrate, and validate the method that was applied to derive LULC products for nine dates at approximate five year intervals across a 34-year time span, using single dates of data for each classification in which forests were either leaf-on, leaf-off, or mixed senescent conditions. Classifications were computed and refined using decision rules in conjunction with unsupervised classification of Landsat data and C-CAP value-added products. Each classification's overall accuracy was assessed by comparing stratified random locations to available reference data, including higher spatial resolution satellite and aerial imagery, field survey data, and raw Landsat RGBs. Overall classification accuracies ranged from 83 to 91% with overall Kappa statistics ranging from 0.78 to 0.89. The accuracies are comparable to those from similar, generalized LULC products derived from C-CAP data. The Landsat MSS-based LULC product accuracies are similar to those from Landsat TM or ETM+ data. Accurate classifications were computed for all nine dates, yielding effective results regardless of season. This classification method yielded products that were used to compute LULC change products via additive GIS overlay techniques.
ERIC Educational Resources Information Center
Guiberson, Mark; Rodriguez, Barbara L.; Dale, Philip S.
2011-01-01
Purpose: The purpose of the current study was to examine the concurrent validity and classification accuracy of 3 parent report measures of language development in Spanish-speaking toddlers. Method: Forty-five Spanish-speaking parents and their 2-year-old children participated. Twenty-three children had expressive language delays (ELDs) as…
ERIC Educational Resources Information Center
Guiberson, Mark; Rodriguez, Barbara L.
2010-01-01
Purpose: To describe the concurrent validity and classification accuracy of 2 Spanish parent surveys of language development, the Spanish Ages and Stages Questionnaire (ASQ; Squires, Potter, & Bricker, 1999) and the Pilot Inventario-III (Pilot INV-III; Guiberson, 2008a). Method: Forty-eight Spanish-speaking parents of preschool-age children…
ERIC Educational Resources Information Center
Zytowski, Donald G.
1972-01-01
Owing to the uncertainty concerning the concurrent validity of the SVIB and the KOIS, a test of accuracy of classification of men in the occupations common to both inventories was undertaken. The results suggest that neither show any less validity than had been shown in separate studies previously. (Author)
ERIC Educational Resources Information Center
Cohen, Ira L.; Liu, Xudong; Hudson, Melissa; Gillis, Jennifer; Cavalari, Rachel N. S.; Romanczyk, Raymond G.; Karmel, Bernard Z.; Gardner, Judith M.
2016-01-01
In order to improve discrimination accuracy between Autism Spectrum Disorder (ASD) and similar neurodevelopmental disorders, a data mining procedure, Classification and Regression Trees (CART), was used on a large multi-site sample of PDD Behavior Inventory (PDDBI) forms on children with and without ASD. Discrimination accuracy exceeded 80%,…
Developing Local Oral Reading Fluency Cut Scores for Predicting High-Stakes Test Performance
ERIC Educational Resources Information Center
Grapin, Sally L.; Kranzler, John H.; Waldron, Nancy; Joyce-Beaulieu, Diana; Algina, James
2017-01-01
This study evaluated the classification accuracy of a second grade oral reading fluency curriculum-based measure (R-CBM) in predicting third grade state test performance. It also compared the long-term classification accuracy of local and publisher-recommended R-CBM cut scores. Participants were 266 students who were divided into a calibration…
Factors Affecting the Item Parameter Estimation and Classification Accuracy of the DINA Model
ERIC Educational Resources Information Center
de la Torre, Jimmy; Hong, Yuan; Deng, Weiling
2010-01-01
To better understand the statistical properties of the deterministic inputs, noisy "and" gate cognitive diagnosis (DINA) model, the impact of several factors on the quality of the item parameter estimates and classification accuracy was investigated. Results of the simulation study indicate that the fully Bayes approach is most accurate when the…
NASA Astrophysics Data System (ADS)
Hänsch, Ronny; Hellwich, Olaf
2018-04-01
Random Forests have continuously proven to be one of the most accurate, robust, as well as efficient methods for the supervised classification of images in general and polarimetric synthetic aperture radar data in particular. While the majority of previous work focus on improving classification accuracy, we aim for accelerating the training of the classifier as well as its usage during prediction while maintaining its accuracy. Unlike other approaches we mainly consider algorithmic changes to stay as much as possible independent of platform and programming language. The final model achieves an approximately 60 times faster training and a 500 times faster prediction, while the accuracy is only marginally decreased by roughly 1 %.
How reliable and accurate is the AO/OTA comprehensive classification for adult long-bone fractures?
Meling, Terje; Harboe, Knut; Enoksen, Cathrine H; Aarflot, Morten; Arthursson, Astvaldur J; Søreide, Kjetil
2012-07-01
Reliable classification of fractures is important for treatment allocation and study comparisons. The overall accuracy of scoring applied to a general population of fractures is little known. This study aimed to investigate the accuracy and reliability of the comprehensive Arbeitsgemeinschaft für Osteosynthesefragen/Orthopedic Trauma Association classification for adult long-bone fractures and identify factors associated with poor coding agreement. Adults (>16 years) with long-bone fractures coded in a Fracture and Dislocation Registry at the Stavanger University Hospital during the fiscal year 2008 were included. An unblinded reference code dataset was generated for the overall accuracy assessment by two experienced orthopedic trauma surgeons. Blinded analysis of intrarater reliability was performed by rescoring and of interrater reliability by recoding of a randomly selected fracture sample. Proportion of agreement (PA) and kappa (κ) statistics are presented. Uni- and multivariate logistic regression analyses of factors predicting accuracy were performed. During the study period, 949 fractures were included and coded by 26 surgeons. For the intrarater analysis, overall agreements were κ = 0.67 (95% confidence interval [CI]: 0.64-0.70) and PA 69%. For interrater assessment, κ = 0.67 (95% CI: 0.62-0.72) and PA 69%. The accuracy of surgeons' blinded recoding was κ = 0.68 (95% CI: 0.65- 0.71) and PA 68%. Fracture type, frequency of the fracture, and segment fractured significantly influenced accuracy whereas the coder's experience did not. Both the reliability and accuracy of the comprehensive Arbeitsgemeinschaft für Osteosynthesefragen/Orthopedic Trauma Association classification for long-bone fractures ranged from substantial to excellent. Variations in coding accuracy seem to be related more to the fracture itself than the surgeon. Diagnostic study, level I.
Discriminative Hierarchical K-Means Tree for Large-Scale Image Classification.
Chen, Shizhi; Yang, Xiaodong; Tian, Yingli
2015-09-01
A key challenge in large-scale image classification is how to achieve efficiency in terms of both computation and memory without compromising classification accuracy. The learning-based classifiers achieve the state-of-the-art accuracies, but have been criticized for the computational complexity that grows linearly with the number of classes. The nonparametric nearest neighbor (NN)-based classifiers naturally handle large numbers of categories, but incur prohibitively expensive computation and memory costs. In this brief, we present a novel classification scheme, i.e., discriminative hierarchical K-means tree (D-HKTree), which combines the advantages of both learning-based and NN-based classifiers. The complexity of the D-HKTree only grows sublinearly with the number of categories, which is much better than the recent hierarchical support vector machines-based methods. The memory requirement is the order of magnitude less than the recent Naïve Bayesian NN-based approaches. The proposed D-HKTree classification scheme is evaluated on several challenging benchmark databases and achieves the state-of-the-art accuracies, while with significantly lower computation cost and memory requirement.
NASA Astrophysics Data System (ADS)
Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.
2017-09-01
Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy with the proposed classification scheme is 94.91 %, while that with the conventional classification scheme is 93.70 %. Moreover, for multi-temporal UAVSAR data, the averaged overall classification accuracy with the proposed classification scheme is up to 97.08 %, which is much higher than the 87.79 % from the conventional classification scheme. Furthermore, for multitemporal PolSAR data, the proposed classification scheme can achieve better robustness. The comparison studies also clearly demonstrate that mining and utilization of hidden polarimetric features and information in the rotation domain can gain the added benefits for PolSAR land cover classification and provide a new vision for PolSAR image interpretation and application.
Analysis of spatial distribution of land cover maps accuracy
NASA Astrophysics Data System (ADS)
Khatami, R.; Mountrakis, G.; Stehman, S. V.
2017-12-01
Land cover maps have become one of the most important products of remote sensing science. However, classification errors will exist in any classified map and affect the reliability of subsequent map usage. Moreover, classification accuracy often varies over different regions of a classified map. These variations of accuracy will affect the reliability of subsequent analyses of different regions based on the classified maps. The traditional approach of map accuracy assessment based on an error matrix does not capture the spatial variation in classification accuracy. Here, per-pixel accuracy prediction methods are proposed based on interpolating accuracy values from a test sample to produce wall-to-wall accuracy maps. Different accuracy prediction methods were developed based on four factors: predictive domain (spatial versus spectral), interpolation function (constant, linear, Gaussian, and logistic), incorporation of class information (interpolating each class separately versus grouping them together), and sample size. Incorporation of spectral domain as explanatory feature spaces of classification accuracy interpolation was done for the first time in this research. Performance of the prediction methods was evaluated using 26 test blocks, with 10 km × 10 km dimensions, dispersed throughout the United States. The performance of the predictions was evaluated using the area under the curve (AUC) of the receiver operating characteristic. Relative to existing accuracy prediction methods, our proposed methods resulted in improvements of AUC of 0.15 or greater. Evaluation of the four factors comprising the accuracy prediction methods demonstrated that: i) interpolations should be done separately for each class instead of grouping all classes together; ii) if an all-classes approach is used, the spectral domain will result in substantially greater AUC than the spatial domain; iii) for the smaller sample size and per-class predictions, the spectral and spatial domain yielded similar AUC; iv) for the larger sample size (i.e., very dense spatial sample) and per-class predictions, the spatial domain yielded larger AUC; v) increasing the sample size improved accuracy predictions with a greater benefit accruing to the spatial domain; and vi) the function used for interpolation had the smallest effect on AUC.
Zhang, He-Hua; Yang, Liuyang; Liu, Yuchuan; Wang, Pin; Yin, Jun; Li, Yongming; Qiu, Mingguo; Zhu, Xueru; Yan, Fang
2016-11-16
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
Can SLE classification rules be effectively applied to diagnose unclear SLE cases?
Mesa, Annia; Fernandez, Mitch; Wu, Wensong; Narasimhan, Giri; Greidinger, Eric L.; Mills, DeEtta K.
2016-01-01
Summary Objective Develop a novel classification criteria to distinguish between unclear SLE and MCTD cases. Methods A total of 205 variables from 111 SLE and 55 MCTD patients were evaluated to uncover unique molecular and clinical markers for each disease. Binomial logistic regressions (BLR) were performed on currently used SLE and MCTD classification criteria sets to obtain six reduced models with power to discriminate between unclear SLE and MCTD patients which were confirmed by Receiving Operating Characteristic (ROC) curve. Decision trees were employed to delineate novel classification rules to discriminate between unclear SLE and MCTD patients. Results SLE and MCTD patients exhibited contrasting molecular markers and clinical manifestations. Furthermore, reduced models highlighted SLE patients exhibit prevalence of skin rashes and renal disease while MCTD cases show dominance of myositis and muscle weakness. Additionally decision trees analyses revealed a novel classification rule tailored to differentiate unclear SLE and MCTD patients (Lu-vs-M) with an overall accuracy of 88%. Conclusions Validation of our novel proposed classification rule (Lu-vs-M) includes novel contrasting characteristics (calcinosis, CPK elevated and anti-IgM reactivity for U1-70K, U1A and U1C) between SLE and MCTD patients and showed a 33% improvement in distinguishing these disorders when compare to currently used classification criteria sets. Pending additional validation, our novel classification rule is a promising method to distinguish between patients with unclear SLE and MCTD diagnosis. PMID:27353506
Simulation of seagrass bed mapping by satellite images based on the radiative transfer model
NASA Astrophysics Data System (ADS)
Sagawa, Tatsuyuki; Komatsu, Teruhisa
2015-06-01
Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.
Corcoran, Jennifer M.; Knight, Joseph F.; Gallant, Alisa L.
2013-01-01
Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.
A Visual mining based framework for classification accuracy estimation
NASA Astrophysics Data System (ADS)
Arun, Pattathal Vijayakumar
2013-12-01
Classification techniques have been widely used in different remote sensing applications and correct classification of mixed pixels is a tedious task. Traditional approaches adopt various statistical parameters, however does not facilitate effective visualisation. Data mining tools are proving very helpful in the classification process. We propose a visual mining based frame work for accuracy assessment of classification techniques using open source tools such as WEKA and PREFUSE. These tools in integration can provide an efficient approach for getting information about improvements in the classification accuracy and helps in refining training data set. We have illustrated framework for investigating the effects of various resampling methods on classification accuracy and found that bilinear (BL) is best suited for preserving radiometric characteristics. We have also investigated the optimal number of folds required for effective analysis of LISS-IV images. Techniki klasyfikacji są szeroko wykorzystywane w różnych aplikacjach teledetekcyjnych, w których poprawna klasyfikacja pikseli stanowi poważne wyzwanie. Podejście tradycyjne wykorzystujące różnego rodzaju parametry statystyczne nie zapewnia efektywnej wizualizacji. Wielce obiecujące wydaje się zastosowanie do klasyfikacji narzędzi do eksploracji danych. W artykule zaproponowano podejście bazujące na wizualnej analizie eksploracyjnej, wykorzystujące takie narzędzia typu open source jak WEKA i PREFUSE. Wymienione narzędzia ułatwiają korektę pół treningowych i efektywnie wspomagają poprawę dokładności klasyfikacji. Działanie metody sprawdzono wykorzystując wpływ różnych metod resampling na zachowanie dokładności radiometrycznej i uzyskując najlepsze wyniki dla metody bilinearnej (BL).
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.; Anderson, J. E.; Brannon, D. P.; Hill, C. L.
1982-01-01
An initial analysis of LANDSAT 4 thematic mapper (TM) data for the delineation and classification of agricultural, forested wetland, and urban land covers was conducted. A study area in Poinsett County, Arkansas was used to evaluate a classification of agricultural lands derived from multitemporal LANDSAT multispectral scanner (MSS) data in comparison with a classification of TM data for the same area. Data over Reelfoot Lake in northwestern Tennessee were utilized to evaluate the TM for delineating forested wetland species. A classification of the study area was assessed for accuracy in discriminating five forested wetland categories. Finally, the TM data were used to identify urban features within a small city. A computer generated classification of Union City, Tennessee was analyzed for accuracy in delineating urban land covers. An evaluation of digitally enhanced TM data using principal components analysis to facilitate photointerpretation of urban features was also performed.
NASA Technical Reports Server (NTRS)
Lillesand, T. M.; Werth, L. F. (Principal Investigator)
1980-01-01
A 25% improvement in average classification accuracy was realized by processing double-date vs. single-date data. Under the spectrally and spatially complex site conditions characterizing the geographical area used, further improvement in wetland classification accuracy is apparently precluded by the spectral and spatial resolution restrictions of the LANDSAT MSS. Full scene analysis of scanning densitometer data extracted from scale infrared photography failed to permit discrimination of many wetland and nonwetland cover types. When classification of photographic data was limited to wetland areas only, much more detailed and accurate classification could be made. The integration of conventional image interpretation (to simply delineate wetland boundaries) and machine assisted classification (to discriminate among cover types present within the wetland areas) appears to warrant further research to study the feasibility and cost of extending this methodology over a large area using LANDSAT and/or small scale photography.
Characterization and delineation of caribou habitat on Unimak Island using remote sensing techniques
NASA Astrophysics Data System (ADS)
Atkinson, Brain M.
The assessment of herbivore habitat quality is traditionally based on quantifying the forages available to the animal across their home range through ground-based techniques. While these methods are highly accurate, they can be time-consuming and highly expensive, especially for herbivores that occupy vast spatial landscapes. The Unimak Island caribou herd has been decreasing in the last decade at rates that have prompted discussion of management intervention. Frequent inclement weather in this region of Alaska has provided for little opportunity to study the caribou forage habitat on Unimak Island. The overall objectives of this study were two-fold 1) to assess the feasibility of using high-resolution color and near-infrared aerial imagery to map the forage distribution of caribou habitat on Unimak Island and 2) to assess the use of a new high-resolution multispectral satellite imagery platform, RapidEye, and use of the "red-edge" spectral band on vegetation classification accuracy. Maximum likelihood classification algorithms were used to create land cover maps in aerial and satellite imagery. Accuracy assessments and transformed divergence values were produced to assess vegetative spectral information and classification accuracy. By using RapidEye and aerial digital imagery in a hierarchical supervised classification technique, we were able to produce a high resolution land cover map of Unimak Island. We obtained overall accuracy rates of 71.4 percent which are comparable to other land cover maps using RapidEye imagery. The "red-edge" spectral band included in the RapidEye imagery provides additional spectral information that allows for a more accurate overall classification, raising overall accuracy 5.2 percent.
NASA Astrophysics Data System (ADS)
Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.
2017-11-01
To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.
Deep multi-scale convolutional neural network for hyperspectral image classification
NASA Astrophysics Data System (ADS)
Zhang, Feng-zhe; Yang, Xia
2018-04-01
In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.
Rey, Sergio J.; Stephens, Philip A.; Laura, Jason R.
2017-01-01
Large data contexts present a number of challenges to optimal choropleth map classifiers. Application of optimal classifiers to a sample of the attribute space is one proposed solution. The properties of alternative sampling-based classification methods are examined through a series of Monte Carlo simulations. The impacts of spatial autocorrelation, number of desired classes, and form of sampling are shown to have significant impacts on the accuracy of map classifications. Tradeoffs between improved speed of the sampling approaches and loss of accuracy are also considered. The results suggest the possibility of guiding the choice of classification scheme as a function of the properties of large data sets.
A new self-report inventory of dyslexia for students: criterion and construct validity.
Tamboer, Peter; Vorst, Harrie C M
2015-02-01
The validity of a Dutch self-report inventory of dyslexia was ascertained in two samples of students. Six biographical questions, 20 general language statements and 56 specific language statements were based on dyslexia as a multi-dimensional deficit. Dyslexia and non-dyslexia were assessed with two criteria: identification with test results (Sample 1) and classification using biographical information (both samples). Using discriminant analyses, these criteria were predicted with various groups of statements. All together, 11 discriminant functions were used to estimate classification accuracy of the inventory. In Sample 1, 15 statements predicted the test criterion with classification accuracy of 98%, and 18 statements predicted the biographical criterion with classification accuracy of 97%. In Sample 2, 16 statements predicted the biographical criterion with classification accuracy of 94%. Estimations of positive and negative predictive value were 89% and 99%. Items of various discriminant functions were factor analysed to find characteristic difficulties of students with dyslexia, resulting in a five-factor structure in Sample 1 and a four-factor structure in Sample 2. Answer bias was investigated with measures of internal consistency reliability. Less than 20 self-report items are sufficient to accurately classify students with and without dyslexia. This supports the usefulness of self-assessment of dyslexia as a valid alternative to diagnostic test batteries. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Liu, Tao; Im, Jungho; Quackenbush, Lindi J.
2015-12-01
This study provides a novel approach to individual tree crown delineation (ITCD) using airborne Light Detection and Ranging (LiDAR) data in dense natural forests using two main steps: crown boundary refinement based on a proposed Fishing Net Dragging (FiND) method, and segment merging based on boundary classification. FiND starts with approximate tree crown boundaries derived using a traditional watershed method with Gaussian filtering and refines these boundaries using an algorithm that mimics how a fisherman drags a fishing net. Random forest machine learning is then used to classify boundary segments into two classes: boundaries between trees and boundaries between branches that belong to a single tree. Three groups of LiDAR-derived features-two from the pseudo waveform generated along with crown boundaries and one from a canopy height model (CHM)-were used in the classification. The proposed ITCD approach was tested using LiDAR data collected over a mountainous region in the Adirondack Park, NY, USA. Overall accuracy of boundary classification was 82.4%. Features derived from the CHM were generally more important in the classification than the features extracted from the pseudo waveform. A comprehensive accuracy assessment scheme for ITCD was also introduced by considering both area of crown overlap and crown centroids. Accuracy assessment using this new scheme shows the proposed ITCD achieved 74% and 78% as overall accuracy, respectively, for deciduous and mixed forest.
Thomas C. Edwards; D. Richard Cutler; Niklaus E. Zimmermann; Linda Geiser; Gretchen G. Moisen
2006-01-01
We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by...
Using New Models to Analyze Complex Regularities of the World: Commentary on Musso et al. (2013)
ERIC Educational Resources Information Center
Nokelainen, Petri; Silander, Tomi
2014-01-01
This commentary to the recent article by Musso et al. (2013) discusses issues related to model fitting, comparison of classification accuracy of generative and discriminative models, and two (or more) cultures of data modeling. We start by questioning the extremely high classification accuracy with an empirical data from a complex domain. There is…
ERIC Educational Resources Information Center
Ball, Carrie R.; O'Connor, Edward
2016-01-01
This study examined the predictive validity and classification accuracy of two commonly used universal screening measures relative to a statewide achievement test. Results indicated that second-grade performance on oral reading fluency and the Measures of Academic Progress (MAP), together with special education status, explained 68% of the…
Subject-Adaptive Real-Time Sleep Stage Classification Based on Conditional Random Field
Luo, Gang; Min, Wanli
2007-01-01
Sleep staging is the pattern recognition task of classifying sleep recordings into sleep stages. This task is one of the most important steps in sleep analysis. It is crucial for the diagnosis and treatment of various sleep disorders, and also relates closely to brain-machine interfaces. We report an automatic, online sleep stager using electroencephalogram (EEG) signal based on a recently-developed statistical pattern recognition method, conditional random field, and novel potential functions that have explicit physical meanings. Using sleep recordings from human subjects, we show that the average classification accuracy of our sleep stager almost approaches the theoretical limit and is about 8% higher than that of existing systems. Moreover, for a new subject snew with limited training data Dnew, we perform subject adaptation to improve classification accuracy. Our idea is to use the knowledge learned from old subjects to obtain from Dnew a regulated estimate of CRF’s parameters. Using sleep recordings from human subjects, we show that even without any Dnew, our sleep stager can achieve an average classification accuracy of 70% on snew. This accuracy increases with the size of Dnew and eventually becomes close to the theoretical limit. PMID:18693884
NASA Astrophysics Data System (ADS)
Zhang, Zhiming; de Wulf, Robert R.; van Coillie, Frieke M. B.; Verbeke, Lieven P. C.; de Clercq, Eva M.; Ou, Xiaokun
2011-01-01
Mapping of vegetation using remote sensing in mountainous areas is considerably hampered by topographic effects on the spectral response pattern. A variety of topographic normalization techniques have been proposed to correct these illumination effects due to topography. The purpose of this study was to compare six different topographic normalization methods (Cosine correction, Minnaert correction, C-correction, Sun-canopy-sensor correction, two-stage topographic normalization, and slope matching technique) for their effectiveness in enhancing vegetation classification in mountainous environments. Since most of the vegetation classes in the rugged terrain of the Lancang Watershed (China) did not feature a normal distribution, artificial neural networks (ANNs) were employed as a classifier. Comparing the ANN classifications, none of the topographic correction methods could significantly improve ETM+ image classification overall accuracy. Nevertheless, at the class level, the accuracy of pine forest could be increased by using topographically corrected images. On the contrary, oak forest and mixed forest accuracies were significantly decreased by using corrected images. The results also showed that none of the topographic normalization strategies was satisfactorily able to correct for the topographic effects in severely shadowed areas.
Support vector machine and principal component analysis for microarray data classification
NASA Astrophysics Data System (ADS)
Astuti, Widi; Adiwijaya
2018-03-01
Cancer is a leading cause of death worldwide although a significant proportion of it can be cured if it is detected early. In recent decades, technology called microarray takes an important role in the diagnosis of cancer. By using data mining technique, microarray data classification can be performed to improve the accuracy of cancer diagnosis compared to traditional techniques. The characteristic of microarray data is small sample but it has huge dimension. Since that, there is a challenge for researcher to provide solutions for microarray data classification with high performance in both accuracy and running time. This research proposed the usage of Principal Component Analysis (PCA) as a dimension reduction method along with Support Vector Method (SVM) optimized by kernel functions as a classifier for microarray data classification. The proposed scheme was applied on seven data sets using 5-fold cross validation and then evaluation and analysis conducted on term of both accuracy and running time. The result showed that the scheme can obtained 100% accuracy for Ovarian and Lung Cancer data when Linear and Cubic kernel functions are used. In term of running time, PCA greatly reduced the running time for every data sets.
Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong
2018-01-01
The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.
NASA Astrophysics Data System (ADS)
Wang, X.; Xu, L.
2018-04-01
One of the most important applications of remote sensing classification is water extraction. The water index (WI) based on Landsat images is one of the most common ways to distinguish water bodies from other land surface features. But conventional WI methods take into account spectral information only form a limited number of bands, and therefore the accuracy of those WI methods may be constrained in some areas which are covered with snow/ice, clouds, etc. An accurate and robust water extraction method is the key to the study at present. The support vector machine (SVM) using all bands spectral information can reduce for these classification error to some extent. Nevertheless, SVM which barely considers spatial information is relatively sensitive to noise in local regions. Conditional random field (CRF) which considers both spatial information and spectral information has proven to be able to compensate for these limitations. Hence, in this paper, we develop a systematic water extraction method by taking advantage of the complementarity between the SVM and a water index-guided stochastic fully-connected conditional random field (SVM-WIGSFCRF) to address the above issues. In addition, we comprehensively evaluate the reliability and accuracy of the proposed method using Landsat-8 operational land imager (OLI) images of one test site. We assess the method's performance by calculating the following accuracy metrics: Omission Errors (OE) and Commission Errors (CE); Kappa coefficient (KP) and Total Error (TE). Experimental results show that the new method can improve target detection accuracy under complex and changeable environments.
Lu, Huijuan; Wei, Shasha; Zhou, Zili; Miao, Yanzi; Lu, Yi
2015-01-01
The main purpose of traditional classification algorithms on bioinformatics application is to acquire better classification accuracy. However, these algorithms cannot meet the requirement that minimises the average misclassification cost. In this paper, a new algorithm of cost-sensitive regularised extreme learning machine (CS-RELM) was proposed by using probability estimation and misclassification cost to reconstruct the classification results. By improving the classification accuracy of a group of small sample which higher misclassification cost, the new CS-RELM can minimise the classification cost. The 'rejection cost' was integrated into CS-RELM algorithm to further reduce the average misclassification cost. By using Colon Tumour dataset and SRBCT (Small Round Blue Cells Tumour) dataset, CS-RELM was compared with other cost-sensitive algorithms such as extreme learning machine (ELM), cost-sensitive extreme learning machine, regularised extreme learning machine, cost-sensitive support vector machine (SVM). The results of experiments show that CS-RELM with embedded rejection cost could reduce the average cost of misclassification and made more credible classification decision than others.
Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P.
2008-01-01
Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and objectoriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. ?? 2008 by MDPI.
Myint, Soe W.; Yuan, May; Cerveny, Randall S.; Giri, Chandra P.
2008-01-01
Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and object-oriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. PMID:27879757
Liu, Changhong; Liu, Wei; Lu, Xuzhong; Ma, Fei; Chen, Wei; Yang, Jianbo; Zheng, Lei
2014-01-01
Multispectral imaging with 19 wavelengths in the range of 405-970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit.
Delineation of marsh types of the Texas coast from Corpus Christi Bay to the Sabine River in 2010
Enwright, Nicholas M.; Hartley, Stephen B.; Brasher, Michael G.; Visser, Jenneke M.; Mitchell, Michael K.; Ballard, Bart M.; Parr, Mark W.; Couvillion, Brady R.; Wilson, Barry C.
2014-01-01
Coastal zone managers and researchers often require detailed information regarding emergent marsh vegetation types for modeling habitat capacities and needs of marsh-reliant wildlife (such as waterfowl and alligator). Detailed information on the extent and distribution of marsh vegetation zones throughout the Texas coast has been historically unavailable. In response, the U.S. Geological Survey, in cooperation and collaboration with the U.S. Fish and Wildlife Service via the Gulf Coast Joint Venture, Texas A&M University-Kingsville, the University of Louisiana-Lafayette, and Ducks Unlimited, Inc., has produced a classification of marsh vegetation types along the middle and upper Texas coast from Corpus Christi Bay to the Sabine River. This study incorporates approximately 1,000 ground reference locations collected via helicopter surveys in coastal marsh areas and about 2,000 supplemental locations from fresh marsh, water, and “other” (that is, nonmarsh) areas. About two-thirds of these data were used for training, and about one-third were used for assessing accuracy. Decision-tree analyses using Rulequest See5 were used to classify emergent marsh vegetation types by using these data, multitemporal satellite-based multispectral imagery from 2009 to 2011, a bare-earth digital elevation model (DEM) based on airborne light detection and ranging (lidar), alternative contemporary land cover classifications, and other spatially explicit variables believed to be important for delineating the extent and distribution of marsh vegetation communities. Image objects were generated from segmentation of high-resolution airborne imagery acquired in 2010 and were used to refine the classification. The classification is dated 2010 because the year is both the midpoint of the multitemporal satellite-based imagery (2009–11) classified and the date of the high-resolution airborne imagery that was used to develop image objects. Overall accuracy corrected for bias (accuracy estimate incorporates true marginal proportions) was 91 percent (95 percent confidence interval [CI]: 89.2–92.8), with a kappa statistic of 0.79 (95 percent CI: 0.77–0.81). The classification performed best for saline marsh (user’s accuracy 81.5 percent; producer’s accuracy corrected for bias 62.9 percent) but showed a lesser ability to discriminate intermediate marsh (user’s accuracy 47.7 percent; producer’s accuracy corrected for bias 49.5 percent). Because of confusion in intermediate and brackish marsh classes, an alternative classification containing only three marsh types was created in which intermediate and brackish marshes were combined into a single class. Image objects were reattributed by using this alternative three-marsh-type classification. Overall accuracy, corrected for bias, of this more general classification was 92.4 percent (95 percent CI: 90.7–94.2), and the kappa statistic was 0.83 (95 percent CI: 0.81–0.85). Mean user’s accuracy for marshes within the four-marsh-type and three-marsh-type classifications was 65.4 percent and 75.6 percent, respectively, whereas mean producer’s accuracy was 56.7 percent and 65.1 percent, respectively. This study provides a more objective and repeatable method for classifying marsh types of the middle and upper Texas coast at an extent and greater level of detail than previously available for the study area. The seamless classification produced through this work is now available to help State agencies (such as the Texas Parks and Wildlife Department) and landscape-scale conservation partnerships (such as the Gulf Coast Prairie Landscape Conservation Cooperative and the Gulf Coast Joint Venture) to develop and (or) refine conservation plans targeting priority natural resources. Moreover, these data may improve projections of landscape change and serve as a baseline for monitoring future changes resulting from chronic and episodic stressors.
DOT National Transportation Integrated Search
2014-09-01
Vehicle classification is an important traffic parameter for transportation planning and infrastructure : management. Length-based vehicle classification from dual loop detectors is among the lowest cost : technologies commonly used for collecting th...
Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System.
de Moura, Karina de O A; Balbinot, Alexandre
2018-05-01
A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior.
Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System
Balbinot, Alexandre
2018-01-01
A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior. PMID:29723994
Modeling misregistration and related effects on multispectral classification
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1981-01-01
The effects of misregistration on the multispectral classification accuracy when the scene registration accuracy is relaxed from 0.3 to 0.5 pixel are investigated. Noise, class separability, spatial transient response, and field size are considered simultaneously with misregistration in their effects on accuracy. Any noise due to the scene, sensor, or to the analog/digital conversion, causes a finite fraction of the measurements to fall outside of the classification limits, even within nominally uniform fields. Misregistration causes field borders in a given band or set of bands to be closer than expected to a given pixel, causing additional pixels to be misclassified due to the mixture of materials in the pixel. Simplified first order models of the various effects are presented, and are used to estimate the performance to be expected.
Delavarian, Mona; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Dibajnia, Parvin
2011-07-12
Automatic classification of different behavioral disorders with many similarities (e.g. in symptoms) by using an automated approach will help psychiatrists to concentrate on correct disorder and its treatment as soon as possible, to avoid wasting time on diagnosis, and to increase the accuracy of diagnosis. In this study, we tried to differentiate and classify (diagnose) 306 children with many similar symptoms and different behavioral disorders such as ADHD, depression, anxiety, comorbid depression and anxiety and conduct disorder with high accuracy. Classification was based on the symptoms and their severity. With examining 16 different available classifiers, by using "Prtools", we have proposed nearest mean classifier as the most accurate classifier with 96.92% accuracy in this research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Wen, Tingxi; Zhang, Zhongnan
2017-01-01
Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789
Wen, Tingxi; Zhang, Zhongnan
2017-05-01
In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.
NASA Astrophysics Data System (ADS)
Hammann, Mark Gregory
The fusion of electro-optical (EO) multi-spectral satellite imagery with Synthetic Aperture Radar (SAR) data was explored with the working hypothesis that the addition of multi-band SAR will increase the land-cover (LC) classification accuracy compared to EO alone. Three satellite sources for SAR imagery were used: X-band from TerraSAR-X, C-band from RADARSAT-2, and L-band from PALSAR. Images from the RapidEye satellites were the source of the EO imagery. Imagery from the GeoEye-1 and WorldView-2 satellites aided the selection of ground truth. Three study areas were chosen: Wad Medani, Sudan; Campinas, Brazil; and Fresno- Kings Counties, USA. EO imagery were radiometrically calibrated, atmospherically compensated, orthorectifed, co-registered, and clipped to a common area of interest (AOI). SAR imagery were radiometrically calibrated, and geometrically corrected for terrain and incidence angle by converting to ground range and Sigma Naught (?0). The original SAR HH data were included in the fused image stack after despeckling with a 3x3 Enhanced Lee filter. The variance and Gray-Level-Co-occurrence Matrix (GLCM) texture measures of contrast, entropy, and correlation were derived from the non-despeckled SAR HH bands. Data fusion was done with layer stacking and all data were resampled to a common spatial resolution. The Support Vector Machine (SVM) decision rule was used for the supervised classifications. Similar LC classes were identified and tested for each study area. For Wad Medani, nine classes were tested: low and medium intensity urban, sparse forest, water, barren ground, and four agriculture classes (fallow, bare agricultural ground, green crops, and orchards). For Campinas, Brazil, five generic classes were tested: urban, agriculture, forest, water, and barren ground. For the Fresno-Kings Counties location 11 classes were studied: three generic classes (urban, water, barren land), and eight specific crops. In all cases the addition of SAR to EO resulted in higher overall classification accuracies. In many cases using more than a single SAR band also improved the classification accuracy. There was no single best SAR band for all cases; for specific study areas or LC classes, different SAR bands were better. For Wad Medani, the overall accuracy increased nearly 25% over EO by using all three SAR bands and GLCM texture. For Campinas, the improvement over EO was 4.3%; the large areas of vegetation were classified by EO with good accuracy. At Fresno-Kings Counties, EO+SAR fusion improved the overall classification accuracy by 7%. For times or regions where EO is not available due to extended cloud cover, classification with SAR is often the only option; note that SAR alone typically results in lower classification accuracies than when using EO or EO-SAR fusion. Fusion of EO and SAR was especially important to improve the separability of orchards from other crops, and separating urban areas with buildings from bare soil; those classes are difficult to accurately separate with EO. The outcome of this dissertation contributes to the understanding of the benefits of combining data from EO imagery with different SAR bands and SAR derived texture data to identify different LC classes. In times of increased public and private budget constraints and industry consolidation, this dissertation provides insight as to which band packages could be most useful for increased accuracy in LC classification.
Kainz, Philipp; Pfeiffer, Michael; Urschler, Martin
2017-01-01
Segmentation of histopathology sections is a necessary preprocessing step for digital pathology. Due to the large variability of biological tissue, machine learning techniques have shown superior performance over conventional image processing methods. Here we present our deep neural network-based approach for segmentation and classification of glands in tissue of benign and malignant colorectal cancer, which was developed to participate in the GlaS@MICCAI2015 colon gland segmentation challenge. We use two distinct deep convolutional neural networks (CNN) for pixel-wise classification of Hematoxylin-Eosin stained images. While the first classifier separates glands from background, the second classifier identifies gland-separating structures. In a subsequent step, a figure-ground segmentation based on weighted total variation produces the final segmentation result by regularizing the CNN predictions. We present both quantitative and qualitative segmentation results on the recently released and publicly available Warwick-QU colon adenocarcinoma dataset associated with the GlaS@MICCAI2015 challenge and compare our approach to the simultaneously developed other approaches that participated in the same challenge. On two test sets, we demonstrate our segmentation performance and show that we achieve a tissue classification accuracy of 98% and 95%, making use of the inherent capability of our system to distinguish between benign and malignant tissue. Our results show that deep learning approaches can yield highly accurate and reproducible results for biomedical image analysis, with the potential to significantly improve the quality and speed of medical diagnoses.
Kainz, Philipp; Pfeiffer, Michael
2017-01-01
Segmentation of histopathology sections is a necessary preprocessing step for digital pathology. Due to the large variability of biological tissue, machine learning techniques have shown superior performance over conventional image processing methods. Here we present our deep neural network-based approach for segmentation and classification of glands in tissue of benign and malignant colorectal cancer, which was developed to participate in the GlaS@MICCAI2015 colon gland segmentation challenge. We use two distinct deep convolutional neural networks (CNN) for pixel-wise classification of Hematoxylin-Eosin stained images. While the first classifier separates glands from background, the second classifier identifies gland-separating structures. In a subsequent step, a figure-ground segmentation based on weighted total variation produces the final segmentation result by regularizing the CNN predictions. We present both quantitative and qualitative segmentation results on the recently released and publicly available Warwick-QU colon adenocarcinoma dataset associated with the GlaS@MICCAI2015 challenge and compare our approach to the simultaneously developed other approaches that participated in the same challenge. On two test sets, we demonstrate our segmentation performance and show that we achieve a tissue classification accuracy of 98% and 95%, making use of the inherent capability of our system to distinguish between benign and malignant tissue. Our results show that deep learning approaches can yield highly accurate and reproducible results for biomedical image analysis, with the potential to significantly improve the quality and speed of medical diagnoses. PMID:29018612
Fuzzy membership functions for analysis of high-resolution CT images of diffuse pulmonary diseases.
Almeida, Eliana; Rangayyan, Rangaraj M; Azevedo-Marques, Paulo M
2015-08-01
We propose the use of fuzzy membership functions to analyze images of diffuse pulmonary diseases (DPDs) based on fractal and texture features. The features were extracted from preprocessed regions of interest (ROIs) selected from high-resolution computed tomography images. The ROIs represent five different patterns of DPDs and normal lung tissue. A Gaussian mixture model (GMM) was constructed for each feature, with six Gaussians modeling the six patterns. Feature selection was performed and the GMMs of the five significant features were used. From the GMMs, fuzzy membership functions were obtained by a probability-possibility transformation and further statistical analysis was performed. An average classification accuracy of 63.5% was obtained for the six classes. For four of the six classes, the classification accuracy was superior to 65%, and the best classification accuracy was 75.5% for one class. The use of fuzzy membership functions to assist in pattern classification is an alternative to deterministic approaches to explore strategies for medical diagnosis.
Pathological brain detection based on wavelet entropy and Hu moment invariants.
Zhang, Yudong; Wang, Shuihua; Sun, Ping; Phillips, Preetha
2015-01-01
With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic computer-aided diagnosis (CAD) to detect pathological brains from normal brains obtained by magnetic resonance imaging (MRI) scanning. The problem still remained a challenge for technicians and clinicians, since MR imaging generated an exceptionally large information dataset. A new two-step approach was proposed in this study. We used wavelet entropy (WE) and Hu moment invariants (HMI) for feature extraction, and the generalized eigenvalue proximal support vector machine (GEPSVM) for classification. To further enhance classification accuracy, the popular radial basis function (RBF) kernel was employed. The 10 runs of k-fold stratified cross validation result showed that the proposed "WE + HMI + GEPSVM + RBF" method was superior to existing methods w.r.t. classification accuracy. It obtained the average classification accuracies of 100%, 100%, and 99.45% over Dataset-66, Dataset-160, and Dataset-255, respectively. The proposed method is effective and can be applied to realistic use.
Mikhno, Arthur; Nuevo, Pablo Martinez; Devanand, Davangere P.; Parsey, Ramin V.; Laine, Andrew F.
2013-01-01
Multimodality classification of Alzheimer’s disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), is of interest to the medical community. We improve on prior classification frameworks by incorporating multiple features from MRI and PET data obtained with multiple radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the hippocampus region. Classification performance is evaluated on data from 17 healthy controls (CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy (Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3% to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal accuracy is achieved when Zernike and PET features are combined (accuracy, specificity, sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD (93.3%, 93.6%, 93.3%). PMID:24576927
Mikhno, Arthur; Nuevo, Pablo Martinez; Devanand, Davangere P; Parsey, Ramin V; Laine, Andrew F
2012-01-01
Multimodality classification of Alzheimer's disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), is of interest to the medical community. We improve on prior classification frameworks by incorporating multiple features from MRI and PET data obtained with multiple radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the hippocampus region. Classification performance is evaluated on data from 17 healthy controls (CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy (Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3% to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal accuracy is achieved when Zernike and PET features are combined (accuracy, specificity, sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD (93.3%, 93.6%, 93.3%).
Crabtree, Nathaniel M; Moore, Jason H; Bowyer, John F; George, Nysia I
2017-01-01
A computational evolution system (CES) is a knowledge discovery engine that can identify subtle, synergistic relationships in large datasets. Pareto optimization allows CESs to balance accuracy with model complexity when evolving classifiers. Using Pareto optimization, a CES is able to identify a very small number of features while maintaining high classification accuracy. A CES can be designed for various types of data, and the user can exploit expert knowledge about the classification problem in order to improve discrimination between classes. These characteristics give CES an advantage over other classification and feature selection algorithms, particularly when the goal is to identify a small number of highly relevant, non-redundant biomarkers. Previously, CESs have been developed only for binary class datasets. In this study, we developed a multi-class CES. The multi-class CES was compared to three common feature selection and classification algorithms: support vector machine (SVM), random k-nearest neighbor (RKNN), and random forest (RF). The algorithms were evaluated on three distinct multi-class RNA sequencing datasets. The comparison criteria were run-time, classification accuracy, number of selected features, and stability of selected feature set (as measured by the Tanimoto distance). The performance of each algorithm was data-dependent. CES performed best on the dataset with the smallest sample size, indicating that CES has a unique advantage since the accuracy of most classification methods suffer when sample size is small. The multi-class extension of CES increases the appeal of its application to complex, multi-class datasets in order to identify important biomarkers and features.
A novel artificial immune clonal selection classification and rule mining with swarm learning model
NASA Astrophysics Data System (ADS)
Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.
2013-06-01
Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.
Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin
2008-10-03
A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed.
Classifying four-category visual objects using multiple ERP components in single-trial ERP.
Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin
2016-08-01
Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.
Farrell, Todd R.; Weir, Richard F. ff.
2011-01-01
The use of surface versus intramuscular electrodes as well as the effect of electrode targeting on pattern-recognition-based multifunctional prosthesis control was explored. Surface electrodes are touted for their ability to record activity from relatively large portions of muscle tissue. Intramuscular electromyograms (EMGs) can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk. However, little work has been done to compare the two. Additionally, while previous investigations have either targeted electrodes to specific muscles or used untargeted (symmetric) electrode arrays, no work has compared these approaches to determine if one is superior. The classification accuracies of pattern-recognition-based classifiers utilizing surface and intramuscular as well as targeted and untargeted electrodes were compared across 11 subjects. A repeated-measures analysis of variance revealed that when only EMG amplitude information was used from all available EMG channels, the targeted surface, targeted intramuscular, and untargeted surface electrodes produced similar classification accuracies while the untargeted intramuscular electrodes produced significantly lower accuracies. However, no statistical differences were observed between any of the electrode conditions when additional features were extracted from the EMG signal. It was concluded that the choice of electrode should be driven by clinical factors, such as signal robustness/stability, cost, etc., instead of by classification accuracy. PMID:18713689
Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie
2013-01-01
Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652
Ozcift, Akin; Gulten, Arif
2011-12-01
Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong
2016-06-01
With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high resolution imagery and Lidar ancillary data for classification of urban land cover.
Iacucci, Marietta; Trovato, Cristina; Daperno, Marco; Akinola, Oluseyi; Greenwald, David; Gross, Seth A; Hoffman, Arthur; Lee, Jeffrey; Lethebe, Brendan C; Lowerison, Mark; Nayor, Jennifer; Neumann, Helmut; Rath, Timo; Sanduleanu, Silvia; Sharma, Prateek; Kiesslich, Ralf; Ghosh, Subrata; Saltzman, John R
2018-03-23
Prediction of histology of small polyps facilitates colonoscopic treatment. The aims of this study were: 1) to develop a simplified polyp classification, 2) to evaluate its performance in predicting polyp histology, and 3) to evaluate the reproducibility of the classification by trainees using multiplatform endoscopic systems. In phase 1, a new simplified endoscopic classification for polyps - Simplified Identification Method for Polyp Labeling during Endoscopy (SIMPLE) - was created, using the new I-SCAN OE system (Pentax, Tokyo, Japan), by eight international experts. In phase 2, the accuracy, level of confidence, and interobserver agreement to predict polyp histology before and after training, and univariable/multivariable analysis of the endoscopic features, were performed. In phase 3, the reproducibility of SIMPLE by trainees using different endoscopy platforms was evaluated. Using the SIMPLE classification, the accuracy of experts in predicting polyps was 83 % (95 % confidence interval [CI] 77 % - 88 %) before and 94 % (95 %CI 89 % - 97 %) after training ( P = 0.002). The sensitivity, specificity, positive predictive value, and negative predictive value after training were 97 %, 88 %, 95 %, and 91 %. The interobserver agreement of polyp diagnosis improved from 0.46 (95 %CI 0.30 - 0.64) before to 0.66 (95 %CI 0.48 - 0.82) after training. The trainees demonstrated that the SIMPLE classification is applicable across endoscopy platforms, with similar post-training accuracies for narrow-band imaging NBI classification (0.69; 95 %CI 0.64 - 0.73) and SIMPLE (0.71; 95 %CI 0.67 - 0.75). Using the I-SCAN OE system, the new SIMPLE classification demonstrated a high degree of accuracy for adenoma diagnosis, meeting the ASGE PIVI recommendations. We demonstrated that SIMPLE may be used with either I-SCAN OE or NBI. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Suiter, Ashley Elizabeth
Multi-spectral imagery provides a robust and low-cost dataset for assessing wetland extent and quality over broad regions and is frequently used for wetland inventories. However in forested wetlands, hydrology is obscured by tree canopy making it difficult to detect with multi-spectral imagery alone. Because of this, classification of forested wetlands often includes greater errors than that of other wetlands types. Elevation and terrain derivatives have been shown to be useful for modelling wetland hydrology. But, few studies have addressed the use of LiDAR intensity data detecting hydrology in forested wetlands. Due the tendency of LiDAR signal to be attenuated by water, this research proposed the fusion of LiDAR intensity data with LiDAR elevation, terrain data, and aerial imagery, for the detection of forested wetland hydrology. We examined the utility of LiDAR intensity data and determined whether the fusion of Lidar derived data with multispectral imagery increased the accuracy of forested wetland classification compared with a classification performed with only multi-spectral image. Four classifications were performed: Classification A -- All Imagery, Classification B -- All LiDAR, Classification C -- LiDAR without Intensity, and Classification D -- Fusion of All Data. These classifications were performed using random forest and each resulted in a 3-foot resolution thematic raster of forested upland and forested wetland locations in Vermilion County, Illinois. The accuracies of these classifications were compared using Kappa Coefficient of Agreement. Importance statistics produced within the random forest classifier were evaluated in order to understand the contribution of individual datasets. Classification D, which used the fusion of LiDAR and multi-spectral imagery as input variables, had moderate to strong agreement between reference data and classification results. It was found that Classification A performed using all the LiDAR data and its derivatives (intensity, elevation, slope, aspect, curvatures, and Topographic Wetness Index) was the most accurate classification with Kappa: 78.04%, indicating moderate to strong agreement. However, Classification C, performed with LiDAR derivative without intensity data had less agreement than would be expected by chance, indicating that LiDAR contributed significantly to the accuracy of Classification B.
Classification of weld defect based on information fusion technology for radiographic testing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less
NASA Technical Reports Server (NTRS)
Joyce, A. T.
1974-01-01
Significant progress has been made in the classification of surface conditions (land uses) with computer-implemented techniques based on the use of ERTS digital data and pattern recognition software. The supervised technique presently used at the NASA Earth Resources Laboratory is based on maximum likelihood ratioing with a digital table look-up approach to classification. After classification, colors are assigned to the various surface conditions (land uses) classified, and the color-coded classification is film recorded on either positive or negative 9 1/2 in. film at the scale desired. Prints of the film strips are then mosaicked and photographed to produce a land use map in the format desired. Computer extraction of statistical information is performed to show the extent of each surface condition (land use) within any given land unit that can be identified in the image. Evaluations of the product indicate that classification accuracy is well within the limits for use by land resource managers and administrators. Classifications performed with digital data acquired during different seasons indicate that the combination of two or more classifications offer even better accuracy.
Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying
2016-03-01
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.
NASA Astrophysics Data System (ADS)
Ranaie, Mehrdad; Soffianian, Alireza; Pourmanafi, Saeid; Mirghaffari, Noorollah; Tarkesh, Mostafa
2018-03-01
In recent decade, analyzing the remotely sensed imagery is considered as one of the most common and widely used procedures in the environmental studies. In this case, supervised image classification techniques play a central role. Hence, taking a high resolution Worldview-3 over a mixed urbanized landscape in Iran, three less applied image classification methods including Bagged CART, Stochastic gradient boosting model and Neural network with feature extraction were tested and compared with two prevalent methods: random forest and support vector machine with linear kernel. To do so, each method was run ten time and three validation techniques was used to estimate the accuracy statistics consist of cross validation, independent validation and validation with total of train data. Moreover, using ANOVA and Tukey test, statistical difference significance between the classification methods was significantly surveyed. In general, the results showed that random forest with marginal difference compared to Bagged CART and stochastic gradient boosting model is the best performing method whilst based on independent validation there was no significant difference between the performances of classification methods. It should be finally noted that neural network with feature extraction and linear support vector machine had better processing speed than other.
A Unified Classification Framework for FP, DP and CP Data at X-Band in Southern China
NASA Astrophysics Data System (ADS)
Xie, Lei; Zhang, Hong; Li, Hhongzhong; Wang, Chao
2015-04-01
The main objective of this paper is to introduce an unified framework for crop classification in Southern China using data in fully polarimetric (FP), dual-pol (DP) and compact polarimetric (CP) modes. The TerraSAR-X data acquired over the Leizhou Peninsula, South China are used in our experiments. The study site involves four main crops (rice, banana, sugarcane eucalyptus). Through exploring the similarities between data in these three modes, a knowledge-based characteristic space is created and the unified framework is presented. The overall classification accuracies for data in the FP, coherent HH/VV are about 95%, and is about 91% in CP modes, which suggests that the proposed classification scheme is effective and promising. Compared with the Wishart Maximum Likelihood (ML) classifier, the proposed method exhibits higher classification accuracy.
NASA Astrophysics Data System (ADS)
Hishe, Hadgu; Giday, Kidane; Neka, Mulugeta; Soromessa, Teshome; Van Orshoven, Jos; Muys, Bart
2015-01-01
Comprehensive and less costly forest inventory approaches are required to monitor the spatiotemporal dynamics of key species in forest ecosystems. Subpixel analysis using the earth resources data analysis system imagine subpixel classification procedure was tested to extract Olea europaea subsp. cuspidata and Juniperus procera canopies from Landsat 7 enhanced thematic mapper plus imagery. Control points with various canopy area fractions of the target species were collected to develop signatures for each of the species. With these signatures, the imagine subpixel classification procedure was run for each species independently. The subpixel process enabled the detection of O. europaea subsp. cuspidata and J. procera trees in pure and mixed pixels. Total of 100 pixels each were field verified for both species. An overall accuracy of 85% was achieved for O. europaea subsp. cuspidata and 89% for J. procera. A high overall accuracy level of detecting species at a natural forest was achieved, which encourages using the algorithm for future species monitoring activities. We recommend that the algorithm has to be validated in similar environment to enrich the knowledge on its capability to ensure its wider usage.
NASA Astrophysics Data System (ADS)
Poletti, Enea; Veronese, Elisa; Calabrese, Massimiliano; Bertoldo, Alessandra; Grisan, Enrico
2012-02-01
The automatic segmentation of brain tissues in magnetic resonance (MR) is usually performed on T1-weighted images, due to their high spatial resolution. T1w sequence, however, has some major downsides when brain lesions are present: the altered appearance of diseased tissues causes errors in tissues classification. In order to overcome these drawbacks, we employed two different MR sequences: fluid attenuated inversion recovery (FLAIR) and double inversion recovery (DIR). The former highlights both gray matter (GM) and white matter (WM), the latter highlights GM alone. We propose here a supervised classification scheme that does not require any anatomical a priori information to identify the 3 classes, "GM", "WM", and "background". Features are extracted by means of a local multi-scale texture analysis, computed for each pixel of the DIR and FLAIR sequences. The 9 textures considered are average, standard deviation, kurtosis, entropy, contrast, correlation, energy, homogeneity, and skewness, evaluated on a neighborhood of 3x3, 5x5, and 7x7 pixels. Hence, the total number of features associated to a pixel is 56 (9 textures x3 scales x2 sequences +2 original pixel values). The classifier employed is a Support Vector Machine with Radial Basis Function as kernel. From each of the 4 brain volumes evaluated, a DIR and a FLAIR slice have been selected and manually segmented by 2 expert neurologists, providing 1st and 2nd human reference observations which agree with an average accuracy of 99.03%. SVM performances have been assessed with a 4-fold cross-validation, yielding an average classification accuracy of 98.79%.
Maizlin, Ilan I; Redden, David T; Beierle, Elizabeth A; Chen, Mike K; Russell, Robert T
2017-04-01
Surgical wound classification, introduced in 1964, stratifies the risk of surgical site infection (SSI) based on a clinical estimate of the inoculum of bacteria encountered during the procedure. Recent literature has questioned the accuracy of predicting SSI risk based on wound classification. We hypothesized that a more specific model founded on specific patient and perioperative factors would more accurately predict the risk of SSI. Using all observations from the 2012 to 2014 pediatric National Surgical Quality Improvement Program-Pediatric (NSQIP-P) Participant Use File, patients were randomized into model creation and model validation datasets. Potential perioperative predictive factors were assessed with univariate analysis for each of 4 outcomes: wound dehiscence, superficial wound infection, deep wound infection, and organ space infection. A multiple logistic regression model with a step-wise backwards elimination was performed. A receiver operating characteristic curve with c-statistic was generated to assess the model discrimination for each outcome. A total of 183,233 patients were included. All perioperative NSQIP factors were evaluated for clinical pertinence. Of the original 43 perioperative predictive factors selected, 6 to 9 predictors for each outcome were significantly associated with postoperative SSI. The predictive accuracy level of our model compared favorably with the traditional wound classification in each outcome of interest. The proposed model from NSQIP-P demonstrated a significantly improved predictive ability for postoperative SSIs than the current wound classification system. This model will allow providers to more effectively counsel families and patients of these risks, and more accurately reflect true risks for individual surgical patients to hospitals and payers. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Georganos, Stefanos; Grippa, Tais; Vanhuysse, Sabine; Lennert, Moritz; Shimoni, Michal; Wolff, Eléonore
2017-10-01
This study evaluates the impact of three Feature Selection (FS) algorithms in an Object Based Image Analysis (OBIA) framework for Very-High-Resolution (VHR) Land Use-Land Cover (LULC) classification. The three selected FS algorithms, Correlation Based Selection (CFS), Mean Decrease in Accuracy (MDA) and Random Forest (RF) based Recursive Feature Elimination (RFE), were tested on Support Vector Machine (SVM), K-Nearest Neighbor, and Random Forest (RF) classifiers. The results demonstrate that the accuracy of SVM and KNN classifiers are the most sensitive to FS. The RF appeared to be more robust to high dimensionality, although a significant increase in accuracy was found by using the RFE method. In terms of classification accuracy, SVM performed the best using FS, followed by RF and KNN. Finally, only a small number of features is needed to achieve the highest performance using each classifier. This study emphasizes the benefits of rigorous FS for maximizing performance, as well as for minimizing model complexity and interpretation.
NASA Astrophysics Data System (ADS)
Dou, P.
2017-12-01
Guangzhou has experienced a rapid urbanization period called "small change in three years and big change in five years" since the reform of China, resulting in significant land use/cover changes(LUC). To overcome the disadvantages of single classifier for remote sensing image classification accuracy, a multiple classifier system (MCS) is proposed to improve the quality of remote sensing image classification. The new method combines advantages of different learning algorithms, and achieves higher accuracy (88.12%) than any single classifier did. With the proposed MCS, land use/cover (LUC) on Landsat images from 1987 to 2015 was obtained, and the LUCs were used on three watersheds (Shijing river, Chebei stream, and Shahe stream) to estimate the impact of urbanization on water flood. The results show that with the high accuracy LUC, the uncertainty in flood simulations are reduced effectively (for Shijing river, Chebei stream, and Shahe stream, the uncertainty reduced 15.5%, 17.3% and 19.8% respectively).
SVM classifier on chip for melanoma detection.
Afifi, Shereen; GholamHosseini, Hamid; Sinha, Roopak
2017-07-01
Support Vector Machine (SVM) is a common classifier used for efficient classification with high accuracy. SVM shows high accuracy for classifying melanoma (skin cancer) clinical images within computer-aided diagnosis systems used by skin cancer specialists to detect melanoma early and save lives. We aim to develop a medical low-cost handheld device that runs a real-time embedded SVM-based diagnosis system for use in primary care for early detection of melanoma. In this paper, an optimized SVM classifier is implemented onto a recent FPGA platform using the latest design methodology to be embedded into the proposed device for realizing online efficient melanoma detection on a single system on chip/device. The hardware implementation results demonstrate a high classification accuracy of 97.9% and a significant acceleration factor of 26 from equivalent software implementation on an embedded processor, with 34% of resources utilization and 2 watts for power consumption. Consequently, the implemented system meets crucial embedded systems constraints of high performance and low cost, resources utilization and power consumption, while achieving high classification accuracy.
Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches.
Çelik, Ufuk; Yurtay, Nilüfer; Koç, Emine Rabia; Tepe, Nermin; Güllüoğlu, Halil; Ertaş, Mustafa
2015-01-01
The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS) were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.
ERIC Educational Resources Information Center
Decker, Dawn M.; Hixson, Michael D.; Shaw, Amber; Johnson, Gloria
2014-01-01
The purpose of this study was to examine whether using a multiple-measure framework yielded better classification accuracy than oral reading fluency (ORF) or maze alone in predicting pass/fail rates for middle-school students on a large-scale reading assessment. Participants were 178 students in Grades 7 and 8 from a Midwestern school district.…
Application of LANDSAT-2 to the management of Delaware's marine and wetland resources
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Bartlett, D.; Philpot, W.; Davis, G.
1976-01-01
The author has identified the following significant results. Digital multispectral classification techniques can be used to discriminate coastal land use and vegetation with 87% to 94% categorization accuracy. Wetlands plant species, representing more detail than U.S.G.S. classification system level 2 categories can be discriminated using LANDSAT data with 85% to 88% accuracy at scales up to 1:24,000.
NASA Astrophysics Data System (ADS)
Piiroinen, Rami; Heiskanen, Janne; Mõttus, Matti; Pellikka, Petri
2015-07-01
Land use practices are changing at a fast pace in the tropics. In sub-Saharan Africa forests, woodlands and bushlands are being transformed for agricultural use to produce food for the rapidly growing population. The objective of this study was to assess the prospects of mapping the common agricultural crops in highly heterogeneous study area in south-eastern Kenya using high spatial and spectral resolution AisaEAGLE imaging spectroscopy data. Minimum noise fraction transformation was used to pack the coherent information in smaller set of bands and the data was classified with support vector machine (SVM) algorithm. A total of 35 plant species were mapped in the field and seven most dominant ones were used as classification targets. Five of the targets were agricultural crops. The overall accuracy (OA) for the classification was 90.8%. To assess the possibility of excluding the remaining 28 plant species from the classification results, 10 different probability thresholds (PT) were tried with SVM. The impact of PT was assessed with validation polygons of all 35 mapped plant species. The results showed that while PT was increased more pixels were excluded from non-target polygons than from the polygons of the seven classification targets. This increased the OA and reduced salt-and-pepper effects in the classification results. Very high spatial resolution imagery and pixel-based classification approach worked well with small targets such as maize while there was mixing of classes on the sides of the tree crowns.
[Object-oriented aquatic vegetation extracting approach based on visible vegetation indices.
Jing, Ran; Deng, Lei; Zhao, Wen Ji; Gong, Zhao Ning
2016-05-01
Using the estimation of scale parameters (ESP) image segmentation tool to determine the ideal image segmentation scale, the optimal segmented image was created by the multi-scale segmentation method. Based on the visible vegetation indices derived from mini-UAV imaging data, we chose a set of optimal vegetation indices from a series of visible vegetation indices, and built up a decision tree rule. A membership function was used to automatically classify the study area and an aquatic vegetation map was generated. The results showed the overall accuracy of image classification using the supervised classification was 53.7%, and the overall accuracy of object-oriented image analysis (OBIA) was 91.7%. Compared with pixel-based supervised classification method, the OBIA method improved significantly the image classification result and further increased the accuracy of extracting the aquatic vegetation. The Kappa value of supervised classification was 0.4, and the Kappa value based OBIA was 0.9. The experimental results demonstrated that using visible vegetation indices derived from the mini-UAV data and OBIA method extracting the aquatic vegetation developed in this study was feasible and could be applied in other physically similar areas.
Mohammed, Ameer; Zamani, Majid; Bayford, Richard; Demosthenous, Andreas
2017-12-01
In Parkinson's disease (PD), on-demand deep brain stimulation is required so that stimulation is regulated to reduce side effects resulting from continuous stimulation and PD exacerbation due to untimely stimulation. Also, the progressive nature of PD necessitates the use of dynamic detection schemes that can track the nonlinearities in PD. This paper proposes the use of dynamic feature extraction and dynamic pattern classification to achieve dynamic PD detection taking into account the demand for high accuracy, low computation, and real-time detection. The dynamic feature extraction and dynamic pattern classification are selected by evaluating a subset of feature extraction, dimensionality reduction, and classification algorithms that have been used in brain-machine interfaces. A novel dimensionality reduction technique, the maximum ratio method (MRM) is proposed, which provides the most efficient performance. In terms of accuracy and complexity for hardware implementation, a combination having discrete wavelet transform for feature extraction, MRM for dimensionality reduction, and dynamic k-nearest neighbor for classification was chosen as the most efficient. It achieves a classification accuracy of 99.29%, an F1-score of 97.90%, and a choice probability of 99.86%.
Algorithmic Classification of Five Characteristic Types of Paraphasias.
Fergadiotis, Gerasimos; Gorman, Kyle; Bedrick, Steven
2016-12-01
This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors). We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013). Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%. Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.
Deshpande, Gopikrishna; Wang, Peng; Rangaprakash, D; Wilamowski, Bogdan
2015-12-01
Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted for classifying ADHD using functional magnetic resonance imaging data acquired from multiple sites worldwide. Here, we consider the data from this competition as an example to illustrate the utility of fully connected cascade (FCC) artificial neural network (ANN) architecture for performing classification. We employed various directional and nondirectional brain connectivity-based methods to extract discriminative features which gave better classification accuracy compared to raw data. Our accuracy for distinguishing ADHD from healthy subjects was close to 90% and between the ADHD subtypes was close to 95%. Further, we show that, if properly used, FCC ANN performs very well compared to other classifiers such as support vector machines in terms of accuracy, irrespective of the feature used. Finally, the most discriminative connectivity features provided insights about the pathophysiology of ADHD and showed reduced and altered connectivity involving the left orbitofrontal cortex and various cerebellar regions in ADHD.
NASA Astrophysics Data System (ADS)
Weller, Andrew F.; Harris, Anthony J.; Ware, J. Andrew; Jarvis, Paul S.
2006-11-01
The classification of sedimentary organic matter (OM) images can be improved by determining the saliency of image analysis (IA) features measured from them. Knowing the saliency of IA feature measurements means that only the most significant discriminating features need be used in the classification process. This is an important consideration for classification techniques such as artificial neural networks (ANNs), where too many features can lead to the 'curse of dimensionality'. The classification scheme adopted in this work is a hybrid of morphologically and texturally descriptive features from previous manual classification schemes. Some of these descriptive features are assigned to IA features, along with several others built into the IA software (Halcon) to ensure that a valid cross-section is available. After an image is captured and segmented, a total of 194 features are measured for each particle. To reduce this number to a more manageable magnitude, the SPSS AnswerTree Exhaustive CHAID (χ 2 automatic interaction detector) classification tree algorithm is used to establish each measurement's saliency as a classification discriminator. In the case of continuous data as used here, the F-test is used as opposed to the published algorithm. The F-test checks various statistical hypotheses about the variance of groups of IA feature measurements obtained from the particles to be classified. The aim is to reduce the number of features required to perform the classification without reducing its accuracy. In the best-case scenario, 194 inputs are reduced to 8, with a subsequent multi-layer back-propagation ANN recognition rate of 98.65%. This paper demonstrates the ability of the algorithm to reduce noise, help overcome the curse of dimensionality, and facilitate an understanding of the saliency of IA features as discriminators for sedimentary OM classification.
Evaluation criteria for software classification inventories, accuracies, and maps
NASA Technical Reports Server (NTRS)
Jayroe, R. R., Jr.
1976-01-01
Statistical criteria are presented for modifying the contingency table used to evaluate tabular classification results obtained from remote sensing and ground truth maps. This classification technique contains information on the spatial complexity of the test site, on the relative location of classification errors, on agreement of the classification maps with ground truth maps, and reduces back to the original information normally found in a contingency table.
Prediction of customer behaviour analysis using classification algorithms
NASA Astrophysics Data System (ADS)
Raju, Siva Subramanian; Dhandayudam, Prabha
2018-04-01
Customer Relationship management plays a crucial role in analyzing of customer behavior patterns and their values with an enterprise. Analyzing of customer data can be efficient performed using various data mining techniques, with the goal of developing business strategies and to enhance the business. In this paper, three classification models (NB, J48, and MLPNN) are studied and evaluated for our experimental purpose. The performance measures of the three classifications are compared using three different parameters (accuracy, sensitivity, specificity) and experimental results expose J48 algorithm has better accuracy with compare to NB and MLPNN algorithm.
Hong, Keum-Shik; Khan, Muhammad Jawad
2017-01-01
In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.
NASA Astrophysics Data System (ADS)
Kale, Mandar; Mukhopadhyay, Sudipta; Dash, Jatindra K.; Garg, Mandeep; Khandelwal, Niranjan
2016-03-01
Interstitial lung disease (ILD) is complicated group of pulmonary disorders. High Resolution Computed Tomography (HRCT) considered to be best imaging technique for analysis of different pulmonary disorders. HRCT findings can be categorised in several patterns viz. Consolidation, Emphysema, Ground Glass Opacity, Nodular, Normal etc. based on their texture like appearance. Clinician often find it difficult to diagnosis these pattern because of their complex nature. In such scenario computer-aided diagnosis system could help clinician to identify patterns. Several approaches had been proposed for classification of ILD patterns. This includes computation of textural feature and training /testing of classifier such as artificial neural network (ANN), support vector machine (SVM) etc. In this paper, wavelet features are calculated from two different ILD database, publically available MedGIFT ILD database and private ILD database, followed by performance evaluation of ANN and SVM classifiers in terms of average accuracy. It is found that average classification accuracy by SVM is greater than ANN where trained and tested on same database. Investigation continued further to test variation in accuracy of classifier when training and testing is performed with alternate database and training and testing of classifier with database formed by merging samples from same class from two individual databases. The average classification accuracy drops when two independent databases used for training and testing respectively. There is significant improvement in average accuracy when classifiers are trained and tested with merged database. It infers dependency of classification accuracy on training data. It is observed that SVM outperforms ANN when same database is used for training and testing.
NASA Astrophysics Data System (ADS)
Sun, D.; Zheng, J. H.; Ma, T.; Chen, J. J.; Li, X.
2018-04-01
The rodent disaster is one of the main biological disasters in grassland in northern Xinjiang. The eating and digging behaviors will cause the destruction of ground vegetation, which seriously affected the development of animal husbandry and grassland ecological security. UAV low altitude remote sensing, as an emerging technique with high spatial resolution, can effectively recognize the burrows. However, how to select the appropriate spatial resolution to monitor the calamity of the rodent disaster is the first problem we need to pay attention to. The purpose of this study is to explore the optimal spatial scale on identification of the burrows by evaluating the impact of different spatial resolution for the burrows identification accuracy. In this study, we shoot burrows from different flight heights to obtain visible images of different spatial resolution. Then an object-oriented method is used to identify the caves, and we also evaluate the accuracy of the classification. We found that the highest classification accuracy of holes, the average has reached more than 80 %. At the altitude of 24 m and the spatial resolution of 1cm, the accuracy of the classification is the highest We have created a unique and effective way to identify burrows by using UAVs visible images. We draw the following conclusion: the best spatial resolution of burrows recognition is 1 cm using DJI PHANTOM-3 UAV, and the improvement of spatial resolution does not necessarily lead to the improvement of classification accuracy. This study lays the foundation for future research and can be extended to similar studies elsewhere.
Hong, Keum-Shik; Khan, Muhammad Jawad
2017-01-01
In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided. PMID:28790910
Link prediction boosted psychiatry disorder classification for functional connectivity network
NASA Astrophysics Data System (ADS)
Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang
2017-02-01
Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.
Land use classification using texture information in ERTS-A MSS imagery
NASA Technical Reports Server (NTRS)
Haralick, R. M. (Principal Investigator); Shanmugam, K. S.; Bosley, R.
1973-01-01
The author has identified the following significant results. Preliminary digital analysis of ERTS-1 MSS imagery reveals that the textural features of the imagery are very useful for land use classification. A procedure for extracting the textural features of ERTS-1 imagery is presented and the results of a land use classification scheme based on the textural features are also presented. The land use classification algorithm using textural features was tested on a 5100 square mile area covered by part of an ERTS-1 MSS band 5 image over the California coastline. The image covering this area was blocked into 648 subimages of size 8.9 square miles each. Based on a color composite of the image set, a total of 7 land use categories were identified. These land use categories are: coastal forest, woodlands, annual grasslands, urban areas, large irrigated fields, small irrigated fields, and water. The automatic classifier was trained to identify the land use categories using only the textural characteristics of the subimages; 75 percent of the subimages were assigned correct identifications. Since texture and spectral features provide completely different kinds of information, a significant increase in identification accuracy will take place when both features are used together.
Pathological speech signal analysis and classification using empirical mode decomposition.
Kaleem, Muhammad; Ghoraani, Behnaz; Guergachi, Aziz; Krishnan, Sridhar
2013-07-01
Automated classification of normal and pathological speech signals can provide an objective and accurate mechanism for pathological speech diagnosis, and is an active area of research. A large part of this research is based on analysis of acoustic measures extracted from sustained vowels. However, sustained vowels do not reflect real-world attributes of voice as effectively as continuous speech, which can take into account important attributes of speech such as rapid voice onset and termination, changes in voice frequency and amplitude, and sudden discontinuities in speech. This paper presents a methodology based on empirical mode decomposition (EMD) for classification of continuous normal and pathological speech signals obtained from a well-known database. EMD is used to decompose randomly chosen portions of speech signals into intrinsic mode functions, which are then analyzed to extract meaningful temporal and spectral features, including true instantaneous features which can capture discriminative information in signals hidden at local time-scales. A total of six features are extracted, and a linear classifier is used with the feature vector to classify continuous speech portions obtained from a database consisting of 51 normal and 161 pathological speakers. A classification accuracy of 95.7 % is obtained, thus demonstrating the effectiveness of the methodology.
Deep learning architectures for multi-label classification of intelligent health risk prediction.
Maxwell, Andrew; Li, Runzhi; Yang, Bei; Weng, Heng; Ou, Aihua; Hong, Huixiao; Zhou, Zhaoxian; Gong, Ping; Zhang, Chaoyang
2017-12-28
Multi-label classification of data remains to be a challenging problem. Because of the complexity of the data, it is sometimes difficult to infer information about classes that are not mutually exclusive. For medical data, patients could have symptoms of multiple different diseases at the same time and it is important to develop tools that help to identify problems early. Intelligent health risk prediction models built with deep learning architectures offer a powerful tool for physicians to identify patterns in patient data that indicate risks associated with certain types of chronic diseases. Physical examination records of 110,300 anonymous patients were used to predict diabetes, hypertension, fatty liver, a combination of these three chronic diseases, and the absence of disease (8 classes in total). The dataset was split into training (90%) and testing (10%) sub-datasets. Ten-fold cross validation was used to evaluate prediction accuracy with metrics such as precision, recall, and F-score. Deep Learning (DL) architectures were compared with standard and state-of-the-art multi-label classification methods. Preliminary results suggest that Deep Neural Networks (DNN), a DL architecture, when applied to multi-label classification of chronic diseases, produced accuracy that was comparable to that of common methods such as Support Vector Machines. We have implemented DNNs to handle both problem transformation and algorithm adaption type multi-label methods and compare both to see which is preferable. Deep Learning architectures have the potential of inferring more information about the patterns of physical examination data than common classification methods. The advanced techniques of Deep Learning can be used to identify the significance of different features from physical examination data as well as to learn the contributions of each feature that impact a patient's risk for chronic diseases. However, accurate prediction of chronic disease risks remains a challenging problem that warrants further studies.
Riba Ruiz, Jordi-Roger; Canals, Trini; Cantero, Rosa
2017-01-01
Ethylene propylene diene monomer (EPDM) rubber is widely used in a diverse type of applications, such as the automotive, industrial and construction sectors among others. Due to its appealing features, the consumption of vulcanized EPDM rubber is growing significantly. However, environmental issues are forcing the application of devulcanization processes to facilitate recovery, which has led rubber manufacturers to implement strict quality controls. Consequently, it is important to develop methods for supervising the vulcanizing and recovery processes of such products. This paper deals with the supervision process of EPDM compounds by means of Fourier transform mid-infrared (FT-IR) spectroscopy and suitable multivariate statistical methods. An expedited and nondestructive classification approach was applied to a sufficient number of EPDM samples with different applied processes, that is, with and without application of vulcanizing agents, vulcanized samples, and microwave treated samples. First the FT-IR spectra of the samples is acquired and next it is processed by applying suitable feature extraction methods, i.e., principal component analysis and canonical variate analysis to obtain the latent variables to be used for classifying test EPDM samples. Finally, the k nearest neighbor algorithm was used in the classification stage. Experimental results prove the accuracy of the proposed method and the potential of FT-IR spectroscopy in this area, since the classification accuracy can be as high as 100%.
Liu, Siqi; Oh, Heesoo; Chambers, David William; Xu, Tianmin; Baumrind, Sheldon
2018-04-06
Determine optimal weightings of Peer Assessment Rating (PAR) index and Discrepancy Index (DI) for malocclusion severity assessment in Chinese orthodontic patients. Sixty-nine Chinese orthodontists assessed a full set of pre-treatment records from a stratified random sample of 120 subjects gathered from six university orthodontic centres. Using professional judgment as the outcome variable, multiple regression analyses were performed to derive customized weighting systems for the PAR index and DI, for all subjects and each Angle classification subgroup. Professional judgment was consistent, with an Intraclass Correlation Coefficient (ICC) of 0.995. The PAR index or DI can be reliably measured, with ICC = 0.959 and 0.990, respectively. The predictive accuracy of PAR index was greatly improved by the Chinese weighting process (from r = 0.431 to r = 0.788) with almost equal distribution in each Angle classification subgroup. The Chinese-weighted DI showed a higher predictive accuracy, at P = 0.01, compared with the PAR index (r = 0.851 versus r = 0.788). A better performance was found in the Class II group (r = 0.890) when compared to Class I (r = 0.736) and III (r = 0.785) groups. The Chinese-weighted PAR index and DI were capable of predicting 62 per cent and 73 per cent of total variance in the professional judgment of malocclusion severity in Chinese patients. Differential prediction across Angle classifications merits attention since different weighting formulas were found.
Segmentation schema for enhancing land cover identification: A case study using Sentinel 2 data
NASA Astrophysics Data System (ADS)
Mongus, Domen; Žalik, Borut
2018-04-01
Land monitoring is performed increasingly using high and medium resolution optical satellites, such as the Sentinel-2. However, optical data is inevitably subjected to the variable operational conditions under which it was acquired. Overlapping of features caused by shadows, soft transitions between shadowed and non-shadowed regions, and temporal variability of the observed land-cover types require radiometric corrections. This study examines a new approach to enhancing the accuracy of land cover identification that resolves this problem. The proposed method constructs an ensemble-type classification model with weak classifiers tuned to the particular operational conditions under which the data was acquired. Iterative segmentation over the learning set is applied for this purpose, where feature space is partitioned according to the likelihood of misclassifications introduced by the classification model. As these are a consequence of overlapping features, such partitioning avoids the need for radiometric corrections of the data, and divides land cover types implicitly into subclasses. As a result, improved performance of all tested classification approaches were measured during the validation that was conducted on Sentinel-2 data. The highest accuracies in terms of F1-scores were achieved using the Naive Bayes Classifier as the weak classifier, while supplementing original spectral signatures with normalised difference vegetation index and texture analysis features, namely, average intensity, contrast, homogeneity, and dissimilarity. In total, an F1-score of nearly 95% was achieved in this way, with F1-scores of each particular land cover type reaching above 90%.
Abbasian Ardakani, Ali; Gharbali, Akbar; Mohammadi, Afshin
2015-01-01
The aim of this study was to evaluate computer aided diagnosis (CAD) system with texture analysis (TA) to improve radiologists' accuracy in identification of thyroid nodules as malignant or benign. A total of 70 cases (26 benign and 44 malignant) were analyzed in this study. We extracted up to 270 statistical texture features as a descriptor for each selected region of interests (ROIs) in three normalization schemes (default, 3s and 1%-99%). Then features by the lowest probability of classification error and average correlation coefficients (POE+ACC), and Fisher coefficient (Fisher) eliminated to 10 best and most effective features. These features were analyzed under standard and nonstandard states. For TA of the thyroid nodules, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA) were applied. First Nearest-Neighbour (1-NN) classifier was performed for the features resulting from PCA and LDA. NDA features were classified by artificial neural network (A-NN). Receiver operating characteristic (ROC) curve analysis was used for examining the performance of TA methods. The best results were driven in 1-99% normalization with features extracted by POE+ACC algorithm and analyzed by NDA with the area under the ROC curve ( Az) of 0.9722 which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Our results indicate that TA is a reliable method, can provide useful information help radiologist in detection and classification of benign and malignant thyroid nodules.
Stefano, A; Gallivanone, F; Messa, C; Gilardi, M C; Gastiglioni, I
2014-12-01
The aim of this work is to evaluate the metabolic impact of Partial Volume Correction (PVC) on the measurement of the Standard Uptake Value (SUV) from [18F]FDG PET-CT oncological studies for treatment monitoring purpose. Twenty-nine breast cancer patients with bone lesions (42 lesions in total) underwent [18F]FDG PET-CT studies after surgical resection of breast cancer primitives, and before (PET-II) chemotherapy and hormone treatment. PVC of bone lesion uptake was performed on the two [18F]FDG PET-CT studies, using a method based on Recovery Coefficients (RC) and on an automatic measurement of lesion metabolic volume. Body-weight average SUV was calculated for each lesion, with and without PVC. The accuracy, reproducibility, clinical feasibility and the metabolic impact on treatment response of the considered PVC method was evaluated. The PVC method was found clinically feasible in bone lesions, with an accuracy of 93% for lesion sphere-equivalent diameter >1 cm. Applying PVC, average SUV values increased, from 7% up to 154% considering both PET-I and PET-II studies, proving the need of the correction. As main finding, PVC modified the therapy response classification in 6 cases according to EORTC 1999 classification and in 5 cases according to PERCIST 1.0 classification. PVC has an important metabolic impact on the assessment of tumor response to treatment by [18F]FDG PET-CT oncological studies.
Quantitative falls risk estimation through multi-sensor assessment of standing balance.
Greene, Barry R; McGrath, Denise; Walsh, Lorcan; Doheny, Emer P; McKeown, David; Garattini, Chiara; Cunningham, Clodagh; Crosby, Lisa; Caulfield, Brian; Kenny, Rose A
2012-12-01
Falls are the most common cause of injury and hospitalization and one of the principal causes of death and disability in older adults worldwide. Measures of postural stability have been associated with the incidence of falls in older adults. The aim of this study was to develop a model that accurately classifies fallers and non-fallers using novel multi-sensor quantitative balance metrics that can be easily deployed into a home or clinic setting. We compared the classification accuracy of our model with an established method for falls risk assessment, the Berg balance scale. Data were acquired using two sensor modalities--a pressure sensitive platform sensor and a body-worn inertial sensor, mounted on the lower back--from 120 community dwelling older adults (65 with a history of falls, 55 without, mean age 73.7 ± 5.8 years, 63 female) while performing a number of standing balance tasks in a geriatric research clinic. Results obtained using a support vector machine yielded a mean classification accuracy of 71.52% (95% CI: 68.82-74.28) in classifying falls history, obtained using one model classifying all data points. Considering male and female participant data separately yielded classification accuracies of 72.80% (95% CI: 68.85-77.17) and 73.33% (95% CI: 69.88-76.81) respectively, leading to a mean classification accuracy of 73.07% in identifying participants with a history of falls. Results compare favourably to those obtained using the Berg balance scale (mean classification accuracy: 59.42% (95% CI: 56.96-61.88)). Results from the present study could lead to a robust method for assessing falls risk in both supervised and unsupervised environments.
Sørensen, Lauge; Nielsen, Mads
2018-05-15
The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd
2018-01-01
The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.
NASA Astrophysics Data System (ADS)
Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Homayouni, S.
2016-06-01
Polarimetric Synthetic Aperture Radar (PolSAR) imagery is a complex multi-dimensional dataset, which is an important source of information for various natural resources and environmental classification and monitoring applications. PolSAR imagery produces valuable information by observing scattering mechanisms from different natural and man-made objects. Land cover mapping using PolSAR data classification is one of the most important applications of SAR remote sensing earth observations, which have gained increasing attention in the recent years. However, one of the most challenging aspects of classification is selecting features with maximum discrimination capability. To address this challenge, a statistical approach based on the Fisher Linear Discriminant Analysis (FLDA) and the incorporation of physical interpretation of PolSAR data into classification is proposed in this paper. After pre-processing of PolSAR data, including the speckle reduction, the H/α classification is used in order to classify the basic scattering mechanisms. Then, a new method for feature weighting, based on the fusion of FLDA and physical interpretation, is implemented. This method proves to increase the classification accuracy as well as increasing between-class discrimination in the final Wishart classification. The proposed method was applied to a full polarimetric C-band RADARSAT-2 data set from Avalon area, Newfoundland and Labrador, Canada. This imagery has been acquired in June 2015, and covers various types of wetlands including bogs, fens, marshes and shallow water. The results were compared with the standard Wishart classification, and an improvement of about 20% was achieved in the overall accuracy. This method provides an opportunity for operational wetland classification in northern latitude with high accuracy using only SAR polarimetric data.
Sabr, Abutaleb; Moeinaddini, Mazaher; Azarnivand, Hossein; Guinot, Benjamin
2016-12-01
In the recent years, dust storms originating from local abandoned agricultural lands have increasingly impacted Tehran and Karaj air quality. Designing and implementing mitigation plans are necessary to study land use/land cover change (LUCC). Land use/cover classification is particularly relevant in arid areas. This study aimed to map land use/cover by pixel- and object-based image classification methods, analyse landscape fragmentation and determine the effects of two different classification methods on landscape metrics. The same sets of ground data were used for both classification methods. Because accuracy of classification plays a key role in better understanding LUCC, both methods were employed. Land use/cover maps of the southwest area of Tehran city for the years 1985, 2000 and 2014 were obtained from Landsat digital images and classified into three categories: built-up, agricultural and barren lands. The results of our LUCC analysis showed that the most important changes in built-up agricultural land categories were observed in zone B (Shahriar, Robat Karim and Eslamshahr) between 1985 and 2014. The landscape metrics obtained for all categories pictured high landscape fragmentation in the study area. Despite no significant difference was evidenced between the two classification methods, the object-based classification led to an overall higher accuracy than using the pixel-based classification. In particular, the accuracy of the built-up category showed a marked increase. In addition, both methods showed similar trends in fragmentation metrics. One of the reasons is that the object-based classification is able to identify buildings, impervious surface and roads in dense urban areas, which produced more accurate maps.
Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya; Gomez-Beldarrain, Marian; Fernandez-Ruanova, Begonya; Garcia-Monco, Juan Carlos
2017-04-13
Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.
Determining successional stage of temperate coniferous forests with Landsat satellite data
NASA Technical Reports Server (NTRS)
Fiorella, Maria; Ripple, William J.
1993-01-01
Thematic Mapper (TM) digital imagery was used to map forest successional stages and to evaluate spectral differences between old-growth and mature forests in the central Cascade Range of Oregon. Relative sun incidence values were incorporated into the successional stage classification to compensate for topographic induced variation. Relative sun incidence improved the classification accuracy of young successional stages, but did not improve the classification accuracy of older, closed canopy forest classes or overall accuracy. TM bands 1, 2, and 4; the normalized difference vegetation index; and TM 4/3, 4/5, and 4/7 band ratio values for o|d-growth forests were found to be significantly lower than the values of mature forests. The Tasseled Cap features of brightness, greenness, and wetness also had significantly lower old-growth values as compared to mature forest values .
Duvekot, Jorieke; van der Ende, Jan; Verhulst, Frank C; Greaves-Lord, Kirstin
2015-06-01
The screening accuracy of the parent and teacher-reported Social Responsiveness Scale (SRS) was compared with an autism spectrum disorder (ASD) classification according to (1) the Developmental, Dimensional, and Diagnostic Interview (3 Di), (2) the Autism Diagnostic Observation Schedule (ADOS), (3) both the 3 Di and ADOS, in 186 children referred to six mental health centers. The parent report showed excellent correspondence to an ASD classification according to the 3 Di and both the 3 Di and ADOS. The teacher report added significantly to the screening accuracy over and above the parent report when compared with the ADOS classification. Findings support the screening utility of the parent-reported SRS among clinically referred children and indicate that different informants may provide unique information relevant for ASD assessment.
[Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].
Zhou, Jinzhi; Tang, Xiaofang
2015-08-01
In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.
D Land Cover Classification Based on Multispectral LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong
2016-06-01
Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.
NASA Technical Reports Server (NTRS)
Chang, C. Y.
1974-01-01
The author has identified the following significant results. The Skylab S192 data was evaluated by: (1) comparing the classification results using S192 and ERTS-1 data over the Holt County, Nebraska agricultural study area, and (2) investigating the impact of signal-to-noise ratio on classification accuracies using registered S192 and ERTS-1 data. Results indicate: (1) The classification accuracy obtained on S192 data using its best subset of four bands can be expected to be as high as that on ERTS-1 data. (2) When a subset of four S192 bands that are spectrally similar to the ERTS-1 bands was used for classification, an obvious deterioration in the classification accuracy was observed with respect to the ERTS-1 results. (3) The thermal bands 13 and 14 as well as the near IR bands were found to be relatively important in the classification of agricultural data. Although bands 11 and 12 were highly correlated, both were invariably included in the best subsets of the band sizes, four and beyond, according to the divergence criterion. (4) The differentiation of corn from popcorn was difficult on both S192 and ERTS-1 data acquired at an early summer date. (5) The results on both sets of data indicate that it was relatively easy to differentiate grass from any other class.
Towards automated spectroscopic tissue classification in thyroid and parathyroid surgery.
Schols, Rutger M; Alic, Lejla; Wieringa, Fokko P; Bouvy, Nicole D; Stassen, Laurents P S
2017-03-01
In (para-)thyroid surgery iatrogenic parathyroid injury should be prevented. To aid the surgeons' eye, a camera system enabling parathyroid-specific image enhancement would be useful. Hyperspectral camera technology might work, provided that the spectral signature of parathyroid tissue offers enough specific features to be reliably and automatically distinguished from surrounding tissues. As a first step to investigate this, we examined the feasibility of wide band diffuse reflectance spectroscopy (DRS) for automated spectroscopic tissue classification, using silicon (Si) and indium-gallium-arsenide (InGaAs) sensors. DRS (350-1830 nm) was performed during (para-)thyroid resections. From the acquired spectra 36 features at predefined wavelengths were extracted. The best features for classification of parathyroid from adipose or thyroid were assessed by binary logistic regression for Si- and InGaAs-sensor ranges. Classification performance was evaluated by leave-one-out cross-validation. In 19 patients 299 spectra were recorded (62 tissue sites: thyroid = 23, parathyroid = 21, adipose = 18). Classification accuracy of parathyroid-adipose was, respectively, 79% (Si), 82% (InGaAs) and 97% (Si/InGaAs combined). Parathyroid-thyroid classification accuracies were 80% (Si), 75% (InGaAs), 82% (Si/InGaAs combined). Si and InGaAs sensors are fairly accurate for automated spectroscopic classification of parathyroid, adipose and thyroid tissues. Combination of both sensor technologies improves accuracy. Follow-up research, aimed towards hyperspectral imaging seems justified. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Mumtaz, Wajid; Ali, Syed Saad Azhar; Yasin, Mohd Azhar Mohd; Malik, Aamir Saeed
2018-02-01
Major depressive disorder (MDD), a debilitating mental illness, could cause functional disabilities and could become a social problem. An accurate and early diagnosis for depression could become challenging. This paper proposed a machine learning framework involving EEG-derived synchronization likelihood (SL) features as input data for automatic diagnosis of MDD. It was hypothesized that EEG-based SL features could discriminate MDD patients and healthy controls with an acceptable accuracy better than measures such as interhemispheric coherence and mutual information. In this work, classification models such as support vector machine (SVM), logistic regression (LR) and Naïve Bayesian (NB) were employed to model relationship between the EEG features and the study groups (MDD patient and healthy controls) and ultimately achieved discrimination of study participants. The results indicated that the classification rates were better than chance. More specifically, the study resulted into SVM classification accuracy = 98%, sensitivity = 99.9%, specificity = 95% and f-measure = 0.97; LR classification accuracy = 91.7%, sensitivity = 86.66%, specificity = 96.6% and f-measure = 0.90; NB classification accuracy = 93.6%, sensitivity = 100%, specificity = 87.9% and f-measure = 0.95. In conclusion, SL could be a promising method for diagnosing depression. The findings could be generalized to develop a robust CAD-based tool that may help for clinical purposes.
Detection of artificially ripened mango using spectrometric analysis
NASA Astrophysics Data System (ADS)
Mithun, B. S.; Mondal, Milton; Vishwakarma, Harsh; Shinde, Sujit; Kimbahune, Sanjay
2017-05-01
Hyperspectral sensing has been proven to be useful to determine the quality of food in general. It has also been used to distinguish naturally and artificially ripened mangoes by analyzing the spectral signature. However the focus has been on improving the accuracy of classification after performing dimensionality reduction, optimum feature selection and using suitable learning algorithm on the complete visible and NIR spectrum range data, namely 350nm to 1050nm. In this paper we focus on, (i) the use of low wavelength resolution and low cost multispectral sensor to reliably identify artificially ripened mango by selectively using the spectral information so that classification accuracy is not hampered at the cost of low resolution spectral data and (ii) use of visible spectrum i.e. 390nm to 700 nm data to accurately discriminate artificially ripened mangoes. Our results show that on a low resolution spectral data, the use of logistic regression produces an accuracy of 98.83% and outperforms other methods like classification tree, random forest significantly. And this is achieved by analyzing only 36 spectral reflectance data points instead of the complete 216 data points available in visual and NIR range. Another interesting experimental observation is that we are able to achieve more than 98% classification accuracy by selecting only 15 irradiance values in the visible spectrum. Even the number of data needs to be collected using hyper-spectral or multi-spectral sensor can be reduced by a factor of 24 for classification with high degree of confidence
Ozcift, Akin
2012-08-01
Parkinson disease (PD) is an age-related deterioration of certain nerve systems, which affects movement, balance, and muscle control of clients. PD is one of the common diseases which affect 1% of people older than 60 years. A new classification scheme based on support vector machine (SVM) selected features to train rotation forest (RF) ensemble classifiers is presented for improving diagnosis of PD. The dataset contains records of voice measurements from 31 people, 23 with PD and each record in the dataset is defined with 22 features. The diagnosis model first makes use of a linear SVM to select ten most relevant features from 22. As a second step of the classification model, six different classifiers are trained with the subset of features. Subsequently, at the third step, the accuracies of classifiers are improved by the utilization of RF ensemble classification strategy. The results of the experiments are evaluated using three metrics; classification accuracy (ACC), Kappa Error (KE) and Area under the Receiver Operating Characteristic (ROC) Curve (AUC). Performance measures of two base classifiers, i.e. KStar and IBk, demonstrated an apparent increase in PD diagnosis accuracy compared to similar studies in literature. After all, application of RF ensemble classification scheme improved PD diagnosis in 5 of 6 classifiers significantly. We, numerically, obtained about 97% accuracy in RF ensemble of IBk (a K-Nearest Neighbor variant) algorithm, which is a quite high performance for Parkinson disease diagnosis.
Ruiz Hidalgo, Irene; Rodriguez, Pablo; Rozema, Jos J; Ní Dhubhghaill, Sorcha; Zakaria, Nadia; Tassignon, Marie-José; Koppen, Carina
2016-06-01
To evaluate the performance of a support vector machine algorithm that automatically and objectively identifies corneal patterns based on a combination of 22 parameters obtained from Pentacam measurements and to compare this method with other known keratoconus (KC) classification methods. Pentacam data from 860 eyes were included in the study and divided into 5 groups: 454 KC, 67 forme fruste (FF), 28 astigmatic, 117 after refractive surgery (PR), and 194 normal eyes (N). Twenty-two parameters were used for classification using a support vector machine algorithm developed in Weka, a machine-learning computer software. The cross-validation accuracy for 3 different classification tasks (KC vs. N, FF vs. N and all 5 groups) was calculated and compared with other known classification methods. The accuracy achieved in the KC versus N discrimination task was 98.9%, with 99.1% sensitivity and 98.5% specificity for KC detection. The accuracy in the FF versus N task was 93.1%, with 79.1% sensitivity and 97.9% specificity for the FF discrimination. Finally, for the 5-groups classification, the accuracy was 88.8%, with a weighted average sensitivity of 89.0% and specificity of 95.2%. Despite using the strictest definition for FF KC, the present study obtained comparable or better results than the single-parameter methods and indices reported in the literature. In some cases, direct comparisons with the literature were not possible because of differences in the compositions and definitions of the study groups, especially the FF KC.
Al-Rajab, Murad; Lu, Joan; Xu, Qiang
2017-07-01
This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.
Mapping Mangrove Density from Rapideye Data in Central America
NASA Astrophysics Data System (ADS)
Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru
2017-06-01
Mangrove forests provide a wide range of socioeconomic and ecological services for coastal communities. Extensive aquaculture development of mangrove waters in many developing countries has constantly ignored services of mangrove ecosystems, leading to unintended environmental consequences. Monitoring the current status and distribution of mangrove forests is deemed important for evaluating forest management strategies. This study aims to delineate the density distribution of mangrove forests in the Gulf of Fonseca, Central America with Rapideye data using the support vector machines (SVM). The data collected in 2012 for density classification of mangrove forests were processed based on four different band combination schemes: scheme-1 (bands 1-3, 5 excluding the red-edge band 4), scheme-2 (bands 1-5), scheme-3 (bands 1-3, 5 incorporating with the normalized difference vegetation index, NDVI), and scheme-4 (bands 1-3, 5 incorporating with the normalized difference red-edge index, NDRI). We also hypothesized if the obvious contribution of Rapideye red-edge band could improve the classification results. Three main steps of data processing were employed: (1), data pre-processing, (2) image classification, and (3) accuracy assessment to evaluate the contribution of red-edge band in terms of the accuracy of classification results across these four schemes. The classification maps compared with the ground reference data indicated the slightly higher accuracy level observed for schemes 2 and 4. The overall accuracies and Kappa coefficients were 97% and 0.95 for scheme-2 and 96.9% and 0.95 for scheme-4, respectively.
NASA Astrophysics Data System (ADS)
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
NASA Technical Reports Server (NTRS)
Hill, C. L.
1984-01-01
A computer-implemented classification has been derived from Landsat-4 Thematic Mapper data acquired over Baldwin County, Alabama on January 15, 1983. One set of spectral signatures was developed from the data by utilizing a 3x3 pixel sliding window approach. An analysis of the classification produced from this technique identified forested areas. Additional information regarding only the forested areas. Additional information regarding only the forested areas was extracted by employing a pixel-by-pixel signature development program which derived spectral statistics only for pixels within the forested land covers. The spectral statistics from both approaches were integrated and the data classified. This classification was evaluated by comparing the spectral classes produced from the data against corresponding ground verification polygons. This iterative data analysis technique resulted in an overall classification accuracy of 88.4 percent correct for slash pine, young pine, loblolly pine, natural pine, and mixed hardwood-pine. An accuracy assessment matrix has been produced for the classification.
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Raymond L. Czaplewski
2000-01-01
Consider the following example of an accuracy assessment. Landsat data are used to build a thematic map of land cover for a multicounty region. The map classifier (e.g., a supervised classification algorithm) assigns each pixel into one category of land cover. The classification system includes 12 different types of forest and land cover: black spruce, balsam fir,...
Dumitru Salajanu; Dennis M. Jacobs
2007-01-01
The objective of this study was to determine how well forestfnon-forest and biomass classifications obtained from Landsat-TM and MODIS satellite data modeled with FIA plots, compare to each other and with forested area and biomass estimates from the national inventory data, as well as whether there is an increase in overall accuracy when pixel size (spatial resolution...
Erdodi, Laszlo A; Tyson, Bradley T; Shahein, Ayman G; Lichtenstein, Jonathan D; Abeare, Christopher A; Pelletier, Chantalle L; Zuccato, Brandon G; Kucharski, Brittany; Roth, Robert M
2017-05-01
The Recognition Memory Test (RMT) and Word Choice Test (WCT) are structurally similar, but psychometrically different. Previous research demonstrated that adding a time-to-completion cutoff improved the classification accuracy of the RMT. However, the contribution of WCT time-cutoffs to improve the detection of invalid responding has not been investigated. The present study was designed to evaluate the classification accuracy of time-to-completion on the WCT compared to the accuracy score and the RMT. Both tests were administered to 202 adults (M age = 45.3 years, SD = 16.8; 54.5% female) clinically referred for neuropsychological assessment in counterbalanced order as part of a larger battery of cognitive tests. Participants obtained lower and more variable scores on the RMT (M = 44.1, SD = 7.6) than on the WCT (M = 46.9, SD = 5.7). Similarly, they took longer to complete the recognition trial on the RMT (M = 157.2 s,SD = 71.8) than the WCT (M = 137.2 s, SD = 75.7). The optimal cutoff on the RMT (≤43) produced .60 sensitivity at .87 specificity. The optimal cutoff on the WCT (≤47) produced .57 sensitivity at .87 specificity. Time-cutoffs produced comparable classification accuracies for both RMT (≥192 s; .48 sensitivity at .88 specificity) and WCT (≥171 s; .49 sensitivity at .91 specificity). They also identified an additional 6-10% of the invalid profiles missed by accuracy score cutoffs, while maintaining good specificity (.93-.95). Functional equivalence was reached at accuracy scores ≤43 (RMT) and ≤47 (WCT) or time-to-completion ≥192 s (RMT) and ≥171 s (WCT). Time-to-completion cutoffs are valuable additions to both tests. They can function as independent validity indicators or enhance the sensitivity of accuracy scores without requiring additional measures or extending standard administration time.
Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G
2017-09-01
To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.
Individual Patient Diagnosis of AD and FTD via High-Dimensional Pattern Classification of MRI
Davatzikos, C.; Resnick, S. M.; Wu, X.; Parmpi, P.; Clark, C. M.
2008-01-01
The purpose of this study is to determine the diagnostic accuracy of MRI-based high-dimensional pattern classification in differentiating between patients with Alzheimer’s Disease (AD), Frontotemporal Dementia (FTD), and healthy controls, on an individual patient basis. MRI scans of 37 patients with AD and 37 age-matched cognitively normal elderly individuals, as well as 12 patients with FTD and 12 age-matched cognitively normal elderly individuals, were analyzed using voxel-based analysis and high-dimensional pattern classification. Diagnostic sensitivity and specificity of spatial patterns of regional brain atrophy found to be characteristic of AD and FTD were determined via cross-validation and via split-sample methods. Complex spatial patterns of relatively reduced brain volumes were identified, including temporal, orbitofrontal, parietal and cingulate regions, which were predominantly characteristic of either AD or FTD. These patterns provided 100% diagnostic accuracy, when used to separate AD or FTD from healthy controls. The ability to correctly distinguish AD from FTD averaged 84.3%. All estimates of diagnostic accuracy were determined via cross-validation. In conclusion, AD- and FTD-specific patterns of brain atrophy can be detected with high accuracy using high-dimensional pattern classification of MRI scans obtained in a typical clinical setting. PMID:18474436
Uav-Based Crops Classification with Joint Features from Orthoimage and Dsm Data
NASA Astrophysics Data System (ADS)
Liu, B.; Shi, Y.; Duan, Y.; Wu, W.
2018-04-01
Accurate crops classification remains a challenging task due to the same crop with different spectra and different crops with same spectrum phenomenon. Recently, UAV-based remote sensing approach gains popularity not only for its high spatial and temporal resolution, but also for its ability to obtain spectraand spatial data at the same time. This paper focus on how to take full advantages of spatial and spectrum features to improve crops classification accuracy, based on an UAV platform equipped with a general digital camera. Texture and spatial features extracted from the RGB orthoimage and the digital surface model of the monitoring area are analysed and integrated within a SVM classification framework. Extensive experiences results indicate that the overall classification accuracy is drastically improved from 72.9 % to 94.5 % when the spatial features are combined together, which verified the feasibility and effectiveness of the proposed method.
Lukas, Vanessa A; Fishbein, Kenneth W; Reiter, David A; Lin, Ping-Chang; Schneider, Erika; Spencer, Richard G
2015-07-01
To evaluate the sensitivity and specificity of classification of pathomimetically degraded bovine nasal cartilage at 3 Tesla and 37°C using univariate MRI measurements of both pure parameter values and intensities of parameter-weighted images. Pre- and posttrypsin degradation values of T1 , T2 , T2 *, magnetization transfer ratio (MTR), and apparent diffusion coefficient (ADC), and corresponding weighted images, were analyzed. Classification based on the Euclidean distance was performed and the quality of classification was assessed through sensitivity, specificity and accuracy (ACC). The classifiers with the highest accuracy values were ADC (ACC = 0.82 ± 0.06), MTR (ACC = 0.78 ± 0.06), T1 (ACC = 0.99 ± 0.01), T2 derived from a three-dimensional (3D) spin-echo sequence (ACC = 0.74 ± 0.05), and T2 derived from a 2D spin-echo sequence (ACC = 0.77 ± 0.06), along with two of the diffusion-weighted signal intensities (b = 333 s/mm(2) : ACC = 0.80 ± 0.05; b = 666 s/mm(2) : ACC = 0.85 ± 0.04). In particular, T1 values differed substantially between the groups, resulting in atypically high classification accuracy. The second-best classifier, diffusion weighting with b = 666 s/mm(2) , as well as all other parameters evaluated, exhibited substantial overlap between pre- and postdegradation groups, resulting in decreased accuracies. Classification according to T1 values showed excellent test characteristics (ACC = 0.99), with several other parameters also showing reasonable performance (ACC > 0.70). Of these, diffusion weighting is particularly promising as a potentially practical clinical modality. As in previous work, we again find that highly statistically significant group mean differences do not necessarily translate into accurate clinical classification rules. © 2014 Wiley Periodicals, Inc.
Liu, Jingfang; Zhang, Pengzhu; Lu, Yingjie
2014-11-01
User-generated medical messages on Internet contain extensive information related to adverse drug reactions (ADRs) and are known as valuable resources for post-marketing drug surveillance. The aim of this study was to find an effective method to identify messages related to ADRs automatically from online user reviews. We conducted experiments on online user reviews using different feature set and different classification technique. Firstly, the messages from three communities, allergy community, schizophrenia community and pain management community, were collected, the 3000 messages were annotated. Secondly, the N-gram-based features set and medical domain-specific features set were generated. Thirdly, three classification techniques, SVM, C4.5 and Naïve Bayes, were used to perform classification tasks separately. Finally, we evaluated the performance of different method using different feature set and different classification technique by comparing the metrics including accuracy and F-measure. In terms of accuracy, the accuracy of SVM classifier was higher than 0.8, the accuracy of C4.5 classifier or Naïve Bayes classifier was lower than 0.8; meanwhile, the combination feature sets including n-gram-based feature set and domain-specific feature set consistently outperformed single feature set. In terms of F-measure, the highest F-measure is 0.895 which was achieved by using combination feature sets and a SVM classifier. In all, we can get the best classification performance by using combination feature sets and SVM classifier. By using combination feature sets and SVM classifier, we can get an effective method to identify messages related to ADRs automatically from online user reviews.
Qiu, Shanshan; Wang, Jun; Gao, Liping
2014-07-09
An electronic nose (E-nose) and an electronic tongue (E-tongue) have been used to characterize five types of strawberry juices based on processing approaches (i.e., microwave pasteurization, steam blanching, high temperature short time pasteurization, frozen-thawed, and freshly squeezed). Juice quality parameters (vitamin C, pH, total soluble solid, total acid, and sugar/acid ratio) were detected by traditional measuring methods. Multivariate statistical methods (linear discriminant analysis (LDA) and partial least squares regression (PLSR)) and neural networks (Random Forest (RF) and Support Vector Machines) were employed to qualitative classification and quantitative regression. E-tongue system reached higher accuracy rates than E-nose did, and the simultaneous utilization did have an advantage in LDA classification and PLSR regression. According to cross-validation, RF has shown outstanding and indisputable performances in the qualitative and quantitative analysis. This work indicates that the simultaneous utilization of E-nose and E-tongue can discriminate processed fruit juices and predict quality parameters successfully for the beverage industry.
NASA Astrophysics Data System (ADS)
Liu, Haijian; Wu, Changshan
2018-06-01
Crown-level tree species classification is a challenging task due to the spectral similarity among different tree species. Shadow, underlying objects, and other materials within a crown may decrease the purity of extracted crown spectra and further reduce classification accuracy. To address this problem, an innovative pixel-weighting approach was developed for tree species classification at the crown level. The method utilized high density discrete LiDAR data for individual tree delineation and Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for pure crown-scale spectra extraction. Specifically, three steps were included: 1) individual tree identification using LiDAR data, 2) pixel-weighted representative crown spectra calculation using hyperspectral imagery, with which pixel-based illuminated-leaf fractions estimated using a linear spectral mixture analysis (LSMA) were employed as weighted factors, and 3) representative spectra based tree species classification was performed through applying a support vector machine (SVM) approach. Analysis of results suggests that the developed pixel-weighting approach (OA = 82.12%, Kc = 0.74) performed better than treetop-based (OA = 70.86%, Kc = 0.58) and pixel-majority methods (OA = 72.26, Kc = 0.62) in terms of classification accuracy. McNemar tests indicated the differences in accuracy between pixel-weighting and treetop-based approaches as well as that between pixel-weighting and pixel-majority approaches were statistically significant.
NASA Astrophysics Data System (ADS)
Hale Topaloğlu, Raziye; Sertel, Elif; Musaoğlu, Nebiye
2016-06-01
This study aims to compare classification accuracies of land cover/use maps created from Sentinel-2 and Landsat-8 data. Istanbul metropolitan city of Turkey, with a population of around 14 million, having different landscape characteristics was selected as study area. Water, forest, agricultural areas, grasslands, transport network, urban, airport- industrial units and barren land- mine land cover/use classes adapted from CORINE nomenclature were used as main land cover/use classes to identify. To fulfil the aims of this research, recently acquired dated 08/02/2016 Sentinel-2 and dated 22/02/2016 Landsat-8 images of Istanbul were obtained and image pre-processing steps like atmospheric and geometric correction were employed. Both Sentinel-2 and Landsat-8 images were resampled to 30m pixel size after geometric correction and similar spectral bands for both satellites were selected to create a similar base for these multi-sensor data. Maximum Likelihood (MLC) and Support Vector Machine (SVM) supervised classification methods were applied to both data sets to accurately identify eight different land cover/ use classes. Error matrix was created using same reference points for Sentinel-2 and Landsat-8 classifications. After the classification accuracy, results were compared to find out the best approach to create current land cover/use map of the region. The results of MLC and SVM classification methods were compared for both images.
Zhang, Heng; Pan, Zhongming; Zhang, Wenna
2018-06-07
An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.
Comparison of Classifier Architectures for Online Neural Spike Sorting.
Saeed, Maryam; Khan, Amir Ali; Kamboh, Awais Mehmood
2017-04-01
High-density, intracranial recordings from micro-electrode arrays need to undergo Spike Sorting in order to associate the recorded neuronal spikes to particular neurons. This involves spike detection, feature extraction, and classification. To reduce the data transmission and power requirements, on-chip real-time processing is becoming very popular. However, high computational resources are required for classifiers in on-chip spike-sorters, making scalability a great challenge. In this review paper, we analyze several popular classifiers to propose five new hardware architectures using the off-chip training with on-chip classification approach. These include support vector classification, fuzzy C-means classification, self-organizing maps classification, moving-centroid K-means classification, and Cosine distance classification. The performance of these architectures is analyzed in terms of accuracy and resource requirement. We establish that the neural networks based Self-Organizing Maps classifier offers the most viable solution. A spike sorter based on the Self-Organizing Maps classifier, requires only 7.83% of computational resources of the best-reported spike sorter, hierarchical adaptive means, while offering a 3% better accuracy at 7 dB SNR.
NASA Astrophysics Data System (ADS)
Pathak, Prasad A.
The Arctic region of Alaska is experiencing severe impacts of climate change. The Arctic lakes ecosystems are bound to undergo alterations in its trophic structure and other chemical properties. However, landscape factors controlling the lake influxes were not studied till date. This research has examined the currently existing lake landscape interactions using Remote Sensing and GIS technology. The statistical modeling was carried out using Regression and CART methods. Remote sensing data was applied to derive the required landscape indices. Remote sensing in the Arctic Alaska faces many challenges including persistent cloud cover, low sun angle and limited snow free period. Tundra vegetation types are interspersed and intricate to classify unlike managed forest stands. Therefore, historical studies have remained underachieved with respect thematic accuracies. However, looking at vegetation communities at watershed level and the implementation of expert classification system achieved the accuracies up to 90%. The research has highlighted the probable role of interactions between vegetation root zones, nutrient availability within active zone, as well as importance of permafrost thawing. Multiple regression analyses and Classification Trees were developed to understand relationships between landscape factors with various chemical parameters as well as chlorophyll readings. Spatial properties of Shrubs and Riparian complexes such as complexity of individual patches at watershed level and within proximity of water channels were influential on Chlorophyll production of lakes. Till-age had significant impact on Total Nitrogen contents. Moreover, relatively young tills exhibited significantly positive correlation with concentration of various ions and conductivity of lakes. Similarly, density of patches of Heath complexes was found to be important with respect to Total Phosphorus contents in lakes. All the regression models developed in this study were significant at 95% confidence level. However, the classification trees could not achieve high predictabilities due to limited number of lakes sampled. Keywords: Landscape factors, Lake primary productivity, Arctic, Climate change, Regression, CART
Frequential versus spatial colour textons for breast TMA classification.
Fernández-Carrobles, M Milagro; Bueno, Gloria; Déniz, Oscar; Salido, Jesús; García-Rojo, Marcial; Gonzández-López, Lucía
2015-06-01
Advances in digital pathology are generating huge volumes of whole slide (WSI) and tissue microarray images (TMA) which are providing new insights into the causes of cancer. The challenge is to extract and process effectively all the information in order to characterize all the heterogeneous tissue-derived data. This study aims to identify an optimal set of features that best separates different classes in breast TMA. These classes are: stroma, adipose tissue, benign and benign anomalous structures and ductal and lobular carcinomas. To this end, we propose an exhaustive assessment on the utility of textons and colour for automatic classification of breast TMA. Frequential and spatial texton maps from eight different colour models were extracted and compared. Then, in a novel way, the TMA is characterized by the 1st and 2nd order Haralick statistical descriptors obtained from the texton maps with a total of 241 × 8 features for each original RGB image. Subsequently, a feature selection process is performed to remove redundant information and therefore to reduce the dimensionality of the feature vector. Three methods were evaluated: linear discriminant analysis, correlation and sequential forward search. Finally, an extended bank of classifiers composed of six techniques was compared, but only three of them could significantly improve accuracy rates: Fisher, Bagging Trees and AdaBoost. Our results reveal that the combination of different colour models applied to spatial texton maps provides the most efficient representation of the breast TMA. Specifically, we found that the best colour model combination is Hb, Luv and SCT for all classifiers and the classifier that performs best for all colour model combinations is the AdaBoost. On a database comprising 628 TMA images, classification yields an accuracy of 98.1% and a precision of 96.2% with a total of 316 features on spatial textons maps. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reese, H.M.; Lillesand, T.M.; Nagel, D.E.; Stewart, J.S.; Goldmann, R.A.; Simmons, T.E.; Chipman, J.W.; Tessar, P.A.
2002-01-01
Landsat Thematic Mapper (TM) data were the basis in production of a statewide land cover data set for Wisconsin, undertaken in partnership with U.S. Geological Survey's (USGS) Gap Analysis Program (GAP). The data set contained seven classes comparable to Anderson Level I and 24 classes comparable to Anderson Level II/III. Twelve scenes of dual-date TM data were processed with methods that included principal components analysis, stratification into spectrally consistent units, separate classification of upland, wetland, and urban areas, and a hybrid supervised/unsupervised classification called "guided clustering." The final data had overall accuracies of 94% for Anderson Level I upland classes, 77% for Level II/III upland classes, and 84% for Level II/III wetland classes. Classification accuracies for deciduous and coniferous forest were 95% and 93%, respectively, and forest species' overall accuracies ranged from 70% to 84%. Limited availability of acceptable imagery necessitated use of an early May date in a majority of scene pairs, perhaps contributing to lower accuracy for upland deciduous forest species. The mixed deciduous/coniferous forest class had the lowest accuracy, most likely due to distinctly classifying a purely mixed class. Mixed forest signatures containing oak were often confused with pure oak. Guided clustering was seen as an efficient classification method, especially at the tree species level, although its success relied in part on image dates, accurate ground troth, and some analyst intervention. ?? 2002 Elsevier Science Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.
2011-12-01
Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because individual classes differed in scales at which they were best discriminated from others. Main classification challenges included a) presence of C3 grasses in C4-grass areas, particularly following harvesting of C4 reeds and b) mixtures of emergent, floating and submerged aquatic plants at sub-object and sub-pixel scales. We conclude that OBIA with advanced statistical classifiers offers useful instruments for landscape vegetation analyses, and that spatial scale considerations are critical in mapping PFTs, while multi-scale comparisons can be used to guide class selection. Future work will further apply fuzzy classification and field-collected spectral data for PFT analysis and compare results with MODIS PFT products.
Instrumental and statistical methods for the comparison of class evidence
NASA Astrophysics Data System (ADS)
Liszewski, Elisa Anne
Trace evidence is a major field within forensic science. Association of trace evidence samples can be problematic due to sample heterogeneity and a lack of quantitative criteria for comparing spectra or chromatograms. The aim of this study is to evaluate different types of instrumentation for their ability to discriminate among samples of various types of trace evidence. Chemometric analysis, including techniques such as Agglomerative Hierarchical Clustering, Principal Components Analysis, and Discriminant Analysis, was employed to evaluate instrumental data. First, automotive clear coats were analyzed by using microspectrophotometry to collect UV absorption data. In total, 71 samples were analyzed with classification accuracy of 91.61%. An external validation was performed, resulting in a prediction accuracy of 81.11%. Next, fiber dyes were analyzed using UV-Visible microspectrophotometry. While several physical characteristics of cotton fiber can be identified and compared, fiber color is considered to be an excellent source of variation, and thus was examined in this study. Twelve dyes were employed, some being visually indistinguishable. Several different analyses and comparisons were done, including an inter-laboratory comparison and external validations. Lastly, common plastic samples and other polymers were analyzed using pyrolysis-gas chromatography/mass spectrometry, and their pyrolysis products were then analyzed using multivariate statistics. The classification accuracy varied dependent upon the number of classes chosen, but the plastics were grouped based on composition. The polymers were used as an external validation and misclassifications occurred with chlorinated samples all being placed into the category containing PVC.
NASA Astrophysics Data System (ADS)
Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.
2018-01-01
In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in obtained chemical information while using these two methods.
Iliyasu, Abdullah M; Fatichah, Chastine
2017-12-19
A quantum hybrid (QH) intelligent approach that blends the adaptive search capability of the quantum-behaved particle swarm optimisation (QPSO) method with the intuitionistic rationality of traditional fuzzy k -nearest neighbours (Fuzzy k -NN) algorithm (known simply as the Q-Fuzzy approach) is proposed for efficient feature selection and classification of cells in cervical smeared (CS) images. From an initial multitude of 17 features describing the geometry, colour, and texture of the CS images, the QPSO stage of our proposed technique is used to select the best subset features (i.e., global best particles) that represent a pruned down collection of seven features. Using a dataset of almost 1000 images, performance evaluation of our proposed Q-Fuzzy approach assesses the impact of our feature selection on classification accuracy by way of three experimental scenarios that are compared alongside two other approaches: the All-features (i.e., classification without prior feature selection) and another hybrid technique combining the standard PSO algorithm with the Fuzzy k -NN technique (P-Fuzzy approach). In the first and second scenarios, we further divided the assessment criteria in terms of classification accuracy based on the choice of best features and those in terms of the different categories of the cervical cells. In the third scenario, we introduced new QH hybrid techniques, i.e., QPSO combined with other supervised learning methods, and compared the classification accuracy alongside our proposed Q-Fuzzy approach. Furthermore, we employed statistical approaches to establish qualitative agreement with regards to the feature selection in the experimental scenarios 1 and 3. The synergy between the QPSO and Fuzzy k -NN in the proposed Q-Fuzzy approach improves classification accuracy as manifest in the reduction in number cell features, which is crucial for effective cervical cancer detection and diagnosis.
Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Timothy; Steinmaus, Karen L.
2005-02-01
New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.
Pilania, G.; Gubernatis, J. E.; Lookman, T.
2015-12-03
The role of dynamical (or Born effective) charges in classification of octet AB-type binary compounds between four-fold (zincblende/wurtzite crystal structures) and six-fold (rocksalt crystal structure) coordinated systems is discussed. We show that the difference in the dynamical charges of the fourfold and sixfold coordinated structures, in combination with Harrison’s polarity, serves as an excellent feature to classify the coordination of 82 sp–bonded binary octet compounds. We use a support vector machine classifier to estimate the average classification accuracy and the associated variance in our model where a decision boundary is learned in a supervised manner. Lastly, we compare the out-of-samplemore » classification accuracy achieved by our feature pair with those reported previously.« less
NASA Astrophysics Data System (ADS)
Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias
2018-03-01
This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.
Mexican Hat Wavelet Kernel ELM for Multiclass Classification.
Wang, Jie; Song, Yi-Fan; Ma, Tian-Lei
2017-01-01
Kernel extreme learning machine (KELM) is a novel feedforward neural network, which is widely used in classification problems. To some extent, it solves the existing problems of the invalid nodes and the large computational complexity in ELM. However, the traditional KELM classifier usually has a low test accuracy when it faces multiclass classification problems. In order to solve the above problem, a new classifier, Mexican Hat wavelet KELM classifier, is proposed in this paper. The proposed classifier successfully improves the training accuracy and reduces the training time in the multiclass classification problems. Moreover, the validity of the Mexican Hat wavelet as a kernel function of ELM is rigorously proved. Experimental results on different data sets show that the performance of the proposed classifier is significantly superior to the compared classifiers.
NASA Astrophysics Data System (ADS)
Adi Putra, Januar
2018-04-01
In this paper, we propose a new mammogram classification scheme to classify the breast tissues as normal or abnormal. Feature matrix is generated using Local Binary Pattern to all the detailed coefficients from 2D-DWT of the region of interest (ROI) of a mammogram. Feature selection is done by selecting the relevant features that affect the classification. Feature selection is used to reduce the dimensionality of data and features that are not relevant, in this paper the F-test and Ttest will be performed to the results of the feature extraction dataset to reduce and select the relevant feature. The best features are used in a Neural Network classifier for classification. In this research we use MIAS and DDSM database. In addition to the suggested scheme, the competent schemes are also simulated for comparative analysis. It is observed that the proposed scheme has a better say with respect to accuracy, specificity and sensitivity. Based on experiments, the performance of the proposed scheme can produce high accuracy that is 92.71%, while the lowest accuracy obtained is 77.08%.
Multiclass cancer diagnosis using tumor gene expression signatures
Ramaswamy, S.; Tamayo, P.; Rifkin, R.; ...
2001-12-11
The optimal treatment of patients with cancer depends on establishing accurate diagnoses by using a complex combination of clinical and histopathological data. In some instances, this task is difficult or impossible because of atypical clinical presentation or histopathology. To determine whether the diagnosis of multiple common adult malignancies could be achieved purely by molecular classification, we subjected 218 tumor samples, spanning 14 common tumor types, and 90 normal tissue samples to oligonucleotide microarray gene expression analysis. The expression levels of 16,063 genes and expressed sequence tags were used to evaluate the accuracy of a multiclass classifier based on a supportmore » vector machine algorithm. Overall classification accuracy was 78%, far exceeding the accuracy of random classification (9%). Poorly differentiated cancers resulted in low-confidence predictions and could not be accurately classified according to their tissue of origin, indicating that they are molecularly distinct entities with dramatically different gene expression patterns compared with their well differentiated counterparts. Taken together, these results demonstrate the feasibility of accurate, multiclass molecular cancer classification and suggest a strategy for future clinical implementation of molecular cancer diagnostics.« less
An incremental knowledge assimilation system (IKAS) for mine detection
NASA Astrophysics Data System (ADS)
Porway, Jake; Raju, Chaitanya; Varadarajan, Karthik Mahesh; Nguyen, Hieu; Yadegar, Joseph
2010-04-01
In this paper we present an adaptive incremental learning system for underwater mine detection and classification that utilizes statistical models of seabed texture and an adaptive nearest-neighbor classifier to identify varied underwater targets in many different environments. The first stage of processing uses our Background Adaptive ANomaly detector (BAAN), which identifies statistically likely target regions using Gabor filter responses over the image. Using this information, BAAN classifies the background type and updates its detection using background-specific parameters. To perform classification, a Fully Adaptive Nearest Neighbor (FAAN) determines the best label for each detection. FAAN uses an extremely fast version of Nearest Neighbor to find the most likely label for the target. The classifier perpetually assimilates new and relevant information into its existing knowledge database in an incremental fashion, allowing improved classification accuracy and capturing concept drift in the target classes. Experiments show that the system achieves >90% classification accuracy on underwater mine detection tasks performed on synthesized datasets provided by the Office of Naval Research. We have also demonstrated that the system can incrementally improve its detection accuracy by constantly learning from new samples.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1983-01-01
Data acquired by synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) were processed and analyzed to derive forest-related resources inventory information. The SAR data were acquired by using the NASA aircraft X-band SAR with linear (HH, VV) and cross (HV, VH) polarizations and the SEASAT L-band SAR. After data processing and data quality examination, the three polarization (HH, HV, and VV) data from the aircraft X-band SAR were used in conjunction with LANDSAT MSS for multisensor data classification. The results of accuracy evaluation for the SAR, MSS and SAR/MSS data using supervised classification show that the SAR-only data set contains low classification accuracy for several land cover classes. However, the SAR/MSS data show that significant improvement in classification accuracy is obtained for all eight land cover classes. These results suggest the usefulness of using combined SAR/MSS data for forest-related cover mapping. The SAR data also detect several small special surface features that are not detectable by MSS data.
Textural characterization of histopathological images for oral sub-mucous fibrosis detection.
Krishnan, M Muthu Rama; Shah, Pratik; Choudhary, Anirudh; Chakraborty, Chandan; Paul, Ranjan Rashmi; Ray, Ajoy K
2011-10-01
In the field of quantitative microscopy, textural information plays a significant role very often in tissue characterization and diagnosis, in addition to morphology and intensity. The aim of this work is to improve the classification accuracy based on textural features for the development of a computer assisted screening of oral sub-mucous fibrosis (OSF). In fact, a systematic approach is introduced in order to grade the histopathological tissue sections into normal, OSF without dysplasia and OSF with dysplasia, which would help the oral onco-pathologists to screen the subjects rapidly. In totality, 71 textural features are extracted from epithelial region of the tissue sections using various wavelet families, Gabor-wavelet, local binary pattern, fractal dimension and Brownian motion curve, followed by preprocessing and segmentation. Wavelet families contribute a common set of 9 features, out of which 8 are significant and other 61 out of 62 obtained from the rest of the extractors are also statistically significant (p<0.05) in discriminating the three stages. Based on mean distance criteria, the best wavelet family (i.e., biorthogonal3.1 (bior3.1)) is selected for classifier design. support vector machine (SVM) is trained by 146 samples based on 69 textural features and its classification accuracy is computed for each of the combinations of wavelet family and rest of the extractors. Finally, it has been investigated that bior3.1 wavelet coefficients leads to higher accuracy (88.38%) in combination with LBP and Gabor wavelet features through three-fold cross validation. Results are shown and discussed in detail. It is shown that combining more than one texture measure instead of using just one might improve the overall accuracy. Copyright © 2011 Elsevier Ltd. All rights reserved.
Aided diagnosis methods of breast cancer based on machine learning
NASA Astrophysics Data System (ADS)
Zhao, Yue; Wang, Nian; Cui, Xiaoyu
2017-08-01
In the field of medicine, quickly and accurately determining whether the patient is malignant or benign is the key to treatment. In this paper, K-Nearest Neighbor, Linear Discriminant Analysis, Logistic Regression were applied to predict the classification of thyroid,Her-2,PR,ER,Ki67,metastasis and lymph nodes in breast cancer, in order to recognize the benign and malignant breast tumors and achieve the purpose of aided diagnosis of breast cancer. The results showed that the highest classification accuracy of LDA was 88.56%, while the classification effect of KNN and Logistic Regression were better than that of LDA, the best accuracy reached 96.30%.
Steganalysis using logistic regression
NASA Astrophysics Data System (ADS)
Lubenko, Ivans; Ker, Andrew D.
2011-02-01
We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.
EXhype: A tool for mineral classification using hyperspectral data
NASA Astrophysics Data System (ADS)
Adep, Ramesh Nityanand; shetty, Amba; Ramesh, H.
2017-02-01
Various supervised classification algorithms have been developed to classify earth surface features using hyperspectral data. Each algorithm is modelled based on different human expertises. However, the performance of conventional algorithms is not satisfactory to map especially the minerals in view of their typical spectral responses. This study introduces a new expert system named 'EXhype (Expert system for hyperspectral data classification)' to map minerals. The system incorporates human expertise at several stages of it's implementation: (i) to deal with intra-class variation; (ii) to identify absorption features; (iii) to discriminate spectra by considering absorption features, non-absorption features and by full spectra comparison; and (iv) finally takes a decision based on learning and by emphasizing most important features. It is developed using a knowledge base consisting of an Optimal Spectral Library, Segmented Upper Hull method, Spectral Angle Mapper (SAM) and Artificial Neural Network. The performance of the EXhype is compared with a traditional, most commonly used SAM algorithm using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired over Cuprite, Nevada, USA. A virtual verification method is used to collect samples information for accuracy assessment. Further, a modified accuracy assessment method is used to get a real users accuracies in cases where only limited or desired classes are considered for classification. With the modified accuracy assessment method, SAM and EXhype yields an overall accuracy of 60.35% and 90.75% and the kappa coefficient of 0.51 and 0.89 respectively. It was also found that the virtual verification method allows to use most desired stratified random sampling method and eliminates all the difficulties associated with it. The experimental results show that EXhype is not only producing better accuracy compared to traditional SAM but, can also rightly classify the minerals. It is proficient in avoiding misclassification between target classes when applied on minerals.
NASA Astrophysics Data System (ADS)
Diesing, Markus; Green, Sophie L.; Stephens, David; Lark, R. Murray; Stewart, Heather A.; Dove, Dayton
2014-08-01
Marine spatial planning and conservation need underpinning with sufficiently detailed and accurate seabed substrate and habitat maps. Although multibeam echosounders enable us to map the seabed with high resolution and spatial accuracy, there is still a lack of fit-for-purpose seabed maps. This is due to the high costs involved in carrying out systematic seabed mapping programmes and the fact that the development of validated, repeatable, quantitative and objective methods of swath acoustic data interpretation is still in its infancy. We compared a wide spectrum of approaches including manual interpretation, geostatistics, object-based image analysis and machine-learning to gain further insights into the accuracy and comparability of acoustic data interpretation approaches based on multibeam echosounder data (bathymetry, backscatter and derivatives) and seabed samples with the aim to derive seabed substrate maps. Sample data were split into a training and validation data set to allow us to carry out an accuracy assessment. Overall thematic classification accuracy ranged from 67% to 76% and Cohen's kappa varied between 0.34 and 0.52. However, these differences were not statistically significant at the 5% level. Misclassifications were mainly associated with uncommon classes, which were rarely sampled. Map outputs were between 68% and 87% identical. To improve classification accuracy in seabed mapping, we suggest that more studies on the effects of factors affecting the classification performance as well as comparative studies testing the performance of different approaches need to be carried out with a view to developing guidelines for selecting an appropriate method for a given dataset. In the meantime, classification accuracy might be improved by combining different techniques to hybrid approaches and multi-method ensembles.
Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data
NASA Astrophysics Data System (ADS)
Churches, Christopher E.; Wampler, Peter J.; Sun, Wanxiao; Smith, Andrew J.
2014-08-01
This study uses 2010-2011 Landsat Thematic Mapper (TM) imagery to estimate total forested area in Haiti. The thematic map was generated using radiometric normalization of digital numbers by a modified normalization method utilizing pseudo-invariant polygons (PIPs), followed by supervised classification of the mosaicked image using the Food and Agriculture Organization (FAO) of the United Nations Land Cover Classification System. Classification results were compared to other sources of land-cover data produced for similar years, with an emphasis on the statistics presented by the FAO. Three global land cover datasets (GLC2000, Globcover, 2009, and MODIS MCD12Q1), and a national-scale dataset (a land cover analysis by Haitian National Centre for Geospatial Information (CNIGS)) were reclassified and compared. According to our classification, approximately 32.3% of Haiti's total land area was tree covered in 2010-2011. This result was confirmed using an error-adjusted area estimator, which predicted a tree covered area of 32.4%. Standardization to the FAO's forest cover class definition reduces the amount of tree cover of our supervised classification to 29.4%. This result was greater than the reported FAO value of 4% and the value for the recoded GLC2000 dataset of 7.0%, but is comparable to values for three other recoded datasets: MCD12Q1 (21.1%), Globcover (2009) (26.9%), and CNIGS (19.5%). We propose that at coarse resolutions, the segmented and patchy nature of Haiti's forests resulted in a systematic underestimation of the extent of forest cover. It appears the best explanation for the significant difference between our results, FAO statistics, and compared datasets is the accuracy of the data sources and the resolution of the imagery used for land cover analyses. Analysis of recoded global datasets and results from this study suggest a strong linear relationship (R2 = 0.996 for tree cover) between spatial resolution and land cover estimates.
Test of spectral/spatial classifier
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Kast, J. L.; Davis, B. J.
1977-01-01
The author has identified the following significant results. The supervised ECHO processor (which utilizes class statistics for object identification) successfully exploits the redundancy of states characteristic of sampled imagery of ground scenes to achieve better classification accuracy, reduce the number of classifications required, and reduce the variability of classification results. The nonsupervised ECHO processor (which identifies objects without the benefit of class statistics) successfully reduces the number of classifications required and the variability of the classification results.
Identifying Wrist Fracture Patients with High Accuracy by Automatic Categorization of X-ray Reports
de Bruijn, Berry; Cranney, Ann; O’Donnell, Siobhan; Martin, Joel D.; Forster, Alan J.
2006-01-01
The authors performed this study to determine the accuracy of several text classification methods to categorize wrist x-ray reports. We randomly sampled 751 textual wrist x-ray reports. Two expert reviewers rated the presence (n = 301) or absence (n = 450) of an acute fracture of wrist. We developed two information retrieval (IR) text classification methods and a machine learning method using a support vector machine (TC-1). In cross-validation on the derivation set (n = 493), TC-1 outperformed the two IR based methods and six benchmark classifiers, including Naive Bayes and a Neural Network. In the validation set (n = 258), TC-1 demonstrated consistent performance with 93.8% accuracy; 95.5% sensitivity; 92.9% specificity; and 87.5% positive predictive value. TC-1 was easy to implement and superior in performance to the other classification methods. PMID:16929046
Detection of eardrum abnormalities using ensemble deep learning approaches
NASA Astrophysics Data System (ADS)
Senaras, Caglar; Moberly, Aaron C.; Teknos, Theodoros; Essig, Garth; Elmaraghy, Charles; Taj-Schaal, Nazhat; Yua, Lianbo; Gurcan, Metin N.
2018-02-01
In this study, we proposed an approach to report the condition of the eardrum as "normal" or "abnormal" by ensembling two different deep learning architectures. In the first network (Network 1), we applied transfer learning to the Inception V3 network by using 409 labeled samples. As a second network (Network 2), we designed a convolutional neural network to take advantage of auto-encoders by using additional 673 unlabeled eardrum samples. The individual classification accuracies of the Network 1 and Network 2 were calculated as 84.4%(+/- 12.1%) and 82.6% (+/- 11.3%), respectively. Only 32% of the errors of the two networks were the same, making it possible to combine two approaches to achieve better classification accuracy. The proposed ensemble method allows us to achieve robust classification because it has high accuracy (84.4%) with the lowest standard deviation (+/- 10.3%).
Research on cardiovascular disease prediction based on distance metric learning
NASA Astrophysics Data System (ADS)
Ni, Zhuang; Liu, Kui; Kang, Guixia
2018-04-01
Distance metric learning algorithm has been widely applied to medical diagnosis and exhibited its strengths in classification problems. The k-nearest neighbour (KNN) is an efficient method which treats each feature equally. The large margin nearest neighbour classification (LMNN) improves the accuracy of KNN by learning a global distance metric, which did not consider the locality of data distributions. In this paper, we propose a new distance metric algorithm adopting cosine metric and LMNN named COS-SUBLMNN which takes more care about local feature of data to overcome the shortage of LMNN and improve the classification accuracy. The proposed methodology is verified on CVDs patient vector derived from real-world medical data. The Experimental results show that our method provides higher accuracy than KNN and LMNN did, which demonstrates the effectiveness of the Risk predictive model of CVDs based on COS-SUBLMNN.
NASA Astrophysics Data System (ADS)
Ahmed, H. M.; Al-azawi, R. J.; Abdulhameed, A. A.
2018-05-01
Huge efforts have been put in the developing of diagnostic methods to skin cancer disease. In this paper, two different approaches have been addressed for detection the skin cancer in dermoscopy images. The first approach uses a global method that uses global features for classifying skin lesions, whereas the second approach uses a local method that uses local features for classifying skin lesions. The aim of this paper is selecting the best approach for skin lesion classification. The dataset has been used in this paper consist of 200 dermoscopy images from Pedro Hispano Hospital (PH2). The achieved results are; sensitivity about 96%, specificity about 100%, precision about 100%, and accuracy about 97% for globalization approach while, sensitivity about 100%, specificity about 100%, precision about 100%, and accuracy about 100% for Localization Approach, these results showed that the localization approach achieved acceptable accuracy and better than globalization approach for skin cancer lesions classification.
Fault detection and diagnosis of diesel engine valve trains
NASA Astrophysics Data System (ADS)
Flett, Justin; Bone, Gary M.
2016-05-01
This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.
NASA Technical Reports Server (NTRS)
Mehta, N. C.
1984-01-01
The utility of radar scatterometers for discrimination and characterization of natural vegetation was investigated. Backscatter measurements were acquired with airborne multi-frequency, multi-polarization, multi-angle radar scatterometers over a test site in a southern temperate forest. Separability between ground cover classes was studied using a two-class separability measure. Very good separability is achieved between most classes. Longer wavelength is useful in separating trees from non-tree classes, while shorter wavelength and cross polarization are helpful for discrimination among tree classes. Using the maximum likelihood classifier, 50% overall classification accuracy is achieved using a single, short-wavelength scatterometer channel. Addition of multiple incidence angles and another radar band improves classification accuracy by 20% and 50%, respectively, over the single channel accuracy. Incorporation of a third radar band seems redundant for vegetation classification. Vertical transmit polarization is critically important for all classes.
Tuberculosis disease diagnosis using artificial immune recognition system.
Shamshirband, Shahaboddin; Hessam, Somayeh; Javidnia, Hossein; Amiribesheli, Mohsen; Vahdat, Shaghayegh; Petković, Dalibor; Gani, Abdullah; Kiah, Miss Laiha Mat
2014-01-01
There is a high risk of tuberculosis (TB) disease diagnosis among conventional methods. This study is aimed at diagnosing TB using hybrid machine learning approaches. Patient epicrisis reports obtained from the Pasteur Laboratory in the north of Iran were used. All 175 samples have twenty features. The features are classified based on incorporating a fuzzy logic controller and artificial immune recognition system. The features are normalized through a fuzzy rule based on a labeling system. The labeled features are categorized into normal and tuberculosis classes using the Artificial Immune Recognition Algorithm. Overall, the highest classification accuracy reached was for the 0.8 learning rate (α) values. The artificial immune recognition system (AIRS) classification approaches using fuzzy logic also yielded better diagnosis results in terms of detection accuracy compared to other empirical methods. Classification accuracy was 99.14%, sensitivity 87.00%, and specificity 86.12%.
Chikh, Mohamed Amine; Saidi, Meryem; Settouti, Nesma
2012-10-01
The use of expert systems and artificial intelligence techniques in disease diagnosis has been increasing gradually. Artificial Immune Recognition System (AIRS) is one of the methods used in medical classification problems. AIRS2 is a more efficient version of the AIRS algorithm. In this paper, we used a modified AIRS2 called MAIRS2 where we replace the K- nearest neighbors algorithm with the fuzzy K-nearest neighbors to improve the diagnostic accuracy of diabetes diseases. The diabetes disease dataset used in our work is retrieved from UCI machine learning repository. The performances of the AIRS2 and MAIRS2 are evaluated regarding classification accuracy, sensitivity and specificity values. The highest classification accuracy obtained when applying the AIRS2 and MAIRS2 using 10-fold cross-validation was, respectively 82.69% and 89.10%.
Prediction of performance on the RCMP physical ability requirement evaluation.
Stanish, H I; Wood, T M; Campagna, P
1999-08-01
The Royal Canadian Mounted Police use the Physical Ability Requirement Evaluation (PARE) for screening applicants. The purposes of this investigation were to identify those field tests of physical fitness that were associated with PARE performance and determine which most accurately classified successful and unsuccessful PARE performers. The participants were 27 female and 21 male volunteers. Testing included measures of aerobic power, anaerobic power, agility, muscular strength, muscular endurance, and body composition. Multiple regression analysis revealed a three-variable model for males (70-lb bench press, standing long jump, and agility) explaining 79% of the variability in PARE time, whereas a one-variable model (agility) explained 43% of the variability for females. Analysis of the classification accuracy of the males' data was prohibited because 91% of the males passed the PARE. Classification accuracy of the females' data, using logistic regression, produced a two-variable model (agility, 1.5-mile endurance run) with 93% overall classification accuracy.
NASA Astrophysics Data System (ADS)
Erener, A.
2013-04-01
Automatic extraction of urban features from high resolution satellite images is one of the main applications in remote sensing. It is useful for wide scale applications, namely: urban planning, urban mapping, disaster management, GIS (geographic information systems) updating, and military target detection. One common approach to detecting urban features from high resolution images is to use automatic classification methods. This paper has four main objectives with respect to detecting buildings. The first objective is to compare the performance of the most notable supervised classification algorithms, including the maximum likelihood classifier (MLC) and the support vector machine (SVM). In this experiment the primary consideration is the impact of kernel configuration on the performance of the SVM. The second objective of the study is to explore the suitability of integrating additional bands, namely first principal component (1st PC) and the intensity image, for original data for multi classification approaches. The performance evaluation of classification results is done using two different accuracy assessment methods: pixel based and object based approaches, which reflect the third aim of the study. The objective here is to demonstrate the differences in the evaluation of accuracies of classification methods. Considering consistency, the same set of ground truth data which is produced by labeling the building boundaries in the GIS environment is used for accuracy assessment. Lastly, the fourth aim is to experimentally evaluate variation in the accuracy of classifiers for six different real situations in order to identify the impact of spatial and spectral diversity on results. The method is applied to Quickbird images for various urban complexity levels, extending from simple to complex urban patterns. The simple surface type includes a regular urban area with low density and systematic buildings with brick rooftops. The complex surface type involves almost all kinds of challenges, such as high dense build up areas, regions with bare soil, and small and large buildings with different rooftops, such as concrete, brick, and metal. Using the pixel based accuracy assessment it was shown that the percent building detection (PBD) and quality percent (QP) of the MLC and SVM depend on the complexity and texture variation of the region. Generally, PBD values range between 70% and 90% for the MLC and SVM, respectively. No substantial improvements were observed when the SVM and MLC classifications were developed by the addition of more variables, instead of the use of only four bands. In the evaluation of object based accuracy assessment, it was demonstrated that while MLC and SVM provide higher rates of correct detection, they also provide higher rates of false alarms.
Item Selection Criteria with Practical Constraints for Computerized Classification Testing
ERIC Educational Resources Information Center
Lin, Chuan-Ju
2011-01-01
This study compares four item selection criteria for a two-category computerized classification testing: (1) Fisher information (FI), (2) Kullback-Leibler information (KLI), (3) weighted log-odds ratio (WLOR), and (4) mutual information (MI), with respect to the efficiency and accuracy of classification decision using the sequential probability…
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Pratiher, Sawon; Mukherjee, Sukanya; Barman, Ritwik; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2018-02-01
In this paper, a comparative study between SVM and HMM has been carried out for multiclass classification of cervical healthy and cancerous tissues. In our study, the HMM methodology is more promising to produce higher accuracy in classification.
Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.
ERIC Educational Resources Information Center
Mostafa, J.; Lam, W.
2000-01-01
Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…